
Application Kit Framework Reference

2009-08-28

Apple Inc.
© 1997, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript,
AppleWorks, Aqua, Bonjour, Carbon, Cocoa,
ColorSync, eMac, Exposé, Finder, FireWire,
iBook, iCal, iChat, Instruments, iPhoto, iPod,
iTunes, Mac, Mac OS, Macintosh, Objective-C,
OpenDoc, Pages, PowerBook, Quartz,
QuickDraw, QuickTime, Safari, Spaces, Spotlight,
WebObjects, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

Aperture, MacBook, MobileMe, Numbers, and
OpenCL are trademarks of Apple Inc.

NeXT and NeXTSTEP are trademarks of NeXT
Software, Inc., registered in the United States
and other countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction The Application Kit 43

Introduction 46
Application Kit Classes and Protocols 47
Encapsulating an Application 48
General Event Handling and Drawing 49
Panels 49
Menus and Cursors 49
Grouping and Scrolling Views 49
Controlling an Application 50
Tables 50
Text and Fonts 50
Graphics and Color 51
Dragging 51
Printing 51
Accessing the File System 51
Sharing Data With Other Applications 52
Checking Spelling 52
Localization 52

Part I Classes 53

Chapter 1 CIColor Additions Reference 55

Overview 55
Tasks 55
Instance Methods 55

Chapter 2 CIImage Additions Reference 57

Overview 57
Tasks 57
Instance Methods 58

Chapter 3 NSActionCell Class Reference 61

Overview 61
Tasks 61
Instance Methods 63

3
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

Chapter 4 NSAffineTransform Additions Reference 73

Overview 73
Tasks 73
Instance Methods 74

Chapter 5 NSAlert Class Reference 77

Overview 77
Tasks 78
Class Methods 80
Instance Methods 82
Constants 96

Chapter 6 NSAnimation Class Reference 99

Overview 99
Tasks 100
Instance Methods 102
Constants 113
Notifications 116

Chapter 7 NSAnimationContext Class Reference 117

Overview 117
Tasks 118
Class Methods 118
Instance Methods 119

Chapter 8 NSAppleScript Additions Reference 121

Overview 121
Tasks 121
Instance Methods 121

Chapter 9 NSApplication Class Reference 123

Class at a Glance 123
Overview 124
Tasks 127
Class Methods 134
Instance Methods 135
Delegate Methods 182
Constants 184
Notifications 193

4
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 10 NSArrayController Class Reference 199

Overview 199
Tasks 199
Instance Methods 203

Chapter 11 NSATSTypesetter Class Reference 227

Overview 227
Tasks 227
Class Methods 231
Instance Methods 231

Chapter 12 NSAttributedString Application Kit Additions Reference 249

Overview 249
Tasks 249
Class Methods 252
Instance Methods 255
Constants 271

Chapter 13 NSBezierPath Class Reference 289

Overview 289
Adopted Protocols 290
Tasks 290
Class Methods 294
Instance Methods 306
Constants 335

Chapter 14 NSBitmapImageRep Class Reference 339

Overview 339
Tasks 340
Class Methods 343
Instance Methods 346
Constants 368

Chapter 15 NSBox Class Reference 377

Overview 377
Tasks 378
Instance Methods 380
Constants 392

5
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 16 NSBrowser Class Reference 395

Overview 395
Tasks 396
Class Methods 403
Instance Methods 404
Constants 451
Notifications 453

Chapter 17 NSBrowserCell Class Reference 455

Overview 455
Tasks 455
Class Methods 456
Instance Methods 457

Chapter 18 NSBundle Additions Reference 463

Overview 463
Tasks 463
Class Methods 464
Instance Methods 465

Chapter 19 NSButton Class Reference 469

Overview 469
Tasks 470
Instance Methods 472

Chapter 20 NSButtonCell Class Reference 491

Overview 491
Tasks 492
Instance Methods 495
Constants 521

Chapter 21 NSCachedImageRep Class Reference 529

Overview 529
Tasks 529
Instance Methods 530

Chapter 22 NSCell Class Reference 533

Overview 533
Tasks 533

6
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Class Methods 543
Instance Methods 544
Constants 613
Notifications 624

Chapter 23 NSCIImageRep Class Reference 625

Overview 625
Tasks 625
Class Methods 626
Instance Methods 626

Chapter 24 NSClipView Class Objective-C Reference 629

Class at a Glance 629
Overview 630
Tasks 630
Instance Methods 632

Chapter 25 NSCoder Application Kit Additions Reference 639

Overview 639
Tasks 639
Instance Methods 639

Chapter 26 NSCollectionView Class Reference 641

Overview 641
Tasks 641
Instance Methods 643
Constants 654

Chapter 27 NSCollectionViewItem Class Reference 655

Overview 655
Tasks 655
Instance Methods 656

Chapter 28 NSColor Class Reference 659

Class at a Glance 659
Overview 660
Adopted Protocols 660
Tasks 660
Class Methods 666
Instance Methods 695

7
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Constants 714
Notifications 714

Chapter 29 NSColorList Class Reference 715

Overview 715
Adopted Protocols 715
Tasks 715
Class Methods 717
Instance Methods 718
Notifications 722

Chapter 30 NSColorPanel Class Reference 725

Overview 725
Tasks 725
Class Methods 727
Instance Methods 729
Delegate Methods 736
Constants 737
Notifications 740

Chapter 31 NSColorPicker Class Reference 741

Overview 741
Adopted Protocols 741
Tasks 742
Instance Methods 743

Chapter 32 NSColorSpace Class Reference 749

Overview 749
Tasks 749
Class Methods 751
Instance Methods 755
Constants 758

Chapter 33 NSColorWell Class Reference 761

Overview 761
Tasks 761
Instance Methods 762

Chapter 34 NSComboBox Class Reference 767

Overview 767

8
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 768
Instance Methods 770
Notifications 786

Chapter 35 NSComboBoxCell Class Reference 789

Overview 789
Tasks 789
Instance Methods 792

Chapter 36 NSControl Class Reference 807

Overview 807
Tasks 808
Class Methods 812
Instance Methods 813
Delegate Methods 846
Notifications 847

Chapter 37 NSController Class Reference 849

Overview 849
Adopted Protocols 849
Tasks 849
Instance Methods 850

Chapter 38 NSCursor Class Reference 853

Overview 853
Tasks 855
Class Methods 857
Instance Methods 865
Constants 871

Chapter 39 NSCustomImageRep Class Reference 873

Overview 873
Tasks 873
Instance Methods 874

Chapter 40 NSDatePicker Class Reference 877

Overview 877
Tasks 877
Instance Methods 879

9
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 41 NSDatePickerCell Class Reference 893

Overview 893
Tasks 893
Instance Methods 895
Constants 905

Chapter 42 NSDictionaryController Class Reference 909

Overview 909
Adopted Protocols 910
Tasks 910
Instance Methods 911
Constants 916

Chapter 43 NSDockTile Class Reference 919

Overview 919
Tasks 920
Instance Methods 921
Constants 925

Chapter 44 NSDocument Class Reference 927

Class at a Glance 927
Overview 928
Tasks 930
Class Methods 938
Instance Methods 940
Constants 999

Chapter 45 NSDocumentController Class Reference 1003

Overview 1003
Adopted Protocols 1003
Tasks 1004
Class Methods 1008
Instance Methods 1009

Chapter 46 NSDrawer Class Reference 1033

Overview 1033
Tasks 1033
Instance Methods 1035
Constants 1046
Notifications 1046

10
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 47 NSEPSImageRep Class Reference 1049

Overview 1049
Tasks 1049
Class Methods 1050
Instance Methods 1050

Chapter 48 NSEvent Class Reference 1053

Overview 1053
Tasks 1054
Class Methods 1058
Instance Methods 1071
Constants 1091

Chapter 49 NSFileWrapper Class Reference 1115

Overview 1115
Adopted Protocols 1116
Tasks 1116
Instance Methods 1118
Constants 1139

Chapter 50 NSFont Class Reference 1143

Overview 1143
Adopted Protocols 1143
Tasks 1144
Class Methods 1149
Instance Methods 1162
Constants 1182
Notifications 1190

Chapter 51 NSFontDescriptor Class Reference 1191

Overview 1191
Adopted Protocols 1191
Tasks 1192
Class Methods 1193
Instance Methods 1194
Constants 1201

Chapter 52 NSFontManager Class Reference 1209

Overview 1209
Tasks 1210

11
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Class Methods 1214
Instance Methods 1215
Delegate Methods 1239
Constants 1241

Chapter 53 NSFontPanel Class Reference 1247

Overview 1247
Tasks 1247
Class Methods 1248
Instance Methods 1249
Constants 1253

Chapter 54 NSForm Class Reference 1255

Overview 1255
Tasks 1255
Instance Methods 1257

Chapter 55 NSFormCell Class Reference 1265

Overview 1265
Tasks 1265
Instance Methods 1267

Chapter 56 NSGlyphGenerator Class Reference 1275

Overview 1275
Tasks 1275
Class Methods 1276
Instance Methods 1276

Chapter 57 NSGlyphInfo Class Reference 1277

Overview 1277
Adopted Protocols 1277
Tasks 1277
Class Methods 1278
Instance Methods 1279
Constants 1281

Chapter 58 NSGradient Class Reference 1283

Overview 1283
Tasks 1284
Instance Methods 1285

12
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Constants 1293

Chapter 59 NSGraphicsContext Class Reference 1295

Overview 1295
Tasks 1296
Class Methods 1298
Instance Methods 1303
Constants 1312

Chapter 60 NSHelpManager Class Reference 1315

Overview 1315
Tasks 1315
Class Methods 1316
Instance Methods 1317
Notifications 1321

Chapter 61 NSImage Class Reference 1323

Overview 1323
Tasks 1323
Class Methods 1329
Instance Methods 1334
Constants 1375

Chapter 62 NSImageCell Class Reference 1393

Overview 1393
Tasks 1394
Instance Methods 1394
Constants 1396

Chapter 63 NSImageRep Class Reference 1399

Overview 1399
Tasks 1399
Class Methods 1402
Instance Methods 1414
Constants 1425
Notifications 1425

Chapter 64 NSImageView Class Reference 1427

Overview 1427
Tasks 1427

13
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 1429

Chapter 65 NSLayoutManager Class Reference 1437

Overview 1437
Adopted Protocols 1438
Tasks 1439
Instance Methods 1448
Constants 1525

Chapter 66 NSLevelIndicator Class Reference 1529

Overview 1529
Tasks 1530
Instance Methods 1531

Chapter 67 NSLevelIndicatorCell Class Reference 1537

Overview 1537
Tasks 1537
Instance Methods 1539
Constants 1545

Chapter 68 NSMatrix Class Reference 1547

Overview 1547
Tasks 1548
Instance Methods 1553
Constants 1598

Chapter 69 NSMenu Class Reference 1601

Overview 1601
Tasks 1601
Class Methods 1606
Instance Methods 1609
Constants 1636
Notifications 1637

Chapter 70 NSMenuItem Class Reference 1641

Overview 1641
Tasks 1641
Class Methods 1646
Instance Methods 1647

14
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 71 NSMenuItemCell Class Reference 1673

Overview 1673
Tasks 1673
Instance Methods 1675

Chapter 72 NSMenuView Class Reference 1685

Overview 1685
Tasks 1685
Class Methods 1688
Instance Methods 1688

Chapter 73 NSMutableAttributedString Additions Reference 1707

Overview 1707
Tasks 1707
Instance Methods 1708

Chapter 74 NSMutableParagraphStyle Class Reference 1715

Overview 1715
Tasks 1715
Instance Methods 1717

Chapter 75 NSNib Class Reference 1727

Overview 1727
Adopted Protocols 1728
Tasks 1728
Instance Methods 1729
Constants 1731

Chapter 76 NSNibConnector Class Reference 1733

Overview 1733
Adopted Protocols 1733
Tasks 1733
Instance Methods 1734

Chapter 77 NSNibControlConnector Class Reference 1739

Overview 1739
Tasks 1739
Instance Methods 1739

15
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 78 NSNibOutletConnector Class Reference 1741

Overview 1741
Tasks 1741
Instance Methods 1741

Chapter 79 NSObjectController Class Reference 1743

Overview 1743
Tasks 1743
Instance Methods 1746

Chapter 80 NSOpenGLContext Class Reference 1761

Overview 1761
Tasks 1761
Class Methods 1763
Instance Methods 1764
Constants 1777

Chapter 81 NSOpenGLLayer Class Reference 1779

Overview 1779
Tasks 1779
Properties 1780
Instance Methods 1781

Chapter 82 NSOpenGLPixelBuffer Class Reference 1785

Overview 1785
Tasks 1785
Instance Methods 1786

Chapter 83 NSOpenGLPixelFormat Class Reference 1791

Overview 1791
Tasks 1791
Instance Methods 1792
Constants 1797

Chapter 84 NSOpenGLView Class Reference 1805

Overview 1805
Tasks 1806
Class Methods 1807
Instance Methods 1807

16
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 85 NSOpenPanel Class Reference 1813

Overview 1813
Tasks 1813
Class Methods 1815
Instance Methods 1815

Chapter 86 NSOutlineView Class Reference 1825

Overview 1825
Tasks 1826
Instance Methods 1829
Delegate Methods 1844
Constants 1846
Notifications 1847

Chapter 87 NSPageLayout Class Reference 1851

Overview 1851
Tasks 1851
Class Methods 1853
Instance Methods 1853

Chapter 88 NSPanel Class Reference 1859

Overview 1859
Tasks 1859
Instance Methods 1860
Constants 1863

Chapter 89 NSParagraphStyle Class Reference 1867

Overview 1867
Adopted Protocols 1867
Tasks 1868
Class Methods 1869
Instance Methods 1870
Constants 1878

Chapter 90 NSPasteboard Class Reference 1881

Overview 1881
Tasks 1882
Class Methods 1884
Instance Methods 1888
Constants 1903

17
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 91 NSPasteboardItem Class Reference 1911

Overview 1911
Tasks 1912
Instance Methods 1913

Chapter 92 NSPathCell Class Reference 1917

Overview 1917
Tasks 1918
Class Methods 1920
Instance Methods 1920
Constants 1930

Chapter 93 NSPathComponentCell Class Reference 1931

Overview 1931
Tasks 1931
Instance Methods 1932

Chapter 94 NSPathControl Class Reference 1935

Overview 1935
Tasks 1936
Instance Methods 1937

Chapter 95 NSPDFImageRep Class Reference 1945

Overview 1945
Tasks 1945
Class Methods 1946
Instance Methods 1946

Chapter 96 NSPersistentDocument Class Reference 1949

Overview 1949
Tasks 1950
Instance Methods 1951

Chapter 97 NSPICTImageRep Class Reference 1959

Overview 1959
Tasks 1959
Class Methods 1960
Instance Methods 1960

18
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 98 NSPopUpButton Class Reference 1963

Class at a Glance 1963
Overview 1964
Tasks 1964
Instance Methods 1967
Notifications 1985

Chapter 99 NSPopUpButtonCell Class Reference 1987

Overview 1987
Tasks 1987
Instance Methods 1990
Constants 2013
Notifications 2014

Chapter 100 NSPredicateEditor Class Reference 2015

Overview 2015
Tasks 2016
Instance Methods 2016

Chapter 101 NSPredicateEditorRowTemplate Class Reference 2019

Overview 2019
Tasks 2020
Class Methods 2021
Instance Methods 2022

Chapter 102 NSPrinter Class Reference 2029

Overview 2029
Adopted Protocols 2029
Tasks 2029
Class Methods 2031
Instance Methods 2033
Constants 2042

Chapter 103 NSPrintInfo Class Reference 2043

Overview 2043
Tasks 2044
Class Methods 2047
Instance Methods 2049
Constants 2067

19
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 104 NSPrintOperation Class Reference 2077

Overview 2077
Tasks 2078
Class Methods 2081
Instance Methods 2087
Constants 2101

Chapter 105 NSPrintPanel Class Reference 2103

Overview 2103
Tasks 2103
Class Methods 2105
Instance Methods 2105
Constants 2114

Chapter 106 NSProgressIndicator Class Reference 2117

Overview 2117
Tasks 2117
Instance Methods 2119
Constants 2131

Chapter 107 NSResponder Class Reference 2133

Overview 2133
Tasks 2134
Instance Methods 2143

Chapter 108 NSRuleEditor Class Reference 2207

Overview 2207
Tasks 2208
Instance Methods 2210
Constants 2228
Notifications 2231

Chapter 109 NSRulerMarker Class Objective-C Reference 2233

Overview 2233
Adopted Protocols 2233
Tasks 2234
Instance Methods 2235

20
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 110 NSRulerView Class Reference 2245

Class at a Glance 2245
Overview 2246
Tasks 2246
Class Methods 2250
Instance Methods 2251
Delegate Methods 2263
Constants 2267

Chapter 111 NSRunningApplication Class Reference 2269

Overview 2269
Tasks 2270
Properties 2271
Class Methods 2275
Instance Methods 2277
Constants 2279

Chapter 112 NSSavePanel Class Reference 2281

Overview 2281
Tasks 2282
Class Methods 2285
Instance Methods 2285
Delegate Methods 2307
Constants 2310

Chapter 113 NSScreen Class Reference 2313

Overview 2313
Tasks 2314
Class Methods 2314
Instance Methods 2316
Notifications 2319

Chapter 114 NSScroller Class Reference 2321

Class at a Glance 2321
Overview 2322
Tasks 2322
Class Methods 2324
Instance Methods 2325
Constants 2332

21
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 115 NSScrollView Class Reference 2337

Class at a Glance 2337
Overview 2338
Tasks 2338
Class Methods 2342
Instance Methods 2344

Chapter 116 NSSearchField Class Reference 2367

Overview 2367
Tasks 2367
Instance Methods 2368

Chapter 117 NSSearchFieldCell Class Reference 2371

Overview 2371
Tasks 2371
Instance Methods 2373
Constants 2382

Chapter 118 NSSecureTextField Class Reference 2385

Overview 2385

Chapter 119 NSSecureTextFieldCell Class Reference 2387

Overview 2387
Tasks 2387
Instance Methods 2387

Chapter 120 NSSegmentedCell Class Reference 2389

Overview 2389
Tasks 2389
Instance Methods 2391
Constants 2405

Chapter 121 NSSegmentedControl Class Reference 2407

Overview 2407
Tasks 2408
Instance Methods 2409
Constants 2419

22
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 122 NSShadow Class Reference 2421

Overview 2421
Adopted Protocols 2422
Tasks 2422
Instance Methods 2423

Chapter 123 NSSlider Class Reference 2427

Overview 2427
Tasks 2427
Instance Methods 2430

Chapter 124 NSSliderCell Class Reference 2443

Overview 2443
Tasks 2443
Class Methods 2446
Instance Methods 2446
Constants 2460

Chapter 125 NSSound Class Reference 2463

Overview 2463
Tasks 2464
Class Methods 2466
Instance Methods 2468
Constants 2478

Chapter 126 NSSpeechRecognizer Class Reference 2479

Overview 2479
Tasks 2480
Instance Methods 2481

Chapter 127 NSSpeechSynthesizer Class Reference 2487

Overview 2487
Tasks 2488
Class Methods 2490
Instance Methods 2491
Constants 2502

Chapter 128 NSSpellChecker Class Reference 2515

Overview 2515

23
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 2515
Class Methods 2518
Instance Methods 2519
Constants 2537

Chapter 129 NSSplitView Class Reference 2539

Overview 2539
Tasks 2539
Instance Methods 2541
Constants 2549
Notifications 2549

Chapter 130 NSStatusBar Class Reference 2551

Overview 2551
Tasks 2551
Class Methods 2552
Instance Methods 2552
Constants 2554

Chapter 131 NSStatusItem Class Reference 2555

Overview 2555
Tasks 2555
Instance Methods 2557

Chapter 132 NSStepper Class Reference 2569

Overview 2569
Tasks 2569
Instance Methods 2570

Chapter 133 NSStepperCell Class Reference 2575

Overview 2575
Tasks 2575
Instance Methods 2576

Chapter 134 NSString Application Kit Additions Reference 2581

Overview 2581
Tasks 2581
Instance Methods 2582
Constants 2585

24
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 135 NSTableColumn Class Reference 2587

Overview 2587
Adopted Protocols 2587
Tasks 2588
Instance Methods 2590
Constants 2602

Chapter 136 NSTableHeaderCell Class Reference 2603

Overview 2603
Tasks 2603
Instance Methods 2604

Chapter 137 NSTableHeaderView Class Reference 2605

Overview 2605
Tasks 2605
Instance Methods 2606

Chapter 138 NSTableView Class Reference 2609

Class at a Glance 2609
Overview 2610
Tasks 2610
Instance Methods 2619
Delegate Methods 2674
Constants 2675
Notifications 2678

Chapter 139 NSTabView Class Reference 2681

Overview 2681
Tasks 2682
Instance Methods 2685
Constants 2699

Chapter 140 NSTabViewItem Class Reference 2701

Overview 2701
Tasks 2701
Instance Methods 2703
Constants 2709

25
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 141 NSText Class Reference 2711

Class at a Glance 2711
Overview 2712
Adopted Protocols 2712
Tasks 2712
Instance Methods 2718
Constants 2747
Notifications 2752

Chapter 142 NSTextAttachment Class Reference 2755

Overview 2755
Adopted Protocols 2755
Tasks 2756
Instance Methods 2756
Constants 2759

Chapter 143 NSTextAttachmentCell Class Reference 2761

Overview 2761
Adopted Protocols 2761

Chapter 144 NSTextBlock Class Reference 2763

Overview 2763
Tasks 2763
Instance Methods 2765
Constants 2775

Chapter 145 NSTextContainer Class Reference 2779

Overview 2779
Adopted Protocols 2779
Tasks 2780
Instance Methods 2781
Constants 2790

Chapter 146 NSTextField Class Reference 2793

Overview 2793
Tasks 2793
Instance Methods 2796

26
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 147 NSTextFieldCell Class Reference 2811

Overview 2811
Tasks 2812
Instance Methods 2813
Constants 2820

Chapter 148 NSTextInputContext Class Reference 2821

Overview 2821
Tasks 2821
Properties 2822
Class Methods 2824
Instance Methods 2824
Notifications 2826

Chapter 149 NSTextList Class Reference 2829

Overview 2829
Tasks 2829
Instance Methods 2830
Constants 2833

Chapter 150 NSTextStorage Class Reference 2835

Overview 2835
Tasks 2836
Instance Methods 2837
Constants 2847
Notifications 2848

Chapter 151 NSTextTab Class Reference 2849

Overview 2849
Adopted Protocols 2849
Tasks 2850
Instance Methods 2850
Constants 2852

Chapter 152 NSTextTable Class Reference 2855

Overview 2855
Tasks 2855
Instance Methods 2856
Constants 2862

27
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 153 NSTextTableBlock Class Reference 2863

Overview 2863
Tasks 2863
Instance Methods 2864

Chapter 154 NSTextView Class Reference 2867

Overview 2867
Tasks 2868
Class Methods 2879
Instance Methods 2879
Constants 2970
Notifications 2974

Chapter 155 NSTokenField Class Reference 2977

Overview 2977
Tasks 2978
Class Methods 2979
Instance Methods 2979

Chapter 156 NSTokenFieldCell Class Reference 2983

Overview 2983
Tasks 2983
Class Methods 2984
Instance Methods 2985
Constants 2988

Chapter 157 NSToolbar Class Reference 2989

Overview 2989
Tasks 2990
Instance Methods 2992
Constants 3004
Notifications 3005

Chapter 158 NSToolbarItem Class Reference 3007

Overview 3007
Adopted Protocols 3007
Tasks 3008
Instance Methods 3010
Constants 3025

28
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 159 NSToolbarItemGroup Class Reference 3029

Overview 3029
Tasks 3030
Instance Methods 3030

Chapter 160 NSTouch Class Reference 3033

Overview 3033
Tasks 3033
Properties 3034
Constants 3036

Chapter 161 NSTrackingArea Class Reference 3039

Overview 3039
Adopted Protocols 3040
Tasks 3040
Instance Methods 3041
Constants 3043

Chapter 162 NSTreeController Class Reference 3047

Overview 3047
Adopted Protocols 3048
Tasks 3048
Instance Methods 3051

Chapter 163 NSTreeNode Class Reference 3069

Overview 3069
Tasks 3069
Class Methods 3070
Instance Methods 3071

Chapter 164 NSTypesetter Class Reference 3075

Overview 3075
Tasks 3076
Class Methods 3081
Instance Methods 3083
Constants 3110

Chapter 165 NSURL Additions Reference 3111

Overview 3111

29
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 3111
Class Methods 3111
Instance Methods 3112

Chapter 166 NSUserDefaultsController Class Reference 3113

Overview 3113
Tasks 3113
Class Methods 3114
Instance Methods 3115

Chapter 167 NSView Class Reference 3121

Class at a Glance 3121
Overview 3122
Tasks 3123
Class Methods 3137
Instance Methods 3138
Constants 3249
Notifications 3256

Chapter 168 NSViewAnimation Class Reference 3259

Overview 3259
Tasks 3260
Instance Methods 3260
Constants 3261

Chapter 169 NSViewController Class Reference 3265

Overview 3265
Tasks 3266
Instance Methods 3267

Chapter 170 NSWindow Class Reference 3275

Overview 3275
Tasks 3276
Class Methods 3292
Instance Methods 3296
Constants 3411
Notifications 3422

Chapter 171 NSWindowController Class Reference 3429

Overview 3429

30
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Adopted Protocols 3430
Tasks 3431
Instance Methods 3432

Chapter 172 NSWorkspace Class Reference 3447

Overview 3447
Tasks 3448
Class Methods 3452
Instance Methods 3453
Constants 3483
Notifications 3491

Part II Protocols 3497

Chapter 173 NSAccessibility Protocol Reference 3499

Overview 3499
Tasks 3500
Instance Methods 3501
Constants 3509

Chapter 174 NSAlertDelegate Protocol Reference 3551

Overview 3551
Tasks 3551
Instance Methods 3551

Chapter 175 NSAnimatablePropertyContainer Protocol Reference 3553

Overview 3553
Tasks 3553
Class Methods 3554
Instance Methods 3555
Constants 3557

Chapter 176 NSAnimationDelegate Protocol Reference 3559

Overview 3559
Tasks 3559
Instance Methods 3560

Chapter 177 NSApplicationDelegate Protocol Reference 3563

Overview 3563

31
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 3563
Instance Methods 3566

Chapter 178 NSBrowserDelegate Protocol Reference 3581

Overview 3581
Tasks 3581
Instance Methods 3584

Chapter 179 NSChangeSpelling Protocol Reference 3605

Overview 3605
Tasks 3605
Instance Methods 3605

Chapter 180 NSCollectionViewDelegate Protocol Reference 3607

Overview 3607
Tasks 3607
Instance Methods 3608

Chapter 181 NSColorPickingCustom Protocol Reference 3613

Overview 3613
Tasks 3613
Instance Methods 3614

Chapter 182 NSColorPickingDefault Protocol Reference 3617

Overview 3617
Tasks 3617
Instance Methods 3618

Chapter 183 NSComboBoxCellDataSource Protocol Reference 3625

Overview 3625
Tasks 3625
Instance Methods 3626

Chapter 184 NSComboBoxDataSource Protocol Reference 3629

Overview 3629
Tasks 3629
Instance Methods 3630

32
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 185 NSComboBoxDelegate Protocol Reference 3633

Overview 3633
Tasks 3633
Instance Methods 3633

Chapter 186 NSControlTextEditingDelegate Protocol Reference 3637

Overview 3637
Tasks 3637
Instance Methods 3638

Chapter 187 NSDatePickerCellDelegate Protocol Reference 3645

Overview 3645
Tasks 3645
Instance Methods 3645

Chapter 188 NSDictionaryControllerKeyValuePair Protocol Reference 3647

Overview 3647
Tasks 3647
Instance Methods 3648

Chapter 189 NSDockTilePlugIn Protocol Reference 3651

Overview 3651
Tasks 3651
Instance Methods 3652

Chapter 190 NSDraggingDestination Protocol Reference 3653

Overview 3653
Tasks 3653
Instance Methods 3654

Chapter 191 NSDraggingInfo Protocol Reference 3659

Overview 3659
Tasks 3659
Instance Methods 3660
Constants 3664

Chapter 192 NSDraggingSource Protocol Reference 3667

Overview 3667

33
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 3667
Instance Methods 3668

Chapter 193 NSDrawerDelegate Protocol Reference 3673

Overview 3673
Tasks 3673
Instance Methods 3674

Chapter 194 NSEditor Protocol Reference 3677

Overview 3677
Tasks 3677
Instance Methods 3678

Chapter 195 NSEditorRegistration Protocol Reference 3681

Overview 3681
Tasks 3681
Instance Methods 3682

Chapter 196 NSFontPanelValidation Protocol Reference 3683

Overview 3683
Tasks 3683
Instance Methods 3683
Constants 3684

Chapter 197 NSGlyphStorage Protocol Reference 3687

Overview 3687
Tasks 3687
Instance Methods 3688
Constants 3689

Chapter 198 NSIgnoreMisspelledWords Protocol Reference 3691

Overview 3691
Tasks 3692
Instance Methods 3692

Chapter 199 NSImageDelegate Protocol Reference 3693

Overview 3693
Tasks 3693
Instance Methods 3694

34
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 200 NSKeyValueBindingCreation Protocol Reference 3697

Overview 3697
Tasks 3698
Class Methods 3698
Instance Methods 3699
Constants 3702

Chapter 201 NSLayoutManagerDelegate Protocol Reference 3717

Overview 3717
Tasks 3717
Instance Methods 3718

Chapter 202 NSMatrixDelegate Protocol Reference 3721

Overview 3721

Chapter 203 NSMenuDelegate Protocol Reference 3723

Overview 3723
Tasks 3723
Instance Methods 3724

Chapter 204 NSMenuValidation Protocol Reference 3729

Overview 3729
Tasks 3729
Instance Methods 3729

Chapter 205 NSNibAwaking Protocol Reference 3731

Overview 3731
Tasks 3731
Instance Methods 3731

Chapter 206 NSOpenSavePanelDelegate Protocol Reference 3735

Overview 3735
Tasks 3735
Instance Methods 3736

Chapter 207 NSOutlineViewDataSource Protocol Reference 3741

Overview 3741
Tasks 3742

35
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 3743

Chapter 208 NSOutlineViewDelegate Protocol Reference 3751

Overview 3751
Tasks 3751
Instance Methods 3754

Chapter 209 NSPasteboardItemDataProvider Protocol Reference 3767

Overview 3767
Tasks 3767
Instance Methods 3767

Chapter 210 NSPasteboardReading Protocol Reference 3769

Overview 3769
Tasks 3769
Class Methods 3770
Instance Methods 3771
Constants 3772

Chapter 211 NSPasteboardWriting Protocol Reference 3775

Overview 3775
Tasks 3775
Instance Methods 3776
Constants 3777

Chapter 212 NSPathCellDelegate Protocol Reference 3779

Overview 3779
Tasks 3779
Instance Methods 3779

Chapter 213 NSPathControlDelegate Protocol Reference 3781

Overview 3781
Tasks 3781
Instance Methods 3782

Chapter 214 NSPlaceholders Protocol Reference 3785

Overview 3785
Tasks 3785
Class Methods 3786

36
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Constants 3786

Chapter 215 NSPrintPanelAccessorizing Protocol Reference 3789

Overview 3789
Tasks 3789
Instance Methods 3789
Constants 3791

Chapter 216 NSRuleEditorDelegate Protocol Reference 3793

Overview 3793
Tasks 3793
Instance Methods 3794

Chapter 217 NSServicesRequests Protocol Reference 3797

Overview 3797
Tasks 3797
Instance Methods 3797

Chapter 218 NSSoundDelegate Protocol Reference 3799

Overview 3799
Tasks 3799
Instance Methods 3799

Chapter 219 NSSpeechRecognizerDelegate Protocol Reference 3801

Overview 3801
Tasks 3801
Instance Methods 3801

Chapter 220 NSSpeechSynthesizerDelegate Protocol Reference 3803

Overview 3803
Tasks 3803
Instance Methods 3804

Chapter 221 NSSplitViewDelegate Protocol Reference 3809

Overview 3809
Tasks 3809
Instance Methods 3810

37
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 222 NSTableViewDataSource Protocol Reference 3819

Overview 3819
Tasks 3819
Instance Methods 3820

Chapter 223 NSTableViewDelegate Protocol Reference 3827

Overview 3827
Tasks 3827
Instance Methods 3829

Chapter 224 NSTabViewDelegate Protocol Reference 3843

Overview 3843
Tasks 3843
Instance Methods 3844

Chapter 225 NSTextAttachmentCell Protocol Reference 3847

Overview 3847
Tasks 3847
Instance Methods 3848

Chapter 226 NSTextDelegate Protocol Reference 3855

Overview 3855
Tasks 3855
Instance Methods 3856

Chapter 227 NSTextFieldDelegate Protocol Reference 3859

Overview 3859

Chapter 228 NSTextInput Protocol Reference 3861

Overview 3861
Tasks 3861
Instance Methods 3862

Chapter 229 NSTextInputClient Protocol Reference 3869

Overview 3869
Tasks 3869
Instance Methods 3871

38
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 230 NSTextViewDelegate Protocol Reference 3879

Overview 3879
Tasks 3879
Instance Methods 3881

Chapter 231 NSTokenFieldCellDelegate Protocol Reference 3897

Overview 3897
Tasks 3897
Instance Methods 3898

Chapter 232 NSTokenFieldDelegate Protocol Reference 3905

Overview 3905
Tasks 3905
Instance Methods 3906

Chapter 233 NSToolbarDelegate Protocol Reference 3913

Overview 3913
Tasks 3913
Instance Methods 3914

Chapter 234 NSToolbarItemValidation Protocol Reference 3919

Overview 3919
Tasks 3919
Instance Methods 3919

Chapter 235 NSToolTipOwner Protocol Reference 3921

Overview 3921
Tasks 3921
Instance Methods 3921

Chapter 236 NSUserInterfaceValidations Protocol Reference 3923

Overview 3923
Tasks 3923
Instance Methods 3923

Chapter 237 NSValidatedUserInterfaceItem Protocol Reference 3925

Overview 3925
Tasks 3925

39
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 3925

Chapter 238 NSWindowDelegate Protocol Reference 3927

Overview 3927
Tasks 3927
Instance Methods 3930

Chapter 239 NSWindowScripting Protocol Reference 3943

Overview 3943
Tasks 3943
Instance Methods 3944

Part III Functions 3949

Chapter 240 Application Kit Functions Reference 3951

Overview 3951
Functions by Task 3951
Functions 3956

Part IV Data Types 4005

Chapter 241 Application Kit Data Types Reference 4007

Overview 4007
Data Types 4007

Part V Constants 4015

Chapter 242 Application Kit Constants Reference 4017

Overview 4017
Constants 4017

Document Revision History 4029

40
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Introduction The Application Kit 43

Figure I-1 Cocoa Objective-C Class Hierarchy for Application Kit 47

Chapter 5 NSAlert Class Reference 77

Figure 5-1 Alert dialog with an accessory view 89
Figure 5-2 Alert dialog with a suppression checkbox 94
Listing 5-1 Adding an accessory view to an alert 89
Listing 5-2 Creating an alert with a suppression checkbox 93

Chapter 13 NSBezierPath Class Reference 289

Figure 13-1 Line cap styles 302
Figure 13-2 Line join styles 303

Chapter 58 NSGradient Class Reference 1283

Table 58-1 Linear gradient starting points. 1288

Chapter 61 NSImage Class Reference 1323

Table 61-1 Default pasteboard types for image representations 1354
Table 61-2 Placeholder values for compositing equations 1378

Chapter 66 NSLevelIndicator Class Reference 1529

Figure 66-1 Major and minor tick marks in a level indicator 1534

Chapter 121 NSSegmentedControl Class Reference 2407

Figure 121-1 NSSegmentStyle examples 2417

Chapter 127 NSSpeechSynthesizer Class Reference 2487

Figure 127-1 Speech feedback window 2488
Listing 127-1 Identifiers of the Mac OS X system voices 2503

Chapter 128 NSSpellChecker Class Reference 2515

Listing 128-1 Specifying the spell checker language 2532

41
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

Chapter 170 NSWindow Class Reference 3275

Table 170-1 Title bar document icon display 3359

Chapter 172 NSWorkspace Class Reference 3447

Table 172-1 userInfodictionary keys for activeApplication and launchedApplications
and notifications for application launch and termination. 3483

42
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Framework /System/Library/Frameworks/AppKit.framework

Header file directories /System/Library/Frameworks/AppKit.framework/Headers

Declared in AppKitErrors.h
NSATSTypesetter.h
NSAccessibility.h
NSActionCell.h
NSAffineTransform.h
NSAlert.h
NSAnimation.h
NSAnimationContext.h
NSAppleScriptExtensions.h
NSApplication.h
NSApplicationScripting.h
NSArrayController.h
NSAttributedString.h
NSBezierPath.h
NSBitmapImageRep.h
NSBox.h
NSBrowser.h
NSBrowserCell.h
NSButton.h
NSButtonCell.h
NSCIImageRep.h
NSCachedImageRep.h
NSCell.h
NSClipView.h
NSCollectionView.h
NSColor.h
NSColorList.h
NSColorPanel.h
NSColorPicker.h
NSColorPicking.h
NSColorSpace.h
NSColorWell.h
NSComboBox.h
NSComboBoxCell.h
NSControl.h
NSController.h
NSCursor.h
NSCustomImageRep.h
NSDatePicker.h
NSDatePickerCell.h
NSDictionaryController.h
NSDockTile.h
NSDocument.h

43
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

NSDocumentController.h
NSDocumentScripting.h
NSDragging.h
NSDrawer.h
NSEPSImageRep.h
NSErrors.h
NSEvent.h
NSFileWrapper.h
NSFont.h
NSFontDescriptor.h
NSFontManager.h
NSFontPanel.h
NSForm.h
NSFormCell.h
NSGlyphGenerator.h
NSGlyphInfo.h
NSGradient.h
NSGraphics.h
NSGraphicsContext.h
NSHelpManager.h
NSImage.h
NSImageCell.h
NSImageRep.h
NSImageView.h
NSInputManager.h
NSInterfaceStyle.h
NSKeyValueBinding.h
NSLayoutManager.h
NSLevelIndicator.h
NSLevelIndicatorCell.h
NSMatrix.h
NSMenu.h
NSMenuItem.h
NSMenuItemCell.h
NSMenuView.h
NSNib.h
NSNibConnector.h
NSNibControlConnector.h
NSNibDeclarations.h
NSNibLoading.h
NSNibOutletConnector.h
NSObjectController.h
NSOpenGL.h
NSOpenGLLayer.h
NSOpenGLView.h
NSOpenPanel.h
NSOutlineView.h
NSPDFImageRep.h
NSPICTImageRep.h
NSPageLayout.h
NSPanel.h
NSParagraphStyle.h
NSPasteboard.h

44
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

NSPasteboardItem.h
NSPathCell.h
NSPathComponentCell.h
NSPathControl.h
NSPersistentDocument.h
NSPopUpButton.h
NSPopUpButtonCell.h
NSPredicateEditor.h
NSPredicateEditorRowTemplate.h
NSPrintInfo.h
NSPrintOperation.h
NSPrintPanel.h
NSPrinter.h
NSProgressIndicator.h
NSResponder.h
NSRuleEditor.h
NSRulerMarker.h
NSRulerView.h
NSRunningApplication.h
NSSavePanel.h
NSScreen.h
NSScrollView.h
NSScroller.h
NSSearchField.h
NSSearchFieldCell.h
NSSecureTextField.h
NSSegmentedCell.h
NSSegmentedControl.h
NSShadow.h
NSSimpleHorizontalTypesetter.h
NSSlider.h
NSSliderCell.h
NSSound.h
NSSpeechRecognizer.h
NSSpeechSynthesizer.h
NSSpellChecker.h
NSSpellProtocol.h
NSSplitView.h
NSStatusBar.h
NSStatusItem.h
NSStepper.h
NSStepperCell.h
NSStringDrawing.h
NSTabView.h
NSTabViewItem.h
NSTableColumn.h
NSTableHeaderCell.h
NSTableHeaderView.h
NSTableView.h
NSText.h
NSTextAttachment.h
NSTextContainer.h
NSTextField.h

45
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

NSTextFieldCell.h
NSTextInputClient.h
NSTextInputContext.h
NSTextList.h
NSTextStorage.h
NSTextStorageScripting.h
NSTextTable.h
NSTextView.h
NSTokenField.h
NSTokenFieldCell.h
NSToolbar.h
NSToolbarItem.h
NSToolbarItemGroup.h
NSTouch.h
NSTrackingArea.h
NSTreeController.h
NSTreeNode.h
NSTypesetter.h
NSUserDefaultsController.h
NSUserInterfaceItemSearching.h
NSUserInterfaceValidation.h
NSView.h
NSViewController.h
NSWindow.h
NSWindowController.h
NSWindowScripting.h
NSWorkspace.h

Introduction

The Application Kit is a framework containing all the objects you need to implement your graphical,
event-driven user interface: windows, panels, buttons, menus, scrollers, and text fields. The Application Kit
handles all the details for you as it efficiently draws on the screen, communicates with hardware devices and
screen buffers, clears areas of the screen before drawing, and clips views. The number of classes in the
Application Kit may seem daunting at first. However, most Application Kit classes are support classes that
you use indirectly. You also have the choice at which level you use the Application Kit:

 ■ Use Interface Builder to create connections from user interface objects to your application objects. In
this case, all you need to do is implement your application classes—implement those action and delegate
methods. For example, implement the method that is invoked when the user selects a menu item.

 ■ Control the user interface programmatically, which requires more familiarity with Application Kit classes
and protocols. For example, allowing the user to drag an icon from one window to another requires
some programming and familiarity with the NSDragging... protocols.

 ■ Implement your own objects by subclassing NSView or other classes. When subclassing NSView you
write your own drawing methods using graphics functions. Subclassing requires a deeper understanding
of how the Application Kit works.

46 Introduction
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

To learn more about the Application Kit, review the NSApplication, NSWindow, and NSView class
specifications, paying close attention to delegate methods. For a deeper understanding of how the Application
Kit works, see the specifications for NSResponder and NSRunLoop (NSRunLoop is in the Foundation
framework).

Application Kit Classes and Protocols

The Application Kit is large; it comprises more than 125 classes and protocols. The classes all descend from
the Foundation framework’s NSObject class (see Figure I-1 (page 47)). The following sections briefly describe
some of the topics that the Application Kit addresses through its classes and protocols.

Figure I-1 Cocoa Objective-C Class Hierarchy for Application Kit

Text

Fonts

User Interface

NSBox
NSClipView

NSControl
NSCollectionView

NSText

NSMenuView
NSMovieView
NSOpenGLView
NSProgressIndicator
NSQuickDrawView
NSRulerView
NSScrollView
NSSplitView
NSTabView
NSTableHeaderView

NSActionCell
NSBrowserCell
NSImageCell

NSTreeNode

NSTextAttachmentCell
NSPathComponentCell
NSSearchFieldCell

NSComboBoxCell

NSSecureTextFieldCell

NSButtonCell
NSFormCell
NSPathCell
NSSegmentedCell
NSSliderCell
NSStepperCell
NSTextFieldCell

NSView
NSWindowController

NSViewController

NSWindow

NSApplication
NSDrawer

NSMenuItemCell

NSDictionaryController

NSPopUpButtonCell

NSPopUpButton

NSForm

NSPredicateEditor

NSTextView

NSTypesetter NSATSTypesetter

NSParagraphStyle NSMutableParagraphStyle

NSMutableAttributedString* NSTextStorage
NSTextTab

NSTextContainer

NSLayoutManager

NSTextAttachment

NSAttributedString*

NSRunningApplication

NSCell

NSRulerMarker
NSResponder NSBrowser

NSButton
NSColorWell
NSImageView

NSPathControl
NSMatrix

NSRuleEditor

NSTableHeaderCell

NSOpenPanel

NSColorPanel
NSFontPanel
NSSavePanel

NSPanel

NSArrayController

NSFontManager
NSFont

NSFontDescriptor

NSObject*

*Class defined in the Foundation framework

NSToolbarItemGroup

NSStatusBar
NSStatusItem

NSToolbar
NSToolbarItem

NSTableColumn
NSTabViewItem

NSTouch
NSTrackingArea

NSTextList

NSGlyphGenerator
NSGlyphInfo

NSMenuItem
NSMenu

NSDockTile
NSEvent

NSPredicateEditorRowTemplate

NSCollectionViewItem

NSAlert

NSTextBlock NSTextTable
NSTextTableBlock

NSSecureTextField

NSScroller
NSSegmentedControl
NSSlider
NSStepper
NSTableView
NSTextField

NSOutlineView

NSSearchField
NSComboBox

Cocoa Bindings

NSController
NSObjectController

NSUserDefaultsController
NSTreeController

Application Kit Classes and Protocols 47
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

Graphics

Interface Builder Support

Document Support

International Character Input Support

Printing

Operating System Services

Color

NSBezierPath

NSGraphicsContext
NSImage

NSGradient
NSCursor

NSAnimationContext
NSAffineTransform

NSMovie

NSShadow
NSScreen
NSOpenGLPixelFormat

NSOpenGLContext
NSOpenGLLayer

NSImageRep
NSBitmapImageRep
NSCachedImageRep
NSCIImageRep
NSCustomImageRep
NSNSEPSImageRep
NSPDFImageRep
NSPICTImageRep

NSColorList
NSColor

NSColorPicker

NSSpellChecker
NSWorkspace

NSDocumentController
NSFileWrapper

NSDocument

NSTextInputContext

NSPrinter
NSPageLayout

NSPrintPanel
NSPrintOperation
NSPrintInfo

NSPasteboard
NSHelpManager

NSSound
NSSpeechRecognizer
NSSpeechSynthesizer

NSNib
NSNibConnector NSNibControlConnector

NSNibOutletConnector

*Class defined in the Foundation framework

**Class defined in the Quartz Core framework.

NSOpenGLPixelBuffer

NSObject*

CAOpenGLLayer**

Objective-C Application Kit Continued

CIColor

NSPersistentDocument

Encapsulating an Application

Every application uses a single instance of NSApplication to control the main event loop, keep track of
the application’s windows and menus, distribute events to the appropriate objects (that is, itself or one of
its windows), set up autorelease pools, and receive notification of application-level events. An NSApplication
object has a delegate (an object that you assign) that is notified when the application starts or terminates,
is hidden or activated, should open a file selected by the user, and so forth. By setting the NSApplication
object’s delegate and implementing the delegate methods, you customize the behavior of your application
without having to subclass NSApplication.

48 Encapsulating an Application
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

General Event Handling and Drawing

The NSResponder class defines the responder chain, an ordered list of objects that respond to user events.
When the user clicks the mouse button or presses a key, an event is generated and passed up the responder
chain in search of an object that can “respond” to it. Any object that handles events must inherit from the
NSResponder class. The core Application Kit classes, NSApplication, NSWindow, and NSView, inherit from
NSResponder.

An NSApplication object maintains a list of NSWindow objects—one for each window belonging to the
application—and each NSWindow object maintains a hierarchy of NSView objects. The view hierarchy is used
for drawing and handling events within a window. An NSWindow object handles window-level events,
distributes other events to its views, and provides a drawing area for its views. An NSWindow object also has
a delegate allowing you to customize its behavior.

NSView is an abstract class for all objects displayed in a window. All subclasses implement a drawing method
using graphics functions; drawRect: (page 3170) is the primary method you override when creating a new
NSView subclass.

Panels

The NSPanel class is a subclass of NSWindow that you use to display transient, global, or pressing information.
For example, you would use an instance of NSPanel, rather than an instance of NSWindow, to display error
messages or to query the user for a response to remarkable or unusual circumstances. The Application Kit
implements some common panels for you such as the Save, Open and Print panels, used to save, open, and
print documents. Using these panels gives the user a consistent “look and feel” across applications for common
operations.

Menus and Cursors

The NSMenu, NSMenuItem, and NSCursor classes define the look and behavior of the menus and cursors
that your application displays to the user.

Grouping and Scrolling Views

The NSBox, NSScrollView, and NSSplitView classes provide graphic “accessories” to other view objects or
collections of views in windows. With the NSBox class, you can group elements in windows and draw a border
around the entire group. The NSSplitView class lets you “stack” views vertically or horizontally, apportioning
to each view some amount of a common territory; a sliding control bar lets the user redistribute the territory
among views. The NSScrollView class and its helper class, NSClipView, provide a scrolling mechanism as well
as the graphic objects that let the user initiate and control a scroll. The NSRulerView class allows you to add
a ruler and markers to a scroll view.

General Event Handling and Drawing 49
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

Controlling an Application

The NSControl and NSCell classes, and their subclasses, define a common set of user interface objects such
as buttons, sliders, and browsers that the user can manipulate graphically to control some aspect of your
application. Just what a particular control affects is up to you: When a control is “touched,” it sends an action
message to a target object. You typically use Interface Builder to set these targets and actions by
Control-dragging from the control object to your application or other object. You can also set targets and
actions programmatically.

An NSControl object is associated with one or more NSCell objects that implement the details of drawing
and handling events. For example, a button comprises both an NSButton object and an NSButtonCell object.
The reason for this separation of functionality is primarily to allow NSCell classes to be reused by NSControl
classes. For example, NSMatrix and NSTableView can contain multiple NSCell objects of different types.

Tables

The NSTableView class displays data in row and column form. NSTableView is ideal for, but not limited to,
displaying database records, where rows correspond to each record and columns contain record attributes.
The user can edit individual cells and rearrange the columns. You control the behavior and content of an
NSTableView object by setting its delegate and data source objects.

Text and Fonts

The NSTextField class implements a simple editable text field, and the NSTextView class provides more
comprehensive editing features for larger text bodies.

NSTextView, a subclass of the abstract NSText class, defines the interface to Cocoa’s extended text system.
NSTextView supports rich text, attachments (graphics, file, and other), input management and key binding,
and marked text attributes. NSTextView works with the font panel and menu, rulers and paragraph styles,
the Services facility (for example, the spell-checking service), and the pasteboard. NSTextView also allows
customizing through delegation and notifications—you rarely need to subclass NSTextView. You rarely create
instances of NSTextView programmatically either, since objects on Interface Builder’s palettes, such as
NSTextField, NSForm, and NSScrollView, already contain NSTextView objects.

It is also possible to do more powerful and more creative text manipulation (such as displaying text in a
circle) using NSTextStorage, NSLayoutManager, NSTextContainer, and related classes.

The NSFont and NSFontManager classes encapsulate and manage font families, sizes, and variations. The
NSFont class defines a single object for each distinct font; for efficiency, these objects, which can be rather
large, are shared by all the objects in your application. The NSFontPanel class defines the font specification
panel that’s presented to the user.

50 Controlling an Application
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

Graphics and Color

The classes NSImage and NSImageRep encapsulate graphics data, allowing you to easily and efficiently access
images stored in files on the disk and displayed on the screen. NSImageRep subclasses each know how to
draw an image from a particular kind of source data. The presentation of an image is greatly influenced by
the hardware that it’s displayed on. For example, a particular image may look good on a color monitor, but
may be too “rich” for monochrome. Through the image classes, you can group representations of the same
image, where each representation fits a specific type of display device—the decision of which representation
to use can be left to the NSImage class itself.

Color is supported by the classes NSColor, NSColorPanel, NSColorList, NSColorPicker, and NSColorWell. NSColor
supports a rich set of color formats and representations, including custom ones. The other classes are mostly
interface classes: They define and present panels and views that allow the user to select and apply colors.
For example, the user can drag colors from the color panel to any color well. The NSColorPicking protocol
lets you extend the standard color panel.

Dragging

With very little programming on your part, custom view objects can be dragged and dropped anywhere.
Objects become part of this dragging mechanism by conforming to NSDragging... protocols: draggable
objects conform to the NSDraggingSource protocol, and destination objects (receivers of a drop) conform
to the NSDraggingDestination protocol. The Application Kit hides all the details of tracking the cursor and
displaying the dragged image.

Printing

The NSPrinter, NSPrintPanel, NSPageLayout, and NSPrintInfo classes work together to provide the means for
printing the information that your application displays in its windows and views. You can also create an EPS
representation of an NSView.

Accessing the File System

Use the NSFileWrapper class to create objects that correspond to files or directories on disk. NSFileWrapper
will hold the contents of the file in memory so that it can be displayed, changed, or transmitted to another
application. It also provides an icon for dragging the file or representing it as an attachment. Or use the
NSFileManager class in the Foundation framework to access and enumerate file and directory contents. The
NSOpenPanel and NSSavePanel classes also provide a convenient and familiar user interface to the file system.

Graphics and Color 51
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

Sharing Data With Other Applications

The NSPasteboard class defines the pasteboard, a repository for data that’s copied from your application,
making this data available to any application that cares to use it. NSPasteboard implements the familiar
cut-copy-paste operation. The NSServicesRequest protocol uses the pasteboard to communicate data that’s
passed between applications by a registered service.

Checking Spelling

The NSSpellServer class lets you define a spell-checking service and provide it as a service to other applications.
To connect your application to a spell-checking service, you use the NSSpellChecker class. The
NSIgnoreMisspelledWords and NSChangeSpelling protocols support the spell-checking mechanism.

Localization

If an application is to be used in more than one part of the world, its resources may need to be customized,
or “localized,” for language, country, or cultural region. For example, an application may need to have separate
Japanese, English, French, and German versions of character strings, icons, nib files, or context help. Resource
files specific to a particular language are grouped together in a subdirectory of the bundle directory (the
directories with the “.lproj” extension). Usually you set up localization resource files using Interface Builder.
See the specifications for NSBundle Additions Reference and NSBundle class for more information on localization
(NSBundle is in the Foundation framework).

52 Sharing Data With Other Applications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

53
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

PART I

Classes

54
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Conforms to NSCoding (CIColor)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSColor.h

Availability Available in Mac OS X v10.4 and later.

Overview

The Application Kit extends the Core Image framework’s CIColor class by adding the ability to create an
instance of CIColor from an existing NSColor instance.

Tasks

Creating a CIColor Instance

– initWithColor: (page 55)
Initializes a newly allocated CIColor object using an NSColor object.

Instance Methods

initWithColor:
Initializes a newly allocated CIColor object using an NSColor object.

- (id)initWithColor:(NSColor *)color

Parameters
color

The initial color value, which can belong to any available colorspace.

Return Value
The resulting CIColor object, or nil if the object cannot be initialized with the specified value.

Overview 55
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CIColor Additions Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSColor.h

56 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

CIColor Additions Reference

Inherits from NSObject

Conforms to NSCoding (CIImage)
NSCopying (CIImage)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSCIImageRep.h

Availability Available in Mac OS X v10.4 and later.

Overview

The Application Kit adds three methods to the Core Image framework's CIImage class.

Tasks

Initializing

– initWithBitmapImageRep: (page 59)
Initializes the receiver, a newly allocated CIImage object, with the specified bitmap.

Drawing Images

– drawAtPoint:fromRect:operation:fraction: (page 58)
Draws all or part of the image at the specified point in the current coordinate system.

– drawInRect:fromRect:operation:fraction: (page 58)
Draws all or part of the image in the specified rectangle in the current coordinate system

Overview 57
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

CIImage Additions Reference

Instance Methods

drawAtPoint:fromRect:operation:fraction:
Draws all or part of the image at the specified point in the current coordinate system.

- (void)drawAtPoint:(NSPoint)point fromRect:(NSRect)srcRect
operation:(NSCompositingOperation)op fraction:(CGFloat)delta

Parameters
point

The location in the current coordinate system at which to draw the image.

srcRect
The source rectangle specifying the portion of the image you want to draw. The coordinates of this
rectangle must be specified using the image's own coordinate system.

op
The compositing operation to use when drawing the image.

delta
The opacity of the image, specified as a value from 0.0 to 1.0. Specifying a value of 0.0 draws the
image as fully transparent while a value of 1.0 draws the image as fully opaque. Values greater than
1.0 are interpreted as 1.0.

Discussion
The image content is drawn at its current resolution and is not scaled unless the CTM of the current coordinate
system itself contains a scaling factor. The image is otherwise positioned and oriented using the current
coordinate system.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCIImageRep.h

drawInRect:fromRect:operation:fraction:
Draws all or part of the image in the specified rectangle in the current coordinate system

- (void)drawInRect:(NSRect)dstRect fromRect:(NSRect)srcRect
operation:(NSCompositingOperation)op fraction:(CGFloat)delta

Parameters
dstRect

The rectangle in which to draw the image.

srcRect
The source rectangle specifying the portion of the image you want to draw. The coordinates of this
rectangle must be specified using the image's own coordinate system.

op
The compositing operation to use when drawing the image.

58 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

CIImage Additions Reference

delta
The opacity of the image, specified as a value from 0.0 to 1.0. Specifying a value of 0.0 draws the
image as fully transparent while a value of 1.0 draws the image as fully opaque. Values greater than
1.0 are interpreted as 1.0.

Discussion
If the srcRect and dstRect rectangles have different sizes, the source portion of the image is scaled to fit
the specified destination rectangle. The image is otherwise positioned and oriented using the current
coordinate system.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Reducer
SonogramViewDemo

Declared In
NSCIImageRep.h

initWithBitmapImageRep:
Initializes the receiver, a newly allocated CIImage object, with the specified bitmap.

- (id)initWithBitmapImageRep:(NSBitmapImageRep *)bitmapImageRep

Parameters
bitmapImageRep

An image representation object containing the bitmap data.

Return Value
The resulting CIImage object.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CocoaSlides
FunHouse
Reducer

Declared In
NSCIImageRep.h

Instance Methods 59
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

CIImage Additions Reference

60 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

CIImage Additions Reference

Inherits from NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSActionCell.h

Companion guide Action Messages

Related sample code ClockControl
TrackBall

Overview

An NSActionCell defines an active area inside a control (an instance of NSControl or one of its subclasses).

As an NSControl’s active area, an NSActionCell does three things: it usually performs display of text or an
icon; it provides the NSControl with a target and an action; and it handles mouse (cursor) tracking by properly
highlighting its area and sending action messages to its target based on cursor movement.

Tasks

Configuring an NSActionCell Object

– setAlignment: (page 65)
Sets the alignment of text in the receiver.

– setEnabled: (page 67)
Sets whether the receiver is enabled or disabled.

– setFloatingPointFormat:left:right: (page 67)
Sets the receiver’s floating-point format.

– setImage: (page 69)
Sets the image to be displayed in the receiver.

Overview 61
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

– setBezeled: (page 66) Available in Mac OS X v10.0 through Mac OS X v10.5
Sets whether the receiver draws itself with a bezeled border.

– setBordered: (page 66) Available in Mac OS X v10.0 through Mac OS X v10.5
Sets whether the receiver draws itself outlined with a plain border.

– setFont: (page 68) Available in Mac OS X v10.0 through Mac OS X v10.5
Sets the font to be used when the receiver displays text.

Obtaining and Setting Cell Values

– doubleValue (page 63)
Returns the receiver’s value as a double after validating any editing of cell content.

– integerValue (page 64)
Returns the receiver’s value as a 64-bit compatible integer after validating any editing of cell content.

– setObjectValue: (page 69)
Discards any editing of the receiver’s text and sets its object value to object.

– floatValue (page 64) Available in Mac OS X v10.0 through Mac OS X v10.5
Returns the receiver’s value as a float after validating any editing of cell content.

– intValue (page 65) Available in Mac OS X v10.0 through Mac OS X v10.5
Returns the receiver’s value as an int after validating any editing of cell content.

– stringValue (page 70) Available in Mac OS X v10.0 through Mac OS X v10.5
Returns the receiver’s value as a string object as converted by the cell’s formatter, if one exists.

Managing the Cell’s View

– setControlView: (page 67)
Sets the receiver's control view, the view in which it is drawn.

– controlView (page 63) Available in Mac OS X v10.0 through Mac OS X v10.5
Returns the view in which the receiver was last drawn.

Assigning the Target and Action

– setAction: (page 65)
Sets the selector used for action messages sent by the receiver's control.

– action (page 63)
Returns the receiver’s action-message selector.

– setTarget: (page 70)
Sets the receiver’s target object.

– target (page 71)
Returns the receiver’s target object.

62 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

Assigning a Tag

– setTag: (page 69)
Sets the receiver’s tag.

– tag (page 71)
Returns the receiver’s tag.

Instance Methods

action
Returns the receiver’s action-message selector.

- (SEL)action

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAction: (page 65)
– setTarget: (page 70)
– target (page 71)

Declared In
NSActionCell.h

controlView
Returns the view in which the receiver was last drawn. (Available in Mac OS X v10.0 through Mac OS X v10.5.)

- (NSView *)controlView

Return Value
The returned view is normally an NSControl object. The method returns nil if the receiver has no control
view (usually because it hasn’t yet been placed in the view hierarchy).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSActionCell.h

doubleValue
Returns the receiver’s value as a double after validating any editing of cell content. (Available in Mac OS X
v10.0 through Mac OS X v10.5.)

- (double)doubleValue

Instance Methods 63
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

See Also
– validateEditing (page 845) (NSControl)

Declared In
NSActionCell.h

floatValue
Returns the receiver’s value as a float after validating any editing of cell content. (Available in Mac OS X
v10.0 through Mac OS X v10.5.)

- (float)floatValue

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

See Also
– validateEditing (page 845) (NSControl)

Declared In
NSActionCell.h

integerValue
Returns the receiver’s value as a 64-bit compatible integer after validating any editing of cell content.

- (NSInteger)integerValue

Return Value
A 64-bit compatible integer value, as defined by the NSInteger type.

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSActionCell.h

64 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

intValue
Returns the receiver’s value as an int after validating any editing of cell content. (Available in Mac OS X v10.0
through Mac OS X v10.5.)

- (int)intValue

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

See Also
– validateEditing (page 845) (NSControl)

Declared In
NSActionCell.h

setAction:
Sets the selector used for action messages sent by the receiver's control.

- (void)setAction:(SEL)aSelector

Parameters
aSelector

The selector that identifies the action method to invoke.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 63)
– setTarget: (page 70)
– target (page 71)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSActionCell.h

setAlignment:
Sets the alignment of text in the receiver. (Available in Mac OS X v10.0 through Mac OS X v10.5.)

- (void)setAlignment:(NSTextAlignment)mode

Instance Methods 65
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

Parameters
mode

One of five constants that specifies alignment within the cell: NSLeftTextAlignment,
NSRightTextAlignment, NSCenterTextAlignment, NSJustifiedTextAlignment, and
NSNaturalTextAlignment (the default alignment for the text).

Discussion
The method marks the receiver as needing redisplay after discarding any editing changes that were being
made to cell text.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSActionCell.h

setBezeled:
Sets whether the receiver draws itself with a bezeled border. (Available in Mac OS X v10.0 through Mac OS
X v10.5.)

- (void)setBezeled:(BOOL)flag

Parameters
flag

YES if the cell is to be drawn with a bezeled border, NO otherwise.

Discussion
After setting the attribute the method marks the receiver as needing redisplay. The setBezeled: and
setBordered: (page 66) methods are mutually exclusive—that is, a border can be only plain or bezeled.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSActionCell.h

setBordered:
Sets whether the receiver draws itself outlined with a plain border. (Available in Mac OS X v10.0 through Mac
OS X v10.5.)

- (void)setBordered:(BOOL)flag

Parameters
flag

YES if the cell is to be drawn with a plain border, NO otherwise.

Discussion
After setting the attribute the method marks the receiver as needing redisplay. The setBezeled: (page 66)
and setBordered: methods are mutually exclusive—that is, a border can be only plain or bezeled.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

66 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

Declared In
NSActionCell.h

setControlView:
Sets the receiver's control view, the view in which it is drawn.

- (void)setControlView:(NSView *)view

Parameters
view

The view object, which is normally an NSControl view. Pass in nil if the receiver has no control view
(usually because it hasn’t yet been placed in the view hierarchy).

Discussion
The control view is typically set in the receiver’s implementation of drawWithFrame:inView: (page 554)
(NSCell).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSActionCell.h

setEnabled:
Sets whether the receiver is enabled or disabled. (Available in Mac OS X v10.0 through Mac OS X v10.5.)

- (void)setEnabled:(BOOL)flag

Parameters
flag

YES if the cell is to be enabled, NO otherwise

Discussion
The text of disabled cells is changed to gray. If a cell is disabled, it cannot be highlighted, cannot be edited,
and does not support mouse tracking (and thus cannot participate in target-action behavior). The method
marks the receiver as needing redisplay after discarding any editing changes that were being made to cell
text.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSActionCell.h

setFloatingPointFormat:left:right:
Sets the receiver’s floating-point format. (Available in Mac OS X v10.0 through Mac OS X v10.5.)

- (void)setFloatingPointFormat:(BOOL)autoRange left:(NSUInteger)leftDigits
right:(NSUInteger)rightDigits

Instance Methods 67
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

Parameters
autoRange

NO if you want the receiver to places digits to the right and left of the decimal point as specified (in
leftDigits and rightDigits; YES if you want it to place the digits flexibly.

leftDigits
The maximum number of digits to the left of the decimal point. The receiver might interpret this value
flexibly if autoRange is YES.

rightDigits
The maximum number of digits to the right of the decimal point. The receiver might interpret this
value flexibly if autoRange is YES.

Discussion
The implementation of this method is based on the NSCell method
setFloatingPointFormat:left:right: (page 586). See the description of that method for details.

The NSActionCell implementation of the method supplements the NSCell implementation by marking
the receiver as needing redisplay after discarding any editing changes that were being made to cell text.

Note: This method is being deprecated in favor of NSFormatter objects. For more information, see
NSFormatter. This documentation is provided only for developers who need to modify older applications.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSActionCell.h

setFont:
Sets the font to be used when the receiver displays text. (Available in Mac OS X v10.0 through Mac OS X
v10.5.)

- (void)setFont:(NSFont *)fontObj

Parameters
fontObj

The font object encapsulating information about the new font. If fontObj is nil and the receiver is
a text-type cell, the font object currently held by the receiver is autoreleased.

Discussion
If the receiver is not a text-type cell, the method converts it to that type. NSActionCell supplements the
NSCell implementation of this method by marking the updated cell as needing redisplay. If the receiver
was converted to a text-type cell and is selected, it also updates the field editor with fontObj.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSActionCell.h

68 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

setImage:
Sets the image to be displayed in the receiver. (Available in Mac OS X v10.0 through Mac OS X v10.5.)

- (void)setImage:(NSImage *)image

Parameters
image

The image for the receiver to display. If image is nil, the image currently displayed by the receiver
is removed.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSActionCell.h

setObjectValue:
Discards any editing of the receiver’s text and sets its object value to object. (Available in Mac OS X v10.0
through Mac OS X v10.5.)

- (void)setObjectValue:(id < NSCopying >)object

Parameters
object

The object value to assign to the receiver.

Discussion
If the object value is afterward different from what it was before the method was invoked, the method marks
the receiver as needing redisplay.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSActionCell.h

setTag:
Sets the receiver’s tag.

- (void)setTag:(NSInteger)anInt

Parameters
anInt

An integer tag to be associated with the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tag (page 71)

Instance Methods 69
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

Declared In
NSActionCell.h

setTarget:
Sets the receiver’s target object.

- (void)setTarget:(id)anObject

Parameters
anObject

The object that is the target of action messages sent by the receiver's control.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 63)
– setAction: (page 65)
– target (page 71)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSActionCell.h

stringValue
Returns the receiver’s value as a string object as converted by the cell’s formatter, if one exists. (Available in
Mac OS X v10.0 through Mac OS X v10.5.)

- (NSString *)stringValue

Discussion
If no formatter exists and the value is an NSString, returns the value as a plain, attributed, or localized
formatted string. If the value is not an NSString or cannot be converted to one, returns an empty string.
The method supplements the NSCell implementation by validating and retaining any editing changes being
made to cell text.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

See Also
– validateEditing (page 845) (NSControl)

Declared In
NSActionCell.h

70 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

tag
Returns the receiver’s tag.

- (NSInteger)tag

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTag: (page 69)

Declared In
NSActionCell.h

target
Returns the receiver’s target object.

- (id)target

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 63)
– setAction: (page 65)
– setTarget: (page 70)

Related Sample Code
ClockControl

Declared In
NSActionCell.h

Instance Methods 71
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

72 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSAffineTransform.h

Companion guide Cocoa Drawing Guide

Overview

The Application Kit extends Foundation’s NSAffineTransform class by adding:

 ■ Methods for applying affine transformations to the current graphics context.

 ■ A method for applying an affine transformation to an NSBezierPath.

Note: In Mac OS X v10.3 and earlier the NSAffineTransform class was declared and implemented entirely
in the Application Kit framework. As of Mac OS X v10.4 the NSAffineTransform class has been split across
the Foundation Kit and Application Kit frameworks.

Tasks

Setting and Building the Current Transformation Matrix

– set (page 74)
Sets the current transformation matrix to the receiver’s transformation matrix.

– concat (page 74)
Appends the receiver’s matrix to the current transformation matrix stored in the current graphics
context, replacing the current transformation matrix with the result.

Overview 73
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAffineTransform Additions Reference

Transforming Bezier Paths

– transformBezierPath: (page 75)
Creates and returns a new NSBezierPath object with each point in the given path transformed by
the receiver.

Instance Methods

concat
Appends the receiver’s matrix to the current transformation matrix stored in the current graphics context,
replacing the current transformation matrix with the result.

- (void)concat

Discussion
Concatenation is performed by matrix multiplication—see “Manipulating Transform Values”.

If this method is invoked from within an NSView drawRect: (page 3170) method, then the current
transformation matrix is an accumulation of the screen, window, and any superview’s transformation matrices.
Invoking this method defines a new user coordinate system whose coordinates are mapped into the former
coordinate system according to the receiver’s transformation matrix. To undo the concatenation, you must
invert the receiver’s matrix and invoke this method again.

Availability
Available in Mac OS X v10.0 and later.

See Also
– set (page 74)
- invert

Related Sample Code
DockTile
Sketch+Accessibility
Sketch-112
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

set
Sets the current transformation matrix to the receiver’s transformation matrix.

- (void)set

74 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAffineTransform Additions Reference

Discussion
The current transformation is stored in the current graphics context and is applied to subsequent drawing
operations. You should use this method sparingly because it removes the existing transformation matrix,
which is an accumulation of transformation matrices for the screen, window, and any superviews. Instead
use the concat (page 74) method to add this transformation matrix to the current transformation matrix.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FunHouse

Declared In
NSAffineTransform.h

transformBezierPath:
Creates and returns a new NSBezierPath object with each point in the given path transformed by the
receiver.

- (NSBezierPath *)transformBezierPath:(NSBezierPath *)aPath

Parameters
aPath

An object representing the bezier path to be used in the transformation.

Discussion
The original NSBezierPath object is not modified.

Availability
Available in Mac OS X v10.0 and later.

See Also
- transformPoint:transformSize:

Related Sample Code
Cropped Image
Polygons

Declared In
NSAffineTransform.h

Instance Methods 75
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAffineTransform Additions Reference

76 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAffineTransform Additions Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSAlert.h

Availability Available in Mac OS X v10.3 and later.

Companion guides Dialogs and Special Panels
Sheet Programming Topics

Related sample code ExtractMovieAudioToAIFF
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
QTKitTimeCode
QTRecorder

Overview

You use an NSAlert object to display an alert, either as an application-modal dialog or as a sheet attached
to a document window. The methods of the NSAlert class allow you to specify alert level, icon, button titles,
and alert text. The class also lets your alerts display help buttons and provides ways for applications to offer
help specific to an alert. To display an alert as a sheet, invoke the
beginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo: (page 84) method;
to display one as an application-modal dialog, use the runModal (page 88) method.

By design, an NSAlert object is intended for a single alert—that is, an alert with a unique combination of
title, buttons, and so on—that is displayed upon a particular condition. You should create an NSAlert object
for each alert dialog. Normally you should create an NSAlert object when you need to display an alert, and
release it when you are done. If you have a particular alert dialog that you need to show repeatedly, you can
retain and reuse an instance of NSAlert for this dialog.

After creating an alert using one of the alert creation methods, you can customize it further prior to displaying
it by customizing its attributes. See “Instance Attributes” (page 78)

Overview 77
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Note: The NSAlert class, which was introduced in Mac OS X v10.3, supersedes the functional Application
Kit API for displaying alerts (NSRunAlertPanel, NSBeginAlertSheet, and so on). The former API is still
supported, but you should use the NSAlert class for your application’s alert dialogs.

Instance Attributes

NSAlert objects have the following attributes:

 ■ Type. An alert’s type helps convey the importance or gravity of its message to the user. Specified with
setAlertStyle: (page 89).

 ■ Message text. The main message of the alert. Specified with setMessageText: (page 92).

 ■ Informative text. Additional information about the alert. Specified with informativeText (page 86).

 ■ icon. The icon displayed in the alert. Specified with : setIcon: (page 91).

 ■ Help. Alerts can let the user get help about them. Use setHelpAnchor: (page 90) and
setShowsHelp: (page 92).

 ■ Response buttons. By default an alert has one response button: the OK button. You can add more
response buttons using: addButtonWithTitle: (page 83).

 ■ Suppression checkbox. A suppression checkbox allows the user to suppress the display of a particular
alert in subsequent occurrences of the event that triggers it. Use setShowsSuppressionButton: (page
93), suppressionButton (page 95).

 ■ Accessory view. An accessory view lets you add additional information to an alert; for example, a text
field with contact information. Use setAccessoryView: (page 88), layout (page 87).

Subclassing Notes

The NSAlert class is not designed for subclassing.

Tasks

Creating Alerts

+ alertWithError: (page 80)
Returns an alert initialized from information in an error object.

+ alertWithMessageText:defaultButton:alternateButton:otherButton:informativeTextWithFormat: (page
81)

Creates an alert compatible with alerts created using the NSRunAlertPanel (page 3998) function for
display as a warning-style alert.

78 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Configuring Alerts

– layout (page 87)
Specifies that the receiver must do immediate layout instead of lazily just before display.

– alertStyle (page 83)
Returns the NSAlertStyle constant identifying the receiver’s alert style.

– setAlertStyle: (page 89)
Sets the alert style of the receiver.

– accessoryView (page 82)
Returns the receiver’s accessory view.

– setAccessoryView: (page 88)
Sets the receiver’s accessory view.

– showsHelp (page 94)
Indicates whether the receiver has a help button.

– setShowsHelp: (page 92)
Specifies whether the receiver has a help button.

– helpAnchor (page 86)
Returns the receiver’s HTML help anchor.

– setHelpAnchor: (page 90)
Associates the receiver to a given anchor.

– delegate (page 85)
Returns the receiver’s delegate.

– setDelegate: (page 90)
Sets the receiver’s delegate.

Displaying Alerts

– runModal (page 88)
Runs the receiver as an application-modal dialog and returns the constant positionally identifying
the button clicked.

– beginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo: (page 84)
Runs the receiver modally as an alert sheet attached to a specified window.

– suppressionButton (page 95)
Returns the receiver’s suppression checkbox.

– showsSuppressionButton (page 94)
Indicates whether the receiver shows a suppression button.

– setShowsSuppressionButton: (page 93)
Specifies whether the receiver includes a suppression checkbox.

Accessing Alert Text

– informativeText (page 86)
Returns the receiver’s informative text.

Tasks 79
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

– setInformativeText: (page 91)
Sets the receiver’s informative text to a given text.

– messageText (page 87)
Returns the receiver’s message text (or title).

– setMessageText: (page 92)
Sets the receiver’s message text, or title, to a given text.

Accessing Alert Icons

– icon (page 86)
Returns the icon displayed in the receiver.

– setIcon: (page 91)
Sets the icon to be displayed in the alert to a given icon.

Accessing Alert Buttons

– buttons (page 85)
Returns the receiver’s buttons.

– addButtonWithTitle: (page 83)
Adds a button with a given title to the receiver.

Getting Alert Panels

– window (page 95)
Provides the application-modal panel associated with the receiver.

Class Methods

alertWithError:
Returns an alert initialized from information in an error object.

+ (NSAlert *)alertWithError:(NSError *)error

Parameters
error

Error information to display.

Return Value
Initialized alert.

Discussion
The NSAlert class extracts the localized error description, recovery suggestion, and recovery options from
error and uses them as the alert’s message text, informative text, and button titles, respectively.

80 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
AudioDataOutputToAudioUnit
QTRecorder
Quartz Composer WWDC 2005 TextEdit
SimpleStickies
StillMotion

Declared In
NSAlert.h

alertWithMessageText:defaultButton:alternateButton:otherButton:
informativeTextWithFormat:
Creates an alert compatible with alerts created using the NSRunAlertPanel (page 3998) function for display
as a warning-style alert.

+ (NSAlert *)alertWithMessageText:(NSString *)messageTitle defaultButton:(NSString
 *)defaultButtonTitle alternateButton:(NSString *)alternateButtonTitle
otherButton:(NSString *)otherButtonTitle informativeTextWithFormat:(NSString
*)informativeText, ...

Parameters
messageTitle

Title of the alert. When nil or an empty string, a default localized title is used (“Alert” in English).

defaultButtonTitle
Title for the default button. When nil or an empty string, a default localized button title (“OK” in
English) is used.

alternateButtonTitle
Title for the alternate button. When nil, the alternate button is not created.

otherButtonTitle
Title for the other button. When nil, the other button is not created.

informativeText
Informative text. This is optional but must be an empty string (@"") not nil. Can embed variable
values using a format string; list any necessary arguments for this formatted string at the end of the
method’s argument list. For more information on format strings, see Formatting String Objects.

Return Value
Initialized alert.

Discussion
For languages that read left to right, the buttons are laid out on the bottom-right corner of the alert sheet
or window, with defaultButtonTitle on the right, alternateButtonTitle on the left, and
otherButtonTitle in the middle. The return values identifying these buttons are constants—
NSAlertDefaultReturn, NSAlertAlternateReturn, and NSAlertOtherReturn—that correspond to
the keywords.

Class Methods 81
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

By default, the first button has a key equivalent of Return, any button with a title of “Cancel” has a key
equivalent of Escape, and any button with the title “Don’t Save” has a key equivalent of Command-D (but
only if it is not the first button). You can also assign different key equivalents for the buttons using the
setKeyEquivalent: (page 483) method of the NSButton class. To access the alert’s buttons, use the
buttons (page 85) method.

Special Considerations

This is a compatibility method. It is designed for easy adoption by applications migrating from the
corresponding function-based API. This method uses earlier return values—NSAlertDefaultReturn,
NSAlertAlternateReturn, and NSAlertOtherReturn—compatible with the earlier API, rather than the
return values defined by the NSAlert class, described in “Button Return Values” (page 96).

Unless you must maintain compatibility with existing alert-processing code that uses the function-based API,
you should allocate (alloc) and initialize (init) the object, and then set its attributes using the appropriate
methods of the NSAlert class. However, using init results in no default buttons being provided, in which
case you must call addButtonWithTitle: (page 83) explicitly.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Denoise
ExtractMovieAudioToAIFF
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
QTKitTimeCode

Declared In
NSAlert.h

Instance Methods

accessoryView
Returns the receiver’s accessory view.

- (NSView *)accessoryView

Return Value
The alert’s accessory view.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAccessoryView: (page 88)

Declared In
NSAlert.h

82 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

addButtonWithTitle:
Adds a button with a given title to the receiver.

- (NSButton *)addButtonWithTitle:(NSString *)buttonTitle

Parameters
buttonTitle

Title of the button to add to the alert. Must not be nil.

Return Value
Button added to the alert.

Discussion
Buttons are placed starting near the right side of the alert and going toward the left side (for languages that
read left to right). The first three buttons are identified positionally as NSAlertFirstButtonReturn,
NSAlertSecondButtonReturn, NSAlertThirdButtonReturn in the return-code parameter evaluated
by the modal delegate. Subsequent buttons are identified as NSAlertThirdButtonReturn +n, where n is
an integer

By default, the first button has a key equivalent of Return, any button with a title of “Cancel” has a key
equivalent of Escape, and any button with the title “Don’t Save” has a key equivalent of Command-D (but
only if it is not the first button). You can also assign different key equivalents for the buttons using the
setKeyEquivalent: (page 483) method of the NSButton class. In addition, you can use the setTag: (page
838) method of the NSButton class to set the return value.

NSAlert instances created with the init method lack any buttons. You must call
addButtonWithTitle: (page 83) to add a minimum of one button.

Availability
Available in Mac OS X v10.3 and later.

See Also
– buttons (page 85)

Related Sample Code
CoreRecipes
IdentitySample
UIElementInspector

Declared In
NSAlert.h

alertStyle
Returns the NSAlertStyle constant identifying the receiver’s alert style.

- (NSAlertStyle)alertStyle

Return Value
Alert style for the alert. See NSAlertStyle (page 96) for the list of alert style constants.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 83
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

See Also
– setAlertStyle: (page 89)

Declared In
NSAlert.h

beginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo:
Runs the receiver modally as an alert sheet attached to a specified window.

- (void)beginSheetModalForWindow:(NSWindow *)window modalDelegate:(id)modalDelegate
didEndSelector:(SEL)alertDidEndSelector contextInfo:(void *)contextInfo

Parameters
window

The parent window for the sheet.

modalDelegate
The delegate for the modal-dialog session.

alertDidEndSelector
Message the alert sends to modalDelegate after the user responds but before the sheet is dismissed.

contextInfo
Contextual data passed to modalDelegate in didEndSelector message.

Discussion
You can create the required NSAlert object either through the standard allocate-initialize procedure or by
using the compatibility method
alertWithMessageText:defaultButton:alternateButton:otherButton:
informativeTextWithFormat: (page 81).

The alertDidEndSelector argument must be a selector that takes three arguments, and the corresponding
method should have a declaration modeled on the following example:

- (void) alertDidEnd:(NSAlert *)alert returnCode:(NSInteger)returnCode
contextInfo:(void *)contextInfo;

where alert is the NSAlert object, returnCode specifies which button the user pressed, and contextInfo
is the same contextInfo passed in the original message. The returnCode argument identifies which
button was used to dismiss the alert (see this method’s “Special Considerations” section). The modal delegate
determines which button was clicked (“OK”, “Cancel”, and so on) and proceeds accordingly.

If you want to dismiss the sheet from within the alertDidEndSelectormethod before the modal delegate
carries out an action in response to the return value, send orderOut: (page 3352) (NSWindow) to the window
object obtained by sending window (page 95) to the alert argument. This allows you to chain sheets, for
example, by dismissing one sheet before showing the next from within the alertDidEndSelectormethod.
Note that you should be careful not to call orderOut: on the sheet from elsewhere in your program before
the alertDidEndSelector method is invoked.

84 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Special Considerations

When you use alertWithMessageText:defaultButton:alternateButton:otherButton:
informativeTextWithFormat: (page 81) to create an alert, these are the constants used to identify the
button used to dismiss the alert: NSAlertDefaultReturn, NSAlertAlternateReturn, and
NSAlertOtherReturn. Otherwise, the constants used are the ones described in “Button Return Values” (page
96).

Availability
Available in Mac OS X v10.3 and later.

See Also
– runModal (page 88)

Related Sample Code
Cocoa Tips and Tricks
CoreRecipes
IdentitySample
QTRecorder
XMLBrowser

Declared In
NSAlert.h

buttons
Returns the receiver’s buttons.

- (NSArray *)buttons

Return Value
The alert’s buttons. The rightmost button is at index 0.

Availability
Available in Mac OS X v10.3 and later.

See Also
– addButtonWithTitle: (page 83)

Declared In
NSAlert.h

delegate
Returns the receiver’s delegate.

- (id < NSAlertDelegate >)delegate

Return Value
The alert’s delegate.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 85
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

See Also
– setDelegate: (page 90)

Declared In
NSAlert.h

helpAnchor
Returns the receiver’s HTML help anchor.

- (NSString *)helpAnchor

Return Value
The alert’s help anchor. It’s nil when the alert has no help anchor.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setHelpAnchor: (page 90)

Declared In
NSAlert.h

icon
Returns the icon displayed in the receiver.

- (NSImage *)icon

Return Value
The alert’s icon.

Discussion
The default image is the application icon (NSApplicationIcon application property).

Availability
Available in Mac OS X v10.3 and later.

See Also
– setIcon: (page 91)

Declared In
NSAlert.h

informativeText
Returns the receiver’s informative text.

- (NSString *)informativeText

86 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Return Value
The alert’s informative text.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setInformativeText: (page 91)
– messageText (page 87)

Declared In
NSAlert.h

layout
Specifies that the receiver must do immediate layout instead of lazily just before display.

- (void)layout

Discussion
You need to call this method only when you need to customize the alert’s layout. Call this method after all
the alert’s attributes have been customized, including the suppression checkbox and the accessory layout.
After the method returns, you can make the necessary layout changes; for example, adjusting the frame of
the accessory view.

Note: The standard alert layout is subject to change in future system software versions. Therefore, if you
rely on custom alert layout, you should make sure your layouts work as expected in future releases of Mac
OS.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAccessoryView: (page 88)

Declared In
NSAlert.h

messageText
Returns the receiver’s message text (or title).

- (NSString *)messageText

Return Value
The alert’s message text.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setMessageText: (page 92)

Instance Methods 87
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

– informativeText (page 86)

Declared In
NSAlert.h

runModal
Runs the receiver as an application-modal dialog and returns the constant positionally identifying the button
clicked.

- (NSInteger)runModal

Return Value
Response to the alert. See this method’s “Special Considerations” section for details.

Discussion
You can create the alert either through the standard allocate–initialize procedure or by using the compatibility
method alertWithMessageText:defaultButton:alternateButton:otherButton:
informativeTextWithFormat: (page 81).

Special Considerations

When you use alertWithMessageText:defaultButton:alternateButton:otherButton:
informativeTextWithFormat: (page 81) to create an alert, these are the constants used to identify the
button used to dismiss the alert: NSAlertDefaultReturn, NSAlertAlternateReturn, and
NSAlertOtherReturn. Otherwise, the constants used are the ones described in “Button Return Values” (page
96).

Availability
Available in Mac OS X v10.3 and later.

See Also
– beginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo: (page 84)

Related Sample Code
AudioDataOutputToAudioUnit
Denoise
QTKitTimeCode
Quartz Composer WWDC 2005 TextEdit
StillMotion

Declared In
NSAlert.h

setAccessoryView:
Sets the receiver’s accessory view.

- (void)setAccessoryView:(NSView *)accessoryView

Parameters
accessoryView

View that is to be the alert’s accessory view.

88 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Discussion
The NSAlert class places the accessory view between the informative text or suppression checkbox (if
present) and the response buttons. To change the location of the accessory view, you must first call the
layout (page 87) method.

Listing 5-1 shows an example of adding an accessory view to an alert. Figure 5-1 shows the alert generated.

Listing 5-1 Adding an accessory view to an alert

NSTextView *accessory = [[NSTextView alloc] initWithFrame:NSMakeRect(0,0,200,15)];
NSFont *font = [NSFont systemFontOfSize:[NSFont systemFontSize]];
NSDictionary *textAttributes = [NSDictionary dictionaryWithObject:font
forKey:NSFontAttributeName];
[accessory insertText:[[NSAttributedString alloc] initWithString:@"Text in
accessory view"
 attributes:textAttributes]];
[accessory setEditable:NO];
[accessory setDrawsBackground:NO];

NSAlert* alert = [NSAlert alertWithMessageText:@"Message text" defaultButton:nil
 alternateButton:nil otherButton:nil informativeTextWithFormat:@"Informative
text"];
[alert setAccessoryView:accessory];
[alert runModal];

Figure 5-1 Alert dialog with an accessory view

Availability
Available in Mac OS X v10.5 and later.

See Also
– accessoryView (page 82)

Declared In
NSAlert.h

setAlertStyle:
Sets the alert style of the receiver.

- (void)setAlertStyle:(NSAlertStyle)style

Instance Methods 89
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Parameters
style

Alert style for the alert. Indicates the severity level of the alert. See NSAlertStyle (page 96) for the list
of alert style constants.

Availability
Available in Mac OS X v10.3 and later.

See Also
– alertStyle (page 83)

Related Sample Code
CocoaDVDPlayer
CoreRecipes
IdentitySample
UIElementInspector

Declared In
NSAlert.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSAlertDelegate >)delegate

Parameters
delegate

Delegate for the alert. nil removes the delegate.

Availability
Available in Mac OS X v10.3 and later.

See Also
– delegate (page 85)

Declared In
NSAlert.h

setHelpAnchor:
Associates the receiver to a given anchor.

- (void)setHelpAnchor:(NSString *)anchor

Parameters
anchor

Anchor to associate with the alert. nil removes the associated help anchor.

Availability
Available in Mac OS X v10.3 and later.

90 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

See Also
– helpAnchor (page 86),
– setShowsHelp: (page 92)

Declared In
NSAlert.h

setIcon:
Sets the icon to be displayed in the alert to a given icon.

- (void)setIcon:(NSImage *)icon

Parameters
icon

Icon for the alert. nil restores the application icon.

Discussion
By default, the image is the application icon, accessed via the application bundle’s NSApplicationIcon
property.

Availability
Available in Mac OS X v10.3 and later.

See Also
– icon (page 86)

Declared In
NSAlert.h

setInformativeText:
Sets the receiver’s informative text to a given text.

- (void)setInformativeText:(NSString *)informativeText

Parameters
informativeText

Informative text for the alert. The value must not be nil.

Availability
Available in Mac OS X v10.3 and later.

See Also
– informativeText (page 86)
– setMessageText: (page 92)

Related Sample Code
CocoaDVDPlayer
CoreRecipes
IdentitySample
UIElementInspector

Instance Methods 91
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

XMLBrowser

Declared In
NSAlert.h

setMessageText:
Sets the receiver’s message text, or title, to a given text.

- (void)setMessageText:(NSString *)messageText

Parameters
messageText

Message text for the alert.

Availability
Available in Mac OS X v10.3 and later.

See Also
– messageText (page 87)
– setInformativeText: (page 91)

Related Sample Code
CocoaDVDPlayer
CoreRecipes
IdentitySample
UIElementInspector
XMLBrowser

Declared In
NSAlert.h

setShowsHelp:
Specifies whether the receiver has a help button.

- (void)setShowsHelp:(BOOL)showsHelp

Parameters
showsHelp

YES for a help button, NO for no help button.

Discussion
When the help button is pressed, the alert delegate (delegate (page 85)) is first sent a
alertShowHelp: (page 3551) message. If there is no delegate, or the delegate does not implement
alertShowHelp: (page 3551) or returnsNO, then theopenHelpAnchor:inBook: (page 1318) message is sent
to the application’s help manager with a nil book and the anchor specified by setHelpAnchor: (page
90), if any. An exception is raised if the delegate returns NO and no help anchor is set.

Availability
Available in Mac OS X v10.3 and later.

92 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

See Also
– setDelegate: (page 90)
– showsHelp (page 94)

Declared In
NSAlert.h

setShowsSuppressionButton:
Specifies whether the receiver includes a suppression checkbox.

- (void)setShowsSuppressionButton:(BOOL)showButton

Parameters
showButton

When YES the alert includes the suppression checkbox.

Discussion
You can set the title of the checkbox with the following code:

[[alert suppressionButton] setTitle:title];

Listing 5-2 shows how to add a suppression checkbox (with the default suppression-checkbox title) to a
modal alert. Figure 5-2 shows the corresponding dialog.

Listing 5-2 Creating an alert with a suppression checkbox

NSString *exampleAlertSuppress = @"ExampleAlertSuppress";
NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
if ([defaults boolForKey:exampleAlertSuppress]) {
 NSLog(@"ExampleAlert suppressed");
}
else {
 NSAlert* alert = [NSAlert alertWithMessageText:@"Message text"
defaultButton:nil alternateButton:nil
 otherButton:nil
informativeTextWithFormat:@"Informative text"];
 [alert setShowsSuppressionButton:YES];
 [alert runModal];
 if ([[alert suppressionButton] state] == NSOnState) {
 // Suppress this alert from now on.
 [defaults setBool:YES forKey:exampleAlertSuppress];
 }
 [alert release];
}

Instance Methods 93
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Figure 5-2 Alert dialog with a suppression checkbox

Availability
Available in Mac OS X v10.5 and later.

See Also
– suppressionButton (page 95)

Declared In
NSAlert.h

showsHelp
Indicates whether the receiver has a help button.

- (BOOL)showsHelp

Return Value
YES if the alert has a help button, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setShowsHelp: (page 92)

Declared In
NSAlert.h

showsSuppressionButton
Indicates whether the receiver shows a suppression button.

- (BOOL)showsSuppressionButton

Return Value
YES when the alert shows a suppression button, NO otherwise. The default is NO.

Availability
Available in Mac OS X v10.5 and later.

94 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

See Also
– setShowsSuppressionButton: (page 93)

Declared In
NSAlert.h

suppressionButton
Returns the receiver’s suppression checkbox.

- (NSButton *)suppressionButton

Return Value
The alert’s suppression button.

Discussion
You can use this method to customize the alert’s suppression checkbox before the alert is displayed. For
example, you can change the title of the checkbox or specify its initial state, which is unselected by default.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAlert.h

window
Provides the application-modal panel associated with the receiver.

- (id)window

Return Value
The receiver’s associated NSPanel object.

Discussion
This method is useful when you want to dismiss an alert created with
beginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo: (page 84) within the
method identified by the didEndSelector: parameter.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
BackgroundExporter
QTKitTimeCode

Declared In
NSAlert.h

Instance Methods 95
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Constants

NSAlertStyle
The NSAlert class defines the alert styles used by setAlertStyle: (page 89) and alertStyle (page 83).

enum {
 NSWarningAlertStyle = 0,
 NSInformationalAlertStyle = 1,
 NSCriticalAlertStyle = 2
};
typedef NSUInteger NSAlertStyle;

Constants
NSWarningAlertStyle

An alert used to warn the user about a current or impending event. The purpose is more than
informational but not critical. This is the default alert style.

Available in Mac OS X v10.3 and later.

Declared in NSAlert.h.

NSInformationalAlertStyle
An alert used to inform the user about a current or impending event.

Available in Mac OS X v10.3 and later.

Declared in NSAlert.h.

NSCriticalAlertStyle
Reserved this style for critical alerts, such as when there might be severe consequences as a result of
a certain user response (for example, a “clean install” will erase all data on a volume). This style causes
the icon to be badged with a caution icon.

Available in Mac OS X v10.3 and later.

Declared in NSAlert.h.

Discussion
Currently, there is no visual difference between informational and warning alerts. You should only use the
critical (or “caution”) alert style if warranted, as specified in the “Alerts” chapter in Apple Human Interface
Guidelines.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAlert.h

Button Return Values
An alert’s return values for buttons are position dependent. The following constants describe the return
values for the first three buttons on an alert (assuming a language that reads left to right).

96 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

enum {
 NSAlertFirstButtonReturn = 1000,
 NSAlertSecondButtonReturn = 1001,
 NSAlertThirdButtonReturn = 1002
};

Constants
NSAlertFirstButtonReturn

The user clicked the first (rightmost) button on the dialog or sheet.

Available in Mac OS X v10.3 and later.

Declared in NSAlert.h.

NSAlertSecondButtonReturn
The user clicked the second button from the right edge of the dialog or sheet.

Available in Mac OS X v10.3 and later.

Declared in NSAlert.h.

NSAlertThirdButtonReturn
The user clicked the third button from the right edge of the dialog or sheet.

Available in Mac OS X v10.3 and later.

Declared in NSAlert.h.

Discussion
If you have more than three buttons on your alert, the button-position return value is
NSAlertThirdButtonReturn + n, where n is an integer. For languages that read right to left, the first
button’s position is closest to the left edge of the dialog or sheet.

Declared In
NSAlert.h

Constants 97
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

98 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.4 and later.

Declared in AppKit/NSAnimation.h

Companion guides Animation Programming Guide for Cocoa
Cocoa Drawing Guide

Related sample code iSpend
Reducer

Overview

Objects of the NSAnimation class manage the timing and progress of animations in the user interface. The
class also lets you link together multiple animations so that when one animation ends another one starts. It
does not provide any drawing support for animation and does not directly deal with views, targets, or actions.

Note: For simple tasks requiring a timing mechanism, consider using NSTimer.

NSAnimation objects have several characteristics, including duration, frame rate, and animation curve, which
describes the relative speed of the animation over its course. You can set progress marks in an animation,
each of which specifies a percentage of the animation completed; when an animation reaches a progress
mark, it notifies its delegate and posts a notification to any observers. Animations execute in one of three
blocking modes: blocking, non-blocking on the main thread, and non-blocking on a separate thread. The
non-blocking modes permit the handling of user events while the animation is running.

Subclassing Notes

The usual usage pattern for NSAnimation is to make a subclass that overrides (at least) the
setCurrentProgress: (page 109) method to invoke the superclass implementation and then perform whatever
animation action is needed. The method implementation might invoke currentValue (page 104) and then
use that value to update some drawing; as a consequence of invoking currentValue (page 104), the method

Overview 99
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

animation:valueForProgress: (page 3560) is sent to the delegate (if there is a delegate that implements
the method). For more information on subclassing NSAnimation, see Animation Programming Guide for
Cocoa.

Tasks

Initializing an NSAnimation Object

– initWithDuration:animationCurve: (page 106)
Returns an NSAnimation object initialized with the specified duration and animation-curve values.

Configuring an Animation

– setAnimationBlockingMode: (page 108)
Sets the blocking mode of the receiver.

– animationBlockingMode (page 102)
Returns the blocking mode the receiver is next scheduled to run under.

– runLoopModesForAnimating (page 107)
Overridden to return the run-loop modes that the receiver uses to run the animation timer in.

– setAnimationCurve: (page 108)
Sets the receiver’s animation curve.

– animationCurve (page 103)
Returns the animation curve the receiver is running under.

– setDuration: (page 110)
Sets the duration of the animation to a specified number of seconds.

– duration (page 105)
Returns the duration of the animation, in seconds.

– setFrameRate: (page 110)
Sets the frame rate of the receiver.

– frameRate (page 105)
Returns the frame rate of the animation.

Managing the Delegate

– setDelegate: (page 109)
Sets the delegate of the receiver.

– delegate (page 105)
Returns the delegate of the receiver.

100 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Controlling and Monitoring an Animation

– startAnimation (page 111)
Starts the animation represented by the receiver.

– stopAnimation (page 112)
Stops the animation represented by the receiver.

– isAnimating (page 106)
Returns a Boolean value that indicates whether the receiver is currently animating.

– setCurrentProgress: (page 109)
Sets the current progress of the receiver.

– currentProgress (page 104)
Returns the current progress of the receiver.

– currentValue (page 104)
Returns the current value of the effect based on the current progress.

Managing Progress Marks

– addProgressMark: (page 102)
Adds the progress mark to the receiver.

– removeProgressMark: (page 107)
Removes progress mark from the receiver.

– setProgressMarks: (page 111)
Sets the receiver’s progress marks to the values specified in the passed-in array.

– progressMarks (page 107)
Returns the receiver’s progress marks.

Linking Animations Together

– startWhenAnimation:reachesProgress: (page 112)
Starts running the animation represented by the receiver when another animation reaches a specific
progress mark.

– stopWhenAnimation:reachesProgress: (page 113)
Stops running the animation represented by the receiver when another animation reaches a specific
progress mark.

– clearStartAnimation (page 103)
Clears linkage to another animation that causes the receiver to start.

– clearStopAnimation (page 103)
Clears linkage to another animation that causes the receiver to stop.

Tasks 101
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Instance Methods

addProgressMark:
Adds the progress mark to the receiver.

- (void)addProgressMark:(NSAnimationProgress)progressMark

Parameters
progressMark

A float value (typed as NSAnimationProgress) between 0.0 and 1.0. Values outside that range
are pinned to 0.0 or 1.0, whichever is nearest.

Discussion
A progress mark represents a percentage of the animation completed. When the animation reaches a progress
mark, an animation:didReachProgressMark: (page 3560) message is sent to the delegate and an
NSAnimationProgressMarkNotification (page 116) is broadcast to all observers. You might receive
multiple notifications of progress advances over multiple marks.

Availability
Available in Mac OS X v10.4 and later.

See Also
– currentProgress (page 104)
– removeProgressMark: (page 107)

Declared In
NSAnimation.h

animationBlockingMode
Returns the blocking mode the receiver is next scheduled to run under.

- (NSAnimationBlockingMode)animationBlockingMode

Return Value
A constant representing the receiver's blocking mode. See “NSAnimationBlockingMode” (page 114) for valid
values.

Discussion
The animation can run in blocking mode or non-blocking mode; non-blocking mode can be either on the
main thread or on a separate thread. The default mode is NSAnimationBlocking.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAnimationBlockingMode: (page 108)

Declared In
NSAnimation.h

102 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

animationCurve
Returns the animation curve the receiver is running under.

- (NSAnimationCurve)animationCurve

Return Value
An NSAnimationCurve constant indicating the animation curve.

Discussion
The animation curve describes the relative frame rate over the course of the animation. See
“NSAnimationCurve” (page 113) for valid NSAnimationCurve constants.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAnimationCurve: (page 108)

Declared In
NSAnimation.h

clearStartAnimation
Clears linkage to another animation that causes the receiver to start.

- (void)clearStartAnimation

Discussion
The linkage to the other animation is made with startWhenAnimation:reachesProgress: (page 112).

Availability
Available in Mac OS X v10.4 and later.

See Also
– startAnimation (page 111)

Declared In
NSAnimation.h

clearStopAnimation
Clears linkage to another animation that causes the receiver to stop.

- (void)clearStopAnimation

Discussion
The linkage to the other animation is made with stopWhenAnimation:reachesProgress: (page 113).

Availability
Available in Mac OS X v10.4 and later.

See Also
– stopAnimation (page 112)

Instance Methods 103
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Declared In
NSAnimation.h

currentProgress
Returns the current progress of the receiver.

- (NSAnimationProgress)currentProgress

Return Value
A float value typed as NSAnimationProgress that indicates the current progress of the animation.

Discussion
The current progress is a value between 0.0 and 1.0 that represents the percentage of the animation currently
completed.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCurrentProgress: (page 109)

Declared In
NSAnimation.h

currentValue
Returns the current value of the effect based on the current progress.

- (float)currentValue

Return Value
A float value that indicates the current value of the animation effect.

Discussion
NSAnimation gets the current value from the delegate in animation:valueForProgress: (page 3560) or,
if that method is not implemented, computes it from the current progress by factoring in the animation
curve. NSAnimation itself does not invoke this method currently. Instances of NSAnimation subclasses or
other objects can invoke this method on a periodic basis to get the current value.

Although this method has no corresponding setter method, those NSAnimation subclasses may override
this method to return a custom curve value instead of implementing animation:valueForProgress: (page
3560), thereby saving on the overhead of using a delegate. The current value can be less than 0.0 or greater
than 1.0. For example, if you make the value greater than 1.0 you can achieve a “rubber effect” where the
size of a view is temporarily larger before its final size.

Availability
Available in Mac OS X v10.4 and later.

See Also
– currentProgress (page 104)
– setAnimationCurve: (page 108)

104 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Declared In
NSAnimation.h

delegate
Returns the delegate of the receiver.

- (id < NSAnimationDelegate >)delegate

Return Value
The receiver's delegate.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDelegate: (page 109)

Declared In
NSAnimation.h

duration
Returns the duration of the animation, in seconds.

- (NSTimeInterval)duration

Return Value
An NSTimeInterval value indicating the duration.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDuration: (page 110)

Declared In
NSAnimation.h

frameRate
Returns the frame rate of the animation.

- (float)frameRate

Discussion
The frame rate is the number of updates per second. It is not guaranteed to be accurate because of differences
between systems on the time needed to process a frame.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 105
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Declared In
NSAnimation.h

initWithDuration:animationCurve:
Returns an NSAnimation object initialized with the specified duration and animation-curve values.

- (id)initWithDuration:(NSTimeInterval)duration
animationCurve:(NSAnimationCurve)animationCurve

Parameters
duration

The number of seconds over which the animation occurs. Specifying a negative number raises an
exception.

animationCurve
An NSAnimationCurve constant that describes the relative speed of the animation over its course;
if it is zero, the default curve (NSAnimationEaseInOut) is used.

Return Value
An initialized NSAnimation instance. Returns nil if the object could not be initialized.

Discussion
You can always later change the duration of an NSAnimation object by sending it a setDuration: (page
110) message, even while the animation is running. See "Constants" for descriptions of the NSAnimationCurve
constants.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Reducer

Declared In
NSAnimation.h

isAnimating
Returns a Boolean value that indicates whether the receiver is currently animating.

- (BOOL)isAnimating

Return Value
YES if the receiver is animating, NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSAnimation.h

106 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

progressMarks
Returns the receiver’s progress marks.

- (NSArray *)progressMarks

Return Value
An array of NSNumber objects, each encapsulating a float value (typed as NSAnimationProgress) that
represents a current progress mark. If the receiver has no progress marks, an empty array is returned.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addProgressMark: (page 102)
– setProgressMarks: (page 111)

Declared In
NSAnimation.h

removeProgressMark:
Removes progress mark from the receiver.

- (void)removeProgressMark:(NSAnimationProgress)progressMark

Parameters
progressMark

A float value (typed as NSAnimationProgress) that indicates the portion of the animation
completed. The value should correspond to a progress mark set with addProgressMark: (page 102) or
setProgressMarks: (page 111).

Availability
Available in Mac OS X v10.4 and later.

See Also
– addProgressMark: (page 102)

Declared In
NSAnimation.h

runLoopModesForAnimating
Overridden to return the run-loop modes that the receiver uses to run the animation timer in.

- (NSArray *)runLoopModesForAnimating

Return Value
An array of constants that indicate the modes the animation's run loop can be in. By default, the method
returns nil, which indicates that the animation can be run in default, modal, or event-tracking mode. See
the NSRunLoop class reference for information about the mode constants

Instance Methods 107
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Discussion
The value returned from this method is ignored if the animation blocking mode is something other than
NSAnimationNonblocking.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAnimationBlockingMode: (page 108)

Declared In
NSAnimation.h

setAnimationBlockingMode:
Sets the blocking mode of the receiver.

- (void)setAnimationBlockingMode:(NSAnimationBlockingMode)animationBlockingMode

Parameters
animationBlockingMode

A constant representing the blocking mode the animation is next scheduled to run under. See
“NSAnimationBlockingMode” (page 114) for valid values.

If the constant is NSAnimationNonblocking, the animation runs in the main thread in one of the
standard run-loop modes or in a mode returned from runLoopModesForAnimating (page 107). If
animationBlockingMode is NSAnimationNonblockingThreaded, a new thread is spawned to
run the animation.

Discussion
The default mode is NSAnimationBlocking, which means that the animation runs on the main thread in
a custom run-loop mode that blocks user events. The new blocking mode takes effect the next time the
receiver is started and has no effect on an animation underway.

Availability
Available in Mac OS X v10.4 and later.

See Also
– animationBlockingMode (page 102)

Related Sample Code
From A View to A Movie
Reducer

Declared In
NSAnimation.h

setAnimationCurve:
Sets the receiver’s animation curve.

- (void)setAnimationCurve:(NSAnimationCurve)curve

108 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Parameters
curve

An NSAnimationCurve constant specifying the animation curve. Invalid values raise an exception.

Discussion
The animation curve describes the relative frame rate over the course of the animation; predefined curves
are linear, ease in (slow down near end), ease out (slowly speed up at start), and ease in-ease out (S-curve).
Sending this message affects animations already in progress. The NSAnimationCurve setting is ignored if
the delegate implementsanimation:valueForProgress: (page 3560). See “NSAnimationCurve” (page 113)
for valid NSAnimationCurve constants.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
From A View to A Movie
QTCoreVideo301

Declared In
NSAnimation.h

setCurrentProgress:
Sets the current progress of the receiver.

- (void)setCurrentProgress:(NSAnimationProgress)progress

Parameters
progress

A float value typed as NSAnimationProgress that specifies the current progress of the animation.
This value should be between 0.0 and 1.0; values that are out of range are pinned to 0.0 or 1.0,
whichever is closer.

Discussion
You can use this method to adjust the progress of a running animation. The NSAnimation class invokes this
method while the animation is running to change the progress for the next frame. Subclasses can override
this method to get the latest value and perform their action with it, possibly in a secondary thread.
Alternatively, you can implement the delegation method animation:valueForProgress: (page 3560).

Availability
Available in Mac OS X v10.4 and later.

See Also
– currentProgress (page 104)

Declared In
NSAnimation.h

setDelegate:
Sets the delegate of the receiver.

- (void)setDelegate:(id < NSAnimationDelegate >)delegate

Instance Methods 109
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Parameters
delegate

The delegate for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– delegate (page 105)

Declared In
NSAnimation.h

setDuration:
Sets the duration of the animation to a specified number of seconds.

- (void)setDuration:(NSTimeInterval)duration

Parameters
duration

An NSTimeInterval value specifying the duration of the animation. Negative values raise an
exception.

Discussion
You can change the duration of an animation while it is running. However, setting the duration of a running
animation to an interval shorter than the current progress ends the animation.

Availability
Available in Mac OS X v10.4 and later.

See Also
– duration (page 105)

Related Sample Code
From A View to A Movie
QTCoreVideo301
Reducer

Declared In
NSAnimation.h

setFrameRate:
Sets the frame rate of the receiver.

- (void)setFrameRate:(float)framesPerSecond

Parameters
framesPerSecond

A float value specifying the number of updates per second for the animation. This value must be
positive; negative values raise an exception. A frame rate of 0.0 means to go as fast as possible.

110 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Discussion
The frame rate is not guaranteed due to differences among systems for the time needed to process a frame.
You can change the frame rate while an animation is running and the new value is used at the next frame.
The default frame rate is set to a reasonable value (which is subject to future change).

Availability
Available in Mac OS X v10.4 and later.

See Also
– frameRate (page 105)

Declared In
NSAnimation.h

setProgressMarks:
Sets the receiver’s progress marks to the values specified in the passed-in array.

- (void)setProgressMarks:(NSArray *)progressMarks

Parameters
progressMarks

An array of NSNumber objects, each encapsulating a float value (typed as NSAnimationProgress)
that represents a current progress mark. Passing in nil clears all progress marks.

Availability
Available in Mac OS X v10.4 and later.

See Also
– progressMarks (page 107)

Declared In
NSAnimation.h

startAnimation
Starts the animation represented by the receiver.

- (void)startAnimation

Discussion
The receiver retains itself and is then autoreleased at the end of the animation or when it receives
stopAnimation (page 112). If the blocking mode is NSAnimationBlocking, the method only returns after
the animation has completed or the delegate sends it stopAnimation (page 112). If the receiver has a
progress of 1.0, it starts again at 0.0.

Availability
Available in Mac OS X v10.4 and later.

See Also
– startWhenAnimation:reachesProgress: (page 112)
– stopAnimation (page 112)

Instance Methods 111
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Related Sample Code
From A View to A Movie
QTCoreVideo301
Reducer

Declared In
NSAnimation.h

startWhenAnimation:reachesProgress:
Starts running the animation represented by the receiver when another animation reaches a specific progress
mark.

- (void)startWhenAnimation:(NSAnimation *)animation
reachesProgress:(NSAnimationProgress)startProgress

Parameters
animation

The other NSAnimation object with which the receiver is linked.

startProgress
Afloat value (typed asNSAnimationProgress) that specifies a progress mark of the other animation.

Discussion
This method links the running of two animations together. You can set only one NSAnimation object as a
start animation and one as a stop animation at any one time. Setting a new start animation removes any
animation previously set.

Availability
Available in Mac OS X v10.4 and later.

See Also
– clearStartAnimation (page 103)
– startAnimation (page 111)
– stopWhenAnimation:reachesProgress: (page 113)

Declared In
NSAnimation.h

stopAnimation
Stops the animation represented by the receiver.

- (void)stopAnimation

Discussion
The current progress of the receiver is not reset. When this method is sent to instances of NSViewAnimation
(a subclass of NSAnimation) the receiver moves to the end frame location.

Availability
Available in Mac OS X v10.4 and later.

112 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

See Also
– startAnimation (page 111)
– stopWhenAnimation:reachesProgress: (page 113)

Related Sample Code
From A View to A Movie

Declared In
NSAnimation.h

stopWhenAnimation:reachesProgress:
Stops running the animation represented by the receiver when another animation reaches a specific progress
mark.

- (void)stopWhenAnimation:(NSAnimation *)animation
reachesProgress:(NSAnimationProgress)stopProgress

Parameters
animation

The other NSAnimation object with which the receiver is linked.

stopProgress
Afloat value (typed asNSAnimationProgress) that specifies a progress mark of the other animation.

Discussion
This method links the running of two animations together. You can set only one NSAnimation object as a
start animation and one as a stop animation at any one time. Setting a new stop animation removes any
animation previously set.

Availability
Available in Mac OS X v10.4 and later.

See Also
– clearStopAnimation (page 103)
– startWhenAnimation:reachesProgress: (page 112)
– stopAnimation (page 112)

Declared In
NSAnimation.h

Constants

NSAnimationCurve
These constants describe the curve of an animation—that is, the relative speed of an animation from start
to finish.

Constants 113
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

enum {
 NSAnimationEaseInOut,
 NSAnimationEaseIn,
 NSAnimationEaseOut,
 NSAnimationLinear
};
typedef NSUInteger NSAnimationCurve;

Constants
NSAnimationEaseInOut

Describes an S-curve in which the animation slowly speeds up and then slows down near the end of
the animation. This constant is the default.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

NSAnimationEaseIn
Describes an animation that slows down as it reaches the end.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

NSAnimationEaseOut
Describes an animation that slowly speeds up from the start.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

NSAnimationLinear
Describes an animation in which there is no change in frame rate.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

Discussion
You initialize an NSAnimation object using one of these constants with
initWithDuration:animationCurve: (page 106) and you can set it thereafter with
setAnimationCurve: (page 108).

NSAnimationBlockingMode
These constants indicate the blocking mode of an NSAnimation object when it is running.

enum {
 NSAnimationBlocking,
 NSAnimationNonblocking,
 NSAnimationNonblockingThreaded
};
typedef NSUInteger NSAnimationBlockingMode;

Constants
NSAnimationBlocking

Requests the animation to run in the main thread in a custom run-loop mode that blocks user input.

This is the default.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

114 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

NSAnimationNonblocking
Requests the animation to run in a standard or specified run-loop mode that allows user input.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

NSAnimationNonblockingThreaded
Requests the animation to run in a separate thread that is spawned by the NSAnimation object.

The secondary thread has its own run loop.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

Discussion
You specify one of these constants in setAnimationBlockingMode: (page 108).

NSAnimationProgress
NSAnimationProgress is returned in the userInfo dictionary of an
NSAnimationProgressMarkNotification (page 116) notification. It will have a value between 0.0 and
1.0

typedef float NSAnimationProgress;

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSAnimation.h

Animation action triggers
These constants are used by the NSAnimatablePropertyContainer methods
defaultAnimationForKey: (page 3554) and animationForKey: (page 3555).

NSString *NSAnimationTriggerOrderIn;
NSString *NSAnimationTriggerOrderOut;

Constants
NSAnimationTriggerOrderIn

The trigger that represents the action taken when a view becomes visible, either as a result of being
inserted into the visible view hierarchy or the view is no longer set as hidden.

Available in Mac OS X v10.5 and later.

Declared in NSAnimation.h.

NSAnimationTriggerOrderOut
The trigger that represents the action taken when the view is either removed from the view hierarchy
or is hidden.

Available in Mac OS X v10.5 and later.

Declared in NSAnimation.h.

Constants 115
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

NSAnimationProgressMark Notification Key
This constant is returned in the userInfo dictionary of the NSAnimationProgressMarkNotification (page
116) notification.

NSString* NSAnimationProgressMark;

Constants
NSAnimationProgressMark

Contains the value of an NSAnimationProgress (page 115) as an NSNumber instance that indicates
the current animation progress. The value will be between 0.0 and 1.0.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

Notifications

NSAnimationProgressMarkNotification
Posted when the current progress of a running animation reaches one of its progress marks.

The notification object is a running NSAnimation object. The userInfo dictionary contains the current
progress mark, accessed via the key NSAnimationProgressMark.

Availability
Available in Mac OS X v10.4 and later.

See Also
– animation:didReachProgressMark: (page 3560) (NSAnimationDelegate)

Declared In
NSAnimation.h

116 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSAnimationContext.h

Related sample code AnimatedTableView
BasicCocoaAnimations
CocoaSlides
QuickLookDownloader
TrackBall

Overview

NSAnimationContext is analogous to CATransaction and are similar in overall concept to
NSGraphicsContext. Each thread maintains its own stack of nestable NSAnimationContext instances,
with each new instance initialized as a copy of the instance below (so, inheriting its current properties).

Multiple NSAnimationContext instances can be nested, allowing a given block of code to initiate animations
using its own specified duration without affecting animations initiated by surrounding code.

[NSAnimationContext beginGrouping];
// Animate enclosed operations with a duration of 1 second
[[NSAnimationContext currentContext] setDuration:1.0];
[[aView animator] setFrame:newFrame];
...
 [NSAnimationContext beginGrouping];
 // Animate alpha fades with half-second duration
 [[NSAnimationContext currentContext] setDuration:0.5];
 [[aView animator] setAlphaValue:0.75];
 [[bView animator] setAlphaValue:0.75];
 [NSAnimationContext endGrouping];
...
// Will animate with a duration of 1 second
[[bView animator] setFrame:secondFrame];
[NSAnimationContext endGrouping];

Overview 117
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAnimationContext Class Reference

Tasks

Grouping Transactions

+ beginGrouping (page 118)
Creates a new animation grouping.

+ endGrouping (page 119)
Ends the current animation grouping.

Getting the Current Animation Context

+ currentContext (page 119)
Returns the current animation context.

Modifying the Animation Duration

– setDuration: (page 120)
Sets the duration used by animations created as a result of setting new values for an animatable
property.

– duration (page 119)
Returns the duration used when animating object properties that support animation.

Class Methods

beginGrouping
Creates a new animation grouping.

+ (void)beginGrouping

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
BasicCocoaAnimations
CocoaSlides
LayerBackedOpenGLView
MethodReplacement
QuickLookDownloader

Declared In
NSAnimationContext.h

118 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAnimationContext Class Reference

currentContext
Returns the current animation context.

+ (NSAnimationContext *)currentContext

Return Value
The current animation context.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
BasicCocoaAnimations
CocoaSlides
MethodReplacement
QuickLookDownloader
UIElementInspector

Declared In
NSAnimationContext.h

endGrouping
Ends the current animation grouping.

+ (void)endGrouping

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AnimatedTableView
BasicCocoaAnimations
CocoaSlides
LayerBackedOpenGLView
QuickLookDownloader

Declared In
NSAnimationContext.h

Instance Methods

duration
Returns the duration used when animating object properties that support animation.

- (NSTimeInterval)duration

Instance Methods 119
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAnimationContext Class Reference

Return Value
The duration in seconds.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAnimationContext.h

setDuration:
Sets the duration used by animations created as a result of setting new values for an animatable property.

- (void)setDuration:(NSTimeInterval)duration

Parameters
duration

The duration in seconds.

Discussion
Any animations that occur as a result of setting the values of animatable properties in the current context
will run for this duration.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
BasicCocoaAnimations
CocoaSlides
MethodReplacement
QuickLookDownloader
UIElementInspector

Declared In
NSAnimationContext.h

120 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAnimationContext Class Reference

Inherits from NSObject

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSAppleScriptExtensions.h

Companion guide Cocoa Scripting Guide

Overview

The Application Kit adds a method to the Foundation Framework’s NSAppleScript class to handle rich text
source. This method becomes part of the NSAppleScript class only for those applications that use the
Application Kit.

For more information, see NSAppleScript in the Foundation Framework API Reference.

Tasks

Obtaining Source

– richTextSource (page 121)
Returns the syntax-highlighted source code of the receiver if the receiver has been compiled and its
source code is available.

Instance Methods

richTextSource
Returns the syntax-highlighted source code of the receiver if the receiver has been compiled and its source
code is available.

- (NSAttributedString *)richTextSource

Discussion
Returns nil otherwise. It is possible for an instance of NSAppleScript that has been instantiated with
initWithContentsOfURL:error: to be a script for which the source code is not available, but is nonetheless
executable.

Overview 121
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAppleScript Additions Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScriptExtensions.h

122 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAppleScript Additions Reference

Inherits from NSResponder : NSObject

Conforms to NSUserInterfaceValidations
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSApplication.h
AppKit/NSApplicationScripting.h
AppKit/NSColorPanel.h
AppKit/NSDataLinkPanel.h
AppKit/NSFontPanel.h
AppKit/NSHelpManager.h
AppKit/NSPageLayout.h
AppKit/NSRunningApplication.h
AppKit/NSUserInterfaceItemSearching.h

Companion guides Application Architecture Overview
Notification Programming Topics
Sheet Programming Topics
Services Implementation Guide

Related sample code CoreRecipes
ImageKitDemo
NumberInput_IMKit_Sample
Quartz Composer WWDC 2005 TextEdit
SimpleScriptingPlugin

Class at a Glance

An NSApplication object manages an application’s main event loop in addition to resources used by all
of that application’s objects.

Principal Attributes

 ■ Delegate

 ■ Key window

Class at a Glance 123
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

 ■ Display context

 ■ List of windows

 ■ Main window

Commonly Used Methods

keyWindow (page 150)
Returns an NSWindow object representing the key window.

mainWindow (page 151)
Returns the application’s main window.

registerServicesMenuSendTypes:returnTypes: (page 158)
Specifies which services are valid for this application.

runModalForWindow: (page 163)
Runs a modal event loop for the specified NSWindow object.

Overview

The NSApplication class provides the central framework for your application’s execution.

Every application must have exactly one instance of NSApplication (or a subclass of NSApplication).
Your program’s main() function should create this instance by invoking the sharedApplication (page
135) class method. After creating the NSApplication object, the main() function should load your
application’s main nib file and then start the event loop by sending the NSApplication object a run (page
162) message. If you create an Application project in Xcode, this main() function is created for you. The
main() function Xcode creates begins by calling a function named NSApplicationMain(), which is
functionally similar to the following:

void NSApplicationMain(int argc, char *argv[]) {
 [NSApplication sharedApplication];
 [NSBundle loadNibNamed:@"myMain" owner:NSApp];
 [NSApp run];
}

The sharedApplication (page 135) class method initializes the display environment and connects your
program to the window server and the display server. The NSApplication object maintains a list of all the
NSWindow objects the application uses, so it can retrieve any of the application’s NSView objects.
sharedApplication (page 135) also initializes the global variable NSApp, which you use to retrieve the
NSApplication instance. sharedApplication (page 135) only performs the initialization once; if you
invoke it more than once, it simply returns the NSApplication object it created previously.

NSApplication performs the important task of receiving events from the window server and distributing
them to the proper NSResponder objects. NSApp translates an event into an NSEvent object, then forwards
the NSEvent object to the affected NSWindow object. All keyboard and mouse events go directly to the
NSWindow object associated with the event. The only exception to this rule is if the Command key is pressed
when a key-down event occurs; in this case, every NSWindow object has an opportunity to respond to the
event. When an NSWindow object receives an NSEvent object from NSApp, it distributes it to the objects in
its view hierarchy.

124 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSApplication is also responsible for dispatching certain Apple events received by the application. For
example, Mac OS X sends Apple events to your application at various times, such as when the application is
launched or reopened. NSApplication installs Apple event handlers to handle these events by sending a
message to the appropriate object. You can also use the NSAppleEventManager class to register your own
Apple event handlers. The applicationWillFinishLaunching: (page 3578) method is generally the best
place to do so. For more information on how events are handled and how you can modify the default behavior,
including information on working with Apple events in scriptable applications, see How Cocoa Applications
Handle Apple Events in Cocoa Scripting Guide.

The NSApplication class sets up autorelease pools (instances of the NSAutoreleasePool class) during
initialization and inside the event loop—specifically, within its initialization (or sharedApplication (page
135)) and run (page 162) methods. Similarly, the methods the Application Kit adds to NSBundle employ
autorelease pools during the loading of nib files. These autorelease pools aren’t accessible outside the scope
of the respective NSApplication and NSBundle methods. Typically, an application creates objects either
while the event loop is running or by loading objects from nib files, so this lack of access usually isn’t a
problem. However, if you do need to use Cocoa classes within the main() function itself (other than to load
nib files or to instantiate NSApplication), you should create an autorelease pool before using the classes
and then release the pool when you’re done. For more information, see NSAutoreleasePool in the
Foundation Framework Reference.

The Delegate and Notifications

You can assign a delegate to NSApp. The delegate responds to certain messages on behalf of NSApp. Some
of these messages, such as application:openFile: (page 3566), ask the delegate to perform an action.
Another message, applicationShouldTerminate: (page 3576), lets the delegate determine whether the
application should be allowed to quit. The NSApplication class sends these messages directly to its delegate.

The NSApp also posts notifications to the application’s default notification center. Any object may register
to receive one or more of the notifications posted by NSApp by sending the message
addObserver:selector:name:object: to the default notification center (an instance of the
NSNotificationCenter class). The delegate of NSApp is automatically registered to receive these
notifications if it implements certain delegate methods. For example, NSApp posts notifications when it is
about to be done launching the application and when it is done launching the application
(NSApplicationWillFinishLaunchingNotification (page 195) and
NSApplicationDidFinishLaunchingNotification (page 194)). The delegate has an opportunity to
respond to these notifications by implementing the methods applicationWillFinishLaunching: (page
3578) and applicationDidFinishLaunching: (page 3571). If the delegate wants to be informed of both
events, it implements both methods. If it needs to know only when the application is finished launching, it
implements only applicationDidFinishLaunching: (page 3571).

System Services

NSApplication interacts with the system services architecture to provide services to your application
through the Services menu.

Overview 125
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Subclassing Notes

You rarely should find a real need to create a custom NSApplication subclass. Unlike some object-oriented
libraries, Cocoa does not require you to create a custom application class to customize application behavior.
Instead it gives you many other ways to customize an application. This section discusses both some of the
possible reasons to subclass NSApplication and some of the reasons not to subclass NSApplication.

To use a custom subclass of NSApplication, simply send sharedApplication (page 135) to your subclass
rather than directly to NSApplication. If you create your application in Xcode, you can accomplish this by
setting your custom application class to be the principal class. In Xcode, double-click the application target
in the Groups and Files list to open the Info window for the target. Then display the Properties pane of the
window and replace “NSApplication” in the Principal Class field with the name of your custom class. The
NSApplicationMain function sends sharedApplication (page 135) to the principal class to obtain the
global application instance (NSApp)—which in this case will be an instance of your custom subclass of
NSApplication.

Important: Many Application Kit classes rely on the NSApplication class and may not work properly until
this class is fully initialized. As a result, you should not, for example, attempt to invoke methods of other
Application Kit classes from an initialization method of an NSApplication subclass.

Methods to Override

Generally, you subclass NSApplication to provide your own special responses to messages that are routinely
sent to the global application object (NSApp). NSApplication does not have primitive methods in the sense
of methods that you must override in your subclass. Here are four methods that are possible candidates for
overriding:

 ■ Override run (page 162) if you want the application to manage the main event loop differently than it
does by default. (This a critical and complex task, however, that you should only attempt with good
reason.)

 ■ Override sendEvent: (page 167) if you want to change how events are dispatched or perform some
special event processing.

 ■ Override requestUserAttention: (page 161) if you want to modify how your application attracts the
attention of the user (for example, offering an alternative to the bouncing application icon in the Dock).

 ■ Override targetForAction: (page 174) to substitute another object for the target of an action message.

Special Considerations

The global application object uses autorelease pools in its run (page 162) method; if you override this method,
you’ll need to create your own autorelease pools.

Do not overridesharedApplication (page 135). The default implementation, which is essential to application
behavior, is too complex to duplicate on your own.

126 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Alternatives to Subclassing

NSApplication defines over twenty delegate methods that offer opportunities for modifying specific
aspects of application behavior. Instead of making a custom subclass of NSApplication, your application
delegate may be able to implement one or more of these methods to accomplish your design goals. In
general, a better design than subclassing NSApplication is to put the code that expresses your application’s
special behavior into one or more custom objects called controllers. Methods defined in your controllers can
be invoked from a small dispatcher object without being closely tied to the global application object. For
more about application architectures, see Cocoa Design Patterns and The Core Application Architecture on
Mac OS X.

Tasks

Getting the Application

+ sharedApplication (page 135)
Returns the application instance, creating it if it doesn’t exist yet.

Configuring Applications

– applicationIconImage (page 138)
Returns the image used for the receiver’s icon.

– setApplicationIconImage: (page 168)
Sets the receiver’s icon to the specified image.

– delegate (page 144)
Returns the receiver’s delegate.

– setDelegate: (page 169)
Makes the given object the receiver’s delegate.

Launching Applications

– finishLaunching (page 147)
Activates the receiver, opens any files specified by the NSOpen user default, and unhighlights the
application’s icon.

Terminating Applications

– terminate: (page 176)
Terminates the receiver.

– replyToApplicationShouldTerminate: (page 160)
Responds to NSTerminateLater once the application knows whether it can terminate.

Tasks 127
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Managing Active Status

– isActive (page 149)
Returns a Boolean value indicating whether this is the active application.

– activateIgnoringOtherApps: (page 136)
Makes the receiver the active application.

– deactivate (page 143)
Deactivates the receiver.

Hiding Applications

– hideOtherApplications: (page 148)
Hides all applications, except the receiver.

– unhideAllApplications: (page 178)
Unhides all applications, including the receiver.

Managing the Event Loop

– isRunning (page 150)
Returns a Boolean value indicating whether the main event loop is running.

– run (page 162)
Starts the main event loop.

– stop: (page 173)
Stops the main event loop.

– runModalForWindow: (page 163)
Starts a modal event loop for a given window.

– stopModal (page 174)
Stops a modal event loop.

– stopModalWithCode: (page 174)
Stops a modal event loop, allowing you to return a custom result code.

– abortModal (page 135)
Aborts the event loop started by runModalForWindow: (page 163) or runModalSession: (page
164).

– beginModalSessionForWindow: (page 139)
Sets up a modal session with the given window and returns anNSModalSession structure representing
the session.

– runModalSession: (page 164)
Runs a given modal session, as defined in a previous invocation of beginModalSessionForWindow:.

– modalWindow (page 153)
Returns the modal window that the receiver is displaying.

– endModalSession: (page 146)
Finishes a modal session.

– sendEvent: (page 167)
Dispatches an event to other objects.

128 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Handling Events

– currentEvent (page 142)
Returns the current event, the last event the receiver retrieved from the event queue.

– nextEventMatchingMask:untilDate:inMode:dequeue: (page 153)
Returns the next event matching a given mask, or nil if no such event is found before a specified
expiration date.

– discardEventsMatchingMask:beforeEvent: (page 144)
Removes all events matching the given mask and generated before the specified event.

Posting Events

– postEvent:atStart: (page 157)
Adds a given event to the receiver’s event queue.

Managing Sheets

– beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 140)
Starts a document modal session.

– endSheet: (page 146)
Ends a document modal session by specifying the sheet window.

– endSheet:returnCode: (page 146)
Ends a document modal session by specifying the sheet window.

Managing Windows

– keyWindow (page 150)
Returns the window that currently receives keyboard events.

– mainWindow (page 151)
Returns the main window.

– windowWithWindowNumber: (page 182)
Returns the window corresponding to the specified window number.

– windows (page 181)
Returns an array containing the receiver’s window objects.

– makeWindowsPerform:inOrder: (page 152)
Sends the specified message to each of the application’s window objects until one returns a non-nil
value.

Minimizing Windows

– miniaturizeAll: (page 152)
Miniaturizes all the receiver’s windows.

Tasks 129
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

User Interface Layout Direction

– userInterfaceLayoutDirection (page 180)
Returns the layout direction of the user interface.

Hiding Windows

– isHidden (page 150)
Returns a Boolean value indicating whether the receiver is hidden.

– hide: (page 148)
Hides all the receiver’s windows, and the next application in line is activated.

– unhide: (page 177)
Restores hidden windows to the screen and makes the receiver active.

– unhideWithoutActivation (page 178)
Restores hidden windows without activating their owner (the receiver).

Updating Windows

– updateWindows (page 179)
Sends an update (page 3405) message to each onscreen window.

– setWindowsNeedUpdate: (page 172)
Sets whether the receiver’s windows need updating when the receiver has finished processing the
current event.

Managing Window Layers

– preventWindowOrdering (page 158)
Suppresses the usual window ordering in handling the most recent mouse-down event.

– arrangeInFront: (page 138)
Arranges windows listed in the Window menu in front of all other windows.

Accessing the Main Menu

– mainMenu (page 151)
Returns the receiver’s main menu.

– setMainMenu: (page 170)
Makes the given menu the receiver’s main menu.

Managing the Window Menu

– windowsMenu (page 181)
Returns the Window menu of the application.

130 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

– setWindowsMenu: (page 172)
Makes the given menu the receiver’s Window menu.

– addWindowsItem:title:filename: (page 137)
Adds an item to the Window menu for a given window.

– changeWindowsItem:title:filename: (page 141)
Changes the item for a given window in the Window menu to a given string.

– removeWindowsItem: (page 160)
Removes the Window menu item for a given window.

– updateWindowsItem: (page 179)
Updates the Window menu item for a given window to reflect the edited status of that window.

Accessing the Dock Tile

– dockTile (page 145)
Returns the application’s Dock tile.

Managing the Services Menu

– registerServicesMenuSendTypes:returnTypes: (page 158)
Registers the pasteboard types the receiver can send and receive in response to service requests.

– servicesMenu (page 167)
Returns the Services menu.

– setServicesMenu: (page 171)
Makes a given menu the receiver’s Services menu.

Providing Services

– validRequestorForSendType:returnType: (page 180)
Indicates whether the receiver can send and receive the specified pasteboard types.

– servicesProvider (page 167)
Returns the object that provides the services the receiver advertises in the Services menu of other
applications.

– setServicesProvider: (page 171)
Registers a given object as the service provider.

Managing Panels

– orderFrontColorPanel: (page 155)
Brings up the color panel, an instance of NSColorPanel.

– orderFrontStandardAboutPanel: (page 156)
Displays a standard About window.

– orderFrontStandardAboutPanelWithOptions: (page 156)
Displays a standard About window with information from a given options dictionary.

Tasks 131
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

– orderFrontCharacterPalette: (page 155)
Opens the character palette.

– runPageLayout: (page 165)
Displays the receiver’s page layout panel, an instance of NSPageLayout.

Displaying Help

– showHelp: (page 172)
If your project is properly registered, and the necessary keys have been set in the property list, this
method launches Help Viewer and displays the first page of your application’s help book.

– activateContextHelpMode: (page 136)
Places the receiver in context-sensitive help mode.

– helpMenu (page 147)
Returns the help menu used by the application.

– setHelpMenu: (page 169)
Sets the application’s help menu.

Managing Threads

+ detachDrawingThread:toTarget:withObject: (page 134)
Creates and executes a new thread based on the specified target and selector.

Posting Actions

– tryToPerform:with: (page 177)
Dispatches an action message to the specified target.

– sendAction:to:from: (page 166)
Sends the given action message to the given target.

– targetForAction: (page 174)
Returns the object that receives the action message specified by the given selector

– targetForAction:to:from: (page 175)
Finds an object that can receive the message specified by the given selector.

Drawing Windows

– context (page 142)
Returns the receiver’s display context.

Logging Exceptions

– reportException: (page 161)
Logs a given exception by calling NSLog().

132 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Scripting

– application:delegateHandlesKey: (page 182) delegate method
Sent by Cocoa’s built-in scripting support during execution of get or set script commands to find
out if the delegate can handle operations on the specified key-value key.

– orderedDocuments (page 154)
Returns an array of document objects arranged according to the front-to-back ordering of their
associated windows.

– orderedWindows (page 155)
Returns an array of window objects arranged according to their front-to-back ordering on the screen.

Managing User Attention Requests

– requestUserAttention: (page 161)
Starts a user attention request.

– cancelUserAttentionRequest: (page 141)
Cancels a previous user attention request.

– replyToOpenOrPrint: (page 161)
Handles errors that might occur when the user attempts to open or print files.

Keyboard Accessibility

– isFullKeyboardAccessEnabled (page 149)
Returns that status of Full Keyboard Access set in the Keyboard preference pane.

Presentation Options

– currentSystemPresentationOptions (page 143)
Returns the set of application presentation options that are currently in effect for the system.

– presentationOptions (page 158)
Returns the presentation options that should be in effect for the system when this application is
active.

– setPresentationOptions: (page 170)
Sets the application presentation options to use when this application is active.

Activation Policy

– activationPolicy (page 137)
Returns the application’s activation policy.

– setActivationPolicy: (page 168)
Attempts to modify the application's activation policy.

Tasks 133
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Deprecated

– application:printFiles: (page 183) delegate method
(Deprecated. Use application:printFiles:withSettings:showPrintPanels: (page 3569)
instead.)

– beginModalSessionForWindow:relativeToWindow: (page 140) Deprecated in Mac OS X v10.0
(Deprecated. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 140)
instead.)

– runModalForWindow:relativeToWindow: (page 163) Deprecated in Mac OS X v10.0
(Deprecated. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 140)
instead.)

Spotlight for Help

– registerUserInterfaceItemSearchHandler: (page 159)
Register an an object that provides help data to your application.

– searchString:inUserInterfaceItemString:searchRange:foundRange: (page 165)
Searches for the string in the user interface.

– unregisterUserInterfaceItemSearchHandler: (page 178)
Unregister an an object that provides help data to your application.

Class Methods

detachDrawingThread:toTarget:withObject:
Creates and executes a new thread based on the specified target and selector.

+ (void)detachDrawingThread:(SEL)selector toTarget:(id)target withObject:(id)argument

Parameters
selector

The selector whose code you want to execute in the new thread.

target
The object that defines the specified selector.

argument
An optional argument you want to pass to the selector.

Discussion
This method is a convenience wrapper for the detachNewThreadSelector:toTarget:withObject:
method of NSThread. This method automatically creates an NSAutoreleasePool object for the new thread
before invoking selector.

Availability
Available in Mac OS X v10.0 and later.

134 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Declared In
NSApplication.h

sharedApplication
Returns the application instance, creating it if it doesn’t exist yet.

+ (NSApplication *)sharedApplication

Return Value
The shared application object.

Discussion
This method also makes a connection to the window server and completes other initialization. Your program
should invoke this method as one of the first statements in main(); this invoking is done for you if you create
your application with Xcode. To retrieve the NSApplication instance after it has been created, use the
global variable NSApp or invoke this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 162)
– terminate: (page 176)

Related Sample Code
CoreRecipes
ImageClient
NumberInput_IMKit_Sample
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSApplication.h

Instance Methods

abortModal
Aborts the event loop started by runModalForWindow: (page 163) or runModalSession: (page 164).

- (void)abortModal

Discussion
When stopped with this method, runModalForWindow: and runModalSession: return
NSRunAbortedResponse.

abortModalmust be used instead of stopModal (page 174) or stopModalWithCode: (page 174) when you
need to stop a modal event loop from anywhere other than a callout from that event loop. In other words,
if you want to stop the loop in response to a user’s actions within the modal window, use stopModal;

Instance Methods 135
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

otherwise, use abortModal. For example, use abortModal when running in a different thread from the
Application Kit’s main thread or when responding to an NSTimer that you have added to the
NSModalPanelRunLoopMode mode of the default NSRunLoop.

Availability
Available in Mac OS X v10.0 and later.

See Also
– endModalSession: (page 146)

Declared In
NSApplication.h

activateContextHelpMode:
Places the receiver in context-sensitive help mode.

- (void)activateContextHelpMode:(id)sender

Parameters
sender

The object that sent the command.

Discussion
In this mode, the cursor becomes a question mark, and help appears for any user interface item the user
clicks.

Most applications don’t use this method. Instead, applications enter context-sensitive mode when the user
presses the Help key. Applications exit context-sensitive help mode upon the first event after a help window
is displayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– showHelp: (page 172)

Declared In
NSHelpManager.h

activateIgnoringOtherApps:
Makes the receiver the active application.

- (void)activateIgnoringOtherApps:(BOOL)flag

Parameters
flag

If NO, the application is activated only if no other application is currently active. If YES, the application
activates regardless.

136 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion
The flag parameter is normally set to NO. When the Finder launches an application, using a value of NO for
flag allows the application to become active if the user waits for it to launch, but the application remains
unobtrusive if the user activates another application. Regardless of the setting of flag, there may be a time
lag before the application activates—you should not assume the application will be active immediately after
sending this message.

You rarely need to invoke this method. Under most circumstances, the Application Kit takes care of proper
activation. However, you might find this method useful if you implement your own methods for
inter-application communication.

You don’t need to send this message to make one of the application’s NSWindows key. When you send a
makeKeyWindow (page 3345) message to an NSWindow object, you ensure that it is the key window when the
application is active.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deactivate (page 143)
– isActive (page 149)

Declared In
NSApplication.h

activationPolicy
Returns the application’s activation policy.

- (NSApplicationActivationPolicy)activationPolicy

Return Value
The application’s current activation policy.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setActivationPolicy: (page 168)

Declared In
NSApplication.h

addWindowsItem:title:filename:
Adds an item to the Window menu for a given window.

- (void)addWindowsItem:(NSWindow *)aWindow title:(NSString *)aString
filename:(BOOL)isFilename

Instance Methods 137
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Parameters
aWindow

The window being added to the menu. If this window object already exists in the Window menu, this
method has no effect.

aString
The string to display for the window’s menu item. How the string is interpreted is dependent on the
value in the isFilename parameter.

isFilename
If NO, aString appears literally in the menu; otherwise, aString is assumed to be a converted
pathname with the name of the file preceding the path (the way the NSWindow method
setTitleWithRepresentedFilename: (page 3399) shows a title)

Discussion
You rarely need to invoke this method directly because Cocoa places an item in the Window menu
automatically whenever you set the title of an NSWindow object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– changeWindowsItem:title:filename: (page 141)
– setTitle: (page 3398) (NSWindow)

Related Sample Code
QTAudioExtractionPanel

Declared In
NSApplication.h

applicationIconImage
Returns the image used for the receiver’s icon.

- (NSImage *)applicationIconImage

Return Value
An image containing the application’s icon.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setApplicationIconImage: (page 168)

Declared In
NSApplication.h

arrangeInFront:
Arranges windows listed in the Window menu in front of all other windows.

- (void)arrangeInFront:(id)sender

138 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Parameters
sender

The object that sent the command.

Discussion
Windows associated with the application but not listed in the Window menu are not ordered to the front.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addWindowsItem:title:filename: (page 137)
– removeWindowsItem: (page 160)
– makeKeyAndOrderFront: (page 3345) (NSWindow)

Declared In
NSApplication.h

beginModalSessionForWindow:
Sets up a modal session with the given window and returns an NSModalSession structure representing the
session.

- (NSModalSession)beginModalSessionForWindow:(NSWindow *)aWindow

Parameters
aWindow

The window for the session.

Return Value
The NSModalSession structure that represents the session.

Discussion
In a modal session, the application receives mouse events only if they occur in aWindow. The window is made
key, and if not already visible is placed onscreen using the NSWindow method center (page 3307).

The beginModalSessionForWindow: method only sets up the modal session. To actually run the session,
use runModalSession: (page 164). beginModalSessionForWindow: should be balanced by
endModalSession: (page 146). Make sure these two messages are sent within the same exception-handling
scope. That is, if you send beginModalSessionForWindow: inside an NS_DURING construct, you must send
endModalSession: before NS_ENDHANDLER.

If an exception is raised, beginModalSessionForWindow: arranges for proper cleanup. Do not use
NS_DURING constructs to send an endModalSession: message in the event of an exception.

A loop using these methods is similar to a modal event loop run with runModalForWindow: (page 163),
except the application can continue processing between method invocations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

Instance Methods 139
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

beginModalSessionForWindow:relativeToWindow:
(Deprecated in Mac OS X v10.0. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 140) instead.)

- (NSModalSession)beginModalSessionForWindow:(NSWindow *)theWindow
relativeToWindow:(NSWindow *)docWindow

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.

Declared In
NSApplication.h

beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo:
Starts a document modal session.

- (void)beginSheet:(NSWindow *)sheet modalForWindow:(NSWindow *)docWindow
modalDelegate:(id)modalDelegate didEndSelector:(SEL)didEndSelector
contextInfo:(void *)contextInfo

Parameters
sheet

The window object representing the sheet you want to display.

docWindow
The window object to which you want to attach the sheet.

modalDelegate
The delegate object that defines your didEndSelector method. If nil, the method in
didEndSelector is not called.

didEndSelector
An optional method to call when the sheet’s modal session has ended. This method must be defined
on the object in the modalDelegate parameter and have the following signature:

- (void)sheetDidEnd:(NSWindow *)sheet returnCode:(NSInteger)returnCode
contextInfo:(void *)contextInfo;

contextInfo
A pointer to the context info you want passed to the didEndSelector method when the sheet’s
modal session ends.

Discussion
This method runs the modal event loop for the specified sheet synchronously. It displays the sheet, makes
it key, starts the run loop, and processes events for it. While the application is in the run loop, it does not
respond to any other events (including mouse, keyboard, or window-close events) unless they are associated
with the sheet. It also does not perform any tasks (such as firing timers) that are not associated with the
modal run loop. In other words, this method consumes only enough CPU time to process events and dispatch
them to the action methods associated with the modal window.

Availability
Available in Mac OS X v10.0 and later.

140 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

See Also
– endSheet: (page 146)
– endSheet:returnCode: (page 146)

Related Sample Code
IdentitySample
ImageClient
WhackedTV

Declared In
NSApplication.h

cancelUserAttentionRequest:
Cancels a previous user attention request.

- (void)cancelUserAttentionRequest:(NSInteger)request

Parameters
request

The request identifier returned by the requestUserAttention: method.

Discussion
A request is also canceled automatically by user activation of the application.

Availability
Available in Mac OS X v10.1 and later.

See Also
– requestUserAttention: (page 161)

Declared In
NSApplication.h

changeWindowsItem:title:filename:
Changes the item for a given window in the Window menu to a given string.

- (void)changeWindowsItem:(NSWindow *)aWindow title:(NSString *)aString
filename:(BOOL)isFilename

Parameters
aWindow

The window whose title you want to change in the Window menu. If aWindow is not in the Window
menu, this method adds it.

aString
The string to display for the window’s menu item. How the string is interpreted is dependent on the
value in the isFilename parameter.

Instance Methods 141
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

isFilename
If NO, aString appears literally in the menu; otherwise, aString is assumed to be a converted
pathname with the name of the file preceding the path (the way the NSWindow method
setTitleWithRepresentedFilename: (page 3399) shows a title)

Availability
Available in Mac OS X v10.0 and later.

See Also
– addWindowsItem:title:filename: (page 137)
– removeWindowsItem: (page 160)
– setTitle: (page 3398) (NSWindow)

Declared In
NSApplication.h

context
Returns the receiver’s display context.

- (NSGraphicsContext *)context

Return Value
The current display context for the application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

currentEvent
Returns the current event, the last event the receiver retrieved from the event queue.

- (NSEvent *)currentEvent

Return Value
The last event object retrieved by the application.

Discussion
NSApp receives events and forwards them to the affected NSWindow objects, which then distribute them to
the objects in its view hierarchy.

Availability
Available in Mac OS X v10.0 and later.

See Also
– discardEventsMatchingMask:beforeEvent: (page 144)
– postEvent:atStart: (page 157)
– sendEvent: (page 167)

142 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Related Sample Code
ClockControl

Declared In
NSApplication.h

currentSystemPresentationOptions
Returns the set of application presentation options that are currently in effect for the system.

- (NSApplicationPresentationOptions)currentSystemPresentationOptions

Return Value
The presentation options. The constants are listed in “NSApplicationPresentationOptions” (page 187) and can
combined using a C bitwise OR operator.

Discussion
These are the presentation options that have been put into effect by the currently active application.

This method is key-value observable.

A client that observes currentSystemPresentationOptions will receive notifications when

 ■ The client is the active application, and makes a change itself using either
setPresentationOptions: (page 170) or SetSystemUIMode.

 ■ Another application is active, and makes presentation changes of its own.

 ■ Another application becomes active and causes the active set of presentation options to change.

Key-value observing notifications are not sent when one of the above conditions occur, but has the same
set of presentation options as the previously active application.

Availability
Available in Mac OS X v10.6 and later.

See Also
– presentationOptions (page 158)
– setPresentationOptions (page 170)

Declared In
NSApplication.h

deactivate
Deactivates the receiver.

- (void)deactivate

Discussion
Normally, you shouldn’t invoke this method—the Application Kit is responsible for proper deactivation.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 143
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

See Also
– activateIgnoringOtherApps: (page 136)

Declared In
NSApplication.h

delegate
Returns the receiver’s delegate.

- (id < NSApplicationDelegate >)delegate

Return Value
The application delegate object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 169)

Declared In
NSApplication.h

discardEventsMatchingMask:beforeEvent:
Removes all events matching the given mask and generated before the specified event.

- (void)discardEventsMatchingMask:(NSUInteger)mask beforeEvent:(NSEvent *)lastEvent

Parameters
mask

Contains one or more flags indicating the types of events to discard. The constants section of the
NSEvent class defines the constants you can add together to create this mask. The discussion section
also lists some of the constants that are typically used.

lastEvent
A marker event that you use to indicate which events should be discarded. Events that occurred
before this event are discarded but those that occurred after it are not.

Discussion
Use this method to ignore any events that occurred before a specific event. For example, suppose your
application has a tracking loop that you exit when the user releases the mouse button. You could use this
method, specifying NSAnyEventMask as the mask argument and the ending mouse-up event as the
lastEvent argument, to discard all events that occurred while you were tracking mouse movements in
your loop. Passing the mouse-up event as lastEvent ensures that any events that might have occurred
after the mouse-up event (that is, that appear in the queue after the mouse-up event) are not discarded.

144 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Note: Typically, you send this message to an NSWindow object, rather than to the application object.
Discarding events for a window clears out all of the events for that window only, leaving events for other
windows in place.

For the mask parameter, you can add together event type constants such as the following:

NSLeftMouseDownMask

NSLeftMouseUpMask

NSRightMouseDownMask

NSRightMouseUpMask

NSMouseMovedMask

NSLeftMouseDraggedMask

NSRightMouseDraggedMask

NSMouseEnteredMask

NSMouseExitedMask

NSKeyDownMask

NSKeyUpMask

NSFlagsChangedMask

NSPeriodicMask

NSCursorUpdateMask

NSAnyEventMask

This method can also be called in subthreads. Events posted in subthreads bubble up in the main thread
event queue.

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextEventMatchingMask:untilDate:inMode:dequeue: (page 153)

Declared In
NSApplication.h

dockTile
Returns the application’s Dock tile.

- (NSDockTile *)dockTile

Return Value
The application’s Dock tile.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSApplication.h

Instance Methods 145
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

endModalSession:
Finishes a modal session.

- (void)endModalSession:(NSModalSession)session

Parameters
session

A modal session structure returned by a previous invocation of beginModalSessionForWindow:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– beginModalSessionForWindow: (page 139)
– runModalSession: (page 164)

Declared In
NSApplication.h

endSheet:
Ends a document modal session by specifying the sheet window.

- (void)endSheet:(NSWindow *)sheet

Parameters
sheet

The sheet whose modal session you want to end.

Discussion
This method ends the modal session with the return code NSRunStoppedResponse.

Availability
Available in Mac OS X v10.0 and later.

See Also
– beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 140)
– endSheet:returnCode: (page 146)

Related Sample Code
WhackedTV

Declared In
NSApplication.h

endSheet:returnCode:
Ends a document modal session by specifying the sheet window.

- (void)endSheet:(NSWindow *)sheet returnCode:(NSInteger)returnCode

146 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Parameters
sheet

The sheet whose modal session you want to end.

returnCode
The return code to send to the delegate. You can use one of the return codes defined in “Return
values for modal operations” (page 184) or a custom value that you define.

Availability
Available in Mac OS X v10.0 and later.

See Also
– beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 140)
– endSheet: (page 146)

Related Sample Code
IdentitySample
ImageClient

Declared In
NSApplication.h

finishLaunching
Activates the receiver, opens any files specified by the NSOpen user default, and unhighlights the application’s
icon.

- (void)finishLaunching

Discussion
The run (page 162) method invokes this method before it starts the event loop. When this method begins,
it posts an NSApplicationWillFinishLaunchingNotification (page 195) to the default notification
center. If you override finishLaunching (page 147), the subclass method should invoke the superclass
method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationWillFinishLaunching: (page 3578) (NSApplicationDelegate)
– applicationDidFinishLaunching: (page 3571) (NSApplicationDelegate)

Related Sample Code
GLUT

Declared In
NSApplication.h

helpMenu
Returns the help menu used by the application.

- (NSMenu *)helpMenu

Instance Methods 147
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Return Value
Returns the application’s help menu.

Discussion
If helpMenu is nil, the system will append the help to an appropriate menu and will not return a reference
to that menu when this method is called.,

Availability
Available in Mac OS X v10.6 and later.

See Also
– setHelpMenu: (page 169)

Declared In
NSApplication.h

hide:
Hides all the receiver’s windows, and the next application in line is activated.

- (void)hide:(id)sender

Parameters
sender

The object that sent the command.

Discussion
This method is usually invoked when the user chooses Hide in the application’s main menu. When this method
begins, it posts an NSApplicationWillHideNotification (page 195) to the default notification center.
When it completes successfully, it posts an NSApplicationDidHideNotification (page 194).

Availability
Available in Mac OS X v10.0 and later.

See Also
– miniaturizeAll: (page 152)
– unhide: (page 177)
– unhideWithoutActivation (page 178)
– applicationDidHide: (page 3572) (NSApplicationDelegate)
– applicationWillHide: (page 3578) (NSApplicationDelegate)

Declared In
NSApplication.h

hideOtherApplications:
Hides all applications, except the receiver.

- (void)hideOtherApplications:(id)sender

148 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Parameters
sender

The object that sent this message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

isActive
Returns a Boolean value indicating whether this is the active application.

- (BOOL)isActive

Return Value
YES if this is the active application; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– activateIgnoringOtherApps: (page 136)
– deactivate (page 143)

Declared In
NSApplication.h

isFullKeyboardAccessEnabled
Returns that status of Full Keyboard Access set in the Keyboard preference pane.

- (BOOL)isFullKeyboardAccessEnabled

Return Value
YES if Full Keyboard Access is enabled, otherwise NO.

Discussion
You may use this status to implement your own key loop or to implement in-control tabbing behavior similar
to NSTableView. Because of the nature of the preference storage, you will not be notified of changes to the
key if you attempt to observe it via key-value observing; however, calling this method is fairly inexpensive,
so you should always call it when you need the underlying value instead of caching it.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSApplication.h

Instance Methods 149
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

isHidden
Returns a Boolean value indicating whether the receiver is hidden.

- (BOOL)isHidden

Return Value
YES if the receiver is hidden, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hide: (page 148)
– unhide: (page 177)
– unhideWithoutActivation (page 178)

Declared In
NSApplication.h

isRunning
Returns a Boolean value indicating whether the main event loop is running.

- (BOOL)isRunning

Return Value
YES if the main event loop is running; NO otherwise.

Discussion
NO means the stop: (page 173) method was invoked.

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 162)
– terminate: (page 176)

Related Sample Code
GLUT

Declared In
NSApplication.h

keyWindow
Returns the window that currently receives keyboard events.

- (NSWindow *)keyWindow

Return Value
The window object currently receiving keyboard events or nil if there is no key window.

150 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion
This method might return nil if the application’s nib file hasn’t finished loading yet or if the receiver is not
active.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mainWindow (page 151)
– isKeyWindow (page 3338) (NSWindow)

Declared In
NSApplication.h

mainMenu
Returns the receiver’s main menu.

- (NSMenu *)mainMenu

Return Value
The menu object representing the application’s menu bar.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMainMenu: (page 170)

Declared In
NSApplication.h

mainWindow
Returns the main window.

- (NSWindow *)mainWindow

Return Value
The application’s main window or nil if there is no main window.

Discussion
This method might return nil if the application’s nib file hasn’t finished loading, if the receiver is not active,
or if the application is hidden.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyWindow (page 150)
– isMainWindow (page 3338) (NSWindow)

Instance Methods 151
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Related Sample Code
PDFKitLinker2

Declared In
NSApplication.h

makeWindowsPerform:inOrder:
Sends the specified message to each of the application’s window objects until one returns a non-nil value.

- (NSWindow *)makeWindowsPerform:(SEL)aSelector inOrder:(BOOL)flag

Parameters
aSelector

The selector to perform on each window. This method must not take any arguments and must return
a value whose type that can be compared to nil.

flag
If YES, the aSelector message is sent to each of the window server’s onscreen windows, going in
z-order, until one returns a non-nil value. A minimized window is not considered to be onscreen for
this check. If NO, the message is sent to all windows in NSApp’s window list, regardless of whether or
not they are onscreen. This order is unspecified.

Return Value
The window that returned a non-nil value or nil if all windows returned nil from aSelector.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendAction:to:from: (page 166)
– tryToPerform:with: (page 177)
– windows (page 181)

Declared In
NSApplication.h

miniaturizeAll:
Miniaturizes all the receiver’s windows.

- (void)miniaturizeAll:(id)sender

Parameters
sender

The object that sent the command.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hide: (page 148)

152 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Declared In
NSApplication.h

modalWindow
Returns the modal window that the receiver is displaying.

- (NSWindow *)modalWindow

Return Value
The modal window being displayed or nil if no modal window is being displayed.

Discussion
This method returns the current standalone modal window. It does not return sheets that are attached to
other windows. If you need to retrieve a sheet window, use the attachedSheet (page 3300) method of
NSWindow.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

nextEventMatchingMask:untilDate:inMode:dequeue:
Returns the next event matching a given mask, or nil if no such event is found before a specified expiration
date.

- (NSEvent *)nextEventMatchingMask:(NSUInteger)mask untilDate:(NSDate *)expiration
inMode:(NSString *)mode dequeue:(BOOL)flag

Parameters
mask

Contains one or more flags indicating the types of events to return. The constants section of the
NSEvent class defines the constants you can add together to create this mask. The
discardEventsMatchingMask:beforeEvent: (page 144) method also lists several of these
constants.

expiration
The expiration date for the current event request. Specifying nil for this parameter is equivalent to
returning a date object using the distantPast method.

mode
The run loop mode in which to run while looking for events. The mode you specify also determines
which timers and run-loop observers may fire while the application waits for the event.

flag
Specify YES if you want the event removed from the queue.

Return Value
The event object whose type matches one of the event types specified by the mask parameter.

Instance Methods 153
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion
You can use this method to short circuit normal event dispatching and get your own events. For example,
you may want to do this in response to a mouse-down event in order to track the mouse while its button is
down. (In such an example, you would pass the appropriate event types for mouse-dragged and mouse-up
events to the mask parameter and specify the NSEventTrackingRunLoopMode run loop mode.) Events
that do not match one of the specified event types are left in the queue.

You can specify one of the run loop modes defined by the Application Kit or a custom run loop mode used
specifically by your application. Application Kit defines the following run-loop modes:

NSDefaultRunLoopMode

NSEventTrackingRunLoopMode

NSModalPanelRunLoopMode

NSConnectionReplyMode

Availability
Available in Mac OS X v10.0 and later.

See Also
– postEvent:atStart: (page 157)
– run (page 162)
– runModalForWindow: (page 163)

Declared In
NSApplication.h

orderedDocuments
Returns an array of document objects arranged according to the front-to-back ordering of their associated
windows.

- (NSArray *)orderedDocuments

Return Value
An array of NSDocument objects, where the position of a document is based on the front-to-back ordering
of its associated window.

Discussion
This method is called during script command evaluation—for example, while finding the document in the
script statement the third rectangle in the first document. For information on how your
application can return its own array of ordered documents, see application:delegateHandlesKey:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderedWindows (page 155)

Declared In
NSApplicationScripting.h

154 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

orderedWindows
Returns an array of window objects arranged according to their front-to-back ordering on the screen.

- (NSArray *)orderedWindows

Return Value
An array of NSWindow objects, where the position of each window in the array corresponds to the front-to-back
ordering of the windows on the screen.

Discussion
Only windows that are typically scriptable are included in the returned array. For example, panels are not
included.

This method is called during script command evaluation—for example, while finding the window in the
script statement close the second window. For information on how your application can return its own
array of ordered windows, see application:delegateHandlesKey:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderedDocuments (page 154)

Declared In
NSApplicationScripting.h

orderFrontCharacterPalette:
Opens the character palette.

- (void)orderFrontCharacterPalette:(id)sender

Parameters
sender

The object that sent the command.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSApplication.h

orderFrontColorPanel:
Brings up the color panel, an instance of NSColorPanel.

- (void)orderFrontColorPanel:(id)sender

Parameters
sender

The object that sent the command.

Instance Methods 155
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion
If the NSColorPanel object does not exist yet, this method creates one. This method is typically invoked
when the user chooses Colors from a menu.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPanel.h

orderFrontStandardAboutPanel:
Displays a standard About window.

- (void)orderFrontStandardAboutPanel:(id)sender

Parameters
sender

The object that sent the command.

Discussion
This method calls orderFrontStandardAboutPanelWithOptions: (page 156) with a nil argument. See
orderFrontStandardAboutPanelWithOptions: for a description of what’s displayed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MenuItemView

Declared In
NSApplication.h

orderFrontStandardAboutPanelWithOptions:
Displays a standard About window with information from a given options dictionary.

- (void)orderFrontStandardAboutPanelWithOptions:(NSDictionary *)optionsDictionary

Parameters
optionsDictionary

A dictionary whose keys define the contents of the About window. See the discussion for a description
of the available keys.

Discussion
The following strings are keys that can occur in optionsDictionary:

 ■ @"Credits": An NSAttributedString displayed in the info area of the panel. If not specified, this method
then looks for a file named “Credits.html”, “Credits.rtf”, and “Credits.rtfd”, in that order, in
the bundle returned by the NSBundle class method mainBundle. The first file found is used. If none is
found, the info area is left blank.

156 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

 ■ @"ApplicationName": An NSString object displayed as the application’s name. If not specified, this
method then uses the value of CFBundleName (localizable). If neither is found, this method uses
[[NSProcessInfo processInfo] processName].

 ■ @"ApplicationIcon": An NSImage object displayed as the application’s icon. If not specified, this
method then looks for an image named “NSApplicationIcon”, using [NSImage
imageNamed:@"NSApplicationIcon"]. If neither is available, this method uses the generic application
icon.

 ■ @"Version": An NSString object with the build version number of the application (“58.4”), displayed
as “(v58.4)”. If not specified, obtain from the CFBundleVersion key in infoDictionary; if not specified,
leave blank (the “(v)” is not displayed).

 ■ @"Copyright": An NSString object with a line of copyright information. If not specified, this method
then looks for the value of NSHumanReadableCopyright in the localized version infoDictionary.
If neither is available, this method leaves the space blank.

 ■ @"ApplicationVersion": An NSString object with the application version (“Mac OS X”, “3”,
“WebObjects 4.5”, “AppleWorks 6”,...). If not specified, obtain from the CFBundleShortVersionString
key in infoDictionary. If neither is available, the build version, if available, is printed alone, as “Version
x.x”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFrontStandardAboutPanel: (page 156)

Declared In
NSApplication.h

postEvent:atStart:
Adds a given event to the receiver’s event queue.

- (void)postEvent:(NSEvent *)anEvent atStart:(BOOL)flag

Parameters
anEvent

The event object to post to the queue.

flag
Specify YES to add the event to the front of the queue; otherwise, specify NO to add the event to the
back of the queue.

Discussion
This method can also be called in subthreads. Events posted in subthreads bubble up in the main thread
event queue.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentEvent (page 142)
– sendEvent: (page 167)

Instance Methods 157
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Declared In
NSApplication.h

presentationOptions
Returns the presentation options that should be in effect for the system when this application is active.

- (NSApplicationPresentationOptions)presentationOptions

Return Value
The application’s presentation options. The constants are listed in “NSApplicationPresentationOptions” (page
187) and they combined using a C bitwise OR operator.

Discussion
This method is key-value observable.

Availability
Available in Mac OS X v10.6 and later.

See Also
– currentSystemPresentationOptions (page 143)
– setPresentationOptions (page 170)

Declared In
NSApplication.h

preventWindowOrdering
Suppresses the usual window ordering in handling the most recent mouse-down event.

- (void)preventWindowOrdering

Discussion
This method is only useful for mouse-down events when you want to prevent the window that receives the
event from being ordered to the front.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

registerServicesMenuSendTypes:returnTypes:
Registers the pasteboard types the receiver can send and receive in response to service requests.

- (void)registerServicesMenuSendTypes:(NSArray *)sendTypes returnTypes:(NSArray
*)returnTypes

158 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Parameters
sendTypes

An array of NSString objects, each of which corresponds to a particular pasteboard type that the
application can send.

returnTypes
An array of NSString objects, each of which corresponds to a particular pasteboard type that the
application can receive.

Discussion
If the receiver has a Services menu, a menu item is added for each service provider that can accept one of
the specified sendTypes or return one of the specified returnTypes. You should typically invoke this
method at application startup time or when an object that can use services is created. You can invoke it more
than once—its purpose is to ensure there is a menu item for every service the application can use. The
event-handling mechanism will dynamically enable the individual items to indicate which services are currently
appropriate. All the NSResponder objects in your application (typically NSView objects) should register every
possible type they can send and receive by sending this message to NSApp.

Availability
Available in Mac OS X v10.0 and later.

See Also
– validRequestorForSendType:returnType: (page 180)
– readSelectionFromPasteboard: (page 3797) (NSServicesRequests protocol)
– writeSelectionToPasteboard:types: (page 3798) (NSServicesRequests protocol)

Declared In
NSApplication.h

registerUserInterfaceItemSearchHandler:
Register an an object that provides help data to your application.

- (void)registerUserInterfaceItemSearchHandler:(id < NSUserInterfaceItemSearching
 >)handler

Parameters
handler

The class instance that conforms to NSUserInterfaceItemSearching and provides help content.

Discussion
You can register as many search handlers as you like. If you register the same instance more than once the
subsequent registrations are ignored.

Availability
Available in Mac OS X v10.6 and later.

See Also
– unregisterUserInterfaceItemSearchHandler: (page 178)
– searchString:inUserInterfaceItemString:searchRange:foundRange: (page 165)

Declared In
NSUserInterfaceItemSearching.h

Instance Methods 159
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

removeWindowsItem:
Removes the Window menu item for a given window.

- (void)removeWindowsItem:(NSWindow *)aWindow

Parameters
aWindow

The window whose menu item is to be removed.

Discussion
This method doesn’t prevent the item from being automatically added again. Use the
setExcludedFromWindowsMenu: (page 3380) method of NSWindow if you want the item to remain excluded
from the Window menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addWindowsItem:title:filename: (page 137)
– changeWindowsItem:title:filename: (page 141)

Declared In
NSApplication.h

replyToApplicationShouldTerminate:
Responds to NSTerminateLater once the application knows whether it can terminate.

- (void)replyToApplicationShouldTerminate:(BOOL)shouldTerminate

Parameters
shouldTerminate

Specify YES if you want the application to terminate; otherwise, specify NO.

Discussion
If your application delegate returns NSTerminateLater from its applicationShouldTerminate: (page
3576) method, your code must subsequently call this method to let the NSApplication object know whether
it can actually terminate itself.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ExtractMovieAudioToAIFF
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
NSApplication.h

160 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

replyToOpenOrPrint:
Handles errors that might occur when the user attempts to open or print files.

- (void)replyToOpenOrPrint:(NSApplicationDelegateReply)reply

Parameters
reply

The error that occurred. For a list of possible values, see “Constants” (page 184).

Discussion
Delegates should invoke this method if an error is encountered in the application:openFiles: (page
3566) or application:printFiles:withSettings:showPrintPanels: (page 3569) delegate methods.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSApplication.h

reportException:
Logs a given exception by calling NSLog().

- (void)reportException:(NSException *)anException

Parameters
anException

The exception whose contents you want to write to the log file.

Discussion
This method does not raise anException. Use it inside of an exception handler to record that the exception
occurred.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSetUncaughtExceptionHandler (Foundation Functions)

Declared In
NSApplication.h

requestUserAttention:
Starts a user attention request.

- (NSInteger)requestUserAttention:(NSRequestUserAttentionType)requestType

Parameters
requestType

The severity of the request. For a list of possible values, see “Constants” (page 184).

Instance Methods 161
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Return Value
The identifier for the request. You can use this value to cancel the request later using the
cancelUserAttentionRequest: method.

Discussion
Activating the application cancels the user attention request. A spoken notification will occur if spoken
notifications are enabled. Sending requestUserAttention: to an application that is already active has no
effect.

If the inactive application presents a modal panel, this method will be invoked with NSCriticalRequest
automatically. The modal panel is not brought to the front for an inactive application.

Availability
Available in Mac OS X v10.1 and later.

See Also
– cancelUserAttentionRequest: (page 141)

Declared In
NSApplication.h

run
Starts the main event loop.

- (void)run

Discussion
The loop continues until a stop: (page 173) or terminate: (page 176) message is received. Upon each
iteration through the loop, the next available event from the window server is stored and then dispatched
by sending it to NSApp using sendEvent: (page 167).

After creating the NSApplication object, the main function should load your application’s main nib file
and then start the event loop by sending the NSApplication object a run message. If you create an Cocoa
application project in Xcode, this main function is implemented for you.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runModalForWindow: (page 163)
– runModalSession: (page 164)
– applicationDidFinishLaunching: (page 3571) (NSApplicationDelegate)

Related Sample Code
GLUT
NumberInput_IMKit_Sample

Declared In
NSApplication.h

162 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

runModalForWindow:
Starts a modal event loop for a given window.

- (NSInteger)runModalForWindow:(NSWindow *)aWindow

Parameters
aWindow

The window to be displayed modally. If it is not already visible, the window is centered on the screen
using the value in its center (page 3307)method and made visible and key. If it is already visible, it is
simply made key.

Return Value
An integer indicating the reason that this method returned. See the discussion for a description of possible
return values.

Discussion
This method runs a modal event loop for the specified window synchronously. It displays the specified
window, makes it key, starts the run loop, and processes events for that window. (You do not need to show
the window yourself.) While the application is in that loop, it does not respond to any other events (including
mouse, keyboard, or window-close events) unless they are associated with the window. It also does not
perform any tasks (such as firing timers) that are not associated with the modal run loop. In other words, this
method consumes only enough CPU time to process events and dispatch them to the action methods
associated with the modal window.

You can exit the modal loop by calling the stopModal, stopModalWithCode:, or abortModal methods
from your modal window code. If you use the stopModalWithCode: method to stop the modal event loop,
this method returns the argument passed to stopModalWithCode:. If you use stopModal instead, this
method returns the constant NSRunStoppedResponse. If you use abortModal, this method returns the
constant NSRunAbortedResponse.

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 162)
– runModalSession: (page 164)

Related Sample Code
WhackedTV

Declared In
NSApplication.h

runModalForWindow:relativeToWindow:
(Deprecated in Mac OS X v10.0. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 140) instead.)

- (NSInteger)runModalForWindow:(NSWindow *)theWindow relativeToWindow:(NSWindow
*)docWindow

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 163
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Deprecated in Mac OS X v10.0.

Declared In
NSApplication.h

runModalSession:
Runs a given modal session, as defined in a previous invocation of beginModalSessionForWindow:.

- (NSInteger)runModalSession:(NSModalSession)session

Parameters
session

The modal session structure returned by the beginModalSessionForWindow: method for the
window to be displayed.

Return Value
An integer indicating the reason that this method returned. See the discussion for a description of possible
return values.

Discussion
A loop that uses this method is similar in some ways to a modal event loop run with runModalForWindow:,
except with this method your code can do some additional work between method invocations. When you
invoke this method, events for the NSWindow object of this session are dispatched as normal. This method
returns when there are no more events. You must invoke this method frequently enough in your loop that
the window remains responsive to events. However, you should not invoke this method in a tight loop
because it returns immediately if there are no events, and consequently you could end up polling for events
rather than blocking.

Typically, you use this method in situations where you want to do some additional processing on the current
thread while the modal loop runs. For example, while processing a large data set, you might want to use a
modal dialog to display progress and give the user a chance to cancel the operation. If you want to display
a modal dialog and do not need to do any additional work in parallel, use runModalForWindow: instead.
When there are no pending events, that method waits idly instead of consuming CPU time.

The following code shows a sample loop you can use in your code:

NSModalSession session = [NSApp beginModalSessionForWindow:theWindow];
for (;;) {
 if ([NSApp runModalSession:session] != NSRunContinuesResponse)
 break;
 [self doSomeWork];
}
[NSApp endModalSession:session];

If the modal session was not stopped, this method returns NSRunContinuesResponse. At this point, your
application can do some work before the next invocation of runModalSession: (as indicated in the example’s
doSomeWork call). If stopModal (page 174) was invoked as the result of event processing, runModalSession:
returns NSRunStoppedResponse. If stopModalWithCode: (page 174) was invoked, this method returns
the value passed to stopModalWithCode:. If abortModal (page 135) was invoked, this method returns
NSRunAbortedResponse.

The window is placed on the screen and made key as a result of the runModalSession: message. Do not
send a separate makeKeyAndOrderFront: (page 3345) message.

164 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– beginModalSessionForWindow: (page 139)
– endModalSession: (page 146)
– run (page 162)
– runModalForWindow: (page 163)

Declared In
NSApplication.h

runPageLayout:
Displays the receiver’s page layout panel, an instance of NSPageLayout.

- (void)runPageLayout:(id)sender

Parameters
sender

The object that sent the command.

Discussion
If the NSPageLayout instance does not exist, this method creates one. This method is typically invoked when
the user chooses Page Setup from the application’s FIle menu.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPageLayout.h

searchString:inUserInterfaceItemString:searchRange:foundRange:
Searches for the string in the user interface.

- (BOOL)searchString:(NSString *)searchString inUserInterfaceItemString:(NSString
 *)stringToSearch searchRange:(NSRange)searchRange foundRange:(NSRange
*)foundRange

Parameters
searchString

The search string.

stringToSearch
The string to search.

searchRange
The subrange of the stringToSearch to restrict the search to.

foundRange
Returns, by-reference, the range of the searchString within stringToSearch.

Return Value
YES if the searchString is matched, otherwise NO.

Instance Methods 165
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion
The search uses the default matching rules for Spotlight for Help.

Availability
Available in Mac OS X v10.6 and later.

See Also
– registerUserInterfaceItemSearchHandler: (page 159)

Declared In
NSUserInterfaceItemSearching.h

sendAction:to:from:
Sends the given action message to the given target.

- (BOOL)sendAction:(SEL)anAction to:(id)aTarget from:(id)sender

Parameters
anAction

The action message you want to send.

aTarget
The target object that defines the specified action message.

sender
The object to pass for the action message’s parameter.

Return Value
YES if the action was successfully sent; otherwise NO. This method also returns NO if anAction is nil.

Discussion
If aTarget is nil, sharedApplication (page 135) looks for an object that can respond to the message—that
is, an object that implements a method matching anAction. It begins with the first responder of the key
window. If the first responder can’t respond, it tries the first responder’s next responder and continues
following next responder links up the responder chain. If none of the objects in the key window’s responder
chain can handle the message, sharedApplication (page 135) attempts to send the message to the key
window’s delegate.

If the delegate doesn’t respond and the main window is different from the key window,
sharedApplication (page 135) begins again with the first responder in the main window. If objects in the
main window can’t respond, sharedApplication (page 135) attempts to send the message to the main
window’s delegate. If still no object has responded, sharedApplication (page 135) tries to handle the
message itself. If sharedApplication (page 135) can’t respond, it attempts to send the message to its own
delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– targetForAction: (page 174)
– tryToPerform:with: (page 177)
– makeWindowsPerform:inOrder: (page 152)

166 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Declared In
NSApplication.h

sendEvent:
Dispatches an event to other objects.

- (void)sendEvent:(NSEvent *)anEvent

Parameters
anEvent

The event object to dispatch.

Discussion
You rarely invoke sendEvent: directly, although you might want to override this method to perform some
action on every event. sendEvent:messages are sent from the main event loop (the run (page 162) method).
sendEvent: is the method that dispatches events to the appropriate responders—NSApp handles application
events, the NSWindow object indicated in the event record handles window-related events, and mouse and
key events are forwarded to the appropriate NSWindow object for further dispatching.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentEvent (page 142)
– postEvent:atStart: (page 157)

Declared In
NSApplication.h

servicesMenu
Returns the Services menu.

- (NSMenu *)servicesMenu

Return Value
The Services menu or nil if no Services menu has been created

Availability
Available in Mac OS X v10.0 and later.

See Also
– setServicesMenu: (page 171)

Declared In
NSApplication.h

servicesProvider
Returns the object that provides the services the receiver advertises in the Services menu of other applications.

Instance Methods 167
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

- (id)servicesProvider

Return Value
The application’s service provider object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setServicesProvider: (page 171)

Declared In
NSApplication.h

setActivationPolicy:
Attempts to modify the application's activation policy.

- (BOOL)setActivationPolicy:(NSApplicationActivationPolicy)activationPolicy

Parameters
activationPolicy

The desired activation policy.

Return Value
YES if the policy switch was successful, otherwise NO.

Discussion
Currently, NSApplicationActivationPolicyNone and NSApplicationActivationPolicyAccessory
may be changed to NSApplicationActivationPolicyRegular, but other modifications are not
supported.Needs links to running application

Availability
Available in Mac OS X v10.6 and later.

See Also
– activationPolicy (page 137)

Declared In
NSApplication.h

setApplicationIconImage:
Sets the receiver’s icon to the specified image.

- (void)setApplicationIconImage:(NSImage *)anImage

Parameters
anImage

The image to use as the new application icon.

168 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion
This method sets the icon in the dock application tile. This method scales the image as necessary so that it
fits in the dock tile. You can use this method to change your application icon while running. To restore your
application’s original icon, you pass nil to this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applicationIconImage (page 138)

Declared In
NSApplication.h

setDelegate:
Makes the given object the receiver’s delegate.

- (void)setDelegate:(id < NSApplicationDelegate >)anObject

Parameters
anObject

The application delegate object.

Discussion
The messages a delegate can expect to receive are listed at the end of this specification. The delegate doesn’t
need to implement all the methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 144)

Related Sample Code
CocoaDVDPlayer
PictureSharing

Declared In
NSApplication.h

setHelpMenu:
Sets the application’s help menu.

- (void)setHelpMenu:(NSMenu *)helpMenu

Parameters
helpMenu

The menu to use as the application’s help menu.

Instance Methods 169
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion
If helpMenu is a non-nil menu it is set as the Help menu, and Spotlight for Help will be installed in it. If
helpMenu is nil, AppKit will install Spotlight for Help into a menu of its choosing, and that menu is not
returned from helpMenu.

If you wish to completely suppress Spotlight for Help, you can set a menu that does not appear in the menu
bar.

NSApplication retains its Help menu and releases it when a different menu is set.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSApplication.h

setMainMenu:
Makes the given menu the receiver’s main menu.

- (void)setMainMenu:(NSMenu *)aMenu

Parameters
aMenu

The new menu bar for the application.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mainMenu (page 151)

Declared In
NSApplication.h

setPresentationOptions:
Sets the application presentation options to use when this application is active.

- (void)setPresentationOptions:(NSApplicationPresentationOptions)newOptions

Parameters
newOptions

The presentation options. The possible constants, and combination restrictions, are listed in
“NSApplicationPresentationOptions” (page 187) and they combined using a C bitwise OR operator.

Discussion
Only certain combinations of “NSApplicationPresentationOptions” (page 187) flags are supported. When given
an invalid combination of option flags this method raises an exception NSInvalidArgumentException
exception..

Availability
Available in Mac OS X v10.6 and later.

170 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

See Also
– currentSystemPresentationOptions (page 143)
– presentationOptions (page 158)

Declared In
NSApplication.h

setServicesMenu:
Makes a given menu the receiver’s Services menu.

- (void)setServicesMenu:(NSMenu *)aMenu

Parameters
aMenu

The new Services menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– servicesMenu (page 167)

Declared In
NSApplication.h

setServicesProvider:
Registers a given object as the service provider.

- (void)setServicesProvider:(id)aProvider

Parameters
aProvider

The new service provider object.

Discussion
The service provider is an object that performs all services the application provides to other applications.
When another application requests a service from the receiver, it sends the service request to aProvider.
Service requests can arrive immediately after the service provider is set, so invoke this method only when
your application is ready to receive requests.

Availability
Available in Mac OS X v10.0 and later.

See Also
– servicesProvider (page 167)

Declared In
NSApplication.h

Instance Methods 171
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

setWindowsMenu:
Makes the given menu the receiver’s Window menu.

- (void)setWindowsMenu:(NSMenu *)aMenu

Parameters
aMenu

The new Window menu for the application.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowsMenu (page 181)

Declared In
NSApplication.h

setWindowsNeedUpdate:
Sets whether the receiver’s windows need updating when the receiver has finished processing the current
event.

- (void)setWindowsNeedUpdate:(BOOL)flag

Parameters
flag

If YES, the receiver’s windows are updated after an event is processed.

Discussion
This method is especially useful for making sure menus are updated to reflect changes not initiated by user
actions, such as messages received from remote objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
– updateWindows (page 179)

Declared In
NSApplication.h

showHelp:
If your project is properly registered, and the necessary keys have been set in the property list, this method
launches Help Viewer and displays the first page of your application’s help book.

- (void)showHelp:(id)sender

Parameters
sender

The object that sent the command.

172 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion
For information on how to set up your project to take advantage of having Help Viewer display your help
book, see Specifying the Comprehensive Help File.

Availability
Available in Mac OS X v10.0 and later.

See Also
– activateContextHelpMode: (page 136)

Related Sample Code
HelpHook

Declared In
NSHelpManager.h

stop:
Stops the main event loop.

- (void)stop:(id)sender

Parameters
sender

The object that sent this message.

Discussion
This method notifies the application that you want to exit the current run loop as soon as it finishes processing
the current NSEvent object. This method does not forcibly exit the current run loop. Instead it sets a flag
that the application checks only after it finishes dispatching an actual event object. For example, you could
call this method from an action method responding to a button click or from one of the many methods
defined by the NSResponder class. However, calling this method from a timer or run-loop observer routine
would not stop the run loop because they do not result in the p of an NSEvent object.

If you call this method from an event handler running in your main run loop, the application object exits out
of the run method, thereby returning control to the main() function. If you call this method from within a
modal event loop, it will exit the modal loop instead of the main event loop.

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 162)
– runModalForWindow: (page 163)
– runModalSession: (page 164)
– terminate: (page 176)

Declared In
NSApplication.h

Instance Methods 173
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

stopModal
Stops a modal event loop.

- (void)stopModal

Discussion
This method should always be paired with a previous invocation of runModalForWindow: (page 163) or
beginModalSessionForWindow: (page 139). When runModalForWindow: (page 163) is stopped with this
method, it returns NSRunStoppedResponse. This method stops the loop only if it’s executed by code
responding to an event. If you need to stop a runModalForWindow: (page 163) loop outside of one of its
event callbacks (for example, a method repeatedly invoked by an NSTimer object or a method running in a
different thread), use the abortModal (page 135) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runModalSession: (page 164)
– stopModalWithCode: (page 174)

Related Sample Code
WhackedTV

Declared In
NSApplication.h

stopModalWithCode:
Stops a modal event loop, allowing you to return a custom result code.

- (void)stopModalWithCode:(NSInteger)returnCode

Parameters
returnCode

The result code you want returned from the runModalForWindow: or runModalSession:method.
The meaning of this result code is up to you.

Availability
Available in Mac OS X v10.0 and later.

See Also
– abortModal (page 135)
– runModalForWindow: (page 163)

Declared In
NSApplication.h

targetForAction:
Returns the object that receives the action message specified by the given selector

- (id)targetForAction:(SEL)aSelector

174 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Parameters
aSelector

The desired action message.

Return Value
The object that would receive the specified action message or nil if no target object would receive the
message. This method also returns nil if aSelector is nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendAction:to:from: (page 166)
– tryToPerform:with: (page 177)
– targetForAction:to:from: (page 175)

Declared In
NSApplication.h

targetForAction:to:from:
Finds an object that can receive the message specified by the given selector.

- (id)targetForAction:(SEL)anAction to:(id)aTarget from:(id)sender

Parameters
anAction

The desired action message.

aTarget
The first target object to check. Specify nil if you want the application to search the responder chain.

sender
The parameter to send to the action message.

Return Value
The object that can accept the specified action message or nil if no target object can receive the message.
This method also returns nil if anAction is nil.

Discussion
If aTarget is not nil, aTarget is returned. If aTarget is nil, NSApp looks for an object that can respond
to the message—that is, an object that implements a method matching anAction. The search begins with
the first responder of the key window. If the first responder does not handle the message, it tries the first
responder’s next responder and continues following next responder links up the responder chain. If none of
the objects in the key window’s responder chain can handle the message, NSApp asks the key window’s
delegate whether it can handle the message.

If the delegate cannot handle the message and the main window is different from the key window, NSApp
begins searching again with the first responder in the main window. If objects in the main window cannot
handle the message, NSApp tries the main window’s delegate. If it cannot handle the message, NSApp asks
itself. If NSApp doesn’t handle the message, it asks the application delegate. If there is no object capable of
handling the message, nil is returned.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 175
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

See Also
– sendAction:to:from: (page 166)
– tryToPerform:with: (page 177)
– targetForAction: (page 174)

Declared In
NSApplication.h

terminate:
Terminates the receiver.

- (void)terminate:(id)sender

Parameters
sender

Typically, this parameter contains the object that initiated the termination request.

Discussion
This method is typically invoked when the user chooses Quit or Exit from the application’s menu.

When invoked, this method performs several steps to process the termination request. First, it asks the
application’s document controller (if one exists) to save any unsaved changes in its documents. During this
process, the document controller can cancel termination in response to input from the user. If the document
controller does not cancel the operation, this method then calls the delegate’s
applicationShouldTerminate: (page 3576) method. If applicationShouldTerminate: (page 3576)
returns NSTerminateCancel, the termination process is aborted and control is handed back to the main event
loop. If the method returns NSTerminateLater, the application runs its run loop in the
NSModalPanelRunLoopModemode until the replyToApplicationShouldTerminate:method is called
with the value YES or NO. If the applicationShouldTerminate: (page 3576) method returns
NSTerminateNow, this method posts a NSApplicationWillTerminateNotification notification to the
default notification center.

Do not bother to put final cleanup code in your application’s main() function—it will never be executed. If
cleanup is necessary, perform that cleanup in the delegate’s applicationWillTerminate: (page 3579)
method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– run (page 162)
– stop: (page 173)
– applicationShouldTerminate: (page 3576) (NSApplicationDelegate)
– applicationWillTerminate: (page 3579) (NSApplicationDelegate)
– replyToApplicationShouldTerminate: (page 160)
NSApplicationWillTerminateNotification (page 196)

Related Sample Code
PreLoginAgents
SimpleStickies
StickiesWithCoreData

176 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

WhackedTV

Declared In
NSApplication.h

tryToPerform:with:
Dispatches an action message to the specified target.

- (BOOL)tryToPerform:(SEL)aSelector with:(id)anObject

Parameters
aSelector

The action message you want to dispatch.

anObject
The target object that defines the specified selector.

Return Value
YES if either the receiver or its delegate can accept the specified selector; otherwise, NO. This method also
returns NO if aSelector is nil.

Discussion
The receiver tries to perform the method aSelector using its inherited tryToPerform:with: (page 2202)
method of NSResponder. If the receiver doesn’t perform aSelector, the delegate is given the opportunity
to perform it using its inherited performSelector:withObject: method of NSObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
respondsToSelector: (NSObject protocol)

Declared In
NSApplication.h

unhide:
Restores hidden windows to the screen and makes the receiver active.

- (void)unhide:(id)sender

Parameters
sender

The object that sent the command.

Discussion
Invokes unhideWithoutActivation (page 178).

Availability
Available in Mac OS X v10.0 and later.

See Also
– activateIgnoringOtherApps: (page 136)

Instance Methods 177
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

– hide: (page 148)

Declared In
NSApplication.h

unhideAllApplications:
Unhides all applications, including the receiver.

- (void)unhideAllApplications:(id)sender

Parameters
sender

The object that sent this message.

Discussion
This action causes each application to order its windows to the front, which could obscure the currently
active window in the active application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

unhideWithoutActivation
Restores hidden windows without activating their owner (the receiver).

- (void)unhideWithoutActivation

Discussion
When this method begins, it posts an NSApplicationWillUnhideNotification (page 196) to the default
notification center. If it completes successfully, it posts an NSApplicationDidUnhideNotification (page
195).

Availability
Available in Mac OS X v10.0 and later.

See Also
– activateIgnoringOtherApps: (page 136)
– hide: (page 148)
– applicationDidUnhide: (page 3573) (NSApplicationDelegate)
– applicationWillUnhide: (page 3579) (NSApplicationDelegate)

Declared In
NSApplication.h

unregisterUserInterfaceItemSearchHandler:
Unregister an an object that provides help data to your application.

178 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

- (void)unregisterUserInterfaceItemSearchHandler:(id < NSUserInterfaceItemSearching
 >)handler

Parameters
handler

The class instance that conforms to NSUserInterfaceItemSearching and provides help content.

Discussion
If you unregister the same instance more than once the subsequent invocations are ignored. Unregistering
an instance that was never registered is ignored.

Availability
Available in Mac OS X v10.6 and later.

See Also
– registerUserInterfaceItemSearchHandler: (page 159)

Declared In
NSUserInterfaceItemSearching.h

updateWindows
Sends an update (page 3405) message to each onscreen window.

- (void)updateWindows

Discussion
This method is invoked automatically in the main event loop after each event when running in
NSDefaultRunLoopMode or NSModalRunLoopMode. This method is not invoked automatically when running
in NSEventTrackingRunLoopMode.

When this method begins, it posts an NSApplicationWillUpdateNotification (page 196) to the default
notification center. When it successfully completes, it posts an
NSApplicationDidUpdateNotification (page 195).

Availability
Available in Mac OS X v10.0 and later.

See Also
– update (page 3405) (NSWindow)
– setWindowsNeedUpdate: (page 172)
– applicationDidUpdate: (page 3573) (NSApplicationDelegate)
– applicationWillUpdate: (page 3580) (NSApplicationDelegate)

Declared In
NSApplication.h

updateWindowsItem:
Updates the Window menu item for a given window to reflect the edited status of that window.

- (void)updateWindowsItem:(NSWindow *)aWindow

Instance Methods 179
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Parameters
aWindow

The window whose menu item is to be updated.

Discussion
You rarely need to invoke this method because it is invoked automatically when the edit status of an NSWindow
object is set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– changeWindowsItem:title:filename: (page 141)
– setDocumentEdited: (page 3379) (NSWindow)

Declared In
NSApplication.h

userInterfaceLayoutDirection
Returns the layout direction of the user interface.

- (NSUserInterfaceLayoutDirection)userInterfaceLayoutDirection

Return Value
The direction of the user interface layout. See “NSUserInterfaceLayoutDirection” (page 184) for possible values.

Discussion
This method specifies the general user interface layout flow directions.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSApplication.h

validRequestorForSendType:returnType:
Indicates whether the receiver can send and receive the specified pasteboard types.

- (id)validRequestorForSendType:(NSString *)sendType returnType:(NSString
*)returnType

Parameters
sendType

The pasteboard type the application needs to send.

returnType
The pasteboard type the application needs to receive.

Return Value
The object that can send and receive the specified types or nil if the receiver knows of no object that can
send and receive data of that type.

180 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion
This message is sent to all responders in a responder chain. NSApp is typically the last item in the responder
chain, so it usually receives this message only if none of the current responders can send sendType data
and accept back returnType data.

The receiver passes this message on to its delegate if the delegate can respond (and isn’t an NSResponder
object with its own next responder). If the delegate cannot respond or returns nil, this method returns nil.
If the delegate can find an object that can send sendType data and accept back returnType data, it returns
that object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– registerServicesMenuSendTypes:returnTypes: (page 158)
– validRequestorForSendType:returnType: (page 2204) (NSResponder)
– readSelectionFromPasteboard: (page 3797) (NSServicesRequests protocol)
– writeSelectionToPasteboard:types: (page 3798) (NSServicesRequests protocol)

Declared In
NSApplication.h

windows
Returns an array containing the receiver’s window objects.

- (NSArray *)windows

Return Value
An array of NSWindow objects. This array includes both onscreen and offscreen windows.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLUT
Quartz Composer WWDC 2005 TextEdit

Declared In
NSApplication.h

windowsMenu
Returns the Window menu of the application.

- (NSMenu *)windowsMenu

Return Value
The window menu or nil if such a menu does not exist or has not yet been created.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 181
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

See Also
– setWindowsMenu: (page 172)

Declared In
NSApplication.h

windowWithWindowNumber:
Returns the window corresponding to the specified window number.

- (NSWindow *)windowWithWindowNumber:(NSInteger)windowNum

Parameters
windowNum

The unique window number associated with the desired NSWindow object.

Return Value
The desired window object or nil if the window could not be found.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

Delegate Methods

application:delegateHandlesKey:
Sent by Cocoa’s built-in scripting support during execution of get or set script commands to find out if the
delegate can handle operations on the specified key-value key.

- (BOOL)application:(NSApplication *)sender delegateHandlesKey:(NSString *)key

Parameters
sender

The application object associated with the delegate.

key
The key to be handled.

Return Value
YES if your delegate handles the key or NO if it does not.

Discussion
The method should return YES if the delegate for the application sender handles the key specified by key,
which means it can get or set the scriptable property or element that corresponds to that key. The application
implements methods for each of the keys that it handles, where the method name matches the key.

182 Delegate Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

For example, a scriptable application that doesn’t use Cocoa’s document-based application architecture can
implement this method to supply its own document ordering. Such an application might want to do this
because the standard application delegate expects to work with a document-based application. The TextEdit
application (whose source is distributed with Mac OS X developer tools) provides the following implementation:

return [key isEqualToString:@"orderedDocuments"];

TextEdit then implements the orderedDocuments method in its controller class to return an ordered list of
documents. An application with its own window ordering might add a test for the key orderedWindows so
that its delegate can provide its own version of orderedWindows.

Important: Cocoa scripting does not invoke this method for script commands other than get or set. For
information on working with other commands, see Script Commands in Cocoa Scripting Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderedDocuments (page 154) (NSApplication)
– orderedWindows (page 155) (NSApplication)

Declared In
NSApplicationScripting.h

application:printFiles:
(Available in Mac OS X v10.3 through Mac OS X v10.5. Use
application:printFiles:withSettings:showPrintPanels: (page 3569) instead.)

- (void)application:(NSApplication *)sender
printFiles:(NSArray *)filenames

Discussion
Identical toapplication:printFile: (page 3568) except that the receiver prints multiple files corresponding
to the file names in the filenames array.

Delegates should invoke the replyToOpenOrPrint: (page 161) method upon success or failure, or when
the user cancels the operation.

Availability
Available in Mac OS X v10.3 through Mac OS X v10.5.

Declared In
NSApplication.h

Delegate Methods 183
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Constants

NSUserInterfaceLayoutDirection
Specifies the directional flow of the user interface. These constants are returned by
userInterfaceLayoutDirection (page 180).

enum {
 NSUserInterfaceLayoutDirectionLeftToRight = 0,
 NSUserInterfaceLayoutDirectionRightToLeft = 1
};
typedef NSInteger NSUserInterfaceLayoutDirection;

Constants
NSUserInterfaceLayoutDirectionLeftToRight

Layout direction is left to right.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSUserInterfaceLayoutDirectionRightToLeft
Layout direction is right to left. This is appropriate when running with localizations such as Arabic or
Hebrew that should have the user interface layout origin on the right edge of the coordinate system.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

Return values for modal operations
These are possible return values for runModalForWindow: (page 163) and runModalSession: (page 164).

enum {
 NSRunStoppedResponse = (-1000),
 NSRunAbortedResponse = (-1001),
 NSRunContinuesResponse = (-1002)
};

Constants
NSRunStoppedResponse

Modal session was broken with stopModal (page 174).

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

NSRunAbortedResponse
Modal session was broken with abortModal (page 135).

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

NSRunContinuesResponse
Modal session is continuing (returned by runModalSession: (page 164) only).

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

184 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion
The system also reserves all values below these.

NSUpdateWindowsRunLoopOrdering
This constant is used by the NSRunLoop method performSelector:target:argument:order:modes:.

enum {
 NSUpdateWindowsRunLoopOrdering = 500000
};

Constants
NSUpdateWindowsRunLoopOrdering

Run-loop message priority for handling window updates.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

NSApp
A global constant for the shared application instance.

id NSApp

Constants
NSApp

Global constant for the shared application instance. This is the same as sending the NSApplication
class the method sharedApplication (page 135) message.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

Discussion
This variable designates the shared application object, created by the sharedApplication (page 135) method.

Declared In
NSApplication.h

NSRequestUserAttentionType
These constants specify the level of severity of a user attention request and are used by
cancelUserAttentionRequest: (page 141) and requestUserAttention: (page 161).

Constants 185
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

enum {
 NSCriticalRequest = 0,
 NSInformationalRequest = 10
}
typedef NSUInteger NSRequestUserAttentionType;

Constants
NSCriticalRequest

The user attention request is a critical request.

The dock icon will bounce until either the application becomes active or the request is canceled.

Available in Mac OS X v10.1 and later.

Declared in NSApplication.h.

NSInformationalRequest
The user attention request is an informational request.

The dock icon will bounce for one second. The request, though, remains active until either the
application becomes active or the request is canceled.

Available in Mac OS X v10.1 and later.

Declared in NSApplication.h.

Declared In
NSApplication.h

NSApplicationDelegateReply
These constants indicate whether or not a copy or print operation was successful, was cancelled, or failed.
These constants are used by the replyToOpenOrPrint: (page 161) method.

enum NSApplicationDelegateReply {
 NSApplicationDelegateReplySuccess = 0,
 NSApplicationDelegateReplyCancel = 1,
 NSApplicationDelegateReplyFailure = 2
}
typedef NSUInteger NSApplicationDelegateReply;

Constants
NSApplicationDelegateReplySuccess

Indicates the operation succeeded.

Available in Mac OS X v10.3 and later.

Declared in NSApplication.h.

NSApplicationDelegateReplyCancel
Indicates the user cancelled the operation.

Available in Mac OS X v10.3 and later.

Declared in NSApplication.h.

NSApplicationDelegateReplyFailure
Indicates an error occurred processing the operation.

Available in Mac OS X v10.3 and later.

Declared in NSApplication.h.

186 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSApplicationPresentationOptions
The constants control the presentation of the application. Typically, in fullscreen applications such as games
or kiosks. They are used by the methods presentationOptions (page 158),
currentSystemPresentationOptions (page 143), and setPresentationOptions (page 170).

enum {
 NSApplicationPresentationDefault = 0,
 NSApplicationPresentationAutoHideDock = (1 << 0),
 NSApplicationPresentationHideDock = (1 << 1),
 NSApplicationPresentationAutoHideMenuBar = (1 << 2),
 NSApplicationPresentationHideMenuBar = (1 << 3),
 NSApplicationPresentationDisableAppleMenu = (1 << 4),
 NSApplicationPresentationDisableProcessSwitching = (1 << 5),
 NSApplicationPresentationDisableForceQuit = (1 << 6),
 NSApplicationPresentationDisableSessionTermination = (1 << 7),
 NSApplicationPresentationDisableHideApplication = (1 << 8),
 NSApplicationPresentationDisableMenuBarTransparency = (1 << 9)
};
typedef NSUInteger NSApplicationPresentationOptions;

Constants
NSApplicationPresentationDefault

This is the default presentation mode. The application is displayed as normal, including dock, menu
bar, process switching is enabled, force quit is enabled, session termination is enabled, the hide menu
is enabled, and the menu bar transparency is normal.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSApplicationPresentationAutoHideDock
The dock is normally hidden, but automatically appears when moused near.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSApplicationPresentationHideDock
The dock is entirely hidden and disabled.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSApplicationPresentationAutoHideMenuBar
The menu bar is normally hidden, but automatically appears when moused near.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSApplicationPresentationHideMenuBar
The menu bar is entirely hidden and disabled.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSApplicationPresentationDisableAppleMenu
All Apple Menu items are disabled.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

Constants 187
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSApplicationPresentationDisableProcessSwitching
The process switching user interface (Command + Tab to cycle through applications) is disabled.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSApplicationPresentationDisableForceQuit
The force quit panel (displayed by pressing Command + Option + Esc) is disabled

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSApplicationPresentationDisableSessionTermination
The panel that shows the Restart, Shut Down, and Log Out options that are displayed as a result of
pushing the power key is disabled.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSApplicationPresentationDisableHideApplication
The application’s “Hide” menu item is disabled.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSApplicationPresentationDisableMenuBarTransparency
The menu bar transparency appearance is disabled.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

Discussion
There are restrictions on the combination of presentation options that can be set simultaneously:

 ■ NSApplicationPresentationAutoHideDock (page 187) and
NSApplicationPresentationHideDock (page 187) are mutually exclusive: You may specify one or
the other, but not both.

 ■ NSApplicationPresentationAutoHideMenuBar (page 187) and
NSApplicationPresentationHideMenuBar (page 187) are mutually exclusive: You may specify one
or the other, but not both.

 ■ If you specify NSApplicationPresentationHideMenuBar (page 187), it must be accompanied by
NSApplicationPresentationHideDock (page 187).

 ■ If you specify NSApplicationPresentationAutoHideMenuBar (page 187), it must be accompanied
by either NSApplicationPresentationHideDock (page 187) or
NSApplicationPresentationAutoHideDock (page 187).

 ■ If you specify any of NSApplicationPresentationDisableProcessSwitching (page 188),
NSApplicationPresentationDisableForceQuit (page 188),
NSApplicationPresentationDisableSessionTermination (page 188), or
NSApplicationPresentationDisableMenuBarTransparency (page 188), it must be accompanied
by either NSApplicationPresentationHideDock (page 187) or
NSApplicationPresentationAutoHideDock (page 187).

When setPresentationOptions: (page 170) receives a parameter value that does not conform to these
requirements, it raises an NSInvalidArgumentException.

188 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSApplicationTerminateReply
These constants define whether an application should terminate and are used by the delegate method
applicationShouldTerminate: (page 3576).

enum {
 NSTerminateCancel = 0,
 NSTerminateNow = 1,
 NSTerminateLater = 2
}
typedef NSUInteger NSApplicationTerminateReply;

Constants
NSTerminateNow

It is OK to proceed with termination.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

NSTerminateCancel
The application should not be terminated.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

NSTerminateLater
It may be OK to proceed with termination later. Returning this value causes Cocoa to run the run loop
in the NSModalPanelRunLoopMode until your application subsequently calls
replyToApplicationShouldTerminate: (page 160) with the value YES or NO. This return value is
for delegates that need to provide document modal alerts (sheets) in order to decide whether to quit.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationPrintReply
These constants are returned by the delegate method
application:printFiles:withSettings:showPrintPanels: (page 3569).

Constants 189
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

enum {
 NSPrintingCancelled = 0,
 NSPrintingSuccess = 1,
 NSPrintingFailure = 3,
 NSPrintingReplyLater = 2
}
typedef NSUInteger NSApplicationPrintReply;

Constants
NSPrintingCancelled

Printing was cancelled.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSPrintingSuccess
Printing was successful.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSPrintingFailure
Printing failed.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSPrintingReplyLater
The result of printing cannot be returned immediately, for example, if printing will cause the
presentation of a sheet. If your method returns NSPrintingReplyLater it must always invoke
replyToOpenOrPrint: (page 161) when the entire print operation has been completed, successfully
or not.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

Declared In
NSApplication.h

Run loop modes
These loop mode constants are defined by NSApplication.

NSString *NSModalPanelRunLoopMode;
NSString *NSEventTrackingRunLoopMode;

Constants
NSEventTrackingRunLoopMode

A run loop should be set to this mode when tracking events modally, such as a mouse-dragging loop.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

NSModalPanelRunLoopMode
A run loop should be set to this mode when waiting for input from a modal panel, such as
NSSavePanel or NSOpenPanel.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

190 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Declared In
NSApplication.h

NSAppKitVersionNumber
This constant identifies the installed version of the Application Kit framework.

const double NSAppKitVersionNumber;

Constants
NSAppKitVersionNumber

This value corresponds to one of the constants defined in “Application Kit framework version
numbers” (page 191).

Available in Mac OS X v10.1 and later.

Declared in NSApplication.h.

Application Kit framework version numbers
You can use the following constants to determine if you are using a version of the Application Kit framework
newer than the version delivered in Mac OS X v10.0.

#define NSAppKitVersionNumber10_0 577
#define NSAppKitVersionNumber10_1 620
#define NSAppKitVersionNumber10_2 663
#define NSAppKitVersionNumber10_2_3 663.6
#define NSAppKitVersionNumber10_3 743
#define NSAppKitVersionNumber10_3_2 743.14
#define NSAppKitVersionNumber10_3_3 743.2
#define NSAppKitVersionNumber10_3_5 743.24
#define NSAppKitVersionNumber10_3_7 743.33
#define NSAppKitVersionNumber10_3_9 743.36
#define NSAppKitVersionNumber10_4 824
#define NSAppKitVersionNumber10_4_1 824.1
#define NSAppKitVersionNumber10_4_3 824.23
#define NSAppKitVersionNumber10_4_4 824.33
#define NSAppKitVersionNumber10_4_7 824.41
#define NSAppKitVersionNumber10_5 949
#define NSAppKitVersionNumber10_5_2 949.27
#define NSAppKitVersionNumber10_5_3 949.33

Constants
NSAppKitVersionNumber10_0

The Application Kit framework included in Mac OS X v10.0.

Available in Mac OS X v10.1 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_1
The Application Kit framework included in Mac OS X v10.1.

Available in Mac OS X v10.2 and later.

Declared in NSApplication.h.

Constants 191
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSAppKitVersionNumber10_2
The Application Kit framework included in Mac OS X v10.2.

Available in Mac OS X v10.3 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_2_3
The Application Kit framework included in Mac OS X v10.2.3.

Available in Mac OS X v10.3 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_3
The Application Kit framework included in Mac OS X v10.3.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_3_2
The Application Kit framework included in Mac OS X v10.3.2.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_3_3
The Application Kit framework included in Mac OS X v10.3.3.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_3_5
The Application Kit framework included in Mac OS X v10.3.5.

Available in Mac OS X v10.4 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_3_7
The Application Kit framework included in Mac OS X v10.3.7.

Available in Mac OS X v10.5 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_3_9
The Application Kit framework included in Mac OS X v10.3.9.

Available in Mac OS X v10.5 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_4
The Application Kit framework included in Mac OS X v10.4.

Available in Mac OS X v10.5 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_4_1
The Application Kit framework included in Mac OS X v10.4.1.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

192 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSAppKitVersionNumber10_4_3
The Application Kit framework included in Mac OS X v10.4.3.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_4_4
The Application Kit framework included in Mac OS X v10.4.4.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_4_7
The Application Kit framework included in Mac OS X v10.4.7.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_5
The Application Kit framework included in Mac OS X v10.5.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_5_2
The Application Kit framework included in Mac OS X v10.5.2.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

NSAppKitVersionNumber10_5_3
The Application Kit framework included in Mac OS X v10.5.3.

Available in Mac OS X v10.6 and later.

Declared in NSApplication.h.

Notifications

These notifications apply to NSApplication. See Notifications in NSWorkspace Class Reference for
additional, similar notifications.

NSApplicationDidBecomeActiveNotification
Posted immediately after the application becomes active.

The notification object is sharedApplication (page 135). This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

Notifications 193
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSApplicationDidChangeScreenParametersNotification
Posted when the configuration of the displays attached to the computer is changed.

The configuration change can be made either programmatically or when the user changes settings in the
Displays control panel. The notification object is sharedApplication (page 135). This notification does not
contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidFinishLaunchingNotification
Posted at the end of the finishLaunching (page 147) method to indicate that the application has completed
launching and is ready to run.

The notification object is sharedApplication (page 135). This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidHideNotification
Posted at the end of the hide: (page 148) method to indicate that the application is now hidden.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidResignActiveNotification
Posted immediately after the application gives up its active status to another application.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

194 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSApplicationDidUnhideNotification
Posted at the end of the unhideWithoutActivation (page 178) method to indicate that the application
is now visible.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidUpdateNotification
Posted at the end of the updateWindows (page 179) method to indicate that the application has finished
updating its windows.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillBecomeActiveNotification
Posted immediately after the application becomes active.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillFinishLaunchingNotification
Posted at the start of the finishLaunching (page 147) method to indicate that the application has completed
its initialization process and is about to finish launching.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillHideNotification
Posted at the start of the hide: (page 148) method to indicate that the application is about to be hidden.

Notifications 195
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillResignActiveNotification
Posted immediately before the application gives up its active status to another application.

The notification object is sharedApplication (page 135). This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillTerminateNotification
Posted by the terminate: (page 176) method to indicate that the application will terminate.

Posted only if the delegate methodapplicationShouldTerminate: (page 3576) returnsYES. The notification
object is sharedApplication (page 135). This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillUnhideNotification
Posted at the start of the unhideWithoutActivation (page 178) method to indicate that the application
is about to become visible.

The notification object is sharedApplication (page 135). This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillUpdateNotification
Posted at the start of the updateWindows (page 179) method to indicate that the application is about to
update its windows.

196 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

The notification object is sharedApplication (page 135). This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

Notifications 197
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

198 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Inherits from NSObjectController : NSController : NSObject

Conforms to NSCoding (NSController)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.3 and later.

Declared in AppKit/NSArrayController.h

Companion guides Cocoa Bindings Programming Topics
Predicate Programming Guide
Core Data Programming Guide

Related sample code CoreRecipes
DemoMonkey
GridCalendar
LightTable
XMLBrowser

Overview

NSArrayController is a bindings compatible class that manages a collection of objects. Typically the
collection is an array, however, if the controller manages a relationship of a managed object (see
NSManagedObject) the collection may be a set. NSArrayController provides selection management and
sorting capabilities.

Tasks

Managing Sort Descriptors

– setSortDescriptors: (page 224)
Sets the sort descriptors for the receiver.

– sortDescriptors (page 224)
Returns the receiver's array of sort descriptors.

Overview 199
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Arranging Objects

– arrangeObjects: (page 206)
Returns a given array, appropriately sorted and filtered.

– arrangedObjects (page 205)
Returns an array containing the receiver’s content objects arranged using arrangeObjects: (page
206).

– rearrangeObjects (page 213)
Triggers filtering of the receiver’s content.

Managing Content

– add: (page 203)
Creates and adds a new object to the receiver’s content and arranged objects.

– setAutomaticallyPreparesContent: (page 219)
Sets whether the receiver automatically creates and inserts new content objects automatically.

– automaticallyPreparesContent (page 206)
Returns a Boolean value that indicates whether the receiver automatically prepares its content when
it is loaded from a nib.

Selection Attributes

– setAvoidsEmptySelection: (page 220)
Sets whether the receiver attempts to avoid an empty selection.

– avoidsEmptySelection (page 208)
Returns a Boolean value that indicates whether if the receiver requires that the content array attempt
to maintain a selection.

– setClearsFilterPredicateOnInsertion: (page 221)
Sets whether the receiver automatically clears an existing filter predicate when a new object is inserted
or added to the content array.

– preservesSelection (page 212)
Returns a Boolean value that indicates whether the receiver will attempt to preserve the current
selection when the content changes.

– setPreservesSelection: (page 222)
Sets whether the receiver attempts to preserve selection when the content changes.

– alwaysUsesMultipleValuesMarker (page 205)
Returns a Boolean value that indicates whether the receiver always returns the multiple values marker
when multiple objects are selected.

– setAlwaysUsesMultipleValuesMarker: (page 219)
Sets whether the receiver always returns the multiple values marker when multiple objects are selected.

200 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Managing Selections

– selectionIndex (page 217)
Returns the index of the first object in the receiver’s selection.

– setSelectionIndex: (page 222)
Sets the receiver’s selection to the given index, and returns a Boolean value that indicates whether
the selection was changed.

– setSelectsInsertedObjects: (page 224)
Sets whether the receiver will automatically select objects as they are inserted.

– selectsInsertedObjects (page 219)
Returns whether the receiver automatically selects inserted objects.

– setSelectionIndexes: (page 223)
Sets the receiver’s selection indexes and returns a Boolean value that indicates whether the selection
changed.

– selectionIndexes (page 217)
Returns an index set containing the indexes of the receiver’s currently selected objects in the content
array.

– addSelectionIndexes: (page 205)
Adds the objects at the specified indexes in the receiver’s content array to the current selection,
returning YES if the selection was changed.

– removeSelectionIndexes: (page 216)
Removes the object as the specified indexes from the receiver’s current selection, returning YES if
the selection was changed.

– setSelectedObjects: (page 222)
Sets objects as the receiver’s current selection, returning YES if the selection was changed.

– selectedObjects (page 216)
Returns an array containing the receiver’s selected objects.

– addSelectedObjects: (page 204)
Adds objects from the receiver’s content array to the current selection, returning YES if the selection
was changed.

– removeSelectedObjects: (page 215)
Removes objects from the receiver’s current selection, returning YES if the selection was changed.

– selectNext: (page 218)
Selects the next object, relative to the current selection, in the receiver’s arranged content.

– canSelectNext (page 209)
Returns YES if the next object, relative to the current selection, in the receiver’s content array can be
selected.

– selectPrevious: (page 218)
Selects the previous object, relative to the current selection, in the receiver’s arranged content.

– canSelectPrevious (page 209)
Returns YES if the previous object, relative to the current selection, in the receiver’s content array can
be selected.

Tasks 201
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Inserting

– canInsert (page 208)
Returns a Boolean value that indicates whether an object can be inserted into the receiver’s content
collection.

– insert: (page 211)
Creates a new object and inserts it into the receiver’s content array.

Adding and Removing Objects

– addObject: (page 203)
Adds object to the receiver’s content collection and the arranged objects array.

– addObjects: (page 204)
Adds objects to the receiver’s content collection.

– insertObject:atArrangedObjectIndex: (page 211)
Inserts object into the receiver’s arranged objects array at the location specified by index, and adds
it to the receiver’s content collection.

– insertObjects:atArrangedObjectIndexes: (page 212)
Inserts objects into the receiver’s arranged objects array at the locations specified in indexes, and
adds it to the receiver’s content collection.

– removeObjectAtArrangedObjectIndex: (page 214)
Removes the object at the specified index in the receiver’s arranged objects from the receiver’s
content array.

– removeObjectsAtArrangedObjectIndexes: (page 215)
Removes the objects at the specified indexes in the receiver’s arranged objects from the content
array.

– remove: (page 213)
Removes the receiver’s selected objects from the content collection.

– removeObject: (page 214)
Removes object from the receiver’s content collection.

– removeObjects: (page 215)
Removes objects from the receiver’s content collection.

Filtering Content

– clearsFilterPredicateOnInsertion (page 209)
Returns a Boolean value that indicates whether the receiver automatically clears an existing filter
predicate when new items are inserted or added to the content.

– filterPredicate (page 210)
Returns the predicate used by the receiver to filter the array controller contents.

– setFilterPredicate: (page 221)
Sets the predicate used to filter the contents of the receiver.

202 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Automatic Content Rearranging

– setAutomaticallyRearrangesObjects: (page 220)
Sets whether or not the receiver automatically rearranges its content to correspond to the current
sort descriptors and filter predicates.

– automaticallyRearrangesObjects (page 207)
Returns a Boolean that indicates if the receiver automatically rearranges its content to correspond to
the current sort descriptors and filter predicates.

– automaticRearrangementKeyPaths (page 207)
Returns an array of key paths that trigger automatic content sorting or filtering.

– didChangeArrangementCriteria (page 210)
Invoked when any criteria for arranging objects change.

Instance Methods

add:
Creates and adds a new object to the receiver’s content and arranged objects.

- (void)add:(id)sender

Parameters
sender

Typically the object that invoked this method.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism (see Error Responders and Error Recovery) can provide feedback
as a sheet.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSArrayController.h

addObject:
Adds object to the receiver’s content collection and the arranged objects array.

- (void)addObject:(id)object

Availability
Available in Mac OS X v10.3 and later.

See Also
– addObjects: (page 204)
– insertObject:atArrangedObjectIndex: (page 211)

Instance Methods 203
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

– removeObject: (page 214)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
QTCompressionOptionsWindow
XMLBrowser

Declared In
NSArrayController.h

addObjects:
Adds objects to the receiver’s content collection.

- (void)addObjects:(NSArray *)objects

Discussion
If selectsInsertedObjects (page 219) returns YES (the default), the added objects are selected in the
array controller.

It is important to note that inserting many objects with selectsInsertedObjects on can cause a significant
performance penalty. In this case it is more efficient to use the setContent: (page 1756) method to set the
array, or to set selectsInsertedObjects to NO before adding the objects with addObjects:.

Availability
Available in Mac OS X v10.3 and later.

See Also
– addObject: (page 203)
– insertObjects:atArrangedObjectIndexes: (page 212)
– removeObjects: (page 215)

Declared In
NSArrayController.h

addSelectedObjects:
Adds objects from the receiver’s content array to the current selection, returning YES if the selection was
changed.

- (BOOL)addSelectedObjects:(NSArray *)objects

Discussion
Attempting to change the selection may cause a commitEditing (page 850) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeSelectedObjects: (page 215)
– setSelectedObjects: (page 222)

204 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Declared In
NSArrayController.h

addSelectionIndexes:
Adds the objects at the specified indexes in the receiver’s content array to the current selection, returning
YES if the selection was changed.

- (BOOL)addSelectionIndexes:(NSIndexSet *)indexes

Discussion
Attempting to change the selection may cause a commitEditing (page 850) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeSelectionIndexes: (page 216)

Declared In
NSArrayController.h

alwaysUsesMultipleValuesMarker
Returns a Boolean value that indicates whether the receiver always returns the multiple values marker when
multiple objects are selected.

- (BOOL)alwaysUsesMultipleValuesMarker

Return Value
YES if the receiver always returns the multiple values marker when multiple objects are selected—even if
the selected items have the same value, otherwise NO.

Discussion
The default is NO.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAlwaysUsesMultipleValuesMarker: (page 219)

Declared In
NSArrayController.h

arrangedObjects
Returns an array containing the receiver’s content objects arranged using arrangeObjects: (page 206).

Instance Methods 205
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

- (id)arrangedObjects

Return Value
An array containing the receiver’s content objects arranged using arrangeObjects: (page 206).

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– arrangeObjects: (page 206)

Related Sample Code
CoreRecipes
DemoMonkey
QTCompressionOptionsWindow
With and Without Bindings

Declared In
NSArrayController.h

arrangeObjects:
Returns a given array, appropriately sorted and filtered.

- (NSArray *)arrangeObjects:(NSArray *)objects

Return Value
An array containing objects filtered using the receiver's filter predicate (see filterPredicate (page 210)) and
sorted according to the receiver’s sortDescriptors (page 224).

Discussion
Subclasses should override this method to use a different sort mechanism, provide custom object arrangement,
or (typically only prior to Mac OS X version 10.4, which provides a filter predicate) filter the objects.

Availability
Available in Mac OS X v10.3 and later.

See Also
– arrangedObjects (page 205)
– rearrangeObjects (page 213)
– sortDescriptors (page 224)

Declared In
NSArrayController.h

automaticallyPreparesContent
Returns a Boolean value that indicates whether the receiver automatically prepares its content when it is
loaded from a nib.

206 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

- (BOOL)automaticallyPreparesContent

Return Value
YES if the receiver automatically prepares its content when loaded from a nib, otherwise NO.

Discussion
See setAutomaticallyPreparesContent: (page 219) for a full explanation of "automatically prepares
content."

The default is YES.

See Also
– setAutomaticallyPreparesContent: (page 219)
– prepareContent (page 1753)

automaticallyRearrangesObjects
Returns a Boolean that indicates if the receiver automatically rearranges its content to correspond to the
current sort descriptors and filter predicates.

- (BOOL)automaticallyRearrangesObjects

Return Value
YES if the receiver automatically rearranges objects upon changes to the content, NO if the content does not
automatically rearrange.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSArrayController.h

automaticRearrangementKeyPaths
Returns an array of key paths that trigger automatic content sorting or filtering.

- (NSArray *)automaticRearrangementKeyPaths

Return Value
An array of key paths that trigger automatic content sorting or filtering.

Discussion
Subclasses can override this method to customize the default behavior of the sort descriptors and filtering
predicates, for example, if additional arrangement criteria are used in a custom implementation of
rearrangeObjects (page 213).

Availability
Available in Mac OS X v10.5 and later.

See Also
– rearrangeObjects (page 213)

Instance Methods 207
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Declared In
NSArrayController.h

avoidsEmptySelection
Returns a Boolean value that indicates whether if the receiver requires that the content array attempt to
maintain a selection.

- (BOOL)avoidsEmptySelection

Return Value
YES if the receiver requires that the content array attempt to maintain a selection at all times, otherwise NO.

Discussion
The default is YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAvoidsEmptySelection: (page 220)

Declared In
NSArrayController.h

canInsert
Returns a Boolean value that indicates whether an object can be inserted into the receiver’s content collection.

- (BOOL)canInsert

Return Value
YES if an object can be inserted into the receiver’s content collection, otherwise NO.

Discussion
The result of this method can be used by a binding to enable user interface items.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– insert: (page 211)

Declared In
NSArrayController.h

208 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

canSelectNext
Returns YES if the next object, relative to the current selection, in the receiver’s content array can be selected.

- (BOOL)canSelectNext

Discussion
The result of this method can be used by a binding to enable user interface items.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectNext: (page 218)
– canSelectPrevious (page 209)

Declared In
NSArrayController.h

canSelectPrevious
Returns YES if the previous object, relative to the current selection, in the receiver’s content array can be
selected.

- (BOOL)canSelectPrevious

Discussion
The result of this method can be used by a binding to enable user interface items.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– canSelectNext (page 209)
– selectPrevious: (page 218)

Declared In
NSArrayController.h

clearsFilterPredicateOnInsertion
Returns a Boolean value that indicates whether the receiver automatically clears an existing filter predicate
when new items are inserted or added to the content.

- (BOOL)clearsFilterPredicateOnInsertion

Return Value
YES if the receiver automatically clears an existing filter predicate when new items are inserted or added to
the content, otherwise NO.

Instance Methods 209
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Discussion
The default is YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setClearsFilterPredicateOnInsertion: (page 221)

Declared In
NSArrayController.h

didChangeArrangementCriteria
Invoked when any criteria for arranging objects change.

- (void)didChangeArrangementCriteria

Discussion
This method is invoked by the controller itself when any criteria for arranging objects change (sort descriptors
or filter predicates) to reset the key paths for automatic rearranging.

Special Considerations

If you implement a subclass of NSArrayController and override rearrangeObjects (page 213) to use
additional arrangement criteria, you should invoke this method if those criteria change.

Availability
Available in Mac OS X v10.5 and later.

See Also
– rearrangeObjects (page 213)

Declared In
NSArrayController.h

filterPredicate
Returns the predicate used by the receiver to filter the array controller contents.

- (NSPredicate *)filterPredicate

Return Value
The predicate used by the receiver to filter the array controller contents. Returns nil if no filter predicate is
set.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

210 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

See Also
– setClearsFilterPredicateOnInsertion: (page 221)
– setFilterPredicate: (page 221)

Declared In
NSArrayController.h

insert:
Creates a new object and inserts it into the receiver’s content array.

- (void)insert:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If an entity name is specified (see entityName (page 1749)), this method creates an instance of the of the
class specified by the entity, otherwise this method creates an instance of the class specified by
objectClass (page 1753).

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism (see Error Responders and Error Recovery) can provide feedback
as a sheet.

Availability
Available in Mac OS X v10.3 and later.

See Also
– canInsert (page 208)

Declared In
NSArrayController.h

insertObject:atArrangedObjectIndex:
Inserts object into the receiver’s arranged objects array at the location specified by index, and adds it to
the receiver’s content collection.

- (void)insertObject:(id)object atArrangedObjectIndex:(NSUInteger)index

Discussion
Subclasses can override this method to provide customized arranged objects support.

Availability
Available in Mac OS X v10.3 and later.

See Also
– insertObjects:atArrangedObjectIndexes: (page 212)
– addObject: (page 203)
– removeObjectAtArrangedObjectIndex: (page 214)

Instance Methods 211
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Related Sample Code
With and Without Bindings

Declared In
NSArrayController.h

insertObjects:atArrangedObjectIndexes:
Inserts objects into the receiver’s arranged objects array at the locations specified in indexes, and adds it
to the receiver’s content collection.

- (void)insertObjects:(NSArray *)objects atArrangedObjectIndexes:(NSIndexSet
*)indexes

Availability
Available in Mac OS X v10.3 and later.

See Also
– insertObject:atArrangedObjectIndex: (page 211)
– addObjects: (page 204)
– removeObjectsAtArrangedObjectIndexes: (page 215)

Related Sample Code
DemoMonkey

Declared In
NSArrayController.h

preservesSelection
Returns a Boolean value that indicates whether the receiver will attempt to preserve the current selection
when the content changes.

- (BOOL)preservesSelection

Return Value
YES if the receiver attempts to preserve the current selection when the content changes, otherwise NO.

Discussion
The default is YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setClearsFilterPredicateOnInsertion: (page 221)

Declared In
NSArrayController.h

212 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

rearrangeObjects
Triggers filtering of the receiver’s content.

- (void)rearrangeObjects

Discussion
This method invokes arrangeObjects: (page 206).

When you detect that filtering criteria change (such as when listening to the text sent by an NSSearchField
instance), invoke this method on self.

Availability
Available in Mac OS X v10.3 and later.

See Also
– arrangeObjects: (page 206)
– didChangeArrangementCriteria (page 210)
– automaticRearrangementKeyPaths (page 207)

Related Sample Code
CoreRecipes
Departments and Employees
iSpend

Declared In
NSArrayController.h

remove:
Removes the receiver’s selected objects from the content collection.

- (void)remove:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
See removeObject: (page 214) for a discussion of the semantics of removing objects when using Core Data.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism (see Error Responders and Error Recovery) can provide feedback
as a sheet.

Availability
Available in Mac OS X v10.4 and later.

See Also
– removeObjects: (page 215)
– removeObjectAtArrangedObjectIndex: (page 214)
– addObject: (page 203)

Instance Methods 213
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CoreRecipes

Declared In
NSArrayController.h

removeObject:
Removes object from the receiver’s content collection.

- (void)removeObject:(id)object

Special Considerations

If you are using Core Data, the exact semantics of this method differ depending on the settings for the array
controller. If the receiver’s content is fetched automatically, removed objects are marked for deletion by the
managed object context (and hence removal from the object graph). If, however, the receiver’s contentSet
is bound to a relationship, removeObject: by default only removes the object from the relationship (not
from the object graph). You can, though, set the “Deletes Object on Remove” option for the contentSet
binding, in which case objects are marked for deletion as well as being removed from the relationship.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeObjects: (page 215)
– removeObjectAtArrangedObjectIndex: (page 214)
– addObject: (page 203)

Related Sample Code
CameraBrowser
ScannerBrowser

Declared In
NSArrayController.h

removeObjectAtArrangedObjectIndex:
Removes the object at the specified index in the receiver’s arranged objects from the receiver’s content
array.

- (void)removeObjectAtArrangedObjectIndex:(NSUInteger)index

Discussion
See removeObject: (page 214) for a discussion of the semantics of removing objects when using Core Data.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeObjectsAtArrangedObjectIndexes: (page 215)
– insertObject:atArrangedObjectIndex: (page 211)

214 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

– removeObject: (page 214)

Declared In
NSArrayController.h

removeObjects:
Removes objects from the receiver’s content collection.

- (void)removeObjects:(NSArray *)objects

Special Considerations

See removeObject: (page 214) for a discussion of the semantics of removing objects when using Core Data.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeObject: (page 214)
– removeObjectsAtArrangedObjectIndexes: (page 215)
– addObjects: (page 204)

Related Sample Code
QTCompressionOptionsWindow

Declared In
NSArrayController.h

removeObjectsAtArrangedObjectIndexes:
Removes the objects at the specified indexes in the receiver’s arranged objects from the content array.

- (void)removeObjectsAtArrangedObjectIndexes:(NSIndexSet *)indexes

Discussion
See removeObject: (page 214) for a discussion of the semantics of removing objects when using Core Data.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeObjectAtArrangedObjectIndex: (page 214)
– insertObjects:atArrangedObjectIndexes: (page 212)
– removeObjects: (page 215)

Declared In
NSArrayController.h

removeSelectedObjects:
Removes objects from the receiver’s current selection, returning YES if the selection was changed.

Instance Methods 215
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

- (BOOL)removeSelectedObjects:(NSArray *)objects

Discussion
Attempting to change the selection may cause a commitEditing (page 850) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
– addSelectedObjects: (page 204)

Declared In
NSArrayController.h

removeSelectionIndexes:
Removes the object as the specified indexes from the receiver’s current selection, returning YES if the
selection was changed.

- (BOOL)removeSelectionIndexes:(NSIndexSet *)indexes

Discussion
Attempting to change the selection may cause a commitEditing (page 850) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
– addSelectionIndexes: (page 205)

Declared In
NSArrayController.h

selectedObjects
Returns an array containing the receiver’s selected objects.

- (NSArray *)selectedObjects

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSelectedObjects: (page 222)

Related Sample Code
CalendarItems
CoreRecipes

216 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

QTCompressionOptionsWindow
ScannerBrowser

Declared In
NSArrayController.h

selectionIndex
Returns the index of the first object in the receiver’s selection.

- (NSUInteger)selectionIndex

Return Value
The index of the first object in the receiver’s selection, or NSNotFound if there is no selection.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSelectionIndex: (page 222)
– selectionIndexes (page 217)

Related Sample Code
ClipboardViewer
CoreRecipes
DemoMonkey
SBSystemPrefs
ScriptingBridgeFinder

Declared In
NSArrayController.h

selectionIndexes
Returns an index set containing the indexes of the receiver’s currently selected objects in the content array.

- (NSIndexSet *)selectionIndexes

Return Value
An index set containing the indexes of the receiver’s currently selected objects in the content array.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSelectionIndexes: (page 223)

Instance Methods 217
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

– selectionIndex (page 217)

Declared In
NSArrayController.h

selectNext:
Selects the next object, relative to the current selection, in the receiver’s arranged content.

- (void)selectNext:(id)sender

Discussion
The sender is typically the object that invoked this method.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism (see Error Responders and Error Recovery) can provide feedback
as a sheet.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectPrevious: (page 218)
– canSelectNext (page 209)

Declared In
NSArrayController.h

selectPrevious:
Selects the previous object, relative to the current selection, in the receiver’s arranged content.

- (void)selectPrevious:(id)sender

Discussion
The sender is typically the object that invoked this method.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism (see Error Responders and Error Recovery) can provide feedback
as a sheet.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectNext: (page 218)
– canSelectPrevious (page 209)

Declared In
NSArrayController.h

218 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

selectsInsertedObjects
Returns whether the receiver automatically selects inserted objects.

- (BOOL)selectsInsertedObjects

Return Value
YES if the receiver automatically selects inserted objects, otherwise NO.

Discussion
The default is YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSelectsInsertedObjects: (page 224)

Declared In
NSArrayController.h

setAlwaysUsesMultipleValuesMarker:
Sets whether the receiver always returns the multiple values marker when multiple objects are selected.

- (void)setAlwaysUsesMultipleValuesMarker:(BOOL)flag

Parameters
flag

If YES, the receiver always returns the multiple values marker when multiple objects are selected,
even if they have the same value.

Discussion
Setting flag to YES can increase performance if your application doesn’t allow editing multiple values. The
default is NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– alwaysUsesMultipleValuesMarker (page 205)

Declared In
NSArrayController.h

setAutomaticallyPreparesContent:
Sets whether the receiver automatically creates and inserts new content objects automatically.

- (void)setAutomaticallyPreparesContent:(BOOL)flag

Instance Methods 219
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Parameters
flag

If YES, the receiver automatically prepares its content.

Discussion
If flag is YES and the receiver is not using a managed object context, prepareContent (page 1753) is used
to create the content object.

If flag is YES and a managed object context is set, the initial content is fetched from the managed object
context using the current fetch predicate. The controller also registers as an observer of its managed object
context. It then tracks insertions and deletions of its entity using the context's notifications, and updates its
content array as appropriate.

Setting flag to YES is the same as checking the “Automatically Prepares Content” option in the Interface
Builder controller inspector.

See Also
– automaticallyPreparesContent (page 206)
– prepareContent (page 1753)

setAutomaticallyRearrangesObjects:
Sets whether or not the receiver automatically rearranges its content to correspond to the current sort
descriptors and filter predicates.

- (void)setAutomaticallyRearrangesObjects:(BOOL)flag

Parameters
flag

A Boolean value that indicates whether the receiver automatically rearranges its content (YES) or not
(NO).

Discussion
The default is NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSArrayController.h

setAvoidsEmptySelection:
Sets whether the receiver attempts to avoid an empty selection.

- (void)setAvoidsEmptySelection:(BOOL)flag

Parameters
flag

If YES, the receiver maintains a selection unless there are no objects in the content array.

Discussion
The default is YES.

220 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– avoidsEmptySelection (page 208)

Declared In
NSArrayController.h

setClearsFilterPredicateOnInsertion:
Sets whether the receiver automatically clears an existing filter predicate when a new object is inserted or
added to the content array.

- (void)setClearsFilterPredicateOnInsertion:(BOOL)flag

Parameters
flag

If YES, the receiver automatically clears an existing filter predicate when a new object is inserted or
added to the content array.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.4 and later.

See Also
– clearsFilterPredicateOnInsertion (page 209)

Declared In
NSArrayController.h

setFilterPredicate:
Sets the predicate used to filter the contents of the receiver.

- (void)setFilterPredicate:(NSPredicate *)filterPredicate

Parameters
filterPredicate

The predicate used to filter the contents of the receiver.

Discussion
If filterPredicate is nil, any existing filter predicate is removed.

Availability
Available in Mac OS X v10.4 and later.

See Also
– filterPredicate (page 210)

Declared In
NSArrayController.h

Instance Methods 221
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

setPreservesSelection:
Sets whether the receiver attempts to preserve selection when the content changes.

- (void)setPreservesSelection:(BOOL)flag

Parameters
flag

If YES, the receiver attempts to preserve selection when the content changes.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
– preservesSelection (page 212)

Declared In
NSArrayController.h

setSelectedObjects:
Sets objects as the receiver’s current selection, returning YES if the selection was changed.

- (BOOL)setSelectedObjects:(NSArray *)objects

Discussion
Attempting to change the selection may cause a commitEditing (page 850) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectedObjects (page 216)
– addSelectedObjects: (page 204)

Related Sample Code
CoreRecipes

Declared In
NSArrayController.h

setSelectionIndex:
Sets the receiver’s selection to the given index, and returns a Boolean value that indicates whether the
selection was changed.

- (BOOL)setSelectionIndex:(NSUInteger)index

222 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Parameters
index

The index for the selection.

Return Value
YES if the selection was changed, otherwise NO.

Discussion
Attempting to change the selection may cause a commitEditing (page 850) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectionIndex (page 217)
– setSelectionIndexes: (page 223)

Related Sample Code
CoreRecipes
DemoMonkey
GridCalendar
QTCompressionOptionsWindow

Declared In
NSArrayController.h

setSelectionIndexes:
Sets the receiver’s selection indexes and returns a Boolean value that indicates whether the selection changed.

- (BOOL)setSelectionIndexes:(NSIndexSet *)indexes

Parameters
indexes

The set of selection indexes for the receiver.

Return Value
YES if the selection was changed, otherwise NO.

Discussion
Attempting to change the selection may cause a commitEditing (page 850) message which fails, thus
denying the selection change.

To select all the receiver’s objects, indexes should be an index set with indexes [0...count -1]. To deselect
all indexes, pass an empty index set.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectionIndexes (page 217)
– setSelectionIndex: (page 222)

Instance Methods 223
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Related Sample Code
DemoMonkey

Declared In
NSArrayController.h

setSelectsInsertedObjects:
Sets whether the receiver will automatically select objects as they are inserted.

- (void)setSelectsInsertedObjects:(BOOL)flag

Parameters
flag

If YES then items will be selected upon insertion.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectsInsertedObjects (page 219)

Declared In
NSArrayController.h

setSortDescriptors:
Sets the sort descriptors for the receiver.

- (void)setSortDescriptors:(NSArray *)sortDescriptors

Parameters
sortDescriptors

An array of NSSortDescriptor objects, used by the receiver to arrange its content.

Availability
Available in Mac OS X v10.3 and later.

See Also
– sortDescriptors (page 224)
– arrangeObjects: (page 206)

Declared In
NSArrayController.h

sortDescriptors
Returns the receiver's array of sort descriptors.

224 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

- (NSArray *)sortDescriptors

Return Value
The array of NSSortDescriptor objects used by the receiver to arrange its content.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSortDescriptors: (page 224)
– arrangeObjects: (page 206)

Related Sample Code
iSpend

Declared In
NSArrayController.h

Instance Methods 225
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

226 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Inherits from NSTypesetter : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSATSTypesetter.h

Availability Available in Mac OS X v10.3 and later.

Companion guides Text System Overview
Text Layout Programming Guide

Overview

NSATSTypesetter is a concrete subclass of NSTypesetter that places glyphs during the text layout process.
The typesetter creates line fragment rectangles, positions glyphs within the line fragments, determines line
breaks by word wrapping and hyphenation, and handles tab positioning.

NSATSTypesetter encapsulates the advanced typesetting capabilities of Core Text. NSATSTypesetter
provides enhanced line and character spacing accuracy and supports more languages, including bidirectional
languages, than the original, built-in typesetter class NSSimpleHorizontalTypesetter (which is deprecated
in Mac OS X version 10.4 and later).

Subclassing Notes

NSATSTypesetter introduced a set of interfaces in Mac OS X version 10.3 that facilitated subclassing and
made it possible to substitute a custom layout engine into the Cocoa text system. In Mac OS X version 10.4,
those interfaces moved to NSTypesetter, which you can subclass to the same effect. See the NSTypesetter
reference documentation for relevant subclassing notes.

Tasks

Getting a Typesetter

+ sharedTypesetter (page 231)
Returns a shared instance of NSATSTypesetter.

Overview 227
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

Managing the Layout Manager

– layoutManager (page 237)
Returns the layout manager for the text being typeset.

– setUsesFontLeading: (page 245)
Sets a Boolean value controlling whether the typesetter uses the leading (or line gap) value specified
in the font metric information.

– usesFontLeading (page 247)
Returns a Boolean value indicating whether the typesetter uses the leading (or line gap) value specified
in the font metric information of the current font.

– setTypesetterBehavior: (page 244)
Sets the default typesetter behavior, which affects glyph spacing and line height.

– typesetterBehavior (page 247)
Returns the current typesetter behavior value.

– setHyphenationFactor: (page 242)
Sets the threshold controlling when hyphenation is attempted

– hyphenationFactor (page 235)
Returns the current hyphenation factor.

Managing the Text Container

– currentTextContainer (page 233)
Returns the text container for the text being typeset.

– setLineFragmentPadding: (page 242)
Sets the amount (in points) by which text is inset within line fragment rectangles

– lineFragmentPadding (page 237)
Returns the current line fragment padding amount; that is, the portion on each end of the line fragment
rectangle left blank.

Mapping Screen and Printer Fonts

– substituteFontForFont: (page 246)
Returns a screen font suitable for use in place of the specified original font, or simply returns the
original font if a screen font can’t be used or isn’t available.

Managing Text Tabs

– textTabForGlyphLocation:writingDirection:maxLocation: (page 247)
Returns the text tab next closest to a given glyph location, indexing in the specified direction but not
beyond a given glyph location.

228 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

Bidirectional Text Processing

– setBidiProcessingEnabled: (page 241)
Sets a Boolean value controlling whether the typesetter performs bidirectional text processing.

– bidiProcessingEnabled (page 232)
Returns a Boolean value indicating the bidirectional text processing setting currently in effect.

Accessing Paragraph Typesetting Information

– setAttributedString: (page 240)
Sets the text backing store on which this typesetter operates.

– attributedString (page 231)
Returns the text backing store, usually an instance of NSTextStorage.

– setParagraphGlyphRange:separatorGlyphRange: (page 244)
Sets the current glyph range being processed and the paragraph separator glyph range (the range
of the paragraph separator character or characters).

– paragraphGlyphRange (page 238)
Returns the glyph range currently being processed.

– paragraphSeparatorGlyphRange (page 239)
Returns the current paragraph separator range, which is the full range that contains the current glyph
range and that extends from one paragraph separator character to the next.

Paragraph Layout

– layoutParagraphAtPoint: (page 237)
Lays out glyphs in the current glyph range until the next paragraph separator is reached.

Line and Paragraph Spacing

– lineSpacingAfterGlyphAtIndex:withProposedLineFragmentRect: (page 238)
Returns the line spacing in effect following the specified glyph.

– paragraphSpacingAfterGlyphAtIndex:withProposedLineFragmentRect: (page 239)
Returns the paragraph spacing, the number of points of space added following a paragraph, which
is in effect after the specified glyph.

– paragraphSpacingBeforeGlyphAtIndex:withProposedLineFragmentRect: (page 240)
Returns the number of points of space added before a paragraph, which is in effect before the specified
glyph.

Glyph Caching

– setHardInvalidation:forGlyphRange: (page 242)
Sets a Boolean value controlling whether to force the layout manager to invalidate the portion of the
glyph cache in the given glyph range when invalidating layout.

Tasks 229
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

Laying out Glyphs

– boundingBoxForControlGlyphAtIndex:forTextContainer:proposedLineFragment:glyphPosition:characterIndex: (page
232)

Returns the bounding rectangle for the given control glyph, at the given glyph position and character
index, in the given text container.

– getLineFragmentRect:usedRect:forParagraphSeparatorGlyphRange:atProposedOrigin: (page
234)

Calculates the line fragment rectangle and line fragment used rectangle for blank lines.

– hyphenCharacterForGlyphAtIndex: (page 236)
Returns the hyphen character to be inserted after the given glyph when hyphenation is enabled in
the layout manager.

– hyphenationFactorForGlyphAtIndex: (page 235)
Returns the hyphenation factor in effect at the given glyph index.

– shouldBreakLineByHyphenatingBeforeCharacterAtIndex: (page 245)
The typesetter calls this method, if implemented by a subclass, before breaking a line by hyphenating
before the character at the given character index, enabling the subclass to control line breaking.

– shouldBreakLineByWordBeforeCharacterAtIndex: (page 246)
The typesetter calls this method, if implemented by a subclass, before breaking a line by word wrapping
before the character at the given character index, enabling the subclass to control line breaking.

– willSetLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 248)
Called by the typesetter just prior to calling
setLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 243) which stores
the actual line fragment rectangle location in the layout manager.

Interfacing with Glyph Storage

– characterRangeForGlyphRange:actualGlyphRange: (page 232)
Returns the range for the characters in the receiver’s text store that are mapped to the glyphs in the
given glyph range.

– deleteGlyphsInRange: (page 233)
Deletes the glyphs in the given glyph range from the glyph cache maintained by the layout manager.

– getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: (page 233)
Extracts the information needed to lay out the glyphs in the given glyph buffer from the given glyph
range.

– glyphRangeForCharacterRange:actualCharacterRange: (page 234)
Returns the range for the glyphs mapped to the characters of the text store in the given character
range.

– insertGlyph:atGlyphIndex:characterIndex: (page 236)
Enables the typesetter to insert a new glyph into the stream.

– setAttachmentSize:forGlyphRange: (page 240)
Sets the size the glyphs in the given glyph range (assumed to be attachments) will be asked to draw
themselves.

– setBidiLevels:forGlyphRange: (page 241)
Sets the direction of the glyphs in the given glyph range for bidirectional text to the given levels.

230 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

– setDrawsOutsideLineFragment:forGlyphRange: (page 241)
Sets a Boolean value controlling whether the glyphs in the given glyph range exceed the bounds of
the line fragment in which they are laid out.

– setLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 243)
Sets the line fragment rectangle where the glyphs in in the given glyph range are laid out to the given
line fragment rectangle.

– setLocation:withAdvancements:forStartOfGlyphRange: (page 243)
Sets the location where the glyphs in the given glyph range are laid out to the specified location.

– setNotShownAttribute:forGlyphRange: (page 244)
Sets a Boolean value controlling whether the glyphs in the given glyph rangeare not shown.

– substituteGlyphsInRange:withGlyphs: (page 246)
Replaces the glyphs in the given glyph range with the given glyphs.

– lineFragmentRectForProposedRect:remainingRect: (page 238) Deprecated in Mac OS X v10.4
This method has been deprecated. Use the NSTypesetter method
getLineFragmentRect:usedRect:remainingRect:forStartingGlyphAtIndex:proposedRect:
lineSpacing:paragraphSpacingBefore:paragraphSpacingAfter: (page 3090) instead.

Class Methods

sharedTypesetter
Returns a shared instance of NSATSTypesetter.

+ (id)sharedTypesetter

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSATSTypesetter.h

Instance Methods

attributedString
Returns the text backing store, usually an instance of NSTextStorage.

- (NSAttributedString *)attributedString

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– setAttributedString: (page 240)

Class Methods 231
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

Declared In
NSATSTypesetter.h

bidiProcessingEnabled
Returns a Boolean value indicating the bidirectional text processing setting currently in effect.

- (BOOL)bidiProcessingEnabled

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– setBidiProcessingEnabled: (page 241)

Declared In
NSATSTypesetter.h

boundingBoxForControlGlyphAtIndex:forTextContainer:proposedLineFragment:
glyphPosition:characterIndex:
Returns the bounding rectangle for the given control glyph, at the given glyph position and character index,
in the given text container.

- (NSRect)boundingBoxForControlGlyphAtIndex:(NSUInteger)glyphIndex
forTextContainer:(NSTextContainer *)textContainer
proposedLineFragment:(NSRect)proposedRect glyphPosition:(NSPoint)glyphPosition
characterIndex:(NSUInteger)charIndex

Discussion
Returns the bounding rectangle for the control glyph at glyphIndex, at the given glyphPosition and
character index charIndex, in textContainer. The proposed line fragment rectangle is specified by
proposedRect.

The typesetter calls this method when it encounters an NSControlGlyph. The default behavior is to return
zero width for control glyphs. A subclass can override this method to do something different, such as
implement a way to display control characters.

NSGlyphGenerator can choose whether or not to map control characters to NSControlGlyph. Tab characters,
for example, do not use this facility.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

characterRangeForGlyphRange:actualGlyphRange:
Returns the range for the characters in the receiver’s text store that are mapped to the glyphs in the given
glyph range.

232 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

- (NSRange)characterRangeForGlyphRange:(NSRange)glyphRange
actualGlyphRange:(NSRangePointer)actualGlyphRange

Discussion
If actualGlyphRange is non-NULL, expands the requested range as needed so that it identifies all glyphs
mapped to those characters and returns the new range by reference in actualGlyphRange.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– glyphRangeForCharacterRange:actualCharacterRange: (page 234)

Declared In
NSATSTypesetter.h

currentTextContainer
Returns the text container for the text being typeset.

- (NSTextContainer *)currentTextContainer

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

deleteGlyphsInRange:
Deletes the glyphs in the given glyph range from the glyph cache maintained by the layout manager.

- (void)deleteGlyphsInRange:(NSRange)glyphRange

Discussion
A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
insertGlyph:atGlyphIndex:characterIndex: (page 236)

Declared In
NSATSTypesetter.h

getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
Extracts the information needed to lay out the glyphs in the given glyph buffer from the given glyph range.

Instance Methods 233
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

- (NSUInteger)getGlyphsInRange:(NSRange)glyphsRange glyphs:(NSGlyph *)glyphBuffer
characterIndexes:(NSUInteger *)charIndexBuffer
glyphInscriptions:(NSGlyphInscription *)inscribeBuffer elasticBits:(BOOL
*)elasticBuffer

Discussion
The charIndexBuffer contains the original characters for the glyphs. Note that a glyph at index 1 is not
necessarily mapped to the character at index 1, since a glyph may be for a ligature or accent.

The inscribeBuffer contains the inscription attributes for each glyph, which are used to layout characters
that are combined together. The possible values are described in the “Constants” (page 1525) section of the
NSLayoutManager reference.

The elasticBuffer contains a Boolean value indicating whether a glyph is elastic for each glyph. An elastic
glyph can be made longer at the end of a line or when needed for justification.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

getLineFragmentRect:usedRect:forParagraphSeparatorGlyphRange:atProposedOrigin:
Calculates the line fragment rectangle and line fragment used rectangle for blank lines.

- (void)getLineFragmentRect:(NSRect *)lineFragmentRect usedRect:(NSRect
*)lineFragmentUsedRect
forParagraphSeparatorGlyphRange:(NSRange)paragraphSeparatorGlyphRange
atProposedOrigin:(NSPoint)lineOrigin

Discussion
The method returns the calculated line fragment rectangle in lineFragmentRect, and it returns the used
rectangle (the portion of the line fragment rectangle that actually contains marks) in lineFragmentUsedRect.
The paragraphSeparatorGlyphRange is the range of glyphs under consideration, and lineOrigin is the
origin point of the line fragment rectangle. A paragraphSeparatorGlyphRange with length 0 indicates
an extra line fragment (which occurs if the last character in the paragraph is a line separator.)

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

glyphRangeForCharacterRange:actualCharacterRange:
Returns the range for the glyphs mapped to the characters of the text store in the given character range.

- (NSRange)glyphRangeForCharacterRange:(NSRange)charRange
actualCharacterRange:(NSRangePointer)actualCharRange

234 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

Discussion
If actualCharRange is non-NULL, expands the requested range as needed so that it identifies all characters
mapped to those glyphs and returns the new range by reference in actualCharRange.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– characterRangeForGlyphRange:actualGlyphRange: (page 232)

Declared In
NSATSTypesetter.h

hyphenationFactor
Returns the current hyphenation factor.

- (float)hyphenationFactor

Discussion
The hyphenation factor is a value ranging from 0.0 to 1.0 that controls when hyphenation is attempted. By
default, the value is 0.0, meaning hyphenation is off. A factor of 1.0 causes hyphenation to be attempted
always.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– setHyphenationFactor: (page 242)

Declared In
NSATSTypesetter.h

hyphenationFactorForGlyphAtIndex:
Returns the hyphenation factor in effect at the given glyph index.

- (float)hyphenationFactorForGlyphAtIndex:(NSUInteger)glyphIndex

Discussion
The hyphenation factor is a value ranging from 0.0 to 1.0 that controls when hyphenation is attempted. By
default, the value is 0.0, meaning hyphenation is off. A factor of 1.0 causes hyphenation to be attempted
always.

The typesetter calls this method with a proposed hyphenation point for a line break to find the hyphenation
factor in effect at that time. A subclass can override this method to customize the text layout process.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Instance Methods 235
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

See Also
– hyphenCharacterForGlyphAtIndex: (page 236)

Declared In
NSATSTypesetter.h

hyphenCharacterForGlyphAtIndex:
Returns the hyphen character to be inserted after the given glyph when hyphenation is enabled in the layout
manager.

- (UTF32Char)hyphenCharacterForGlyphAtIndex:(NSUInteger)glyphIndex

Discussion
The typesetter calls this method before hyphenating. A subclass can override this method to return a different
hyphen glyph.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– hyphenationFactorForGlyphAtIndex: (page 235)

Declared In
NSATSTypesetter.h

insertGlyph:atGlyphIndex:characterIndex:
Enables the typesetter to insert a new glyph into the stream. (Available in Mac OS X v10.3 through Mac OS
X v10.3.)

- (void)insertGlyph:(NSGlyph)glyph atGlyphIndex:(NSUInteger)glyphIndex
characterIndex:(NSUInteger)charIndex

Discussion
Inserts glyph into the glyph cache at glyphIndex and maps it to the character at charIndex. If the glyph
is mapped to several characters, charIndex should indicate the first character to which it’s mapped.

The standard typesetter uses this method for inserting hyphenation glyphs. Because this method keeps the
glyph caches synchronized, subclasses should always use this method to insert glyphs instead of calling
layoutManager (page 237) directly.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3 through Mac OS X v10.3.

Declared In
NSATSTypesetter.h

236 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

layoutManager
Returns the layout manager for the text being typeset.

- (NSLayoutManager *)layoutManager

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

layoutParagraphAtPoint:
Lays out glyphs in the current glyph range until the next paragraph separator is reached.

- (NSUInteger)layoutParagraphAtPoint:(NSPoint *)lineFragmentOrigin

Discussion
The lineFragmentOrigin specifies the upper-left corner of line fragment rectangle. On return,
lineFragmentOrigin contains the next origin. This method returns the next glyph index. Usually it’s the
index right after the paragraph separator, but it can be inside the paragraph range if, for example, the end
of the text container is reached before the paragraph separator.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

lineFragmentPadding
Returns the current line fragment padding amount; that is, the portion on each end of the line fragment
rectangle left blank.

- (CGFloat)lineFragmentPadding

Discussion
Text is inset within the line fragment rectangle by this amount.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– setLineFragmentPadding: (page 242)

Declared In
NSATSTypesetter.h

Instance Methods 237
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

lineFragmentRectForProposedRect:remainingRect:
This method has been deprecated. Use the NSTypesetter method
getLineFragmentRect:usedRect:remainingRect:forStartingGlyphAtIndex:proposedRect:
lineSpacing:paragraphSpacingBefore:paragraphSpacingAfter: (page 3090) instead. (Deprecated
in Mac OS X v10.4.)

- (NSRect)lineFragmentRectForProposedRect:(NSRect)proposedRect
remainingRect:(NSRectPointer)remainingRect

Discussion
Returns the largest rectangle available for the proposed rectangle proposedRect. It also returns a rectangle
in remainingRect containing any remaining space, such as that left on the other side of a hole or gap in
the text container.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSATSTypesetter.h

lineSpacingAfterGlyphAtIndex:withProposedLineFragmentRect:
Returns the line spacing in effect following the specified glyph.

- (CGFloat)lineSpacingAfterGlyphAtIndex:(NSUInteger)glyphIndex
withProposedLineFragmentRect:(NSRect)rect

Discussion
The NSATSTypesetter calls this method to determine the number of points of space to include below the
descenders in the used rectangle for the proposed line fragment rectangle rect.

Line spacing, also called leading, is an attribute of NSParagraphStyle, which you can set on an
NSMutableParagraphStyle object. A font typically includes a default minimum line spacing metric used if
none is set in the paragraph style.

If the typesetter behavior specified in the NSLayoutManager is NSTypesetterOriginalBehavior, the text
system uses the original, private typesetter NSSimpleHorizontalTypesetter, which adds the line spacing above
the ascender. Similarly, NSATSTypesetter adds the line spacing above the ascender if the value is negative.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

paragraphGlyphRange
Returns the glyph range currently being processed.

- (NSRange)paragraphGlyphRange

238 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– setParagraphGlyphRange:separatorGlyphRange: (page 244)
– paragraphSeparatorGlyphRange (page 239)

Declared In
NSATSTypesetter.h

paragraphSeparatorGlyphRange
Returns the current paragraph separator range, which is the full range that contains the current glyph range
and that extends from one paragraph separator character to the next.

- (NSRange)paragraphSeparatorGlyphRange

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– setParagraphGlyphRange:separatorGlyphRange: (page 244)
– paragraphGlyphRange (page 238)

Declared In
NSATSTypesetter.h

paragraphSpacingAfterGlyphAtIndex:withProposedLineFragmentRect:
Returns the paragraph spacing, the number of points of space added following a paragraph, which is in effect
after the specified glyph.

- (CGFloat)paragraphSpacingAfterGlyphAtIndex:(NSUInteger)glyphIndex
withProposedLineFragmentRect:(NSRect)rect

Discussion
The rect argument specifies the line fragment rectangle of the last line in the paragraph.

The typesetter adds the number of points specified in the return value to the bottom of the line fragment
rectangle specified by rect (but not to the used line fragment rectangle for that line). Paragraph spacing
added after a paragraph correlates to the value returned by the paragraphSpacing method of
NSParagraphStyle, which you can set using thesetParagraphSpacing:method of NSMutableParagraphStyle.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– paragraphSpacingBeforeGlyphAtIndex:withProposedLineFragmentRect: (page 240)

Declared In
NSATSTypesetter.h

Instance Methods 239
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

paragraphSpacingBeforeGlyphAtIndex:withProposedLineFragmentRect:
Returns the number of points of space added before a paragraph, which is in effect before the specified
glyph.

- (CGFloat)paragraphSpacingBeforeGlyphAtIndex:(NSUInteger)glyphIndex
withProposedLineFragmentRect:(NSRect)rect

Discussion
The rect argument specifies the line fragment rectangle of the first line in the paragraph.

The typesetter adds the number of points specified in the return value to the top of the line fragment rectangle
specified by rect (but not to the used line fragment rectangle for that line). Paragraph spacing added before
a paragraph correlates to the value returned by the paragraphSpacingBeforemethod of NSParagraphStyle,
which you can set using the setParagraphSpacingBefore: method of NSMutableParagraphStyle.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– paragraphSpacingAfterGlyphAtIndex:withProposedLineFragmentRect: (page 239)

Declared In
NSATSTypesetter.h

setAttachmentSize:forGlyphRange:
Sets the size the glyphs in the given glyph range (assumed to be attachments) will be asked to draw
themselves.

- (void)setAttachmentSize:(NSSize)attachmentSize forGlyphRange:(NSRange)glyphRange

Discussion
A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setAttributedString:
Sets the text backing store on which this typesetter operates.

- (void)setAttributedString:(NSAttributedString *)attrString

Discussion
The string object is not retained.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

240 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

See Also
– attributedString (page 231)

Declared In
NSATSTypesetter.h

setBidiLevels:forGlyphRange:
Sets the direction of the glyphs in the given glyph range for bidirectional text to the given levels.

- (void)setBidiLevels:(const uint8_t *)levels forGlyphRange:(NSRange)glyphRange

Discussion
The value of levels can range from 0 to 61 as defined by Unicode Standard Annex #9.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setBidiProcessingEnabled:
Sets a Boolean value controlling whether the typesetter performs bidirectional text processing.

- (void)setBidiProcessingEnabled:(BOOL)flag

Discussion
You can use this method to disable the bidirectional layout stage if you know the paragraph does not need
this stage; that is, if the characters in the backing store are in display order.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– bidiProcessingEnabled (page 232)

Declared In
NSATSTypesetter.h

setDrawsOutsideLineFragment:forGlyphRange:
Sets a Boolean value controlling whether the glyphs in the given glyph range exceed the bounds of the line
fragment in which they are laid out.

- (void)setDrawsOutsideLineFragment:(BOOL)flag forGlyphRange:(NSRange)glyphRange

Discussion
This can happen when text is set at a fixed line height. For example, if the user specifies a fixed line height
of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

Instance Methods 241
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setHardInvalidation:forGlyphRange:
Sets a Boolean value controlling whether to force the layout manager to invalidate the portion of the glyph
cache in the given glyph range when invalidating layout.

- (void)setHardInvalidation:(BOOL)flag forGlyphRange:(NSRange)glyphRange

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setHyphenationFactor:
Sets the threshold controlling when hyphenation is attempted

- (void)setHyphenationFactor:(float)factor

Discussion
The factor argument is in the range of 0.0 to 1.0. By default, the value is 0.0, meaning hyphenation is off.
A factor of 1.0 causes hyphenation to be attempted always.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– hyphenationFactor (page 235)

Declared In
NSATSTypesetter.h

setLineFragmentPadding:
Sets the amount (in points) by which text is inset within line fragment rectangles

- (void)setLineFragmentPadding:(CGFloat)padding

Discussion
Note that line fragment padding isn’t a suitable means for expressing margins; you should set the NSTextView
object’s position and size for document margins or the paragraph margin attributes for text margins.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

242 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

See Also
– lineFragmentPadding (page 237)

Declared In
NSATSTypesetter.h

setLineFragmentRect:forGlyphRange:usedRect:baselineOffset:
Sets the line fragment rectangle where the glyphs in in the given glyph range are laid out to the given line
fragment rectangle.

- (void)setLineFragmentRect:(NSRect)fragmentRect forGlyphRange:(NSRange)glyphRange
usedRect:(NSRect)usedRect baselineOffset:(CGFloat)baselineOffset

Discussion
The exact positions of the glyphs must be set after the line fragment rectangle with
setLocation:forStartOfGlyphRange:.

The usedRect argument indicates the portion of fragmentRect, in the NSTextContainer object’s coordinate
system, that actually contains glyphs or other marks that are drawn (including the text container’s line
fragment padding). The usedRect must be equal to or contained within fragmentRect. The
baselineOffset argument is the vertical distance in pixels from the line fragment origin to the baseline
on which the glyphs align.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setLocation:withAdvancements:forStartOfGlyphRange:
Sets the location where the glyphs in the given glyph range are laid out to the specified location.

- (void)setLocation:(NSPoint)location withAdvancements:(const CGFloat *)advancements
forStartOfGlyphRange:(NSRange)glyphRange

Discussion
The x-coordinate of location is expressed relative to the line fragment rectangle origin, and the y-coordinate
is expressed relative to the baseline previously specified by
setLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 243). The glyphRange
defines a series of glyphs that can be displayed with a single PostScript show operation (a nominal range).
Setting the location for a series of glyphs implies that the glyphs preceding it can’t be included in a single
show operation. The advancements argument is the nominal glyph advance width specified in the font
metric information.

Before setting the location for a glyph range, you must specify line fragment rectangle with
setLineFragmentRect:forGlyphRange:usedRect:baselineOffset:.

A subclass can override this method to interact with custom glyph storage.

Instance Methods 243
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setNotShownAttribute:forGlyphRange:
Sets a Boolean value controlling whether the glyphs in the given glyph rangeare not shown.

- (void)setNotShownAttribute:(BOOL)flag forGlyphRange:(NSRange)glyphRange

Discussion
For example, a tab or newline character doesn’t leave any marks; it just indicates where following glyphs are
laid out.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setParagraphGlyphRange:separatorGlyphRange:
Sets the current glyph range being processed and the paragraph separator glyph range (the range of the
paragraph separator character or characters).

- (void)setParagraphGlyphRange:(NSRange)paragraphRange
separatorGlyphRange:(NSRange)paragraphSeparatorRange

Parameters
paragraphRange

The glyph range that becomes current.

paragraphSeparatorRange
The paragraph separator glyph range that becomes current.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– paragraphGlyphRange (page 238)
– paragraphSeparatorGlyphRange (page 239)

Declared In
NSATSTypesetter.h

setTypesetterBehavior:
Sets the default typesetter behavior, which affects glyph spacing and line height.

244 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

- (void)setTypesetterBehavior:(NSTypesetterBehavior)behavior

Discussion
The possible values forbehavior are described in the “Constants” (page 1525) section of the NSLayoutManager
reference.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– typesetterBehavior (page 247)

Declared In
NSATSTypesetter.h

setUsesFontLeading:
Sets a Boolean value controlling whether the typesetter uses the leading (or line gap) value specified in the
font metric information.

- (void)setUsesFontLeading:(BOOL)flag

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– usesFontLeading (page 247)

Declared In
NSATSTypesetter.h

shouldBreakLineByHyphenatingBeforeCharacterAtIndex:
The typesetter calls this method, if implemented by a subclass, before breaking a line by hyphenating before
the character at the given character index, enabling the subclass to control line breaking.

- (BOOL)shouldBreakLineByHyphenatingBeforeCharacterAtIndex:(NSUInteger)charIndex

Discussion
A subclass can override this method to customize the text layout process. If the method returns NO, the
typesetter continues looking for a break point.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– shouldBreakLineByWordBeforeCharacterAtIndex: (page 246)

Declared In
NSATSTypesetter.h

Instance Methods 245
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

shouldBreakLineByWordBeforeCharacterAtIndex:
The typesetter calls this method, if implemented by a subclass, before breaking a line by word wrapping
before the character at the given character index, enabling the subclass to control line breaking.

- (BOOL)shouldBreakLineByWordBeforeCharacterAtIndex:(NSUInteger)charIndex

Discussion
A subclass can override this method to customize the text layout process. If the method returns NO, the
typesetter continues looking for a break point.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– shouldBreakLineByHyphenatingBeforeCharacterAtIndex: (page 245)

Declared In
NSATSTypesetter.h

substituteFontForFont:
Returns a screen font suitable for use in place of the specified original font, or simply returns the original
font if a screen font can’t be used or isn’t available.

- (NSFont *)substituteFontForFont:(NSFont *)originalFont

Discussion
A screen font can be substituted if the receiver is set to use screen fonts and if no NSTextView associated
with the receiver is scaled or rotated.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

substituteGlyphsInRange:withGlyphs:
Replaces the glyphs in the given glyph range with the given glyphs.

- (void)substituteGlyphsInRange:(NSRange)glyphRange withGlyphs:(NSGlyph *)glyphs

Discussion
This method does not alter the glyph-to-character mapping or invalidate layout information.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSATSTypesetter.h

246 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

textTabForGlyphLocation:writingDirection:maxLocation:
Returns the text tab next closest to a given glyph location, indexing in the specified direction but not beyond
a given glyph location.

- (NSTextTab *)textTabForGlyphLocation:(CGFloat)glyphLocation
writingDirection:(NSWritingDirection)direction maxLocation:(CGFloat)maxLocation

Discussion
The typesetter calls this method whenever it finds a tab character. To determine the width to advance the
next glyph, the typesetter examines the NSParagraphStyle tab array and the default tab interval.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

typesetterBehavior
Returns the current typesetter behavior value.

- (NSTypesetterBehavior)typesetterBehavior

Discussion
The possible return values are described in the “Constants” (page 1525) section of the NSLayoutManager
reference.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– setTypesetterBehavior: (page 244)

Declared In
NSATSTypesetter.h

usesFontLeading
Returns a Boolean value indicating whether the typesetter uses the leading (or line gap) value specified in
the font metric information of the current font.

- (BOOL)usesFontLeading

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
– setUsesFontLeading: (page 245)

Declared In
NSATSTypesetter.h

Instance Methods 247
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

willSetLineFragmentRect:forGlyphRange:usedRect:baselineOffset:
Called by the typesetter just prior to calling
setLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 243) which stores the
actual line fragment rectangle location in the layout manager.

- (void)willSetLineFragmentRect:(NSRect *)lineRect forGlyphRange:(NSRange)glyphRange
usedRect:(NSRect *)usedRect baselineOffset:(CGFloat *)baselineOffset

Discussion
The lineRect argument is the rectangle in which the glyphs in glyphRange are laid out. The usedRect
argument indicates the portion of lineRect, in the NSTextContainer object’s coordinate system, that actually
contains glyphs or other marks that are drawn (including the text container’s line fragment padding). The
usedRect must be equal to or contained within lineRect. The baselineOffset argument is the vertical
distance in pixels from the line fragment origin to the baseline on which the glyphs align.

A subclass can override this method to customize the text layout process. For example, it could change the
shape of the line fragment rectangle. The subclass is responsible for ensuring that the modified rectangle
remains valid (for example, that it lies within the text container).

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

248 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

Inherits from NSObject

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSAttributedString.h
AppKit/NSStringDrawing.h
AppKit/NSTextAttachment.h

Companion guide Attributed String Programming Guide

Overview

The Application Kit extends Foundation’s NSAttributedString class by adding support for RTF (with or
without attachments), graphics attributes (including font and ruler attributes), methods for drawing attributed
strings, and methods for calculating significant linguistic units.

Tasks

Creating an NSAttributedString

+ attributedStringWithAttachment: (page 252)
Creates an attributed string with an attachment.

– initWithData:options:documentAttributes:error: (page 260)
Initializes and returns a new NSAttributedString object from the data contained in the given
NSData object.

– initWithDocFormat:documentAttributes: (page 261)
Initializes and returns a new NSAttributedString object from Microsoft Word format data contained
in the given NSData object.

– initWithHTML:documentAttributes: (page 261)
Initializes and returns a new NSAttributedString object from HTML contained in the given data
object.

– initWithHTML:baseURL:documentAttributes: (page 261)
Initializes and returns a new NSAttributedString object from the HTML contained in the given
object and base URL.

– initWithHTML:options:documentAttributes: (page 262)
Initializes and returns a new NSAttributedString object from HTML contained in the given data
object.

Overview 249
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions
Reference

– initWithPath:documentAttributes: (page 262)
Initializes a new NSAttributedString object from RTF or RTFD data contained in the file at the
given path.

– initWithRTF:documentAttributes: (page 263)
Initializes a new NSAttributedString object by decoding the stream of RTF commands and data
contained in the given data object.

– initWithRTFD:documentAttributes: (page 263)
Initializes a new NSAttributedString object by decoding the stream of RTFD commands and data
contained in the given data object.

– initWithRTFDFileWrapper:documentAttributes: (page 263)
Initializes a new NSAttributedString object from the given NSFileWrapper object containing
an RTFD document.

– initWithURL:documentAttributes: (page 264)
Initializes a new NSAttributedString object from the data at the given URL.

– initWithURL:options:documentAttributes:error: (page 264)
Initializes a new NSAttributedString object from the contents of the given URL.

Retrieving Font Attribute Information

– containsAttachments (page 256)
Returns YES if the receiver contains any attachment attributes, NO otherwise.

– fontAttributesInRange: (page 260)
Returns the font attributes in effect for the character at the given location.

– rulerAttributesInRange: (page 269)
Returns the ruler (paragraph) attributes in effect for the characters within the given range.

Calculating Linguistic Units

– URLAtIndex:effectiveRange: (page 270)
Returns a URL, either from a link attribute or from text at the given location that appears to be a URL
string, for use in automatic link detection.

– doubleClickAtIndex: (page 257)
Returns the range of characters that form a word (or other linguistic unit) surrounding the given index,
taking language characteristics into account.

– lineBreakBeforeIndex:withinRange: (page 265)
Returns the index of the closest character before the given index, and within the given range, that
can be placed on a new line when laying out text.

– lineBreakByHyphenatingBeforeIndex:withinRange: (page 265)
Returns the index of the closest character before the given index, and within the given range, that
can be placed on a new line by hyphenating.

– nextWordFromIndex:forward: (page 266)
Returns the index of the first character of the word after or before the given index.

250 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Calculating Ranges

– itemNumberInTextList:atIndex: (page 265)
Returns the range of the item at the given index within the given list.

– rangeOfTextBlock:atIndex: (page 266)
Returns the range of the individual text block that contains the given location.

– rangeOfTextList:atIndex: (page 267)
Returns the range of the given text list that contains the given location.

– rangeOfTextTable:atIndex: (page 267)
Returns the range of the given text table that contains the given location

Generating Data

– dataFromRange:documentAttributes:error: (page 256)
Returns an NSData object that contains a text stream corresponding to the characters and attributes
within the given range.

– fileWrapperFromRange:documentAttributes:error: (page 259)
Returns an NSFileWrapper object that contains a text stream corresponding to the characters and
attributes within the given range.

– docFormatFromRange:documentAttributes: (page 257)
Returns an NSData object that contains a Microsoft Word–format stream corresponding to the
characters and attributes within the specified range.

– RTFFromRange:documentAttributes: (page 269)
Returns an NSData object that contains an RTF stream corresponding to the characters and attributes
within the given range, omitting all attachment attributes.

– RTFDFromRange:documentAttributes: (page 268)
Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes
within aRange.

– RTFDFileWrapperFromRange:documentAttributes: (page 268)
Returns an NSFileWrapper object that contains an RTFD document corresponding to the characters
and attributes within the given range.

Drawing the String

– drawAtPoint: (page 257)
Draws the receiver with its font and other display attributes at the given point in the currently focused
NSView.

– drawInRect: (page 258)
Draws the receiver with its font and other display attributes within the given rectangle in the currently
focused NSView, clipping the text layout to this rectangle.

– drawWithRect:options: (page 259)
Draws the receiver with the specified options, within the given rectangle in the current graphics
context.

– size (page 270)
Returns the bounding box of the marks that the receiver draws.

Tasks 251
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Getting the Bounding Rectangle of Rendered Strings

– boundingRectWithSize:options: (page 255)
Calculates and returns bounding rectangle for the receiver drawn using the options specified, within
the given rectangle in the current graphics context.

Testing String Data Sources

+ textTypes (page 254)
Returns an array of UTI strings identifying the file types supported by the receiver, either directly or
through a user-installed filter service.

+ textUnfilteredTypes (page 255)
Returns an array of UTI strings identifying the file types supported directly by the receiver.

Deprecated Methods

+ textFileTypes (page 253) Deprecated in Mac OS X v10.5
Returns an array of strings representing those file types that can be loaded as text. (Deprecated. Use
textTypes (page 254) instead.)

+ textPasteboardTypes (page 253) Deprecated in Mac OS X v10.5
Returns an array of pasteboard types that can be loaded as text. (Deprecated. Use textTypes (page
254) instead.)

+ textUnfilteredFileTypes (page 254) Deprecated in Mac OS X v10.5
Returns an array of strings representing those file types that can be loaded as a text. (Deprecated.
Use textUnfilteredTypes (page 255) instead.)

+ textUnfilteredPasteboardTypes (page 255) Deprecated in Mac OS X v10.5
Returns an array of pasteboard types that can be loaded as text. (Deprecated. Use
textUnfilteredTypes (page 255) instead.)

Class Methods

attributedStringWithAttachment:
Creates an attributed string with an attachment.

+ (NSAttributedString *)attributedStringWithAttachment:(NSTextAttachment *)attachment

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes

Declared In
NSTextAttachment.h

252 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

textFileTypes
Returns an array of strings representing those file types that can be loaded as text. (Deprecated in Mac OS
X v10.5. Use textTypes (page 254) instead.)

+ (NSArray *)textFileTypes

Discussion
This list includes all file types supported by text classes, plus those types that can be converted to supported
file types through a user-installed filter service. The array returned by this method may be passed directly to
NSOpenPanel method runModalForTypes: (page 1821).

File types are identified by extension and HFS file types. By default, the list returned by this method includes
“txt”, “rtf”, “rtfd”, and “html”.

When creating a subclass of NSAttributedString that accepts text data from non-default file types, override
textUnfilteredFileTypes (page 254) to notify NSAttributedString of the file types your class supports.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.5.

See Also
+ textUnfilteredFileTypes (page 254)

Declared In
NSAttributedString.h

textPasteboardTypes
Returns an array of pasteboard types that can be loaded as text. (Deprecated in Mac OS X v10.5. Use
textTypes (page 254) instead.)

+ (NSArray *)textPasteboardTypes

Discussion
This list includes all pasteboard types supported by text classes and those that can be converted to supported
pasteboard types through a user-installed filter service.

By default, the list returned by this method includes NSHTMLPboardType, NSRTFPboardType,
NSRTFDPboardType, and NSStringPboardType.

When creating a subclass of NSAttributedString that accepts text data from non-default pasteboard
types, override textUnfilteredPasteboardTypes (page 255) to notify NSAttributedString of the
pasteboard types your class supports.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.5.

See Also
+ textUnfilteredPasteboardTypes (page 255)

Class Methods 253
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Related Sample Code
GLUT

Declared In
NSAttributedString.h

textTypes
Returns an array of UTI strings identifying the file types supported by the receiver, either directly or through
a user-installed filter service.

+ (NSArray *)textTypes

Return Value
An array of NSString objects, each of which contains a UTI identifying a supported file type.

Discussion
The returned list includes UTIs all file types supported by the receiver plus those that can be opened by the
receiver after being converted by a user-installed filter service. You can use the returned UTI strings with any
method that supports UTIs.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAttributedString.h

textUnfilteredFileTypes
Returns an array of strings representing those file types that can be loaded as a text. (Deprecated in Mac OS
X v10.5. Use textUnfilteredTypes (page 255) instead.)

+ (NSArray *)textUnfilteredFileTypes

Discussion
This list consists of all file types supported by text classes, but does not include those types that can be
converted to supported file types through a user-installed filter service. The array returned by this method
may be passed directly to NSOpenPanel method runModalForTypes: (page 1821).

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.5.

See Also
+ textFileTypes (page 253)

Declared In
NSAttributedString.h

254 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

textUnfilteredPasteboardTypes
Returns an array of pasteboard types that can be loaded as text. (Deprecated in Mac OS X v10.5. Use
textUnfilteredTypes (page 255) instead.)

+ (NSArray *)textUnfilteredPasteboardTypes

Discussion
This list consists of all pasteboard types supported by text classes, but does not include those that can be
converted to supported pasteboard types through a user-installed filter service.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.5.

See Also
+ textPasteboardTypes (page 253)

Declared In
NSAttributedString.h

textUnfilteredTypes
Returns an array of UTI strings identifying the file types supported directly by the receiver.

+ (NSArray *)textUnfilteredTypes

Return Value
An array of NSString objects, each of which contains a UTI identifying a supported file type.

Discussion
The returned list includes UTI strings only for those file types that are supported directly by the receiver. It
does not include types that are supported through user-installed filter services. You can use the returned
UTI strings with any method that supports UTIs.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAttributedString.h

Instance Methods

boundingRectWithSize:options:
Calculates and returns bounding rectangle for the receiver drawn using the options specified, within the
given rectangle in the current graphics context.

- (NSRect)boundingRectWithSize:(NSSize)size options:(NSStringDrawingOptions)options

Discussion
The origin of the rectangle returned from this method is the first glyph origin.

Instance Methods 255
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

The values of NSStringDrawingOptions are listed in the String Drawing Options (page 2585) section
of NSString Additions.

Availability
Available in Mac OS X v10.4 and later.

See Also
– drawInRect: (page 258)

Declared In
NSStringDrawing.h

containsAttachments
Returns YES if the receiver contains any attachment attributes, NO otherwise.

- (BOOL)containsAttachments

Discussion
This method checks only for attachment attributes, not for NSAttachmentCharacter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

dataFromRange:documentAttributes:error:
Returns an NSData object that contains a text stream corresponding to the characters and attributes within
the given range.

- (NSData *)dataFromRange:(NSRange)range documentAttributes:(NSDictionary *)dict
error:(NSError **)error

Discussion
Requires a document attributes dictionarydict specifying at least theNSDocumentTypeDocumentAttribute
to determine the format to write. Raises an NSRangeException if any part of range lies beyond the end of
the receiver’s characters. If unsuccessful, returns nil after setting error to point to an NSError object that
encapsulates the reason why the object could not be created.

Availability
Available in Mac OS X v10.4 and later.

See Also
– fileWrapperFromRange:documentAttributes:error: (page 259)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSAttributedString.h

256 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

docFormatFromRange:documentAttributes:
Returns an NSData object that contains a Microsoft Word–format stream corresponding to the characters
and attributes within the specified range.

- (NSData *)docFormatFromRange:(NSRange)range documentAttributes:(NSDictionary
*)dict

Discussion
The range is passed in the range parameter. Also writes the document-level attributes in dict, as explained
in “Constants” (page 271). If there are no document-level attributes, dict can be nil. Raises an
NSRangeException if any part of range lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAttributedString.h

doubleClickAtIndex:
Returns the range of characters that form a word (or other linguistic unit) surrounding the given index, taking
language characteristics into account.

- (NSRange)doubleClickAtIndex:(NSUInteger)index

Discussion
Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextWordFromIndex:forward: (page 266)

Declared In
NSAttributedString.h

drawAtPoint:
Draws the receiver with its font and other display attributes at the given point in the currently focused
NSView.

- (void)drawAtPoint:(NSPoint)point

Discussion
The width (height for vertical layout) of the rendering area is unlimited, unlike drawInRect: (page 258),
which uses a bounding rectangle. As a result, this method renders the text in a single line.

Don’t invoke this method while no NSView is focused.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 257
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

See Also
– lockFocus (page 3187) (NSView)
– size (page 270)
– drawInRect: (page 258)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CocoaVideoFrameToGWorld
ComplexBrowser
FunHouse
Movie Overlay

Declared In
NSStringDrawing.h

drawInRect:
Draws the receiver with its font and other display attributes within the given rectangle in the currently focused
NSView, clipping the text layout to this rectangle.

- (void)drawInRect:(NSRect)rect

Discussion
Text is drawn within rect according to its line sweep direction; for example, Arabic text will begin at the
right edge and potentially be clipped on the left.

The rect parameter determines how many glyphs are typeset within the width of a line, but it’s possible for
a portion of a glyph to appear outside the area of rect if the image bounding box of the particular glyph
exceeds its typographic bounding box.

If the focus view is flipped, the text origin is set at the upper-left corner of the drawing bounding box;
otherwise the origin is set at the lower-left corner. For text rendering, whether the view coordinates are
flipped or not doesn't affect the flow of line layout, which goes from top to bottom. However, it affects the
interpretation of the text origin. So, for example, if the rect argument is {0.0, 0.0, 100.0, 100.0},
the text origin is {0.0, 0.0} when the view coordinates are flipped and {0.0, 100.0} when not.

Don’t invoke this method while no NSView is focused.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lockFocus (page 3187) (NSView)
– drawAtPoint: (page 257)

Related Sample Code
CIAnnotation
IBFragmentView
iChatTheater
PhotoSearch

258 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Declared In
NSStringDrawing.h

drawWithRect:options:
Draws the receiver with the specified options, within the given rectangle in the current graphics context.

- (void)drawWithRect:(NSRect)rect options:(NSStringDrawingOptions)options

Discussion
The rect argument's origin field specifies the rendering origin. The point is interpreted as the baseline origin
by default. With NSStringDrawingUsesLineFragmentOrigin, it is interpreted as the upper left corner
of the line fragment rect. The size field specifies the text container size. The width part of the size field specifies
the maximum line fragment width if larger than 0.0. The height defines the maximum size that can be
occupied with text if larger than 0.0 and NSStringDrawingUsesLineFragmentOrigin is specified. If
NSStringDrawingUsesLineFragmentOrigin is not specified, height is ignored and considered to be
single-line rendering (NSLineBreakByWordWrapping and NSLineBreakByCharWrapping are treated as
NSLineBreakByClipping).

The values of NSStringDrawingOptions are listed in the String Drawing Options (page 2585) section
of NSString Additions.

You should only invoke this method when there is a current graphics context.

Availability
Available in Mac OS X v10.4 and later.

See Also
– drawAtPoint: (page 257) (NSView)
– lockFocus (page 3187)

Declared In
NSStringDrawing.h

fileWrapperFromRange:documentAttributes:error:
Returns an NSFileWrapper object that contains a text stream corresponding to the characters and attributes
within the given range.

- (NSFileWrapper *)fileWrapperFromRange:(NSRange)range
documentAttributes:(NSDictionary *)dict error:(NSError **)error

Discussion
Requires a document attributes dictionarydict specifying at least theNSDocumentTypeDocumentAttribute
to determine the format to write. Raises an NSRangeException if any part of range lies beyond the end of
the receiver’s characters. Returns a directory file wrapper for those document types for which it is appropriate;
otherwise a regular file wrapper. If unsuccessful, returns nil after setting error to point to an NSError
object that encapsulates the reason why the object could not be created.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 259
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

See Also
– dataFromRange:documentAttributes:error: (page 256)

Declared In
NSAttributedString.h

fontAttributesInRange:
Returns the font attributes in effect for the character at the given location.

- (NSDictionary *)fontAttributesInRange:(NSRange)aRange

Discussion
Returns the font attributes in effect for the character at aRange.location. Font attributes are all those
listed in “Standard Attributes” (page 271), except NSLinkAttributeName,
NSParagraphStyleAttributeName, and NSAttachmentAttributeName. Use this method to obtain font
attributes that are to be copied or pasted with “copy font” operations. Raises an NSRangeException if any
part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rulerAttributesInRange: (page 269)

Declared In
NSAttributedString.h

initWithData:options:documentAttributes:error:
Initializes and returns a new NSAttributedString object from the data contained in the given NSData
object.

- (id)initWithData:(NSData *)data options:(NSDictionary *)options
documentAttributes:(NSDictionary **)dict error:(NSError **)error

Discussion
The options dictionary can contain the values described in “Option keys for importing documents” (page
285) to specify how the document should be loaded. If NSDocumentTypeDocumentOption is specified, the
document is treated as being in the specified format. If NSDocumentTypeDocumentOption is not specified,
the method examines the document and loads it using whatever format it seems to contain. Also returns by
reference in dict a dictionary containing document-level attributes described in “Constants” (page 271). The
dict parameter may be nil, in which case no document attributes are returned. Returns nil if data can’t
be decoded, after setting error to point to an NSError that encapsulates the reason why the attributed
string object could not be created.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreRecipes

260 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Declared In
NSAttributedString.h

initWithDocFormat:documentAttributes:
Initializes and returns a new NSAttributedString object from Microsoft Word format data contained in
the given NSData object.

- (id)initWithDocFormat:(NSData *)data documentAttributes:(NSDictionary
**)docAttributes

Discussion
Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Document Attributes” (page 279). docAttributes may be NULL, in which case no document attributes
are returned. Returns nil if data can’t be decoded.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAttributedString.h

initWithHTML:baseURL:documentAttributes:
Initializes and returns a new NSAttributedString object from the HTML contained in the given object
and base URL.

- (id)initWithHTML:(NSData *)data baseURL:(NSURL *)aURL
documentAttributes:(NSDictionary **)docAttributes

Discussion
Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Document Attributes” (page 279). docAttributes may be NULL, in which case no document attributes
are returned. Returns an initialized object, or nil if the file at aURL can’t be decoded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

initWithHTML:documentAttributes:
Initializes and returns a new NSAttributedString object from HTML contained in the given data object.

- (id)initWithHTML:(NSData *)data documentAttributes:(NSDictionary **)docAttributes

Discussion
Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Document Attributes” (page 279). docAttributes may be NULL, in which case no document attributes
are returned. Returns nil if data can’t be decoded.

Instance Methods 261
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ObjectPath

Declared In
NSAttributedString.h

initWithHTML:options:documentAttributes:
Initializes and returns a new NSAttributedString object from HTML contained in the given data object.

- (id)initWithHTML:(NSData *)data options:(NSDictionary *)options
documentAttributes:(NSDictionary **)dict

Discussion
The options dictionary can contain the values described in “Option keys for importing documents” (page
285).

Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Document Attributes” (page 279). docAttributes may be NULL, in which case no document attributes
are returned. Returns nil if data can’t be decoded.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAttributedString.h

initWithPath:documentAttributes:
Initializes a new NSAttributedString object from RTF or RTFD data contained in the file at the given path.

- (id)initWithPath:(NSString *)path documentAttributes:(NSDictionary **)docAttributes

Discussion
The contents of path will be examined to best load the file in whatever format it’s in. Filter services can be
used to convert the file into a format recognized by Cocoa. Also returns by reference in docAttributes a
dictionary containing document-level attributes described in “Document Attributes” (page 279).
docAttributes may be NULL, in which case no document attributes are returned. Returns an initialized
object, or nil if the file at path can’t be decoded.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DemoAssistant
FancyAbout
iSpend
VertexPerformanceTest

262 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Declared In
NSAttributedString.h

initWithRTF:documentAttributes:
Initializes a new NSAttributedString object by decoding the stream of RTF commands and data contained
in the given data object.

- (id)initWithRTF:(NSData *)rtfData documentAttributes:(NSDictionary **)docAttributes

Discussion
Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Document Attributes” (page 279). docAttributes may be NULL, in which case no document attributes
are returned. Returns an initialized object, or nil if rtfData can’t be decoded.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
iSpend
Spotlight

Declared In
NSAttributedString.h

initWithRTFD:documentAttributes:
Initializes a new NSAttributedString object by decoding the stream of RTFD commands and data contained
in the given data object.

- (id)initWithRTFD:(NSData *)rtfdData documentAttributes:(NSDictionary
**)docAttributes

Discussion
Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Constants” (page 271). docAttributesmay be NULL, in which case no document attributes are returned.
Returns an initialized object, or nil if rtfData can’t be decoded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

initWithRTFDFileWrapper:documentAttributes:
Initializes a new NSAttributedString object from the given NSFileWrapper object containing an RTFD
document.

- (id)initWithRTFDFileWrapper:(NSFileWrapper *)wrapper
documentAttributes:(NSDictionary **)docAttributes

Instance Methods 263
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Discussion
Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Document Attributes” (page 279). docAttributes may be NULL, in which case no document attributes
are returned. Returns an initialized object, or nil if wrapper can’t be interpreted as an RTFD document.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

initWithURL:documentAttributes:
Initializes a new NSAttributedString object from the data at the given URL.

- (id)initWithURL:(NSURL *)aURL documentAttributes:(NSDictionary **)docAttributes

Discussion
The contents of aURL are examined to best load the file in whatever format it’s in. Filter services can be used
to convert the file into a format recognized by Cocoa. Also returns by reference in docAttributes a dictionary
containing document-level attributes described in “Document Attributes” (page 279). docAttributes may
be NULL, in which case no document attributes are returned. Returns an initialized object, or nil if the file
at path can’t be decoded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

initWithURL:options:documentAttributes:error:
Initializes a new NSAttributedString object from the contents of the given URL.

- (id)initWithURL:(NSURL *)url options:(NSDictionary *)options
documentAttributes:(NSDictionary **)dict error:(NSError **)error

Discussion
Filter services can be used to convert the file into a format recognized by Cocoa. The options dictionary
specifies how the document should be loaded and can contain the values described in “Option keys for
importing documents” (page 285).

If NSDocumentTypeDocumentOption is specified, the document is treated as being in the specified format.
If NSDocumentTypeDocumentOption is not specified, the method examines the document and loads it
using whatever format it seems to contain.

Also returns by reference in dict a dictionary containing document-level attributes described in “Document
Attributes” (page 279). The dict parameter may be nil, in which case no document attributes are returned.
Returns an initialized object, or nil if the file at url can’t be decoded, after setting error to point to an
NSError object that encapsulates the reason why the attributed string object could not be created.

Availability
Available in Mac OS X v10.4 and later.

264 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Related Sample Code
CoreTextRTF
TextSizingExample

Declared In
NSAttributedString.h

itemNumberInTextList:atIndex:
Returns the range of the item at the given index within the given list.

- (NSInteger)itemNumberInTextList:(NSTextList *)list atIndex:(NSUInteger)location

Availability
Available in Mac OS X v10.4 and later.

See Also
– rangeOfTextBlock:atIndex: (page 266)
– rangeOfTextList:atIndex: (page 267)
– rangeOfTextTable:atIndex: (page 267)

Declared In
NSAttributedString.h

lineBreakBeforeIndex:withinRange:
Returns the index of the closest character before the given index, and within the given range, that can be
placed on a new line when laying out text.

- (NSUInteger)lineBreakBeforeIndex:(NSUInteger)index withinRange:(NSRange)aRange

Discussion
In other words, finds the appropriate line break when the character at index won’t fit on the same line as
the character at the beginning of aRange. Returns NSNotFound if no line break is possible before index.Raises
an NSRangeException if index or any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineBreakByHyphenatingBeforeIndex:withinRange: (page 265)

Declared In
NSAttributedString.h

lineBreakByHyphenatingBeforeIndex:withinRange:
Returns the index of the closest character before the given index, and within the given range, that can be
placed on a new line by hyphenating.

Instance Methods 265
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

- (NSUInteger)lineBreakByHyphenatingBeforeIndex:(NSUInteger)location
withinRange:(NSRange)aRange

Discussion
In other words, during text layout, finds the appropriate line break by hyphenation (the character index at
which the hyphen glyph should be inserted) when the character at index won’t fit on the same line as the
character at the beginning of aRange. Returns NSNotFound if no line break by hyphenation is possible before
index.Raises an NSRangeException if index or any part of aRange lies beyond the end of the receiver’s
characters.

Availability
Available in Mac OS X v10.3 and later.

See Also
– lineBreakBeforeIndex:withinRange: (page 265)

Declared In
NSAttributedString.h

nextWordFromIndex:forward:
Returns the index of the first character of the word after or before the given index.

- (NSUInteger)nextWordFromIndex:(NSUInteger)index forward:(BOOL)flag

Discussion
If flag is YES, this is the first character after index that begins a word; if flag is NO, it’s the first character
before index that begins a word, whether index is located within a word or not. If index lies at either end
of the string and the search direction would progress past that end, it’s returned unchanged. This method
is intended for moving the insertion point during editing, not for linguistic analysis or parsing of text.Raises
an NSRangeException if index lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineBreakBeforeIndex:withinRange: (page 265)

Declared In
NSAttributedString.h

rangeOfTextBlock:atIndex:
Returns the range of the individual text block that contains the given location.

- (NSRange)rangeOfTextBlock:(NSTextBlock *)block atIndex:(NSUInteger)location

Discussion
The individual text is given by block and contains location.

Availability
Available in Mac OS X v10.4 and later.

266 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

See Also
– itemNumberInTextList:atIndex: (page 265)
– rangeOfTextList:atIndex: (page 267)
– rangeOfTextTable:atIndex: (page 267)

Related Sample Code
iSpend

Declared In
NSAttributedString.h

rangeOfTextList:atIndex:
Returns the range of the given text list that contains the given location.

- (NSRange)rangeOfTextList:(NSTextList *)list atIndex:(NSUInteger)location

Discussion
Returns the range of the list that contains location.

Availability
Available in Mac OS X v10.4 and later.

See Also
– itemNumberInTextList:atIndex: (page 265)
– rangeOfTextBlock:atIndex: (page 266)
– rangeOfTextTable:atIndex: (page 267)

Declared In
NSAttributedString.h

rangeOfTextTable:atIndex:
Returns the range of the given text table that contains the given location

- (NSRange)rangeOfTextTable:(NSTextTable *)table atIndex:(NSUInteger)location

Discussion
Returns the range of the text table that contains location.

Availability
Available in Mac OS X v10.4 and later.

See Also
– itemNumberInTextList:atIndex: (page 265)
– rangeOfTextList:atIndex: (page 267)
– rangeOfTextBlock:atIndex: (page 266)

Related Sample Code
iSpend

Instance Methods 267
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Declared In
NSAttributedString.h

RTFDFileWrapperFromRange:documentAttributes:
Returns an NSFileWrapper object that contains an RTFD document corresponding to the characters and
attributes within the given range.

- (NSFileWrapper *)RTFDFileWrapperFromRange:(NSRange)aRange
documentAttributes:(NSDictionary *)docAttributes

Discussion
The file wrapper also includes the document-level attributes in docAttributes, as explained in RTF Files
and Attributed Strings. If there are no document-level attributes, docAttributes can be nil. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.You can save the
file wrapper using the NSFileWrapper method writeToFile:atomically:updateFilenames: (page
1137).

Availability
Available in Mac OS X v10.0 and later.

See Also
– RTFFromRange:documentAttributes: (page 269)
– RTFDFromRange:documentAttributes: (page 268)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSAttributedString.h

RTFDFromRange:documentAttributes:
Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes within
aRange.

- (NSData *)RTFDFromRange:(NSRange)aRange documentAttributes:(NSDictionary
*)docAttributes

Discussion
Also writes the document-level attributes in docAttributes, as explained in RTF Files and Attributed Strings.
If there are no document-level attributes, docAttributes can be nil. Raises an NSRangeException if any
part of aRange lies beyond the end of the receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to the
NSPasteboardmethod setData:forType: (page 1898), with a second argument of NSRTFDPboardType.

Availability
Available in Mac OS X v10.0 and later.

See Also
– RTFFromRange:documentAttributes: (page 269)
– RTFDFileWrapperFromRange:documentAttributes: (page 268)

268 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Related Sample Code
DemoAssistant
GLUT

Declared In
NSAttributedString.h

RTFFromRange:documentAttributes:
Returns an NSData object that contains an RTF stream corresponding to the characters and attributes within
the given range, omitting all attachment attributes.

- (NSData *)RTFFromRange:(NSRange)aRange documentAttributes:(NSDictionary
*)docAttributes

Discussion
Also writes the document-level attributes in docAttributes, as explained in RTF Files and Attributed Strings.
If there are no document-level attributes, docAttributes can be nil. Raises an NSRangeException if any
part of aRange lies beyond the end of the receiver’s characters.When writing data to the pasteboard, you
can use the NSData object as the first argument to the NSPasteboard method setData:forType: (page
1898), with a second argument of NSRTFPboardType. Although this method strips attachments, it leaves the
attachment characters in the text itself. The NSTextmethod RTFFromRange: (page 2732), on the other hand,
does strip attachment characters when extracting RTF.

Availability
Available in Mac OS X v10.0 and later.

See Also
– RTFDFromRange:documentAttributes: (page 268)
– RTFDFileWrapperFromRange:documentAttributes: (page 268)

Related Sample Code
CoreRecipes
VertexPerformanceTest

Declared In
NSAttributedString.h

rulerAttributesInRange:
Returns the ruler (paragraph) attributes in effect for the characters within the given range.

- (NSDictionary *)rulerAttributesInRange:(NSRange)aRange

Discussion
The only ruler attribute currently defined is that named by NSParagraphStyleAttributeName. Use this
method to obtain attributes that are to be copied or pasted with “copy ruler” operations. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 269
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

See Also
– fontAttributesInRange: (page 260)

Declared In
NSAttributedString.h

size
Returns the bounding box of the marks that the receiver draws.

- (NSSize)size

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawAtPoint: (page 257)
– drawInRect: (page 258)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CIAnnotation
ComplexBrowser
IBFragmentView
PhotoSearch

Declared In
NSStringDrawing.h

URLAtIndex:effectiveRange:
Returns a URL, either from a link attribute or from text at the given location that appears to be a URL string,
for use in automatic link detection.

- (NSURL *)URLAtIndex:(NSUInteger)location
effectiveRange:(NSRangePointer)effectiveRange

Parameters
location

The character index in the string at which the method checks for a link.

effectiveRange
The actual range covered by the link attribute or URL string, or of non-URL text if no apparent URL is
found.

Return Value
The URL found at location.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAttributedString.h

270 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Constants

Standard Attributes
Attributed strings support the following standard attributes for text. If the key is not in the dictionary, then
use the default values described below.

NSString *NSFontAttributeName;
NSString *NSParagraphStyleAttributeName;
NSString *NSForegroundColorAttributeName;
NSString *NSUnderlineStyleAttributeName;
NSString *NSSuperscriptAttributeName;
NSString *NSBackgroundColorAttributeName;
NSString *NSAttachmentAttributeName;
NSString *NSLigatureAttributeName;
NSString *NSBaselineOffsetAttributeName;
NSString *NSKernAttributeName;
NSString *NSLinkAttributeName;
NSString *NSStrokeWidthAttributeName;
NSString *NSStrokeColorAttributeName;
NSString *NSUnderlineColorAttributeName;
NSString *NSStrikethroughStyleAttributeName;
NSString *NSStrikethroughColorAttributeName;
NSString *NSShadowAttributeName;
NSString *NSObliquenessAttributeName;
NSString *NSExpansionAttributeName;
NSString *NSCursorAttributeName;
NSString *NSToolTipAttributeName;
NSString *NSMarkedClauseSegmentAttributeName;
NSString *NSWritingDirectionAttributeName;

Constants
NSFontAttributeName

NSFont

Default Helvetica 12-point

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSParagraphStyleAttributeName
NSParagraphStyle

Default as returned by the NSParagraphStyle method defaultParagraphStyle

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSForegroundColorAttributeName
NSColor

Default blackColor

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

Constants 271
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSUnderlineStyleAttributeName
NSNumber containing integer

Default 0, no underline. See “Underlining Patterns” (page 275), “Underlining Styles” (page
274), and “Underline Masks” (page 276) for mask values.

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSSuperscriptAttributeName
NSNumber containing integer

Default 0

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSBackgroundColorAttributeName
NSColor

Default nil, no background

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSAttachmentAttributeName
NSTextAttachment

Default nil, no attachment

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSLigatureAttributeName
NSNumber containing integer

Default 1, standard ligatures; 0, no ligatures; 2, all ligatures

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSBaselineOffsetAttributeName
NSNumber containing floating point value, as points offset from baseline

Default 0.0

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSKernAttributeName
NSNumber containing floating point value, as points by which to modify default kerning

Default nil, use default kerning specified in font file; 0.0, kerning off; non-zero, points by which to
modify default kerning

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSLinkAttributeName
NSURL (preferred) or NSString

Default nil, no link

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

272 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSStrokeWidthAttributeName
NSNumber containing floating point value, as percent of font point size

Default 0, no stroke; positive, stroke alone; negative, stroke and fill (a typical value for outlined text
would be 3.0)

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSStrokeColorAttributeName
NSColor

Default nil, same as foreground color

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSUnderlineColorAttributeName
NSColor

Default nil, same as foreground color

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSStrikethroughStyleAttributeName
NSNumber containing integer

Default 0, no strikethrough. See “Underlining Patterns” (page 275), “Underlining
Styles” (page 274), and “Underline Masks” (page 276) for mask values.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSStrikethroughColorAttributeName
NSColor

Default nil, same as foreground color

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSShadowAttributeName
NSShadow

Default nil, no shadow

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSObliquenessAttributeName
NSNumber containing floating point value, as skew to be applied to glyphs

Default 0.0, no skew

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSExpansionAttributeName
NSNumber containing floating point value, as log of expansion factor to be applied to glyphs

Default 0.0, no expansion

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

Constants 273
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSCursorAttributeName
NSCursor

Default as returned by the NSCursor method IBeamCursor

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSToolTipAttributeName
NSString

Default nil, no tooltip

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSMarkedClauseSegmentAttributeName
NSNumber containing an integer, as an index in marked text indicating clause segments

Available in Mac OS X v10.5 and later.

Declared in NSAttributedString.h.

NSWritingDirectionAttributeName
An NSArray of NSNumbers.

This provides a means to override the default bidi algorithm, equivalent to the use of bidi control
characters LRE, RLE, LRO, or RLO paired with PDF, as a higher-level attribute. This is the
NSAttributedString equivalent of HTML's dir attribute and/or BDO element. The array represents
nested embeddings or overrides, in order from outermost to innermost. The values of the NSNumbers
should be 0, 1, 2, or 3, for LRE, RLE, LRO, or RLO respectively; these should be regarded as
NSWritingDirectionLeftToRight (page 2748) orNSWritingDirectionRightToLeft (page 2748)
plus NSTextWritingDirectionEmbedding or NSTextWritingDirectionOverride.

Available in Mac OS X v10.6 and later.

Declared in NSAttributedString.h.

Underlining Styles
These constants define underlining style values for NSUnderlineStyleAttributeName (page 272) and
NSStrikethroughStyleAttributeName (page 273).

enum {
 NSUnderlineStyleNone = 0x00,
 NSUnderlineStyleSingle = 0x01,
 NSUnderlineStyleThick = 0x02,
 NSUnderlineStyleDouble = 0x09
};

Constants
NSUnderlineStyleNone

Do not draw an underline.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

274 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSUnderlineStyleSingle
Draw an underline consisting of a single line.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSUnderlineStyleThick
Draw an underline consisting of a thick line.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSUnderlineStyleDouble
Draw an underline consisting of a double line.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

Discussion
See also “Underline Masks” (page 276) and “Underlining Patterns” (page 275). The style, pattern,
and optionally by-word mask are OR'd together to produce the value for
NSUnderlineStyleAttributeName (page 272) andNSStrikethroughStyleAttributeName (page 273).

Declared In
NSAttributedString.h

Underlining Patterns
These constants define underlining pattern values for NSUnderlineStyleAttributeName (page 272) and
NSStrikethroughStyleAttributeName (page 273).

enum {
 NSUnderlinePatternSolid = 0x0000,
 NSUnderlinePatternDot = 0x0100,
 NSUnderlinePatternDash = 0x0200,
 NSUnderlinePatternDashDot = 0x0300,
 NSUnderlinePatternDashDotDot = 0x0400
};

Constants
NSUnderlinePatternSolid

Draw a solid underline.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSUnderlinePatternDot
Draw an underline using a pattern of dots.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSUnderlinePatternDash
Draw an underline using a pattern of dashes.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

Constants 275
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSUnderlinePatternDashDot
Draw an underline using a pattern of alternating dashes and dots.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSUnderlinePatternDashDotDot
Draw an underline using a pattern of a dash followed by two dots.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

Discussion
See also “Underline Masks” (page 276) and “Underlining Styles” (page 274). The style, pattern, and
optionally by-word mask are OR'd together to produce the value for
NSUnderlineStyleAttributeName (page 272) andNSStrikethroughStyleAttributeName (page 273).

Deprecated Underlining Styles
Deprecated constants previously used for underline style. (Deprecated. See “Underlining Patterns” (page 275)
for the correct replacements.)

enum {
 NSNoUnderlineStyle = 0,
 NSSingleUnderlineStyle
};
NSUInteger NSUnderlineStrikethroughMask;

Constants
NSNoUnderlineStyle

Deprecated see “Underlining Patterns” (page 275) for the correct replacements.

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSSingleUnderlineStyle
Deprecated see “Underlining Patterns” (page 275) for the correct replacements.

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

Underline Masks
This constant defines the underlining style for NSUnderlineStyleAttributeName (page 272) and
NSStrikethroughStyleAttributeName (page 273).

unsigned NSUnderlineByWordMask;

Constants
NSUnderlineByWordMask

Draw the underline only underneath words, not underneath whitespace.

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

276 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Discussion
Use this constant with the desired underline style to create the given effect. For example, to get a thick
underline only underneath words, set NSUnderlineStyleAttribute to (NSUnderlineStyleThick |
NSUnderlineByWordMask). Also see “Underlining Styles” (page 274) and “Underlining Patterns” (page 275).

Declared In
NSAttributedString.h

Glyph Info Attribute
This object provides a means to override the standard glyph generation.

NSString *NSGlyphInfoAttributeName;

Constants
NSGlyphInfoAttributeName

The name of an NSGlyphInfo object.

NSLayoutManager assigns the glyph specified by this glyph info to the entire attribute range, provided
that its contents match the specified base string, and that the specified glyph is available in the font
specified by NSFontAttributeName.

Available in Mac OS X v10.2 and later.

Declared in NSAttributedString.h.

Declared In
NSAttributedString.h

Character Shape Attribute
The character shape feature type (kCharacterShapeType) is used when a single font contains different
appearances for the same character shape, and these shapes are not traditionally treated as swashes. It is
needed for languages such as Chinese that have both traditional and simplified character sets.

NSString *NSCharacterShapeAttributeName;

Constants
NSCharacterShapeAttributeName

An integer value. The value is interpreted as Apple Type Services kCharacterShapeType selector
+ 1.

The default value is 0 (disable). 1 is kTraditionalCharactersSelector, and so on. Refer to
<ATS/SFNTLayoutTypes.h> and Font Features in ATSUI Programming Guide for additional information.

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

Declared In
NSAttributedString.h

Document Types
The following values can be returned for the NSDocumentTypeDocumentAttribute (page 281) key in the
document attributes dictionary.

Constants 277
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSString *NSPlainTextDocumentType;
NSString *NSRTFTextDocumentType;
NSString *NSRTFDTextDocumentType;
NSString *NSMacSimpleTextDocumentType;
NSString *NSHTMLTextDocumentType;
NSString *NSDocFormatTextDocumentType;
NSString *NSWordMLTextDocumentType;
NSString *NSWebArchiveTextDocumentType;
NSString *NSOfficeOpenXMLTextDocumentType;
NSString *NSOpenDocumentTextDocumentType;

Constants
NSPlainTextDocumentType

Plain text document.

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSRTFTextDocumentType
Rich text format document.

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSRTFDTextDocumentType
Rich text format with attachments document.

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSMacSimpleTextDocumentType
Macintosh SimpleText document.

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSHTMLTextDocumentType
Hypertext Markup Language (HTML) document.

Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

NSDocFormatTextDocumentType
Microsoft Word document.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSWordMLTextDocumentType
Microsoft Word XML (WordML schema) document.

Available in Mac OS X v10.3 and later.

Declared in NSAttributedString.h.

NSWebArchiveTextDocumentType
Web Kit WebArchive document.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

278 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSOfficeOpenXMLTextDocumentType
ECMA Office Open XML text document format.

Available in Mac OS X v10.5 and later.

Declared in NSAttributedString.h.

NSOpenDocumentTextDocumentType
OASIS Open Document text document format.

Available in Mac OS X v10.5 and later.

Declared in NSAttributedString.h.

Discussion
See also NSDocumentTypeDocumentOption (page 285).

Declared In
NSAttributedString.h

Document Attributes
The init... methods can return a dictionary with the following document-wide attributes (attribute
identifiers available on Mac OS X v10.4 and later; use actual string value keys for earlier systems):

Constants 279
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSString *NSAuthorDocumentAttribute;
NSString *NSBackgroundColorDocumentAttribute;
NSString *NSBottomMarginDocumentAttribute;
NSString *NSCharacterEncodingDocumentAttribute;
NSString *NSCategoryDocumentAttribute;
NSString *NSCocoaVersionDocumentAttribute;
NSString *NSCommentDocumentAttribute;
NSString *NSCompanyDocumentAttribute;
NSString *NSConvertedDocumentAttribute;
NSString *NSCopyrightDocumentAttribute;
NSString *NSCreationTimeDocumentAttribute;
NSString *NSDefaultTabIntervalDocumentAttribute;
NSString *NSDocumentTypeDocumentAttribute;
NSString *NSEditorDocumentAttribute;
NSString *NSFileTypeDocumentAttribute;
NSString *NSFileTypeDocumentOption;
NSString *NSHyphenationFactorDocumentAttribute;
NSString *NSKeywordsDocumentAttribute;
NSString *NSLeftMarginDocumentAttribute;
NSString *NSManagerDocumentAttribute;
NSString *NSModificationTimeDocumentAttribute;
NSString *NSPaperSizeDocumentAttribute;
NSString *NSReadOnlyDocumentAttribute;
NSString *NSRightMarginDocumentAttribute;
NSString *NSSubjectDocumentAttribute;
NSString *NSTitleDocumentAttribute;
NSString *NSTopMarginDocumentAttribute;
NSString *NSViewModeDocumentAttribute;
NSString *NSViewSizeDocumentAttribute;
NSString *NSViewZoomDocumentAttribute;

Constants
NSPaperSizeDocumentAttribute

NSValue, containing NSSize.

Mac OS X v10.3 and earlier string constant is @"PaperSize".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSLeftMarginDocumentAttribute
NSNumber, containing a float, in points.

Mac OS X v10.3 and earlier string constant is @"LeftMargin".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSRightMarginDocumentAttribute
NSNumber, containing a float, in points.

Mac OS X v10.3 and earlier string constant is @"RightMargin".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

280 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSTopMarginDocumentAttribute
NSNumber, containing a float, in points.

Mac OS X v10.3 and earlier string constant is @"TopMargin".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSBottomMarginDocumentAttribute
NSNumber, containing a float, in points.

Mac OS X v10.3 and earlier string constant is @"BottomMargin".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSHyphenationFactorDocumentAttribute
NSNumber, containing a float; 0 = off, 1 = full hyphenation.

Mac OS X v10.3 and earlier string constant is @"HyphenationFactor".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSDocumentTypeDocumentAttribute
How the document was interpreted; one of the values in “Document Types” (page 277).

Mac OS X v10.3 and earlier string constant is @"DocumentType".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSCharacterEncodingDocumentAttribute
NSNumber, containing an int specifying the NSStringEncoding for the file; for reading and writing
plain text files and writing HTML; default for plain text is the default encoding; default for HTML is
UTF-8.

Mac OS X v10.3 and earlier string constant is @"CharacterEncoding".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSViewSizeDocumentAttribute
NSValue, containing NSSize.

Mac OS X v10.3 and earlier string constant is @"ViewSize".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSViewZoomDocumentAttribute
Mac OS X v10.3 and earlier string constant is @"ViewZoom".

NSValue, containing a float; 100 = 100% zoom.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSViewModeDocumentAttribute
NSValue, containing an int; 0 = normal; 1 = page layout (use value of @"PaperSize").

Mac OS X v10.3 and earlier string constant is @"ViewMode".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

Constants 281
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSBackgroundColorDocumentAttribute
NSColor, representing the document-wide page background color.

Mac OS X v10.3 and earlier string constant is @"BackgroundColor".

For applications linked on versions prior to Mac OS X v10.5, HTML import sets the
NSBackgroundColorDocumentAttribute to [NSColor whiteColor] in cases in which the HTML
does not specify a background color. For applications linked on Mac OS X v10.5 and later, no
NSBackgroundColorDocumentAttribute is set in these cases.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSCocoaVersionDocumentAttribute
NSNumber, containing a float. For RTF files only, stores the version of Cocoa with which the file was
created. Absence of this value indicates RTF file not created by Cocoa or its predecessors.

Values less than 100 are pre–Mac OS X; 100 is Mac OS X v10.0 or v10.1; 102 is Mac OS X v10.2 and
10.3; values greater than 102 correspond to values of NSAppKitVersionNumber on Mac OS X v10.4
and later.

Mac OS X v10.3 and earlier string constant is @"CocoaRTFVersion".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSReadOnlyDocumentAttribute
NSNumber, containing int. If missing or 0 or negative, not read only; 1 or more, read only.

Note that this has nothing to do with the file system protection on the file, but instead can affect how
the file should be displayed to the user.

Mac OS X v10.3 and earlier string constant is @"ReadOnly".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSConvertedDocumentAttribute
NSNumber, containing an int. Indicates whether the file was converted by a filter service.

If missing or 0, the file was originally in the format specified by document type. If negative, the file
was originally in the format specified by document type, but the conversion to NSAttributedString
may have been lossy. If 1 or more, it was converted to this type by a filter service.

Mac OS X v10.3 and earlier string constant is @"Converted".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSDefaultTabIntervalDocumentAttribute
NSNumber containing a float. Represents the document-wide default tab stop interval.

Mac OS X v10.3 and earlier string constant is @"DefaultTabInterval".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSTitleDocumentAttribute
NSString containing document title.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

282 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSCompanyDocumentAttribute
NSString containing company or organization name.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSCopyrightDocumentAttribute
NSString containing document copyright info.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSSubjectDocumentAttribute
NSString containing subject of document.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSAuthorDocumentAttribute
NSString containing author name.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSKeywordsDocumentAttribute
NSArray of NSString, containing keywords.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSCommentDocumentAttribute
NSString containing document comments.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSEditorDocumentAttribute
NSString containing name of person who last edited the document.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSCreationTimeDocumentAttribute
NSDate containing the creation date of the document; note that this is not the file system creation
date of the file, but of the document.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSModificationTimeDocumentAttribute
NSDate containing the modification date of the document contents.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSManagerDocumentAttribute
NSString containing the name of the author's manager.

Available in Mac OS X v10.6 and later.

Declared in NSAttributedString.h.

Constants 283
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSCategoryDocumentAttribute
NSString containing the document’s category.

Available in Mac OS X v10.6 and later.

Declared in NSAttributedString.h.

NSFileTypeDocumentAttribute
NSString indicating which document type was used to interpret the document, specified as a UTI;
for reading, this is available along with NSDocumentTypeDocumentAttribute (page 281), but for
writing the two are mutually exclusive.

Available in Mac OS X v10.6 and later.

Declared in NSAttributedString.h.

NSFileTypeDocumentOption
NSString indicating a document type to be forced when loading the document, specified as a UTI
string; mutually exclusive with NSDocumentTypeDocumentOption (page 285).

Available in Mac OS X v10.6 and later.

Declared in NSAttributedString.h.

Attributes for generating HTML
These document-wide attributes provide control over the form of generated HTML—you use them only for
writing HTML

NSString *NSExcludedElementsDocumentAttribute;
NSString *NSTextEncodingNameDocumentAttribute;
NSString *NSPrefixSpacesDocumentAttribute;

Constants
NSExcludedElementsDocumentAttribute

An NSArray object containing NSString objects, representing HTML elements not to be used in
generated HTML.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSTextEncodingNameDocumentAttribute
An NSString object containing the name, IANA or otherwise, of a text encoding to be used; mutually
exclusive with NSCharacterEncodingDocumentAttribute.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSPrefixSpacesDocumentAttribute
An NSNumber containing an integer (default 0) representing the number of spaces per level by which
to indent certain nested HTML elements.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

Discussion
NSExcludedElementsDocumentAttribute allows control over the tags used. The recognized values in
the NSExcludedElementsDocumentAttribute array are (case-insensitive) HTML tags, plus DOCTYPE
(representing a doctype declaration) and XML (representing an XML declaration). By default, if this attribute
is not present, the excluded elements will be those deprecated in HTML 4 (APPLET, BASEFONT, CENTER, DIR,
FONT, ISINDEX, MENU, S, STRIKE, and U) plus XML. If XML is on the list, HTML forms are used; if XML is not

284 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

on the list, XHTML forms are used where there is a distinction. Either
NSCharacterEncodingDocumentAttribute or NSTextEncodingNameDocumentAttribute may be
used to control the encoding used for generated HTML; character entities are used for characters not
representable in the specified encoding. NSPrefixSpacesDocumentAttribute allows some control over
formatting.

Declared In
NSAttributedString.h

Option keys for importing documents
These option keys are recognized for importing documents using
initWithData:options:documentAttributes:error: (page 260), initWithHTML:options:documentAttributes: (page
262), initWithURL:options:documentAttributes:error: (page 264), or the readFrom... methods (such as
readFromData:options:documentAttributes: (page 1710)) implemented by
NSMutableAttributedString.

NSString *NSBaseURLDocumentOption;
NSString *NSCharacterEncodingDocumentOption;
NSString *NSDefaultAttributesDocumentOption;
NSString *NSDocumentTypeDocumentOption;
NSString *NSTextEncodingNameDocumentOption;
NSString *NSTextSizeMultiplierDocumentOption;
NSString *NSTimeoutDocumentOption;
NSString *NSWebPreferencesDocumentOption;
NSString *NSWebResourceLoadDelegateDocumentOption;

Constants
NSCharacterEncodingDocumentOption

For plain text documents; NSNumber containing the unsigned int NSStringEncoding to override
any encoding specified in an HTML document. Previous string constant was @"CharacterEncoding".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSBaseURLDocumentOption
For HTML documents; NSURL containing base URL. Previous string constant was @"BaseURL"

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSDefaultAttributesDocumentOption
For plain text documents; NSDictionary containing attributes to be applied to plain files. Previous
string constant was @"DefaultAttributes".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSDocumentTypeDocumentOption
One of the document types described in “Document Types” (page 277), indicating a document type
to be forced when loading the document. Previous string constant was @"DocumentType".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

Constants 285
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSTextEncodingNameDocumentOption
NSString containing the name, IANA or otherwise, of a text encoding to override any encoding specified
in an HTML document. Mutually exclusive with @"CharacterEncoding". Previous string constant
was @"TextEncodingName".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSTimeoutDocumentOption
NSNumber containing float. Time in seconds to wait for a document to finish loading. Previous string
constant was @"Timeout".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSWebPreferencesDocumentOption
WebPreferences; for HTML only, specifies a WebPreferences object. If not present, a default set of
preferences is used. Previous string constant was @"WebPreferences".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSWebResourceLoadDelegateDocumentOption
NSObject; for HTML only, specifies an object to serve as the web resource loading delegate.

If not present, a default delegate is used that permits the loading of subsidiary resources but does
not respond to authentication challenges. Previous string constant was
@"WebResourceLoadDelegate".

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

NSTextSizeMultiplierDocumentOption
Specifies a scale factor for font sizes.. NSNumber containing float, default 1.0; for HTML only,
corresponding to WebView's textSizeMultiplier.

There is no textual equivalent for Mac OS X v10.3.

Available in Mac OS X v10.4 and later.

Declared in NSAttributedString.h.

Discussion
In Mac OS X v10.3, the options key @"UseWebKit" specifies that WebKit–based HTML importing be used
(and must be specified for the other options to be recognized). In Mac OS X v10.4 and later, WebKit is always
used for HTML documents, and all of the options except @"UseWebKit" are recognized (attribute identifiers
are available on Mac OS X v10.4 and later; use actual string value keys for Mac OS X v10.3):

NSSpellingStateAttributeName
This constant is used as, and recognized only as, a temporary attribute. It indicates that spelling and/or
grammar indicators should be shown for the specified characters.

286 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSString *NSSpellingStateAttributeName;

Constants
NSSpellingStateAttributeName

An integer value. Defaults to 0, indicating no grammar or spelling error. See
“NSSpellingStateAttributeName Flags” (page 287) for possible values.

This key is available in Mac OS X v10.2 and later, but its interpretation changed in Mac OS X v10.5.
Previously, any non-zero value caused the spelling indicator to be displayed. For Mac OS X v10.5 and
later, the (integer) value is treated as being composed of the spelling and grammar flags. See
“NSSpellingStateAttributeName Flags” (page 287) for possible values.

Available in Mac OS X v10.5 and later.

Declared in NSAttributedString.h.

NSSpellingStateAttributeName Flags
These constants control the display of the spelling and grammar indicators on text, highlighting portions of
the text that are flagged for spelling or grammar issues. These regions are denoted by a temporary attribute
on the layout manager, using the NSSpellingStateAttributeName (page 287) key.

enum {
 NSSpellingStateSpellingFlag = (1 << 0),
 NSSpellingStateGrammarFlag = (1 << 1)
};

Constants
NSSpellingStateSpellingFlag

Flag for spelling issues.

Available in Mac OS X v10.5 and later.

Declared in NSAttributedString.h.

NSSpellingStateGrammarFlag
Flag for grammar issues.

Available in Mac OS X v10.5 and later.

Declared in NSAttributedString.h.

Constants 287
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

288 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSBezierPath.h

Companion guide Cocoa Drawing Guide

Related sample code DockTile
Sketch-112
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Overview

An NSBezierPath object allows you to create paths using PostScript-style commands. Paths consist of
straight and curved line segments joined together. Paths can form recognizable shapes such as rectangles,
ovals, arcs, and glyphs; they can also form complex polygons using either straight or curved line segments.
A single path can be closed by connecting its two endpoints, or it can be left open.

An NSBezierPath object can contain multiple disconnected paths, whether they are closed or open. Each
of these paths is referred to as a subpath. The subpaths of an NSBezierPath object must be manipulated
as a group. The only way to manipulate subpaths individually is to create separate NSBezierPath objects
for each.

For a given NSBezierPath object, you can stroke the path’s outline or fill the region occupied by the path.
You can also use the path as a clipping region for views or other regions. Using methods of NSBezierPath,
you can also perform hit detection on the filled or stroked path. Hit detection is needed to implement
interactive graphics, as in rubberbanding and dragging operations.

The current graphics context is automatically saved and restored for all drawing operations involving
NSBezierPath objects, so your application does not need to worry about the graphics settings changing
across invocations.

Overview 289
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

NSCopying
– copyWithZone:

Tasks

Creating an NSBezierPath Object

+ bezierPath (page 294)
Creates and returns a new NSBezierPath object.

+ bezierPathWithOvalInRect: (page 295)
Creates and returns a new NSBezierPath object initialized with an oval path inscribed in the specified
rectangle.

+ bezierPathWithRect: (page 295)
Creates and returns a new NSBezierPath object initialized with a rectangular path.

+ bezierPathWithRoundedRect:xRadius:yRadius: (page 296)
Creates and returns a new NSBezierPath object initialized with a rounded rectangular path.

– bezierPathByFlatteningPath (page 313)
Creates and returns a “flattened” copy of the receiver.

– bezierPathByReversingPath (page 314)
Creates and returns a new NSBezierPath object with the reversed contents of the receiver’s path.

Constructing Paths

– moveToPoint: (page 324)
Moves the receiver’s current point to the specified location.

– lineToPoint: (page 322)
Appends a straight line to the receiver’s path

– curveToPoint:controlPoint1:controlPoint2: (page 317)
Adds a Bezier cubic curve to the receiver’s path.

– closePath (page 315)
Closes the most recently added subpath.

– relativeMoveToPoint: (page 326)
Moves the receiver’s current point to a new point whose location is the specified distance from the
current point.

290 Adopted Protocols
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

– relativeLineToPoint: (page 325)
Appends a straight line segment to the receiver’s path starting at the current point and moving
towards the specified point, relative to the current location.

– relativeCurveToPoint:controlPoint1:controlPoint2: (page 325)
Adds a Bezier cubic curve to the receiver’s path from the current point to a new location, which is
specified as a relative distance from the current point.

Appending Common Shapes to a Path

– appendBezierPath: (page 307)
Appends the contents of the specified path object to the receiver’s path.

– appendBezierPathWithPoints:count: (page 312)
Appends a series of line segments to the receiver’s path.

– appendBezierPathWithOvalInRect: (page 311)
Appends an oval path to the receiver, inscribing the oval in the specified rectangle.

– appendBezierPathWithArcFromPoint:toPoint:radius: (page 307)
Appends an arc to the receiver’s path.

– appendBezierPathWithArcWithCenter:radius:startAngle:endAngle: (page 308)
Appends an arc of a circle to the receiver’s path.

– appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:clockwise: (page 309)
Appends an arc of a circle to the receiver’s path.

– appendBezierPathWithGlyph:inFont: (page 309)
Appends an outline of the specified glyph to the receiver’s path.

– appendBezierPathWithGlyphs:count:inFont: (page 310)
Appends the outlines of the specified glyphs to the receiver’s path.

– appendBezierPathWithPackedGlyphs: (page 311)
Appends an array of packed glyphs to the receiver’s path.

– appendBezierPathWithRect: (page 312)
Appends a rectangular path to the receiver’s path.

– appendBezierPathWithRoundedRect:xRadius:yRadius: (page 313)
Appends a rounded rectangular path to the receiver’s path.

Accessing Path Attributes

+ defaultWindingRule (page 299)
Returns the default winding rule used to fill all paths.

+ setDefaultWindingRule: (page 304)
Sets the default winding rule used to fill all paths.

– windingRule (page 334)
Returns the winding rule used to fill the receiver’s path.

– setWindingRule: (page 332)
Sets the winding rule used to fill the receiver’s path.

+ defaultLineCapStyle (page 298)
Returns the default line cap style for all paths.

Tasks 291
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

+ setDefaultLineCapStyle: (page 302)
Sets the default line cap style for all paths.

– lineCapStyle (page 322)
Returns the line cap style for the receiver's path.

– setLineCapStyle: (page 329)
Sets the line cap style for the receiver's path.

+ defaultLineJoinStyle (page 298)
Returns the default line join style for all paths.

+ setDefaultLineJoinStyle: (page 302)
Sets the default line join style for all paths.

– lineJoinStyle (page 322)
Returns the receiver’s line join style.

– setLineJoinStyle: (page 330)
Sets the line join style for the receiver's path.

+ defaultLineWidth (page 299)
Returns the default line width for the all paths.

+ setDefaultLineWidth: (page 303)
Sets the default line width for all paths.

– lineWidth (page 323)
Returns the line width of the receiver's path.

– setLineWidth: (page 331)
Sets the line width of the receiver's path.

+ defaultMiterLimit (page 299)
Returns the default miter limit for all paths.

+ setDefaultMiterLimit: (page 304)
Sets the default miter limit for all paths.

– miterLimit (page 323)
Returns the miter limit of the receiver's path.

– setMiterLimit: (page 332)
Sets the miter limit for the receiver's path.

+ defaultFlatness (page 297)
Returns the default flatness value for all paths.

+ setDefaultFlatness: (page 301)
Sets the default flatness value for all paths.

– flatness (page 320)
Returns the flatness value of the receiver's path.

– setFlatness: (page 329)
Sets the flatness value for the receiver's path.

– getLineDash:count:phase: (page 321)
Returns the line-stroking pattern for the receiver.

– setLineDash:count:phase: (page 330)
Sets the line-stroking pattern for the receiver.

292 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Drawing Paths

– stroke (page 333)
Draws a line along the receiver’s path using the current stroke color and drawing attributes.

– fill (page 320)
Paints the region enclosed by the receiver’s path.

+ fillRect: (page 300)
Fills the specified rectangular path with the current fill color.

+ strokeRect: (page 306)
Strokes the path of the specified rectangle using the current stroke color and the default drawing
attributes.

+ strokeLineFromPoint:toPoint: (page 305)
Strokes a line between two points using the current stroke color and the default drawing attributes.

+ drawPackedGlyphs:atPoint: (page 300)
Draws a set of packed glyphs at the specified point in the current coordinate system.

Clipping Paths

– addClip (page 306)
Intersects the area enclosed by the receiver's path with the clipping path of the current graphics
context and makes the resulting shape the current clipping path.

– setClip (page 328)
Replaces the clipping path of the current graphics context with the area inside the receiver's path.

+ clipRect: (page 297)
Intersects the specified rectangle with the clipping path of the current graphics context and makes
the resulting shape the current clipping path

Hit Detection

– containsPoint: (page 316)
Returns a Boolean value indicating whether the receiver contains the specified point.

Querying Paths

– bounds (page 314)
Returns the bounding box of the receiver’s path.

– controlPointBounds (page 316)
Returns the bounding box of the receiver’s path, including any control points.

– currentPoint (page 317)
Returns the receiver’s current point (the trailing point or ending point in the most recently added
segment).

– isEmpty (page 321)
Returns a Boolean value indicating whether the receiver is empty.

Tasks 293
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Applying Transformations

– transformUsingAffineTransform: (page 333)
Transforms all points in the receiver using the specified transform.

Accessing Elements of a Path

– elementCount (page 319)
Returns the total number of path elements in the receiver's path.

– elementAtIndex: (page 318)
Returns the type of path element at the specified index.

– elementAtIndex:associatedPoints: (page 318)
Gets the element type and (and optionally) the associated points for the path element at the specified
index.

– removeAllPoints (page 326)
Removes all path elements from the receiver, effectively clearing the path.

– setAssociatedPoints:atIndex: (page 327)
Changes the points associated with the specified path element.

Caching Paths

– cachesBezierPath (page 315) Deprecated in Mac OS X v10.0
Returns a Boolean value indicating whether this object maintains a cached image of its path.

– setCachesBezierPath: (page 328) Deprecated in Mac OS X v10.0
Sets whether the receiver should cache its path information.

Class Methods

bezierPath
Creates and returns a new NSBezierPath object.

+ (NSBezierPath *)bezierPath

Return Value
A new empty path object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile
Sketch-112
SpeedometerView
WebKitPluginStarter

294 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

bezierPathWithOvalInRect:
Creates and returns a new NSBezierPath object initialized with an oval path inscribed in the specified
rectangle.

+ (NSBezierPath *)bezierPathWithOvalInRect:(NSRect)aRect

Parameters
aRect

The rectangle in which to inscribe an oval.

Return Value
An NSBezierPath new path object with the oval path.

Discussion
If the aRect parameter specifies a square, the inscribed path is a circle. The path is constructed by starting
in the lower-right quadrant of the rectangle and adding arc segments counterclockwise to complete the
oval.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ bezierPath (page 294)
– appendBezierPathWithOvalInRect: (page 311)

Related Sample Code
BezierPathLab
BindingsJoystick
MenuItemView
Sketch-112
Worm

Declared In
NSBezierPath.h

bezierPathWithRect:
Creates and returns a new NSBezierPath object initialized with a rectangular path.

+ (NSBezierPath *)bezierPathWithRect:(NSRect)aRect

Parameters
aRect

The rectangle describing the path to create.

Return Value
A new path object with the rectangular path.

Class Methods 295
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Discussion
The path is constructed by starting at the origin of aRect and adding line segments in a counterclockwise
direction.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ bezierPath (page 294)
– appendBezierPathWithRect: (page 312)
+ fillRect: (page 300)
+ strokeRect: (page 306)

Related Sample Code
BezierPathLab
Cropped Image
Link Snoop
PDFKitLinker2
Sketch-112

Declared In
NSBezierPath.h

bezierPathWithRoundedRect:xRadius:yRadius:
Creates and returns a new NSBezierPath object initialized with a rounded rectangular path.

+ (NSBezierPath *)bezierPathWithRoundedRect:(NSRect)rect xRadius:(CGFloat)xRadius
yRadius:(CGFloat)yRadius

Parameters
rect

The rectangle that defines the basic shape of the path.

xRadius
The radius of each corner oval along the x-axis. Values larger than half the rectangle’s width are
clamped to half the width.

yRadius
The radius of each corner oval along the y-axis. Values larger than half the rectangle’s height are
clamped to half the height.

Return Value
A new path object with the rounded rectangular path.

Discussion
The path is constructed in a counter-clockwise direction, starting at the top-left corner of the rectangle. If
either one of the radius parameters contains the value 0.0, the returned path is a plain rectangle without
rounded corners.

Availability
Available in Mac OS X v10.5 and later.

296 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

See Also
+ bezierPath (page 294)
– appendBezierPathWithRoundedRect:xRadius:yRadius: (page 313)

Related Sample Code
AnimatedTableView
CocoaSlides
TrackBall

Declared In
NSBezierPath.h

clipRect:
Intersects the specified rectangle with the clipping path of the current graphics context and makes the
resulting shape the current clipping path

+ (void)clipRect:(NSRect)aRect

Parameters
aRect

The rectangle to intersect with the current clipping path.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addClip (page 306)
– setClip (page 328)

Related Sample Code
QuickLookSketch
Sketch+Accessibility
Sketch-112
Transformed Image

Declared In
NSBezierPath.h

defaultFlatness
Returns the default flatness value for all paths.

+ (CGFloat)defaultFlatness

Return Value
The default value for determining the smoothness of curved paths, or 0.6 if no other value has been set.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 297
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

See Also
+ setDefaultFlatness: (page 301)
– flatness (page 320)

Declared In
NSBezierPath.h

defaultLineCapStyle
Returns the default line cap style for all paths.

+ (NSLineCapStyle)defaultLineCapStyle

Return Value
The default line cap style or NSButtLineCapStyle if no other style has been set. For a list of values, see
“Constants” (page 335).

Discussion
The default line cap style can be overridden for individual paths by setting a custom style for that path using
the setLineCapStyle: (page 329) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setDefaultLineCapStyle: (page 302)
+ defaultLineJoinStyle (page 298)
+ defaultLineWidth (page 299)
– lineCapStyle (page 322)

Declared In
NSBezierPath.h

defaultLineJoinStyle
Returns the default line join style for all paths.

+ (NSLineJoinStyle)defaultLineJoinStyle

Return Value
The default line join style or NSMiterLineJoinStyle if no other value has been set. For a list of values, see
“Constants” (page 335).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setDefaultLineJoinStyle: (page 302)
+ defaultLineCapStyle (page 298)
+ defaultLineWidth (page 299)
– lineJoinStyle (page 322)

298 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Declared In
NSBezierPath.h

defaultLineWidth
Returns the default line width for the all paths.

+ (CGFloat)defaultLineWidth

Return Value
The default line width, measured in points in the user coordinate space, or 1.0 if no other value has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setDefaultLineWidth: (page 303)
+ defaultLineCapStyle (page 298)
+ defaultLineJoinStyle (page 298)
– lineWidth (page 323)

Declared In
NSBezierPath.h

defaultMiterLimit
Returns the default miter limit for all paths.

+ (CGFloat)defaultMiterLimit

Return Value
The default miter limit for all paths, or 10.0 if no other value has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setDefaultMiterLimit: (page 304)
– miterLimit (page 323)

Declared In
NSBezierPath.h

defaultWindingRule
Returns the default winding rule used to fill all paths.

+ (NSWindingRule)defaultWindingRule

Class Methods 299
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Return Value
The current default winding rule or NSNonZeroWindingRule if no default rule has been set. This value may
be either NSNonZeroWindingRule or NSEvenOddWindingRule.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setDefaultWindingRule: (page 304)
– windingRule (page 334)

Declared In
NSBezierPath.h

drawPackedGlyphs:atPoint:
Draws a set of packed glyphs at the specified point in the current coordinate system.

+ (void)drawPackedGlyphs:(const char *)packedGlyphs atPoint:(NSPoint)aPoint

Parameters
packedGlyphs

A C-style array containing one or more CGGlyph data types terminated by a NULL character.

aPoint
The starting point at which to draw the glyphs.

Discussion
This method draws the glyphs immediately.

You should avoid using this method directly. Instead, use the appendBezierPathWithGlyph:inFont: (page
309) and appendBezierPathWithGlyphs:count:inFont: (page 310) methods to create a path with one
or more glyphs.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendBezierPathWithPackedGlyphs: (page 311)
– set (page 711) (NSColor)

Declared In
NSBezierPath.h

fillRect:
Fills the specified rectangular path with the current fill color.

+ (void)fillRect:(NSRect)aRect

Parameters
aRect

A rectangle in the current coordinate system.

300 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Discussion
This method fills the specified region immediately. This method uses the compositing operation returned
by the compositingOperation method of NSGraphicsContext.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendBezierPathWithRect: (page 312)
+ bezierPathWithRect: (page 295)
+ strokeRect: (page 306)
– compositingOperation (page 1304) (NSGraphicsContext)
– set (page 711) (NSColor)

Related Sample Code
DragItemAround
ImageApp
MatrixMixerTest
SampleRaster
WhackedTV

Declared In
NSBezierPath.h

setDefaultFlatness:
Sets the default flatness value for all paths.

+ (void)setDefaultFlatness:(CGFloat)flatness

Parameters
flatness

The default flatness value.

Discussion
The flatness value specifies the accuracy (or smoothness) with which curves are rendered. It is also the
maximum error tolerance (measured in pixels) for rendering curves, where smaller numbers give smoother
curves at the expense of more computation. The exact interpretation may vary slightly on different rendering
devices.

The default flatness value is 0.6, which yields smooth curves.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultFlatness (page 297)
– setFlatness: (page 329)

Declared In
NSBezierPath.h

Class Methods 301
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

setDefaultLineCapStyle:
Sets the default line cap style for all paths.

+ (void)setDefaultLineCapStyle:(NSLineCapStyle)lineCap

Parameters
lineCap

The default line cap style. For a list of values, see “Constants” (page 335).

Discussion
The line cap style specifies the shape of the endpoints of an open path when stroked. Figure 13-1 (page 302)
shows the appearance of the available line cap styles.

Figure 13-1 Line cap styles

NSButtLineCapStyle

NSRoundLineCapStyle

NSSquareLineCapStyle

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultLineCapStyle (page 298)
+ setDefaultLineJoinStyle: (page 302)
+ setDefaultLineWidth: (page 303)
– setLineCapStyle: (page 329)

Declared In
NSBezierPath.h

setDefaultLineJoinStyle:
Sets the default line join style for all paths.

+ (void)setDefaultLineJoinStyle:(NSLineJoinStyle)lineJoinStyle

Parameters
lineJoinStyle

The default line join style. For a list of values, see “Constants” (page 335).

Discussion
The line join style specifies the shape of the joints between connected segments of a stroked path. Figure
13-2 (page 303) shows the appearance of the available line join styles.

302 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Figure 13-2 Line join styles

NSMiterLineJoinStyle

NSRoundLineJoinStyle

NSBevelLineJoinStyle

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultLineJoinStyle (page 298)
+ setDefaultLineCapStyle: (page 302)
+ setDefaultLineWidth: (page 303)
+ setDefaultMiterLimit: (page 304)
– setLineJoinStyle: (page 330)

Declared In
NSBezierPath.h

setDefaultLineWidth:
Sets the default line width for all paths.

+ (void)setDefaultLineWidth:(CGFloat)width

Parameters
width

The default line width, measured in points in the user coordinate space.

Discussion
The line width defines the thickness of stroked paths. A width of 0 is interpreted as the thinnest line that can
be rendered on a particular device. The actual rendered line width may vary from the specified width by as
much as 2 device pixels, depending on the position of the line with respect to the pixel grid and the current
anti-aliasing settings. The width of the line may also be affected by scaling factors specified in the current
transformation matrix of the active graphics context.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 303
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

See Also
+ defaultLineWidth (page 299)
+ setDefaultLineCapStyle: (page 302)
+ setDefaultLineJoinStyle: (page 302)
– setLineWidth: (page 331)

Related Sample Code
ClockControl
CocoaDragAndDrop

Declared In
NSBezierPath.h

setDefaultMiterLimit:
Sets the default miter limit for all paths.

+ (void)setDefaultMiterLimit:(CGFloat)limit

Parameters
limit

The default limit at which miter joins are converted to bevel joins.

Discussion
The miter limit helps you avoid spikes at the junction of two line segments connected by a miter join
(NSMiterLineJoinStyle). If the ratio of the miter length—the diagonal length of the miter join—to the
line thickness exceeds the miter limit, the joint is converted to a bevel join. The default miter limit value is
10, which converts miters whose angle at the joint is less than 11 degrees.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultMiterLimit (page 299)
+ setDefaultLineJoinStyle: (page 302)
– setMiterLimit: (page 332)

Declared In
NSBezierPath.h

setDefaultWindingRule:
Sets the default winding rule used to fill all paths.

+ (void)setDefaultWindingRule:(NSWindingRule)windingRule

Parameters
windingRule

The winding rule to use if no winding rule is set explicitly for a path object. This value may be either
NSNonZeroWindingRule or NSEvenOddWindingRule.

304 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Discussion
Winding rules determine how to paint (or fill) the region enclosed by a path. You use this method to set the
default rule that is applied to paths that do not have a custom winding rule assigned.

For more information on how winding rules affect the appearance of filled paths, see “Winding Rules and
Filling Paths”.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultWindingRule (page 299)
– setWindingRule: (page 332)

Declared In
NSBezierPath.h

strokeLineFromPoint:toPoint:
Strokes a line between two points using the current stroke color and the default drawing attributes.

+ (void)strokeLineFromPoint:(NSPoint)point1 toPoint:(NSPoint)point2

Parameters
point1

The starting point of the line.

point2
The ending point of the line.

Discussion
This method strokes the specified path immediately.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineToPoint: (page 322)
– moveToPoint: (page 324)
+ setDefaultLineCapStyle: (page 302)
+ setDefaultLineWidth: (page 303)
– stroke (page 333)

Related Sample Code
BindingsJoystick
FilterDemo
MatrixMixerTest
Rulers
WhackedTV

Declared In
NSBezierPath.h

Class Methods 305
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

strokeRect:
Strokes the path of the specified rectangle using the current stroke color and the default drawing attributes.

+ (void)strokeRect:(NSRect)aRect

Parameters
aRect

A rectangle in the current coordinate system.

Discussion
The path is drawn beginning at the rectangle’s origin and proceeding in a counterclockwise direction. This
method strokes the specified path immediately.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendBezierPathWithRect: (page 312)
+ bezierPathWithRect: (page 295)
+ fillRect: (page 300)
+ setDefaultLineJoinStyle: (page 302)
+ setDefaultLineWidth: (page 303)
– set (page 711) (NSColor)

Related Sample Code
CocoaDragAndDrop
SampleRaster

Declared In
NSBezierPath.h

Instance Methods

addClip
Intersects the area enclosed by the receiver's path with the clipping path of the current graphics context and
makes the resulting shape the current clipping path.

- (void)addClip

Discussion
This method uses the current winding rule to determine the clipping shape of the receiver. This method does
not affect the receiver’s path.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ clipRect: (page 297)
– setClip (page 328)

306 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Related Sample Code
BindingsJoystick
IBFragmentView
Reducer
WebKitDOMElementPlugIn

Declared In
NSBezierPath.h

appendBezierPath:
Appends the contents of the specified path object to the receiver’s path.

- (void)appendBezierPath:(NSBezierPath *)aPath

Parameters
aPath

The path to add to the receiver.

Discussion
This method adds the commands used to create aPath to the end of the receiver’s path. This method does
not explicitly try to connect the subpaths in the two objects, although the operations in aPath may still
cause that effect.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

appendBezierPathWithArcFromPoint:toPoint:radius:
Appends an arc to the receiver’s path.

- (void)appendBezierPathWithArcFromPoint:(NSPoint)fromPoint toPoint:(NSPoint)toPoint
radius:(CGFloat)radius

Parameters
fromPoint

The middle point of the angle.

toPoint
The end point of the angle.

radius
The radius of the circle inscribed in the angle.

Discussion
The created arc is defined by a circle inscribed inside the angle specified by three points: the current point,
the fromPoint parameter, and the toPoint parameter (in that order). The arc itself lies on the perimeter
of the circle, whose radius is specified by the radius parameter. The arc is drawn between the two points
of the circle that are tangent to the two legs of the angle.

Instance Methods 307
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

The arc usually does not contain the points in the fromPoint and toPoint parameters. If the starting point
of the arc does not coincide with the current point, a line is drawn between the two points. The starting
point of the arc lies on the line defined by the current point and the fromPoint parameter.

You must set the path's current point (using the moveToPoint: (page 324) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Depending on the length of the arc, this method may add multiple connected curve segments to the path.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
IBFragmentView

Declared In
NSBezierPath.h

appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:
Appends an arc of a circle to the receiver’s path.

- (void)appendBezierPathWithArcWithCenter:(NSPoint)center radius:(CGFloat)radius
startAngle:(CGFloat)startAngle endAngle:(CGFloat)endAngle

Parameters
center

Specifies the center point of the circle used to define the arc.

radius
Specifies the radius of the circle used to define the arc.

startAngle
Specifies the starting angle of the arc, measured in degrees counterclockwise from the x-axis.

endAngle
Specifies the end angle of the arc, measured in degrees counterclockwise from the x-axis.

Discussion
The created arc lies on the perimeter of the circle, between the angles specified by the startAngle and
endAngle parameters. The arc is drawn in a counterclockwise direction. If the receiver's path is empty, this
method sets the current point to the beginning of the arc before adding the arc segment. If the receiver's
path is not empty, a line is drawn from the current point to the starting point of the arc.

Depending on the length of the arc, this method may add multiple connected curve segments to the path.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

308 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Declared In
NSBezierPath.h

appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:clockwise:
Appends an arc of a circle to the receiver’s path.

- (void)appendBezierPathWithArcWithCenter:(NSPoint)center radius:(CGFloat)radius
startAngle:(CGFloat)startAngle endAngle:(CGFloat)endAngle
clockwise:(BOOL)clockwise

Parameters
center

Specifies the center point of the circle used to define the arc.

radius
Specifies the radius of the circle used to define the arc.

startAngle
Specifies the starting angle of the arc, measured in degrees counterclockwise from the x-axis.

endAngle
Specifies the end angle of the arc, measured in degrees counterclockwise from the x-axis.

clockwise
YES if you want the arc to be drawn in a clockwise direction; otherwise NO to draw the arc in a
counterclockwise direction.

Discussion
The created arc lies on the perimeter of the circle, between the angles specified by the startAngle and
endAngle parameters. The arc is drawn in the direction indicated by the clockwise parameter. If the
receiver's path is empty, this method sets the current point to the beginning of the arc before adding the
arc segment. If the receiver's path is not empty, a line is drawn from the current point to the starting point
of the arc.

Depending on the length of the arc, this method may add multiple connected curve segments to the path.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

appendBezierPathWithGlyph:inFont:
Appends an outline of the specified glyph to the receiver’s path.

- (void)appendBezierPathWithGlyph:(NSGlyph)aGlyph inFont:(NSFont *)fontObj

Instance Methods 309
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Parameters
aGlyph

The glyph to add to the path.

fontObj
The font in which the glyph is encoded.

Discussion
If the glyph is not encoded in the font specified by the fontObj parameter—that is, the font does not have
an entry for the specified glyph—then no path is appended to the receiver.

You must set the path's current point (using the moveToPoint: (page 324) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendBezierPathWithGlyphs:count:inFont: (page 310)
– appendBezierPathWithPackedGlyphs: (page 311)
+ drawPackedGlyphs:atPoint: (page 300)

Declared In
NSBezierPath.h

appendBezierPathWithGlyphs:count:inFont:
Appends the outlines of the specified glyphs to the receiver’s path.

- (void)appendBezierPathWithGlyphs:(NSGlyph *)glyphs count:(NSInteger)count
inFont:(NSFont *)fontObj

Parameters
glyphs

A C-style array of NSGlyph data types to add to the path.

count
The number of glyphs in the glyphs parameter.

fontObj
The font in which the glyphs are encoded.

Discussion
If the glyphs are not encoded in the font specified by the fontObj parameter—that is, the font does not
have an entry for one of the specified glyphs—then no path is appended to the receiver.

You must set the path's current point (using the moveToPoint: (page 324) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– appendBezierPathWithGlyph:inFont: (page 309)

310 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

– appendBezierPathWithPackedGlyphs: (page 311)
+ drawPackedGlyphs:atPoint: (page 300)

Declared In
NSBezierPath.h

appendBezierPathWithOvalInRect:
Appends an oval path to the receiver, inscribing the oval in the specified rectangle.

- (void)appendBezierPathWithOvalInRect:(NSRect)aRect

Parameters
aRect

The rectangle in which to inscribe the oval.

Discussion
Before adding the oval, this method moves the current point, which implicitly closes the current subpath. If
the aRect parameter specifies a square, the inscribed path is a circle. The path is constructed by starting in
the lower-right quadrant of the rectangle and adding arc segments counterclockwise to complete the oval.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompositeLab
Grady
SonOfSillyBalls

Declared In
NSBezierPath.h

appendBezierPathWithPackedGlyphs:
Appends an array of packed glyphs to the receiver’s path.

- (void)appendBezierPathWithPackedGlyphs:(const char *)packedGlyphs

Parameters
packedGlyphs

A C-style array containing one or more CGGlyph data types terminated by a NULL character.

Discussion
You should avoid using this method directly. Instead, use the appendBezierPathWithGlyph:inFont: (page
309) andappendBezierPathWithGlyphs:count:inFont: (page 310) methods to append glyphs to a path.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ drawPackedGlyphs:atPoint: (page 300)

Instance Methods 311
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Related Sample Code
DockTile
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

appendBezierPathWithPoints:count:
Appends a series of line segments to the receiver’s path.

- (void)appendBezierPathWithPoints:(NSPointArray)points count:(NSInteger)count

Parameters
points

A C-style array of NSPoint data types, each of which contains the end point of the next line segment.

count
The number of points in the points parameter.

Discussion
This method interprets the points as a set of connected line segments. If the current path contains an open
subpath, a line is created from the last point in that subpath to the first point in the points array. If the current
path is empty, the first point in the points array is used to set the starting point of the line segments.
Subsequent line segments are added using the remaining points in the array.

This method does not close the path that is created. If you wish to create a closed path, you must do so by
explicitly invoking the receiver’s closePath (page 315) method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

appendBezierPathWithRect:
Appends a rectangular path to the receiver’s path.

- (void)appendBezierPathWithRect:(NSRect)aRect

Parameters
aRect

The rectangle describing the path to create.

Discussion
Before adding the rectangle, this method moves the current point to the origin of the rectangle, which
implicitly closes the current subpath (if any). The path is constructed by starting at the origin of aRect and
adding line segments in a counterclockwise direction. The final segment is added using a closePath (page
315) message.

312 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ bezierPathWithRect: (page 295)
+ fillRect: (page 300)
+ strokeRect: (page 306)

Related Sample Code
Cropped Image
IBFragmentView
TrackBall

Declared In
NSBezierPath.h

appendBezierPathWithRoundedRect:xRadius:yRadius:
Appends a rounded rectangular path to the receiver’s path.

- (void)appendBezierPathWithRoundedRect:(NSRect)rect xRadius:(CGFloat)xRadius
yRadius:(CGFloat)yRadius

Parameters
rect

The rectangle that defines the basic shape of the path.

xRadius
The radius of each corner oval along the x-axis. Values larger than half the rectangle’s width are
clamped to half the width.

yRadius
The radius of each corner oval along the y-axis. Values larger than half the rectangle’s height are
clamped to half the height.

Discussion
The path is constructed in a counter-clockwise direction, starting at the top-left corner of the rectangle. If
either one of the radius parameters contains the value 0.0, the returned path is a plain rectangle without
rounded corners.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ bezierPathWithRoundedRect:xRadius:yRadius: (page 296)

Declared In
NSBezierPath.h

bezierPathByFlatteningPath
Creates and returns a “flattened” copy of the receiver.

Instance Methods 313
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

- (NSBezierPath *)bezierPathByFlatteningPath

Return Value
A new path object whose contents are a flattened version of the receiver's path.

Discussion
Flattening a path converts all curved line segments into straight line approximations. The granularity of the
approximations is controlled by the path's current flatness value, which is set using the
setDefaultFlatness: (page 301) method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

bezierPathByReversingPath
Creates and returns a new NSBezierPath object with the reversed contents of the receiver’s path.

- (NSBezierPath *)bezierPathByReversingPath

Return Value
A new path object whose contents are a reversed version of the receiver's path.

Discussion
Reversing a path does not necessarily change the appearance of the path when rendered. Instead, it changes
the direction in which path segments are drawn. For example, reversing the path of a rectangle (whose line
segments are normally drawn starting at the origin and proceeding in a counterclockwise direction) causes
its line segments to be drawn in a clockwise direction instead. Drawing a reversed path could affect the
appearance of a filled pattern, depending on the pattern and the fill rule in use.

This method reverses each whole or partial subpath in the path object individually.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

bounds
Returns the bounding box of the receiver’s path.

- (NSRect)bounds

Return Value
The rectangle that encloses the path of the receiver. If the path contains curve segments, the bounding box
encloses the curve but may not enclose the control points used to calculate the curve.

Availability
Available in Mac OS X v10.0 and later.

314 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

See Also
– controlPointBounds (page 316)

Related Sample Code
Cropped Image
DockTile
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

cachesBezierPath
Returns a Boolean value indicating whether this object maintains a cached image of its path. (Deprecated
in Mac OS X v10.0.)

- (BOOL)cachesBezierPath

Return Value
YES if the path maintains a cached image; otherwise, NO.

Discussion
Caching of paths currently has no effect, so method always returns NO.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.

See Also
– setCachesBezierPath: (page 328)

Declared In
NSBezierPath.h

closePath
Closes the most recently added subpath.

- (void)closePath

Discussion
This method closes the current subpath by creating a line segment between the first and last points in the
subpath. This method subsequently updates the current point to the end of the newly created line segment,
which is also the first point in the now closed subpath.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fill (page 320)

Instance Methods 315
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Related Sample Code
CompositeLab
DockTile
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

containsPoint:
Returns a Boolean value indicating whether the receiver contains the specified point.

- (BOOL)containsPoint:(NSPoint)aPoint

Parameters
aPoint

The point to test against the path, specified in the path object's coordinate system.

Return Value
YES if the path's enclosed area contains the specified point; otherwise, NO.

Discussion
This method checks the point against the path itself and the area it encloses. When determining hits in the
enclosed area, this method uses the non-zero winding rule (NSNonZeroWindingRule). It does not take into
account the line width used to stroke the path.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dicey
ImageMap
ImageMapExample

Declared In
NSBezierPath.h

controlPointBounds
Returns the bounding box of the receiver’s path, including any control points.

- (NSRect)controlPointBounds

Return Value
The rectangle that encloses the receiver's path. If the path contains curve segments, the bounding box
encloses the control points of the curves as well as the curves themselves.

Availability
Available in Mac OS X v10.0 and later.

316 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

See Also
– bounds (page 314)

Declared In
NSBezierPath.h

currentPoint
Returns the receiver’s current point (the trailing point or ending point in the most recently added segment).

- (NSPoint)currentPoint

Return Value
The point from which the next drawn line or curve segment begins.

Discussion
If the receiver is empty, this method raises NSGenericException.

Availability
Available in Mac OS X v10.0 and later.

See Also
– closePath (page 315)
– curveToPoint:controlPoint1:controlPoint2: (page 317)
– lineToPoint: (page 322)
– moveToPoint: (page 324)

Declared In
NSBezierPath.h

curveToPoint:controlPoint1:controlPoint2:
Adds a Bezier cubic curve to the receiver’s path.

- (void)curveToPoint:(NSPoint)aPoint controlPoint1:(NSPoint)controlPoint1
controlPoint2:(NSPoint)controlPoint2

Parameters
aPoint

The destination point of the curve segment, specified in the current coordinate system

controlPoint1
The point that determines the shape of the curve near the current point.

controlPoint2
The point that determines the shape of the curve near the destination point.

Discussion
You must set the path's current point (using the moveToPoint: (page 324) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 317
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

See Also
– closePath (page 315)
– lineToPoint: (page 322)
– relativeCurveToPoint:controlPoint1:controlPoint2: (page 325)
+ setDefaultFlatness: (page 301)

Related Sample Code
CocoaVideoFrameToGWorld
DockTile
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

elementAtIndex:
Returns the type of path element at the specified index.

- (NSBezierPathElement)elementAtIndex:(NSInteger)index

Parameters
index

The index of the desired path element.

Return Value
The type of the path element. For a list of constants, see “NSBezierPathElement” (page 335).

Discussion
Path elements describe the commands used to define a path and include basic commands such as moving
to a specific point, creating a line segment, creating a curve, or closing the path. The elements are stored in
the order of their execution.

Availability
Available in Mac OS X v10.0 and later.

See Also
– elementCount (page 319)
– elementAtIndex:associatedPoints: (page 318)
– bezierPathByReversingPath (page 314)

Declared In
NSBezierPath.h

elementAtIndex:associatedPoints:
Gets the element type and (and optionally) the associated points for the path element at the specified index.

- (NSBezierPathElement)elementAtIndex:(NSInteger)index
associatedPoints:(NSPointArray)points

318 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Parameters
index

The index of the desired path element.

points
On input, a C-style array containing up to three NSPoint data types, or NULL if you do not want the
points. On output, the data points associated with the specified path element.

Return Value
The type of the path element. For a list of constants, see “NSBezierPathElement” (page 335).

Discussion
If you specify a value for the points parameter, your array must be large enough to hold the number of points
for the given path element. Move, close path, and line segment commands return one point. Curve operations
return three points.

For curve operations, the order of the points is controlPoint1 (points[0]), controlPoint2 (points[1]), endPoint
(points[2]).

Availability
Available in Mac OS X v10.0 and later.

See Also
– elementCount (page 319)
– elementAtIndex: (page 318)

Declared In
NSBezierPath.h

elementCount
Returns the total number of path elements in the receiver's path.

- (NSInteger)elementCount

Return Value
The number of path elements.

Discussion
Each element type corresponds to one of the operations described in “Path Elements”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– elementAtIndex: (page 318)
– elementAtIndex:associatedPoints: (page 318)

Related Sample Code
Cropped Image

Declared In
NSBezierPath.h

Instance Methods 319
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

fill
Paints the region enclosed by the receiver’s path.

- (void)fill

Discussion
This method fills the path using the current fill color and the receiver's current winding rule. If the path
contains any open subpaths, this method implicitly closes them before painting the fill region.

The painted region includes the pixels right up to, but not including, the path line itself. For paths with large
line widths, this can result in overlap between the fill region and the stroked path (which is itself centered
on the path line).

Availability
Available in Mac OS X v10.0 and later.

See Also
– stroke (page 333)
– windingRule (page 334)
– set (page 711) (NSColor)

Related Sample Code
Cropped Image
Dicey
WebKitPluginStarter
WebKitPluginWithJavaScript
Worm

Declared In
NSBezierPath.h

flatness
Returns the flatness value of the receiver's path.

- (CGFloat)flatness

Return Value
The flatness value of the path. If no value is set, this method returns the default flatness value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFlatness: (page 329)
+ defaultFlatness (page 297)

Declared In
NSBezierPath.h

320 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

getLineDash:count:phase:
Returns the line-stroking pattern for the receiver.

- (void)getLineDash:(CGFloat *)pattern count:(NSInteger *)count phase:(CGFloat
*)phase

Parameters
pattern

On input, a C-style array of floating point values, or nil if you do not want the pattern values. On
output, this array contains the lengths (measured in points) of the line segments and gaps in the
pattern. The values in the array alternate, starting with the first line segment length, followed by the
first gap length, followed by the second line segment length, and so on.

count
On input, a pointer to an integer or nil if you do not want the number of pattern entries. On output,
the number of entries written to pattern.

phase
On input, a pointer to a floating point value or nil if you do not want the phase. On output, this
value contains the offset at which to start drawing the pattern, measured in points along the
dashed-line pattern. For example, a phase of 6 in the pattern 5-2-3-2 would cause drawing to begin
in the middle of the first gap.

Discussion
The array in the pattern parameter must be large enough to hold all of the returned values in the pattern.
If you are not sure how many values there might be, you can call this method twice. The first time you call
it, do not pass a value for pattern but use the returned value in count to allocate an array of floating-point
numbers that you can then pass in the second time.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLineDash:count:phase: (page 330)

Declared In
NSBezierPath.h

isEmpty
Returns a Boolean value indicating whether the receiver is empty.

- (BOOL)isEmpty

Return Value
YES if the receiver contains no path elements; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cropped Image

Declared In
NSBezierPath.h

Instance Methods 321
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

lineCapStyle
Returns the line cap style for the receiver's path.

- (NSLineCapStyle)lineCapStyle

Return Value
The receiver's line cap style. For a list of values, see “Constants” (page 335). If this value is not set for the
receiver, the default line cap style is returned.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultLineCapStyle (page 298)
+ setDefaultLineCapStyle: (page 302)
– setLineCapStyle: (page 329)

Declared In
NSBezierPath.h

lineJoinStyle
Returns the receiver’s line join style.

- (NSLineJoinStyle)lineJoinStyle

Return Value
The receiver's line join style. For a list of values, see “Constants” (page 335). If this value is not set for the
receiver, the default line join style is returned.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultLineJoinStyle (page 298)
+ setDefaultLineJoinStyle: (page 302)
– setLineJoinStyle: (page 330)

Declared In
NSBezierPath.h

lineToPoint:
Appends a straight line to the receiver’s path

- (void)lineToPoint:(NSPoint)aPoint

Parameters
aPoint

The destination point of the line segment, specified in the current coordinate system.

322 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Discussion
This method creates a straight line segment starting at the current point and ending at the point specified
by the aPoint parameter. The current point is the last point in the receiver’s most recently added segment.

You must set the path's current point (using the moveToPoint: (page 324) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– closePath (page 315)
– curveToPoint:controlPoint1:controlPoint2: (page 317)

Related Sample Code
CompositeLab
FunHouse
NineSlice
Sketch+Accessibility
Sketch-112

Declared In
NSBezierPath.h

lineWidth
Returns the line width of the receiver's path.

- (CGFloat)lineWidth

Return Value
The line width of the receiver, measured in points in the user coordinate space.

Discussion
If no value was set explicitly for the receiver, this method returns the default line width.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLineWidth: (page 331)
+ defaultLineWidth (page 299)

Declared In
NSBezierPath.h

miterLimit
Returns the miter limit of the receiver's path.

- (CGFloat)miterLimit

Instance Methods 323
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Return Value
The miter limit of the path. If no value is set, this method returns the default miter limit.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMiterLimit: (page 332)
+ defaultMiterLimit (page 299)

Declared In
NSBezierPath.h

moveToPoint:
Moves the receiver’s current point to the specified location.

- (void)moveToPoint:(NSPoint)aPoint

Parameters
aPoint

A point in the current coordinate system.

Discussion
This method implicitly closes the current subpath (if any) and sets the current point to the value in aPoint.
When closing the previous subpath, this method does not cause a line to be created from the first and last
points in the subpath.

For many path operations, you must invoke this method before issuing any commands that cause a line or
curve segment to be drawn.

Availability
Available in Mac OS X v10.0 and later.

See Also
– closePath (page 315)
– curveToPoint:controlPoint1:controlPoint2: (page 317)
– lineToPoint: (page 322)

Related Sample Code
CompositeLab
NineSlice
Sketch-112
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

324 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

relativeCurveToPoint:controlPoint1:controlPoint2:
Adds a Bezier cubic curve to the receiver’s path from the current point to a new location, which is specified
as a relative distance from the current point.

- (void)relativeCurveToPoint:(NSPoint)aPoint controlPoint1:(NSPoint)controlPoint1
controlPoint2:(NSPoint)controlPoint2

Parameters
aPoint

The destination point of the curve segment, interpreted as a relative offset from the current point.

controlPoint1
The point that determines the shape of the curve near the current point, interpreted as a relative
offset from the current point.

controlPoint2
The point that determines the shape of the curve near the destination point, interpreted as a relative
offset from the current point.

Discussion
You must set the path's current point (using the moveToPoint: (page 324) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– closePath (page 315)
– curveToPoint:controlPoint1:controlPoint2: (page 317)
– relativeLineToPoint: (page 325)
– relativeMoveToPoint: (page 326)

Declared In
NSBezierPath.h

relativeLineToPoint:
Appends a straight line segment to the receiver’s path starting at the current point and moving towards the
specified point, relative to the current location.

- (void)relativeLineToPoint:(NSPoint)aPoint

Parameters
aPoint

A point whose coordinates are interpreted as a relative offset from the current point.

Discussion
The destination point is relative to the current point. For example, if the current point is (1, 1) and aPoint
contains the value (1, 2), a line segment is created between the points (1, 1) and (2, 3).

You must set the path's current point (using the moveToPoint: (page 324) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Instance Methods 325
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– closePath (page 315)
– lineToPoint: (page 322)
– relativeLineToPoint: (page 325)
– relativeMoveToPoint: (page 326)

Related Sample Code
SampleRaster

Declared In
NSBezierPath.h

relativeMoveToPoint:
Moves the receiver’s current point to a new point whose location is the specified distance from the current
point.

- (void)relativeMoveToPoint:(NSPoint)aPoint

Parameters
aPoint

A point whose coordinates are interpreted as a relative offset from the current point.

Discussion
This method implicitly closes the current subpath (if any) and updates the location of the current point. For
example, if the current point is (1, 1) and aPoint contains the value (1, 2), the previous subpath would be
closed and the current point would become (2, 3). When closing the previous subpath, this method does
not cause a line to be created from the first and last points in the subpath.

You must set the path's current point (using the moveToPoint: (page 324) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– closePath (page 315)
– relativeCurveToPoint:controlPoint1:controlPoint2: (page 325)
– relativeLineToPoint: (page 325)

Declared In
NSBezierPath.h

removeAllPoints
Removes all path elements from the receiver, effectively clearing the path.

- (void)removeAllPoints

326 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cropped Image

Declared In
NSBezierPath.h

setAssociatedPoints:atIndex:
Changes the points associated with the specified path element.

- (void)setAssociatedPoints:(NSPointArray)points atIndex:(NSInteger)index

Parameters
points

A C-style array containing up to three NSPoint data types. This parameter must contain the correct
number of points for the path element at the specified index. Move, close path, and line segment
commands require one point. Curve operations require three points.

index
The index of the path element you want to modify.

Discussion
You can use this method to change the points associated with a path quickly and without recreating the
path. You cannot use this method to change the type of the path element.

The following example shows you how you would modify the point associated with a line path element. The
path created by this example results in a path with two elements. The first path element specifies a move to
point (0, 0) while the second creates a line to point (100, 100). It then changes the line to go only to the point
(50,50) using this method:

NSBezierPath *bezierPath = [NSBezierPath bezierPath];
NSPoint newPoint = NSMakePoint(50.0, 50.0);

[bezierPath moveToPoint: NSMakePoint(0.0, 0.0)];
[bezierPath lineToPoint: NSMakePoint(100.0, 100.0)];

// Modifies the point added by lineToPoint: method (100.0, 100.0)
// to the new point (50.0, 50.0)
[bezierPath setAssociatedPoints: &newPoint atIndex: 1];

Note: If you specify too few points for a path element of type NSCurveToBezierPathElement, the behavior
of this method is undefined.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

Instance Methods 327
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

setCachesBezierPath:
Sets whether the receiver should cache its path information. (Deprecated in Mac OS X v10.0.)

- (void)setCachesBezierPath:(BOOL)flag

Parameters
flag

YES if the receiver should cache its path information; otherwise, NO.

Discussion
Caching of paths currently has no effect.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.

See Also
– cachesBezierPath (page 315)

Declared In
NSBezierPath.h

setClip
Replaces the clipping path of the current graphics context with the area inside the receiver's path.

- (void)setClip

Discussion
You should avoid using this method as a way of adjusting the clipping path, as it may expand the clipping
path beyond the bounds set by the enclosing view. If you do use this method, be sure to save the graphics
state prior to modifying the clipping path and restore the graphics state when you are done.

This method uses the current winding rule to determine the clipping shape of the receiver. This method does
not affect the receiver’s path.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addClip (page 306)
+ clipRect: (page 297)
– saveGraphicsState (page 1308) (NSGraphicsContext)
– restoreGraphicsState (page 1307) (NSGraphicsContext)

Related Sample Code
PDF Annotation Editor

Declared In
NSBezierPath.h

328 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

setFlatness:
Sets the flatness value for the receiver's path.

- (void)setFlatness:(CGFloat)flatness

Parameters
flatness

The flatness value for the path.

Discussion
The flatness value specifies the accuracy (or smoothness) with which curves are rendered. It is also the
maximum error tolerance (measured in pixels) for rendering curves, where smaller numbers give smoother
curves at the expense of more computation. The exact interpretation may vary slightly on different rendering
devices.

The default flatness value is 0.6, which yields smooth curves.

Availability
Available in Mac OS X v10.0 and later.

See Also
– flatness (page 320)
+ setDefaultFlatness: (page 301)

Declared In
NSBezierPath.h

setLineCapStyle:
Sets the line cap style for the receiver's path.

- (void)setLineCapStyle:(NSLineCapStyle)lineCapStyle

Parameters
lineCapStyle

The line cap style to use with the receiver. For a list of values, see “Constants” (page 335).

Discussion
The line cap style specifies the shape of the endpoints of an open path when stroked. Figure 13-1 (page 302)
shows the appearance of the available line cap styles.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultLineCapStyle (page 298)
+ setDefaultLineCapStyle: (page 302)
– lineCapStyle (page 322)

Related Sample Code
DockTile
SpeedometerView
WebKitPluginStarter

Instance Methods 329
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

setLineDash:count:phase:
Sets the line-stroking pattern for the receiver.

- (void)setLineDash:(const CGFloat *)pattern count:(NSInteger)count
phase:(CGFloat)phase

Parameters
pattern

A C-style array of floating point values that contains the lengths (measured in points) of the line
segments and gaps in the pattern. The values in the array alternate, starting with the first line segment
length, followed by the first gap length, followed by the second line segment length, and so on

count
The number of values in pattern.

phase
The offset at which to start drawing the pattern, measured in points along the dashed-line pattern.
For example, a phase of 6 in the pattern 5-2-3-2 would cause drawing to begin in the middle of the
first gap

Discussion
For example, to produce a supermarket coupon type of dashed line:

array[0] = 5.0; //segment painted with stroke color
array[1] = 2.0; //segment not painted with a color

[path setLineDash: array count: 2 phase: 0.0];

In the above example, if you set phase to 6.0, the line dash would begin exactly six units into pattern,
which would start the pattern in the middle of the first gap.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getLineDash:count:phase: (page 321)

Related Sample Code
PhotoSearch

Declared In
NSBezierPath.h

setLineJoinStyle:
Sets the line join style for the receiver's path.

- (void)setLineJoinStyle:(NSLineJoinStyle)lineJoinStyle

330 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Parameters
lineJoinStyle

The line join style to use for the receiver's path. For a list of values, see “Constants” (page 335).

Discussion
The line join style specifies the shape of the joints between connected segments of a stroked path. Figure
13-2 (page 303) shows the appearance of the available line join styles.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultLineJoinStyle (page 298)
+ setDefaultLineJoinStyle: (page 302)
– lineJoinStyle (page 322)

Related Sample Code
DockTile
PDFKitLinker2
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

setLineWidth:
Sets the line width of the receiver's path.

- (void)setLineWidth:(CGFloat)lineWidth

Parameters
lineWidth

The line width to use for the receiver, measured in points in the user coordinate space.

Discussion
The line width defines the thickness of the receiver's stroked path. A width of 0 is interpreted as the thinnest
line that can be rendered on a particular device. The actual rendered line width may vary from the specified
width by as much as 2 device pixels, depending on the position of the line with respect to the pixel grid and
the current anti-aliasing settings. The width of the line may also be affected by scaling factors specified in
the current transformation matrix of the active graphics context.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineWidth (page 323)
+ setDefaultLineWidth: (page 303)

Related Sample Code
DockTile
Sketch-112

Instance Methods 331
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

setMiterLimit:
Sets the miter limit for the receiver's path.

- (void)setMiterLimit:(CGFloat)miterLimit

Parameters
miterLimit

A value indicating the limit at which miter joins are converted to bevel joins.

Discussion
The miter limit helps you avoid spikes at the junction of two line segments connected by a miter join
(NSMiterLineJoinStyle). If the ratio of the miter length—the diagonal length of the miter join—to the
line thickness exceeds the miter limit, the joint is converted to a bevel join. The default miter limit value is
10, which converts miters whose angle at the joint is less than 11 degrees.

Availability
Available in Mac OS X v10.0 and later.

See Also
– miterLimit (page 323)
+ setDefaultMiterLimit: (page 304)

Declared In
NSBezierPath.h

setWindingRule:
Sets the winding rule used to fill the receiver’s path.

- (void)setWindingRule:(NSWindingRule)aWindingRule

Parameters
aWindingRule

The winding rule to use for the path. This value may be either NSNonZeroWindingRule or
NSEvenOddWindingRule.

Discussion
For more information on how winding rules affect the appearance of filled paths, see “Winding Rules and
Filling Paths”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fill (page 320)

332 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

– windingRule (page 334)
+ setDefaultWindingRule: (page 304)

Related Sample Code
Cropped Image

Declared In
NSBezierPath.h

stroke
Draws a line along the receiver’s path using the current stroke color and drawing attributes.

- (void)stroke

Discussion
The drawn line is centered on the path with its sides parallel to the path segment. This method uses the
current drawing attributes associated with the receiver. If a particular attribute is not set for the receiver, this
method uses the corresponding default attribute.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fill (page 320)
+ setDefaultLineCapStyle: (page 302)
+ setDefaultLineJoinStyle: (page 302)
– set (page 711) (NSColor)

Related Sample Code
DockTile
Sketch-112
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

transformUsingAffineTransform:
Transforms all points in the receiver using the specified transform.

- (void)transformUsingAffineTransform:(NSAffineTransform *)aTransform

Parameters
aTransform

The transform to apply to the path.

Discussion
This method applies the transform to the path's points immediately. The following code translates a line
from 0,0 to 100,100 to a line from 10,10 to 110,110.

Instance Methods 333
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

NSBezierPath *bezierPath = [NSBezierPath bezierPath];
NSAffineTransform *transform = [NSAffineTransform transform];

[bezierPath moveToPoint: NSMakePoint(0.0, 0.0)];
[bezierPath lineToPoint: NSMakePoint(100.0, 100.0)];

[transform translateXBy: 10.0 yBy: 10.0];
[bezierPath transformUsingAffineTransform: transform];

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompositeLab
DockTile
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

windingRule
Returns the winding rule used to fill the receiver’s path.

- (NSWindingRule)windingRule

Return Value
The winding rule for the path. This value may be eitherNSNonZeroWindingRuleorNSEvenOddWindingRule.

Discussion
This value overrides the default value returned by defaultWindingRule (page 299).

For more information on how winding rules affect the appearance of filled paths, see “Winding Rules and
Filling Paths”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fill (page 320)
– setWindingRule: (page 332)
+ defaultWindingRule (page 299)

Declared In
NSBezierPath.h

334 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Constants

NSBezierPathElement
Basic path element commands.

typedef enum {
 NSMoveToBezierPathElement,
 NSLineToBezierPathElement,
 NSCurveToBezierPathElement,
 NSClosePathBezierPathElement
} NSBezierPathElement;

Constants
NSMoveToBezierPathElement

Moves the path object’s current drawing point to the specified point.

This path element does not result in any drawing. Using this command in the middle of a path results
in a disconnected line segment.

Contains 1 point.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

NSLineToBezierPathElement
Creates a straight line from the current drawing point to the specified point.

Lines and rectangles are specified using this path element.

Contains 1 point.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

NSCurveToBezierPathElement
Creates a curved line segment from the current point to the specified endpoint using two control
points to define the curve.

The points are stored in the following order: controlPoint1, controlPoint2, endPoint. Ovals, arcs, and
Bezier curves all use curve elements to specify their geometry.

Contains 3 points.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

NSClosePathBezierPathElement
Marks the end of the current subpath at the specified point.

Note that the point specified for the Close Path element is essentially the same as the current point.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

Discussion
These commands are enough to define all of the possible path shapes. Each command has one or more
points that contain information needed to position the path element. Most path elements use the current
drawing point as the starting point for drawing. For more details, see Paths.

Constants 335
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Declared In
NSBezierPath.h

NSLineJoinStyle
These constants specify the shape of the joints between connected segments of a stroked path.

typedef enum {
 NSMiterLineJoinStyle = 0,
 NSRoundLineJoinStyle = 1,
 NSBevelLineJoinStyle = 2
} NSLineJoinStyle;

Constants
NSBevelLineJoinStyle

Specifies a bevel line shape of the joints between connected segments of a stroked path.

See the setDefaultLineJoinStyle: (page 302) method for an example of the appearance.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

NSMiterLineJoinStyle
Specifies a miter line shape of the joints between connected segments of a stroked path.

See the setDefaultLineJoinStyle: (page 302) method for an example of the appearance.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

NSRoundLineJoinStyle
Specifies a round line shape of the joints between connected segments of a stroked path.

See the setDefaultLineJoinStyle: (page 302) method for an example of the appearance.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

Declared In
NSBezierPath.h

NSLineCapStyle
These constants specify the shape of endpoints for an open path when stroked.

typedef enum {
 NSButtLineCapStyle = 0,
 NSRoundLineCapStyle = 1,
 NSSquareLineCapStyle = 2
} NSLineCapStyle;

Constants
NSButtLineCapStyle

Specifies a butt line cap style for endpoints for an open path when stroked.

See the setDefaultLineCapStyle: (page 302) method for an example of the appearance.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

336 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

NSSquareLineCapStyle
Specifies a square line cap style for endpoints for an open path when stroked.

See the setDefaultLineCapStyle: (page 302) method for an example of the appearance.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

NSRoundLineCapStyle
Specifies a round line cap style for endpoints for an open path when stroked.

See the setDefaultLineCapStyle: (page 302) method for an example of the appearance.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

Declared In
NSBezierPath.h

NSWindingRule
These constants are used to specify the winding rule a Bezier path should use.

typedef enum {
 NSNonZeroWindingRule = 0,
 NSEvenOddWindingRule = 1
} NSWindingRule;

Constants
NSNonZeroWindingRule

Specifies the non-zero winding rule.

Count each left-to-right path as +1 and each right-to-left path as -1. If the sum of all crossings is 0,
the point is outside the path. If the sum is nonzero, the point is inside the path and the region
containing it is filled. This is the default winding rule.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

NSEvenOddWindingRule
Specifies the even-odd winding rule.

Count the total number of path crossings. If the number of crossings is even, the point is outside the
path. If the number of crossings is odd, the point is inside the path and the region containing it should
be filled.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

Discussion
These constants are described in more detail in Paths.

Declared In
NSBezierPath.h

Constants 337
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

338 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Inherits from NSImageRep : NSObject

Conforms to NSCoding (NSImageRep)
NSCopying (NSImageRep)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSBitmapImageRep.h

Companion guide Cocoa Drawing Guide

Related sample code GLSLShowpiece
GLUT
Image Difference
Quartz EB
Reducer

Overview

The NSBitmapImageRep class renders an image from bitmap data. Bitmap data formats supported include
GIF, JPEG, TIFF, PNG, and various permutations of raw bitmap data.

Alpha Premultiplication

If a coverage (alpha) plane exists, a bitmap’s color components are premultiplied with it. If you modify the
contents of the bitmap, you are therefore responsible for premultiplying the data. For this reason, though,
if you want to manipulate the actual data, an NSBitmapImageRep object is not recommended for storage.
If you need to work with data that is not premultiplied, you should use Quartz, specifically CGImageCreate
with kCGImageAlphaLast.

Note that premultiplying does not affect the output quality. Given source bitmap pixel s, destination pixel
d, and alpha value a, a blend is basically

d' = a * s + (1 - a) * d

All premultiplication does is precalculate a * s.

Overview 339
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Tasks

Creating an NSBitmapImageRep Object

+ imageRepWithData: (page 344)
Creates and returns an NSBitmapImageRep object initialized with the first image in the supplied
data.

+ imageRepsWithData: (page 343)
Creates and returns an array of initialized NSBitmapImageRep objects corresponding to the images
in the supplied data.

– colorizeByMappingGray:toColor:blackMapping:whiteMapping: (page 351)
Colorizes a grayscale image.

– initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:hasAlpha:isPlanar:colorSpaceName:bitmapFormat:bytesPerRow:bitsPerPixel: (page
356)

Initializes the receiver, a newly allocated NSBitmapImageRep object, so it can render the specified
image.

– initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPerPixel: (page
358)

Initializes the receiver, a newly allocated NSBitmapImageRep object, so it can render the specified
image.

– initWithCGImage: (page 360)
Returns an NSBitmapImageRep object created from a Core Graphics image object.

– initWithCIImage: (page 361)
Returns an NSBitmapImageRep object created from a Core Image object.

– initWithData: (page 362)
Initializes a newly allocated NSBitmapImageRep from the provided data.

– initWithFocusedViewRect: (page 362)
Initializes the receiver, a newly allocated NSBitmapImageRep object, with bitmap data read from a
rendered image.

– initForIncrementalLoad (page 355)
Initializes and returns the receiver, a newly allocated NSBitmapImageRep object, for incremental
loading.

Getting Information About the Image

– bitmapFormat (page 347)
Returns the bitmap format of the receiver.

– bitsPerPixel (page 348)
Returns the number of bits allocated for each pixel in each plane of data.

– bytesPerPlane (page 349)
Returns the number of bytes in each plane or channel of data.

– bytesPerRow (page 349)
Returns the minimum number of bytes required to specify a scan line (a single row of pixels spanning
the width of the image) in each data plane.

340 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

– isPlanar (page 363)
Returns YES if image data is a planar configuration and NO if its in a meshed configuration.

– numberOfPlanes (page 363)
Returns the number of separate planes image data is organized into.

– samplesPerPixel (page 364)
Returns the number of components in the data.

Getting Image Data

– bitmapData (page 346)
Returns a pointer to the bitmap data.

– getBitmapDataPlanes: (page 352)
Returns by indirection bitmap data of the receiver separated into planes.

Producing Representations of the Image

+ TIFFRepresentationOfImageRepsInArray: (page 345)
Returns a TIFF representation of the given images

+ TIFFRepresentationOfImageRepsInArray:usingCompression:factor: (page 346)
Returns a TIFF representation of the given images using a specified compression scheme and factor.

– TIFFRepresentation (page 366)
Returns a TIFF representation of the receiver.

– TIFFRepresentationUsingCompression:factor: (page 367)
Returns a TIFF representation of the image using the specified compression.

+ representationOfImageRepsInArray:usingType:properties: (page 345)
Formats the specified bitmap images using the specified storage type and properties and returns
them in a data object.

– representationUsingType:properties: (page 363)
Formats the receiver’s image data using the specified storage type and properties and returns it in a
data object.

Managing Compression Types

+ getTIFFCompressionTypes:count: (page 343)
Returns by indirection an array of all available compression types that can be used when writing a
TIFF image.

+ localizedNameForTIFFCompressionType: (page 344)
Returns an autoreleased string containing the localized name for the specified compression type.

– canBeCompressedUsing: (page 350)
Tests whether the receiver can be compressed by the specified compression scheme.

– setCompression:factor: (page 365)
Sets the receiver’s compression type and compression factor.

Tasks 341
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

– getCompression:factor: (page 353)
Returns by indirection the receiver’s compression type and compression factor.

– setProperty:withValue: (page 366)
Sets the image’s property to value.

– valueForProperty: (page 368)
Returns the value for the specified property.

Loading Image Incrementally

– incrementalLoadFromData:complete: (page 354)
Loads the current image data into an incrementally-loaded image representation and returns the
current status of the image.

Managing Pixel Values

– setColor:atX:y: (page 364)
Changes the color of the pixel at the specified coordinates.

– colorAtX:y: (page 351)
Returns the color of the pixel at the specified coordinates.

– setPixel:atX:y: (page 366)
Sets the receiver's pixel at the specified coordinates to the specified raw pixel values.

– getPixel:atX:y: (page 354)
Returns by indirection the pixel data for the specified location in the receiver.

Getting a Core Graphics Image

– CGImage (page 350)
Returns a Core Graphics image object from the receiver’s current bitmap data.

Managing ColorSpaces

– bitmapImageRepByConvertingToColorSpace:renderingIntent: (page 347)
Converts the image rep to the specified colorspace

– bitmapImageRepByRetaggingWithColorSpace: (page 348)
Changes the colorSpace tag of the receiver.

– colorSpace (page 352)
Returns the image rep’s colorSpace

342 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Class Methods

getTIFFCompressionTypes:count:
Returns by indirection an array of all available compression types that can be used when writing a TIFF image.

+ (void)getTIFFCompressionTypes:(const NSTIFFCompression **)list count:(NSInteger
 *)numTypes

Parameters
list

On return, a C array of NSTIFFCompression constants. This array belongs to the NSBitmapImageRep
class; it shouldn’t be freed or altered. See “Constants” (page 368) for the supported TIFF compression
types.

numTypes
The number of constants in list.

Discussion
Note that not all compression types can be used for all images: NSTIFFCompressionNEXT can be used only
to retrieve image data. Because future releases may include other compression types, always use this method
to get the available compression types—for example, when you implement a user interface for selecting
compression types.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ localizedNameForTIFFCompressionType: (page 344)
– canBeCompressedUsing: (page 350)

Declared In
NSBitmapImageRep.h

imageRepsWithData:
Creates and returns an array of initialized NSBitmapImageRep objects corresponding to the images in the
supplied data.

+ (NSArray *)imageRepsWithData:(NSData *)bitmapData

Parameters
bitmapData

A data object containing one or more bitmapped images or nil if the class is unable to create an
image representation. The bitmapData parameter can contain data in any supported bitmap format.

Return Value
An array of NSBitmapImageRep instances or an empty array if the class is unable to create any image
representations.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 343
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Declared In
NSBitmapImageRep.h

imageRepWithData:
Creates and returns an NSBitmapImageRep object initialized with the first image in the supplied data.

+ (id)imageRepWithData:(NSData *)bitmapData

Parameters
bitmapData

A data object containing one or more bitmapped images. The bitmapData parameter can contain
data in any supported bitmap format.

Return Value
An NSBitmapImageRep instance or nil if the class is unable to create an image representation.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
OpenCL Procedural Grass and Terrain Example
OpenCL_OceanWave
SpecialPictureProtocol

Declared In
NSBitmapImageRep.h

localizedNameForTIFFCompressionType:
Returns an autoreleased string containing the localized name for the specified compression type.

+ (NSString *)localizedNameForTIFFCompressionType:(NSTIFFCompression)compression

Parameters
compression

A TIFF compression type. NSTIFFCompression types are described in “Constants” (page 368).

Return Value
A localized name for compression or nil if compression is unrecognized.

Discussion
When implementing a user interface for selecting TIFF compression types, use
getTIFFCompressionTypes:count: (page 343) to get the list of supported compression types, then use
this method to get the localized names for each compression type.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ getTIFFCompressionTypes:count: (page 343)

344 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Declared In
NSBitmapImageRep.h

representationOfImageRepsInArray:usingType:properties:
Formats the specified bitmap images using the specified storage type and properties and returns them in a
data object.

+ (NSData *)representationOfImageRepsInArray:(NSArray *)imageReps
usingType:(NSBitmapImageFileType)storageType properties:(NSDictionary
*)properties

Parameters
imageReps

An array of NSBitmapImageRep objects.

storageType
An enum constant specifying a file type for bitmap images. It can be NSBMPFileType, NSGIFFileType,
NSJPEGFileType, NSPNGFileType, or NSTIFFFileType.

properties
A dictionary that contains key-value pairs specifying image properties. These string constants used
as keys and the valid values are described in “Bitmap image properties” (page 370).

Return Value
A data object containing the bitmap image data in the specified format. You can write this data to a file or
use it to create a new NSBitmapImageRep object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

TIFFRepresentationOfImageRepsInArray:
Returns a TIFF representation of the given images

+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array

Parameters
array

An array containing objects representing bitmap image representations.

Return Value
A data object containing a TIFF image representation.

Discussion
This method uses the compression returned by getCompression:factor: (page 353) (if applicable). If a
problem is encountered during generation of the TIFF, this method raises an NSTIFFException or an
NSBadBitmapParametersException.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 345
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

See Also
– TIFFRepresentation (page 366)

Declared In
NSBitmapImageRep.h

TIFFRepresentationOfImageRepsInArray:usingCompression:factor:
Returns a TIFF representation of the given images using a specified compression scheme and factor.

+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array
usingCompression:(NSTIFFCompression)compression factor:(float)factor

Parameters
array

An array containing objects representing bitmap image representations.

compression
An enum constant that represents a TIFF data-compression scheme. Legal values for compression
can be found in NSBitmapImageRep.h and are described in “Constants” (page 368).

factor
A float value that provides a hint for those compression types that implement variable compression
ratios.

Currently only JPEG compression uses a compression factor. JPEG compression in TIFF files is not
supported, and factor is ignored.

Return Value
A data object containing a TIFF image representation.

Discussion
If the specified compression isn’t applicable, no compression is used. If a problem is encountered during
generation of the TIFF, the method raises an NSTIFFException or an NSBadBitmapParametersException.

Availability
Available in Mac OS X v10.0 and later.

See Also
– TIFFRepresentationUsingCompression:factor: (page 367)

Declared In
NSBitmapImageRep.h

Instance Methods

bitmapData
Returns a pointer to the bitmap data.

- (unsigned char *)bitmapData

346 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Discussion
If the data is planar, returns a pointer to the first plane.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getPixel:atX:y: (page 354)
– getBitmapDataPlanes: (page 352)

Related Sample Code
Image Difference
LayerBackedOpenGLView
NSOpenGL Fullscreen
Quartz EB
SimpleImageFilter

Declared In
NSBitmapImageRep.h

bitmapFormat
Returns the bitmap format of the receiver.

- (NSBitmapFormat)bitmapFormat

Discussion
Returns 0 by default. The return value can indicate several different attributes, which are described in
“Constants” (page 368).

Availability
Available in Mac OS X v10.4 and later.

See Also
– bytesPerRow (page 349)

Declared In
NSBitmapImageRep.h

bitmapImageRepByConvertingToColorSpace:renderingIntent:
Converts the image rep to the specified colorspace

- (NSBitmapImageRep *)bitmapImageRepByConvertingToColorSpace:(NSColorSpace
*)targetSpace renderingIntent:(NSColorRenderingIntent)renderingIntent

Parameters
targetSpace

The new colorSpace

Instance Methods 347
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

renderingIntent
The rendering intent specifies how to handle colors that are not located within the target color space.
The supported values are NSColorRenderingIntent (page 1313).

Return Value
An NSBitmapImageRep, or nil, if the conversion fails. If the original NSBitmapImageRep already uses that
colorSpace, it is returned as is.

Availability
Available in Mac OS X v10.6 and later.

See Also
– bitmapImageRepByRetaggingWithColorSpace: (page 348)
– colorSpace (page 352)

Declared In
NSBitmapImageRep.h

bitmapImageRepByRetaggingWithColorSpace:
Changes the colorSpace tag of the receiver.

- (NSBitmapImageRep *)bitmapImageRepByRetaggingWithColorSpace:(NSColorSpace
*)newSpace

Parameters
newSpace

The desired colorSpace.

Return Value
An NSBitmapImageRep, or nil, if the conversion fails. If the original NSBitmapImageRep already uses that
colorSpace, it is returned as is.

Discussion
This method will definitely fail if you pass a colorSpace that has a different color space model than the receiver.
That is, if your original image is sRGB, you can only retag with some other RGB colorspace.

Availability
Available in Mac OS X v10.6 and later.

See Also
– bitmapImageRepByRetaggingWithColorSpace: (page 348)
– colorSpace (page 352)

Declared In
NSBitmapImageRep.h

bitsPerPixel
Returns the number of bits allocated for each pixel in each plane of data.

- (NSInteger)bitsPerPixel

348 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Discussion
This number is normally equal to the number of bits per sample or, if the data is in meshed configuration,
the number of bits per sample times the number of samples per pixel. It can be explicitly set to another value
(in initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPerPixel: (page 358)) in case extra memory
is allocated for each pixel. This may be the case, for example, if pixel data is aligned on byte boundaries.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz EB

Declared In
NSBitmapImageRep.h

bytesPerPlane
Returns the number of bytes in each plane or channel of data.

- (NSInteger)bytesPerPlane

Discussion
This number is calculated from the number of bytes per row and the height of the image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bytesPerRow (page 349)

Declared In
NSBitmapImageRep.h

bytesPerRow
Returns the minimum number of bytes required to specify a scan line (a single row of pixels spanning the
width of the image) in each data plane.

- (NSInteger)bytesPerRow

Discussion
If not explicitly set to another value (in
initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPerPixel: (page 358)), this number will be
figured from the width of the image, the number of bits per sample, and, if the data is in a meshed
configuration, the number of samples per pixel. It can be set to another value to indicate that each row of
data is aligned on word or other boundaries.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 349
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

See Also
– bytesPerPlane (page 349)

Related Sample Code
FunHouse
NURBSSurfaceVertexProg
OpenCL_OceanWave
Quartz EB
VertexPerformanceDemo

Declared In
NSBitmapImageRep.h

canBeCompressedUsing:
Tests whether the receiver can be compressed by the specified compression scheme.

- (BOOL)canBeCompressedUsing:(NSTIFFCompression)compression

Parameters
compression

A TIFF compression type. NSTIFFCompression types are defined in “Constants” (page 368).

Return Value
YES if the receiver's data matches compression with this type, NO if the data doesn’t match compression
or if compression is unsupported..

Discussion
Legal values for compression can be found in NSBitmapImageRep.h and are described in TIFF Compression
in NSBitmapImageReps. This method returns YES if the receiver’s data matches compression; for example,
if compression is NSTIFFCompressionCCITTFAX3, then the data must be 1 bit per sample and 1 sample
per pixel.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ getTIFFCompressionTypes:count: (page 343)

Declared In
NSBitmapImageRep.h

CGImage
Returns a Core Graphics image object from the receiver’s current bitmap data.

- (CGImageRef)CGImage

Return Value
Returns an autoreleased CGImageRef opaque type based on the receiver’s current bitmap data.

350 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Discussion
The returned CGImageRef has pixel dimensions that are identical to the receiver’s. This method might return
a preexisting CGImageRef opaque type or create a new one. If the receiver is later modified, subsequent
invocations of this method might return different CGImageRef opaque types.

Availability
Available in Mac OS X version 10.5.

See Also
– initWithCGImage: (page 360)

Declared In
NSBitmapImageRep.h

colorAtX:y:
Returns the color of the pixel at the specified coordinates.

- (NSColor *)colorAtX:(NSInteger)x y:(NSInteger)y

Parameters
x

The x-axis coordinate.

y
The y-axis coordinate.

Return Value
A color object representing the color at the specified coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setColor:atX:y: (page 364)

Related Sample Code
RadiantColorPicker

Declared In
NSBitmapImageRep.h

colorizeByMappingGray:toColor:blackMapping:whiteMapping:
Colorizes a grayscale image.

- (void)colorizeByMappingGray:(CGFloat)midPoint toColor:(NSColor *)midPointColor
blackMapping:(NSColor *)shadowColor whiteMapping:(NSColor *)lightColor

Parameters
midPoint

A float value representing the midpoint of the grayscale image.

Instance Methods 351
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

midPointColor
A color object representing the midpoint of the color to map the image to.

shadowColor
A color object representing the black mapping to use for shadows.

lightColor
A color object representing the white mapping to be used in the image.

Discussion
This method maps the receiver such that:

Gray value of midPoint –> midPointColor;
black –> shadowColor;
white –> lightColor.

It works on images with 8-bit SPP, and thus supports either 8-bit gray or 24-bit color (with optional alpha).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

colorSpace
Returns the image rep’s colorSpace

- (NSColorSpace *)colorSpace

Return Value
The colorSpace.

Availability
Available in Mac OS X v10.6 and later.

See Also
– bitmapImageRepByRetaggingWithColorSpace: (page 348)
– bitmapImageRepByConvertingToColorSpace:renderingIntent: (page 347)

Declared In
NSBitmapImageRep.h

getBitmapDataPlanes:
Returns by indirection bitmap data of the receiver separated into planes.

- (void)getBitmapDataPlanes:(unsigned char **)data

352 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Parameters
data

On return, a C array of five character pointers. If the bitmap data is in planar configuration, each
pointer will be initialized to point to one of the data planes. If there are less than five planes, the
remaining pointers will be set to NULL. If the bitmap data is in meshed configuration, only the first
pointer will be initialized; the others will be NULL.

Discussion
Color components in planar configuration are arranged in the expected order—for example, red before green
before blue for RGB color. All color planes precede the coverage plane. If a coverage plane exists, the bitmap’s
color components are premultiplied with it. If you modify the contents of the bitmap, you are responsible
for premultiplying the data.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isPlanar (page 363)
– initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:hasAlpha:isPlanar:colorSpaceName:bitmapFormat:bytesPerRow:bitsPerPixel: (page
356)
– initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPerPixel: (page
358)

Declared In
NSBitmapImageRep.h

getCompression:factor:
Returns by indirection the receiver’s compression type and compression factor.

- (void)getCompression:(NSTIFFCompression *)compression factor:(float *)factor

Parameters
compression

On return, an enum constant that represents the compression type used on the data; it corresponds
to one of the values returned by the class method getTIFFCompressionTypes:count: (page 343).

factor
A float value that is specific to the compression type. Many types of compression don’t support varying
degrees of compression and thus ignore factor. JPEG compression allows a compression factor
ranging from 0.0 to 1.0, with 0.0 being the lowest and 1.0 being the highest.

Discussion
Use this method to get information on the compression type for the source image data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

Instance Methods 353
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

getPixel:atX:y:
Returns by indirection the pixel data for the specified location in the receiver.

- (void)getPixel:(NSUInteger[])pixelData atX:(NSInteger)x y:(NSInteger)y

Parameters
pixelData

On return, an array of integers containing raw pixel data in the appropriate order for the receiver’s
bitmapFormat (page 347). Smaller integer samples, such as 4-bit, are returned as an integer. Floating
point values are cast to integer values and returned.

x
The x-axis coordinate of the pixel.

y
The y-axis coordinate of the pixel.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPixel:atX:y: (page 366)

Declared In
NSBitmapImageRep.h

incrementalLoadFromData:complete:
Loads the current image data into an incrementally-loaded image representation and returns the current
status of the image.

- (NSInteger)incrementalLoadFromData:(NSData *)data complete:(BOOL)complete

Parameters
data

A data object that contains the image to be loaded.

complete
YES if the image is entirely downloaded, NO otherwise.

Return Value
An integer constant indicating the status of the image during the load operation. See the discussion for
details.

Discussion
After initializing the receiver with initForIncrementalLoad (page 355), you should call this method to
incrementally load the image. Call this method each time new data becomes available. Always pass the entire
image data buffer in data, not just the newest data, because the image decompressor may need the original
data in order to backtrack. This method will block until the data is decompressed; it will decompress as much
of the image as possible based on the length of the data. The image rep does not retain data, so you must
ensure that data is not released for the duration of this method call. Pass NO for complete until the entire
image is downloaded, at which time you should pass YES. You should also pass YES for complete if you
have only partially downloaded the data, but cannot finish the download.

354 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

This method returns NSImageRepLoadStatusUnknownType if you did not pass enough data to determine
the image format; you should continue to invoke this method with additional data.

This method returns NSImageRepLoadStatusReadingHeader if it has enough data to determine the image
format, but needs more data to determine the size and depth and other characteristics of the image. You
should continue to invoke this method with additional data.

This method returns NSImageRepLoadStatusWillNeedAllData if the image format does not support
incremental loading or the Application Kit does not yet implement incremental loading for the image format.
You may continue to invoke this method in this case, but until you pass YES for complete, this method will
continue to return NSImageRepLoadStatusWillNeedAllData, and will perform no decompression. Once
you pass YES, the image will be decompressed and one of the final three status messages will be returned.

If the image format does support incremental loading, then once enough data has been read, the image is
decompressed from the top down a row at a time. In this case, instead of a status value, this method returns
the number of pixel rows that have been decompressed, starting from the top of the image. You can use
this information to draw the part of the image that is valid. The rest of the image is filled with opaque white.
Note that if the image is progressive (as in a progressive JPEG or 2D interlaced PNG), this method may quickly
return the full height of the image, but the image may still be loading, so do not use this return value as an
indication of how much of the image remains to be decompressed.

If an error occurred while decompressing, this method returns NSImageRepLoadStatusInvalidData. If
complete is YES but not enough data was available for decompression,
NSImageRepLoadStatusUnexpectedEOF is returned. If enough data has been provided (regardless of the
complete flag), then NSImageRepLoadStatusCompleted is returned. When any of these three status
results are returned, this method has adjusted the NSBitmapImageRep so that pixelsHigh (page 1419) and
size (page 1424), as well as the bitmap data, only contains the pixels that are valid, if any.

To cancel decompression, just pass in the existing data or nil and YES for complete. This method stops
decompression immediately, adjusts the image size, and returns NSImageRepLoadStatusUnexpectedEOF.
This method returns NSImageRepLoadStatusCompleted if you call it after receiving any error results
(NSImageRepLoadStatusInvalidData or NSImageRepLoadStatusUnexpectedEOF) or if you call it on
an NSBitmapImageRep that was not initialized with initForIncrementalLoad (page 355).

Availability
Available in Mac OS X v10.2 and later.

See Also
– initForIncrementalLoad (page 355)

Declared In
NSBitmapImageRep.h

initForIncrementalLoad
Initializes and returns the receiver, a newly allocated NSBitmapImageRep object, for incremental loading.

- (id)initForIncrementalLoad

Discussion
The receiver returns itself after setting its size and data buffer to zero. You can then call
incrementalLoadFromData:complete: (page 354) to incrementally add image data.

Instance Methods 355
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
– incrementalLoadFromData:complete: (page 354)

Declared In
NSBitmapImageRep.h

initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bitmapFormat:bytesPerRow:bitsPerPixel:
Initializes the receiver, a newly allocated NSBitmapImageRep object, so it can render the specified image.

- (id)initWithBitmapDataPlanes:(unsigned char **)planes pixelsWide:(NSInteger)width
pixelsHigh:(NSInteger)height bitsPerSample:(NSInteger)bps
samplesPerPixel:(NSInteger)spp hasAlpha:(BOOL)alpha isPlanar:(BOOL)isPlanar
colorSpaceName:(NSString *)colorSpaceName
bitmapFormat:(NSBitmapFormat)bitmapFormat bytesPerRow:(NSInteger)rowBytes
bitsPerPixel:(NSInteger)pixelBits

Parameters
planes

An array of character pointers, each of which points to a buffer containing raw image data. If the data
is in planar configuration, each buffer holds one component—one plane—of the data. Color planes
are arranged in the standard order—for example, red before green before blue for RGB color. All color
planes precede the coverage plane. If a coverage plane exists, the bitmap’s color components must
be premultiplied with it. If the data is in meshed configuration (that is, isPlanar is NO), only the first
buffer is read.

If planes is NULL or an array of NULL pointers, this method allocates enough memory to hold the
image described by the other arguments. You can then obtain pointers to this memory (with the
getPixel:atX:y: (page 354) or bitmapData (page 346) method) and fill in the image data. In this
case, the allocated memory will belong to the object and will be freed when it’s freed.

If planes is not NULL and the array contains at least one data pointer, the returned object will only
reference the image data; it will not copy it. The object treats the image data in the buffers as
immutable and will not attempt to alter it. When the object itself is freed, it will not attempt to free
the buffers.

width
The width of the image in pixels. This value must be greater than 0.

height
The height of the image in pixels. This value must be greater than 0.

bps
The number of bits used to specify one pixel in a single component of the data. All components are
assumed to have the same bits per sample. bps should be one of these values: 1, 2, 4, 8, 12, or 16.

spp
The number of data components, or samples per pixel. This value includes both color components
and the coverage component (alpha), if present. Meaningful values range from 1 through 5. An image
with cyan, magenta, yellow, and black (CMYK) color components plus a coverage component would
have an spp of 5; a grayscale image that lacks a coverage component would have an spp of 1.

356 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

alpha
YES if one of the components counted in the number of samples per pixel (spp) is a coverage (alpha)
component, and NO if there is no coverage component. If YES, the color components in the bitmap
data must be premultiplied with their coverage component.

isPlanar
YES if the data components are laid out in a series of separate “planes” or channels (“planar
configuration”) and NO if component values are interwoven in a single channel (“meshed
configuration”). If NO, only the first buffer of planes is read.

For example, in meshed configuration, the red, green, blue, and coverage values for the first pixel of
an image would precede the red, green, blue, and coverage values for the second pixel, and so on.
In planar configuration, red values for all the pixels in the image would precede all green values,
which would precede all blue values, which would precede all coverage values.

colorSpaceName
A string constant that indicates how data values are to be interpreted. It should be one of the following
values:

 ■ NSCalibratedWhiteColorSpace

 ■ NSCalibratedBlackColorSpace

 ■ NSCalibratedRGBColorSpace

 ■ NSDeviceWhiteColorSpace

 ■ NSDeviceBlackColorSpace

 ■ NSDeviceRGBColorSpace

 ■ NSDeviceCMYKColorSpace

 ■ NSNamedColorSpace

 ■ NSCustomColorSpace

If bps is 12, you cannot specify the monochrome color space.

bitmapFormat
An integer that specifies the ordering of the bitmap components. It is a mask created by combining
the NSBitmapFormat constants NSAlphaFirstBitmapFormat,
NSAlphaNonpremultipliedBitmapFormat andNSFloatingPointSamplesBitmapFormatusing
the C bitwise OR operator.

rowBytes
The number of bytes that are allocated for each scan line in each plane of data. A scan line is a single
row of pixels spanning the width of the image.

Normally, rowBytes can be figured from the width of the image, the number of bits per pixel in each
sample (bps), and, if the data is in a meshed configuration, the number of samples per pixel (spp).
However, if the data for each row is aligned on word or other boundaries, it may have been necessary
to allocate more memory for each row than there is data to fill it. rowBytes lets the object know
whether that’s the case.

If you pass in a rowBytes value of 0, the bitmap data allocated may be padded to fall on long word
or larger boundaries for performance. If your code wants to advance row by row, use
bytesPerRow (page 349) and do not assume the data is packed. Passing in a non-zero value allows
you to specify exact row advances.

Instance Methods 357
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

pixelBits
This integer value informs NSBitmapImageRep how many bits are actually allocated per pixel in each
plane of data. If the data is in planar configuration, this normally equals bps (bits per sample). If the
data is in meshed configuration, it normally equals bps times spp (samples per pixel). However, it’s
possible for a pixel specification to be followed by some meaningless bits (empty space), as may
happen, for example, if pixel data is aligned on byte boundaries. NSBitmapImageRep supports only
a limited number of pixelBits values (other than the default): for RGB images with 4 bps, pixelBits
may be 16; for RGB images with 8 bps, pixelBits may be 32. The legal values for pixelBits are
system dependent.

If you specify 0 for this parameter, the object interprets the number of bits per pixel using the values
in the bps and spp parameters, as described in the preceding paragraph, without any meaningless
bits.

Return Value
An initialized NSBitmapImageRep object or nil if the object cannot be initialized.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Quartz Composer Offline Rendering

Declared In
NSBitmapImageRep.h

initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPerPixel:
Initializes the receiver, a newly allocated NSBitmapImageRep object, so it can render the specified image.

- (id)initWithBitmapDataPlanes:(unsigned char **)planes pixelsWide:(NSInteger)width
pixelsHigh:(NSInteger)height bitsPerSample:(NSInteger)bps
samplesPerPixel:(NSInteger)spp hasAlpha:(BOOL)alpha isPlanar:(BOOL)isPlanar
colorSpaceName:(NSString *)colorSpaceName bytesPerRow:(NSInteger)rowBytes
bitsPerPixel:(NSInteger)pixelBits

Parameters
planes

An array of character pointers, each of which points to a buffer containing raw image data. If the data
is in planar configuration, each buffer holds one component—one plane—of the data. Color planes
are arranged in the standard order—for example, red before green before blue for RGB color. All color
planes precede the coverage plane. If a coverage plane exists, the bitmap’s color components must
be premultiplied with it. If the data is in meshed configuration (that is, isPlanar is NO), only the first
buffer is read.

If planes is NULL or an array of NULL pointers, this method allocates enough memory to hold the
image described by the other arguments. You can then obtain pointers to this memory (with the
getPixel:atX:y: (page 354) or bitmapData (page 346) method) and fill in the image data. In this
case, the allocated memory will belong to the object and will be freed when it’s freed.

If planes is not NULL and the array contains at least one data pointer, the returned object will only
reference the image data; it will not copy it. The object treats the image data in the buffers as
immutable and will not attempt to alter it. When the object itself is freed, it will not attempt to free
the buffers.

358 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

width
The width of the image in pixels. This value must be greater than 0.

height
The height of the image in pixels. This value must be greater than 0.

bps
The number of bits used to specify one pixel in a single component of the data. All components are
assumed to have the same bits per sample. bps should be one of these values: 1, 2, 4, 8, 12, or 16.

spp
The number of data components, or samples per pixel. This value includes both color components
and the coverage component (alpha), if present. Meaningful values range from 1 through 5. An image
with cyan, magenta, yellow, and black (CMYK) color components plus a coverage component would
have an spp of 5; a grayscale image that lacks a coverage component would have an spp of 1.

alpha
YES if one of the components counted in the number of samples per pixel (spp) is a coverage (alpha)
component, and NO if there is no coverage component. If YES, the color components in the bitmap
data must be premultiplied with their coverage component.

isPlanar
YES if the data components are laid out in a series of separate “planes” or channels (“planar
configuration”) and NO if component values are interwoven in a single channel (“meshed
configuration”). If NO, only the first buffer of planes is read.

For example, in meshed configuration, the red, green, blue, and coverage values for the first pixel of
an image would precede the red, green, blue, and coverage values for the second pixel, and so on.
In planar configuration, red values for all the pixels in the image would precede all green values,
which would precede all blue values, which would precede all coverage values.

colorSpaceName
A string constant that indicates how data values are to be interpreted. It should be one of the following
values:

 ■ NSCalibratedWhiteColorSpace

 ■ NSCalibratedBlackColorSpace

 ■ NSCalibratedRGBColorSpace

 ■ NSDeviceWhiteColorSpace

 ■ NSDeviceBlackColorSpace

 ■ NSDeviceRGBColorSpace

 ■ NSDeviceCMYKColorSpace

 ■ NSNamedColorSpace

 ■ NSCustomColorSpace

If bps is 12, you cannot specify the monochrome color space.

Instance Methods 359
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

rowBytes
The number of bytes that are allocated for each scan line in each plane of data. A scan line is a single
row of pixels spanning the width of the image.

Normally, rowBytes can be figured from the width of the image, the number of bits per pixel in each
sample (bps), and, if the data is in a meshed configuration, the number of samples per pixel (spp).
However, if the data for each row is aligned on word or other boundaries, it may have been necessary
to allocate more memory for each row than there is data to fill it. rowBytes lets the object know
whether that’s the case.

If you pass in a rowBytes value of 0, the bitmap data allocated may be padded to fall on long word
or larger boundaries for performance. If your code wants to advance row by row, use
bytesPerRow (page 349) and do not assume the data is packed. Passing in a non-zero value allows
you to specify exact row advances.

pixelBits
This integer value informs NSBitmapImageRep how many bits are actually allocated per pixel in each
plane of data. If the data is in planar configuration, this normally equals bps (bits per sample). If the
data is in meshed configuration, it normally equals bps times spp (samples per pixel). However, it’s
possible for a pixel specification to be followed by some meaningless bits (empty space), as may
happen, for example, if pixel data is aligned on byte boundaries. NSBitmapImageRep supports only
a limited number of pixelBits values (other than the default): for RGB images with 4 bps, pixelBits
may be 16; for RGB images with 8 bps, pixelBits may be 32. The legal values for pixelBits are
system dependent.

If you specify 0 for this parameter, the object interprets the number of bits per pixel using the values
in the bps and spp parameters, as described in the preceding paragraph, without any meaningless
bits.

Return Value
An initialized NSBitmapImageRep object or nil if the object cannot be initialized.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaVideoFrameToNSImage
ColorMatching
OpenCL NBody Simulation Example
Reducer
Transformed Image

Declared In
NSBitmapImageRep.h

initWithCGImage:
Returns an NSBitmapImageRep object created from a Core Graphics image object.

- (id)initWithCGImage:(CGImageRef)cgImage

Parameters
cgImage

A Core Graphics image object (an opaque type) from which to create the receiver. This opaque type
is retained.

360 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Return Value
An NSBitmapImageRep object initialized from the contents of the Core Graphics image or nil if the
NSBitmapImageRep couldn’t be created.

Discussion
If you use this method, you should treat the resulting bitmap NSBitmapImageRep object as read only.
Because it only retains the value in the cgImage parameter, rather than unpacking the data, accessing the
pixel data requires the creation of a copy of that data in memory. Changes to that data are not saved back
to the Core Graphics image.

Availability
Available in Mac OS X v10.5 and later.

See Also
– CGImage (page 350)

Declared In
NSBitmapImageRep.h

initWithCIImage:
Returns an NSBitmapImageRep object created from a Core Image object.

- (id)initWithCIImage:(CIImage *)ciImage

Parameters
ciImage

A Core Image object whose contents are to be copied to the receiver. This image rectangle must be
of a finite size.

Return Value
An NSBitmapImageRep object initialized from the contents of the Core Image (CIImage) object or nil if
the NSBitmapImageRep couldn’t be created.

Discussion
The image in the ciImage parameter must be fully rendered before the receiver can be initialized. If you
specify an object whose rendering was deferred (and thus does not have any pixels available now), this
method forces the image to be rendered immediately. Rendering the image could result in a performance
penalty if the image has a complex rendering chain or accelerated rendering hardware is not available. By
the time this method returns, however, the resultant NSBitmapImageRep object can have its raw pixel data
inspected, can be put on the pasteboard, and can be encoded to any of the standard image formats that
NSBitmapImageRep supports (JPEG, TIFF, and so on.)

If you pass in a CIImage object whose extents are not finite, this method raises an exception.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithBitmapImageRep: (page 59) (CIImage)

Declared In
NSBitmapImageRep.h

Instance Methods 361
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

initWithData:
Initializes a newly allocated NSBitmapImageRep from the provided data.

- (id)initWithData:(NSData *)bitmapData

Parameters
bitmapData

A data object containing image data. The contents of bitmapData can be any supported bitmap
format. For TIFF data, the NSBitmapImageRep is initialized from the first header and image data
found in bitmapData.

Return Value
Returns an initialized NSBitmapImageRep if the initialization was successful or nil if it was unable to interpret
the contents of bitmapData.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

initWithFocusedViewRect:
Initializes the receiver, a newly allocated NSBitmapImageRep object, with bitmap data read from a rendered
image.

- (id)initWithFocusedViewRect:(NSRect)rect

Parameters
rect

A rectangle that specifies an area of the current window in the current coordinate system.

Return Value
Returns the initialized object or nil If for any reason the new object can’t be initialized.

Discussion
This method uses imaging operators to read the image data into a buffer; the object is then created from
that data. The object is initialized with information about the image obtained from the window server.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa OpenGL
Color Sampler
From A View to A Movie
FunHouse
Reducer

Declared In
NSBitmapImageRep.h

362 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

isPlanar
Returns YES if image data is a planar configuration and NO if its in a meshed configuration.

- (BOOL)isPlanar

Discussion
In a planar configuration, the image data is segregated into a separate plane for each color and coverage
component. In a meshed configuration, the data is integrated into a single plane.

Availability
Available in Mac OS X v10.0 and later.

See Also
– samplesPerPixel (page 364)

Declared In
NSBitmapImageRep.h

numberOfPlanes
Returns the number of separate planes image data is organized into.

- (NSInteger)numberOfPlanes

Discussion
This number is the number of samples per pixel if the data has a separate plane for each component
(isPlanar (page 363) returns YES) and 1 if the data is meshed (isPlanar (page 363) returns NO).

Availability
Available in Mac OS X v10.0 and later.

See Also
– samplesPerPixel (page 364)
– hasAlpha (page 1418) (NSImageRep)
– bitsPerSample (page 1414) (NSImageRep)

Declared In
NSBitmapImageRep.h

representationUsingType:properties:
Formats the receiver’s image data using the specified storage type and properties and returns it in a data
object.

- (NSData *)representationUsingType:(NSBitmapImageFileType)storageType
properties:(NSDictionary *)properties

Parameters
storageType

An enum constant specifying a file type for bitmap images. It can be NSBMPFileType, NSGIFFileType,
NSJPEGFileType, NSPNGFileType, or NSTIFFFileType.

Instance Methods 363
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

properties
A dictionary that contains key-value pairs specifying image properties. These string constants used
as keys and the valid values are described in “Bitmap image properties” (page 370).

Return Value
A data object containing the receiver’s image data in the specified format. You can write this data to a file
or use it to create a new NSBitmapImageRep object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– TIFFRepresentation (page 366)
– TIFFRepresentationUsingCompression:factor: (page 367)
– TIFFRepresentation (page 1372) (NSImage)
– TIFFRepresentationUsingCompression:factor: (page 1373) (NSImage)

Related Sample Code
Reducer
SpecialPictureProtocol

Declared In
NSBitmapImageRep.h

samplesPerPixel
Returns the number of components in the data.

- (NSInteger)samplesPerPixel

Discussion
The returned value includes both color components and the coverage component, if present.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasAlpha (page 1418) (NSImageRep)
– bitsPerSample (page 1414) (NSImageRep)

Related Sample Code
Image Difference

Declared In
NSBitmapImageRep.h

setColor:atX:y:
Changes the color of the pixel at the specified coordinates.

- (void)setColor:(NSColor *)color atX:(NSInteger)x y:(NSInteger)y

364 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Parameters
color

A color object representing the color to be set.

x
The x-axis coordinate of the pixel.

y
The y-axis coordinate of the pixel.

Availability
Available in Mac OS X v10.4 and later.

See Also
– colorAtX:y: (page 351)

Related Sample Code
RadiantColorPicker

Declared In
NSBitmapImageRep.h

setCompression:factor:
Sets the receiver’s compression type and compression factor.

- (void)setCompression:(NSTIFFCompression)compression factor:(float)factor

Parameters
compression

An enum constant that identifies one of the supported compression types as described in
“Constants” (page 368).

factor
A floating point value that is specific to the compression type. Many types of compression don’t
support varying degrees of compression and thus ignore factor. JPEG compression allows a
compression factor ranging from 0.0 to 1.0, with 0.0 being the lowest and 1.0 being the highest.

Discussion
When an NSBitmapImageRep is created, the instance stores the compression type and factor for the source
data. TIFFRepresentation (page 366) and TIFFRepresentationOfImageRepsInArray: (page 345)
(class method) try to use the stored compression type and factor. Use this method to change the compression
type and factor.

Availability
Available in Mac OS X v10.0 and later.

See Also
– canBeCompressedUsing: (page 350)

Declared In
NSBitmapImageRep.h

Instance Methods 365
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

setPixel:atX:y:
Sets the receiver's pixel at the specified coordinates to the specified raw pixel values.

- (void)setPixel:(NSUInteger[])pixelData atX:(NSInteger)x y:(NSInteger)y

Parameters
pixelData

An array of integers representing the raw pixel values. The values must be in an order appropriate to
the receiver's bitmapFormat (page 347). Small pixel sample values should be passed as an integer
value. Floating point values should be cast int[].

x
The x-axis coordinate of the pixel.

y
The y-axis coordinate of the pixel.

Availability
Available in Mac OS X v10.4 and later.

See Also
– getPixel:atX:y: (page 354)

Declared In
NSBitmapImageRep.h

setProperty:withValue:
Sets the image’s property to value.

- (void)setProperty:(NSString *)property withValue:(id)value

Parameters
property

A string constant used as a key for an image property. These properties are described in
“Constants” (page 368).

value
A value specific to property. If value is nil, the value of the property is cleared.

Discussion
The properties can affect how the image is read in and saved to file.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

TIFFRepresentation
Returns a TIFF representation of the receiver.

- (NSData *)TIFFRepresentation

366 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Discussion
This method invokes TIFFRepresentationUsingCompression:factor: (page 367) using the stored
compression type and factor retrieved from the initial image data or changed using
setCompression:factor: (page 365). If the stored compression type isn’t supported for writing TIFF data
(for example, NSTIFFCompressionNEXT), the stored compression is changed to NSTIFFCompressionNone
before invoking TIFFRepresentationUsingCompression:factor: (page 367). receiver, using the
compression that’s returned by getCompression:factor: (page 353) (if applicable).

If a problem is encountered during generation of the TIFF, TIFFRepresentation raises an NSTIFFException
or an NSBadBitmapParametersException.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ TIFFRepresentationOfImageRepsInArray: (page 345)
– TIFFRepresentationUsingCompression:factor: (page 367)
– representationUsingType:properties: (page 363)
– TIFFRepresentation (page 1372) (NSImage)
– TIFFRepresentationUsingCompression:factor: (page 1373) (NSImage)

Declared In
NSBitmapImageRep.h

TIFFRepresentationUsingCompression:factor:
Returns a TIFF representation of the image using the specified compression.

- (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)compression
factor:(float)factor

Parameters
compression

An enum constant that represents a TIFF data-compression scheme. Legal values for compression
can be found in NSBitmapImageRep.h and are described in “Constants” (page 368).

factor
A float value that provides a hint for those compression types that implement variable compression
ratios.

Currently only JPEG compression uses a compression factor. JPEG compression in TIFF files is not
supported, and factor is ignored.

Discussion
If the compression type isn’t supported for writing TIFF data (for example, NSTIFFCompressionNEXT), the
stored compression is changed to NSTIFFCompressionNone before the TIFF representation is generated.

If a problem is encountered during generation of the TIFF,
TIFFRepresentationUsingCompression:factor: raises an NSTIFFException or an
NSBadBitmapParametersException.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 367
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

See Also
– canBeCompressedUsing: (page 350)
+ TIFFRepresentationOfImageRepsInArray: (page 345)
– TIFFRepresentation (page 366)
– representationUsingType:properties: (page 363)
– TIFFRepresentation (page 1372) (NSImage)
– TIFFRepresentationUsingCompression:factor: (page 1373) (NSImage)

Related Sample Code
Quartz Composer Offline Rendering

Declared In
NSBitmapImageRep.h

valueForProperty:
Returns the value for the specified property.

- (id)valueForProperty:(NSString *)property

Parameters
property

A string constant used as a key for an image property. These properties are described in
“Constants” (page 368).

Return Value
A value specific to property, or nil if the property is not set for the bitmap.

Discussion
Image properties can affect how an image is read in and saved to file. When retrieving the bitmap image
properties defined in “Bitmap image properties” (page 370), be sure to check the return value of this method
for a nil value. If a particular value is not set for the image, this method may return nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

Constants

NSImageRepLoadStatus
These constants represent the various status values returned by
incrementalLoadFromData:complete: (page 354).

368 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

enum {
 NSImageRepLoadStatusUnknownType = -1,
 NSImageRepLoadStatusReadingHeader = -2,
 NSImageRepLoadStatusWillNeedAllData = -3,
 NSImageRepLoadStatusInvalidData = -4,
 NSImageRepLoadStatusUnexpectedEOF = -5,
 NSImageRepLoadStatusCompleted = -6
};
typedef NSInteger NSImageRepLoadStatus;

Constants
NSImageRepLoadStatusUnknownType

Not enough data to determine image format. You should continue to provide more data.

Available in Mac OS X v10.2 and later.

Declared in NSBitmapImageRep.h.

NSImageRepLoadStatusReadingHeader
The image format is known, but not enough data has been read to determine the size, depth, etc.,
of the image. You should continue to provide more data.

Available in Mac OS X v10.2 and later.

Declared in NSBitmapImageRep.h.

NSImageRepLoadStatusWillNeedAllData
Incremental loading cannot be supported. Until you call
incrementalLoadFromData:complete: (page 354) with YES, this status will be returned. You can
continue to call the method but no decompression will take place. Once you do call the method with
YES, then the image will be decompressed and one of the final three status messages will be returned.

Available in Mac OS X v10.2 and later.

Declared in NSBitmapImageRep.h.

NSImageRepLoadStatusInvalidData
An error occurred during image decompression. The image contains the portions of the data that
have already been successfully decompressed, if any

Available in Mac OS X v10.2 and later.

Declared in NSBitmapImageRep.h.

NSImageRepLoadStatusUnexpectedEOF
incrementalLoadFromData:complete: (page 354) was called with YES, but not enough data was
available for decompression. The image contains the portions of the data that have already been
successfully decompressed, if any.

Available in Mac OS X v10.2 and later.

Declared in NSBitmapImageRep.h.

NSImageRepLoadStatusCompleted
Enough data has been provided to successfully decompress the image (regardless of the complete:
flag).

Available in Mac OS X v10.2 and later.

Declared in NSBitmapImageRep.h.

Constants 369
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Bitmap image properties
These constants identify properties that are used by
representationOfImageRepsInArray:usingType:properties: (page 345),
representationUsingType:properties: (page 363), setPixel:atX:y: (page 366), and
valueForProperty: (page 368).

NSString *NSImageCompressionMethod;
NSString *NSImageCompressionFactor;
NSString *NSImageDitherTransparency;
NSString *NSImageRGBColorTable;
NSString *NSImageInterlaced;
NSString *NSImageColorSyncProfileData;
NSString *NSImageFrameCount;
NSString *NSImageCurrentFrame;
NSString *NSImageCurrentFrameDuration;
NSString *NSImageLoopCount;
NSString *NSImageGamma;
NSString *NSImageProgressive;
NSString *NSImageEXIFData;
NSString *NSImageFallbackBackgroundColor;

Constants
NSImageColorSyncProfileData

Identifies an NSData object containing the ColorSync profile data.

It can be used for TIFF, JPEG, GIF, and PNG files. This value is set when reading in and used when
writing out image data. You can get the profile data for a particular color space from the corresponding
NSColorSpace object or from the ColorSync Manager.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSImageCompressionFactor
Identifies an NSNumber object containing the compression factor of the image.

Used only for JPEG files. JPEG compression in TIFF files is not supported, and the factor is ignored.
The value is a float between 0.0 and 1.0, with 1.0 resulting in no compression and 0.0 resulting in the
maximum compression possible. It’s set when reading in and used when writing out the image.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSImageCompressionMethod
Identifies an NSNumber object identifying the compression method of the image.

Used only for TIFF files. The value corresponds to one of the NSTIFFCompression constants, described
below. It’s set when reading in and used when writing out.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSImageDitherTransparency
Identifies an NSNumber object containing a boolean that indicates whether the image is dithered.

Used only when writing GIF files.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

370 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

NSImageInterlaced
Identifies an NSNumber object containing a Boolean value that indicates whether the image is
interlaced.

Used only when writing out PNG files.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSImageRGBColorTable
Identifies an NSData object containing the RGB color table.

Used only for GIF files. It’s stored as packed RGB. It’s set when reading in and used when writing out.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSImageEXIFData
Identifies an NSDictionary object containing the EXIF data for the image.

This property is used only when reading or writing JPEG files. The dictionary contains the EXIF keys
and values. Th standard dictionary keys (that is, those that are not specific to camera vendors) are
identical to those for kCGImagePropertyExifDictionary declared in the CGImageSource API.
See kCGImagePropertyExifDictionary Keys for details.

Available in Mac OS X v10.4 and later.

Declared in NSBitmapImageRep.h.

NSImageFallbackBackgroundColor
Specifies the background color to use when writing to an image format (such as JPEG) that doesn't
support alpha. The color's alpha value is ignored. The default background color, when this property
is not specified, is white. The value of the property should be an NSColor object. This constant
corresponds to the kCGImageDestinationBackgroundColor constant in Quartz.

Available in Mac OS X v10.5 and later.

Declared in NSBitmapImageRep.h.

NSImageFrameCount
Identifies an NSNumber object containing the number of frames in an animated GIF file.

This value is used when reading in data.

Available in Mac OS X v10.2 and later.

Declared in NSBitmapImageRep.h.

NSImageGamma
Identifies an NSNumber object containing the gamma value for the image.

Used only for PNG files. The gamma values is a floating-point number between 0.0 and 1.0, with 0.0
being black and 1.0 being the maximum color. It’s set when reading in and used when writing out.

Available in Mac OS X v10.4 and later.

Declared in NSBitmapImageRep.h.

NSImageCurrentFrame
Identifies an NSNumber object containing the current frame for an animated GIF file.

The first frame is 0.

Available in Mac OS X v10.2 and later.

Declared in NSBitmapImageRep.h.

Constants 371
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

NSImageCurrentFrameDuration
Identifies an NSNumber object containing the duration (in seconds) of the current frame for an animated
GIF image.

The frame duration can be a floating-point value. It is used when reading in, but not when writing
out.

Available in Mac OS X v10.2 and later.

Declared in NSBitmapImageRep.h.

NSImageProgressive
Identifies an NSNumber object containing a boolean that indicates whether the image uses progressive
encoding.

Used only for JPEG files. It’s set when reading in and used when writing out.

Available in Mac OS X v10.4 and later.

Declared in NSBitmapImageRep.h.

NSImageLoopCount
Identifies an NSNumber object containing the number of loops to make when animating a GIF image.

A value of 0 indicates the animation should loop indefinitely. Values should be specified as integer
numbers. It is used when reading in but not when writing out the image.

Available in Mac OS X v10.3 and later.

Declared in NSBitmapImageRep.h.

Discussion
When using the valueForProperty: method to retrieve the the value for any of these keys, be sure to
check that the returned value is non-nil before you attempt to use it. A bitmap image representation may
return nil for any values that have not yet been set.

NSBitmapImageFileType
The following file type constants are provided as a convenience by NSBitmapImageRep:

enum {
 NSTIFFFileType,
 NSBMPFileType,
 NSGIFFileType,
 NSJPEGFileType,
 NSPNGFileType,
 NSJPEG2000FileType
};
typedef NSUInteger NSBitmapImageFileType;

Constants
NSTIFFFileType

Tagged Image File Format (TIFF)

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSBMPFileType
Windows bitmap image (BMP) format

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

372 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

NSGIFFileType
Graphics Image Format (GIF), originally created by CompuServe for online downloads

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSJPEGFileType
JPEG format

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSPNGFileType
Portable Network Graphics (PNG) format

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSJPEG2000FileType
JPEG 2000 file format.

Available in Mac OS X v10.4 and later.

Declared in NSBitmapImageRep.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

NSTIFFCompression
These constants represent the various TIFF data-compression schemes supported by NSBitmapImageRep.

enum {
 NSTIFFCompressionNone = 1,
 NSTIFFCompressionCCITTFAX3 = 3,
 NSTIFFCompressionCCITTFAX4 = 4,
 NSTIFFCompressionLZW = 5,
 NSTIFFCompressionJPEG = 6,
 NSTIFFCompressionNEXT = 32766,
 NSTIFFCompressionPackBits = 32773,
 NSTIFFCompressionOldJPEG = 32865
};
typedef NSUInteger NSTIFFCompression;

Constants
NSTIFFCompressionNone

No compression.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSTIFFCompressionCCITTFAX3
CCITT Fax Group 3 compression.

Used for 1-bit fax images sent over telephone lines.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

Constants 373
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

NSTIFFCompressionCCITTFAX4
CCITT Fax Group 4 compression.

Used for 1-bit fax images sent over ISDN lines.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSTIFFCompressionLZW
LZW compression.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSTIFFCompressionJPEG
JPEG compression. No longer supported for input or output.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSTIFFCompressionNEXT
NeXT compressed. Supported for input only.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSTIFFCompressionPackBits
PackBits compression.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

NSTIFFCompressionOldJPEG
Old JPEG compression. No longer supported for input or output.

Available in Mac OS X v10.0 and later.

Declared in NSBitmapImageRep.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

NSBitmapFormat
These constants represent the various bitmap component formats supported by NSBitmapImageRep. These
values are combined using the C bitwise OR operator and passed to
initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bitmapFormat:bytesPerRow:bitsPerPixel: (page 356) as
the bitmap format and are returned by bitmapFormat (page 347).

374 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

enum {
 NSAlphaFirstBitmapFormat = 1 << 0,
 NSAlphaNonpremultipliedBitmapFormat = 1 << 1,
 NSFloatingPointSamplesBitmapFormat = 1 << 2
};
typedef NSUInteger NSBitmapFormat;

Constants
NSAlphaFirstBitmapFormat

If 0, alpha values are the last component.

For example, CMYKA and RGBA.

Available in Mac OS X v10.4 and later.

Declared in NSBitmapImageRep.h.

NSAlphaNonpremultipliedBitmapFormat
If 0, alpha values are premultiplied.

Available in Mac OS X v10.4 and later.

Declared in NSBitmapImageRep.h.

NSFloatingPointSamplesBitmapFormat
If 0, samples are integer values.

Available in Mac OS X v10.4 and later.

Declared in NSBitmapImageRep.h.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSBitmapImageRep.h

Constants 375
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

376 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmapImageRep Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSBox.h

Companion guide Boxes

Related sample code ButtonMadness
CoreRecipes
EnhancedDataBurn
Quartz Composer QCTV
TextSizingExample

Overview

The NSBox class implements simple views that can title themselves and draw a border around their content.
These objects are known as boxes. You can use box to group, visually, some number of other views.

Subclassing Notes

An NSBox object is a view that draws a line around its rectangular bounds and that displays a title on or near
the line (or might display neither line nor title). You can adjust the style of the line (bezel, grooved, or plain)
as well as the placement and font of the title. An NSBox also has a content view to which other views can
be added; it thus offers a way for an application to group related views. You could create a custom subclass
of NSBox that alters or augments its appearance or that modifies its grouping behavior. For example, you
might add color to the lines or background, add a new line style, or have the views in the group automatically
snap to an invisible grid when added.

Methods to Override

You must override the drawRect: (page 3170) method (inherited from NSView) if you want to customize the
appearance of your NSBox objects. Depending on the visual effect you’re trying to achieve, you may have
to invoke super’s implementation first. For example, if you are compositing a small image in a corner of the

Overview 377
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

box, you would invoke the superclass implementation first. If you’re adding a new style of line, you would
provide a way to store a request for this line type (such as a boolean instance variable and related accessor
methods). Then, in drawRect: (page 3170), if a request for this line type exists, you would draw the entire
view yourself (that is, without calling super). Otherwise, you would invoke the superclass implementation.

If you wish to change grouping behavior or other behavioral characteristics of the NSBox class, consider
overridingsetContentView: (page 385),sizeToFit (page 390), oraddSubview: (page 3139) (inherited from
NSView).

Special Considerations

If you are drawing the custom NSBox entirely by yourself, and you want it to look exactly like the superclass
object (except for your changes), it may take some effort and time to get the details right.

Tasks

Configuring Boxes

– borderRect (page 380)
Returns the rectangle in which the receiver’s border is drawn.

– boxType (page 381)
Returns the receiver’s box type.

– setBoxType: (page 385)
Sets the box type.

– borderType (page 380)
Returns the receiver’s border type.

– setBorderType: (page 384)
Sets the border type to aType, which must be a valid border type.

– isTransparent (page 383)
Indicates whether the receiver is transparent.

– setTransparent: (page 390)
Specifies whether the receiver is transparent.

– title (page 391)
Returns the receiver’s title.

– setTitle: (page 388)
Sets the title of the box and marks the region of the receiver within the title rectangle as needing
display.

– titleFont (page 391)
Returns the font object used to draw the receiver’s title.

– setTitleFont: (page 388)
Sets the font object used to draw the receiver’s title and marks the region of the receiver within the
title rectangle as needing display.

– titlePosition (page 392)
Returns a constant representing the title position.

378 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

– setTitlePosition: (page 389)
Sets the position of the box's title.

– setTitleWithMnemonic: (page 389)
Sets the title of the receiver with a character denoted as an access key.

– titleCell (page 391)
Returns the cell used to display the receiver’s title.

– titleRect (page 392)
Returns the rectangle in which the receiver’s title is drawn.

Customizing

– borderColor (page 380)
Returns the color of the receiver’s border when the receiver is a custom box with a simple line border.

– setBorderColor: (page 384)
Specifies the receiver’s border color.

– borderWidth (page 381)
Returns the width of the receiver’s border when the receiver is a custom box with a simple line border.

– setBorderWidth: (page 385)
Specifies the receiver’s border width.

– cornerRadius (page 382)
Returns the radius of the receiver’s corners when the receiver is a custom box with a simple line
border.

– setCornerRadius: (page 386)
Specifies the receiver’s corner radius.

– fillColor (page 383)
Returns the color of the receiver’s background when the receiver is a custom box with a simple line
border.

– setFillColor: (page 387)
Specifies the receiver’s fill color.

Managing Content

– contentView (page 382)
Returns the receiver’s content view.

– setContentView: (page 385)
Sets the receiver’s content view.

– contentViewMargins (page 382)
Returns the distances between the border and the content view.

– setContentViewMargins: (page 386)
Sets the horizontal and vertical distance between the border of the receiver and its content view.

Tasks 379
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Sizing

– setFrameFromContentFrame: (page 387)
Places the receiver so its content view lies on the specified frame.

– sizeToFit (page 390)
Resizes and moves the receiver’s content view so it just encloses its subviews.

Instance Methods

borderColor
Returns the color of the receiver’s border when the receiver is a custom box with a simple line border.

- (NSColor *)borderColor

Return Value
The receiver’s border color. It must be a custom box—that is, it has a type of NSBoxCustom (page 394)—and
it must have a border style of NSLineBorder (page 3250).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setBorderColor: (page 384)

Declared In
NSBox.h

borderRect
Returns the rectangle in which the receiver’s border is drawn.

- (NSRect)borderRect

Return Value
The rectangle in which the border of the NSBox is drawn.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBox.h

borderType
Returns the receiver’s border type.

- (NSBorderType)borderType

380 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Return Value
A constant describing the type of border. Border types are defined in NSView.h. Currently, the following
border types are defined: NSNoBorder,NSLineBorder,NSBezelBorder, NSGrooveBorder.

By default, the border type of an NSBox is NSGrooveBorder.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBorderType: (page 384)

Declared In
NSBox.h

borderWidth
Returns the width of the receiver’s border when the receiver is a custom box with a simple line border.

- (CGFloat)borderWidth

Return Value
The receiver’s border width. It must be a custom box—that is, it has a type of NSBoxCustom (page 394)—and
it must have a border style of NSLineBorder (page 3250).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setBorderWidth: (page 385)

Declared In
NSBox.h

boxType
Returns the receiver’s box type.

- (NSBoxType)boxType

Return Value
A constant describing the type of box. These constants are described in NSBoxType (page 394). By default,
the box type of an NSBox is NSBoxPrimary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBoxType: (page 385)

Declared In
NSBox.h

Instance Methods 381
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

contentView
Returns the receiver’s content view.

- (id)contentView

Return Value
The content view of the NSBox object. The content view is created automatically when the box is created
and resized as the box is resized (you should never send frame-altering messages directly to a box’s content
view). You can replace it with an NSView of your own through the setContentView: (page 385) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContentView: (page 385)

Related Sample Code
EnhancedDataBurn
Quartz Composer QCTV
TextSizingExample

Declared In
NSBox.h

contentViewMargins
Returns the distances between the border and the content view.

- (NSSize)contentViewMargins

Return Value
The width (the horizontal distance between the innermost edge of the border and the content view) and
height (the vertical distance between the innermost edge of the border and the content view) describing
the distance between the border and the content view. By default, these are both 5.0 in the box's coordinate
system.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContentViewMargins: (page 386)

Declared In
NSBox.h

cornerRadius
Returns the radius of the receiver’s corners when the receiver is a custom box with a simple line border.

- (CGFloat)cornerRadius

382 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Return Value
The receiver’s corner radius. It must be a custom box—that is, it has a type of NSBoxCustom (page 394)—and
it must have a border style of NSLineBorder (page 3250).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setCornerRadius: (page 386)

Declared In
NSBox.h

fillColor
Returns the color of the receiver’s background when the receiver is a custom box with a simple line border.

- (NSColor *)fillColor

Return Value
The receiver’s fill color. It must be a custom box—that is, it has a type of NSBoxCustom (page 394)—and it
must have a border style of NSLineBorder (page 3250).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setFillColor: (page 387)

Declared In
NSBox.h

isTransparent
Indicates whether the receiver is transparent.

- (BOOL)isTransparent

Return Value
YES when the receiver is transparent, NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setTransparent: (page 390)

Declared In
NSBox.h

Instance Methods 383
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

setBorderColor:
Specifies the receiver’s border color.

- (void)setBorderColor:(NSColor *)borderColor

Parameters
borderColor

Border color for the receiver.

Special Considerations

Functional only when the receiver’s box type (boxType (page 381)) is NSBoxCustom and its border type
(borderType (page 380)) is NSLineBorder.

Availability
Available in Mac OS X v10.5 and later.

See Also
– borderColor (page 380)

Declared In
NSBox.h

setBorderType:
Sets the border type to aType, which must be a valid border type.

- (void)setBorderType:(NSBorderType)aType

Parameters
aType

A constant describing the type of border. Border types are defined in NSView.h. Currently, the
following border types are defined:NSNoBorder,NSLineBorder,NSBezelBorder,NSGrooveBorder.

Discussion
If the size of the new border is different from that of the old border, the content view is resized to absorb
the difference, and the box is marked for redisplay.

Availability
Available in Mac OS X v10.0 and later.

See Also
– borderType (page 380)
– setNeedsDisplay: (page 3225) (NSView)

Related Sample Code
AnimatingViews
FunHouse

Declared In
NSBox.h

384 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

setBorderWidth:
Specifies the receiver’s border width.

- (void)setBorderWidth:(CGFloat)borderWidth

Parameters
borderWidth

Border width for the receiver.

Special Considerations

Functional only when the receiver’s box type (boxType (page 381)) is NSBoxCustom and its border type
(borderType (page 380)) is NSLineBorder.

Availability
Available in Mac OS X v10.5 and later.

See Also
– borderWidth (page 381)

Declared In
NSBox.h

setBoxType:
Sets the box type.

- (void)setBoxType:(NSBoxType)boxType

Parameters
boxType

A constant describing the type of box; this must be a valid box type. These constants are described
in NSBoxType (page 394).

Availability
Available in Mac OS X v10.0 and later.

See Also
– boxType (page 381)

Related Sample Code
AnimatingViews
FunHouse

Declared In
NSBox.h

setContentView:
Sets the receiver’s content view.

- (void)setContentView:(NSView *)aView

Instance Methods 385
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Parameters
aView

The new content view. The NSView object is resized to fit within the box’s current content area and
the box is marked for redisplay.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentView (page 382)
– setFrameFromContentFrame: (page 387)
– sizeToFit (page 390)
– setNeedsDisplay: (page 3225) (NSView)

Related Sample Code
Quartz Composer QCTV

Declared In
NSBox.h

setContentViewMargins:
Sets the horizontal and vertical distance between the border of the receiver and its content view.

- (void)setContentViewMargins:(NSSize)offsetSize

Parameters
offsetSize

The width and height of the offset between the box's border and content view. The horizontal value
is applied (reckoned in the box’s coordinate system) fully and equally to the left and right sides of
the box. The vertical value is similarly applied to the top and bottom.

Discussion
Unlike changing a box’s other attributes, such as its title position or border type, changing the offsets doesn’t
automatically resize the content view. In general, you should send a sizeToFit (page 390) message to the
box after changing the size of its offsets. This message causes the content view to remain unchanged while
the box is sized to fit around it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentViewMargins (page 382)

Declared In
NSBox.h

setCornerRadius:
Specifies the receiver’s corner radius.

- (void)setCornerRadius:(CGFloat)cornerRadius

386 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Parameters
cornerRadius

Corner radius for the receiver.

Special Considerations

Functional only when the receiver’s box type (boxType (page 381)) is NSBoxCustom and its border type
(borderType (page 380)) is NSLineBorder.

Availability
Available in Mac OS X v10.5 and later.

See Also
– cornerRadius (page 382)

Declared In
NSBox.h

setFillColor:
Specifies the receiver’s fill color.

- (void)setFillColor:(NSColor *)fillColor

Parameters
fillColor

Fill color for the receiver.

Special Considerations

Functional only when the receiver’s box type (boxType (page 381)) is NSBoxCustom and its border type
(borderType (page 380)) is NSLineBorder.

Availability
Available in Mac OS X v10.5 and later.

See Also
– fillColor (page 383)

Related Sample Code
AnimatingViews

Declared In
NSBox.h

setFrameFromContentFrame:
Places the receiver so its content view lies on the specified frame.

- (void)setFrameFromContentFrame:(NSRect)contentFrame

Parameters
contentFrame

The rectangle specifying the frame of the box's content view, reckoned in the coordinate system of
the box's superview. The box is marked for redisplay.

Instance Methods 387
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContentViewMargins: (page 386)
– setFrame: (page 3218) (NSView)
– setNeedsDisplay: (page 3225) (NSView)

Declared In
NSBox.h

setTitle:
Sets the title of the box and marks the region of the receiver within the title rectangle as needing display.

- (void)setTitle:(NSString *)aString

Parameters
aString

The new title of the NSBox. The default title of an NSBox is “Title.” If the size of the new title is different
from that of the old title, the content view is resized to absorb the difference.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 391)
– titleRect (page 392)
– setNeedsDisplayInRect: (page 3225) (NSView)

Related Sample Code
Quartz Composer QCTV

Declared In
NSBox.h

setTitleFont:
Sets the font object used to draw the receiver’s title and marks the region of the receiver within the title
rectangle as needing display.

- (void)setTitleFont:(NSFont *)aFont

Parameters
aFont

The NSFont object used to draw the box's title.

Discussion
By default, the title is drawn using the small system font (obtained using (smallSystemFontSize (page
1157) as the parameter ofsystemFontOfSize: (page 1157), bothNSFont class methods). If the size of the new
font is different from that of the old font, the content view is resized to absorb the difference.

388 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– titleFont (page 391)
– setNeedsDisplayInRect: (page 3225) (NSView)

Declared In
NSBox.h

setTitlePosition:
Sets the position of the box's title.

- (void)setTitlePosition:(NSTitlePosition)aPosition

Parameters
aPosition

A constant describing the position of the box's title. These constants are described in
NSTitlePosition (page 392). The default position is NSAtTop.

Discussion
If the new title position changes the size of the box’s border area, the content view is resized to absorb the
difference, and the box is marked as needing redisplay.

Availability
Available in Mac OS X v10.0 and later.

See Also
– titlePosition (page 392)
– setNeedsDisplay: (page 3225) (NSView)

Related Sample Code
AnimatingViews
FunHouse

Declared In
NSBox.h

setTitleWithMnemonic:
Sets the title of the receiver with a character denoted as an access key.

- (void)setTitleWithMnemonic:(NSString *)aString

Discussion
Mnemonics are not supported in Mac OS X.

By default, a box’s title is “Title.” The content view is not automatically resized, and the box is not marked for
redisplay.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 389
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

See Also
– setTitleWithMnemonic: (page 599) (NSCell)

Declared In
NSBox.h

setTransparent:
Specifies whether the receiver is transparent.

- (void)setTransparent:(BOOL)transparent

Parameters
transparent

YES makes the receiver transparent.

NO makes the receiver opaque.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isTransparent (page 383)

Declared In
NSBox.h

sizeToFit
Resizes and moves the receiver’s content view so it just encloses its subviews.

- (void)sizeToFit

Discussion
The receiver is then moved and resized to wrap around the content view. The receiver’s width is constrained
so its title will be fully displayed.

You should invoke this method after:

 ■ Adding a subview (to the content view)

 ■ Altering the size or location of such a subview

 ■ Setting the margins around the content view

The mechanism by which the content view is moved and resized depends on whether the object responds
to its own sizeToFitmessage: If it does respond, then that message is sent, and the content view is expected
to be so modified. If the content view doesn’t respond, the box moves and resizes the content view itself.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBox.h

390 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

title
Returns the receiver’s title.

- (NSString *)title

Return Value
The title of the NSBox. By default, a box’s title is “Title.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 388)

Related Sample Code
Quartz Composer QCTV

Declared In
NSBox.h

titleCell
Returns the cell used to display the receiver’s title.

- (id)titleCell

Return Value
The NSCell object used to display the title.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBox.h

titleFont
Returns the font object used to draw the receiver’s title.

- (NSFont *)titleFont

Return Value
The NSFont object used to draw the title.

Discussion
By default, the title is drawn using the small system font (obtained using (smallSystemFontSize (page
1157) as the parameter of systemFontOfSize: (page 1157), both NSFont class methods).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitleFont: (page 388)

Instance Methods 391
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Declared In
NSBox.h

titlePosition
Returns a constant representing the title position.

- (NSTitlePosition)titlePosition

Return Value
A constant representing the position of the receiver's title. See NSTitlePosition (page 392) for a list of
these constants.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitlePosition: (page 389)

Declared In
NSBox.h

titleRect
Returns the rectangle in which the receiver’s title is drawn.

- (NSRect)titleRect

Return Value
The rectangle in which the title is drawn.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitlePosition: (page 389)
– setTitle: (page 388)
– setTitleFont: (page 388)
– setFrameFromContentFrame: (page 387)
– sizeToFit (page 390)

Declared In
NSBox.h

Constants

NSTitlePosition
Specify the location of a box’s title with respect to its border.

392 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

typedef enum _NSTitlePosition {
 NSNoTitle = 0,
 NSAboveTop = 1,
 NSAtTop = 2,
 NSBelowTop = 3,
 NSAboveBottom = 4,
 NSAtBottom = 5,
 NSBelowBottom = 6
} NSTitlePosition;

Constants
NSNoTitle

The box has no title.

Available in Mac OS X v10.0 and later.

Declared in NSBox.h.

NSAboveTop
Title positioned above the box’s top border.

Available in Mac OS X v10.0 and later.

Declared in NSBox.h.

NSAtTop
Title positioned within the box’s top border.

Available in Mac OS X v10.0 and later.

Declared in NSBox.h.

NSBelowTop
Title positioned below the box’s top border.

Available in Mac OS X v10.0 and later.

Declared in NSBox.h.

NSAboveBottom
Title positioned above the box’s bottom border.

Available in Mac OS X v10.0 and later.

Declared in NSBox.h.

NSAtBottom
Title positioned within the box’s bottom border.

Available in Mac OS X v10.0 and later.

Declared in NSBox.h.

NSBelowBottom
Title positioned below the box’s bottom border.

Available in Mac OS X v10.0 and later.

Declared in NSBox.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBox.h

Constants 393
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

NSBoxType
These constants and data type identifies box types, which, in conjunction with a box's border type, define
the appearance of the box.

enum {
 NSBoxPrimary = 0,
 NSBoxSecondary = 1,
 NSBoxSeparator = 2,
 NSBoxOldStyle = 3,
 NSBoxCustom = 4
};
typedef NSUInteger NSBoxType;

Constants
NSBoxPrimary

Specifies the primary box appearance. This is the default box type.

Available in Mac OS X v10.0 and later.

Declared in NSBox.h.

NSBoxSecondary
Specifies the secondary box appearance.

Available in Mac OS X v10.0 and later.

Declared in NSBox.h.

NSBoxSeparator
Specifies that the box is a separator.

Available in Mac OS X v10.0 and later.

Declared in NSBox.h.

NSBoxOldStyle
Specifies that the box is a Mac OS X v10.2–style box.

Available in Mac OS X v10.0 and later.

Declared in NSBox.h.

NSBoxCustom
Specifies that the appearance of the box is determined entirely by the by box-configuration methods,
without automatically applying Apple human interface guidelines. See “Customizing” (page 379)
for details.

Available in Mac OS X v10.5 and later.

Declared in NSBox.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBox.h

394 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSBrowser.h

Companion guide Browsers

Related sample code AnimatedTableView
ComplexBrowser
NewsReader
SimpleCocoaBrowser
ZipBrowser

Overview

This class provides a user interface for displaying and selecting items from a list of data or from hierarchically
organized lists of data such as directory paths. Instances of this class are known as browsers. When working
with a hierarchy of data, the levels are displayed in columns, which are indexed from left to right.

This class uses the NSBrowserCell class to implement its user interface.

Browsers have the following components:

 ■ Columns

 ■ Scroll views

 ■ Matrices

 ■ Browser cells

To the user, browsers display data in columns and rows within each column. These components are arranged
in the following component hierarchy:

Browser
|---Columns [1..*]
 |---Scroll view

Overview 395
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

 |---Matrix
 |---Rows [0..*]

Tasks

Configuring Browsers

– reusesColumns (page 427)
Indicates whether the browser reuses matrix objects after their columns are unloaded.

– setReusesColumns: (page 444)
Specifies whether matrices can be reused.

– maxVisibleColumns (page 422)
Returns the maximum number of visible columns.

– setMaxVisibleColumns: (page 442)
Sets the maximum number of columns that can be displayed.

– autohidesScroller (page 406)
Returns whether the browser automatically hides its scroller.

– setAutohidesScroller: (page 437)
Allows the browser to hide its scroller automatically.

– backgroundColor (page 406)
Provides the browser’s background color.

– setBackgroundColor: (page 437)
Specifies the browser’s background color.

– minColumnWidth (page 423)
Returns the minimum column width.

– setMinColumnWidth: (page 443)
Sets the minimum column width.

– separatesColumns (page 435)
Indicates whether columns are separated by bezeled borders.

– setSeparatesColumns: (page 446)
Separates columns with bezeled borders.

– takesTitleFromPreviousColumn (page 448)
Indicates whether a column takes its title from the selected cell in the previous column.

– setTakesTitleFromPreviousColumn: (page 447)
Sets whether the title of a column is set to the string value of the selected cell in the previous column.

– tile (page 449)
Adjusts the various subviews of the browser—scrollers, columns, titles, and so on—without redrawing.

– delegate (page 411)
Returns the browser’s delegate.

– setDelegate: (page 440)
Sets the browser’s delegate.

396 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

– acceptsArrowKeys (page 404) Deprecated in Mac OS X v10.6
Indicates whether the browser allows navigation using the arrow keys. (Deprecated. There is no
replacement.)

– setAcceptsArrowKeys: (page 435) Deprecated in Mac OS X v10.6
Specifies whether the browser allows navigation using the arrow keys. (Deprecated. There is no
replacement.)

Getting Browser Information

– isOpaque (page 418)
Indicates whether the browser is opaque.

Managing Component Types

+ cellClass (page 403)
Returns the NSBrowserCell class.

– setCellClass: (page 438)
Sets the class of the cell to be used by the matrices in the columns of the browser.

– cellPrototype (page 407)
Returns the browser’s prototype NSCell.

– setCellPrototype: (page 438)
Sets the prototype cell for displaying items in the matrices in the columns of the browser.

– matrixClass (page 421)
Returns the matrix class used in the browser’s columns.

– setMatrixClass: (page 442)
Sets the matrix class to be used in the browser’s columns.

Managing Selection Behavior

– allowsBranchSelection (page 404)
Indicates whether the user can select branch items.

– setAllowsBranchSelection: (page 435)
Allows the user to select branch items.

– allowsEmptySelection (page 405)
Indicates whether there can be nothing selected.

– setAllowsEmptySelection: (page 436)
Allows the user to select nothing.

– allowsMultipleSelection (page 405)
Indicates whether the user can select multiple items.

– setAllowsMultipleSelection: (page 436)
Allows the user to select multiple items.

– selectedRowIndexesInColumn: (page 432)
Provides the indexes of the selected rows in a given column of the browser.

Tasks 397
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

– selectRowIndexes:inColumn: (page 434)
Specifies the selected rows in a given column of the browser.

– allowsTypeSelect (page 405)
Indicates whether the browser allows keystroke-based selection (type select).

– setAllowsTypeSelect: (page 437)
Allows the browser to accept keystroke-based selection.

Managing Selection

– selectedCell (page 430)
Returns the last (rightmost and lowest) selected cell.

– selectedCellInColumn: (page 430)
Returns the last (lowest) cell selected in the given column.

– selectedCells (page 431)
Returns all cells selected in the rightmost column.

– selectAll: (page 430)
Selects all cells in the last column of the browser.

– selectedRowInColumn: (page 432)
Returns the row index of the selected cell in the specified column.

– selectRow:inColumn: (page 433)
Selects the cell at the specified row and column index.

– selectionIndexPath (page 433)
Returns the index path of the item selected in the browser.

– setSelectionIndexPath: (page 445)
Sets the browser’s selection to the item with the specified path.

– selectionIndexPaths (page 433)
Returns an array containing the index paths of all items selected in the browser.

– setSelectionIndexPaths: (page 446)
Sets the browser’s selection to the items whose index paths are in the specified array.

Accessing Components

– loadedCellAtRow:column: (page 421)
Loads, if necessary, and returns the cell at the specified row and column location.

– matrixInColumn: (page 422)
Returns the matrix located in the specified column.

– editItemAtIndexPath:withEvent:select: (page 414)
Begins editing the item at the specified path.

– itemAtIndexPath: (page 419)
Returns the item at the specified index path.

– itemAtRow:inColumn: (page 420)
Returns the item located at the specified row and column.

398 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

– indexPathForColumn: (page 417)
Returns the index path of the item whose children are displayed in the given column.

– isLeafItem: (page 418)
Returns whether the specified item is a leaf item.

– parentForItemsInColumn: (page 424)
Returns the item that contains the children located in the specified column.

Managing the Path

– path (page 425)
Returns a string representing the browser’s current path.

– setPath: (page 443)
Sets the path to be displayed by the browser.

– pathToColumn: (page 425)
Returns a string representing the path from the first column up to, but not including, the column at
the given index.

– pathSeparator (page 425)
Returns the path separator.

– setPathSeparator: (page 444)
Sets the path separator.

Managing Columns

– addColumn (page 404)
Adds a column to the right of the last column.

– columnOfMatrix: (page 409)
Returns the column number in which the given matrix is located.

– selectedColumn (page 431)
Returns the index of the last column with a selected item.

– lastColumn (page 420)
Returns the index of the last column loaded.

– setLastColumn: (page 442)
Sets the last column.

– firstVisibleColumn (page 415)
Returns the index of the first visible column.

– numberOfVisibleColumns (page 424)
Returns the number of columns that are visible.

– lastVisibleColumn (page 420)
Returns the index of the last visible column.

– validateVisibleColumns (page 451)
Validates the browser’s visible columns.

– isLoaded (page 418)
Returns whether column 0 is loaded.

Tasks 399
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

– loadColumnZero (page 421)
Loads column 0; unloads previously loaded columns.

– reloadColumn: (page 426)
Reloads the given column if it exists and sets it to be the last column.

– displayAllColumns (page 411) Deprecated in Mac OS X v10.3
Updates the browser to display all loaded columns. (Deprecated. Use
setNeedsDisplayInRect: (page 3225))

– displayColumn: (page 411) Deprecated in Mac OS X v10.3
Updates the browser to display the given column. (Deprecated. Use setNeedsDisplayInRect: (page
3225) instead.)

Accessing Column Titles

– titleOfColumn: (page 450)
Returns the title displayed for the given column.

– setTitle:ofColumn: (page 447)
Sets the title of the given column.

– isTitled (page 419)
Indicates whether columns display titles.

– setTitled: (page 447)
Sets columns to display titles.

– drawTitleOfColumn:inRect: (page 414)
Draws the title for the specified column within the given rectangle.

– titleHeight (page 450)
Returns the height of the column titles.

– titleFrameOfColumn: (page 449)
Returns the bounds of the title frame for the specified column.

Updating Browsers

– noteHeightOfRowsWithIndexesChanged:inColumn: (page 423)
Immediately retiles the browser’s columns using row heights specified by the browser’s delegate.

– reloadDataForRowIndexes:inColumn: (page 427)
Updates the rows in the column with the specified column index with indexes in the specified set.

Scrolling

– hasHorizontalScroller (page 417)
Indicates whether the browser has a horizontal scroller.

– setHasHorizontalScroller: (page 441)
Sets whether the browser has a scroller to scroll horizontally.

– scrollColumnToVisible: (page 428)
Scrolls to make the specified column visible.

400 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

– scrollColumnsLeftBy: (page 428)
Scrolls columns left by the specified number of columns.

– scrollColumnsRightBy: (page 428)
Scrolls columns right by the specified number of columns.

– scrollRowToVisible:inColumn: (page 429)
Scrolls the specified row to be visible within the specified column.

– scrollViaScroller: (page 429) Deprecated in Mac OS X v10.3
Scrolls columns left or right based on an NSScroller. (Deprecated. There is no replacement.)

– updateScroller (page 450) Deprecated in Mac OS X v10.3
Updates the horizontal scroller to reflect column positions. (Deprecated. There is no replacement.)

Dragging

– draggingSourceOperationMaskForLocal: (page 413)
Indicates the types of dragging operations the source object allows on the dragged image’s data.

– setDraggingSourceOperationMask:forLocal: (page 441)
Specifies the drag-operation mask for dragging operations with local or external destinations.

– canDragRowsWithIndexes:inColumn:withEvent: (page 407)
Indicates whether the browser can attempt to initiate a drag of the given rows for the given event.

– draggingImageForRowsWithIndexes:inColumn:withEvent:offset: (page 413)
Provides an image to represent dragged rows during a drag operation on the browser.

– namesOfPromisedFilesDroppedAtDestination: (page 423)
Provides the names of the files that the browser promises to create at a specified location.

Getting Column Frames

– frameOfColumn: (page 415)
Returns the rectangle containing the given column.

– frameOfInsideOfColumn: (page 415)
Returns the rectangle containing the specified column, not including borders.

Getting Row Frames

– frameOfRow:inColumn: (page 416)
Returns the frame of the cell at the specified location, including the expandable arrow.

– getRow:column:forPoint: (page 416)
Gets the row and column coordinates for the specified point, if a cell exists at that point.

Managing Actions

– doubleAction (page 412)
Returns the browser’s double-click action method.

Tasks 401
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

– setDoubleAction: (page 440)
Sets the browser’s double-click action.

– sendsActionOnArrowKeys (page 434)
Returns whether pressing an arrow key causes an action message to be sent.

– setSendsActionOnArrowKeys: (page 446)
Allows the specified action message to be sent when the user presses an arrow key.

– sendAction (page 434)
Sends the action message to the target.

Handling Mouse-Click Events

– doClick: (page 412)
Responds to (single) mouse clicks in a column of the browser.

– doDoubleClick: (page 412)
Responds to double clicks in a column of the browser.

– clickedColumn (page 407)
Returns the column number of the cell that the user clicked to display a context menu.

– clickedRow (page 408)
Returns the row number of the cell that the user clicked to display a context menu.

Sizing

+ removeSavedColumnsWithAutosaveName: (page 403)
Removes the column configuration data stored under the given name from the application’s user
defaults.

– columnsAutosaveName (page 409)
Returns the name used to automatically save the browser’s column configuration.

– setColumnsAutosaveName: (page 439)
Sets the name used to automatically save the browser’s column configuration.

– columnContentWidthForColumnWidth: (page 408)
Returns the content width for a given column width.

– columnWidthForColumnContentWidth: (page 410)
Returns the column width for the width of the given column’s content.

– columnResizingType (page 409)
Returns the browser’s column resizing type.

– setColumnResizingType: (page 438)
Sets the browser’s column resizing type.

– prefersAllColumnUserResizing (page 426)
Returns whether the browser is set to resize all columns simultaneously rather than resizing a single
column at a time.

– setPrefersAllColumnUserResizing: (page 444)
Causes the browser to resize all column simultaneously rather than resize a single column at a time.

– widthOfColumn: (page 451)
Returns the width of the specified column.

402 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

– setWidth:ofColumn: (page 448)
Sets the width of the specified column.

– defaultColumnWidth (page 410)
Returns the default column width of the browser’s columns.

– setDefaultColumnWidth: (page 439)
Sets the default column width for new browser columns that do not otherwise have an initial width
from defaults or the browser’s delegate.

– rowHeight (page 427)
Returns the height of the browser’s rows.

– setRowHeight: (page 445)
Sets the height of the browser’s rows to the specified value.

Class Methods

cellClass
Returns the NSBrowserCell class.

+ (Class)cellClass

Return Value
Always returns the NSBrowserCell class (even if the developer has sent a setCellClass: (page 438)
message to a particular instance).

Discussion
This method is used by NSControl during initialization and is not meant to be used by applications.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellPrototype (page 407)
– setCellPrototype: (page 438)

Declared In
NSBrowser.h

removeSavedColumnsWithAutosaveName:
Removes the column configuration data stored under the given name from the application’s user defaults.

+ (void)removeSavedColumnsWithAutosaveName:(NSString *)name

Parameters
name

The name of the column configuration data to remove.

Availability
Available in Mac OS X v10.3 and later.

Class Methods 403
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
– setColumnsAutosaveName: (page 439)

Declared In
NSBrowser.h

Instance Methods

acceptsArrowKeys
Indicates whether the browser allows navigation using the arrow keys. (Deprecated in Mac OS X v10.6. There
is no replacement.)

- (BOOL)acceptsArrowKeys

Return Value
YES if the arrow keys are enabled; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setAcceptsArrowKeys: (page 435)

Declared In
NSBrowser.h

addColumn
Adds a column to the right of the last column.

- (void)addColumn

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedColumn (page 431)

Declared In
NSBrowser.h

allowsBranchSelection
Indicates whether the user can select branch items.

- (BOOL)allowsBranchSelection

404 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Return Value
YES if the user can select branch items when multiple selection is enabled; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsBranchSelection: (page 435)

Declared In
NSBrowser.h

allowsEmptySelection
Indicates whether there can be nothing selected.

- (BOOL)allowsEmptySelection

Return Value
YES if the browser allows the selection to be empty; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsEmptySelection: (page 436)

Declared In
NSBrowser.h

allowsMultipleSelection
Indicates whether the user can select multiple items.

- (BOOL)allowsMultipleSelection

Return Value
YES if the browser allows the user to select multiple items at once; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsMultipleSelection: (page 436)

Declared In
NSBrowser.h

allowsTypeSelect
Indicates whether the browser allows keystroke-based selection (type select).

Instance Methods 405
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

- (BOOL)allowsTypeSelect

Return Value
YES (default) when the browser allows keystroke-based selection; otherwise, NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAllowsTypeSelect: (page 437)

Declared In
NSBrowser.h

autohidesScroller
Returns whether the browser automatically hides its scroller.

- (BOOL)autohidesScroller

Return Value
YES if the scroller is automatically hidden; otherwise, NO.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setAutohidesScroller: (page 437)

Declared In
NSBrowser.h

backgroundColor
Provides the browser’s background color.

- (NSColor *)backgroundColor

Return Value
The browser’s background color.

Discussion
The default value is [NSColor whiteColor]

Availability
Available in Mac OS X v10.5 and later.

See Also
– setBackgroundColor: (page 437)

Declared In
NSBrowser.h

406 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

canDragRowsWithIndexes:inColumn:withEvent:
Indicates whether the browser can attempt to initiate a drag of the given rows for the given event.

- (BOOL)canDragRowsWithIndexes:(NSIndexSet *)rowIndexes
inColumn:(NSInteger)columnIndex withEvent:(NSEvent *)dragEvent

Parameters
rowIndexes

Rows the user is dragging

columnIndex
Column containing the rows the user is dragging.

dragEvent
Mouse-drag event.

Return Value
YES when rowIndexes identifies at least one row and all the identified rows are enabled; otherwise, NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– browser:canDragRowsWithIndexes:inColumn:withEvent: (page 3585) (NSBrowserDelegate)

Declared In
NSBrowser.h

cellPrototype
Returns the browser’s prototype NSCell.

- (id)cellPrototype

Return Value
The prototype NSCell. The prototype NSCell instance is copied to display items in the matrices of the
browser.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCellPrototype: (page 438)
– setCellClass: (page 438)

Declared In
NSBrowser.h

clickedColumn
Returns the column number of the cell that the user clicked to display a context menu.

- (NSInteger)clickedColumn

Instance Methods 407
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Return Value
The column number of the clicked cell, or -1 if no context menu is active.

Availability
Available in Mac OS X v10.6 and later.

See Also
– clickedRow (page 408)

Declared In
NSBrowser.h

clickedRow
Returns the row number of the cell that the user clicked to display a context menu.

- (NSInteger)clickedRow

Return Value
The row number of the clicked cell, or -1 if no context menu is active.

Availability
Available in Mac OS X v10.6 and later.

See Also
– clickedColumn (page 407)

Declared In
NSBrowser.h

columnContentWidthForColumnWidth:
Returns the content width for a given column width.

- (CGFloat)columnContentWidthForColumnWidth:(CGFloat)columnWidth

Parameters
columnWidth

The width of the column. This width is the entire scrolling text view.

Return Value
The width of the content for the column. This is the width of the matrix in the column.

Availability
Available in Mac OS X v10.3 and later.

See Also
– columnWidthForColumnContentWidth: (page 410)

Declared In
NSBrowser.h

408 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

columnOfMatrix:
Returns the column number in which the given matrix is located.

- (NSInteger)columnOfMatrix:(NSMatrix *)matrix

Parameters
matrix

The matrix for which to return the column number.

Return Value
The index of the column in which the specified matrix appears.

Availability
Available in Mac OS X v10.0 and later.

See Also
– matrixInColumn: (page 422)

Declared In
NSBrowser.h

columnResizingType
Returns the browser’s column resizing type.

- (NSBrowserColumnResizingType)columnResizingType

Return Value
A constant indicating the column resizing type. Possible return values are described in
“NSBrowserColumnResizingType” (page 451). The default is NSBrowserAutoColumnResizing (page
452)

Availability
Available in Mac OS X v10.3 and later.

See Also
– setColumnResizingType: (page 438)

Declared In
NSBrowser.h

columnsAutosaveName
Returns the name used to automatically save the browser’s column configuration.

- (NSString *)columnsAutosaveName

Return Value
The name used to save the column configuration.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 409
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
– setColumnsAutosaveName: (page 439)

Declared In
NSBrowser.h

columnWidthForColumnContentWidth:
Returns the column width for the width of the given column’s content.

- (CGFloat)columnWidthForColumnContentWidth:(CGFloat)columnContentWidth

Parameters
columnContentWidth

The width of the column's content (the width of the the matrix in the column).

Return Value
The width of the column (the width of the entire scrolling text view).

Discussion
For example, to guarantee that 16 pixels of your browser cell are always visible, call:

[browser setMinColumnWidth: [browser columnWidthForColumnContentWidth:16]]

Availability
Available in Mac OS X v10.3 and later.

See Also
– columnContentWidthForColumnWidth: (page 408)

Declared In
NSBrowser.h

defaultColumnWidth
Returns the default column width of the browser’s columns.

- (CGFloat)defaultColumnWidth

Return Value
The default column width.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setDefaultColumnWidth: (page 439)

Declared In
NSBrowser.h

410 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

delegate
Returns the browser’s delegate.

- (id <NSBrowserDelegate>)delegate

Return Value
The browser's delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 440)

Declared In
NSBrowser.h

displayAllColumns
Updates the browser to display all loaded columns. (Deprecated in Mac OS X v10.3. Use
setNeedsDisplayInRect: (page 3225))

- (void)displayAllColumns

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

See Also
– addColumn (page 404)
– validateVisibleColumns (page 451)

Declared In
NSBrowser.h

displayColumn:
Updates the browser to display the given column. (Deprecated in Mac OS X v10.3. Use
setNeedsDisplayInRect: (page 3225) instead.)

- (void)displayColumn:(NSInteger)column

Parameters
column

The index of the column to display.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

See Also
– addColumn (page 404)

Instance Methods 411
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

– validateVisibleColumns (page 451)

Declared In
NSBrowser.h

doClick:
Responds to (single) mouse clicks in a column of the browser.

- (void)doClick:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendAction (page 434)

Declared In
NSBrowser.h

doDoubleClick:
Responds to double clicks in a column of the browser.

- (void)doDoubleClick:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDoubleAction: (page 440)

Declared In
NSBrowser.h

doubleAction
Returns the browser’s double-click action method.

- (SEL)doubleAction

Return Value
The action method invoked when the user double-clicks on the browser.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDoubleAction: (page 440)

Declared In
NSBrowser.h

412 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

draggingImageForRowsWithIndexes:inColumn:withEvent:offset:
Provides an image to represent dragged rows during a drag operation on the browser.

- (NSImage *)draggingImageForRowsWithIndexes:(NSIndexSet *)rowIndexes
inColumn:(NSInteger)columnIndex withEvent:(NSEvent *)dragEvent
offset:(NSPointPointer)dragImageOffset

Parameters
rowIndexes

Rows the user is dragging.

columnIndex
Column with the rows the user is dragging.

dragEvent
Mouse drag event.

dragImageOffset
Offset for the returned image:

 ■ NSZeroPoint: The image is centered under the pointer.

Return Value
Image representing the visible cells identified by rowIndexes.

Availability
Available in Mac OS X v10.5 and later.

See Also
– browser:draggingImageForRowsWithIndexes:inColumn:withEvent:offset: (page 3587)
(NSBrowserDelegate)

Related Sample Code
ComplexBrowser
ZipBrowser

Declared In
NSBrowser.h

draggingSourceOperationMaskForLocal:
Indicates the types of dragging operations the source object allows on the dragged image’s data.

- (NSDragOperation)draggingSourceOperationMaskForLocal:(BOOL)localDestination

Parameters
localDestination

Indicates the location of the dragging operation’s destination object: YES for this application, NO for
another application.

Return Value

 ■ NSDragOperationEvery (page 3665) when localDestination is YES.

 ■ NSDragOperationNone (page 3666) when localDestination is NO.

Instance Methods 413
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Discussion
This method overrides NSDraggingSource draggingSourceOperationMaskForLocal: (page 3670).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDraggingSourceOperationMask:forLocal: (page 441)

Declared In
NSDragging.h

drawTitleOfColumn:inRect:
Draws the title for the specified column within the given rectangle.

- (void)drawTitleOfColumn:(NSInteger)column inRect:(NSRect)aRect

Parameters
column

The index of the column for which to draw the title.

aRect
The rectangle within which to draw the title.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle:ofColumn: (page 447)
– titleFrameOfColumn: (page 449)
– titleHeight (page 450)

Declared In
NSBrowser.h

editItemAtIndexPath:withEvent:select:
Begins editing the item at the specified path.

- (void)editItemAtIndexPath:(NSIndexPath *)indexPath
withEvent:(NSEvent *)theEvent
select:(BOOL)select

Parameters
indexPath

The path of the item.

theEvent
The event to use when beginning the edit.

select
If YES, the cells contents will be selected; if NO, they will not be selected.

414 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

firstVisibleColumn
Returns the index of the first visible column.

- (NSInteger)firstVisibleColumn

Return Value
The index of the first visible column.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lastVisibleColumn (page 420)

Declared In
NSBrowser.h

frameOfColumn:
Returns the rectangle containing the given column.

- (NSRect)frameOfColumn:(NSInteger)column

Parameters
column

The index of the column for which to retrieve the frame.

Return Value
The rectangle containing the specified column.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

frameOfInsideOfColumn:
Returns the rectangle containing the specified column, not including borders.

- (NSRect)frameOfInsideOfColumn:(NSInteger)column

Parameters
column

The index of the column for which to retrieve the inside frame.

Instance Methods 415
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Return Value
The rectangle containing the column, not including the column borders.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

frameOfRow:inColumn:
Returns the frame of the cell at the specified location, including the expandable arrow.

- (NSRect)frameOfRow:(NSInteger)row
inColumn:(NSInteger)column

Parameters
row

The row of the cell.

column
The column of the cell.

Return Value
The frame of the cell, in the NSBrowser coordinate space.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

getRow:column:forPoint:
Gets the row and column coordinates for the specified point, if a cell exists at that point.

- (BOOL)getRow:(NSInteger *)row
column:(NSInteger *)column
forPoint:(NSPoint)point

Parameters
row

On output, the row number of the cell at the specified point, or -1 if there is no cell at the point.

column
On output, he column number of the cell at the specified point, or -1 if there is no cell at the point.

point
The point to test.

Return Value
YES if a cell exists at the specified point; otherwise, NO.

Discussion
If a row does not exist at point, then -1 is set for the row. If a column does not exist at point, then -1 is
set for the column.

416 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

hasHorizontalScroller
Indicates whether the browser has a horizontal scroller.

- (BOOL)hasHorizontalScroller

Return Value
YES if the browser uses an NSScroller object to scroll horizontally; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHasHorizontalScroller: (page 441)

Declared In
NSBrowser.h

indexPathForColumn:
Returns the index path of the item whose children are displayed in the given column.

- (NSIndexPath *)indexPathForColumn:(NSInteger)column

Parameters
column

The column to find the index path for.

Return Value
The index path of the column.

Discussion
This method can only be used if the delegate implements the item data source methods.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
ComplexBrowser
ZipBrowser

Declared In
NSBrowser.h

Instance Methods 417
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

isLeafItem:
Returns whether the specified item is a leaf item.

- (BOOL)isLeafItem:(id)item

Parameters
item

The item to be checked.

Return Value
YES if the item is a leaf item; otherwise, NO.

Discussion
This method may return NO if the item has never been displayed in the browser or accessed via
itemAtIndexPath: (page 419). Overriding this method has no effect. It may be used only if the browser’s
delegate implements the item data source methods.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

isLoaded
Returns whether column 0 is loaded.

- (BOOL)isLoaded

Return Value
YES if column 0 is loaded; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– loadColumnZero (page 421)
– reloadColumn: (page 426)

Declared In
NSBrowser.h

isOpaque
Indicates whether the browser is opaque.

- (BOOL)isOpaque

Return Value
YES when the browser doesn’t have a title and its background color’s alpha component is 1.0; otherwise,
NO.

418 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Discussion
This method overrides the isOpaque (page 3183) method of NSView.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

isTitled
Indicates whether columns display titles.

- (BOOL)isTitled

Return Value
YES if the columns in a browser display titles; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitled: (page 447)

Declared In
NSBrowser.h

itemAtIndexPath:
Returns the item at the specified index path.

- (id)itemAtIndexPath:(NSIndexPath *)indexPath

Parameters
indexPath

The index path of the item to return.

Return Value
The item.

Discussion
This method can only be used if the delegate implements the item data source methods. The specified index
path must be displayable in the browser.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
ComplexBrowser
ZipBrowser

Declared In
NSBrowser.h

Instance Methods 419
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

itemAtRow:inColumn:
Returns the item located at the specified row and column.

- (id)itemAtRow:(NSInteger)row
inColumn:(NSInteger)column

Parameters
row

The row of the item.

column
The column of the item.

Return Value
The item.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

lastColumn
Returns the index of the last column loaded.

- (NSInteger)lastColumn

Return Value
The index of the last loaded column.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLastColumn: (page 442)

Declared In
NSBrowser.h

lastVisibleColumn
Returns the index of the last visible column.

- (NSInteger)lastVisibleColumn

Return Value
The index of the last visible column.

Availability
Available in Mac OS X v10.0 and later.

See Also
– firstVisibleColumn (page 415)

420 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

loadColumnZero
Loads column 0; unloads previously loaded columns.

- (void)loadColumnZero

Availability
Available in Mac OS X v10.0 and later.

See Also
– isLoaded (page 418)
– reloadColumn: (page 426)

Related Sample Code
ZipBrowser

Declared In
NSBrowser.h

loadedCellAtRow:column:
Loads, if necessary, and returns the cell at the specified row and column location.

- (id)loadedCellAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row index of the cell to return.

column
The column index of the cell to return.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedCellInColumn: (page 430)
– selectRow:inColumn: (page 433)

Declared In
NSBrowser.h

matrixClass
Returns the matrix class used in the browser’s columns.

- (Class)matrixClass

Instance Methods 421
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Return Value
The class of NSMatrix used in the browser's columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMatrixClass: (page 442)

Declared In
NSBrowser.h

matrixInColumn:
Returns the matrix located in the specified column.

- (NSMatrix *)matrixInColumn:(NSInteger)column

Parameters
column

The column index of the matrix to obtain.

Return Value
The matrix located in the column.

Availability
Available in Mac OS X v10.0 and later.

See Also
– columnOfMatrix: (page 409)

Declared In
NSBrowser.h

maxVisibleColumns
Returns the maximum number of visible columns.

- (NSInteger)maxVisibleColumns

Return Value
The maximum number of visible columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaxVisibleColumns: (page 442)

Declared In
NSBrowser.h

422 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

minColumnWidth
Returns the minimum column width.

- (CGFloat)minColumnWidth

Return Value
The minimum column width, in pixels.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMinColumnWidth: (page 443)

Declared In
NSBrowser.h

namesOfPromisedFilesDroppedAtDestination:
Provides the names of the files that the browser promises to create at a specified location.

- (NSArray *)namesOfPromisedFilesDroppedAtDestination:(NSURL *)dropDestination

Return Value
Result of sending
browser:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithIndexes:inColumn:
to the delegate.

Discussion
Implementation of NSDraggingSource namesOfPromisedFilesDroppedAtDestination: (page 3671).

Availability
Available in Mac OS X v10.2 and later.

See Also
– browser:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithIndexes:inColumn: (page
3589) (NSBrowserDelegate)

Declared In
NSDragging.h

noteHeightOfRowsWithIndexesChanged:inColumn:
Immediately retiles the browser’s columns using row heights specified by the browser’s delegate.

- (void)noteHeightOfRowsWithIndexesChanged:(NSIndexSet *)indexSet
inColumn:(NSInteger)columnIndex

Parameters
indexSet

The indexes of the rows to resize.

Instance Methods 423
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

columnIndex
The column to retile.

Discussion
The browser’s delegate must implement

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

numberOfVisibleColumns
Returns the number of columns that are visible.

- (NSInteger)numberOfVisibleColumns

Return Value
The number of visible columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
– validateVisibleColumns (page 451)

Declared In
NSBrowser.h

parentForItemsInColumn:
Returns the item that contains the children located in the specified column.

- (id)parentForItemsInColumn:(NSInteger)column

Parameters
column

The column.

Return Value
The parent item for the specified column.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
AnimatedTableView
ComplexBrowser

Declared In
NSBrowser.h

424 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

path
Returns a string representing the browser’s current path.

- (NSString *)path

Return Value
The path representing the current selection. The components of this path are separated with the string
returned by pathSeparator (page 425).

Discussion
Invoking this method is equivalent to invoking pathToColumn: (page 425) for all columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPath: (page 443)
– pathToColumn: (page 425)

Declared In
NSBrowser.h

pathSeparator
Returns the path separator.

- (NSString *)pathSeparator

Return Value
The path separator. The default is “/”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPathSeparator: (page 444)

Declared In
NSBrowser.h

pathToColumn:
Returns a string representing the path from the first column up to, but not including, the column at the given
index.

- (NSString *)pathToColumn:(NSInteger)column

Parameters
column

The index of the column at which the path stops.

Instance Methods 425
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Return Value
The path of the current selection up to, but not including, the specified column. The components of this path
are separated with the string returned by pathSeparator (page 425).

Availability
Available in Mac OS X v10.0 and later.

See Also
– path (page 425)
– setPath: (page 443)

Declared In
NSBrowser.h

prefersAllColumnUserResizing
Returns whether the browser is set to resize all columns simultaneously rather than resizing a single column
at a time.

- (BOOL)prefersAllColumnUserResizing

Return Value
YES if the browser is set to resize all columns simultaneously; otherwise, NO. The default is NO.

Discussion
This setting applies only to browsers that allow the user to resize columns (see the constant
NSBrowserUserColumnResizing (page 452). Holding down the Option key while resizing switches the
type of resizing used.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setPrefersAllColumnUserResizing: (page 444)

Declared In
NSBrowser.h

reloadColumn:
Reloads the given column if it exists and sets it to be the last column.

- (void)reloadColumn:(NSInteger)column

Parameters
column

The index of the column to reload.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isLoaded (page 418)

426 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

– loadColumnZero (page 421)

Related Sample Code
NewsReader
ZipBrowser

Declared In
NSBrowser.h

reloadDataForRowIndexes:inColumn:
Updates the rows in the column with the specified column index with indexes in the specified set.

- (void)reloadDataForRowIndexes:(NSIndexSet *)rowIndexes
inColumn:(NSInteger)column

Parameters
rowIndexes

The set of row indexes of the rows to be updated.

column
The column containing the rows to be updated.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

reusesColumns
Indicates whether the browser reuses matrix objects after their columns are unloaded.

- (BOOL)reusesColumns

Return Value
YES if NSMatrix objects aren't freed when their columns are unloaded; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setReusesColumns: (page 444)

Declared In
NSBrowser.h

rowHeight
Returns the height of the browser’s rows.

- (CGFloat)rowHeight

Instance Methods 427
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Return Value
The row height.

Discussion
The default value is 17.0. rowHeight and setRowHeight: (page 445) are only available when using the item
delegate methods. An exception is thrown if you are using the matrix delegate methods.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setRowHeight: (page 445)

Declared In
NSBrowser.h

scrollColumnsLeftBy:
Scrolls columns left by the specified number of columns.

- (void)scrollColumnsLeftBy:(NSInteger)shiftAmount

Parameters
shiftAmount

The number of columns by which to scroll the browser.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

scrollColumnsRightBy:
Scrolls columns right by the specified number of columns.

- (void)scrollColumnsRightBy:(NSInteger)shiftAmount

Parameters
shiftAmount

The number of columns by which to scroll the browser.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

scrollColumnToVisible:
Scrolls to make the specified column visible.

- (void)scrollColumnToVisible:(NSInteger)column

428 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Parameters
column

The index of the column to scroll to.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollRowToVisible:inColumn: (page 429)

Declared In
NSBrowser.h

scrollRowToVisible:inColumn:
Scrolls the specified row to be visible within the specified column.

- (void)scrollRowToVisible:(NSInteger)row
inColumn:(NSInteger)column

Parameters
row

The index of the row to scroll.

column
The index of the column containing the row to scroll.

Discussion
The row’s column will not be scrolled to visible via this method. To scroll the column to visible, use
scrollColumnToVisible: (page 428).

Availability
Available in Mac OS X v10.6 and later.

See Also
– scrollColumnToVisible: (page 428)

Declared In
NSBrowser.h

scrollViaScroller:
Scrolls columns left or right based on an NSScroller. (Deprecated in Mac OS X v10.3. There is no replacement.)

- (void)scrollViaScroller:(NSScroller *)sender

Parameters
sender

The NSScroller object that determines the scrolling of the browser columns.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Instance Methods 429
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
– updateScroller (page 450)

Declared In
NSBrowser.h

selectAll:
Selects all cells in the last column of the browser.

- (void)selectAll:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedCell (page 430)
– selectedCells (page 431)
– selectedColumn (page 431)

Declared In
NSBrowser.h

selectedCell
Returns the last (rightmost and lowest) selected cell.

- (id)selectedCell

Return Value
The selected cell (NSCell).

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectAll: (page 430)
– selectedCells (page 431)

Declared In
NSBrowser.h

selectedCellInColumn:
Returns the last (lowest) cell selected in the given column.

- (id)selectedCellInColumn:(NSInteger)column

Parameters
column

The column whose last selected cell is to be returned.

430 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Return Value
The last (or lowest) selected cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– loadedCellAtRow:column: (page 421)
– selectedRowInColumn: (page 432)

Related Sample Code
NewsReader

Declared In
NSBrowser.h

selectedCells
Returns all cells selected in the rightmost column.

- (NSArray *)selectedCells

Return Value
An array of NSCell objects representing the selected cells in the rightmost browser column.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectAll: (page 430)
– selectedCell (page 430)

Declared In
NSBrowser.h

selectedColumn
Returns the index of the last column with a selected item.

- (NSInteger)selectedColumn

Return Value
The index of the last column with a selected item, or -1 if there is no column selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– columnOfMatrix: (page 409)
– selectAll: (page 430)

Related Sample Code
ZipBrowser

Instance Methods 431
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

selectedRowInColumn:
Returns the row index of the selected cell in the specified column.

- (NSInteger)selectedRowInColumn:(NSInteger)column

Parameters
column

The column index specifying the column for which to return the selected row.

Return Value
The row index of the selected cell in the specified column.

Availability
Available in Mac OS X v10.0 and later.

See Also
– loadedCellAtRow:column: (page 421)
– selectedCellInColumn: (page 430)

Related Sample Code
NewsReader

Declared In
NSBrowser.h

selectedRowIndexesInColumn:
Provides the indexes of the selected rows in a given column of the browser.

- (NSIndexSet *)selectedRowIndexesInColumn:(NSInteger)columnIndex

Parameters
columnIndex

The column whose selected rows are provided.

Return Value
Rows selected in column columnIndex.

Availability
Available in Mac OS X v10.5 and later.

See Also
– selectRowIndexes:inColumn: (page 434)

Declared In
NSBrowser.h

432 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

selectionIndexPath
Returns the index path of the item selected in the browser.

- (NSIndexPath *)selectionIndexPath

Return Value
The index path of the selected item, or nil if there is no selection.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setSelectionIndexPath: (page 445)

Declared In
NSBrowser.h

selectionIndexPaths
Returns an array containing the index paths of all items selected in the browser.

- (NSArray *)selectionIndexPaths

Return Value
The array containing the index paths of the selected items.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setSelectionIndexPaths: (page 446)

Declared In
NSBrowser.h

selectRow:inColumn:
Selects the cell at the specified row and column index.

- (void)selectRow:(NSInteger)row inColumn:(NSInteger)column

Parameters
row

The row index of the cell to select.

column
The column index of the cell to select.

Availability
Available in Mac OS X v10.0 and later.

See Also
– loadedCellAtRow:column: (page 421)

Instance Methods 433
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

selectRowIndexes:inColumn:
Specifies the selected rows in a given column of the browser.

- (void)selectRowIndexes:(NSIndexSet *)rowIndexes inColumn:(NSInteger)columnIndex

Parameters
rowIndexes

Rows to be selected in column columnIndex.

columnIndex
Column in which to select rows rowIndexes.

Availability
Available in Mac OS X v10.5 and later.

See Also
– selectedRowIndexesInColumn: (page 432)

Declared In
NSBrowser.h

sendAction
Sends the action message to the target.

- (BOOL)sendAction

Return Value
YES if successful; NO if no target for the message could be found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doClick: (page 412)
– doDoubleClick: (page 412)

Declared In
NSBrowser.h

sendsActionOnArrowKeys
Returns whether pressing an arrow key causes an action message to be sent.

- (BOOL)sendsActionOnArrowKeys

Return Value
NO if pressing an arrow key scrolls the browser; YES if it also sends the action message specified by
setAction: (page 828).

434 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSendsActionOnArrowKeys: (page 446)

Declared In
NSBrowser.h

separatesColumns
Indicates whether columns are separated by bezeled borders.

- (BOOL)separatesColumns

Return Value
YES if the browser's columns are separated by bezeled borders; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSeparatesColumns: (page 446)

Declared In
NSBrowser.h

setAcceptsArrowKeys:
Specifies whether the browser allows navigation using the arrow keys. (Deprecated in Mac OS X v10.6. There
is no replacement.)

- (void)setAcceptsArrowKeys:(BOOL)flag

Parameters
flag

YES to enable the use of the arrow keys for navigating within and between browsers; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– acceptsArrowKeys (page 404)
– sendsActionOnArrowKeys (page 434)

Declared In
NSBrowser.h

setAllowsBranchSelection:
Allows the user to select branch items.

Instance Methods 435
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

- (void)setAllowsBranchSelection:(BOOL)flag

Parameters
flag

YES if the user can select branch items when multiple selection is enabled; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsBranchSelection (page 404)

Declared In
NSBrowser.h

setAllowsEmptySelection:
Allows the user to select nothing.

- (void)setAllowsEmptySelection:(BOOL)flag

Parameters
flag

YES if the browser allows an empty selection; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 405)

Declared In
NSBrowser.h

setAllowsMultipleSelection:
Allows the user to select multiple items.

- (void)setAllowsMultipleSelection:(BOOL)flag

Parameters
flag

YES if the user can select multiple items at once; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsMultipleSelection (page 405)

Declared In
NSBrowser.h

436 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

setAllowsTypeSelect:
Allows the browser to accept keystroke-based selection.

- (void)setAllowsTypeSelect:(BOOL)allowsTypeSelection

Parameters
allowsTypeSelection

YES to allow type selection; NO to disallow it.

Availability
Available in Mac OS X v10.5 and later.

See Also
– allowsTypeSelect (page 405)

Declared In
NSBrowser.h

setAutohidesScroller:
Allows the browser to hide its scroller automatically.

- (void)setAutohidesScroller:(BOOL)flag

Parameters
flag

If YES, the browser hides its scroller automatically; if NO, it does not.

Availability
Available in Mac OS X v10.6 and later.

See Also
– autohidesScroller (page 406)

Declared In
NSBrowser.h

setBackgroundColor:
Specifies the browser’s background color.

- (void)setBackgroundColor:(NSColor *)backgroundColor

Parameters
backgroundColor

[NSColor clearColor] specifies a transparent background.

Availability
Available in Mac OS X v10.5 and later.

See Also
– backgroundColor (page 406)

Instance Methods 437
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

setCellClass:
Sets the class of the cell to be used by the matrices in the columns of the browser.

- (void)setCellClass:(Class)factoryId

Parameters
factoryId

The class of NSCell used by the matrices in the columns of the browser. This method creates an
instance of the class and calls setCellPrototype: (page 438).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ cellClass (page 403)
– cellPrototype (page 407)
– setCellPrototype: (page 438)

Declared In
NSBrowser.h

setCellPrototype:
Sets the prototype cell for displaying items in the matrices in the columns of the browser.

- (void)setCellPrototype:(NSCell *)aCell

Parameters
aCell

The prototype NSCell instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ cellClass (page 403)
– cellPrototype (page 407)
– setCellClass: (page 438)

Declared In
NSBrowser.h

setColumnResizingType:
Sets the browser’s column resizing type.

- (void)setColumnResizingType:(NSBrowserColumnResizingType)columnResizingType

438 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Parameters
columnResizingType

The column resizing type. Possible values are described in “NSBrowserColumnResizingType” (page
451). The default is NSBrowserAutoColumnResizing (page 452). This setting is persistent.

Availability
Available in Mac OS X v10.3 and later.

See Also
– columnResizingType (page 409)

Declared In
NSBrowser.h

setColumnsAutosaveName:
Sets the name used to automatically save the browser’s column configuration.

- (void)setColumnsAutosaveName:(NSString *)name

Parameters
name

The name used to save the column configuration. If name is different from the current name, this
method also reads in any column configuration data previously saved under name and applies the
values to the browser.

Discussion
Column configuration is defined as an array of column content widths. One width is saved for each level the
user has reached. That is, the browser saves column width based on depth, not on unique paths. To do more
complex column persistence, you should register for
NSBrowserColumnConfigurationDidChangeNotification (page 453) and handle persistence yourself.
This setting is persistent.

Availability
Available in Mac OS X v10.3 and later.

See Also
– columnsAutosaveName (page 409)
+ removeSavedColumnsWithAutosaveName: (page 403)

Declared In
NSBrowser.h

setDefaultColumnWidth:
Sets the default column width for new browser columns that do not otherwise have an initial width from
defaults or the browser’s delegate.

- (void)setDefaultColumnWidth:(CGFloat)columnWidth

Parameters
columnWidth

The default column width to set.

Instance Methods 439
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Availability
Available in Mac OS X v10.6 and later.

See Also
– defaultColumnWidth (page 410)

Declared In
NSBrowser.h

setDelegate:
Sets the browser’s delegate.

- (void)setDelegate:(id <NSBrowserDelegate>)anObject

Parameters
anObject

The object to set at the browser's delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 411)

Declared In
NSBrowser.h

setDoubleAction:
Sets the browser’s double-click action.

- (void)setDoubleAction:(SEL)aSelector

Parameters
aSelector

The action method to invoke when the browser is double-clicked.

Discussion
For the method to have any effect, the browser’s action and target must be set to the class in which the
selector is declared. See Action Messages for additional information on action messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doubleAction (page 412)
– sendAction (page 434)
– doDoubleClick: (page 412)

Related Sample Code
NewsReader

440 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

setDraggingSourceOperationMask:forLocal:
Specifies the drag-operation mask for dragging operations with local or external destinations.

- (void)setDraggingSourceOperationMask:(NSDragOperation)dragOperationMask
forLocal:(BOOL)localDestination

Parameters
dragOperationMask

Dragging operation mask to use for either local or external drag operations, as specified by
localDestination.

localDestination
Indicates the location of the dragging operation’s destination object:

YES for this application; NO for another application.

Discussion

Important: Do not override this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– draggingSourceOperationMaskForLocal: (page 413)

Declared In
NSBrowser.h

setHasHorizontalScroller:
Sets whether the browser has a scroller to scroll horizontally.

- (void)setHasHorizontalScroller:(BOOL)flag

Parameters
flag

YES if the browser uses an NSScroller object to scroll horizontally; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasHorizontalScroller (page 417)

Declared In
NSBrowser.h

Instance Methods 441
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

setLastColumn:
Sets the last column.

- (void)setLastColumn:(NSInteger)column

Parameters
column

The index of the last column.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lastColumn (page 420)

Declared In
NSBrowser.h

setMatrixClass:
Sets the matrix class to be used in the browser’s columns.

- (void)setMatrixClass:(Class)factoryId

Parameters
factoryId

The matrix class (NSMatrix or an NSMatrix subclass) used in the browser's columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
– matrixClass (page 421)

Declared In
NSBrowser.h

setMaxVisibleColumns:
Sets the maximum number of columns that can be displayed.

- (void)setMaxVisibleColumns:(NSInteger)columnCount

Parameters
columnCount

The maximum number of visible columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxVisibleColumns (page 422)

442 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

setMinColumnWidth:
Sets the minimum column width.

- (void)setMinColumnWidth:(CGFloat)columnWidth

Parameters
columnWidth

The minimum column width, in pixels.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minColumnWidth (page 423)

Declared In
NSBrowser.h

setPath:
Sets the path to be displayed by the browser.

- (BOOL)setPath:(NSString *)path

Parameters
path

The path to display. If path is prefixed by the path separator, the path is absolute, containing the full
path from the browser’s first column. Otherwise, the path is relative, extending the browser’s current
path starting at the last column.

Return Value
YES if the given path is valid; otherwise, NO.

Discussion
While parsing path, the browser compares each component with the entries in the current column. If an
exact match is found, the matching entry is selected, and the next component is compared to the next
column’s entries. If no match is found for a component, the method exits and returns NO; the final path is set
to the valid portion of path. If each component of path specifies a valid branch or leaf in the browser’s
hierarchy, the method returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– path (page 425)
– pathToColumn: (page 425)

Declared In
NSBrowser.h

Instance Methods 443
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

setPathSeparator:
Sets the path separator.

- (void)setPathSeparator:(NSString *)newString

Parameters
newString

The new path separator.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pathSeparator (page 425)

Declared In
NSBrowser.h

setPrefersAllColumnUserResizing:
Causes the browser to resize all column simultaneously rather than resize a single column at a time.

- (void)setPrefersAllColumnUserResizing:(BOOL)prefersAllColumnResizing

Parameters
prefersAllColumnResizing

YES to cause the browser to resize all columns simultaneously; the default is single column resizing
(NO). This setting applies only to browsers that allow the user to resize columns (see
NSBrowserUserColumnResizing (page 452). Holding down the Option key while resizing switches
the type of resizing used. This setting is persistent.

Availability
Available in Mac OS X v10.3 and later.

See Also
– prefersAllColumnUserResizing (page 426)

Declared In
NSBrowser.h

setReusesColumns:
Specifies whether matrices can be reused.

- (void)setReusesColumns:(BOOL)flag

Parameters
flag

YES to prevent NSMatrix objects from being freed when their columns are unloaded, so they can
be reused; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

444 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
– reusesColumns (page 427)

Declared In
NSBrowser.h

setRowHeight:
Sets the height of the browser’s rows to the specified value.

- (void)setRowHeight:(CGFloat)height

Parameters
height

The new height to set.

Discussion
The value must be greater than 0. Any fractional value will be forced to an integral value for drawing. For
variable row height browsers (ones whose delegates implement browser:heightOfRow:inColumn: (page
3588)), the row height will be used to draw alternating rows past the last row in each browser column.
rowHeight and setRowHeight: (page 445) are only available when using the item delegate methods. An
exception is thrown if you are using the matrix delegate methods.

Availability
Available in Mac OS X v10.6 and later.

See Also
– rowHeight (page 427)

Declared In
NSBrowser.h

setSelectionIndexPath:
Sets the browser’s selection to the item with the specified path.

- (void)setSelectionIndexPath:(NSIndexPath *)path

Parameters
path

The path of the item to select.

Availability
Available in Mac OS X v10.6 and later.

See Also
– selectionIndexPath (page 433)

Declared In
NSBrowser.h

Instance Methods 445
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

setSelectionIndexPaths:
Sets the browser’s selection to the items whose index paths are in the specified array.

- (void)setSelectionIndexPaths:(NSArray *)paths

Parameters
paths

The array containing the index paths of the items to select.

Availability
Available in Mac OS X v10.6 and later.

See Also
– selectionIndexPaths (page 433)

Declared In
NSBrowser.h

setSendsActionOnArrowKeys:
Allows the specified action message to be sent when the user presses an arrow key.

- (void)setSendsActionOnArrowKeys:(BOOL)flag

Parameters
flag

YES if pressing an arrow key should send the action message specified by setAction: (page 828) in
addition to scrolling the browser; NO if it should only scroll the browser.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendsActionOnArrowKeys (page 434)

Declared In
NSBrowser.h

setSeparatesColumns:
Separates columns with bezeled borders.

- (void)setSeparatesColumns:(BOOL)flag

Parameters
flag

YES if the browser's columns should be separated by bezeled borders; otherwise, NO. This value is
ignored if isTitled (page 419) does not return NO.

Availability
Available in Mac OS X v10.0 and later.

446 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
– separatesColumns (page 435)

Declared In
NSBrowser.h

setTakesTitleFromPreviousColumn:
Sets whether the title of a column is set to the string value of the selected cell in the previous column.

- (void)setTakesTitleFromPreviousColumn:(BOOL)flag

Parameters
flag

YES if the title of a column should be set to the string value of the selected NSCell in the previous
column; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– takesTitleFromPreviousColumn (page 448)

Declared In
NSBrowser.h

setTitle:ofColumn:
Sets the title of the given column.

- (void)setTitle:(NSString *)aString ofColumn:(NSInteger)column

Parameters
aString

The title of the column.

column
The index of the column whose title should be set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawTitleOfColumn:inRect: (page 414)
– titleOfColumn: (page 450)

Declared In
NSBrowser.h

setTitled:
Sets columns to display titles.

Instance Methods 447
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

- (void)setTitled:(BOOL)flag

Parameters
flag

YES if the columns in a browser display titles; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isTitled (page 419)

Declared In
NSBrowser.h

setWidth:ofColumn:
Sets the width of the specified column.

- (void)setWidth:(CGFloat)columnWidth ofColumn:(NSInteger)columnIndex

Parameters
columnWidth

The new width of the specified column.

columnIndex
The index of the column for which to set the width.

Discussion
This method can be used to set the initial width of browser columns unless the column sizing is automatic;
setWidth:ofColumn: does nothing if columnResizingType (page 409) is
NSBrowserAutoColumnResizing (page 452). To set the default width for new columns (that don’t otherwise
have initial widths from defaults or via the delegate), use a columnIndex of –1. A value set for columnIndex
of –1 is persistent. An NSBrowserColumnConfigurationDidChangeNotification (page 453) notification
is posted (not immediately), if necessary, so that the browser can autosave the new column configuration.

Availability
Available in Mac OS X v10.3 and later.

See Also
– widthOfColumn: (page 451)
– browser:shouldSizeColumn:forUserResize:toWidth: (page 3596) (NSBrowserDelegate)

Declared In
NSBrowser.h

takesTitleFromPreviousColumn
Indicates whether a column takes its title from the selected cell in the previous column.

- (BOOL)takesTitleFromPreviousColumn

448 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Return Value
YES if the title of a column is set to the string value of the selected NSCell in the previous column; otherwise,
NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTakesTitleFromPreviousColumn: (page 447)

Declared In
NSBrowser.h

tile
Adjusts the various subviews of the browser—scrollers, columns, titles, and so on—without redrawing.

- (void)tile

Discussion
Your code shouldn’t send this message. It’s invoked any time the appearance of the browser changes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

titleFrameOfColumn:
Returns the bounds of the title frame for the specified column.

- (NSRect)titleFrameOfColumn:(NSInteger)column

Parameters
column

The index of the column for which to return the title frame.

Return Value
The rectangle specifying the bounds of the column's title frame.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawTitleOfColumn:inRect: (page 414)

Declared In
NSBrowser.h

Instance Methods 449
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

titleHeight
Returns the height of the column titles.

- (CGFloat)titleHeight

Return Value
The height of the column titles for the browser.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawTitleOfColumn:inRect: (page 414)

Declared In
NSBrowser.h

titleOfColumn:
Returns the title displayed for the given column.

- (NSString *)titleOfColumn:(NSInteger)column

Parameters
column

The index of the column for which to get the title.

Return Value
The title of the specified column.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle:ofColumn: (page 447)

Declared In
NSBrowser.h

updateScroller
Updates the horizontal scroller to reflect column positions. (Deprecated in Mac OS X v10.3. There is no
replacement.)

- (void)updateScroller

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

See Also
– scrollViaScroller: (page 429)

450 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

validateVisibleColumns
Validates the browser’s visible columns.

- (void)validateVisibleColumns

Discussion
This method invokes the delegate method browser:isColumnValid: (page 3589)

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfVisibleColumns (page 424)

Declared In
NSBrowser.h

widthOfColumn:
Returns the width of the specified column.

- (CGFloat)widthOfColumn:(NSInteger)column

Parameters
column

The index of the column for which to retrieve the width.

Return Value
The width of the column.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setWidth:ofColumn: (page 448)

Declared In
NSBrowser.h

Constants

NSBrowserColumnResizingType
Types of browser column resizing.

Constants 451
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

enum {
 NSBrowserNoColumnResizing = 0,
 NSBrowserAutoColumnResizing = 1,
 NSBrowserUserColumnResizing = 2
};
typedef NSUInteger NSBrowserColumnResizingType;

Constants
NSBrowserNoColumnResizing

Neither NSBrowser nor the user can change the column width. The developer must explicitly set all
column widths.

Available in Mac OS X v10.3 and later.

Declared in NSBrowser.h.

NSBrowserAutoColumnResizing
All columns have the same width, calculated using a combination of the minimum column width and
maximum number of visible columns settings. The column width changes as the window size changes.
The user cannot resize columns.

Available in Mac OS X v10.3 and later.

Declared in NSBrowser.h.

NSBrowserUserColumnResizing
The developer chooses the initial column widths, but users can resize all columns simultaneously or
each column individually.

Available in Mac OS X v10.3 and later.

Declared in NSBrowser.h.

Discussion
These constants are used by the setColumnResizingType: (page 438) and columnResizingType (page
409) methods.

NSBrowserDropOperation
The type used to specify the drop type of a drag-and-drop operation. See
browser:validateDrop:proposedRow:column:dropOperation: (page 3600) for more information.

enum {
 NSBrowserDropOn,
 NSBrowserDropAbove
};
typedef NSUInteger NSBrowserDropOperation;

Constants
NSBrowserDropOn

The drop occurs at the row to which the item was dragged.

Available in Mac OS X v10.5 and later.

Declared in NSBrowser.h.

NSBrowserDropAbove
The drop occurs above the row to which the item was dragged.

Available in Mac OS X v10.5 and later.

Declared in NSBrowser.h.

452 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

Application Kit Versions for NSBrowser Functionality
The version of the AppKit.framework containing a specific bug fix or capability.

#define NSAppKitVersionNumberWithContinuousScrollingBrowser 680.0
#define NSAppKitVersionNumberWithColumnResizingBrowser 685.0

Constants
NSAppKitVersionNumberWithContinuousScrollingBrowser

The specific version of the AppKit framework that introduced support the continuous scrolling in
NSBrowser. Developers should not need to use this constant unless they are writing applications for
Mac OS X v10.3 and earlier.

Available in Mac OS X v10.3 and later.

Declared in NSBrowser.h.

NSAppKitVersionNumberWithColumnResizingBrowser
The specific version of the AppKit framework that introduced support for resizing individual browser
columns. Developers should not need to use this constant unless they are writing applications for
Mac OS X v10.3 and earlier.

Available in Mac OS X v10.3 and later.

Declared in NSBrowser.h.

Notifications

NSBrowserColumnConfigurationDidChangeNotification
Notifies the delegate when the width of a browser column has changed. The notification object is the browser
whose column sizes need to be made persistent. This notification does not contain a userInfo dictionary.
If the user resizes more than one column, a single notification is posted when the user is finished resizing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– browserColumnConfigurationDidChange: (page 3602)

Declared In
NSBrowser.h

Notifications 453
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

454 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Inherits from NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSBrowserCell.h

Companion guide Browsers

Related sample code NewsReader
SimpleCocoaBrowser

Overview

The NSBrowserCell class is the subclass of NSCell used by default to display data in the columns of an
NSBrowser object. (Each column contains an NSMatrix filled with NSBrowserCell objects.)

The NSBrowserCell class implements the user interface of NSBrowser.

Tasks

Getting Browser Cell Information

+ branchImage (page 456)
Returns the default image for branch cells in a browser.

+ highlightedBranchImage (page 457)
Returns the default image for branch browser cells that are highlighted.

Configuring Browser Cells

– image (page 458)
Returns the receiver’s image.

Overview 455
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

– setImage: (page 460)
Sets the receiver’s image, retaining the image.

– alternateImage (page 457)
Returns the receiver’s image for the highlighted state.

– setAlternateImage: (page 460)
Sets the receiver’s image for the highlighted state, retaining the image.

Managing Browser Cell State

– reset (page 459)
Unhighlights the receiver and unsets its state.

– set (page 459)
Highlights the receiver and sets its state.

– isLeaf (page 458)
Returns whether the receiver is a leaf or a branch cell.

– setLeaf: (page 461)
Sets whether the receiver is a leaf or a branch cell.

– isLoaded (page 459)
Returns a Boolean value indicating whether the cell is ready to display.

– setLoaded: (page 461)
Sets whether the receiver’s state has been set and the cell is ready to display.

– highlightColorInView: (page 458)
Returns the highlight color that the receiver wants to display.

Class Methods

branchImage
Returns the default image for branch cells in a browser.

+ (NSImage *)branchImage

Return Value
The default image used for branch NSBrowserCell objects. The default image is a right-pointing triangle.

Discussion
Override this method if you want a different image. To have a branch NSBrowserCell with no image (and
no space reserved for an image), override this method to return nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ highlightedBranchImage (page 457)
– alternateImage (page 457)
– setAlternateImage: (page 460)

456 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

Declared In
NSBrowserCell.h

highlightedBranchImage
Returns the default image for branch browser cells that are highlighted.

+ (NSImage *)highlightedBranchImage

Return Value
The default image used for branch NSBrowserCell objects that are highlighted. This is a lighter version of
the image returned by branchImage (page 456).

Discussion
Override this method if you want a different image.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ branchImage (page 456)
– alternateImage (page 457)
– setAlternateImage: (page 460)

Declared In
NSBrowserCell.h

Instance Methods

alternateImage
Returns the receiver’s image for the highlighted state.

- (NSImage *)alternateImage

Return Value
The image used for the browser cell in its highlighted state or nil if no image is set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlternateImage: (page 460)

Declared In
NSBrowserCell.h

Instance Methods 457
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

highlightColorInView:
Returns the highlight color that the receiver wants to display.

- (NSColor *)highlightColorInView:(NSView *)controlView

Parameters
controlView

The view for which to return the highlight color.

Return Value
The highlight color.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowserCell.h

image
Returns the receiver’s image.

- (NSImage *)image

Return Value
The image of the receiver or nil if no image is set.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setImage: (page 460)

Declared In
NSBrowserCell.h

isLeaf
Returns whether the receiver is a leaf or a branch cell.

- (BOOL)isLeaf

Return Value
YES if the receiver is a leaf cell; otherwise NO.

Discussion
A branch NSBrowserCell has an image near its right edge indicating that more, hierarchically related
information is available; when the user selects the cell, the NSBrowser displays a new column of
NSBrowserCell objects. A leaf NSBrowserCell has no image, indicating that the user has reached a terminal
piece of information; it doesn’t point to additional information.

Availability
Available in Mac OS X v10.0 and later.

458 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

See Also
– setLeaf: (page 461)

Declared In
NSBrowserCell.h

isLoaded
Returns a Boolean value indicating whether the cell is ready to display.

- (BOOL)isLoaded

Return Value
YES if the receiver’s state has been set and the cell is ready to display; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLoaded: (page 461)

Declared In
NSBrowserCell.h

reset
Unhighlights the receiver and unsets its state.

- (void)reset

Availability
Available in Mac OS X v10.0 and later.

See Also
– set (page 459)

Declared In
NSBrowserCell.h

set
Highlights the receiver and sets its state.

- (void)set

Availability
Available in Mac OS X v10.0 and later.

See Also
– reset (page 459)

Instance Methods 459
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

Declared In
NSBrowserCell.h

setAlternateImage:
Sets the receiver’s image for the highlighted state, retaining the image.

- (void)setAlternateImage:(NSImage *)newAltImage

Parameters
newAltImage

The new image for the browser cell in its highlighted state. If newAltImage is nil, it removes the
alternate image for the receiver. newAltImage is drawn vertically centered on the left edge of the
browser cell.

Note that newAltImage is drawn at the given size of the image. NSBrowserCell does not set the
size of the image, nor does it clip the drawing of the image. Make sure newAltImage is the correct
size for drawing in the browser cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alternateImage (page 457)

Declared In
NSBrowserCell.h

setImage:
Sets the receiver’s image, retaining the image.

- (void)setImage:(NSImage *)newImage

Parameters
newImage

The new image. If newImage is nil, it removes the image for the receiver. newImage is drawn vertically
centered on the left edge of the browser cell.

Note that newImage is drawn at the given size of the image. NSBrowserCell does not set the size
of the image, nor does it clip the drawing of the image. Make sure newImage is the correct size for
drawing in the browser cell.

Availability
Available in Mac OS X v10.2 and later.

See Also
– image (page 458)

Declared In
NSBrowserCell.h

460 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

setLeaf:
Sets whether the receiver is a leaf or a branch cell.

- (void)setLeaf:(BOOL)flag

Parameters
flag

YES if the receiver is a leaf cell; otherwise NO.

Discussion
A branch NSBrowserCell has an image near its right edge indicating that more, hierarchically related
information is available; when the user selects the cell, the NSBrowser displays a new column of
NSBrowserCell objects. A leaf NSBrowserCell has no image, indicating that the user has reached a terminal
piece of information; it doesn’t point to additional information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isLeaf (page 458)

Related Sample Code
NewsReader
SimpleCocoaBrowser

Declared In
NSBrowserCell.h

setLoaded:
Sets whether the receiver’s state has been set and the cell is ready to display.

- (void)setLoaded:(BOOL)flag

Parameters
flag

YES if the receiver’s state has been set and the cell is ready to display; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isLoaded (page 459)

Declared In
NSBrowserCell.h

Instance Methods 461
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

462 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

Inherits from NSObject

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSHelpManager.h
AppKit/NSImage.h
AppKit/NSNibLoading.h
AppKit/NSSound.h

Companion guide Resource Programming Guide

Overview

The Application Kit extends the behavior of the Foundation framework’s NSBundle class to support the
loading of specific resource types.

The NSBundle additions add support for the following tasks:

 ■ Loading nib files

 ■ Locating image and sound resources

 ■ Accessing context help from a Help.plist file

These methods become part of the NSBundle class only for those applications that use the Application Kit.

Tasks

Loading Nib Files

+ loadNibFile:externalNameTable:withZone: (page 464)
Unarchives the contents of the nib file and links them to objects in your program.

+ loadNibNamed:owner: (page 465)
Unarchives the contents of the nib file and links them to a specific owner object.

– loadNibFile:externalNameTable:withZone: (page 466)
Unarchives the contents of a nib file located in the receiver's bundle.

Overview 463
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSBundle Additions Reference

Locating Image Resources

– URLForImageResource: (page 468)
Returns the location of the specified image resource as an NSURL.

– pathForImageResource: (page 467)
Returns the location of the specified image resource file.

Accessing Context Help

– contextHelpForKey: (page 465)
Returns the context-sensitive help for the specified key from the bundle's help file.

Locating Sound Resources

– pathForSoundResource: (page 467)
Returns the location of the specified sound resource file.

Class Methods

loadNibFile:externalNameTable:withZone:
Unarchives the contents of the nib file and links them to objects in your program.

+ (BOOL)loadNibFile:(NSString *)fileName externalNameTable:(NSDictionary *)context
withZone:(NSZone *)zone

Parameters
fileName

The location of the nib file specified as an absolute path in the file system.

context
A name table whose keys identify objects associated with your program or the nib file. The newly
unarchived objects from the nib file use this table to connect to objects in your program. For example,
the nib file uses the object associated with the NSNibOwner constant as the nib file's owning object.
If you associate an empty NSMutableArray object with the NSNibTopLevelObjects constant, on
output, the array contains the top level objects from the nib file. For descriptions of these constants,
see NSNib Class Reference.

zone
The memory zone in which to allocate the nib file objects.

Return Value
YES if the nib file was loaded successfully; otherwise, NO.

Discussion
This method is declared in NSNibLoading.h.

Availability
Available in Mac OS X v10.0 and later.

464 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSBundle Additions Reference

Declared In
NSNibLoading.h

loadNibNamed:owner:
Unarchives the contents of the nib file and links them to a specific owner object.

+ (BOOL)loadNibNamed:(NSString *)aNibName owner:(id)owner

Parameters
aNibName

The name of the nib file, which need not include the .nib extension. The file name should not include
path information. The object in the owner parameter determines the location in which to look for
the nib file.

owner
The object to assign as the nib FIle's Owner. If the class of this object has an associated bundle, that
bundle is searched for the specified nib file; otherwise, this method looks in the main bundle.

Return Value
YES if the nib file was loaded successfully; otherwise, NO.

Discussion
This method is declared in NSNibLoading.h.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ bundleForClass: (NSBundle)

Related Sample Code
NumberInput_IMKit_Sample
OutputBins2PDE
QTAudioExtractionPanel
Reducer
WhackedTV

Declared In
NSNibLoading.h

Instance Methods

contextHelpForKey:
Returns the context-sensitive help for the specified key from the bundle's help file.

- (NSAttributedString *)contextHelpForKey:(NSString *)key

Instance Methods 465
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSBundle Additions Reference

Parameters
key

A key in your application's Help.plist file that identifies the context-sensitive help to return.

Return Value
The help string or nil if the application does not have a Help.plist file or the file does not contain an
entry for the specified key.

Discussion
When you build your application, you can merge multiple RTF-based help files together using the
/usr/bin/compileHelp tool, which then packages your help file information into a property list named
Help.plist. After placing this property-list file in your application bundle, you can use this method to
extract context help information from it. To look up a particular entry, you specify the name of the original
RTF help file in the key parameter of this method. For example, if your application project contains a help
file named Copy.rtf, you would retrieve the text from this file by passing the value @"Copy.rtf" to the
key parameter.

This method is declared in NSHelpManager.h.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contextHelpForObject: (page 1317) (NSHelpManager)

Declared In
NSHelpManager.h

loadNibFile:externalNameTable:withZone:
Unarchives the contents of a nib file located in the receiver's bundle.

- (BOOL)loadNibFile:(NSString *)fileName externalNameTable:(NSDictionary *)context
withZone:(NSZone *)zone

Parameters
fileName

The name of the nib file, which need not include the .nib extension.

context
A name table whose keys identify objects associated with your program or the nib file. The newly
unarchived objects from the nib file use this table to connect to objects in your program. For example,
the nib file uses the object associated with the NSNibOwner constant as the nib file's owning object.
If you associate an empty NSMutableArray object with the NSNibTopLevelObjects constant, on
output, the array contains the top level objects from the nib file. For descriptions of these constants,
see NSNib Class Reference.

zone
The memory zone in which to allocate the nib file objects.

Return Value
YES if the nib file was loaded successfully; otherwise, NO.

Discussion
This method searches the language-specific project (.lproj) directories for the specified nib file. If the file
is not there, it searches the bundle's Resources directory for a nonlocalized version of the file.

466 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSBundle Additions Reference

This method is declared in NSNibLoading.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNibLoading.h

pathForImageResource:
Returns the location of the specified image resource file.

- (NSString *)pathForImageResource:(NSString *)name

Parameters
name

The name of the image resource file, without any pathname information. Including a filename extension
is optional.

Return Value
The absolute pathname of the resource file or nil if the file was not found.

Discussion
Image resources are those files in the bundle that are recognized by the NSImage class, including those that
can be converted using the Image IO framework.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pathForResource:ofType: (NSBundle)
– URLForImageResource: (page 468)

Related Sample Code
CompositeLab
FilterDemo
LayerBackedOpenGLView

Declared In
NSImage.h

pathForSoundResource:
Returns the location of the specified sound resource file.

- (NSString *)pathForSoundResource:(NSString *)name

Parameters
name

The name of the sound resource file, without any pathname information. Including a filename extension
is optional

Instance Methods 467
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSBundle Additions Reference

Return Value
The absolute pathname of the resource file or nil if the file was not found.

Discussion
Sound resources are those files in the bundle that are recognized by the NSSound class. The types of sound
files can be determined by calling the soundUnfilteredFileTypes (page 2467) method of NSSound.

This method is declared in NSSound.h.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pathForResource:ofType: (NSBundle)

Declared In
NSSound.h

URLForImageResource:
Returns the location of the specified image resource as an NSURL.

- (NSURL *)URLForImageResource:(NSString *)name

Parameters
name

The name of the image resource file. Including a filename extension is optional.

Return Value
An NSURL for the resource file or nil if the file was not found.

Availability
Available in Mac OS X v10.6 and later.

See Also
– pathForImageResource: (page 467)

Declared In
NSImage.h

468 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 18

NSBundle Additions Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSButton.h

Companion guide Button Programming Topics

Related sample code CocoaSpeechSynthesisExample
FunHouse
MyPhoto
PDF Annotation Editor
WhackedTV

Overview

The NSButton class is a subclass of NSControl that intercepts mouse-down events and sends an action
message to a target object when it’s clicked or pressed.

The NSButton class uses NSButtonCell to implement its user interface.

NSButton and NSMatrix both provide a control view, which is needed to display an NSButtonCell object.
However, while NSMatrix requires you to access the NSButtonCell objects directly, most of the NSButton
class' methods are “covers” for identically declared methods in NSButtonCell. (In other words, the
implementation of the NSButton method invokes the corresponding NSButtonCell method for you,
allowing you to be unconcerned with the existence of the NSButtonCell.) The only NSButtonCellmethods
that don’t have covers relate to the font used to display the key equivalent and to specific methods for
highlighting or showing the state of the NSButton (these last are usually set together with the NSButton
setButtonType: (page 482) method).

Overview 469
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Tasks

Configuring Buttons

– setButtonType: (page 482)
Sets how the receiver button highlights while pressed and how it shows its state.

– getPeriodicDelay:interval: (page 474)
Returns by reference the delay and interval periods for a continuous button.

– setPeriodicDelay:interval: (page 485)
Sets the message delay and interval periods for a continuous button.

– alternateTitle (page 473)
Returns the title that the button displays when it’s in its alternate state.

– setAlternateTitle: (page 479)
Sets the title that appears on the button when it’s in its alternate state.

– attributedTitle (page 474)
Returns the title that the button displays in its normal state as an attributed string.

– setAttributedTitle: (page 480)
Sets the string that appears on the button when it’s in its normal state to the given attributed string
and redraws the button.

– attributedAlternateTitle (page 473)
Returns the title that the button displays when it’s in its alternate state as an attributed string.

– setAttributedAlternateTitle: (page 480)
Sets the title that appears on the button when it’s in its alternate state to the given attributed string.

– title (page 490)
Returns the title displayed on the button when it’s in its normal state.

– setTitle: (page 487)
Sets the title displayed by the receiver when in its normal state and, if necessary, redraws the button’s
contents.

– setTitleWithMnemonic: (page 488)
Sets the title of a button with a character denoting an access key.

– setSound: (page 486)
Sets the sound played when the user presses the button.

– sound (page 489)
Returns the sound that’s played when the user presses the button.

Configuring Button Images

– image (page 475)
Returns the image that appears on the receiver when it’s in its normal state.

– setImage: (page 482)
Sets the receiver’s image and redraws the button.

– alternateImage (page 472)
Returns the image that appears on the button when it’s in its alternate state.

470 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

– setAlternateImage: (page 479)
Sets the image displayed by the button when it’s in its alternate state and, if necessary, redraws the
contents of the button.

– imagePosition (page 476)
Returns the position of the receiver’s image relative to its title.

– setImagePosition: (page 483)
Sets the position of the button's image relative to its title.

– isBordered (page 476)
Returns a Boolean value indicating whether the button has a border.

– setBordered: (page 481)
Sets whether the receiver has a bezeled border.

– isTransparent (page 477)
Returns a Boolean value indicating whether the button is transparent.

– setTransparent: (page 488)
Sets whether the receiver is transparent and redraws the receiver if necessary.

– bezelStyle (page 474)
Returns the appearance of the receiver’s border.

– setBezelStyle: (page 481)
Sets the appearance of the border, if the receiver has one.

– showsBorderOnlyWhileMouseInside (page 489)
Returns a Boolean value indicating whether the button displays its border only when the cursor is
over it.

– setShowsBorderOnlyWhileMouseInside: (page 485)
Sets whether the receiver’s border is displayed only when the cursor is over the button.

Managing Button State

– allowsMixedState (page 472)
Returns a Boolean value indicating whether the button allows a mixed state.

– setAllowsMixedState: (page 478)
Sets whether the button allows a mixed state.

– state (page 489)
Returns the receiver’s state.

– setState: (page 486)
Sets the cell’s state to the specified value.

– setNextState (page 484)
Sets the receiver to its next state.

– highlight: (page 475)
Highlights (or unhighlights) the receiver.

Accessing Key Equivalents

– keyEquivalent (page 477)
Returns the key-equivalent character of the receiver.

Tasks 471
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

– setKeyEquivalent: (page 483)
Sets the key equivalent character of the receiver to the given character.

– keyEquivalentModifierMask (page 477)
Returns the mask specifying the modifier keys for the receiver’s key equivalent.

– setKeyEquivalentModifierMask: (page 484)
Sets the mask indicating the modifier keys used by the receiver’s key equivalent.

Handling Keyboard Events

– performKeyEquivalent: (page 478)
Checks the button's key equivalent against the specified event and, if they match, simulates the button
being clicked.

Instance Methods

allowsMixedState
Returns a Boolean value indicating whether the button allows a mixed state.

- (BOOL)allowsMixedState

Return Value
YES if the receiver has three states: on, off, and mixed. NO if the receiver has two states: on and off. The default
is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsMixedState: (page 478)
– setNextState (page 484)

Declared In
NSButton.h

alternateImage
Returns the image that appears on the button when it’s in its alternate state.

- (NSImage *)alternateImage

Return Value
The image displayed by the button when it's in its alternate state, or nil if there is no alternate image. Note
that some button types don’t display an alternate image. Buttons don’t display images by default.

Availability
Available in Mac OS X v10.0 and later.

472 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

See Also
– setAlternateImage: (page 479)
– image (page 475)
– imagePosition (page 476)
– keyEquivalent (page 477)
– setButtonType: (page 482)

Declared In
NSButton.h

alternateTitle
Returns the title that the button displays when it’s in its alternate state.

- (NSString *)alternateTitle

Return Value
The string that appears on the receiver when it's in its alternate state, or the empty string if the receiver
doesn't display an alternate title. By default, a button’s alternate title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlternateTitle: (page 479)
– attributedAlternateTitle (page 473)
– setButtonType: (page 482)
– title (page 490)

Declared In
NSButton.h

attributedAlternateTitle
Returns the title that the button displays when it’s in its alternate state as an attributed string.

- (NSAttributedString *)attributedAlternateTitle

Return Value
The string that appears on the receiver when it's in its alternate state, as an NSAttributedString, or the
empty string if the receiver doesn't display an alternate title. By default, a button’s alternate title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttributedAlternateTitle: (page 480)
– attributedTitle (page 474)
– setButtonType: (page 482)

Instance Methods 473
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Declared In
NSButton.h

attributedTitle
Returns the title that the button displays in its normal state as an attributed string.

- (NSAttributedString *)attributedTitle

Return Value
The string that appears on the receiver when it’s in its normal state as an NSAttributedString, or an empty
attributed string if the receiver doesn’t display a title.

A button’s title is always displayed if the button doesn’t use its alternate contents for highlighting or displaying
the alternate state. By default, a button’s title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttributedTitle: (page 480)
– attributedAlternateTitle (page 473)
– setButtonType: (page 482)

Declared In
NSButton.h

bezelStyle
Returns the appearance of the receiver’s border.

- (NSBezelStyle)bezelStyle

Return Value
The bezel style of the button. See the “Constants” (page 521) section of NSButtonCell (page 491) for the list
of possible values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBezelStyle: (page 481)

Declared In
NSButton.h

getPeriodicDelay:interval:
Returns by reference the delay and interval periods for a continuous button.

- (void)getPeriodicDelay:(float *)delay interval:(float *)interval

474 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Parameters
delay

On return, the amount of time (in seconds) the button will pause before starting to periodically send
action messages to the target object. The default delay is taken from a user's default (60 seconds
maximum). If the user hasn’t specified a default value, delay defaults to 0.4 seconds,

interval
On return, the amount of time (in seconds) between each action message that is sent. The default
interval is taken from a user's default (60 seconds maximum). If the user hasn’t specified a default
value, interval defaults to 0.075 seconds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isContinuous (page 822) (NSControl)

Declared In
NSButton.h

highlight:
Highlights (or unhighlights) the receiver.

- (void)highlight:(BOOL)flag

Parameters
flag

YES to highlight the button; NO to unhighlight the button. If the current state of the button matches
flag, no action is taken.

Discussion
Highlighting may involve the button appearing “pushed in” to the screen, displaying its alternate title or
image, or causing the button to appear to be “lit.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– setButtonType: (page 482)

Declared In
NSButton.h

image
Returns the image that appears on the receiver when it’s in its normal state.

- (NSImage *)image

Return Value
The image displayed by the button when it's in its normal state, or nil if there is no such image. This image
is always displayed on a button that doesn’t change its contents when highlighting or showing its alternate
state. Buttons don’t display images by default.

Instance Methods 475
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImage: (page 482)
– alternateImage (page 472)
– setButtonType: (page 482)

Declared In
NSButton.h

imagePosition
Returns the position of the receiver’s image relative to its title.

- (NSCellImagePosition)imagePosition

Return Value
The position of the button's image. This is one of the image positions described in the “Constants” (page
613) section of NSCell (page 533).

Discussion
If the title is above, below, or overlapping the image, or if there is no image, the text is horizontally centered
within the button.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImagePosition: (page 483)
– setButtonType: (page 482)
– setImage: (page 482)
– setTitle: (page 487)

Declared In
NSButton.h

isBordered
Returns a Boolean value indicating whether the button has a border.

- (BOOL)isBordered

Return Value
YES if the receiver has a border, NO otherwise. A button’s border isn’t the single line of most other controls’
borders—instead, it’s a raised bezel. By default, buttons are bordered.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBordered: (page 481)

476 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Declared In
NSButton.h

isTransparent
Returns a Boolean value indicating whether the button is transparent.

- (BOOL)isTransparent

Return Value
YES if the receiver is transparent, NO otherwise. A transparent button never draws itself, but it receives
mouse-down events and tracks the mouse properly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTransparent: (page 488)

Declared In
NSButton.h

keyEquivalent
Returns the key-equivalent character of the receiver.

- (NSString *)keyEquivalent

Return Value
The button's key equivalent, or the empty string if one hasn’t been defined. Buttons don’t have a default key
equivalent.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setKeyEquivalent: (page 483)
– performKeyEquivalent: (page 478)
– keyEquivalentFont (page 504) (NSButtonCell)

Declared In
NSButton.h

keyEquivalentModifierMask
Returns the mask specifying the modifier keys for the receiver’s key equivalent.

- (NSUInteger)keyEquivalentModifierMask

Instance Methods 477
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Return Value
The mask specifying the modifier keys that are applied to the button's key equivalent. Mask bits are defined
in NSEvent.h. The only mask bits relevant in button key-equivalent modifier masks are NSControlKeyMask,
NSAlternateKeyMask, and NSCommandKeyMask.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setKeyEquivalentModifierMask: (page 484)
– keyEquivalent (page 477)

Declared In
NSButton.h

performKeyEquivalent:
Checks the button's key equivalent against the specified event and, if they match, simulates the button being
clicked.

- (BOOL)performKeyEquivalent:(NSEvent *)anEvent

Parameters
anEvent

The event containing the key equivalent.

Return Value
YES if the key equivalent in anEvent matches the button's key equivalent; NO if it does not. This method also
returns NO if he receiver is blocked by a modal panel or the button is disabled.

Discussion
If the character in anEvent matches the receiver’s key equivalent, and the modifier flags in anEvent match
the key-equivalent modifier mask, performKeyEquivalent: simulates the user clicking the button and
returning YES. Otherwise, performKeyEquivalent: does nothing and returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyEquivalent (page 477)
– keyEquivalentModifierMask (page 477)

Declared In
NSButton.h

setAllowsMixedState:
Sets whether the button allows a mixed state.

- (void)setAllowsMixedState:(BOOL)flag

478 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Parameters
flag

YES to indicate that the receiver has three states: on, off, and mixed. If flag is NO, the receiver has two
states: on and off.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsMixedState (page 472)
– setNextState (page 484)

Related Sample Code
EnhancedAudioBurn
Quartz Composer WWDC 2005 TextEdit

Declared In
NSButton.h

setAlternateImage:
Sets the image displayed by the button when it’s in its alternate state and, if necessary, redraws the contents
of the button.

- (void)setAlternateImage:(NSImage *)image

Parameters
image

The image that appears on the receiver when it’s in its alternate state. Note that some button types
don’t display an alternate image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alternateImage (page 472)
– setButtonType: (page 482)
– setImage: (page 482)

Declared In
NSButton.h

setAlternateTitle:
Sets the title that appears on the button when it’s in its alternate state.

- (void)setAlternateTitle:(NSString *)aString

Parameters
aString

The string to set as the button's alternate title. Note that some button types don't display an alternate
title.

Instance Methods 479
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– alternateTitle (page 473)
– setTitle: (page 487)
– setTitleWithMnemonic: (page 488)
– setButtonType: (page 482)
– setFont: (page 511) (NSButtonCell)

Declared In
NSButton.h

setAttributedAlternateTitle:
Sets the title that appears on the button when it’s in its alternate state to the given attributed string.

- (void)setAttributedAlternateTitle:(NSAttributedString *)aString

Parameters
aString

The attributed string to set as the button's alternate title. Note that some button types don't display
an alternate title.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedAlternateTitle (page 473)
– setAttributedTitle: (page 480)
– setButtonType: (page 482)
– setFont: (page 511) (NSButtonCell)

Declared In
NSButton.h

setAttributedTitle:
Sets the string that appears on the button when it’s in its normal state to the given attributed string and
redraws the button.

- (void)setAttributedTitle:(NSAttributedString *)aString

Parameters
aString

The attributed string to set as the button's title. The title is always shown on buttons that don’t use
their alternate contents when highlighting or displaying their alternate state.

Discussion

Availability
Available in Mac OS X v10.0 and later.

480 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

See Also
– attributedTitle (page 474)
– setAttributedAlternateTitle: (page 480)
– setButtonType: (page 482)
– setFont: (page 511) (NSButtonCell)

Declared In
NSButton.h

setBezelStyle:
Sets the appearance of the border, if the receiver has one.

- (void)setBezelStyle:(NSBezelStyle)bezelStyle

Parameters
bezelStyle

The bezel style of the button. This must be one of the bezel styles described in the “Constants” (page
521) section of NSButtonCell (page 491).

If the button is not bordered, the bezel style is ignored.

Discussion
The button uses shading to look like it’s sticking out or pushed in. You can set the shading with the
NSButtonCell method setGradientType: (page 512).

Availability
Available in Mac OS X v10.0 and later.

See Also
– bezelStyle (page 474)

Related Sample Code
FunHouse

Declared In
NSButton.h

setBordered:
Sets whether the receiver has a bezeled border.

- (void)setBordered:(BOOL)flag

Parameters
flag

YES if the receiver should display a border; NO if it should not. A button’s border is not the single line
of most other controls’ borders—instead, it’s a raised bezel.

Discussion
This method redraws the button if setBordered: causes the bordered state to change.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 481
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

See Also
– isBordered (page 476)

Related Sample Code
FunHouse

Declared In
NSButton.h

setButtonType:
Sets how the receiver button highlights while pressed and how it shows its state.

- (void)setButtonType:(NSButtonType)aType

Parameters
aType

A constant specifying the type of the button—one of the constants described in the Constants section
of NSButtonCell.

Discussion
setButtonType: redisplays the button before returning.

The types available are for the most common button types, which are also accessible in Interface Builder.
You can configure different behavior with the NSButtonCellmethods setHighlightsBy: (page 512) and
setShowsStateBy: (page 517).

Note that there is no -buttonType method. The set method sets various button properties that together
establish the behavior of the type.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlternateImage: (page 479)
– setImage: (page 482)
– setButtonType: (page 511) (NSButtonCell)

Related Sample Code
FunHouse

Declared In
NSButton.h

setImage:
Sets the receiver’s image and redraws the button.

- (void)setImage:(NSImage *)anImage

482 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Parameters
anImage

The button's image. A button’s image is displayed when the button is in its normal state, or all the
time for a button that doesn’t change its contents when highlighting or displaying its alternate state.

Availability
Available in Mac OS X v10.0 and later.

See Also
– image (page 475)
– setImagePosition: (page 483)
– setAlternateImage: (page 479)
– setButtonType: (page 482)

Related Sample Code
FunHouse

Declared In
NSButton.h

setImagePosition:
Sets the position of the button's image relative to its title.

- (void)setImagePosition:(NSCellImagePosition)aPosition

Parameters
aPosition

A constant specifying the position of the button's image. See the “Constants” (page 613) section of
NSCell (page 533) for a listing of possible values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– imagePosition (page 476)

Related Sample Code
ButtonMadness
FunHouse

Declared In
NSButton.h

setKeyEquivalent:
Sets the key equivalent character of the receiver to the given character.

- (void)setKeyEquivalent:(NSString *)charCode

Instance Methods 483
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Parameters
charCode

The character to set as the button's key equivalent.

Discussion
This method redraws the button’s interior if it displays a key equivalent instead of an image. The key equivalent
isn’t displayed if the image position is set to NSNoImage, NSImageOnly, or NSImageOverlaps; that is, the
button must display both its title and its “image” (the key equivalent in this case), and they must not overlap.

To display a key equivalent on a button, set the image and alternate image to nil, then set the key equivalent,
then set the image position.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyEquivalent (page 477)
– performKeyEquivalent: (page 478)
– setAlternateImage: (page 479)
– setImage: (page 482)
– setImagePosition: (page 483)
– setKeyEquivalentFont: (page 515) (NSButtonCell)

Declared In
NSButton.h

setKeyEquivalentModifierMask:
Sets the mask indicating the modifier keys used by the receiver’s key equivalent.

- (void)setKeyEquivalentModifierMask:(NSUInteger)mask

Parameters
mask

The mask identifying the modifier keys to be applied to the button's key equivalent.

Mask bits are defined in NSEvent.h. The only mask bits relevant in button key-equivalent modifier
masks are NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyEquivalentModifierMask (page 477)
– setKeyEquivalent: (page 483)

Declared In
NSButton.h

setNextState
Sets the receiver to its next state.

484 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

- (void)setNextState

Discussion
If the button has three states, it cycles through them in this order: on, off, mixed, on, and so forth. If the
button has two states, it toggles between them.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsMixedState (page 472)
– setAllowsMixedState: (page 478)

Declared In
NSButton.h

setPeriodicDelay:interval:
Sets the message delay and interval periods for a continuous button.

- (void)setPeriodicDelay:(float)delay interval:(float)interval

Parameters
delay

The amount of time (in seconds) that a continuous button will pause before starting to periodically
send action messages to the target object. The maximum allowed value is 60.0 seconds; if a larger
value is supplied, it is ignored, and 60.0 seconds is used.

interval
The amount of time (in seconds) between each action message. The maximum value is 60.0 seconds;
if a larger value is supplied, it is ignored, and 60.0 seconds is used.

Discussion
The delay and interval values are used if the button is configured (by a setContinuous: (page 830) message)
to continuously send the action message to the target object while tracking the mouse.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContinuous: (page 830) (NSControl)

Declared In
NSButton.h

setShowsBorderOnlyWhileMouseInside:
Sets whether the receiver’s border is displayed only when the cursor is over the button.

- (void)setShowsBorderOnlyWhileMouseInside:(BOOL)show

Instance Methods 485
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Parameters
show

YES to display the border only when the cursor is within the button’s border and the button is active.
NO, to continue to display the button’s border when the cursor is outside the button’s bounds.

Discussion
If isBordered (page 476) returns NO, the border is never displayed, regardless of what this method returns.

Availability
Available in Mac OS X v10.0 and later.

See Also
– showsBorderOnlyWhileMouseInside (page 489)

Declared In
NSButton.h

setSound:
Sets the sound played when the user presses the button.

- (void)setSound:(NSSound *)aSound

Parameters
aSound

The sound that should be played when the user presses the button. The sound is played during a
mouse-down event, such as NSLeftMouseDown.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sound (page 489)

Declared In
NSButton.h

setState:
Sets the cell’s state to the specified value.

- (void)setState:(NSInteger)value

Parameters
value

The state of the button. This can be NSOnState, NSOffState,NSMixedState. See the discussion
for a more detailed explanation.

Discussion
If necessary, this method also redraws the receiver.

486 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

The cell can have two or three states. If it has two, value can be NSOffState (the normal or unpressed
state) and NSOnState (the alternate or pressed state). If it has three, value can be NSOnState (the feature
is in effect everywhere), NSOffState (the feature is in effect nowhere), or NSMixedState (the feature is in
effect somewhere). Note that if the cell has only two states and value is NSMixedState, this method sets
the cell’s state to NSOnState.

Although using the enumerated constants is preferred, value can also be an integer. If the cell has two
states, 0 is treated as NSOffState, and a nonzero value is treated as NSOnState. If the cell has three states,
0 is treated as NSOffState; a negative value, as NSMixedState; and a positive value, as NSOnState.

To check whether the button uses the mixed state, use the method allowsMixedState (page 472).

Availability
Available in Mac OS X v10.0 and later.

See Also
– state (page 489)

Related Sample Code
EnhancedAudioBurn
FunHouse
QTAudioContextInsert
Sketch-112
WhackedTV

Declared In
NSButton.h

setTitle:
Sets the title displayed by the receiver when in its normal state and, if necessary, redraws the button’s contents.

- (void)setTitle:(NSString *)aString

Parameters
aString

The string to set as the button's title. This title is always shown on buttons that don’t use their alternate
contents when highlighting or displaying their alternate state.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 490)
– setAlternateTitle: (page 479)
– setButtonType: (page 482)
– setTitleWithMnemonic: (page 488)
– setFont: (page 511) (NSButtonCell)

Related Sample Code
ExtractMovieAudioToAIFF
FunHouse

Instance Methods 487
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

QTAudioContextInsert
SharedMemory
WhackedTV

Declared In
NSButton.h

setTitleWithMnemonic:
Sets the title of a button with a character denoting an access key.

- (void)setTitleWithMnemonic:(NSString *)aString

Discussion
Mnemonics are not supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 490)
– setAlternateTitle: (page 479)
– setButtonType: (page 482)
– setTitle: (page 487)
– setFont: (page 511) (NSButtonCell)

Declared In
NSButton.h

setTransparent:
Sets whether the receiver is transparent and redraws the receiver if necessary.

- (void)setTransparent:(BOOL)flag

Parameters
flag

YES if the button is transparent; otherwise NO.

Discussion
A transparent button tracks the mouse and sends its action, but doesn’t draw. A transparent button is useful
for sensitizing an area on the screen so that an action gets sent to a target when the area receives a mouse
click.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isTransparent (page 477)

Declared In
NSButton.h

488 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

showsBorderOnlyWhileMouseInside
Returns a Boolean value indicating whether the button displays its border only when the cursor is over it.

- (BOOL)showsBorderOnlyWhileMouseInside

Return Value
YES if the receiver’s border is displayed only when the cursor is over the button and the button is active; NO
if the border is displayed all the time.

By default, this method returns NO.

Discussion
If isBordered (page 476) returns NO, the border is never displayed, regardless of what this method returns.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShowsBorderOnlyWhileMouseInside: (page 485)

Declared In
NSButton.h

sound
Returns the sound that’s played when the user presses the button.

- (NSSound *)sound

Return Value
The sound played when the user presses the button.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSound: (page 486)

Declared In
NSButton.h

state
Returns the receiver’s state.

- (NSInteger)state

Return Value
The button's state. A button can have two or three states. If it has two, this value is either NSOffState (the
normal or unpressed state) or NSOnState (the alternate or pressed state). If it has three, this value can be
NSOnState (the feature is in effect everywhere), NSOffState (the feature is in effect nowhere), or
NSMixedState (the feature is in effect somewhere).

Instance Methods 489
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Discussion
To check whether the button uses the mixed state, use the method allowsMixedState (page 472).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setState: (page 486)

Related Sample Code
DatePicker
DragNDropOutlineView
FinalCutPro_AppleEvents
GLUT
WhackedTV

Declared In
NSButton.h

title
Returns the title displayed on the button when it’s in its normal state.

- (NSString *)title

Return Value
The title displayed on the receiver when it’s in its normal state or the empty string if the button doesn’t
display a title. This title is always displayed if the button doesn’t use its alternate contents for highlighting
or displaying the alternate state. By default, a button’s title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– alternateTitle (page 473)
– setButtonType: (page 482)
– setTitle: (page 487)
– setTitleWithMnemonic: (page 488)

Related Sample Code
SpeedometerView

Declared In
NSButton.h

490 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Inherits from NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSButtonCell.h

Companion guide Button Programming Topics

Related sample code ButtonMadness
DragNDropOutlineView
FunkyOverlayWindow
MyMediaPlayer
QTAudioContextInsert

Overview

The NSButtonCell class is a subclass of NSActionCell used to implement the user interfaces of push
buttons, checkboxes (switches), and radio buttons. It can also be used for any other region of a view that’s
designed to send a message to a target when clicked. The NSButton subclass of NSControl uses a single
NSButtonCell.

The NSButtonCell class implements the user interface of NSButton.

Setting the integer, float, double, or object value of an NSButtonCell object results in a call to
setState: (page 596) with the value converted to integer. In the case of setObjectValue: (page 592), nil
is equivalent to 0, and a non-nil object that doesn't respond to intValue (page 565) sets the state to 1.
Otherwise, the state is set to the object's intValue (page 565). Similarly, querying the integer, float, double,
or object value of an NSButtonCell returns the current state in the requested representation. In the case
of objectValue (page 572), this is an NSNumber containing YES for on, NO for off, and integer value -1 for
the mixed state.

For more information on the behavior of NSButtonCell, see the NSButton and NSMatrix class specifications,
and Button Programming Topics.

Overview 491
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Exceptions

In its implementation of the compare: (page 550) method (declared in NSCell), NSButtonCell raises an
NSBadComparisonException if the otherCell argument is not of the NSButtonCell class.

Tasks

Setting Titles

– alternateMnemonic (page 496)
Returns the character in the alternate title that’s marked as the “keyboard mnemonic.”

– alternateMnemonicLocation (page 496)
Returns an unsigned integer indicating the character in the alternate title that’s marked as the
“keyboard mnemonic.”

– alternateTitle (page 497)
Returns the string displayed by the button when it’s in its alternate state.

– attributedAlternateTitle (page 497)
Returns the title displayed by the button when it’s in its alternate state, as an attributed string.

– attributedTitle (page 498)
Returns the title displayed by the button when it’s in its normal state as an attributed string.

– setAlternateMnemonicLocation: (page 507)
Sets the character in the alternate title that should be the “keyboard mnemonic.”

– setAlternateTitle: (page 507)
Sets the title the button displays when it’s in its alternate state.

– setAlternateTitleWithMnemonic: (page 508)
Sets the title the button displays when it’s in its alternate state to the given string with an embedded
mnemonic.

– setAttributedAlternateTitle: (page 508)
Sets the string the button displays when it’s in its alternate state to the given attributed string.

– setAttributedTitle: (page 509)
Sets the string the button displays when it’s in its normal state to the given attributed string and
redraws the button.

– setFont: (page 511)
Sets the font used to display the button's title and alternate title.

– setTitle: (page 518)
Sets the title the button displays when in its normal state and, if necessary, redraws the receiver’s
contents.

– setTitleWithMnemonic: (page 519)
Sets the title the button displays when it’s in its normal state to the given string with an embedded
mnemonic.

– title (page 521)
Returns the title displayed on the receiver when it’s in its normal state.

492 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Managing Images

– alternateImage (page 495)
Returns the image the button displays in its alternate state.

– imagePosition (page 502)
Returns the position of the receiver’s image relative to its title.

– setAlternateImage: (page 506)
Sets the image the button displays in its alternate state and, if necessary, redraws its contents.

– setImagePosition: (page 513)
Sets the position of the receiver’s image relative to its title.

– imageScaling (page 503)
Returns the scale factor for the receiver’s image.

– setImageScaling: (page 514)
Sets the scale factor for the receiver’s image.

Managing the Repeat Interval

– getPeriodicDelay:interval: (page 501)
Returns by reference the delay and interval periods for a continuous button.

– setPeriodicDelay:interval: (page 516)
Sets the message delay and interval for the receiver.

Managing the Key Equivalent

– keyEquivalent (page 504)
Returns the receiver's key-equivalent character.

– keyEquivalentFont (page 504)
Returns the font used to draw the key equivalent.

– keyEquivalentModifierMask (page 505)
Returns the mask identifying the modifier keys for the button's key equivalent.

– setKeyEquivalent: (page 514)
Sets the key equivalent character of the receiver.

– setKeyEquivalentModifierMask: (page 516)
Sets the mask identifying the modifier keys to use with the button's key equivalent.

– setKeyEquivalentFont: (page 515)
Sets the font used to draw the key equivalent and redisplays the receiver if necessary.

– setKeyEquivalentFont:size: (page 515)
Sets by name and size of the font used to draw the key equivalent.

Managing Graphics Attributes

– backgroundColor (page 498)
Returns the background color of the receiver.

Tasks 493
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

– setBackgroundColor: (page 510)
Sets the background color of the receiver.

– bezelStyle (page 499)
Returns the appearance of the receiver’s border.

– setBezelStyle: (page 510)
Sets the appearance of the border, if the receiver has one.

– gradientType (page 501)
Returns the gradient of the receiver’s border.

– setGradientType: (page 512)
Sets the type of gradient to use for the receiver.

– imageDimsWhenDisabled (page 502)
Returns a Boolean value that indicates whether the receiver’s image and text appear “dim” when the
receiver is disabled.

– setImageDimsWhenDisabled: (page 513)
Sets whether the receiver’s image appears “dim” when the button cell is disabled.

– isOpaque (page 503)
Returns a Boolean value that indicates whether the receiver is opaque.

– isTransparent (page 504)
Returns a Boolean value that indicates whether the receiver is transparent.

– setTransparent: (page 519)
Sets whether the receiver is transparent.

– showsBorderOnlyWhileMouseInside (page 520)
Returns a Boolean value indicating whether the button displays its border only when the cursor is
over it.

– setShowsBorderOnlyWhileMouseInside: (page 517)
Sets whether the receiver’s border is displayed only when the cursor is over the button.

Displaying the Cell

– highlightsBy (page 501)
Returns flags indicating how the button highlights when it receives a mouse-down event.

– setHighlightsBy: (page 512)
Sets the way the receiver highlights itself while pressed.

– setShowsStateBy: (page 517)
Sets the way the receiver indicates its alternate state.

– setButtonType: (page 511)
Sets how the receiver highlights while pressed and how it shows its state.

– showsStateBy (page 520)
Returns the flags indicating how the button cell shows its alternate state.

Managing the Sound

– sound (page 520)
Returns the sound that’s played when the user presses the receiver.

494 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

– setSound: (page 518)
Sets the sound that’s played when the user presses the receiver.

Handling Events and Action Messages

– mouseEntered: (page 505)
Draws the receiver’s border.

– mouseExited: (page 506)
Erases the receiver’s border.

– performClick: (page 506)
Simulates the user clicking the receiver with the cursor.

Drawing the Button Content

– drawBezelWithFrame:inView: (page 499)
Draws the border of the button using the current bezel style.

– drawImage:withFrame:inView: (page 499)
Draws the image associated with the button’s current state.

– drawTitle:withFrame:inView: (page 500)
Draws the button’s title centered vertically in a specified rectangle.

Instance Methods

alternateImage
Returns the image the button displays in its alternate state.

- (NSImage *)alternateImage

Return Value
The image displayed by the button when it's in its alternate state, or nil if there is no alternate image.

Discussion
Note that some button types don’t display an alternate image. Buttons don’t display images by default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlternateImage: (page 506)
– imagePosition (page 502)
– keyEquivalent (page 504)
– setButtonType: (page 511)
– image (page 562) (NSCell)

Instance Methods 495
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Declared In
NSButtonCell.h

alternateMnemonic
Returns the character in the alternate title that’s marked as the “keyboard mnemonic.”

- (NSString *)alternateMnemonic

Return Value
The character in the alternate title (the title displayed on the receiver when it's in its alternate state) marked
as the "keyboard mnemonic."

Discussion
Mnemonics are not supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alternateMnemonicLocation (page 496)
– setAlternateTitleWithMnemonic: (page 508)
– mnemonic (page 571) (NSCell)

Declared In
NSButtonCell.h

alternateMnemonicLocation
Returns an unsigned integer indicating the character in the alternate title that’s marked as the “keyboard
mnemonic.”

- (NSUInteger)alternateMnemonicLocation

Return Value
An unsigned integer indicating the character in the alternate title (the title displayed on the receiver when
it’s in its alternate state) that’s marked as the “keyboard mnemonic.” If the alternate title doesn’t have a
keyboard mnemonic, returns NSNotFound.

Discussion
Mnemonics are not supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlternateMnemonicLocation: (page 507)
– alternateMnemonic (page 496)
– setAlternateTitleWithMnemonic: (page 508)
– mnemonicLocation (page 571) (NSCell)

496 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Declared In
NSButtonCell.h

alternateTitle
Returns the string displayed by the button when it’s in its alternate state.

- (NSString *)alternateTitle

Return Value
The string that appears on the button when it's in its alternate state, or the empty string if the receiver doesn’t
display an alternate title.

Discussion
Note that some button types don’t display an alternate title. By default, a button’s alternate title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlternateTitle: (page 507)
– alternateMnemonic (page 496)
– attributedAlternateTitle (page 497)
– setButtonType: (page 511)
– title (page 521)

Declared In
NSButtonCell.h

attributedAlternateTitle
Returns the title displayed by the button when it’s in its alternate state, as an attributed string.

- (NSAttributedString *)attributedAlternateTitle

Return Value
The attributed string that appears on the button when it's in its alternate state, or the empty string if the
receiver doesn’t display an alternate title.

Discussion
Note that some button types don’t display an alternate title. By default, a button’s alternate title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttributedAlternateTitle: (page 508)
– alternateMnemonic (page 496)
– attributedTitle (page 498)
– setButtonType: (page 511)

Instance Methods 497
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Declared In
NSButtonCell.h

attributedTitle
Returns the title displayed by the button when it’s in its normal state as an attributed string.

- (NSAttributedString *)attributedTitle

Return Value
The attributes string that appears on the button when it's in its normal state, or an empty attributed string
if the receiver doesn’t display a title.

Discussion
A button’s title is always displayed if the button doesn’t use its alternate contents for highlighting or displaying
the alternate state. By default, a button’s title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttributedTitle: (page 509)
– attributedAlternateTitle (page 497)
– setButtonType: (page 511)
– mnemonic (page 571) (NSCell)

Declared In
NSButtonCell.h

backgroundColor
Returns the background color of the receiver.

- (NSColor *)backgroundColor

Return Value
The receiver’s background color.

Discussion
The background color is used only when drawing borderless buttons.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBackgroundColor: (page 510)

Declared In
NSButtonCell.h

498 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

bezelStyle
Returns the appearance of the receiver’s border.

- (NSBezelStyle)bezelStyle

Return Value
A constant specifying the bezel style used by the button. See “Bezel Styles” (page 522) for a list of possible
values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBezelStyle: (page 510)

Declared In
NSButtonCell.h

drawBezelWithFrame:inView:
Draws the border of the button using the current bezel style.

- (void)drawBezelWithFrame:(NSRect)frame inView:(NSView *)controlView

Parameters
frame

The bounding rectangle of the button.

controlView
The control being drawn.

Discussion
This method is called automatically when the button is redrawn; you should not call it directly.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBezelStyle: (page 510)

Declared In
NSButtonCell.h

drawImage:withFrame:inView:
Draws the image associated with the button’s current state.

- (void)drawImage:(NSImage *)image withFrame:(NSRect)frame inView:(NSView
*)controlView

Parameters
image

The image associated with the button's current state.

Instance Methods 499
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

frame
The bounding rectangle of the button.

controlView
The control being drawn.

Discussion
This method is called automatically when the button is redrawn; you should not call it directly.

You specify the primary and alternate images for the button using Interface Builder.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAlternateImage: (page 506)

Declared In
NSButtonCell.h

drawTitle:withFrame:inView:
Draws the button’s title centered vertically in a specified rectangle.

- (NSRect)drawTitle:(NSAttributedString *)title withFrame:(NSRect)frame
inView:(NSView *)controlView

Parameters
title

The title of the button.

frame
The rectangle in which to draw the title.

controlView
The control being drawn.

Return Value
The bounding rectangle for the text of the title.

Discussion
This method is called automatically when the button is redrawn; you should not call it directly.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAlternateTitle: (page 507)
– setAttributedTitle: (page 509)

Declared In
NSButtonCell.h

500 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

getPeriodicDelay:interval:
Returns by reference the delay and interval periods for a continuous button.

- (void)getPeriodicDelay:(float *)delay interval:(float *)interval

Parameters
delay

On return, the amount of time (in seconds) that the button will pause before starting to periodically
send action messages to the target object. Default values are taken from the user's defaults (60 seconds
maximum); if the user hasn't specified a default value, this defaults to 0.4 seconds.

interval
On return, the amount of time (in seconds) between each action message. Default values are taken
from the user's defaults (60 seconds maximum); if the user hasn't specified a default value, this defaults
to 0.075 seconds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isContinuous (page 566)
– isContinuous (page 566) (NSCell)

Declared In
NSButtonCell.h

gradientType
Returns the gradient of the receiver’s border.

- (NSGradientType)gradientType

Return Value
A constant specifying the gradient used for the button's border. See “Gradient Types” (page 526) for a list of
possible values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setGradientType: (page 512)

Declared In
NSButtonCell.h

highlightsBy
Returns flags indicating how the button highlights when it receives a mouse-down event.

- (NSInteger)highlightsBy

Instance Methods 501
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Return Value
The logical OR of flags that indicate the way the receiver highlights when it receivers a mouse-down event.
See the “Constants” (page 613) section of NSCell (page 533) for the list of flags.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHighlightsBy: (page 512)
– showsStateBy (page 520)

Related Sample Code
MyMediaPlayer

Declared In
NSButtonCell.h

imageDimsWhenDisabled
Returns a Boolean value that indicates whether the receiver’s image and text appear “dim” when the receiver
is disabled.

- (BOOL)imageDimsWhenDisabled

Return Value
YES if the button's image and text are dimmed when the button is disabled, otherwise NO.

Discussion
By default, all button types except NSSwitchButton and NSRadioButton do dim when disabled. When
buttons of type NSSwitchButton and NSRadioButton are disabled, only the associated text dims.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setButtonType: (page 511)
– setImageDimsWhenDisabled: (page 513)

Declared In
NSButtonCell.h

imagePosition
Returns the position of the receiver’s image relative to its title.

- (NSCellImagePosition)imagePosition

Return Value
The position of the button's image. This is one of the image positions described in the “Constants” (page
613) section of NSCell (page 533).

502 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Discussion
If the title is above, below, or overlapping the image, or if there is no image, the text is horizontally centered
within the button.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImagePosition: (page 513)
– setButtonType: (page 511)
– setTitle: (page 518)
– setImage: (page 589) (NSCell)

Declared In
NSButtonCell.h

imageScaling
Returns the scale factor for the receiver’s image.

- (NSImageScaling)imageScaling

Return Value
The scale factor for the receiver’s image.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSButtonCell.h

isOpaque
Returns a Boolean value that indicates whether the receiver is opaque.

- (BOOL)isOpaque

Return Value
YES if the receiver draws over every pixel in its frame, otherwise NO.

Discussion
A button cell is opaque only if it isn’t transparent and if it has a border.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isTransparent (page 504)
– setTransparent: (page 519)

Declared In
NSButtonCell.h

Instance Methods 503
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

isTransparent
Returns a Boolean value that indicates whether the receiver is transparent.

- (BOOL)isTransparent

Return Value
YES if the receiver is transparent, NO otherwise.

Discussion
A transparent button never draws itself, but it receives mouse-down events and tracks the mouse properly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTransparent: (page 519)
– isOpaque (page 503)

Declared In
NSButtonCell.h

keyEquivalent
Returns the receiver's key-equivalent character.

- (NSString *)keyEquivalent

Return Value
The string containing the key equivalent character of the button, or the empty string if one hasn't been
defined.

Discussion
Buttons don't have a default key equivalent.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setKeyEquivalent: (page 514)
– keyEquivalentFont (page 504)

Declared In
NSButtonCell.h

keyEquivalentFont
Returns the font used to draw the key equivalent.

- (NSFont *)keyEquivalentFont

Return Value
The font object describing the font used to draw the button's key equivalent, or nil if the receiver doesn’t
have a key equivalent.

504 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Discussion
The default font is the same as that used to draw the title.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setKeyEquivalentFont: (page 515)
– setKeyEquivalentFont:size: (page 515)
– setFont: (page 511)

Declared In
NSButtonCell.h

keyEquivalentModifierMask
Returns the mask identifying the modifier keys for the button's key equivalent.

- (NSUInteger)keyEquivalentModifierMask

Return Value
A mask indicating the modifier keys that are applied to the receiver's key equivalent.

Mask bits are defined in NSEvent.h. The only mask bits relevant in button key-equivalent modifier masks
are NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask bits.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setKeyEquivalentModifierMask: (page 516)
– keyEquivalent (page 504)

Declared In
NSButtonCell.h

mouseEntered:
Draws the receiver’s border.

- (void)mouseEntered:(NSEvent *)event

Parameters
event

The event object generated by the mouse movement.

Discussion
This method is called only when the cursor moves onto the receiver and
showsBorderOnlyWhileMouseInside (page 520) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 505
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Declared In
NSButtonCell.h

mouseExited:
Erases the receiver’s border.

- (void)mouseExited:(NSEvent *)event

Parameters
event

The event object generated by the mouse movement.

Discussion
This method is called only when the cursor moves off the receiver and
showsBorderOnlyWhileMouseInside (page 520) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSButtonCell.h

performClick:
Simulates the user clicking the receiver with the cursor.

- (void)performClick:(id)sender

Parameters
sender

The sender of the message.

Discussion
This method essentially highlights the button, sends the button’s action message to the target object, and
then unhighlights the button. If an exception is raised while the target object is processing the action message,
the button is unhighlighted before the exception is propagated out of performClick:.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSButtonCell.h

setAlternateImage:
Sets the image the button displays in its alternate state and, if necessary, redraws its contents.

- (void)setAlternateImage:(NSImage *)image

506 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Parameters
image

The image displayed by the button when it's in its alternate state.

Discussion
Note that some button types don’t display an alternate image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alternateImage (page 495)
– setButtonType: (page 511)
– setImage: (page 589) (NSCell)

Declared In
NSButtonCell.h

setAlternateMnemonicLocation:
Sets the character in the alternate title that should be the “keyboard mnemonic.”

- (void)setAlternateMnemonicLocation:(NSUInteger)location

Parameters
location

An unsigned integer indicating the character in the alternate title that should be marked as the
"keyboard mnemonic." If you don’t want the alternate title to have a keyboard mnemonic, specify a
location of NSNotFound.

Discussion
Mnemonics are not supported in Mac OS X.

The setAlternateMnemonicLocation: method doesn’t cause the button cell to be redisplayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alternateMnemonicLocation (page 496)
– setAlternateTitleWithMnemonic: (page 508)

Declared In
NSButtonCell.h

setAlternateTitle:
Sets the title the button displays when it’s in its alternate state.

- (void)setAlternateTitle:(NSString *)aString

Instance Methods 507
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Parameters
aString

The string to set as the button's title when it's in its alternate state.

Discussion
Note that some button types don’t display an alternate title.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alternateTitle (page 497)
– setAlternateMnemonicLocation: (page 507)
– setAlternateTitleWithMnemonic: (page 508)
– setTitle: (page 518)
– setButtonType: (page 511)
– setFont: (page 511)

Declared In
NSButtonCell.h

setAlternateTitleWithMnemonic:
Sets the title the button displays when it’s in its alternate state to the given string with an embedded
mnemonic.

- (void)setAlternateTitleWithMnemonic:(NSString *)aString

Parameters
aString

The string to set as the button's alternate title, taking into account the fact that an embedded “&”
character is not a literal but instead marks the alternate state’s “keyboard mnemonic.”

Discussion
Mnemonics are not supported in Mac OS X.

If necessary, setAlternateTitleWithMnemonic: redraws the button cell. Note that some button types
don’t display an alternate title.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlternateMnemonicLocation: (page 507)
– setTitleWithMnemonic: (page 519)

Declared In
NSButtonCell.h

setAttributedAlternateTitle:
Sets the string the button displays when it’s in its alternate state to the given attributed string.

508 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

- (void)setAttributedAlternateTitle:(NSAttributedString *)aString

Parameters
aString

The attributed string to set as the button's alternate title.

Discussion
Note that some button types don’t display an alternate title.

Graphics attributes that are set on the cell (backgroundColor, alignment, font, etc.) are overriden when
corresponding properties are set for the attributed string.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedAlternateTitle (page 497)
– setAlternateMnemonicLocation: (page 507)
– setAlternateTitleWithMnemonic: (page 508)
– setAttributedTitle: (page 509)
– setButtonType: (page 511)
– setFont: (page 511)

Declared In
NSButtonCell.h

setAttributedTitle:
Sets the string the button displays when it’s in its normal state to the given attributed string and redraws
the button.

- (void)setAttributedTitle:(NSAttributedString *)aString

Parameters
aString

The attributed string to set as the button's title.

Discussion
The title is always shown on buttons that don’t use their alternate contents when highlighting or displaying
their alternate state.

Graphics attributes configured for the cell (backgroundColor, alignment, font, etc.) are overriden when
corresponding properties are set for the attributed string.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedTitle (page 498)
– setAttributedAlternateTitle: (page 508)
– setButtonType: (page 511)
– setFont: (page 511)
– setMnemonicLocation: (page 592) (NSCell)

Instance Methods 509
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Declared In
NSButtonCell.h

setBackgroundColor:
Sets the background color of the receiver.

- (void)setBackgroundColor:(NSColor *)color

Parameters
color

The color to use for the receiver’s background.

Discussion
The background color is used only when drawing borderless buttons.

Availability
Available in Mac OS X v10.4 and later.

See Also
– backgroundColor (page 498)

Declared In
NSButtonCell.h

setBezelStyle:
Sets the appearance of the border, if the receiver has one.

- (void)setBezelStyle:(NSBezelStyle)bezelStyle

Parameters
bezelStyle

A constant specifying the bezel style to use for the button. This must be one of the values specified
in “Bezel Styles” (page 522).

If the receiver is not bordered, the bezel style is ignored.

Discussion
A button uses shading to look like it’s sticking out or pushed in. You can set the shading with
setGradientType: (page 512).

Availability
Available in Mac OS X v10.0 and later.

See Also
– bezelStyle (page 499)

Related Sample Code
Sketch+Accessibility

Declared In
NSButtonCell.h

510 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

setButtonType:
Sets how the receiver highlights while pressed and how it shows its state.

- (void)setButtonType:(NSButtonType)aType

Parameters
aType

A constant specifying the type of button. This can be one of the constants defined in “Button
Types” (page 524).

Discussion
setButtonType: redisplays the receiver before returning.

The types available are for the most common button types, which are also accessible in Interface Builder;
you can configure different behavior with the setHighlightsBy: (page 512) and setShowsStateBy: (page
517) methods.

Note that there is no -buttonType method. The set method sets various button properties that together
establish the behavior of the type.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlternateImage: (page 506)
– setImage: (page 589) (NSCell)

Related Sample Code
ButtonMadness

Declared In
NSButtonCell.h

setFont:
Sets the font used to display the button's title and alternate title.

- (void)setFont:(NSFont *)fontObj

Parameters
fontObj

The font object specifying the font to use.

Discussion
This method does nothing if the receiver has no title or alternate title.

If the button cell has a key equivalent, its font is not changed, but the key equivalent’s font size is changed
to match the new title font.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setKeyEquivalentFont: (page 515)

Instance Methods 511
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

– setKeyEquivalentFont:size: (page 515)
– font (page 558) (NSCell)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit

Declared In
NSButtonCell.h

setGradientType:
Sets the type of gradient to use for the receiver.

- (void)setGradientType:(NSGradientType)gradientType

Parameters
gradientType

A constant specifying the gradient to use for the button's border. This can be one of the constants
defined in “Gradient Types” (page 526).

Discussion
If the receiver has no border, this method has no effect on its appearance. A concave gradient is darkest in
the top-left corner; a convex gradient is darkest in the bottom-right corner. Weak versus strong is how much
contrast exists between the colors used in opposite corners.

Note: This method is currently unused by the Application Kit and has no effect.

Availability
Available in Mac OS X v10.0 and later.

See Also
– gradientType (page 501)

Related Sample Code
FunHouse

Declared In
NSButtonCell.h

setHighlightsBy:
Sets the way the receiver highlights itself while pressed.

- (void)setHighlightsBy:(NSInteger)aType

Parameters
aType

The logical OR of one or more of the cell masks described in the “Constants” (page 613) section of
NSCell (page 533).

512 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Discussion
If both NSChangeGrayCellMask and NSChangeBackgroundCellMask are specified, both are recorded,
but which behavior is used depends on the button cell’s image. If the button has no image, or if the image
has no alpha (transparency) data, NSChangeGrayCellMask is used. If the image does have alpha data,
NSChangeBackgroundCellMask is used; this arrangement allows the color swap of the background to
show through the image’s transparent pixels.

Availability
Available in Mac OS X v10.0 and later.

See Also
– highlightsBy (page 501)
– setShowsStateBy: (page 517)

Related Sample Code
MyMediaPlayer

Declared In
NSButtonCell.h

setImageDimsWhenDisabled:
Sets whether the receiver’s image appears “dim” when the button cell is disabled.

- (void)setImageDimsWhenDisabled:(BOOL)flag

Parameters
flag

YES to indicate that the button's image should dim when the button is disabled.

Discussion
By default, all button types except NSSwitchButton and NSRadioButton do dim when disabled. When
NSSwitchButtons and NSRadioButtons are disabled, only the associated text dims. The default setting
for this condition is reasserted whenever you invoke setButtonType: (page 511), so be sure to specify the
button cell’s type before you invoke setImageDimsWhenDisabled:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageDimsWhenDisabled (page 502)

Declared In
NSButtonCell.h

setImagePosition:
Sets the position of the receiver’s image relative to its title.

- (void)setImagePosition:(NSCellImagePosition)aPosition

Instance Methods 513
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Parameters
aPosition

A constant specifying the position of the button's image. See the “Constants” (page 613) section of
NSCell (page 533) for a listing of possible values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– imagePosition (page 502)

Related Sample Code
FunkyOverlayWindow

Declared In
NSButtonCell.h

setImageScaling:
Sets the scale factor for the receiver’s image.

- (void)setImageScaling:(NSImageScaling)scaling

Parameters
scaling

The scale factor for the receiver’s image.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSButtonCell.h

setKeyEquivalent:
Sets the key equivalent character of the receiver.

- (void)setKeyEquivalent:(NSString *)aKeyEquivalent

Parameters
aKeyEquivalent

The key equivalent character.

Discussion
This method redraws the receiver’s inside if it displays a key equivalent instead of an image. The key equivalent
isn’t displayed if the image position is set to NSNoImage, NSImageOnly, or NSImageOverlaps; that is, the
button must display both its title and its “image” (the key equivalent in this case), and they must not overlap.

To display a key equivalent on a button, set the image and alternate image to nil, then set the key equivalent,
then set the image position.

Availability
Available in Mac OS X v10.0 and later.

514 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

See Also
– keyEquivalent (page 504)
– setAlternateImage: (page 506)
– setImagePosition: (page 513)
– setKeyEquivalentFont: (page 515)
– setImage: (page 589) (NSCell)

Declared In
NSButtonCell.h

setKeyEquivalentFont:
Sets the font used to draw the key equivalent and redisplays the receiver if necessary.

- (void)setKeyEquivalentFont:(NSFont *)fontObj

Parameters
fontObj

The font object specifying the font to use for the receiver's key equivalent.

Discussion
This method does nothing if the receiver doesn’t have a key equivalent associated with it.

The default font is the same as that used to draw the title.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyEquivalentFont (page 504)
– setFont: (page 511)

Declared In
NSButtonCell.h

setKeyEquivalentFont:size:
Sets by name and size of the font used to draw the key equivalent.

- (void)setKeyEquivalentFont:(NSString *)fontName size:(CGFloat)fontSize

Parameters
fontName

The name of the font to use to draw the key equivalent.

fontSize
The font size to use to draw the key equivalent.

Discussion
This method redisplays the receiver if necessary. It does nothing if the receiver doesn’t have a key equivalent
associated with it. The default font is the same as that used to draw the title.

Instance Methods 515
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyEquivalentFont (page 504)
– setFont: (page 511)

Declared In
NSButtonCell.h

setKeyEquivalentModifierMask:
Sets the mask identifying the modifier keys to use with the button's key equivalent.

- (void)setKeyEquivalentModifierMask:(NSUInteger)mask

Parameters
mask

The mask indicating the modifier keys to be applied to the receiver's key equivalent.

Mask bits are defined in NSEvent.h. The only mask bits relevant in button key-equivalent modifier
masks are NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyEquivalentModifierMask (page 505)
– setKeyEquivalent: (page 514)

Declared In
NSButtonCell.h

setPeriodicDelay:interval:
Sets the message delay and interval for the receiver.

- (void)setPeriodicDelay:(float)delay interval:(float)interval

Parameters
delay

The amount of time (in seconds) that a continuous button will pause before starting to periodically
send action messages to the target object.

The maximum value is 60.0 seconds; if a larger value is supplied, it’s ignored, and 60.0 seconds is used.

interval
The amount of time (in seconds) between each action message.

The maximum value is 60.0 seconds; if a larger value is supplied, it’s ignored, and 60.0 seconds is used.

Discussion
These values are used if the receiver is configured (by a setContinuous: (page 582) message) to continuously
send the action message to the target object while tracking the mouse.

516 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContinuous: (page 582) (NSCell)

Declared In
NSButtonCell.h

setShowsBorderOnlyWhileMouseInside:
Sets whether the receiver’s border is displayed only when the cursor is over the button.

- (void)setShowsBorderOnlyWhileMouseInside:(BOOL)show

Parameters
show

YES to display the button's border only when the cursor is within the receiver’s border and the button
is active. NO to continue to display the border when the cursor is outside button’s bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– showsBorderOnlyWhileMouseInside (page 520)

Declared In
NSButtonCell.h

setShowsStateBy:
Sets the way the receiver indicates its alternate state.

- (void)setShowsStateBy:(NSInteger)aType

Parameters
aType

The logical OR of one or more of the cell masks described in the “Constants” (page 613) section of
NSCell (page 533).

Discussion
If both NSChangeGrayCellMask and NSChangeBackgroundCellMask are specified, both are recorded,
but the actual behavior depends on the button cell’s image. If the button has no image, or if the image has
no alpha (transparency) data, NSChangeGrayCellMask is used. If the image exists and has alpha data,
NSChangeBackgroundCellMask is used; this arrangement allows the color swap of the background to
show through the image’s transparent pixels.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHighlightsBy: (page 512)
– showsStateBy (page 520)

Instance Methods 517
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Declared In
NSButtonCell.h

setSound:
Sets the sound that’s played when the user presses the receiver.

- (void)setSound:(NSSound *)aSound

Parameters
aSound

The sound to play when the button is pressed.

Discussion
The sound is played during a mouse-down event, such as NSLeftMouseDown.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sound (page 520)

Declared In
NSButtonCell.h

setTitle:
Sets the title the button displays when in its normal state and, if necessary, redraws the receiver’s contents.

- (void)setTitle:(NSString *)aString

Parameters
aString

The string to set as the button's title.

Discussion
The title is always shown on buttons that don’t use their alternate contents when highlighting or displaying
their alternate state.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 521)
– setAlternateTitle: (page 507)
– setButtonType: (page 511)
– setFont: (page 511)
– setTitleWithMnemonic: (page 519)

Related Sample Code
ButtonMadness

518 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Declared In
NSButtonCell.h

setTitleWithMnemonic:
Sets the title the button displays when it’s in its normal state to the given string with an embedded mnemonic.

- (void)setTitleWithMnemonic:(NSString *)aString

Parameters
aString

The string to set as the button's title, taking into account the fact that an embedded “&” character is
not a literal but instead marks the alternate state’s “keyboard mnemonic.” This title is always shown
on buttons that don’t use their alternate contents when highlighting or displaying their alternate
state.

Discussion
If necessary, setTitleWithMnemonic: redraws the button cell. Mnemonics are not supported in Mac OS
X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlternateTitleWithMnemonic: (page 508)
– setTitleWithMnemonic: (page 599) (NSCell)
– setMnemonicLocation: (page 592) (NSCell)

Declared In
NSButtonCell.h

setTransparent:
Sets whether the receiver is transparent.

- (void)setTransparent:(BOOL)flag

Parameters
flag

YES to make the button cell transparent.

Discussion
This method redraws the receiver if necessary. A transparent button tracks the mouse and sends its action,
but doesn’t draw. A transparent button is useful for sensitizing an area on the screen so that an action gets
sent to a target when the area receives a mouse click.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isTransparent (page 504)
– isOpaque (page 503)

Instance Methods 519
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Declared In
NSButtonCell.h

showsBorderOnlyWhileMouseInside
Returns a Boolean value indicating whether the button displays its border only when the cursor is over it.

- (BOOL)showsBorderOnlyWhileMouseInside

Return Value
YES if the receiver’s border is displayed only when the cursor is over the button and the button is active.

Discussion
By default, this method returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShowsBorderOnlyWhileMouseInside: (page 517)

Declared In
NSButtonCell.h

showsStateBy
Returns the flags indicating how the button cell shows its alternate state.

- (NSInteger)showsStateBy

Return Value
The logical OR of flags that indicate the way the receiver shows its alternate state. See the “Constants” (page
613) section of NSCell (page 533) for the list of flags.

Availability
Available in Mac OS X v10.0 and later.

See Also
– highlightsBy (page 501)
– setShowsStateBy: (page 517)

Declared In
NSButtonCell.h

sound
Returns the sound that’s played when the user presses the receiver.

- (NSSound *)sound

Return Value
The sound played when the receiver is pressed.

520 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSound: (page 518)

Declared In
NSButtonCell.h

title
Returns the title displayed on the receiver when it’s in its normal state.

- (NSString *)title

Return Value
The title displayed by the button in its normal state, or the empty string if the button doesn’t display a title.

Discussion
This title is always displayed if the button doesn’t use its alternate contents for highlighting or displaying
the alternate state. By default, a button’s title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 518)
– alternateTitle (page 497)
– setButtonType: (page 511)
– mnemonic (page 571) (NSCell)
– mnemonicLocation (page 571) (NSCell)

Declared In
NSButtonCell.h

Constants

NSBezelStyle
Type to define bezel styles.

typedef NSUInteger NSBezelStyle;

Discussion
For possible values, see “Bezel Styles” (page 522).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSButtonCell.h

Constants 521
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Bezel Styles
Define the bezel styles used by bezelStyle (page 499) and setBezelStyle: (page 510).

enum {
 NSRoundedBezelStyle = 1,
 NSRegularSquareBezelStyle = 2,
 NSThickSquareBezelStyle = 3,
 NSThickerSquareBezelStyle = 4,
 NSDisclosureBezelStyle = 5,
 NSShadowlessSquareBezelStyle = 6,
 NSCircularBezelStyle = 7,
 NSTexturedSquareBezelStyle = 8,
 NSHelpButtonBezelStyle = 9,
 NSSmallSquareBezelStyle = 10,
 NSTexturedRoundedBezelStyle = 11,
 NSRoundRectBezelStyle = 12,
 NSRecessedBezelStyle = 13,
 NSRoundedDisclosureBezelStyle = 14,
}

Constants
NSRoundedBezelStyle

A rounded rectangle button, designed for text.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSRegularSquareBezelStyle
A rectangular button with a 2 point border, designed for icons.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSThickSquareBezelStyle
A rectangular button with a 3 point border, designed for icons.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSThickerSquareBezelStyle
A rectangular button with a 4 point border, designed for icons.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSDisclosureBezelStyle
A bezel style for use with a disclosure triangle.

To create the disclosure triangle, set the button bezel style to NSDisclosureBezelStyle and the
button type to NSOnOffButton.

Available in Mac OS X v10.3 and later.

Declared in NSButtonCell.h.

522 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

NSShadowlessSquareBezelStyle
Similar to NSRegularSquareBezelStyle, but has no shadow so you can abut the cells without
overlapping shadows.

This style would be used in a tool palette, for example.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSCircularBezelStyle
A round button with room for a small icon or a single character.

This style has both regular and small variants, but the large variant is available only in gray at this
time.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSTexturedSquareBezelStyle
A bezel style appropriate for use with textured (metal) windows.

Available in Mac OS X v10.3 and later.

Declared in NSButtonCell.h.

NSHelpButtonBezelStyle
A round button with a question mark providing the standard help button look.

Available in Mac OS X v10.3 and later.

Declared in NSButtonCell.h.

NSSmallSquareBezelStyle
A simple square bezel style. Buttons using this style can be scaled to any size.

Available in Mac OS X v10.4 and later.

Declared in NSButtonCell.h.

NSTexturedRoundedBezelStyle
A textured (metal) bezel style similar in appearance to the Finder’s action (gear) button.

The height of this button is fixed.

Available in Mac OS X v10.4 and later.

Declared in NSButtonCell.h.

NSRoundRectBezelStyle
A bezel style that matches the search buttons in Finder and Mail.

Available in Mac OS X v10.4 and later.

Declared in NSButtonCell.h.

NSRecessedBezelStyle
A bezel style that matches the recessed buttons in Mail, Finder and Safari.

Available in Mac OS X v10.4 and later.

Declared in NSButtonCell.h.

NSRoundedDisclosureBezelStyle
A bezel style that matches the disclosure style used in the standard Save panel.

Available in Mac OS X v10.4 and later.

Declared in NSButtonCell.h.

Discussion
For examples of how these styles are displayed, see Button Programming Topics.

Constants 523
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Declared In
NSButtonCell.h

NSButtonType
Type to define button types.

typedef NSUInteger NSButtonType;

Discussion
For possible values, see “Button Types” (page 524).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSButtonCell.h

Button Types
Represent the button types that can be specified using setButtonType: (page 511).

enum {
 NSMomentaryLightButton = 0,
 NSPushOnPushOffButton = 1,
 NSToggleButton = 2,
 NSSwitchButton = 3,
 NSRadioButton = 4,
 NSMomentaryChangeButton = 5,
 NSOnOffButton = 6,
 NSMomentaryPushInButton = 7,
 NSMomentaryPushButton = 0,
 NSMomentaryLight = 7
};

Constants
NSMomentaryLightButton

While the button is held down it’s shown as “lit,” and also “pushed in” to the screen if the button is
bordered.

This type of button is best for simply triggering actions, as it doesn’t show its state; it always displays
its normal image or title. This option is called “Momentary Light” in Interface Builder’s Button Inspector.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSPushOnPushOffButton
The first click both highlights and causes the button to be “pushed in” if the button is bordered; a
second click returns it to its normal state.

This option is called “Push On Push Off” in Interface Builder’s Button Inspector.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

524 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

NSToggleButton
After the first click, the button displays its alternate image or title; a second click returns the button
to its normal state.

This option is called “Toggle” in Interface Builder’s Button Inspector.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSSwitchButton
This style is a variant of NSToggleButton that has no border and is used to represent a checkbox.

This type of button is available as a separate Library item in Interface Builder.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSRadioButton
This style is similar to NSSwitchButton, but it used to constrain a selection to a single element from
several.

You typically use this type of button in a group formed by an instance of NSMatrix. In Interface
Builder, a matrix of this type of button is available as a separate Library item.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSMomentaryChangeButton
While the button is held down, the alternate image and alternate title are displayed.

The normal image and title are displayed when the button isn’t pressed. This option is called
“Momentary Change” in Interface Builder’s Button Inspector.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSOnOffButton
The first click highlights the button; a second click returns it to the normal (unhighlighted) state.

This option is called “On Off” in Interface Builder’s Button Inspector.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSMomentaryPushInButton
While the button is held down it’s shown as “lit.”

This type of button is best for simply triggering actions, as it doesn’t show its state; it always displays
its normal image or title. This option is called “Momentary Push In” in Interface Builder’s Button
Inspector.

This button type is the default.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSMomentaryPushButton

While the button is held down it’s shown as “lit,” and also “pushed in” to the screen if the button is
bordered. (Deprecated. Use NSMomentaryLightButton instead.)

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

Constants 525
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

NSMomentaryLight

While the button is held down it’s shown as “lit.” (Deprecated. Use NSMomentaryPushInButton
instead.)

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

Discussion
For examples of how these types behave, see Button Programming Topics.

Declared In
NSButtonCell.h

NSGradientType
Type to define gradient types.

typedef NSUInteger NSGradientType;

Discussion
For possible values, see “Gradient Types” (page 526).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSButtonCell.h

Gradient Types
Specify the gradients used by gradientType (page 501) and setGradientType: (page 512).

typedef enum _NSGradientType {
 NSGradientNone = 0,
 NSGradientConcaveWeak = 1,
 NSGradientConcaveStrong = 2,
 NSGradientConvexWeak = 3,
 NSGradientConvexStrong = 4
} NSGradientType;

Constants
NSGradientNone

There is no gradient, so the button looks flat.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSGradientConcaveWeak
The top-left corner is light gray, and the bottom-right corner is dark gray, so the button appears to
be pushed in.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

526 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

NSGradientConcaveStrong
As with NSGradientConcaveWeak, the top-left corner is light gray, and the bottom-right corner is
dark gray, but the difference between the grays is greater, so the appearance of being pushed in is
stronger.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSGradientConvexWeak
The top-left corner is dark gray, and the bottom-right corner is light gray, so the button appears to
be sticking out.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

NSGradientConvexStrong
As with NSGradientConvexWeak, the top-left corner is dark gray, and the bottom-right corner is
light gray, but the difference between the grays is greater, so the appearance of sticking out is stronger.

Available in Mac OS X v10.0 and later.

Declared in NSButtonCell.h.

Declared In
NSButtonCell.h

Constants 527
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

528 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Inherits from NSImageRep : NSObject

Conforms to NSCoding (NSImageRep)
NSCopying (NSImageRep)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSCachedImageRep.h

Companion guide Cocoa Drawing Guide

Overview

An NSCachedImageRep object store image data in a form that can be readily transferred to the screen. An
NSCachedImageRep object differs from other image representation objects in that it simply stores the already
rendered image, whereas other image representation objects generally have knowledge about how to render
the image from source data.

You typically do not use this class directly. Instead, NSImage and its other image representation objects
create instances of NSCachedImageRep as needed to cache versions of the rendered image. This caching
speeds up screen-based drawing for existing images during subsequent rendering operations. Cached image
representations are also used to capture drawing commands for images created programmatically by locking
focus on an image.

Tasks

Initializing an NSCachedImageRep

– initWithSize:depth:separate:alpha: (page 530)
Returns an NSCachedImageRep object initialized with the specified image characteristics.

– initWithWindow:rect: (page 531)
Returns an NSCachedImageRep object initialized for drawing in the specified window.

Overview 529
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCachedImageRep Class Reference

Getting the Representation

– rect (page 531)
Returns the rectangle where the receiver is cached.

– window (page 531)
Returns the window where the receiver is cached.

Instance Methods

initWithSize:depth:separate:alpha:
Returns an NSCachedImageRep object initialized with the specified image characteristics. (Deprecated in
Mac OS X v10.6.)

- (id)initWithSize:(NSSize)size depth:(NSWindowDepth)depth separate:(BOOL)flag
alpha:(BOOL)alpha

Parameters
size

The size of the image, measured in points.

depth
The bit depth of the image. Specify 0 if you want the image to be the same depth as the deepest
screen on the current system.

flag
YES if the receiver should use a separate offscreen window to store the image; otherwise, NO if the
receiver should use a shared window.

alpha
YES if the image includes transparency information; otherwise, NO.

Return Value
The initialized NSCachedImageRep object or nil if the object could not be initialized.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setAlpha: (page 1420) (NSImageRep)
– setBitsPerSample: (page 1421) (NSImageRep)
– setCacheDepthMatchesImageDepth: (page 1364) (NSImage)
– setCachedSeparately: (page 1365) (NSImage)

Declared In
NSCachedImageRep.h

530 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCachedImageRep Class Reference

initWithWindow:rect:
Returns an NSCachedImageRep object initialized for drawing in the specified window. (Deprecated in Mac
OS X v10.6.)

- (id)initWithWindow:(NSWindow *)aWindow rect:(NSRect)aRect

Parameters
aWindow

The window (typically offscreen) in which the image is to be rendered. The window is retained by the
receiver.

aRect
The position and size of the image in the specified window. This rectangle should be specified in the
base coordinate system of the window.

Discussion
You must draw the image yourself in the designated part of the window. There are no NSCachedImageRep
methods for this purpose.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– size (page 1424) (NSImageRep)

Declared In
NSCachedImageRep.h

rect
Returns the rectangle where the receiver is cached. (Deprecated in Mac OS X v10.6.)

- (NSRect)rect

Return Value
The rectangle in the associated offscreen window where the receiver's image is located.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– size (page 1424) (NSImageRep)

Declared In
NSCachedImageRep.h

window
Returns the window where the receiver is cached. (Deprecated in Mac OS X v10.6.)

- (NSWindow *)window

Instance Methods 531
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCachedImageRep Class Reference

Return Value
The window (typically offscreen) used to store the image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSCachedImageRep.h

532 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCachedImageRep Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSCell.h

Companion guide Control and Cell Programming Topics for Cocoa

Related sample code AnimatedTableView
FunHouse
PhotoSearch
Quartz Composer WWDC 2005 TextEdit
VertexPerformanceTest

Overview

The NSCell class provides a mechanism for displaying text or images in an NSView object without the
overhead of a full NSView subclass. It’s used heavily by most of the NSControl classes to implement their
internal workings.

Designated Initializers

When subclassing NSCell you must implement all of the designated initializers. Those methods are: init,
initWithCoder:, initTextCell: (page 564), and initImageCell: (page 563).

Tasks

Initializing a Cell

– initImageCell: (page 563)
Returns an NSCell object initialized with the specified image and set to have the cell’s default menu.

Overview 533
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

– initTextCell: (page 564)
Returns an NSCell object initialized with the specified string and set to have the cell’s default menu.

Managing Cell Values

– setObjectValue: (page 592)
Sets the receiver’s object value.

– objectValue (page 572)
Returns the receiver’s value as an Objective-C object

– hasValidObjectValue (page 560)
Returns a Boolean value that indicates whether the receiver has a valid object value.

– setIntValue: (page 590)
Sets the value of the receiver using an integer.

– intValue (page 565)
Returns the receiver’s value as an integer.

– setIntegerValue: (page 590)
Sets the value of the receiver using an NSInteger.

– integerValue (page 564)
Returns the receiver’s value as an NSInteger.

– setStringValue: (page 596)
Sets the value of the receiver’s cell using an NSString object.

– stringValue (page 605)
Returns the value of the receiver’s cell as an NSString object.

– setDoubleValue: (page 584)
Sets the value of the receiver’s cell using a double-precision floating-point number.

– setFloatValue: (page 587)
Sets the value of the receiver’s cell using a single-precision floating-point number.

– floatValue (page 557)
Returns the value of the receiver’s cell as a single-precision floating-point number.

– doubleValue (page 552) Available in Mac OS X v10.0 through Mac OS X v10.5
Returns the value of the receiver’s cell as a double-precision floating-point number.

Managing Cell Attributes

– setCellAttribute:to: (page 581)
Sets the value for the specified cell attribute.

– cellAttribute: (page 548)
Returns the value for the specified cell attribute.

– setType: (page 599)
Sets the type of the cell, changing it to a text cell, image cell, or null cell.

– type (page 611)
Returns the type of the receiver

534 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

– setEnabled: (page 585)
Sets whether the receiver is enabled or disabled.

– isEnabled (page 567)
Returns a Boolean value that indicates whether the receiver is enabled or disabled.

– allowsUndo (page 546)
Returns a Boolean value that indicates whether the receiver assumes responsibility for undo operations.

– setAllowsUndo: (page 579)
Sets whether the receiver assumes responsibility for undo operations within the cell.

Managing Display Attributes

– setBezeled: (page 581)
Sets whether the receiver draws itself with a bezeled border.

– isBezeled (page 566)
Returns a Boolean value that indicates whether the receiver has a bezeled border.

– setBordered: (page 581)
Sets whether the receiver draws itself outlined with a plain border.

– isBordered (page 566)
Returns a Boolean value that indicates whether the receiver has a plain border.

– isOpaque (page 568)
Returns a Boolean value that indicates whether the receiver is opaque (nontransparent).

– setControlTint: (page 583)
Sets the receiver’s control tint.

– controlTint (page 551)
Returns the receiver’s control tint.

– setBackgroundStyle: (page 580)
Sets the background style for the receiver.

– backgroundStyle (page 547)
Returns the background style for the receiver.

– interiorBackgroundStyle (page 565)
Returns the interior background style for the receiver.

Managing Cell State

– allowsMixedState (page 545)
Returns a Boolean value that indicates whether the receiver supports three states.

– nextState (page 572)
Returns the receiver’s next state.

– setAllowsMixedState: (page 578)
Sets whether the receiver supports three states or just two.

– setNextState (page 592)
Changes the state of the receiver to its next state.

Tasks 535
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

– setState: (page 596)
Sets the receiver’s state to the specified value.

– state (page 603)
Returns the receiver’s state.

Modifying Textual Attributes

– setEditable: (page 584)
Sets whether the user can edit the receiver’s text.

– isEditable (page 567)
Returns a Boolean value that indicates whether the receiver is editable.

– setSelectable: (page 594)
Sets whether text in the receiver can be selected.

– isSelectable (page 569)
Returns a Boolean value that indicates whether the text of the receiver can be selected.

– setScrollable: (page 594)
Sets whether excess text in the receiver is scrolled past the cell’s bounds.

– isScrollable (page 569)
Returns a Boolean value that indicates whether the receiver scrolls excess text past the cell’s bounds.

– setAlignment: (page 577)
Sets the alignment of text in the receiver.

– alignment (page 545)
Returns the alignment of text in the receiver.

– setFont: (page 587)
Sets the font to use when the receiver displays text.

– font (page 558)
Returns the font used to display text in the receiver

– lineBreakMode (page 570)
Returns the line break mode currently used when drawing text.

– setLineBreakMode: (page 591)
Sets the line break mode to use when drawing text

– truncatesLastVisibleLine (page 610)
Returns a Boolean value indicating whether the receiver truncates and adds the ellipsis character to
the last visible line if the text doesn't fit into the cell bounds.

– setTruncatesLastVisibleLine: (page 599)
Sets whether the receiver truncates and adds the ellipsis character to the last visible line if the text
doesn't fit into the cell bounds.

– setWraps: (page 601)
Sets whether text in the receiver wraps when its length exceeds the frame of the cell.

– wraps (page 612)
Returns a Boolean value that indicates whether the receiver wraps its text when the text exceeds the
borders of the cell.

– baseWritingDirection (page 547)
Returns the initial writing direction used to determine the actual writing direction for text.

536 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

– setBaseWritingDirection: (page 580)
Sets the initial writing direction used to determine the actual writing direction for text .

– setAttributedStringValue: (page 579)
Sets the value of the receiver’s cell using an attributed string.

– attributedStringValue (page 546)
Returns the value of the receiver’s cell as an attributed string using the receiver's formatter object (if
one exists).

– setAllowsEditingTextAttributes: (page 578)
Sets whether the receiver allows the user to edit textual attributes of its contents.

– allowsEditingTextAttributes (page 545)
Returns a Boolean value that indicates whether the receiver allows user editing of textual attributes.

– setImportsGraphics: (page 589)
Sets whether the receiver can import images into its text.

– importsGraphics (page 563)
Returns a Boolean value that indicates whether the text of the receiver can contain imported graphics.

– setUpFieldEditorAttributes: (page 600)
Configures the textual and background attributes of the receiver's field editor.

– title (page 609)
Returns the receiver’s title.

– setTitle: (page 598)
Sets the title of the receiver.

Managing the Target and Action

– setAction: (page 577)
Sets the cell's action method to the specified selector.

– action (page 544)
Returns the default action-message selector associated with the cell.

– setTarget: (page 598)
Sets the target object to receive action messages.

– target (page 608)
Returns the target object of the receiver.

– setContinuous: (page 582)
Sets whether the receiver’s cell sends its action message continuously to its target during mouse
tracking.

– isContinuous (page 566)
Returns a Boolean value that indicates whether the receiver’s cell sends its action message continuously
to its target during mouse tracking.

– sendActionOn: (page 576)
Sets the conditions on which the receiver sends action messages to its target.

Tasks 537
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Managing the Image

– setImage: (page 589)
Sets the image to be displayed by the receiver.

– image (page 562)
Returns the image displayed by the receiver (if any).

Managing the Tag

– setTag: (page 597)
Sets the tag of the receiver.

– tag (page 605)
Returns the tag identifying the receiver.

Formatting and Validating Data

– setFormatter: (page 588)
Sets the receiver's formatter object.

– formatter (page 559)
Returns the receiver's formatter object.

– entryType (page 556) Deprecated in Mac OS X v10.0 and later
Returns the type of data the user can type into the receiver. (Deprecated. Use a formatter instead—see
setFormatter: (page 588).)

– setEntryType: (page 585) Deprecated in Mac OS X v10.0 and later
Sets how numeric data is formatted in the receiver and places restrictions on acceptable input.
(Deprecated. Use a formatter instead—see setFormatter: (page 588).)

– isEntryAcceptable: (page 568) Deprecated in Mac OS X v 10.0 and later
Returns whether a string representing a numeric or date value is formatted in a suitable way for the
cell's entry type. (Deprecated. Use NSFormatter instead.)

– setFloatingPointFormat:left:right: (page 586) Deprecated in Mac OS X v10.0
Sets the auto-ranging and floating point number format of the receiver’s cell. (Deprecated. Use a
formatter instead. See setFormatter: (page 588))

Managing Menus

+ defaultMenu (page 543)
Returns the default menu for instances of the receiver.

– setMenu: (page 591)
Sets the contextual menu for the cell.

– menu (page 570)
Returns the receiver’s contextual menu.

– menuForEvent:inRect:ofView: (page 570)
Returns the menu associated with the receiver and related to the specified event and frame.

538 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Comparing Cells

– compare: (page 550)
Compares the string values of the receiver another cell, disregarding case.

Respond to Keyboard Events

– acceptsFirstResponder (page 544)
Returns a Boolean value that indicates whether the receiver accepts first responder status.

– setShowsFirstResponder: (page 595)
Sets whether the receiver draws some indication of its first responder status.

– showsFirstResponder (page 602)
Returns a Boolean value that indicates whether the receiver should draw some indication of its first
responder status.

– setTitleWithMnemonic: (page 599)
Sets the title of the receiver with one character in the string denoted as an access key.

– mnemonic (page 571)
Returns the character in the receiver’s title that appears underlined for use as a mnemonic.

– refusesFirstResponder (page 573)
Returns a Boolean value that indicates whether the receiver should not become the first responder.

– setMnemonicLocation: (page 592)
Sets the character of the receiver’s title to be used as a mnemonic character.

– setRefusesFirstResponder: (page 593)
Sets whether the receiver should not become the first responder.

– mnemonicLocation (page 571)
Returns the position of the underlined mnemonic character in the receiver’s title.

– performClick: (page 573)
Simulates a single mouse click on the receiver.

Deriving Values

– takeObjectValueFrom: (page 607)
Sets the value of the receiver’s cell to the object value obtained from the specified object.

– takeIntegerValueFrom: (page 606)
Sets the value of the receiver’s cell to an integer value obtained from the specified object.

– takeIntValueFrom: (page 607)
Sets the value of the receiver’s cell to an integer value obtained from the specified object.

– takeStringValueFrom: (page 608)
Sets the value of the receiver’s cell to the string value obtained from the specified object.

– takeDoubleValueFrom: (page 606)
Sets the value of the receiver’s cell to a double-precision floating-point value obtained from the
specified object.

Tasks 539
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

– takeFloatValueFrom: (page 606)
Sets the value of the receiver’s cell to a single-precision floating-point value obtained from the specified
object.

Representing an Object

– setRepresentedObject: (page 593)
Sets the object represented by the receiver.

– representedObject (page 574)
Returns the object the receiver represents.

Tracking the Mouse

– trackMouse:inRect:ofView:untilMouseUp: (page 610)
Initiates the mouse tracking behavior in a cell.

– startTrackingAt:inView: (page 603)
Begins tracking mouse events within the receiver.

– continueTracking:at:inView: (page 550)
Returns a Boolean value that indicates whether mouse tracking should continue in the receiving cell.

– stopTracking:at:inView:mouseIsUp: (page 604)
Stops tracking mouse events within the receiver.

– mouseDownFlags (page 572)
Returns the modifier flags for the last (left) mouse-down event.

+ prefersTrackingUntilMouseUp (page 543)
Returns a Boolean value that indicates whether tracking stops when the cursor leaves the cell.

– getPeriodicDelay:interval: (page 559)
Returns the initial delay and repeat values for continuous sending of action messages to target objects.

Hit Testing

– hitTestForEvent:inRect:ofView: (page 561)
Returns hit testing information for the receiver.

Managing the Cursor

– resetCursorRect:inView: (page 574)
Sets the receiver to show the I-beam cursor while it tracks the mouse.

Handling Keyboard Alternatives

– keyEquivalent (page 569)
Returns the key equivalent to clicking the cell.

540 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Managing Focus Rings

+ defaultFocusRingType (page 543)
Returns the default type of focus ring for the receiver.

– setFocusRingType: (page 587)
Sets the type of focus ring to be used.

– focusRingType (page 558)
Returns the type of focus ring currently set for the receiver.

Determining Cell Size

– calcDrawInfo: (page 548)
Recalculates the cell geometry.

– cellSize (page 549)
Returns the minimum size needed to display the receiver.

– cellSizeForBounds: (page 549)
Returns the minimum size needed to display the receiver, constraining it to the specified rectangle.

– drawingRectForBounds: (page 552)
Returns the rectangle within which the receiver draws itself

– imageRectForBounds: (page 563)
Returns the rectangle in which the receiver draws its image.

– titleRectForBounds: (page 609)
Returns the rectangle in which the receiver draws its title text.

– controlSize (page 551)
Returns the size of the receiver.

– setControlSize: (page 582)
Sets the size of the receiver.

Drawing and Highlighting

– drawWithFrame:inView: (page 554)
Draws the receiver’s border and then draws the interior of the cell.

– highlightColorWithFrame:inView: (page 561)
Returns the color the receiver uses when drawing the selection highlight.

– drawInteriorWithFrame:inView: (page 553)
Draws the interior portion of the receiver, which includes the image or text portion but does not
include the border.

– controlView (page 552)
Returns the receiver's control.

– setControlView: (page 583)
Sets the receiver’s control view.

– highlight:withFrame:inView: (page 560)
Redraws the receiver with the specified highlight setting.

Tasks 541
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

– setHighlighted: (page 588)
Sets whether the receiver has a highlighted appearance.

– isHighlighted (page 568)
Returns a Boolean value that indicates whether the receiver is highlighted.

Editing and Selecting Text

– editWithFrame:inView:editor:delegate:event: (page 555)
Begins editing of the receiver’s text using the specified field editor.

– selectWithFrame:inView:editor:delegate:start:length: (page 575)
Selects the specified text range in the cell's field editor.

– sendsActionOnEndEditing (page 576)
Returns a Boolean value that indicates whether the receiver’s NSControl object sends its action
message whenever the user finishes editing the cell’s text.

– setSendsActionOnEndEditing: (page 595)
Sets whether the receiver’s NSControl object sends its action message whenever the user finishes
editing the cell’s text.

– endEditing: (page 555)
Ends the editing of text in the receiver using the specified field editor.

– wantsNotificationForMarkedText (page 612)
Returns a Boolean value that indicates whether the field editor initiated by the receiver should post
text change notifications.

– fieldEditorForView: (page 557)
Returns a custom field editor for editing in the view.

– usesSingleLineMode (page 612)
Returns whether the text cell restricts layout and rendering of its content to a single line.

– setUsesSingleLineMode: (page 601)
Sets whether the text cell restricts layout and rendering of its content to a single line.

Managing Expansion Frames

– expansionFrameWithFrame:inView: (page 556)
Returns the expansion cell frame for the receiver.

– drawWithExpansionFrame:inView: (page 554)
Instructs the receiver to draw in an expansion frame.

User Interface Layout Direction

– setUserInterfaceLayoutDirection: (page 600)
Sets the layout direction of the user interface.

– userInterfaceLayoutDirection (page 611)
Returns the layout direction of the user interface.

542 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Class Methods

defaultFocusRingType
Returns the default type of focus ring for the receiver.

+ (NSFocusRingType)defaultFocusRingType

Return Value
The default type of focus ring for the receiver (one of the values listed in NSFocusRingType (page 4009)).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSCell.h

defaultMenu
Returns the default menu for instances of the receiver.

+ (NSMenu *)defaultMenu

Return Value
The default menu. The NSCell implementation of this method returns nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– menu (page 570)
– setMenu: (page 591)

Declared In
NSCell.h

prefersTrackingUntilMouseUp
Returns a Boolean value that indicates whether tracking stops when the cursor leaves the cell.

+ (BOOL)prefersTrackingUntilMouseUp

Return Value
YES if tracking stops when the cursor leaves the cell, otherwise NO.

Discussion
The default implementation returns NO. Subclasses may override this method to return a different value.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 543
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– trackMouse:inRect:ofView:untilMouseUp: (page 610)

Related Sample Code
AnimatedTableView
Cocoa Tips and Tricks
PhotoSearch

Declared In
NSCell.h

Instance Methods

acceptsFirstResponder
Returns a Boolean value that indicates whether the receiver accepts first responder status.

- (BOOL)acceptsFirstResponder

Return Value
YES if the receiver can become the first responder, otherwise NO.

Discussion
The default value is YES if the receiver is enabled. Subclasses may override this method to return a different
value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– performClick: (page 573)
– setShowsFirstResponder: (page 595)
– setTitleWithMnemonic: (page 599)

Declared In
NSCell.h

action
Returns the default action-message selector associated with the cell.

- (SEL)action

Return Value
The selector associated with the cell. The NSCell implementation of this method returns NULL by default.

Availability
Available in Mac OS X v10.0 and later.

544 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– setAction: (page 577)
– setTarget: (page 598)
– target (page 608)

Declared In
NSCell.h

alignment
Returns the alignment of text in the receiver.

- (NSTextAlignment)alignment

Return Value
The alignment of text in the receiver (one of the following constants: NSLeftTextAlignment,
NSRightTextAlignment,NSCenterTextAlignment, NSJustifiedTextAlignment,
NSNaturalTextAlignment).

Discussion
The default value is NSNaturalTextAlignment.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlignment: (page 577)

Declared In
NSCell.h

allowsEditingTextAttributes
Returns a Boolean value that indicates whether the receiver allows user editing of textual attributes.

- (BOOL)allowsEditingTextAttributes

Return Value
YES if the receiver allows the user to edit textual attributes of the cell's text, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsEditingTextAttributes: (page 578)

Declared In
NSCell.h

allowsMixedState
Returns a Boolean value that indicates whether the receiver supports three states.

Instance Methods 545
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

- (BOOL)allowsMixedState

Return Value
YES if the receiver supports all three states (on, off, and mixed), otherwise NO (the receiver supports only the
on and off states).

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextState (page 572)
– setAllowsMixedState: (page 578)
– setNextState (page 592)

Declared In
NSCell.h

allowsUndo
Returns a Boolean value that indicates whether the receiver assumes responsibility for undo operations.

- (BOOL)allowsUndo

Return Value
YES if the receiver handles undo operations, otherwise NO.

Discussion
By default, the NSTextFieldCell class uses this feature to handle undo operations for edited text. Other
controls set a value that is appropriate for their implementation.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAllowsUndo: (page 579)

Declared In
NSCell.h

attributedStringValue
Returns the value of the receiver’s cell as an attributed string using the receiver's formatter object (if one
exists).

- (NSAttributedString *)attributedStringValue

Return Value
The value of the cell interpreted as an attributed string.

Discussion
The textual attributes are the default paragraph style, the receiver’s font and alignment, and whether the
receiver is enabled and scrollable.

546 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

For Mac OS X v10.3 and later: If you use a class that responds to the selector attributedStringValue for
the object value of a cell, then the cell will use that method to fetch the string to draw rather than using
stringValue (page 605).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttributedStringValue: (page 579)

Related Sample Code
SourceView

Declared In
NSCell.h

backgroundStyle
Returns the background style for the receiver.

- (NSBackgroundStyle)backgroundStyle

Return Value
The background style for the receiver.

Discussion
The background describes the surface the cell is drawn onto in drawWithFrame:inView: (page 554). A
control typically sets this before it asks the cell to draw. A cell may draw differently based on background
characteristics. For example, a tableview drawing a cell in a selected row might call [cell
setBackgroundStyle:NSBackgroundStyleDark]. A text cell might decide to render its text white as a
result. A rating-style level indicator might draw its stars white instead of gray.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCell.h

baseWritingDirection
Returns the initial writing direction used to determine the actual writing direction for text.

- (NSWritingDirection)baseWritingDirection

Return Value
The initial writing direction the receiver uses to determine the actual writing direction for text. See
NSWritingDirection (page 2748) for possible values.

Discussion
The default value is NSWritingDirectionNatural (page 2748).

The Text system uses this value as a hint for calculating the actual direction for displaying Unicode characters.
You should not need to call this method directly.

Instance Methods 547
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBaseWritingDirection: (page 580)

Declared In
NSCell.h

calcDrawInfo:
Recalculates the cell geometry.

- (void)calcDrawInfo:(NSRect)aRect

Parameters
aRect

The reference rectangle to use when calculating the cell information.

Discussion
Objects (such as controls) that manage NSCell objects generally maintain a flag that informs them if any of
their cells have been modified in such a way that the location or size of the cell should be recomputed. If so,
calcSize (page 816) method of NSControl is automatically invoked prior to the display of the cell, and that
method invokes the calcDrawInfo: method of the cell.

The default implementation of this method does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellSize (page 549)
– drawingRectForBounds: (page 552)

Declared In
NSCell.h

cellAttribute:
Returns the value for the specified cell attribute.

- (NSInteger)cellAttribute:(NSCellAttribute)aParameter

Parameters
aParameter

The cell attribute whose value you want to get. Attributes include the receiver's current state and
whether it is disabled, editable, or highlighted.

Return Value
The value for the cell attribute specified by aParameter.

Availability
Available in Mac OS X v10.0 and later.

548 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– setCellAttribute:to: (page 581)

Declared In
NSCell.h

cellSize
Returns the minimum size needed to display the receiver.

- (NSSize)cellSize

Return Value
The size of the cell, or the size (10000, 10000) if the receiver is not a text or image cell. If the cell is an image
cell but no image has been set, returns NSZeroSize.

Discussion
This method takes into account of the size of the image or text within a certain offset determined by the
border type of the cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawingRectForBounds: (page 552)

Related Sample Code
DragNDropOutlineView
EnhancedDataBurn
QTKitMovieShuffler
SourceView
STUCAuthoringDeviceCocoaSample

Declared In
NSCell.h

cellSizeForBounds:
Returns the minimum size needed to display the receiver, constraining it to the specified rectangle.

- (NSSize)cellSizeForBounds:(NSRect)aRect

Parameters
aRect

The size of the cell, or the size of the aRect parameter if the cell is not a text or image cell. If the cell
is an image cell but no image has been set, returns NSZeroSize.

Discussion
This method takes into account of the size of the image or text within a certain offset determined by the
border type of the cell. If the receiver is of text type, the text is resized to fit within aRect (as much as aRect
is within the bounds of the cell).

Instance Methods 549
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawingRectForBounds: (page 552)

Related Sample Code
Cocoa Tips and Tricks

Declared In
NSCell.h

compare:
Compares the string values of the receiver another cell, disregarding case.

- (NSComparisonResult)compare:(id)otherCell

Parameters
otherCell

The cell to compare against the receiver. This parameter must be of type NSCell; if it is not, this
method raises NSBadComparisonException.

This value must not be nil. If the value is nil, the behavior is undefined and may change in future
versions of Mac OS X.

Return Value
NSOrderedAscending if the string value of the receiver precedes the string value of otherCell in lexical
ordering, NSOrderedSame if the string values are equivalent in lexical value, and NSOrderedDescending
string value of the receiver follows the string value of otherCell in lexical ordering.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

continueTracking:at:inView:
Returns a Boolean value that indicates whether mouse tracking should continue in the receiving cell.

- (BOOL)continueTracking:(NSPoint)lastPoint at:(NSPoint)currentPoint inView:(NSView
 *)controlView

Parameters
lastPoint

Contains either the initial location of the cursor when tracking began or the previous current point.

currentPoint
The current location of the cursor.

controlView
The NSControl object managing the receiver.

550 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Return Value
YES if mouse tracking should continue, otherwise NO.

Discussion
This method is invoked in trackMouse:inRect:ofView:untilMouseUp: (page 610). The default
implementation returns YES if the cell is set to continuously send action messages to its target when the
mouse button is down or the mouse is being dragged. Subclasses can override this method to provide more
sophisticated tracking behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– startTrackingAt:inView: (page 603)
– stopTracking:at:inView:mouseIsUp: (page 604)

Declared In
NSCell.h

controlSize
Returns the size of the receiver.

- (NSControlSize)controlSize

Return Value
A value that specifies the size of the receiver (for possible values, see “NSControlSize” (page 620)).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setControlSize: (page 582)

Declared In
NSCell.h

controlTint
Returns the receiver’s control tint.

- (NSControlTint)controlTint

Return Value
An NSControlTint (page 533) value that specifies the tint of the receiver.).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setControlTint: (page 583)

Instance Methods 551
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Declared In
NSCell.h

controlView
Returns the receiver's control.

- (NSView *)controlView

Return Value
The view (normally an NSControl object) associated with this cell. The default implementation returns nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawWithFrame:inView: (page 554)
– setControlView: (page 583)

Related Sample Code
AnimatedSlider
ClockControl

Declared In
NSCell.h

doubleValue
Returns the value of the receiver’s cell as a double-precision floating-point number.

- (double)doubleValue

Return Value
The value of the cell interpreted as a double-precision floating-point number. If the receiver is not a text-type
cell or the cell value is not scannable, returns 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDoubleValue: (page 584)

Declared In
NSCell.h

drawingRectForBounds:
Returns the rectangle within which the receiver draws itself

- (NSRect)drawingRectForBounds:(NSRect)theRect

552 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Parameters
theRect

The bounding rectangle of the receiver.

Return Value
The rectangle in which the receiver draws itself. This rectangle is slightly inset from the one in theRect.

Availability
Available in Mac OS X v10.0 and later.

See Also
– calcSize (page 816) (NSControl)

Related Sample Code
FunHouse

Declared In
NSCell.h

drawInteriorWithFrame:inView:
Draws the interior portion of the receiver, which includes the image or text portion but does not include the
border.

- (void)drawInteriorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Parameters
cellFrame

The bounding rectangle of the receiver, or a portion of the bounding rectangle.

controlView
The control that manages the cell.

Discussion
Text-type NSCell objects display their contents in a rectangle slightly inset from cellFrame using a global
NSText object. Image-type NSCell objects display their contents centered within cellFrame. If the proper
attributes are set, this method also displays the dotted-line rectangle to indicate if the control is the first
responder and highlights the cell. This method is invoked from the drawCellInside: (page 818) method
of NSControl to visually update what the cell displays when its contents change. The drawing done by the
NSCell implementation is minimal and becomes more complex in objects such as NSButtonCell and
NSSliderCell.

This method draws the cell in the currently focused view, which can be different from the controlView
passed in. Taking advantage of this is not recommended.

Subclasses often override this method to provide more sophisticated drawing of cell contents. Because
drawWithFrame:inView: (page 554) invokes drawInteriorWithFrame:inView: after it draws the cell's
border, do not invoke drawWithFrame:inView: (page 554) in your override implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isHighlighted (page 568)
– setShowsFirstResponder: (page 595)

Instance Methods 553
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Declared In
NSCell.h

drawWithExpansionFrame:inView:
Instructs the receiver to draw in an expansion frame.

- (void)drawWithExpansionFrame:(NSRect)cellFrame inView:(NSView *)view

Parameters
cellFrame

The frame in which to draw.

view
The view in which to draw. This view may be different from the original view that the cell appeared
in.

Discussion
This method allows the cell to perform custom expansion tool tip drawing. By default, NSCell simply calls
drawWithFrame:inView: (page 554).

Availability
Available in Mac OS X v10.5 and later.

See Also
– expansionFrameWithFrame:inView: (page 556)

Declared In
NSCell.h

drawWithFrame:inView:
Draws the receiver’s border and then draws the interior of the cell.

- (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Parameters
cellFrame

The bounding rectangle of the receiver.

controlView
The control that manages the cell.

Discussion
This method draws the cell in the currently focused view, which can be different from the controlView
passed in. Taking advantage of this behavior is not recommended, however.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawInteriorWithFrame:inView: (page 553)

Related Sample Code
DragNDropOutlineView

554 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

EnhancedDataBurn
QTKitMovieShuffler
SourceView
STUCAuthoringDeviceCocoaSample

Declared In
NSCell.h

editWithFrame:inView:editor:delegate:event:
Begins editing of the receiver’s text using the specified field editor.

- (void)editWithFrame:(NSRect)aRect inView:(NSView *)controlView editor:(NSText
*)textObj delegate:(id)anObject event:(NSEvent *)theEvent

Parameters
aRect

The bounding rectangle of the cell.

controlView
The control that manages the cell.

textObj
The field editor to use for editing the cell.

anObject
The object to use as a delegate for the field editor (textObj parameter). This delegate object receives
various NSText delegation and notification methods during the course of editing the cell's contents.

theEvent
The NSLeftMouseDown event that initiated the editing behavior.

Discussion
If the receiver isn’t a text-type NSCell object, no editing is performed. Otherwise, the field editor (textObj)
is sized to aRect and its superview is set to controlView, so it exactly covers the receiver. The field editor
is then activated and editing begins. It’s the responsibility of the delegate to end editing when responding
to textShouldEndEditing:. Upon ending the editing session, the delegate should remove any data from
the field editor.

Availability
Available in Mac OS X v10.0 and later.

See Also
– endEditing: (page 555)
– selectWithFrame:inView:editor:delegate:start:length: (page 575)

Declared In
NSCell.h

endEditing:
Ends the editing of text in the receiver using the specified field editor.

- (void)endEditing:(NSText *)textObj

Instance Methods 555
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Parameters
textObj

The field editor currently handling the editing of the cell's content.

Discussion
Ends any editing of text that began with a call toeditWithFrame:inView:editor:delegate:event: (page
555) or selectWithFrame:inView:editor:delegate:start:length: (page 575).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

entryType
Returns the type of data the user can type into the receiver. (Deprecated in Mac OS X v10.0 and later. Use a
formatter instead—see setFormatter: (page 588).)

- (NSInteger)entryType

Return Value
One of the types listed for this method in “Data Entry Types” (page 622). If the receiver is not a text-type
cell, or if no type has been set, NSAnyType is returned.

Availability
Deprecated in Mac OS X v10.0 and later.

See Also
– setFormatter: (page 588)

Declared In
NSCell.h

expansionFrameWithFrame:inView:
Returns the expansion cell frame for the receiver.

- (NSRect)expansionFrameWithFrame:(NSRect)cellFrame inView:(NSView *)view

Parameters
cellFrame

The frame for the receiver.

view
The view in which the receiver will be drawn.

Return Value
The expansion cell frame for the receiver. If the frame is not too small, return an empty rect (NSZeroRect),
and no expansion tool tip view will be shown.

556 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Discussion
This method allows the cell to return an expansion cell frame if cellFrame is too small for the entire contents
in the view. When the mouse is hovered over the cell in certain controls, the full cell contents are shown in
a special floating tool tip view. By default, NSCell returns NSZeroRect, while some subclasses (such as
NSTextFieldCell) will return the proper frame when required.

Availability
Available in Mac OS X v10.5 and later.

See Also
– drawWithExpansionFrame:inView: (page 554)

Declared In
NSCell.h

fieldEditorForView:
Returns a custom field editor for editing in the view.

- (NSTextView *)fieldEditorForView:(NSView *)aControlView

Parameters
aControlView

The view containing cells that require a custom field editor.

Return Value
A custom field editor. The field editor must have isFieldEditor (page 2902) set to YES.

Discussion
This is an override point for NSCell subclasses designed to use their own custom field editors. This message
is sent to the selected cell of aControlView using the NSWindow method in
fieldEditor:forObject: (page 3325).

Returning non-nil from this method indicates skipping the standard field editor querying processes including
windowWillReturnFieldEditor:toObject: (page 3940) delegation.

The default implementation returns nil.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCell.h

floatValue
Returns the value of the receiver’s cell as a single-precision floating-point number.

- (float)floatValue

Return Value
The value of the cell interpreted as a single-precision floating-point number. If the receiver is not a text-type
cell or the cell value is not scannable, returns 0.

Instance Methods 557
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

focusRingType
Returns the type of focus ring currently set for the receiver.

- (NSFocusRingType)focusRingType

Return Value
The type of focus ring currently set for the receiver (one of the values listed in NSFocusRingType (page
4009)).

Discussion
You can disable a view's focus ring drawing by overriding this method so it always returns
NSFocusRingTypeNone, or by calling setFocusRingType: (page 587) with NSFocusRingTypeNone. You
should only disable a view from drawing its focus ring if you want to draw your own focus ring, or if there
isn't sufficient space to display a focus ring in the default location.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setFocusRingType: (page 587)
+ defaultFocusRingType (page 543)

Declared In
NSCell.h

font
Returns the font used to display text in the receiver

- (NSFont *)font

Return Value
The receiver's current font, or nil if the receiver is not a text-type cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFont: (page 587)

Related Sample Code
FunHouse
PhotoSearch
QTKitMovieShuffler
STUCAuthoringDeviceCocoaSample

558 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Declared In
NSCell.h

formatter
Returns the receiver's formatter object.

- (id)formatter

Return Value
An object of type NSFormatter used to format the receiver's content.

Discussion
The returned object handles translation of the receiver’s contents between its onscreen representation and
its object value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFormatter: (page 588)

Related Sample Code
Sketch+Accessibility

Declared In
NSCell.h

getPeriodicDelay:interval:
Returns the initial delay and repeat values for continuous sending of action messages to target objects.

- (void)getPeriodicDelay:(float *)delay interval:(float *)interval

Parameters
delay

On input, a pointer to a floating-point variable. On output, the variable contains the current delay
(measured in seconds) before messages are sent. This parameter must not be NULL.

interval
On input, a pointer to a floating point variable. On output, the variable contains the interval (measured
in seconds) at which messages are sent. This parameter must not be NULL.

Discussion
The default implementation returns a delay of 0.2 and an interval of 0.025 seconds. Subclasses can override
this method to supply their own delay and interval values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isContinuous (page 566)
– setContinuous: (page 582)

Instance Methods 559
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Declared In
NSCell.h

hasValidObjectValue
Returns a Boolean value that indicates whether the receiver has a valid object value.

- (BOOL)hasValidObjectValue

Return Value
YES if the cell has a valid object value, otherwise NO.

Discussion
A valid object value is one that the receiver's formatter can "understand." Objects are always assumed to be
valid unless they are rejected by the formatter. Invalid objects can still be accepted by the delegate of the
receiver’sNSControlobject (using thecontrol:didFailToFormatString:errorDescription:delegate
method).

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectValue (page 572)
– setObjectValue: (page 592)

Declared In
NSCell.h

highlight:withFrame:inView:
Redraws the receiver with the specified highlight setting.

- (void)highlight:(BOOL)flag withFrame:(NSRect)cellFrame inView:(NSView *)controlView

Parameters
flag

If YES, the cell is redrawn with a highlight; otherwise, if NO, the highlight is removed.

cellFrame
The bounding rectangle of the receiver.

controlView
The control that manages the cell.

Discussion
Note that the NSCell highlighting does not appear when highlighted cells are printed (although instances
of NSTextFieldCell, NSButtonCell, and others can print themselves highlighted). Generally, you cannot
depend on highlighting being printed because implementations of this method may choose (or not choose)
to use transparency.

Availability
Available in Mac OS X v10.0 and later.

560 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– drawWithFrame:inView: (page 554)
– isHighlighted (page 568)

Declared In
NSCell.h

highlightColorWithFrame:inView:
Returns the color the receiver uses when drawing the selection highlight.

- (NSColor *)highlightColorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Parameters
cellFrame

The bounding rectangle of the receiver.

controlView
The control that manages the cell.

Return Value
The color the receiver uses when drawing the selection highlight.

Discussion
You should not assume that a cell would necessarily want to draw itself with the value returned from
selectedControlColor (page 688). A cell may wish to draw with different a selection highlight color
depending on such things as the key state of its controlView.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSCell.h

hitTestForEvent:inRect:ofView:
Returns hit testing information for the receiver.

- (NSUInteger)hitTestForEvent:(NSEvent *)event inRect:(NSRect)cellFrame
ofView:(NSView *)controlView

Parameters
event

The current event.

cellFrame
The cell’s frame.

controlView
The control object in which the cell is located.

Return Value
A constant that specifies the type of area in which the event occurred—see “Hit Testing” (page 620) for
values.

Instance Methods 561
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Discussion
You can use a bit-wise mask to look for a specific value when calling this method—see “Hit Testing” (page
620) for values.

Generally, this method should be overridden by custom NSCell subclasses to return the correct result.
Currently, it is called by some multi-cell views, such as NSTableView.

By default, NSCell looks at the cell type and does the following:

 ■ NSImageCellType: If the image exists and the event point is in the image returns
NSCellHitContentArea, otherwise NSCellHitNone.

 ■ NSTextCellType (also applies to NSTextFieldCell):

If there is text: If the event point hits in the text, return NSCellHitContentArea. Additionally, if the
cell is enabled return NSCellHitContentArea | NSCellHitEditableTextArea.

If there is not text: return NSCellHitNone.

 ■ NSNullCellType (this is the default that applies to non text or image cells who don't override
hitTestForEvent:inRect:ofView:):

Return NSCellHitContentArea by default;

If the cell not disabled, and it would track, return NSCellHitContentArea |
NSCellHitTrackableArea.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AnimatedTableView
DragNDropOutlineView

Declared In
NSCell.h

image
Returns the image displayed by the receiver (if any).

- (NSImage *)image

Return Value
The image displayed by the receiver, or nil if the receiver is not an image-type cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImage: (page 589)

Related Sample Code
AnimatedTableView
ComplexBrowser
DragNDropOutlineView

562 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Declared In
NSCell.h

imageRectForBounds:
Returns the rectangle in which the receiver draws its image.

- (NSRect)imageRectForBounds:(NSRect)theRect

Parameters
theRect

The bounding rectangle of the receiver.

Return Value
The rectangle in which the receiver draws its image. This rectangle is slightly offset from the one in theRect.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellSizeForBounds: (page 549)
– drawingRectForBounds: (page 552)

Related Sample Code
AnimatedTableView

Declared In
NSCell.h

importsGraphics
Returns a Boolean value that indicates whether the text of the receiver can contain imported graphics.

- (BOOL)importsGraphics

Return Value
YES if the receiver's text is in the RTFD format and supports imported graphics, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImportsGraphics: (page 589)

Declared In
NSCell.h

initImageCell:
Returns an NSCell object initialized with the specified image and set to have the cell’s default menu.

- (id)initImageCell:(NSImage *)anImage

Instance Methods 563
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Parameters
anImage

The image to use for the cell. If this parameter is nil, no image is set.

Return Value
An initialized NSCell object, or nil if the cell could not be initialized.

Discussion
This is one of four designated initializers you must implement when subclassing. See “Designated
Initializers” (page 533) for the complete list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

initTextCell:
Returns an NSCell object initialized with the specified string and set to have the cell’s default menu.

- (id)initTextCell:(NSString *)aString

Parameters
aString

The initial string to use for the cell.

Return Value
An initialized NSCell object, or nil if the cell could not be initialized.

Discussion
If no field editor (a shared NSText object) has been created for all NSCell objects, one is created.

This is one of four designated initializers you must implement when subclassing. See “Designated
Initializers” (page 533) for the complete list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

integerValue
Returns the receiver’s value as an NSInteger.

- (NSInteger)integerValue

Return Value
The value of the cell interpreted as an NSInteger. If the receiver is not a text-type cell or the cell value is
not scannable, returns 0.

Availability
Available in Mac OS X v10.5 and later.

564 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– setIntegerValue: (page 590)
– intValue (page 565)

Declared In
NSCell.h

interiorBackgroundStyle
Returns the interior background style for the receiver.

- (NSBackgroundStyle)interiorBackgroundStyle

Return Value
Returns the interior background style for the receiver.

Discussion
The interior background style describes the surface drawn onto in drawInteriorWithFrame:inView: (page
553). This is often the same as the backgroundStyle (page 547), but a button that draws a bezel would have
a different interiorBackgroundStyle.

This is both an override point and a useful method to call. In a custom button with a custom bezel you can
override this method to describe that surface. A cell that has custom interior drawing might query this method
to help pick an image that looks good on the cell. Calling this method gives you some independence from
changes in framework art style.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
PhotoSearch

Declared In
NSCell.h

intValue
Returns the receiver’s value as an integer.

- (int)intValue

Return Value
The value of the cell interpreted as an integer. If the receiver is not a text-type cell or the cell value is not
scannable, returns 0.

Discussion
On Mac OS X v10.5 and later, you should use integerValue (page 564) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– integerValue (page 564)

Instance Methods 565
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

– setIntValue: (page 590)

Related Sample Code
VertexPerformanceTest

Declared In
NSCell.h

isBezeled
Returns a Boolean value that indicates whether the receiver has a bezeled border.

- (BOOL)isBezeled

Return Value
YES if the receiver has a bezeled border, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBezeled: (page 581)

Declared In
NSCell.h

isBordered
Returns a Boolean value that indicates whether the receiver has a plain border.

- (BOOL)isBordered

Return Value
YES if the receiver has a plain border, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBordered: (page 581)

Declared In
NSCell.h

isContinuous
Returns a Boolean value that indicates whether the receiver’s cell sends its action message continuously to
its target during mouse tracking.

- (BOOL)isContinuous

566 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Return Value
YES if the action message should be sent continuously, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContinuous: (page 582)

Related Sample Code
AnimatedSlider

Declared In
NSCell.h

isEditable
Returns a Boolean value that indicates whether the receiver is editable.

- (BOOL)isEditable

Return Value
YES if the receiver is editable, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEditable: (page 584)

Declared In
NSCell.h

isEnabled
Returns a Boolean value that indicates whether the receiver is enabled or disabled.

- (BOOL)isEnabled

Return Value
YES if the receiver is enabled, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEnabled: (page 585)

Declared In
NSCell.h

Instance Methods 567
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

isEntryAcceptable:
Returns whether a string representing a numeric or date value is formatted in a suitable way for the cell's
entry type. (Deprecated in Mac OS X v 10.0 and later. Use NSFormatter instead.)

- (BOOL)isEntryAcceptable:(NSString *)aString

Parameters
aString

A string containing the numeric or date value.

Return Value
YES if aString is formatted appropriately for the receiver, otherwise NO.

Availability
Deprecated in Mac OS X v 10.0 and later.

See Also
– setFormatter: (page 588)

Declared In
NSCell.h

isHighlighted
Returns a Boolean value that indicates whether the receiver is highlighted.

- (BOOL)isHighlighted

Return Value
YES if the receiver has a highlight, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

isOpaque
Returns a Boolean value that indicates whether the receiver is opaque (nontransparent).

- (BOOL)isOpaque

Return Value
YES if the receiver is opaque, otherwise NO to indicate the receiver might have some transparency.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

568 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

isScrollable
Returns a Boolean value that indicates whether the receiver scrolls excess text past the cell’s bounds.

- (BOOL)isScrollable

Return Value
YES if excess text scrolls past the cell's bounds, otherwise NO (text wrapping is enabled).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setScrollable: (page 594)

Declared In
NSCell.h

isSelectable
Returns a Boolean value that indicates whether the text of the receiver can be selected.

- (BOOL)isSelectable

Return Value
YES if the receiver's text can be selected, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectable: (page 594)

Declared In
NSCell.h

keyEquivalent
Returns the key equivalent to clicking the cell.

- (NSString *)keyEquivalent

Return Value
An empty string object.

Discussion
Subclasses can override this method to return a string with a valid character for the key equivalent.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

Instance Methods 569
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

lineBreakMode
Returns the line break mode currently used when drawing text.

- (NSLineBreakMode)lineBreakMode

Return Value
The line break mode the receiver currently uses when drawing text. See NSLineBreakMode (page 1878) for
supported values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLineBreakMode: (page 591)
– truncatesLastVisibleLine (page 610)

Declared In
NSCell.h

menu
Returns the receiver’s contextual menu.

- (NSMenu *)menu

Return Value
The receiver’s contextual menu, or nil if no menu is assigned.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMenu: (page 591)

Related Sample Code
ClockControl

Declared In
NSCell.h

menuForEvent:inRect:ofView:
Returns the menu associated with the receiver and related to the specified event and frame.

- (NSMenu *)menuForEvent:(NSEvent *)anEvent inRect:(NSRect)cellFrame ofView:(NSView
 *)aView

Parameters
anEvent

The event used to find the menu.

cellFrame
The cell's rectangle. This rectangle indicates the region containing the cursor.

570 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

aView
The view that manages the receiver. This is usually the control object that owns the cell.

Return Value
The menu associated with the cell and event parameters, or nil if no menu is set.

Discussion
This method is usually invoked by the NSControl object (aView) managing the receiver. The default
implementation simply invokes menu (page 570) and returns nil if no menu has been set. Subclasses can
override to customize the returned menu according to the event received and the area in which the mouse
event occurs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

mnemonic
Returns the character in the receiver’s title that appears underlined for use as a mnemonic.

- (NSString *)mnemonic

Return Value
A string containing the mnemonic character, or an empty string if no mnemonic character is set.

Discussion
Mnemonics are not supported in Mac OS X

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitleWithMnemonic: (page 599)

Declared In
NSCell.h

mnemonicLocation
Returns the position of the underlined mnemonic character in the receiver’s title.

- (NSUInteger)mnemonicLocation

Return Value
A zero-based index into the receiver's title string indicating the position of the character. If there is no
mnemonic character, this method returns NSNotFound.

Discussion
Mnemonics are not supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 571
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– setMnemonicLocation: (page 592)

Declared In
NSCell.h

mouseDownFlags
Returns the modifier flags for the last (left) mouse-down event.

- (NSInteger)mouseDownFlags

Return Value
The modifier flags, or 0 if tracking has not yet occurred or no modifier keys accompanied the mouse-down
event.

Availability
Available in Mac OS X v10.0 and later.

See Also
– modifierFlags (page 1082) (NSEvent)

Declared In
NSCell.h

nextState
Returns the receiver’s next state.

- (NSInteger)nextState

Return Value
The receiver’s next state (for possible values, see “NSCellStateValue” (page 618)).

Discussion
If the receiver has three states, it cycles through them in this order: on, off, mixed, on, and so forth. If the
receiver has two states, it toggles between them.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsMixedState (page 545)
– setAllowsMixedState: (page 578)
– setNextState (page 592)

Declared In
NSCell.h

objectValue
Returns the receiver’s value as an Objective-C object

572 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

- (id)objectValue

Return Value
The receiver's object value, or nil if a valid object has not been associated with the receiver.

Discussion
To be valid object value, the receiver must have a formatter capable of converting the object to and from its
textual representation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setObjectValue: (page 592)

Related Sample Code
ClockControl
PhotoSearch

Declared In
NSCell.h

performClick:
Simulates a single mouse click on the receiver.

- (void)performClick:(id)sender

Parameters
sender

The object to use as the sender of the event (if the receiver's control view is not valid). This object
must be a subclass of NSView.

Discussion
This method performs the receiver's action on its target. The receiver must be enabled to perform the action.
If the receiver's control view is valid, that view is used as the sender; otherwise, the value in sender is used.

The receiver of this message must be a cell of type NSActionCell. This method raises an exception if the
action message cannot be successfully sent.

Availability
Available in Mac OS X v10.0 and later.

See Also
– controlView (page 552)

Declared In
NSCell.h

refusesFirstResponder
Returns a Boolean value that indicates whether the receiver should not become the first responder.

Instance Methods 573
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

- (BOOL)refusesFirstResponder

Return Value
YES if the receiver should never become the first responder, otherwise NO if the receiver can become the
first responder.

Discussion
To find out whether the receiver can become first responder at this time, use the method
acceptsFirstResponder (page 544).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRefusesFirstResponder: (page 593)

Declared In
NSCell.h

representedObject
Returns the object the receiver represents.

- (id)representedObject

Return Value
The object represented by the receiver.

Discussion
Represented objects let you link a cell to an appropriate object. For example, you could have a pop-up list
of color names, and the represented objects could be the appropriate NSColor objects.

Special Considerations

Note that if you copy an NSCell instance, the represented object in the copy is set to nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRepresentedObject: (page 593)

Related Sample Code
NewsReader

Declared In
NSCell.h

resetCursorRect:inView:
Sets the receiver to show the I-beam cursor while it tracks the mouse.

- (void)resetCursorRect:(NSRect)cellFrame inView:(NSView *)controlView

574 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Parameters
cellFrame

The rectangle in which to display the I-beam cursor.

controlView
The control that manages the cell.

Discussion
The receiver must be an enabled and selectable (or editable) text-type cell.

This method is invoked by resetCursorRects (page 3206) and in general you do not need to call this method
unless you have a custom NSView that uses a cell.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

selectWithFrame:inView:editor:delegate:start:length:
Selects the specified text range in the cell's field editor.

- (void)selectWithFrame:(NSRect)aRect inView:(NSView *)controlView editor:(NSText
 *)textObj delegate:(id)anObject start:(NSInteger)selStart
length:(NSInteger)selLength

Parameters
aRect

The bounding rectangle of the cell.

controlView
The control that manages the cell.

textObj
The field editor to use for editing the cell.

anObject
The object to use as a delegate for the field editor (textObj parameter). This delegate object receives
various NSText delegation and notification methods during the course of editing the cell's contents.

selStart
The start of the text selection.

selLength
The length of the text range.

Discussion
This method is similar to editWithFrame:inView:editor:delegate:event: (page 555), except that it
can be invoked in any situation, not only on a mouse-down event. This method returns without doing anything
if controlView, textObj, or the receiver is nil, or if the receiver has no font set for it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

Instance Methods 575
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

sendActionOn:
Sets the conditions on which the receiver sends action messages to its target.

- (NSInteger)sendActionOn:(NSInteger)mask

Parameters
mask

A bit mask containing the conditions for sending the action. The only conditions that are actually
checked are associated with the NSLeftMouseDownMask (page 1097), NSLeftMouseUpMask (page
1097), NSLeftMouseDraggedMask (page 1098), and NSPeriodicMask (page 1099) bits.

Return Value
A bit mask containing the previous settings. This bit mask uses the same values as specified in the mask
parameter.

Discussion
You use this method during mouse tracking when the mouse button changes state, the mouse moves, or if
the cell is marked to send its action continuously while tracking. Because of this, the only bits checked in
mask are NSLeftMouseDownMask (page 1097), NSLeftMouseUpMask (page 1097),
NSLeftMouseDraggedMask (page 1098), andNSPeriodicMask (page 1099), which are declared in theNSEvent
class reference.

You can use the setContinuous: (page 582) method to turn on the flag corresponding to
NSPeriodicMask (page 1099) or NSLeftMouseDraggedMask (page 1098), whichever is appropriate to the
given subclass of NSCell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 544)

Declared In
NSCell.h

sendsActionOnEndEditing
Returns a Boolean value that indicates whether the receiver’s NSControl object sends its action message
whenever the user finishes editing the cell’s text.

- (BOOL)sendsActionOnEndEditing

Return Value
YES if the receiver's control sends its action message when editing is complete, otherwise NO.

Discussion
If this method returns YES, the receiver’s NSControl object sends its action message when the user does
one of the following:

 ■ Presses the Return key

 ■ Presses the Tab key to move out of the field

 ■ Clicks another text field

576 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

If it returns NO, the cell’s NSControl object sends its action message only when the user presses the Return
key.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSendsActionOnEndEditing: (page 595)

Declared In
NSCell.h

setAction:
Sets the cell's action method to the specified selector.

- (void)setAction:(SEL)aSelector

Parameters
aSelector

The new action-message selector to associate with the receiver's cell. Specify NULL to prevent action
messages from being sent to the receiver's target.

Discussion
The NSCell implementation of this method raises NSInternalInconsistencyException. Subclasses
(such as NSActionCell) override this method to set the action method as part of the target/action
implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 544)
– setTarget: (page 598)
– target (page 608)

Declared In
NSCell.h

setAlignment:
Sets the alignment of text in the receiver.

- (void)setAlignment:(NSTextAlignment)mode

Parameters
mode

This value can be one of the following constants: NSLeftTextAlignment,
NSRightTextAlignment,NSCenterTextAlignment, NSJustifiedTextAlignment,
orNSNaturalTextAlignment.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 577
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– alignment (page 545)
– setWraps: (page 601)

Related Sample Code
FunHouse

Declared In
NSCell.h

setAllowsEditingTextAttributes:
Sets whether the receiver allows the user to edit textual attributes of its contents.

- (void)setAllowsEditingTextAttributes:(BOOL)flag

Parameters
flag

If YES, the user can modify the font and other textual attributes of the cell's text. If NO, the user cannot
edit the text or import graphics, which effectively means the cell cannot support RTFD text.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEditingTextAttributes (page 545)
– setImportsGraphics: (page 589)

Declared In
NSCell.h

setAllowsMixedState:
Sets whether the receiver supports three states or just two.

- (void)setAllowsMixedState:(BOOL)flag

Parameters
flag

If YES, the receiver supports three states (on, off, and mixed); otherwise, if NO, the receiver supports
only two states (on and off).

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsMixedState (page 545)
– nextState (page 572)
– setNextState (page 592)

Declared In
NSCell.h

578 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

setAllowsUndo:
Sets whether the receiver assumes responsibility for undo operations within the cell.

- (void)setAllowsUndo:(BOOL)allowsUndo

Parameters
allowsUndo

If YES, the receiver handles undo operations; otherwise, if NO, the application's custom undo manager
handles undo operations.

Discussion
Subclasses invoke this method to indicate their preference for handling undo operations; otherwise, you
should not need to call this method directly.

Availability
Available in Mac OS X v10.4 and later.

See Also
– allowsUndo (page 546)

Declared In
NSCell.h

setAttributedStringValue:
Sets the value of the receiver’s cell using an attributed string.

- (void)setAttributedStringValue:(NSAttributedString *)attribStr

Parameters
attribStr

The value of the cell interpreted as an attributed string.

Discussion
If a formatter is set for the receiver, but the formatter does not understand the attributed string, it marks
attribStr as an invalid object. If the receiver is not a text-type cell, it is converted to one before the value
is set.

For Mac OS X v10.3 and later: If you use a class that responds to the selector attributedStringValue (page
546) for the object value of a cell, then the cell uses that method to fetch the string to draw rather than using
stringValue (page 605).

The following example sets the text in a cell to 14 points, red, in the system font.

NSColor *txtColor = [NSColor redColor];
NSFont *txtFont = [NSFont boldSystemFontOfSize:14];
NSDictionary *txtDict = [NSDictionary dictionaryWithObjectsAndKeys:
 txtFont, NSFontAttributeName, txtColor, NSForegroundColorAttributeName,
 nil];
NSAttributedString *attrStr = [[[NSAttributedString alloc]
 initWithString:@"Hello!" attributes:txtDict] autorelease];
[[attrStrTextField cell] setAttributedStringValue:attrStr];
[attrStrTextField updateCell:[attrStrTextField cell]];

Instance Methods 579
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedStringValue (page 546)

Declared In
NSCell.h

setBackgroundStyle:
Sets the background style for the receiver.

- (void)setBackgroundStyle:(NSBackgroundStyle)style

Parameters
style

The background style for the receiver.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
TrackBall

Declared In
NSCell.h

setBaseWritingDirection:
Sets the initial writing direction used to determine the actual writing direction for text .

- (void)setBaseWritingDirection:(NSWritingDirection)writingDirection

Parameters
writingDirection

The initial writing direction the receiver uses to determine the actual writing direction for text. See
NSWritingDirection (page 2748) for possible values.

Discussion
If you know the base writing direction of the text you are rendering, you can use this method to specify that
direction to the text system.

Availability
Available in Mac OS X v10.4 and later.

See Also
– baseWritingDirection (page 547)

Declared In
NSCell.h

580 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

setBezeled:
Sets whether the receiver draws itself with a bezeled border.

- (void)setBezeled:(BOOL)flag

Parameters
flag

If YES, the receiver uses a bezeled border.

Discussion
The setBezeled: and setBordered: (page 581) methods are mutually exclusive (that is, a border can be
only plain or bezeled). Invoking this method automatically removes any border that had already been set,
regardless of the value in the flag parameter.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isBezeled (page 566)

Related Sample Code
QTKitMovieShuffler

Declared In
NSCell.h

setBordered:
Sets whether the receiver draws itself outlined with a plain border.

- (void)setBordered:(BOOL)flag

Parameters
flag

If YES, the receiver uses a plain border.

Discussion
The setBezeled: (page 581) and setBordered: methods are mutually exclusive (that is, a border can be
only plain or bezeled). Invoking this method automatically removes any bezel that had already been set,
regardless of the value in the flag parameter.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isBordered (page 566)

Declared In
NSCell.h

setCellAttribute:to:
Sets the value for the specified cell attribute.

Instance Methods 581
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

- (void)setCellAttribute:(NSCellAttribute)aParameter to:(NSInteger)value

Parameters
aParameter

The cell attribute whose value you want to set. Attributes include the receiver's current state and
whether it is disabled, editable, or highlighted.

value
The new value for the attribute.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellAttribute: (page 548)

Declared In
NSCell.h

setContinuous:
Sets whether the receiver’s cell sends its action message continuously to its target during mouse tracking.

- (void)setContinuous:(BOOL)flag

Parameters
flag

If YES, the action message should be sent continuously.

Discussion
In practice, the continuous setting of action messages has meaning only for NSActionCell and its subclasses,
which implement the target/action mechanism. Some NSControl subclasses, notably NSMatrix, send a
default action to a default target when a cell doesn’t provide a target or action.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isContinuous (page 566)
– sendActionOn: (page 576)

Declared In
NSCell.h

setControlSize:
Sets the size of the receiver.

- (void)setControlSize:(NSControlSize)size

Parameters
size

A value that specifies the size of the receiver (for possible values, see “NSControlSize” (page 620)).

582 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Discussion
Changing the cell’s control size does not change the font of the cell. Use the
systemFontSizeForControlSize: (page 1159) class method of NSFont to obtain the system font based
on the new control size and set it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– controlSize (page 551)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit

Declared In
NSCell.h

setControlTint:
Sets the receiver’s control tint.

- (void)setControlTint:(NSControlTint)controlTint

Parameters
controlTint

An NSControlTint (page 533) value that specifies the tint of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– controlTint (page 551)

Declared In
NSCell.h

setControlView:
Sets the receiver’s control view.

- (void)setControlView:(NSView *)view

Parameters
view

The view (normally an NSControl object) to associate with the cell.

Discussion
The control view represents the control currently being rendered by the cell.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 583
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– controlView (page 552)

Related Sample Code
PhotoSearch

Declared In
NSCell.h

setDoubleValue:
Sets the value of the receiver’s cell using a double-precision floating-point number.

- (void)setDoubleValue:(double)aDouble

Parameters
aDouble

The value of the cell interpreted as a double-precision floating-point number.

Discussion
In its implementation, this method invokes the setObjectValue: (page 592) method to set the actual value.
This method does nothing if the receiver is not a text-type cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doubleValue (page 552)

Declared In
NSCell.h

setEditable:
Sets whether the user can edit the receiver’s text.

- (void)setEditable:(BOOL)flag

Parameters
flag

If YES, the user is allowed to edit the receiver's text. If this value is YES, the text is also made selectable.
If it is NO, the selectable attribute is restored to the value it was before the cell was last made editable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEditable (page 567)
– setSelectable: (page 594)

Related Sample Code
ImageBackground
QTAudioContextInsert

584 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

QTAudioExtractionPanel
QTKitMovieShuffler
SourceView

Declared In
NSCell.h

setEnabled:
Sets whether the receiver is enabled or disabled.

- (void)setEnabled:(BOOL)flag

Parameters
flag

If YES the receiver is enabled; otherwise, if NO, the receiver is disabled.

Discussion
The text of disabled cells is changed to gray. If a cell is disabled, it cannot be highlighted, does not support
mouse tracking (and thus cannot participate in target/action functionality), and cannot be edited. However,
you can still alter many attributes of a disabled cell programmatically. (The setState: (page 596) method,
for instance, still works.)

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEnabled (page 567)

Related Sample Code
DragNDropOutlineView
QTKitMovieShuffler
TextLinks
VertexPerformanceTest

Declared In
NSCell.h

setEntryType:
Sets how numeric data is formatted in the receiver and places restrictions on acceptable input. (Deprecated
in Mac OS X v10.0 and later. Use a formatter instead—see setFormatter: (page 588).)

- (void)setEntryType:(NSInteger)aType

Parameters
aType

One of the types listed for this method in “Data Entry Types” (page 622).

Availability
Deprecated in Mac OS X v10.0 and later.

Instance Methods 585
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– setFormatter: (page 588)

Declared In
NSCell.h

setFloatingPointFormat:left:right:
Sets the auto-ranging and floating point number format of the receiver’s cell. (Deprecated in Mac OS X v10.0.
Use a formatter instead. See setFormatter: (page 588))

- (void)setFloatingPointFormat:(BOOL)autoRange left:(NSUInteger)leftDigits
right:(NSUInteger)rightDigits

Parameters
autoRange

If YES, auto-ranging is enabled, otherwise it is disabled.

leftDigits
The number of digits to display to the left of the decimal point.

rightDigits
The number of digits to display to the right of the decimal point.

Discussion
Sets whether floating-point numbers are auto-ranged in the receiver and sets the sizes of the fields to the
left and right of the decimal point. If autoRange is NO, leftDigits specifies the maximum number of digits
to the left of the decimal point, and rightDigits specifies the number of digits to the right (the fractional
digit places will be padded with zeros to fill this width). However, if a number is too large to fit its integer
part in leftDigits digits, as many places as are needed on the left are effectively removed from
rightDigits when the number is displayed.

If autoRange is YES, leftDigits and rightDigits are simply added to form a maximum total field width
for the receiver (plus 1 for the decimal point). The fractional part will be padded with zeros on the right to
fill this width, or truncated as much as possible (up to removing the decimal point and displaying the number
as an integer). The integer portion of a number is never truncated—that is, it is displayed in full no matter
what the field width limit is.

The following example sets a cell used to display dollar amounts up to 99,999.99:

 [[currencyDollarsField cell] setEntryType:NSFloatType];
 [[currencyDollarsField cell] setFloatingPointFormat:NO left:5 right:2];

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.

See Also
– setFormatter: (page 588)

Declared In
NSCell.h

586 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

setFloatValue:
Sets the value of the receiver’s cell using a single-precision floating-point number.

- (void)setFloatValue:(float)aFloat

Parameters
aFloat

The value of the cell interpreted as a single-precision floating-point number.

Discussion
In its implementation, this method invokes the setObjectValue: (page 592) method to set the actual value.
This method does nothing if the receiver is not a text-type cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– floatValue (page 557)

Declared In
NSCell.h

setFocusRingType:
Sets the type of focus ring to be used.

- (void)setFocusRingType:(NSFocusRingType)focusRingType

Parameters
focusRingType

Possible values are listed in NSFocusRingType (page 4009). To disable a view's focus ring, specify
NSFocusRingTypeNone.

Discussion
You should only disable a view from drawing its focus ring if you want to draw your own focus ring, or if
there is not sufficient space to display a focus ring in the default location.

Availability
Available in Mac OS X v10.3 and later.

See Also
– focusRingType (page 558)
+ defaultFocusRingType (page 543)

Declared In
NSCell.h

setFont:
Sets the font to use when the receiver displays text.

- (void)setFont:(NSFont *)fontObj

Instance Methods 587
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Parameters
fontObj

The font to use.

Discussion
If the receiver is not a text-type cell, the method converts it to that type before setting the font.

Availability
Available in Mac OS X v10.0 and later.

See Also
– font (page 558)

Related Sample Code
FunHouse
Mountains

Declared In
NSCell.h

setFormatter:
Sets the receiver's formatter object.

- (void)setFormatter:(NSFormatter *)newFormatter

Parameters
newFormatter

The formatter to use with the cell, or nil if you do not want the cell to use a formatter.

Discussion
Cells use a formatter object to format the textual representation of their object value and to validate cell
input and convert that input to an object value. If the new formatter cannot interpret the receiver’s current
object value, that value is converted to a string object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– formatter (page 559)

Declared In
NSCell.h

setHighlighted:
Sets whether the receiver has a highlighted appearance.

- (void)setHighlighted:(BOOL)flag

Parameters
flag

If YES, the receiver has a highlight.

588 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Discussion
By default, this method does nothing. The NSButtonCell class overrides this method to draw the button
with the appearance specified by NSCellLightsByBackground, NSCellLightsByContents, or
NSCellLightsByGray.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

setImage:
Sets the image to be displayed by the receiver.

- (void)setImage:(NSImage *)image

Parameters
image

The image to display in the cell.

Discussion
If the receiver is not an image-type cell, the method converts it to that type of cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– image (page 562)
– setType: (page 599)

Related Sample Code
DragNDropOutlineView
FunkyOverlayWindow
QTKitMovieShuffler
SourceView
Transformed Image

Declared In
NSCell.h

setImportsGraphics:
Sets whether the receiver can import images into its text.

- (void)setImportsGraphics:(BOOL)flag

Parameters
flag

If YES, the receiver can import images into its text and support RTFD text. If NO, RTFD text is not
supported.

Instance Methods 589
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Discussion
If flag is YES, the receiver is also set to allow editing of text attributes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– importsGraphics (page 563)
– setAllowsEditingTextAttributes: (page 578)

Declared In
NSCell.h

setIntegerValue:
Sets the value of the receiver using an NSInteger.

- (void)setIntegerValue:(NSInteger)anInteger

Parameters
anInteger

The value of the cell interpreted as an NSInteger.

Discussion
In its implementation, this method invokes the setObjectValue: (page 592) method to set the actual value.
This method does nothing if the receiver is not a text-type cell.

Availability
Available in Mac OS X v10.5 and later.

See Also
– integerValue (page 564)
– setIntValue: (page 590)

Declared In
NSCell.h

setIntValue:
Sets the value of the receiver using an integer.

- (void)setIntValue:(int)anInt

Parameters
anInt

The value of the cell interpreted as an integer.

Discussion
In its implementation, this method invokes the setObjectValue: (page 592) method to set the actual value.
This method does nothing if the receiver is not a text-type cell.

On Mac OS X v10.5 and later, you should use setIntegerValue: (page 590) instead.

590 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– intValue (page 565)
– setIntegerValue: (page 590)

Declared In
NSCell.h

setLineBreakMode:
Sets the line break mode to use when drawing text

- (void)setLineBreakMode:(NSLineBreakMode)mode

Parameters
mode

The line break mode the receiver currently uses when drawing text. See NSLineBreakMode (page
1878) for supported values.

Discussion
The line break mode can also be modified by calling the setWraps: (page 601) method.

Availability
Available in Mac OS X v10.4 and later.

See Also
– lineBreakMode (page 570)
– setWraps: (page 601)

Declared In
NSCell.h

setMenu:
Sets the contextual menu for the cell.

- (void)setMenu:(NSMenu *)aMenu

Parameters
aMenu

A menu that has commands contextually related to the receiver. Specify nil to clear the previous
menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– menu (page 570)

Related Sample Code
DragNDropOutlineView

Instance Methods 591
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Declared In
NSCell.h

setMnemonicLocation:
Sets the character of the receiver’s title to be used as a mnemonic character.

- (void)setMnemonicLocation:(NSUInteger)location

Parameters
location

The zero-based index into the cell's title string specifying the location of the mnemonic character.
The specified character is underlined when the title is drawn.

Discussion
Mnemonics are not supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mnemonicLocation (page 571)

Declared In
NSCell.h

setNextState
Changes the state of the receiver to its next state.

- (void)setNextState

Discussion
If the receiver has three states, it cycles through them in this order: on, off, mixed, on, and so forth. If the
receiver has two states, it toggles between them.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsMixedState (page 545)
– nextState (page 572)
– setAllowsMixedState: (page 578)

Declared In
NSCell.h

setObjectValue:
Sets the receiver’s object value.

- (void)setObjectValue:(id < NSCopying >)object

592 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Parameters
object

The new object value for the cell.

Discussion
To be valid object value, the receiver must have a formatter capable of converting the object to and from its
textual representation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectValue (page 572)
– setRepresentedObject: (page 593)

Related Sample Code
STUCAuthoringDeviceCocoaSample

Declared In
NSCell.h

setRefusesFirstResponder:
Sets whether the receiver should not become the first responder.

- (void)setRefusesFirstResponder:(BOOL)flag

Parameters
flag

If YES, the receiver should never become the first responder; otherwise, it may become the first
responder.

Discussion
If refusesFirstResponder (page 573) returns NO and the cell is enabled, the method
acceptsFirstResponder (page 544) returns YES, allowing the cell to become first responder.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

setRepresentedObject:
Sets the object represented by the receiver.

- (void)setRepresentedObject:(id)anObject

Parameters
anObject

The object to associate with the receiver.

Instance Methods 593
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Discussion
You can use this method to link two objects together. For example, if the receiver's title was "Blue", you could
associate an NSColor object whose color was set to blue.

Special Considerations

Note that if you copy an NSCell instance, the represented object in the copy is set to nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setObjectValue: (page 592)
– representedObject (page 574)

Related Sample Code
NewsReader

Declared In
NSCell.h

setScrollable:
Sets whether excess text in the receiver is scrolled past the cell’s bounds.

- (void)setScrollable:(BOOL)flag

Parameters
flag

If YES, text can be scrolled past the cell's bounds; otherwise, if NO, the text wrapping is enabled.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isScrollable (page 569)

Declared In
NSCell.h

setSelectable:
Sets whether text in the receiver can be selected.

- (void)setSelectable:(BOOL)flag

Parameters
flag

If YES, the receiver's text can be selected. If this value is NO, editability is also disabled; if it is YES,
editability is not affected.

Availability
Available in Mac OS X v10.0 and later.

594 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– isSelectable (page 569)
– setEditable: (page 584)

Declared In
NSCell.h

setSendsActionOnEndEditing:
Sets whether the receiver’s NSControl object sends its action message whenever the user finishes editing
the cell’s text.

- (void)setSendsActionOnEndEditing:(BOOL)flag

Parameters
flag

If YES, the receiver's control sends its action message when editing is complete; otherwise, if NO, it
sends the action message only when the user presses the Return key.

Discussion
If flag is YES, the receiver’s NSControl object sends its action message when the user does one of the
following:

 ■ Presses the Return key

 ■ Presses the Tab key to move out of the field

 ■ Clicks another text field

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendsActionOnEndEditing (page 576)

Related Sample Code
Quartz Composer QCTV

Declared In
NSCell.h

setShowsFirstResponder:
Sets whether the receiver draws some indication of its first responder status.

- (void)setShowsFirstResponder:(BOOL)flag

Parameters
flag

If YES, the receiver draws an indication of its first responder status, otherwise it does not.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 595
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– showsFirstResponder (page 602)

Declared In
NSCell.h

setState:
Sets the receiver’s state to the specified value.

- (void)setState:(NSInteger)value

Parameters
value

The possible state values are NSOnState, NSOffState, and NSMixedState. If the cell supports only
two states and you specify NSMixedState, this method sets the state to NSOnState.

Discussion
The NSOffState state indicates the normal or unpressed state. The NSOnState state indicates the alternate
or pressed state. The NSMixedState state indicates that the feature represented by the control is in effect
somewhere.

Although using the enumerated constants is preferred, value can also be an integer. If the cell has two
states, 0 is treated as NSOffState, and a nonzero value is treated as NSOnState. If the cell has three states,
0 is treated as NSOffState; a negative value, as NSMixedState; and a positive value, as NSOnState.

Note that the value state (page 603) returns may not be the same value you passed into the value parameter.

To check whether the cell has three states (and uses the mixed state), invoke the allowsMixedState (page
545) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– state (page 603)
– setAllowsMixedState: (page 578)

Related Sample Code
EnhancedDataBurn

Declared In
NSCell.h

setStringValue:
Sets the value of the receiver’s cell using an NSString object.

- (void)setStringValue:(NSString *)aString

Parameters
aString

The string value of the cell.

596 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Discussion
In its implementation, this method invokes the setObjectValue: (page 592) method to set the actual value.
If no formatter is assigned to the receiver or if the formatter cannot “translate” aString to an underlying
object, the receiver is flagged as having an invalid object. If the receiver is not a text-type cell, this method
converts it to one before setting the object value.

For Mac OS X v10.3 and later: If you use a class that responds to the selector attributedStringValue (page
546) for the object value of a cell, the cell uses that method to fetch the string to draw rather than the
stringValue (page 605) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringValue (page 605)

Related Sample Code
DragNDropOutlineView
NewsReader
QTKitMovieShuffler
SimpleComboBox

Declared In
NSCell.h

setTag:
Sets the tag of the receiver.

- (void)setTag:(NSInteger)anInteger

Parameters
anInteger

The new tag for the cell.

Discussion
The NSCell implementation of this method raises NSInternalInconsistencyException. The
NSActionCell implementation sets the receiver’s tag integer to anInteger.

Tags allow you to identify particular cells. Tag values are not used internally; they are only changed by external
invocations of setTag:. You typically set tag values in Interface Builder and use them at runtime in your
application. When you set the tag of a control with a single cell in Interface Builder, it sets the tags of both
the control and the cell to the same value as a convenience.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tag (page 605)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Instance Methods 597
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Declared In
NSCell.h

setTarget:
Sets the target object to receive action messages.

- (void)setTarget:(id)anObject

Parameters
anObject

The new target object to associate with the receiver's cell, or nil to remove the current target.

Discussion
The NSCell implementation of this method raises NSInternalInconsistencyException. Subclasses
(such as NSActionCell) override this method to set the target object as part of the target/action
implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– target (page 608)

Declared In
NSCell.h

setTitle:
Sets the title of the receiver.

- (void)setTitle:(NSString *)aString

Parameters
aString

The new string value for the cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 609)

Related Sample Code
ButtonMadness
ObjectPath
Quartz Composer WWDC 2005 TextEdit
SimpleCocoaBrowser
TextLinks

Declared In
NSCell.h

598 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

setTitleWithMnemonic:
Sets the title of the receiver with one character in the string denoted as an access key.

- (void)setTitleWithMnemonic:(NSString *)aString

Parameters
aString

The new title of the cell. One character in the string should be preceded by an ampersand (&) character.
The character that follows becomes the mnemonic character for the title.

Discussion
Mnemonics are not supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mnemonic (page 571)
– setMnemonicLocation: (page 592)

Declared In
NSCell.h

setTruncatesLastVisibleLine:
Sets whether the receiver truncates and adds the ellipsis character to the last visible line if the text doesn't
fit into the cell bounds.

- (void)setTruncatesLastVisibleLine:(BOOL)flag

Parameters
flag

If YES, the receiver truncates the last line; if NO, it does not truncate.

Discussion
The line break mode must be either NSLineBreakByWordWrapping or NSLineBreakByCharWrapping.
Otherwise, this setting is ignored.

Availability
Available in Mac OS X v10.5 and later.

See Also
– truncatesLastVisibleLine (page 610)
– setLineBreakMode: (page 591)

Declared In
NSCell.h

setType:
Sets the type of the cell, changing it to a text cell, image cell, or null cell.

- (void)setType:(NSCellType)aType

Instance Methods 599
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Parameters
aType

The new type of the cell (see “NSCellType” (page 613) for possible values).

Discussion
If the cell is already the same type as the one specified in the aType parameter, this method does nothing.

If aType is NSTextCellType, this method converts the receiver to a cell of that type, giving it a default title
and setting the font to the system font at the default size. If aType is NSImageCellType, the cell type is not
changed until you set a new non-nil image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– type (page 611)
– setImage: (page 589)

Declared In
NSCell.h

setUpFieldEditorAttributes:
Configures the textual and background attributes of the receiver's field editor.

- (NSText *)setUpFieldEditorAttributes:(NSText *)textObj

Parameters
textObj

The field editor to configure. .

Return Value
The configured field editor.

Discussion
If the receiver is disabled, this method sets the text color to dark gray; otherwise the method sets it to the
default color. If the receiver has a bezeled border, this method sets the background to the default color for
text backgrounds; otherwise, the method sets it to the color of the receiver’s NSControl object.

You should not use this method to substitute a new field editor. setUpFieldEditorAttributes: (page
600) is intended to modify the attributes of the text object (that is, the field editor) passed into it and return
that text object. If you want to substitute your own field editor, use the fieldEditor:forObject: (page
3325) method or the windowWillReturnFieldEditor:toObject: delegate method of NSWindow.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

setUserInterfaceLayoutDirection:
Sets the layout direction of the user interface.

600 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

-
(void)setUserInterfaceLayoutDirection:(NSUserInterfaceLayoutDirection)layoutDirection

Parameters
layoutDirection

The direction of the user interface layout. See NSUserInterfaceLayoutDirection (page 184) for
possible values.

Discussion
This method specifies the general user interface layout flow directions. For NSCell subclasses that have
multiple visual components in a single cell instance, this property should specify the directionality or flow
of components. It affects, for example, the layout of an NSForm object's title and value fields, the position of
a disclosure triangle, and so on.

Availability
Available in Mac OS X v10.6 and later.

See Also
– userInterfaceLayoutDirection (page 611)

Declared In
NSCell.h

setUsesSingleLineMode:
Sets whether the text cell restricts layout and rendering of its content to a single line.

- (void)setUsesSingleLineMode:(BOOL)flag

Parameters
flag

YES if layout and rendering should be restricted to a single line, otherwise NO.

Discussion
If YES, the cell ignores the return value from wraps (page 612), interprets NSLineBreakByWordWrapping
and NSLineBreakByCharWrapping returned by lineBreakMode (page 570) as NSLineBreakByClipping,
and configures the field editor to ignore key binding commands that insert paragraph and line separators.

The field editor bound to a single line cell filters paragraph and line separator insertion from user actions.
Cells in the single line mode use the fixed baseline layout. The text baseline position is determined solely by
the control size regardless of content font style or size.

Availability
Available in Mac OS X v10.6 and later.

See Also
– usesSingleLineMode (page 612)

Declared In
NSCell.h

setWraps:
Sets whether text in the receiver wraps when its length exceeds the frame of the cell.

Instance Methods 601
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

- (void)setWraps:(BOOL)flag

Parameters
flag

If YES, the receiver wraps text and also makes the receiver non-scrollable; otherwise, if NO, text is not
wrapped.

Discussion
If the text of the receiver is an attributed string value you must explicitly set the paragraph style line break
mode. Calling this method with the value YES is equivalent to calling the setLineBreakMode: method
with the value NSLineBreakByWordWrapping.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLineBreakMode: (page 591)
– wraps (page 612)

Related Sample Code
Quartz Composer QCTV

Declared In
NSCell.h

showsFirstResponder
Returns a Boolean value that indicates whether the receiver should draw some indication of its first responder
status.

- (BOOL)showsFirstResponder

Return Value
YES if the receiver should draw an indication of its first responder status, otherwise NO.

Discussion
The NSCell class itself does not draw a first-responder indicator. Subclasses may use the returned value to
determine whether or not they should draw one, however.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShowsFirstResponder: (page 595)

Related Sample Code
ClockControl

Declared In
NSCell.h

602 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

startTrackingAt:inView:
Begins tracking mouse events within the receiver.

- (BOOL)startTrackingAt:(NSPoint)startPoint inView:(NSView *)controlView

Parameters
startPoint

The initial location of the cursor.

controlView
The NSControl object managing the receiver.

Return Value
YES if the receiver is set to respond continuously or set to respond when the mouse is dragged, otherwise
NO.

Discussion
The NSCell implementation of trackMouse:inRect:ofView:untilMouseUp: (page 610) invokes this
method when tracking begins. Subclasses can override this method to implement special mouse-tracking
behavior at the beginning of mouse tracking—for example, displaying a special cursor.

Availability
Available in Mac OS X v10.0 and later.

See Also
– continueTracking:at:inView: (page 550)
– stopTracking:at:inView:mouseIsUp: (page 604)

Related Sample Code
QTKitMovieShuffler

Declared In
NSCell.h

state
Returns the receiver’s state.

- (NSInteger)state

Return Value
The receiver’s state (for possible values, see “NSCellStateValue” (page 618)).

Discussion
Cells can have two or three states. If the receiver has two states, it returns either NSOffState (the normal
or unpressed state) or NSOnState (the alternate or pressed state). If it has three, it may also return
NSMixedState, indicating the feature is in effect somewhere.

To check whether the receiver uses the mixed state, use the method allowsMixedState (page 545).

Note that the value state (page 603) returns may not be the same value you passed into setState: (page
596).

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 603
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

See Also
– setState: (page 596)
– setAllowsMixedState: (page 578)

Declared In
NSCell.h

stopTracking:at:inView:mouseIsUp:
Stops tracking mouse events within the receiver.

- (void)stopTracking:(NSPoint)lastPoint at:(NSPoint)stopPoint inView:(NSView
*)controlView mouseIsUp:(BOOL)flag

Parameters
lastPoint

Contains the previous position of the cursor.

stopPoint
The current location of the cursor.

controlView
The NSControl object managing the receiver.

flag
If YES, this method was invoked because the user released the mouse button; otherwise, if NO, the
cursor left the designated tracking rectangle.

Discussion
The default NSCell implementation of trackMouse:inRect:ofView:untilMouseUp: (page 610) invokes
this method when the cursor has left the bounds of the receiver or the mouse button goes up. The default
NSCell implementation of this method does nothing. Subclasses often override this method to provide
customized tracking behavior. The following example increments the state of a tristate cell when the mouse
button is clicked:

- (void)stopTracking:(NSPoint)lastPoint at:(NSPoint)stopPoint
 inView:(NSView *)controlView mouseIsUp:(BOOL)flag
{
 if (flag == YES) {
 [self setTriState:([self triState]+1)];
 }
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– startTrackingAt:inView: (page 603)
– continueTracking:at:inView: (page 550)

Related Sample Code
QTKitMovieShuffler

Declared In
NSCell.h

604 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

stringValue
Returns the value of the receiver’s cell as an NSString object.

- (NSString *)stringValue

Return Value
The string value of the cell. This value may be an interpreted version of the cell's actual value. Interpretations
are performed by the cell's formatter.

Discussion
If no formatter exists and the cell's value is an NSString object, this method returns the value as a plain,
attributed, or localized formatted string. If the value is not an NSString object or cannot be converted to
one, this method returns an empty string.

For Mac OS X v10.3 and later: If you use a class that responds to the selector attributedStringValue (page
546) for the object value of a cell, the cell uses that method to fetch the string to draw rather than the
stringValue method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setStringValue: (page 596)

Related Sample Code
QTKitMovieShuffler
SimpleComboBox

Declared In
NSCell.h

tag
Returns the tag identifying the receiver.

- (NSInteger)tag

Return Value
The tag value. The NSCell implementation of this method returns –1.

Discussion
Tags allow you to identify particular cells. Tag values are not used internally; they are only changed by external
invocations of setTag:. You typically set tag values in Interface Builder and use them at runtime in your
application. When you set the tag of a control with a single cell in Interface Builder, it sets the tags of both
the control and the cell to the same value as a convenience.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTag: (page 597)

Related Sample Code
EnhancedDataBurn

Instance Methods 605
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

MyCustomColorPicker
Quartz Composer WWDC 2005 TextEdit
VertexPerformanceTest

Declared In
NSCell.h

takeDoubleValueFrom:
Sets the value of the receiver’s cell to a double-precision floating-point value obtained from the specified
object.

- (void)takeDoubleValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the doubleValue (page 552)
message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDoubleValue: (page 584)

Declared In
NSCell.h

takeFloatValueFrom:
Sets the value of the receiver’s cell to a single-precision floating-point value obtained from the specified
object.

- (void)takeFloatValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the floatValue (page 557)
message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFloatValue: (page 587)

Declared In
NSCell.h

takeIntegerValueFrom:
Sets the value of the receiver’s cell to an integer value obtained from the specified object.

606 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

- (void)takeIntegerValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the integerValue (page 564)
message.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setIntValue: (page 590)
– setIntegerValue: (page 590)

Declared In
NSCell.h

takeIntValueFrom:
Sets the value of the receiver’s cell to an integer value obtained from the specified object.

- (void)takeIntValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the intValue (page 565)
message.

Discussion
On Mac OS X v10.5 and later you should use takeIntegerValueFrom: (page 606) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– takeIntegerValueFrom: (page 606)
– setIntValue: (page 590)
– setIntegerValue: (page 590)

Declared In
NSCell.h

takeObjectValueFrom:
Sets the value of the receiver’s cell to the object value obtained from the specified object.

- (void)takeObjectValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the objectValue (page 572)
message.

Instance Methods 607
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setObjectValue: (page 592)

Declared In
NSCell.h

takeStringValueFrom:
Sets the value of the receiver’s cell to the string value obtained from the specified object.

- (void)takeStringValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the stringValue (page 605)
message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setStringValue: (page 596)

Declared In
NSCell.h

target
Returns the target object of the receiver.

- (id)target

Return Value
The target object that receives action messages from the cell. The NSCell implementation of this method
returns nil.

Discussion
Subclasses (such as NSActionCell) override this method to return the target object as part of the target/action
implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTarget: (page 598)

Declared In
NSCell.h

608 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

title
Returns the receiver’s title.

- (NSString *)title

Return Value
The cell's string value.

Discussion
Subclasses (such as NSButtonCell) may override this method to return a different value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 598)

Related Sample Code
PhotoSearch
SourceView

Declared In
NSCell.h

titleRectForBounds:
Returns the rectangle in which the receiver draws its title text.

- (NSRect)titleRectForBounds:(NSRect)theRect

Parameters
theRect

The bounding rectangle of the receiver.

Return Value
The rectangle in which the receiver draws its title text.

Discussion
If the receiver is a text-type cell, this method resizes the drawing rectangle for the title (theRect) inward by
a small offset to accommodate the cell border. If the receiver is not a text-type cell, the method does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageRectForBounds: (page 563)

Related Sample Code
PhotoSearch

Declared In
NSCell.h

Instance Methods 609
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

trackMouse:inRect:ofView:untilMouseUp:
Initiates the mouse tracking behavior in a cell.

- (BOOL)trackMouse:(NSEvent *)theEvent inRect:(NSRect)cellFrame ofView:(NSView
*)controlView untilMouseUp:(BOOL)untilMouseUp

Parameters
theEvent

The event that caused the mouse tracking to occur.

cellFrame
The receiver's frame rectangle.

controlView
The view containing the receiver. This is usually an NSControl object.

untilMouseUp
If YES, mouse tracking continues until the user releases the mouse button. If NO, tracking continues
until the cursor leaves the tracking rectangle, specified by the cellFrame parameter, regardless of
the mouse button state. See the discussion for more information.

Return Value
YES if the mouse tracking conditions are met, otherwise NO.

Discussion
This method is generally not overridden because the default implementation invokes other NSCellmethods
that can be overridden to handle specific events in a dragging session. This method’s return value depends
on the untilMouseUp flag. If untilMouseUp is set to YES, this method returns YES if the mouse button
goes up while the cursor is anywhere; NO, otherwise. If untilMouseUp is set to NO, this method returns YES
if the mouse button goes up while the cursor is within cellFrame; NO, otherwise.

This method first invokes startTrackingAt:inView: (page 603). If that method returns YES, then as
mouse-dragged events are intercepted, continueTracking:at:inView: (page 550) is invoked until either
the method returns NO or the mouse is released. Finally, stopTracking:at:inView:mouseIsUp: (page
604) is invoked if the mouse is released. If untilMouseUp is YES, it’s invoked when the mouse button goes
up while the cursor is anywhere. If untilMouseUp is NO, it’s invoked when the mouse button goes up while
the cursor is within cellFrame. You usually override one or more of these methods to respond to specific
mouse events.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

truncatesLastVisibleLine
Returns a Boolean value indicating whether the receiver truncates and adds the ellipsis character to the last
visible line if the text doesn't fit into the cell bounds.

- (BOOL)truncatesLastVisibleLine

Return Value
YES if the receiver truncates the last line; otherwise NO.

610 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Discussion
The line break mode must be either NSLineBreakByWordWrapping or NSLineBreakByCharWrapping.
Otherwise, this setting is ignored.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setTruncatesLastVisibleLine: (page 599)
– lineBreakMode (page 570)

Declared In
NSCell.h

type
Returns the type of the receiver

- (NSCellType)type

Return Value
The type of the cell (see “NSCellType” (page 613) for possible values).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setType: (page 599)

Related Sample Code
ClockControl
PhotoSearch

Declared In
NSCell.h

userInterfaceLayoutDirection
Returns the layout direction of the user interface.

- (NSUserInterfaceLayoutDirection)userInterfaceLayoutDirection

Return Value
The direction of the user interface layout. See NSUserInterfaceLayoutDirection (page 184) for possible
values.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setUserInterfaceLayoutDirection: (page 600)

Instance Methods 611
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Declared In
NSCell.h

usesSingleLineMode
Returns whether the text cell restricts layout and rendering of its content to a single line.

- (BOOL)usesSingleLineMode

Return Value
YES if layout and rendering is restricted to a single line, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setUsesSingleLineMode: (page 601)

Declared In
NSCell.h

wantsNotificationForMarkedText
Returns a Boolean value that indicates whether the field editor initiated by the receiver should post text
change notifications.

- (BOOL)wantsNotificationForMarkedText

Return Value
YES if the field editor initiated by the receiver should post text change notifications
(NSTextDidChangeNotification (page 2752)) while editing marked text; otherwise, they are delayed until
the marked text confirmation.

Discussion
NSCell's implementation returns NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCell.h

wraps
Returns a Boolean value that indicates whether the receiver wraps its text when the text exceeds the borders
of the cell.

- (BOOL)wraps

Return Value
YES if the receiver wraps text, otherwise NO.

612 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWraps: (page 601)

Declared In
NSCell.h

Constants

NSCellType
These constants specify how a cell represents its data (as text or as an image). These constants are used by
setType: (page 599) and type (page 611).

enum {
 NSNullCellType = 0,
 NSTextCellType = 1,
 NSImageCellType = 2
};
typedef NSUInteger NSCellType;

Constants
NSNullCellType

Cell displays nothing.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSTextCellType
Cell displays text.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSImageCellType
Cell displays images.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellAttribute
These constants specify how a button behaves when pressed and how it displays its state. These constants
are used by the NSButton and NSButtonCell classes

Constants 613
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

enum {
 NSCellDisabled = 0,
 NSCellState = 1,
 NSPushInCell = 2,
 NSCellEditable = 3,
 NSChangeGrayCell = 4,
 NSCellHighlighted = 5,
 NSCellLightsByContents = 6,
 NSCellLightsByGray = 7,
 NSChangeBackgroundCell = 8,
 NSCellLightsByBackground = 9,
 NSCellIsBordered = 10,
 NSCellHasOverlappingImage = 11,
 NSCellHasImageHorizontal = 12,
 NSCellHasImageOnLeftOrBottom = 13,
 NSCellChangesContents = 14,
 NSCellIsInsetButton = 15,
 NSCellAllowsMixedState = 16
};
typedef NSUInteger NSCellAttribute;

Constants
NSCellAllowsMixedState

Lets the cell’s state be NSMixedState, as well as NSOffState and NSOnState.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSChangeBackgroundCell
If the cell’s state is NSMixedState or NSOnState, changes the cell’s background color from gray to
white.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellChangesContents
If the cell’s state is NSMixedState or NSOnState, displays the cell’s alternate image.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSChangeGrayCell
If the cell’s state is NSMixedState or NSOnState, displays the cell’s image as darkened.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellDisabled
Does not let the user manipulate the cell.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellEditable
Lets the user edit the cell’s contents.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

614 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

NSCellHasImageHorizontal
Controls the position of the cell’s image: places the image on the right of any text in the cell.

Together, NSCellHasImageOnLeftOrBottom, NSCellHasImageHorizontal, and
NSCellHasOverlappingImage control the position of the cell’s image and text. To place the image
above, set none of them. To place the image below, set NSCellHasImageOnLeftOrBottom. To place
the image to the right, set NSCellHasImageHorizontal. To place the image to the left, set
NSCellHasImageHorizontal and NSCellHasImageOnLeftOrBottom. To place the image directly
over, set NSCellHasOverlappingImage.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellHasImageOnLeftOrBottom
Controls the position of the cell’s image: places the image on the left of or below any text in the cell.

See NSCellHasImageHorizontal (page 615) for more details.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellHasOverlappingImage
Controls the position of the cell’s image: places the image over any text in the cell.

See NSCellHasImageHorizontal (page 615) for more details.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellHighlighted

Draws the cell with a highlighted appearance. (Deprecated. Use setHighlighted: (page 588) instead.)

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellIsBordered
Draws a border around the cell.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellIsInsetButton
Insets the cell’s contents from the border.

By default, the cell’s contents are inset by 2 points. This constant is ignored if the cell is unbordered.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellLightsByBackground
If the cell is pushed in, changes the cell’s background color from gray to white.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellLightsByContents
If the cell is pushed in, displays the cell’s alternate image.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

Constants 615
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

NSCellLightsByGray
If the cell is pushed in, displays the cell’s image as darkened.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSPushInCell
Determines whether the cell’s image and text appear to be shifted down and to the right.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellState
The cell’s state.

The cell’s state can be NSMixedState (page 618), NSOffState (page 618), or NSOnState (page 618).

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSCellImagePosition
These constants specify the position of a button’s image relative to its title. These constants are used by the
setImagePosition: (page 483) andimagePosition (page 476) methods ofNSButton andNSButtonCell.

enum {
 NSNoImage = 0,
 NSImageOnly = 1,
 NSImageLeft = 2,
 NSImageRight = 3,
 NSImageBelow = 4,
 NSImageAbove = 5,
 NSImageOverlaps = 6
};
typedef NSUInteger NSCellImagePosition;

Constants
NSNoImage

The cell doesn’t display an image.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSImageOnly
The cell displays an image, but not a title.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSImageLeft
The image is to the left of the title.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSImageRight
The image is to the right of the title.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

616 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

NSImageBelow
The image is below the title.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSImageAbove
The image is above the title.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSImageOverlaps
The image overlaps the title.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSImageScaling
These constants specify a cell’s image scaling behavior.

enum {
 NSImageScaleProportionallyDown = 0,
 NSImageScaleAxesIndependently,
 NSImageScaleNone,
 NSImageScaleProportionallyUpOrDown
};
typedef NSUInteger NSImageScaling;

Constants
NSImageScaleProportionallyDown

If it is too large for the destination, scale the image down while preserving the aspect ratio.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

NSImageScaleAxesIndependently
Scale each dimension to exactly fit destination.

This setting does not preserve the aspect ratio of the image.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

NSImageScaleNone
Do not scale the image.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

NSImageScaleProportionallyUpOrDown
Scale the image to its maximum possible dimensions while both staying within the destination area
and preserving its aspect ratio.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

Constants 617
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

NSCellStateValue
These constants specify a cell’s state and are used mostly for buttons. These constants are described in Cell
States of Control and Cell Programming Topics for Cocoa.

enum {
 NSMixedState = -1,
 NSOffState = 0,
 NSOnState = 1
};
typedef NSUInteger NSCellStateValue;

Constants
NSMixedState

The corresponding feature is in effect somewhere.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSOffState
The corresponding feature is in effect nowhere.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSOnState
The corresponding feature is in effect everywhere.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

State Masks
These constants specify what happens when a button is pressed or is displaying its alternate state. These
contents are used by thehighlightsBy (page 501) andshowsStateBy (page 520) methods ofNSButtonCell.

enum {
 NSNoCellMask = 0,
 NSContentsCellMask = 1,
 NSPushInCellMask = 2,
 NSChangeGrayCellMask = 4,
 NSChangeBackgroundCellMask = 8
};

Constants
NSNoCellMask

The button cell doesn’t change.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSPushInCellMask
The button cell “pushes in” if it has a border.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

618 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

NSContentsCellMask
The button cell displays its alternate icon and/or title.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSChangeGrayCellMask
The button cell swaps the “control color” (the controlColor (page 678) method of NSColor) and
white pixels on its background and icon.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSChangeBackgroundCellMask
Same as NSChangeGrayCellMask, but only background pixels are changed.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSControlTint
These constants specify a cell’s tint. These constants are used by controlTint (page 551) and
setControlTint: (page 583).

enum {
 NSDefaultControlTint = 0,
 NSBlueControlTint = 1,
 NSGraphiteControlTint = 6,
 NSClearControlTint = 7
};
typedef NSUInteger NSControlTint;

Constants
NSDefaultControlTint

The current default tint setting

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSClearControlTint
Clear control tint

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSBlueControlTint
Aqua control tint

Available in Mac OS X v10.3 and later.

Declared in NSCell.h.

NSGraphiteControlTint
Graphite control tint

Available in Mac OS X v10.3 and later.

Declared in NSCell.h.

Constants 619
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

NSControlSize
These constants specify a cell’s size. These constants are used by controlSize (page 551) and
setControlSize: (page 582).

enum {
 NSRegularControlSize,
 NSSmallControlSize,
 NSMiniControlSize
};
typedef NSUInteger NSControlSize;

Constants
NSRegularControlSize

The control is sized as regular.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSSmallControlSize
The control has a smaller size.

This constant is for controls that cannot be resized in one direction, such as push buttons, radio
buttons, checkboxes, sliders, scroll bars, pop-up buttons, tabs, and progress indicators. You should
use a small system font with a small control.

Available in Mac OS X v10.0 and later.

Declared in NSCell.h.

NSMiniControlSize
The control has a smaller size than NSSmallControlSize.

Available in Mac OS X v10.3 and later.

Declared in NSCell.h.

Hit Testing
These constants are used by hitTestForEvent:inRect:ofView: (page 561) to determine the effect of
an event.

enum {
 NSCellHitNone = 0,
 NSCellHitContentArea = 1 << 0,
 NSCellHitEditableTextArea = 1 << 1,
 NSCellHitTrackableArea = 1 << 2,
};

Constants
NSCellHitNone

An empty area, or did not hit in the cell.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

620 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

NSCellHitContentArea
A content area in the cell.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

NSCellHitEditableTextArea
An editable text area of the cell.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

NSCellHitTrackableArea
A trackable area in the cell.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

Declared In
NSCell.h

NSBackgroundStyle
Background styles used with backgroundStyle (page 547), setBackgroundStyle: (page 580), and
interiorBackgroundStyle (page 565).

enum {
 NSBackgroundStyleLight = 0,
 NSBackgroundStyleDark,
 NSBackgroundStyleRaised,
 NSBackgroundStyleLowered
};
typedef NSUInteger NSBackgroundStyle;

Constants
NSBackgroundStyleLight

The background is a light color.

Dark content contrasts well with this background.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

NSBackgroundStyleDark
The background is a dark color.

Light content contrasts well with this background.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

NSBackgroundStyleRaised
The background is intended to appear higher than the content drawn on it.

Content might need to be inset.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

Constants 621
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

NSBackgroundStyleLowered
The background is intended to appear lower than the content drawn on it.

Content might need to be embossed.

Available in Mac OS X v10.5 and later.

Declared in NSCell.h.

Deprecated Scaling Constants
These are deprecated scaling constants. (Deprecated. Use “NSImageScaling” (page 617) constants instead.)

enum {
 NSScaleProportionally = 0,
 NSScaleToFit,
 NSScaleNone
};

Constants
NSScaleProportionally

Use NSImageScaleProportionallyDown (page 617).

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.6.

Declared in NSCell.h.

NSScaleToFit
Use NSImageScaleAxesIndependently (page 617).

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.6.

Declared in NSCell.h.

NSScaleNone
Use NSImageScaleNone (page 617).

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.6.

Declared in NSCell.h.

Data Entry Types
These constants specify how a cell formats numeric data.

622 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

enum {
 NSAnyType = 0,
 NSIntType = 1,
 NSPositiveIntType = 2,
 NSFloatType = 3,
 NSPositiveFloatType = 4,
 NSDoubleType = 6,
 NSPositiveDoubleType = 7
};

Constants
NSIntType

Must be between INT_MIN and INT_MAX.

Deprecated in Mac OS X v10.4 and later.

Declared in NSCell.h.

NSPositiveIntType
Must be between 1 and INT_MAX.

Deprecated in Mac OS X v10.4 and later.

Declared in NSCell.h.

NSFloatType
Must be between –FLT_MAX and FLT_MAX.

Deprecated in Mac OS X v10.4 and later.

Declared in NSCell.h.

NSPositiveFloatType
Must be between FLT_MIN and FLT_MAX.

Deprecated in Mac OS X v10.4 and later.

Declared in NSCell.h.

NSDoubleType
Must be between –FLT_MAX and FLT_MAX.

Deprecated in Mac OS X v10.4 and later.

Declared in NSCell.h.

NSPositiveDoubleType
Must be between FLT_MIN and FLT_MAX.

Deprecated in Mac OS X v10.4 and later.

Declared in NSCell.h.

NSAnyType
Any value is allowed.

Deprecated in Mac OS X v10.4 and later.

Declared in NSCell.h.

Discussion
These constants are used by setEntryType: (page 585) and entryType (page 556).

Declared In
NSCell.h

Constants 623
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Notifications

NSControlTintDidChangeNotification
Sent after the user changes control tint preference. The notification object is NSApp. This notification does
not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCell.h

624 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 22

NSCell Class Reference

Inherits from NSImageRep : NSObject

Conforms to NSCoding (NSImageRep)
NSCopying (NSImageRep)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.4 and later.

Declared in AppKit/NSCIImageRep.h

Companion guide Cocoa Drawing Guide

Related sample code FunHouse
Reducer
StillMotion

Overview

An NSCIImageRep object can render an image from a Core Image CIImage instance. For more information
about the CIImage class and Core Image, see Core Image Programming Guide.

Tasks

Initialization

+ imageRepWithCIImage: (page 626)
Creates and returns an NSCIImageRep object initialized to the specified CIImage instance.

– initWithCIImage: (page 626)
Returns an NSCIImageRep object initialized to the specified CIImage instance.

Returning an Image

– CIImage (page 626)
Returns the receiver's CIImage instance.

Overview 625
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSCIImageRep Class Reference

Class Methods

imageRepWithCIImage:
Creates and returns an NSCIImageRep object initialized to the specified CIImage instance.

+ (id)imageRepWithCIImage:(CIImage *)image

Parameters
image

The CIImage instance.

Return Value
An initialized NSCIImageRep object, or nil if the object could not be initialized.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
FunHouse
Reducer
StillMotion

Declared In
NSCIImageRep.h

Instance Methods

CIImage
Returns the receiver's CIImage instance.

- (CIImage *)CIImage

Return Value
The CIImage instance.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCIImageRep.h

initWithCIImage:
Returns an NSCIImageRep object initialized to the specified CIImage instance.

- (id)initWithCIImage:(CIImage *)image

626 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSCIImageRep Class Reference

Parameters
image

The CIImage instance.

Return Value
An initialized NSCIImageRep object, or nil if the object could not be initialized.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCIImageRep.h

Instance Methods 627
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSCIImageRep Class Reference

628 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 23

NSCIImageRep Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSClipView.h

Companion guide Cocoa Drawing Guide

Related sample code Quartz Composer WWDC 2005 TextEdit
TextSizingExample

Class at a Glance

An NSClipView contains and scrolls the document view displayed by an NSScrollView. You normally don’t
need to program with NSClipViews, as NSScrollView handles most of the details of their operation.

Principal Attributes

 ■ Efficient scrolling by copying drawn portions of the document view

 ■ Monitoring of document view for automatic update

Interface Builder
– initWithFrame:

Initializes the NSClipView.

Commonly Used Methods

setDocumentView: (page 636)
Sets the view scrolled within the NSClipView.

setCopiesOnScroll: (page 636)
Sets whether the NSClipView copies drawn portions of the document view during scrolling.

Class at a Glance 629
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSClipView Class Objective-C Reference

Overview

An NSClipView holds the document view of an NSScrollView, clipping the document view to its frame,
handling the details of scrolling in an efficient manner, and updating the NSScrollView when the document
view’s size or position changes. You don’t normally use the NSClipView class directly; it’s provided primarily
as the scrolling machinery for the NSScrollView class. However, you might use the NSClipView class to
implement a class similar to NSScrollView.

Interaction With NSScrollView

When using an NSClipView within an NSScrollView (the usual configuration), you should issue messages that
control background drawing state to the NSScrollView, rather than messaging the NSClipView directly. This
recommendation applies to the following methods:

 ■ - setBackgroundColor:

 ■ - backgroundColor

 ■ - setDrawsBackground:

 ■ - drawsBackground

The NSClipView methods are intended for when the NSClipView is used independently of a containing
NSScrollView. In the usual case, NSScrollView should be allowed to manage the background-drawing properties
of its associated NSClipView.

There is only one background-drawing state per NSScrollView/NSClipView pair. The two objects do not
maintain independent and distinct drawsBackground and backgroundColor properties; rather,
NSScrollView's accessors for these properties largely defer to the associated NSClipView and allow the
NSClipView to maintain the state. In Mac OS X v10.2 and earlier system versions, NSScrollView maintained a
cache of the last state it set for its NSClipView. If the NSClipView was sent a setDrawsBackground:message
directly, the cache might not reflect the state accurately. This caching of state has been removed in Mac OS
X v10.3.

It is also important to note that sending a setDrawsBackground: message with a parameter of NO to an
NSScrollView has the added effect of sending the NSClipView a setCopiesOnScroll: message with a
parameter of NO. The side effect of sending the setDrawsBackground:message directly to the NSClipView
is the appearance of “trails” (vestiges of previous drawing) in the document view as it is scrolled.

Tasks

Setting the Document View

– setDocumentView: (page 636)
Sets the receiver’s document view to aView, removing any previous document view, and sets the
origin of the receiver’s bounds rectangle to the origin of aView’s frame rectangle.

– documentView (page 634)
Returns the receiver’s document view.

630 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSClipView Class Objective-C Reference

Scrolling

– scrollToPoint: (page 635)
Changes the origin of the receiver’s bounds rectangle to newOrigin.

– autoscroll: (page 632)
Scrolls the receiver proportionally to theEvent’s distance outside of it.

– constrainScrollPoint: (page 633)
Returns a scroll point adjusted from proposedNewOrigin, if necessary, to guarantee the receiver
will still lie within its document view.

Determining Scrolling Efficiency

– setCopiesOnScroll: (page 636)
Controls whether the receiver copies rendered images while scrolling.

– copiesOnScroll (page 633)
Returns YES if the receiver copies its existing rendered image while scrolling (only drawing exposed
portions of its document view), NO if it forces its contents to be redrawn each time.

Getting the Visible Portion

– documentRect (page 634)
Returns the rectangle defining the document view’s frame, adjusted to the size of the receiver if the
document view is smaller.

– documentVisibleRect (page 634)
Returns the exposed rectangle of the receiver’s document view, in the document view’s own coordinate
system.

Setting the Document Cursor

– setDocumentCursor: (page 636)
Sets the cursor object used over the receiver to aCursor.

– documentCursor (page 633)
Returns the cursor object used when the cursor lies over the receiver.

Working with Background Color

– drawsBackground (page 635)
Returns YES if the receiver draws its background color.

– setDrawsBackground: (page 637)
Sets whether the receiver draws its background color, depending on the Boolean value flag.

– setBackgroundColor: (page 635)
Sets the receiver’s background color to aColor.

Tasks 631
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSClipView Class Objective-C Reference

– backgroundColor (page 632)
Returns the color of the receiver’s background.

Overriding NSView Methods

– viewBoundsChanged: (page 637)
Handles an NSViewBoundsDidChangeNotification (page 3256), passed in the aNotification
argument, by updating a containing NSScrollView based on the new bounds.

– viewFrameChanged: (page 638)
Handles an NSViewFrameDidChangeNotification (page 3257), passed in the aNotification
argument, by updating a containing NSScrollView based on the new frame.

Instance Methods

autoscroll:
Scrolls the receiver proportionally to theEvent’s distance outside of it.

- (BOOL)autoscroll:(NSEvent *)theEvent

Discussion
theEvent’s location should be expressed in the window’s base coordinate system (which it normally is), not
the receiving NSClipView’s. Returns YES if any scrolling is performed; otherwise returns NO.

Never invoke this method directly; instead, the NSClipView’s document view should repeatedly send itself
autoscroll: (page 3148) messages when the cursor is dragged outside the NSClipView’s frame during a
modal event loop initiated by a mouse-down event. The NSView class implements autoscroll: (page 3148)
to forward the message to the receiver’s superview; thus the message is ultimately forwarded to the
NSClipView.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSClipView.h

backgroundColor
Returns the color of the receiver’s background.

- (NSColor *)backgroundColor

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundColor: (page 635)

632 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSClipView Class Objective-C Reference

Declared In
NSClipView.h

constrainScrollPoint:
Returns a scroll point adjusted from proposedNewOrigin, if necessary, to guarantee the receiver will still
lie within its document view.

- (NSPoint)constrainScrollPoint:(NSPoint)proposedNewOrigin

Discussion
For example, if proposedNewOrigin’s y coordinate lies to the left of the document view’s origin, then the
y coordinate returned is set to that of the document view’s origin.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollToPoint: (page 635)

Declared In
NSClipView.h

copiesOnScroll
Returns YES if the receiver copies its existing rendered image while scrolling (only drawing exposed portions
of its document view), NO if it forces its contents to be redrawn each time.

- (BOOL)copiesOnScroll

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCopiesOnScroll: (page 636)

Declared In
NSClipView.h

documentCursor
Returns the cursor object used when the cursor lies over the receiver.

- (NSCursor *)documentCursor

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDocumentCursor: (page 636)

Instance Methods 633
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSClipView Class Objective-C Reference

Declared In
NSClipView.h

documentRect
Returns the rectangle defining the document view’s frame, adjusted to the size of the receiver if the document
view is smaller.

- (NSRect)documentRect

Discussion
In other words, this rectangle is always at least as large as the receiver itself.

The document rectangle is used in conjunction with an NSClipView’s bounds rectangle to determine values
for the indicators of relative position and size between the NSClipView and its document view. For example,
NSScrollView uses these rectangles to set the size and position of the knobs in its scrollers. When the document
view is much larger than the NSClipView, the knob is small; when the document view is near the same size,
the knob is large; and when the document view is the same size or smaller, there is no knob.

Availability
Available in Mac OS X v10.0 and later.

See Also
– reflectScrolledClipView: (page 2351) (NSScrollView)
– documentVisibleRect (page 634)

Declared In
NSClipView.h

documentView
Returns the receiver’s document view.

- (id)documentView

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDocumentView: (page 636)

Declared In
NSClipView.h

documentVisibleRect
Returns the exposed rectangle of the receiver’s document view, in the document view’s own coordinate
system.

- (NSRect)documentVisibleRect

634 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSClipView Class Objective-C Reference

Discussion
Note that this rectangle doesn’t reflect the effects of any clipping that may occur above the NSClipView itself.
To get the portion of the document view that’s guaranteed to be visible, send it a visibleRect message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– documentRect (page 634)

Declared In
NSClipView.h

drawsBackground
Returns YES if the receiver draws its background color.

- (BOOL)drawsBackground

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDrawsBackground: (page 637)

Declared In
NSClipView.h

scrollToPoint:
Changes the origin of the receiver’s bounds rectangle to newOrigin.

- (void)scrollToPoint:(NSPoint)newOrigin

Availability
Available in Mac OS X v10.0 and later.

See Also
– constrainScrollPoint: (page 633)

Related Sample Code
WhackedTV

Declared In
NSClipView.h

setBackgroundColor:
Sets the receiver’s background color to aColor.

- (void)setBackgroundColor:(NSColor *)aColor

Instance Methods 635
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSClipView Class Objective-C Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 632)

Declared In
NSClipView.h

setCopiesOnScroll:
Controls whether the receiver copies rendered images while scrolling.

- (void)setCopiesOnScroll:(BOOL)flag

Discussion
If flag is YES, the receiver copies the existing rendered image to its new location while scrolling and only
draws exposed portions of its document view. If flag is NO, the receiver always forces its document view to
draw itself on scrolling.

Availability
Available in Mac OS X v10.0 and later.

See Also
– copiesOnScroll (page 633)

Declared In
NSClipView.h

setDocumentCursor:
Sets the cursor object used over the receiver to aCursor.

- (void)setDocumentCursor:(NSCursor *)aCursor

Availability
Available in Mac OS X v10.0 and later.

See Also
– documentCursor (page 633)

Declared In
NSClipView.h

setDocumentView:
Sets the receiver’s document view to aView, removing any previous document view, and sets the origin of
the receiver’s bounds rectangle to the origin of aView’s frame rectangle.

- (void)setDocumentView:(NSView *)aView

636 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSClipView Class Objective-C Reference

Discussion
If the receiver is contained in an NSScrollView, you should send the NSScrollView a setDocumentView: (page
2355) message instead, so it can perform whatever updating it needs.

In the process of setting the document view, this method registers the receiver for the notifications
NSViewFrameDidChangeNotification (page 3257) andNSViewBoundsDidChangeNotification (page
3256), adjusts the key view loop to include the new document view, and updates a parent NSScrollView’s
display if needed using reflectScrolledClipView: (page 2351).

Availability
Available in Mac OS X v10.0 and later.

See Also
– documentView (page 634)

Related Sample Code
TextSizingExample

Declared In
NSClipView.h

setDrawsBackground:
Sets whether the receiver draws its background color, depending on the Boolean value flag.

- (void)setDrawsBackground:(BOOL)flag

Discussion
If your NSClipView is enclosed in an NSScrollView, you should send the setDrawsBackground: message
to the NSScrollView. Sending a setDrawsBackground:message with a parameter of NO to an NSScrollView
has the added effect of sending the NSClipView a setCopiesOnScroll: message with a parameter of NO.
The side effect of sending the setDrawsBackground:message directly to the NSClipView is the appearance
of “trails” (vestiges of previous drawing) in the document view as it is scrolled.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsBackground (page 635)

Declared In
NSClipView.h

viewBoundsChanged:
Handles anNSViewBoundsDidChangeNotification (page 3256), passed in theaNotification argument,
by updating a containing NSScrollView based on the new bounds.

- (void)viewBoundsChanged:(NSNotification *)aNotification

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 637
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSClipView Class Objective-C Reference

Declared In
NSClipView.h

viewFrameChanged:
Handles an NSViewFrameDidChangeNotification (page 3257), passed in the aNotification argument,
by updating a containing NSScrollView based on the new frame.

- (void)viewFrameChanged:(NSNotification *)aNotification

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSClipView.h

638 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 24

NSClipView Class Objective-C Reference

Inherits from NSObject

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSColor.h

Companion guide Archives and Serializations Programming Guide

Overview

This category adds a single method to the Foundation framework’s NSCoder class. This method,
decodeNXColor (page 639), is used to convert archived NXColor structures into NSColor objects.

NXColor, a type that dates from pre-OpenStep versions of NEXTSTEP, was a struct. Its replacement, NSColor,
is a class. The difficulties of converting from a struct to a class require a special method like
decodeNXColor (page 639).

The decodeNXColor (page 639) method becomes part of the NSCoder class only for applications that use
the Application Kit.

Tasks

Decoding NXColor Structures

– decodeNXColor (page 639)
Decodes a color structure from NEXTSTEP Release 3 or earlier and returns an NSColor object.

Instance Methods

decodeNXColor
Decodes a color structure from NEXTSTEP Release 3 or earlier and returns an NSColor object.

- (NSColor *)decodeNXColor

Return Value
An autoreleased NSColor object. Returns nil if the archived color is invalid.

Overview 639
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

NSCoder Application Kit Additions Reference

Discussion
This method does not have a matching method for encoding an NXColor structure. Encode an NSColor
object instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColor.h

640 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 25

NSCoder Application Kit Additions Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSCollectionView.h

Companion guide Collection View Programming Guide

Related sample code IconCollection
Reviews

Overview

NSCollectionView class displays an array of content as a grid of views. The views are specified using the
NSCollectionViewItem class which makes loadings nibs containing the view easy, and supports bindings.

Tasks

Modifying the Collection View Item

– setItemPrototype: (page 651)
Sets the receiver’s item prototype to the specified collection view item.

– itemPrototype (page 647)
Returns the receiver’s collection view item prototype.

– newItemForRepresentedObject: (page 648)
Returns the collection view item that is used for the specified object.

Overview 641
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Working with the Responder Chain

– isFirstResponder (page 646)
Returns whether the receiver is the first responder.

Setting the Content

– setContent: (page 650)
Sets the receiver’s content array.

– content (page 644)
Returns the receiver’s content object.

Setting the Selection Mode

– setSelectable: (page 653)
Controls whether the receiver allows the user to select items.

– isSelectable (page 646)
Returns a Boolean value that indicates whether the receiver allows the user to select items, NO if it
doesn’t.

– setAllowsMultipleSelection: (page 649)
Controls whether the user can select multiple items at a time.

– allowsMultipleSelection (page 643)
Returns a Boolean value that indicates whether the receiver allows the user to select more than one
item at a time.

– setSelectionIndexes: (page 653)
Sets the receiver’s selection using the specified indexes.

– selectionIndexes (page 649)
Returns an index set containing the indexes of the receiver’s currently selected objects in the content
array.

Laying out the Collection View

– setMaxNumberOfRows: (page 652)
Sets the maximum number of rows the receiver will display.

– maxNumberOfRows (page 648)
Returns the maximum number of rows the receiver will display.

– setMaxNumberOfColumns: (page 652)
Sets the maximum number of columns the receiver will display

– maxNumberOfColumns (page 647)
Returns the maximum number of columns the receiver will display.

– setMinItemSize: (page 653)
Sets the minimum size used to display individual layout items in the grid.

– minItemSize (page 648)
Returns the minimum size used to display individual collection view items in the grid.

642 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

– setMaxItemSize: (page 651)
Sets the maximum size used to display individual collection view items in the grid.

– maxItemSize (page 647)
Returns the maximum size used to display individual collection view items in the grid

Modifying the Background

– setBackgroundColors: (page 649)
Sets the receiver's background colors to the specified array of colors.

– backgroundColors (page 644)
Return the receiver’s background colors.

Getting and Setting the Delegate

– delegate (page 644)
Returns the receiver’s delegate.

– setDelegate: (page 650)
Sets the receiver’s delegate.

Drag and Drop Support

– draggingImageForItemsAtIndexes:withEvent:offset: (page 645)
This method computes and returns an image to use for dragging.

– setDraggingSourceOperationMask:forLocal: (page 651)
Configures the default value returned from draggingSourceOperationMaskForLocal: (page
3670).

Getting a Collection Item and Its Frame

– itemAtIndex: (page 646)
Returns the collection view item for the represented object at the specified index.

– frameForItemAtIndex: (page 645)
Returns the frame of the collection view item at the specified index.

Instance Methods

allowsMultipleSelection
Returns a Boolean value that indicates whether the receiver allows the user to select more than one item at
a time.

- (BOOL)allowsMultipleSelection

Instance Methods 643
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Return Value
YES if the receiver allows the user to select more than one column or row at a time, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

backgroundColors
Return the receiver’s background colors.

- (NSArray *)backgroundColors

Return Value
Returns an array containing the receiver’s background colors.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

content
Returns the receiver’s content object.

- (NSArray *)content

Return Value
An array containing the receiver’s content.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
IconCollection

Declared In
NSCollectionView.h

delegate
Returns the receiver’s delegate.

- (id < NSCollectionViewDelegate >)delegate

Return Value
The receiver’s delegate object.

644 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

draggingImageForItemsAtIndexes:withEvent:offset:
This method computes and returns an image to use for dragging.

- (NSImage *)draggingImageForItemsAtIndexes:(NSIndexSet *)indexes withEvent:(NSEvent
 *)event offset:(NSPointPointer)dragImageOffset

Parameters
indexes

The index set of the items to be dragged.

event
Mouse drag event.

dragImageOffset
An in/out parameter that will initially be set to NSZeroPoint. it can be modified to reposition the
returned image. A dragImageOffset of NSZeroPoint will cause the image to be centered under
the mouse.

Return Value
An image containing a rendering of the visible portions of the views for each item.

Discussion
You can override the default image by subclassing NSCollectionView and overriding this method, or by
implementing the collectionView:draggingImageForItemsAtIndexes:withEvent:offset: (page
3609) delegate method, it will be preferred over this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

frameForItemAtIndex:
Returns the frame of the collection view item at the specified index.

- (NSRect)frameForItemAtIndex:(NSUInteger)index

Parameters
index

The index of the collection view item.

Return Value
Returns the frame calculated by the receiver where it intends to place the subview for the
NSCollectionViewItem at the given index. The rectangle is returned in the receiver’s coordinate system.

Instance Methods 645
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Discussion
You can use this method in the
collectionView:draggingImageForItemsAtIndexes:withEvent:offset: (page 3609) method to
determine which views are in the visible portion of the enclosing scroll view.

Overriding this method will have no effect on the receiver's subview layout.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

isFirstResponder
Returns whether the receiver is the first responder.

- (BOOL)isFirstResponder

Return Value
YES if the receiver is the first responder, otherwise NO.

Special Considerations

This method is fully key-value observing compliant.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

isSelectable
Returns a Boolean value that indicates whether the receiver allows the user to select items, NO if it doesn’t.

- (BOOL)isSelectable

Return Value
YES if the receiver allows the user to select items, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

itemAtIndex:
Returns the collection view item for the represented object at the specified index.

- (NSCollectionViewItem *)itemAtIndex:(NSUInteger)index

646 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Parameters
index

The index of the collection view item.

Return Value
An instance of NSCollectionViewItem.

Discussion
Rather than using the NSCollectionViewItem instance returned by this method to determine the frame
of the collection item’s view you should use frameForItemAtIndex: (page 645), it is significantly more
efficient.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

itemPrototype
Returns the receiver’s collection view item prototype.

- (NSCollectionViewItem *)itemPrototype

Return Value
The receiver’s collection view item prototype.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

maxItemSize
Returns the maximum size used to display individual collection view items in the grid

- (NSSize)maxItemSize

Return Value
The maximum size, measured in points, used to display individual collection view items.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

maxNumberOfColumns
Returns the maximum number of columns the receiver will display.

- (NSUInteger)maxNumberOfColumns

Instance Methods 647
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Return Value
The maximum number of columns the receiver will display.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

maxNumberOfRows
Returns the maximum number of rows the receiver will display.

- (NSUInteger)maxNumberOfRows

Return Value
The maximum number of rows the receiver will display.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

minItemSize
Returns the minimum size used to display individual collection view items in the grid.

- (NSSize)minItemSize

Return Value
The minimum size, measured in points, used to display individual collection view items.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

newItemForRepresentedObject:
Returns the collection view item that is used for the specified object.

- (NSCollectionViewItem *)newItemForRepresentedObject:(id)object

Parameters
object

The content object that the collection view item will represent.

Return Value
An initialized collection view item with the specified object and the appropriate view set. The collection view
item should not be autoreleased.

648 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Discussion
Subclasses can override this method if the collection view items are not generated from a prototype or if the
prototype view needs to be modified. The subclass is responsible for setting the view and
representedObject (page 657) of the new collection view item.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

selectionIndexes
Returns an index set containing the indexes of the receiver’s currently selected objects in the content array.

- (NSIndexSet *)selectionIndexes

Return Value
An index set containing the indexes of the receiver’s currently selected objects in the content array.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

setAllowsMultipleSelection:
Controls whether the user can select multiple items at a time.

- (void)setAllowsMultipleSelection:(BOOL)flag

Parameters
flag

YES to allow the user to select multiple items, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

setBackgroundColors:
Sets the receiver's background colors to the specified array of colors.

- (void)setBackgroundColors:(NSArray *)colors

Instance Methods 649
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Parameters
colors

An array containing the background colors for the receiver.

Discussion
Passing an empty array or nil resets the background colors to their default values provided by
controlAlternatingRowBackgroundColors (page 677).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

setContent:
Sets the receiver’s content array.

- (void)setContent:(NSArray *)content

Parameters
content

An array containing the receiver’s content.

Discussion
The content array can also be provided by creating a binding between the receiver’s NSContentBinding (page
3709) and an array controller’s arrangedObjects (page 205) method.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSCollectionViewDelegate >)aDelegate

Parameters
aDelegate

The delegate object for the receiver. The delegate must conform to the NSCollectionViewDelegate
Protocol protocol.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

650 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

setDraggingSourceOperationMask:forLocal:
Configures the default value returned from draggingSourceOperationMaskForLocal: (page 3670).

- (void)setDraggingSourceOperationMask:(NSDragOperation)dragOperationMask
forLocal:(BOOL)localDestination

Parameters
dragOperationMask

The types of drag operations allowed.

localDestination
If YES, mask applies when the drag destination object is in the same application as the receiver; if NO,
mask applies when the destination object is outside the receiver’s application.

Discussion
By default, this method returns NSDragOperationEvery (page 3665) when localDestination is YES and
NSDragOperationNone (page 3666) when localDestination is NO. NSCollectionView will save the
values you set for each localDestination value.

You typically will invoke this method, and not override it.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

setItemPrototype:
Sets the receiver’s item prototype to the specified collection view item.

- (void)setItemPrototype:(NSCollectionViewItem *)prototype

Parameters
prototype

The collection view item used as the prototype by the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

setMaxItemSize:
Sets the maximum size used to display individual collection view items in the grid.

- (void)setMaxItemSize:(NSSize)size

Parameters
size

The new maximum size, measured in points, with which to display individual collection view items.

Instance Methods 651
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Discussion
Setting the size to (0,0) specifies no maximum grid size. The default is (0.0). If the view in the receiver’s
collection view item prototype is resizable you should set this to the maximum size that the view should be
displayed using.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

setMaxNumberOfColumns:
Sets the maximum number of columns the receiver will display

- (void)setMaxNumberOfColumns:(NSUInteger)number

Parameters
number

The maximum number of columns the receiver will display.

Discussion
Setting to 0 specifies no maximum number of columns. Defaults to 0.

It is possible for a NSCollectionView instance to specify both the maximum number of rows and a maximum
number of columns. If the number of content objects exceeds the number of displayable items
(n=maxNumberOfRows * maxNumberOfColumns) only the first n items of the content array are displayed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

setMaxNumberOfRows:
Sets the maximum number of rows the receiver will display.

- (void)setMaxNumberOfRows:(NSUInteger)number

Parameters
number

The maximum number of rows the receiver can display.

Discussion
Setting to 0 specifies no maximum number of rows. Defaults to 0.

It is possible for a NSCollectionView instance to specify both the maximum number of rows and a maximum
number of columns. If the number of content objects exceeds the number of displayable items
(n=maxNumberOfRows * maxNumberOfColumns) only the first n items of the content array are displayed.

Availability
Available in Mac OS X v10.5 and later.

652 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Declared In
NSCollectionView.h

setMinItemSize:
Sets the minimum size used to display individual layout items in the grid.

- (void)setMinItemSize:(NSSize)size

Parameters
size

The new minimum size, measured in points, with which to display individual layout items.

Discussion
The default is (0.0). If the view in the receiver’s collection view item prototype is resizable you should set this
to the minimum size that the view should be displayed using.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

setSelectable:
Controls whether the receiver allows the user to select items.

- (void)setSelectable:(BOOL)flag

Parameters
flag

If flag is YES, the receiver allows the user to select items; if flag is NO, it doesn’t.

Discussion
You can set selections programmatically regardless of this setting.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

setSelectionIndexes:
Sets the receiver’s selection using the specified indexes.

- (void)setSelectionIndexes:(NSIndexSet *)indexes

Parameters
indexes

The set of selection indexes for the receiver.

Instance Methods 653
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Discussion
To select all the receiver’s objects, indexes should be an index set with indexes [0...count -1]. To deselect all
indexes, pass an empty index set.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

Constants

NSCollectionViewDropOperation
These constants specify if acceptance of a drop should be at the item it is dropped on or before the item.
These constants are used by the collectionView:acceptDrop:index:dropOperation: (page 3608) and
collectionView:validateDrop:proposedIndex:dropOperation: (page 3610) methods in
NSCollectionViewDelegate Protocol

enum { NSCollectionViewDropOn = 0, NSCollectionViewDropBefore = 1, };
typedef NSInteger NSCollectionViewDropOperation;

Constants
NSCollectionViewDropOn

The drop occurs at the collection view item to which the item was dragged.

Available in Mac OS X v10.6 and later.

Declared in NSCollectionView.h.

NSCollectionViewDropBefore
The drop occurs above the collection view item to which the item was dragged..

Available in Mac OS X v10.6 and later.

Declared in NSCollectionView.h.

654 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 26

NSCollectionView Class Reference

Inherits from NSViewController : NSResponder : NSObject

Conforms to NSCopying
NSCoding (NSViewController)
NSCoding (NSResponder)
NSObject (NSObject)
NSEditor (Informal Protocol) (NSViewController)
NSEditorRegistration (Informal Protocol) (NSViewController)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSCollectionViewItem.h

Overview

NSCollectionViewItem class is a controller that manages the relationship between a compound view and
the model object that provides its content. Instances of this class are replicated in a NSCollectionView.

Important: In Mac OS X v10.5, the superclass of the NSCollectionViewItem class was NSObject. In Mac OS X
v10.6 and later, NSCollectionViewItem is now a subclass of NSViewController. This change was made to
improve how the view is replicated within the NSCollectionView. NSCollectionViewItem remains binary
compatible with the previous implementation and unarchiving is correctly handled.

Tasks

Setting the Represented Object

– setRepresentedObject: (page 657)
Sets the receiver’s represented object to the specified model object.

– representedObject (page 657)
Returns the receiver’s represented object.

Overview 655
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 27

NSCollectionViewItem Class Reference

Modifying the View

– setView: (page 658)
Sets the view the receiver uses to display its represented object.

– view (page 658)
Returns the view the receiver uses to display its represented object.

Managing the Selection

– setSelected: (page 657)
Sets the selection state of the receiver.

– isSelected (page 656)
Returns the selection state of the receiver.

Parent Collection View

– collectionView (page 656)
Returns the receiver’s collection view.

Instance Methods

collectionView
Returns the receiver’s collection view.

- (NSCollectionView *)collectionView

Return Value
The receiver’s collection view.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

isSelected
Returns the selection state of the receiver.

- (BOOL)isSelected

Return Value
YES if the receiver is selected, otherwise NO.

656 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 27

NSCollectionViewItem Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

representedObject
Returns the receiver’s represented object. (Available in Mac OS X v10.5 through Mac OS X v10.5.)

- (id)representedObject

Return Value
The receiver’s represented object.

Availability
Available in Mac OS X v10.5 through Mac OS X v10.5.

Declared In
NSCollectionView.h

setRepresentedObject:
Sets the receiver’s represented object to the specified model object. (Available in Mac OS X v10.5 through
Mac OS X v10.5.)

- (void)setRepresentedObject:(id)object

Parameters
object

The receiver’s model object.

Availability
Available in Mac OS X v10.5 through Mac OS X v10.5.

Declared In
NSCollectionView.h

setSelected:
Sets the selection state of the receiver.

- (void)setSelected:(BOOL)flag

Parameters
flag

YES if the receiver is selected, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCollectionView.h

Instance Methods 657
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 27

NSCollectionViewItem Class Reference

setView:
Sets the view the receiver uses to display its represented object. (Available in Mac OS X v10.5 through Mac
OS X v10.5.)

- (void)setView:(NSView *)view

Parameters
view

The view that is used to display the receiver’s represented object.

Availability
Available in Mac OS X v10.5 through Mac OS X v10.5.

Declared In
NSCollectionView.h

view
Returns the view the receiver uses to display its represented object. (Available in Mac OS X v10.5 through
Mac OS X v10.5.)

- (NSView *)view

Return Value
The view the receiver uses to display its represented object.

Availability
Available in Mac OS X v10.5 through Mac OS X v10.5.

Declared In
NSCollectionView.h

658 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 27

NSCollectionViewItem Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSPasteboardWriting
NSPasteboardReading
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSColor.h

Companion guide Color Programming Topics

Related sample code Cocoa OpenGL
From A View to A Movie
From A View to A Picture
Quartz Composer WWDC 2005 TextEdit
Sketch-112

Class at a Glance

An NSColor object represents a color, which is defined in a color space, each point of which has a set of
components (such as red, green, and blue) that uniquely define a color.

Principal Attributes

 ■ Color space

 ■ Color components

Various colorWith... and colorUsing... methods.
Preset colors: blackColor (page 667), blueColor (page 668), and so on.

Class at a Glance 659
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Commonly Used Methods

colorUsingColorSpaceName: (page 700)
Creates an NSColor instance in the specified color space.

set (page 711)
Sets the drawing color.

Overview

An NSColor object represents color and sometimes opacity (alpha). By sending a set (page 711) message
to an NSColor instance, you set the color for the current drawing context. Setting the color causes
subsequently drawn graphics to have the color represented by the NSColor instance.

It is invalid to use an accessor method related to components of a particular color space on an NSColor
object that is not in that color space. For example, methods such as redComponent (page 710) and
getRed:green:blue:alpha: (page 705) work on color objects in the calibrated and device RGB color
spaces. If you send such a message to an NSColor object in the CMYK color space, an exception is raised.
Further, the methods getComponents: (page 703) and numberOfComponents (page 709) work in color
spaces that have individual components. Thus they return the components of NSColor objects as individual
floating-point values regardless of whether they’re based on NSColorSpace objects or named color spaces.
However, older component-fetching methods such as redComponent and getRed:green:blue:alpha:
are only effective on NSColor objects based on named color spaces.

If you have an NSColor object in an unknown color space and you want to extract its components, you
should first convert the color object to a known color space before using the component accessor methods
of that color space.

Adopted Protocols

NSCoding
encodeWithCoder:

initWithCoder:

NSCopying
copyWithZone:

Tasks

Creating an NSColor Object from Component Values

+ colorWithCalibratedHue:saturation:brightness:alpha: (page 670)
Creates and returns an NSColor object using the given opacity and HSB color space components.

660 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

+ colorWithCalibratedRed:green:blue:alpha: (page 670)
Creates and returns an NSColor object using the given opacity and RGB components.

+ colorWithCalibratedWhite:alpha: (page 671)
Creates and returns an NSColor object using the given opacity and grayscale value.

+ colorWithCatalogName:colorName: (page 672)
Creates and returns an NSColor object by finding the color with the specified name in the given
catalog.

+ colorWithDeviceCyan:magenta:yellow:black:alpha: (page 674)
Creates and returns an NSColor object using the given opacity value and CMYK components.

+ colorWithDeviceHue:saturation:brightness:alpha: (page 674)
Creates and returns an NSColor object using the given opacity value and HSB color space components.

+ colorWithDeviceRed:green:blue:alpha: (page 675)
Creates and returns an NSColor object using the given opacity value and RGB components.

+ colorWithDeviceWhite:alpha: (page 676)
Creates and returns an NSColor object using the given opacity and grayscale values.

+ colorWithCIColor: (page 672)
Converts a Core Image color object to its NSColor equivalent.

+ colorWithColorSpace:components:count: (page 673)
Returns an NSColor object created from the specified components of the given color space.

Creating an NSColor with Preset Components

+ blackColor (page 667)
Returns an NSColor object whose grayscale value is 0.0 and whose alpha value is 1.0.

+ blueColor (page 668)
Returns an NSColor object whose RGB value is 0.0, 0.0, 1.0 and whose alpha value is 1.0.

+ brownColor (page 668)
Returns an NSColor object whose RGB value is 0.6, 0.4, 0.2 and whose alpha value is 1.0.

+ clearColor (page 668)
Returns an NSColor object whose grayscale and alpha values are both 0.0.

+ cyanColor (page 681)
Returns an NSColor object whose RGB value is 0.0, 1.0, 1.0 and whose alpha value is 1.0.

+ darkGrayColor (page 681)
Returns an NSColor object whose grayscale value is 1/3 and whose alpha value is 1.0.

+ grayColor (page 682)
Returns an NSColor object whose grayscale value is 0.5 and whose alpha value is 1.0.

+ greenColor (page 682)
Returns an NSColor object whose RGB value is 0.0, 1.0, 0.0 and whose alpha value is 1.0.

+ lightGrayColor (page 686)
Returns an NSColor object whose grayscale value is 2/3 and whose alpha value is 1.0.

+ magentaColor (page 686)
Returns an NSColor object whose RGB value is 1.0, 0.0, 1.0 and whose alpha value is 1.0.

+ orangeColor (page 686)
Returns an NSColor object whose RGB value is 1.0, 0.5, 0.0 and whose alpha value is 1.0.

Tasks 661
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

+ purpleColor (page 687)
Returns an NSColor object whose RGB value is 0.5, 0.0, 0.5 and whose alpha value is 1.0.

+ redColor (page 687)
Returns an NSColor object whose RGB value is 1.0, 0.0, 0.0 and whose alpha value is 1.0.

+ whiteColor (page 693)
Returns an NSColor object whose grayscale and alpha values are both 1.0.

+ yellowColor (page 695)
Returns an NSColor object whose RGB value is 1.0, 1.0, 0.0 and whose alpha value is 1.0.

Working with Pattern Images

+ colorWithPatternImage: (page 677)
Creates and returns an NSColor object that uses the specified image pattern.

– patternImage (page 709)
Returns the image that the receiver is using as a pattern.

Creating a System Color—an NSColor Whose Value Is Specified by User
Preferences

+ alternateSelectedControlColor (page 666)
Returns the system color used for the face of a selected control.

+ alternateSelectedControlTextColor (page 667)
Returns the system color used for text in a selected control.

+ colorForControlTint: (page 669)
Returns the NSColor object specified by the given control tint.

+ controlBackgroundColor (page 677)
Returns the system color used for the background of large controls.

+ controlColor (page 678)
Returns the system color used for the flat surfaces of a control.

+ controlAlternatingRowBackgroundColors (page 677)
Returns an array containing the system specified background colors for alternating rows in tables
and lists.

+ controlHighlightColor (page 679)
Returns the system color used for the highlighted bezels of controls.

+ controlLightHighlightColor (page 679)
Returns the system color used for light highlights in controls.

+ controlShadowColor (page 679)
Returns the system color used for the shadows dropped from controls.

+ controlDarkShadowColor (page 678)
Returns the system color used for the dark edge of the shadow dropped from controls.

+ controlTextColor (page 680)
Returns the system color used for text on controls that aren’t disabled.

662 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

+ currentControlTint (page 680)
Returns the current system control tint.

+ disabledControlTextColor (page 681)
Returns the system color used for text on disabled controls.

+ gridColor (page 683)
Returns the system color used for the optional gridlines in, for example, a table view.

+ headerColor (page 683)
Returns the system color used as the background color for header cells in table views and outline
views.

+ headerTextColor (page 684)
Returns the system color used for text in header cells in table views and outline views.

+ highlightColor (page 684)
Returns the system color that represents the virtual light source on the screen.

+ keyboardFocusIndicatorColor (page 685)
Returns the system color that represents the keyboard focus ring around controls.

+ knobColor (page 685)
Returns the system color used for the flat surface of a slider knob that hasn’t been selected.

+ scrollBarColor (page 688)
Returns the system color used for scroll “bars”—that is, for the groove in which a scroller’s knob moves

+ secondarySelectedControlColor (page 688)
Returns the system color used in non-key views.

+ selectedControlColor (page 688)
Returns the system color used for the face of a selected control.

+ selectedControlTextColor (page 689)
Returns the system color used for text in a selected control—a control being clicked or dragged.

+ selectedMenuItemColor (page 690)
Returns the system color used for the face of selected menu items.

+ selectedMenuItemTextColor (page 690)
Returns the system color used for the text in menu items.

+ selectedTextBackgroundColor (page 690)
Returns the system color used for the background of selected text.

+ selectedTextColor (page 691)
Returns the system color used for selected text.

+ selectedKnobColor (page 689)
Returns the system color used for the slider knob when it is selected.

+ shadowColor (page 692)
Returns the system color that represents the virtual shadows cast by raised objects on the screen.

+ textBackgroundColor (page 692)
Returns the system color used for the text background.

+ textColor (page 693)
Returns the system color used for text.

+ windowBackgroundColor (page 694)
Returns a pattern color that will draw the ruled lines for the window background.

Tasks 663
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

+ windowFrameColor (page 694)
Returns the system color used for window frames, except for their text.

+ windowFrameTextColor (page 694)
Returns the system color used for the text in window frames.

Ignoring Alpha Components

+ ignoresAlpha (page 684)
Returns a Boolean value indicating whether the application supports alpha.

+ setIgnoresAlpha: (page 691)
Specifies whether an application supports alpha.

Copying and Pasting

+ colorFromPasteboard: (page 669)
Returns the NSColor currently on the given pasteboard.

– writeToPasteboard: (page 713)
Writes the receiver’s data to the specified pasteboard.

Retrieving a Set of Components

– getCyan:magenta:yellow:black:alpha: (page 703)
Returns the receiver’s CMYK and opacity values.

– getHue:saturation:brightness:alpha: (page 704)
Returns the receiver’s HSB component and opacity values in the respective arguments.

– getRed:green:blue:alpha: (page 705)
Returns the receiver’s RGB component and opacity values in the respective arguments.

– getWhite:alpha: (page 706)
Returns the receiver’s grayscale value and alpha values.

– getComponents: (page 703)
Returns the components of the receiver as an array.

– numberOfComponents (page 709)
Returns the number of components in the receiver.

Retrieving Individual Components

– alphaComponent (page 695)
Returns the receiver’s alpha (opacity) component.

– blackComponent (page 696)
Returns the receiver’s black component.

– blueComponent (page 697)
Returns the receiver’s blue component.

664 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

– brightnessComponent (page 697)
Returns the brightness component of the HSB color equivalent to the receiver.

– catalogNameComponent (page 698)
Returns the name of the catalog containing the receiver’s name.

– colorNameComponent (page 698)
Returns the receiver’s name.

– cyanComponent (page 702)
Returns the receiver’s cyan component.

– greenComponent (page 706)
Returns the receiver’s green component.

– hueComponent (page 707)
Returns the hue component of the HSB color equivalent to the receiver.

– localizedCatalogNameComponent (page 708)
Returns the name of the catalog containing the receiver's name as a localized string.

– localizedColorNameComponent (page 708)
Returns the name of the receiver as a localized string.

– magentaComponent (page 708)
Returns the receiver’s magenta component.

– redComponent (page 710)
Returns the receiver’s red component.

– saturationComponent (page 710)
Returns the saturation component of the HSB color equivalent to the receiver.

– whiteComponent (page 712)
Returns the receiver’s white component.

– yellowComponent (page 713)
Returns the receiver’s yellow component.

Working with the Color Space

– colorSpaceName (page 699)
Returns the name of the receiver’s color space.

– colorUsingColorSpaceName: (page 700)
Creates and returns an NSColor whose color is the same as the receiver’s, except that the new
NSColor is in the specified color space.

– colorUsingColorSpaceName:device: (page 701)
Creates and returns an NSColor object whose color is the same as the receiver’s, except that the new
NSColor is in the given color space and is specific to the given device.

– colorSpace (page 699)
Returns an object representing the color space of the receiver.

– colorUsingColorSpace: (page 700)
Returns a new color object representing the color of the receiver in the specified color space.

Tasks 665
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Changing the Color

– blendedColorWithFraction:ofColor: (page 696)
Creates and returns an NSColor object whose component values are a weighted sum of the receiver’s
and the specified color object's.

– colorWithAlphaComponent: (page 701)
Creates and returns an NSColor object that has the same color space and component values as the
receiver, but the specified alpha component.

– highlightWithLevel: (page 707)
Returns an NSColor object that represents a blend between the receiver and the highlight color
returned by highlightColor (page 684).

– shadowWithLevel: (page 712)
Returns an NSColor object that represents a blend between the receiver and the shadow color
returned by shadowColor (page 692).

Drawing

– drawSwatchInRect: (page 702)
Draws the current color in the given rectangle.

– set (page 711)
Sets the color of subsequent drawing to the color that the receiver represents.

– setFill (page 711)
Sets the fill color of subsequent drawing to the receiver’s color.

– setStroke (page 711)
Sets the stroke color of subsequent drawing to the receiver’s color.

Class Methods

alternateSelectedControlColor
Returns the system color used for the face of a selected control.

+ (NSColor *)alternateSelectedControlColor

Return Value
The system color used for the face of a selected control—a control being clicked or dragged. This color can
be used where iApp-like highlighting is desired. For general information about system colors, see Accessing
System Colors.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ alternateSelectedControlTextColor (page 667)
+ selectedControlColor (page 688)

666 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Declared In
NSColor.h

alternateSelectedControlTextColor
Returns the system color used for text in a selected control.

+ (NSColor *)alternateSelectedControlTextColor

Return Value
The system color used for text in a selected control—a control being clicked or dragged. This color can be
used where iApp-like highlighting is desired. For general information about system colors, see Accessing
System Colors.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ alternateSelectedControlColor (page 666)
+ selectedControlTextColor (page 689)

Related Sample Code
PhotoSearch

Declared In
NSColor.h

blackColor
Returns an NSColor object whose grayscale value is 0.0 and whose alpha value is 1.0.

+ (NSColor *)blackColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– blackComponent (page 696)

Related Sample Code
DockTile
PDF Annotation Editor
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSColor.h

Class Methods 667
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

blueColor
Returns an NSColor object whose RGB value is 0.0, 0.0, 1.0 and whose alpha value is 1.0.

+ (NSColor *)blueColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– blueComponent (page 697)

Related Sample Code
FunkyOverlayWindow
Grady
VertexPerformanceTest
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSColor.h

brownColor
Returns an NSColor object whose RGB value is 0.6, 0.4, 0.2 and whose alpha value is 1.0.

+ (NSColor *)brownColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
StickiesWithCoreData

Declared In
NSColor.h

clearColor
Returns an NSColor object whose grayscale and alpha values are both 0.0.

+ (NSColor *)clearColor

Return Value
The NSColor object.

668 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AnimatedTableView
CompositeLab
FunkyOverlayWindow
Sketch-112
TrackBall

Declared In
NSColor.h

colorForControlTint:
Returns the NSColor object specified by the given control tint.

+ (NSColor *)colorForControlTint:(NSControlTint)controlTint

Parameters
controlTint

The control tint for which to return an NSColor object. This is one of the tint settings. For more on
control tints, see Using the System Control Tint.

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentControlTint (page 680)

Declared In
NSColor.h

colorFromPasteboard:
Returns the NSColor currently on the given pasteboard.

+ (NSColor *)colorFromPasteboard:(NSPasteboard *)pasteBoard

Parameters
pasteBoard

The pasteboard from which to return the color.

Return Value
The color currently on the pasteboard or nil if pasteBoard doesn’t contain color data. The returned color’s
alpha component is set to 1.0 if ignoresAlpha (page 684) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 669
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

See Also
– writeToPasteboard: (page 713)

Related Sample Code
CompositeLab
Sketch+Accessibility
Sketch-112

Declared In
NSColor.h

colorWithCalibratedHue:saturation:brightness:alpha:
Creates and returns an NSColor object using the given opacity and HSB color space components.

+ (NSColor *)colorWithCalibratedHue:(CGFloat)hue saturation:(CGFloat)saturation
brightness:(CGFloat)brightness alpha:(CGFloat)alpha

Parameters
hue

The hue component of the color object in the HSB color space.

saturation
The saturation component of the color object in the HSB color space.

brightness
The brightness (or value) component of the color object in the HSB color space.

alpha
The opacity value of the color object,

Return Value
The color object.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ colorWithCalibratedRed:green:blue:alpha: (page 670)
+ colorWithDeviceHue:saturation:brightness:alpha: (page 674)
– getHue:saturation:brightness:alpha: (page 704)

Related Sample Code
NewsReader

Declared In
NSColor.h

colorWithCalibratedRed:green:blue:alpha:
Creates and returns an NSColor object using the given opacity and RGB components.

670 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

+ (NSColor *)colorWithCalibratedRed:(CGFloat)red green:(CGFloat)green
blue:(CGFloat)blue alpha:(CGFloat)alpha

Parameters
red

The red component of the color object.

green
The green component of the color object.

blue
The blue component of the color object.

alpha
The opacity value of the color object.

Return Value
The color object.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ colorWithCalibratedHue:saturation:brightness:alpha: (page 670)
+ colorWithDeviceRed:green:blue:alpha: (page 675)
– getRed:green:blue:alpha: (page 705)

Related Sample Code
Color Sampler
ImageApp
ImageKitDemo
SonogramViewDemo
WhackedTV

Declared In
NSColor.h

colorWithCalibratedWhite:alpha:
Creates and returns an NSColor object using the given opacity and grayscale value.

+ (NSColor *)colorWithCalibratedWhite:(CGFloat)white alpha:(CGFloat)alpha

Parameters
white

The grayscale value of the color object.

alpha
The opacity value of the color object.

Return Value
The color object.

Class Methods 671
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ colorWithDeviceWhite:alpha: (page 676)
– getWhite:alpha: (page 706)

Related Sample Code
ClockControl
CocoaSlides
MatrixMixerTest
SampleRaster
WhackedTV

Declared In
NSColor.h

colorWithCatalogName:colorName:
Creates and returns an NSColor object by finding the color with the specified name in the given catalog.

+ (NSColor *)colorWithCatalogName:(NSString *)listName colorName:(NSString
*)colorName

Parameters
listName

The name of the catalog in which to find the specified color; this may be a standard catalog.

colorName
The name of the color. Note that the color must be defined in the named color space to retrieve it
with this method.

Return Value
The color object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– catalogNameComponent (page 698)
– colorNameComponent (page 698)
– localizedCatalogNameComponent (page 708)

Declared In
NSColor.h

colorWithCIColor:
Converts a Core Image color object to its NSColor equivalent.

672 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

+ (NSColor *)colorWithCIColor:(CIColor *)color

Parameters
color

The Core Image color to convert.

Return Value
The NSColor object corresponding to the specified Core Image color.

Discussion
The method raises if the color space and components associated with color are nil or invalid.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CIColorTracking
FunHouse

Declared In
NSColor.h

colorWithColorSpace:components:count:
Returns an NSColor object created from the specified components of the given color space.

+ (NSColor *)colorWithColorSpace:(NSColorSpace *)space components:(const CGFloat
*)components count:(NSInteger)numberOfComponents

Parameters
space

An NSColorSpace object representing a color space. The method raises if this is nil.

components
An array of the components in the specified color space to use to create the NSColor object. The
order of these components is determined by the color-space profile, with the alpha component always
last. (If you want the created color to be opaque, specify 1.0 for the alpha component.)

numberOfComponents
The number of components in the components array. This should match the number dictated by the
specified color space plus one for alpha. This method raises an exception if they do not match.

Return Value
The color object. If space represents a color space that cannot cannot be used with NSColor objects—for
example, a “pattern” color space—the method returns nil.

Availability
Available in Mac OS X v10.4 and later.

See Also
– colorUsingColorSpace: (page 700)

Related Sample Code
AnimatedTableView

Class Methods 673
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Declared In
NSColor.h

colorWithDeviceCyan:magenta:yellow:black:alpha:
Creates and returns an NSColor object using the given opacity value and CMYK components.

+ (NSColor *)colorWithDeviceCyan:(CGFloat)cyan magenta:(CGFloat)magenta
yellow:(CGFloat)yellow black:(CGFloat)black alpha:(CGFloat)alpha

Parameters
cyan

The cyan component of the color object.

magenta
The magenta component of the color object.

yellow
The yellow component of the color object.

black
The black component of the color object.

alpha
The opacity value of the color object.

Return Value
The color object.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0. In PostScript, this color
space corresponds directly to the device-dependent operator setcmykcolor.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getCyan:magenta:yellow:black:alpha: (page 703)

Declared In
NSColor.h

colorWithDeviceHue:saturation:brightness:alpha:
Creates and returns an NSColor object using the given opacity value and HSB color space components.

+ (NSColor *)colorWithDeviceHue:(CGFloat)hue saturation:(CGFloat)saturation
brightness:(CGFloat)brightness alpha:(CGFloat)alpha

Parameters
hue

The hue component of the color object.

saturation
The saturation component of the color object.

674 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

brightness
The brightness component of the color object.

alpha
The opacity value of the color object.

Return Value
The color object.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0. In PostScript, this color
space corresponds directly to the device-dependent operator setrgbcolor.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ colorWithCalibratedHue:saturation:brightness:alpha: (page 670)
+ colorWithDeviceRed:green:blue:alpha: (page 675)
– getHue:saturation:brightness:alpha: (page 704)

Related Sample Code
MenuItemView

Declared In
NSColor.h

colorWithDeviceRed:green:blue:alpha:
Creates and returns an NSColor object using the given opacity value and RGB components.

+ (NSColor *)colorWithDeviceRed:(CGFloat)red green:(CGFloat)green blue:(CGFloat)blue
alpha:(CGFloat)alpha

Parameters
red

The red component of the color object.

green
The green component of the color object.

blue
The blue component of the color object.

alpha
The opacity value of the color object.

Return Value
The color object.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0. In PostScript, this color
space corresponds directly to the device-dependent operator setrgbcolor.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 675
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

See Also
+ colorWithCalibratedRed:green:blue:alpha: (page 670)
+ colorWithDeviceHue:saturation:brightness:alpha: (page 674)
– getRed:green:blue:alpha: (page 705)

Related Sample Code
Cocoa OpenGL
From A View to A Movie
From A View to A Picture
IconCollection
SourceView

Declared In
NSColor.h

colorWithDeviceWhite:alpha:
Creates and returns an NSColor object using the given opacity and grayscale values.

+ (NSColor *)colorWithDeviceWhite:(CGFloat)white alpha:(CGFloat)alpha

Parameters
white

The grayscale value of the color object.

alpha
The opacity value of the color object.

Return Value
The color object.

Discussion
Values below 0.0 are interpreted as 0.0, and values above 1.0 are interpreted as 1.0. In PostScript, this color
space corresponds directly to the device-dependent operator setgray.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ colorWithCalibratedWhite:alpha: (page 671)
– getWhite:alpha: (page 706)

Related Sample Code
FilterDemo
Link Snoop
PDFKitLinker2

Declared In
NSColor.h

676 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

colorWithPatternImage:
Creates and returns an NSColor object that uses the specified image pattern.

+ (NSColor *)colorWithPatternImage:(NSImage *)image

Parameters
image

The image to use as the pattern for the color object. The image is tiled starting at the bottom of the
window. The image is not scaled.

Return Value
The NSColor object. This color object is autoreleased.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dicey
FilterDemo
Worm

Declared In
NSColor.h

controlAlternatingRowBackgroundColors
Returns an array containing the system specified background colors for alternating rows in tables and lists.

+ (NSArray *)controlAlternatingRowBackgroundColors

Return Value
An array of NSColor objects specifying the system colors used for rows in tables and lists. You should not
assume the array will contain only two colors. For general information on system colors, see Accessing System
Colors.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSColor.h

controlBackgroundColor
Returns the system color used for the background of large controls.

+ (NSColor *)controlBackgroundColor

Return Value
The system color used for the background of large controls such as browsers, table views, and clip views. For
general information on system colors, see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 677
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Declared In
NSColor.h

controlColor
Returns the system color used for the flat surfaces of a control.

+ (NSColor *)controlColor

Return Value
The system color used for the flat surfaces of a control. By default, the control color is a pattern color that
will draw the ruled lines for the window background, which is the same as returned by
windowBackgroundColor (page 694).

If you use controlColor assuming that it is a solid, you may have an incorrect appearance. You should use
lightGrayColor (page 686) in its place.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSColor.h

controlDarkShadowColor
Returns the system color used for the dark edge of the shadow dropped from controls.

+ (NSColor *)controlDarkShadowColor

Return Value
Of the two dark borders that run along the bottom and right of controls, representing shadows, the color of
the outer, darker border. For general information about system colors, see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ controlShadowColor (page 679)

Related Sample Code
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSColor.h

678 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

controlHighlightColor
Returns the system color used for the highlighted bezels of controls.

+ (NSColor *)controlHighlightColor

Return Value
Of the two light borders that run along the top and left of controls, representing reflections from a light
source in the upper left, the color of the inner, duller border. For general information about system colors,
see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ controlLightHighlightColor (page 679)

Related Sample Code
DictionaryController

Declared In
NSColor.h

controlLightHighlightColor
Returns the system color used for light highlights in controls.

+ (NSColor *)controlLightHighlightColor

Return Value
Of the two light borders that run along the top and left of controls, representing reflections from a light
source in the upper left, the color of the outer, brighter border. For general information about system colors,
see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ controlHighlightColor (page 679)

Declared In
NSColor.h

controlShadowColor
Returns the system color used for the shadows dropped from controls.

+ (NSColor *)controlShadowColor

Return Value
Of the two dark borders that run along the bottom and right of controls, representing shadows, the color of
the inner, lighter border. For general information about system colors, see Accessing System Colors.

Class Methods 679
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ controlDarkShadowColor (page 678)

Declared In
NSColor.h

controlTextColor
Returns the system color used for text on controls that aren’t disabled.

+ (NSColor *)controlTextColor

Return Value
The color used for text on enabled controls. For general information about system colors, see Accessing
System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ disabledControlTextColor (page 681)

Related Sample Code
NewsReader
TextSizingExample

Declared In
NSColor.h

currentControlTint
Returns the current system control tint.

+ (NSControlTint)currentControlTint

Return Value
The current system control tint.

Discussion
An application can register for the NSControlTintDidChangeNotification (page 624) notification to be
notified of changes to the system control tint.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ colorForControlTint: (page 669)

Declared In
NSColor.h

680 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

cyanColor
Returns an NSColor object whose RGB value is 0.0, 1.0, 1.0 and whose alpha value is 1.0.

+ (NSColor *)cyanColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cyanComponent (page 702)

Related Sample Code
LayoutManagerDemo
RGB Image

Declared In
NSColor.h

darkGrayColor
Returns an NSColor object whose grayscale value is 1/3 and whose alpha value is 1.0.

+ (NSColor *)darkGrayColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ lightGrayColor (page 686)
+ grayColor (page 682)

Related Sample Code
iChatTheater
QuickLookDownloader
TextLinks
TrackIt

Declared In
NSColor.h

disabledControlTextColor
Returns the system color used for text on disabled controls.

+ (NSColor *)disabledControlTextColor

Class Methods 681
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Return Value
The color used for text on disabled controls. For general information about system colors, see Accessing
System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ controlTextColor (page 680)

Related Sample Code
NewsReader

Declared In
NSColor.h

grayColor
Returns an NSColor object whose grayscale value is 0.5 and whose alpha value is 1.0.

+ (NSColor *)grayColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ lightGrayColor (page 686)
+ darkGrayColor (page 681)

Related Sample Code
ImageMap
ImageMapExample
PhotoSearch
UIElementInspector
URL CacheInfo

Declared In
NSColor.h

greenColor
Returns an NSColor object whose RGB value is 0.0, 1.0, 0.0 and whose alpha value is 1.0.

+ (NSColor *)greenColor

Return Value
The NSColor object.

682 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– greenComponent (page 706)

Related Sample Code
MatrixMixerTest
TargetGallery
WebKitPluginStarter
WebKitPluginWithJavaScript
WhackedTV

Declared In
NSColor.h

gridColor
Returns the system color used for the optional gridlines in, for example, a table view.

+ (NSColor *)gridColor

Return Value
The system color used for gridlines. For general information about system colors, see Accessing System
Colors.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
IconCollection

Declared In
NSColor.h

headerColor
Returns the system color used as the background color for header cells in table views and outline views.

+ (NSColor *)headerColor

Return Value
The system color used as the background for header cells in table and outline views. For general information
about system colors, see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColor.h

Class Methods 683
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

headerTextColor
Returns the system color used for text in header cells in table views and outline views.

+ (NSColor *)headerTextColor

Return Value
The system color used for text in header cells in table and outline views. For general information about system
colors, see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColor.h

highlightColor
Returns the system color that represents the virtual light source on the screen.

+ (NSColor *)highlightColor

Return Value
The system color for the virtual light source on the screen.

Discussion
This method is invoked by the highlightWithLevel: (page 707) method. For general information about
system colors, see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
– highlightWithLevel: (page 707)

Declared In
NSColor.h

ignoresAlpha
Returns a Boolean value indicating whether the application supports alpha.

+ (BOOL)ignoresAlpha

Return Value
YES if the application doesn't support alpha; otherwise NO. This value is consulted when an application
imports alpha (through color dragging, for instance). The value determines whether the color panel has an
opacity slider.

This value is YES by default, indicating that the opacity components of imported colors will be set to 1.0. If
an application wants alpha, it can invoke the setIgnoresAlpha: (page 691) method with a parameter of
NO.

684 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setIgnoresAlpha: (page 691)
– alphaComponent (page 695)

Declared In
NSColor.h

keyboardFocusIndicatorColor
Returns the system color that represents the keyboard focus ring around controls.

+ (NSColor *)keyboardFocusIndicatorColor

Return Value
The system color representing the focus ring.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColor.h

knobColor
Returns the system color used for the flat surface of a slider knob that hasn’t been selected.

+ (NSColor *)knobColor

Return Value
The system color used for an unselected slider knob.

Discussion
The knob’s beveled edges, which set it in relief, are drawn in highlighted and shadowed versions of the face
color. When a knob is selected, its color changes to selectedKnobColor (page 689). For general information
about system colors, see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSColor.h

Class Methods 685
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

lightGrayColor
Returns an NSColor object whose grayscale value is 2/3 and whose alpha value is 1.0.

+ (NSColor *)lightGrayColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ grayColor (page 682)
+ darkGrayColor (page 681)

Related Sample Code
IconCollection
IdentitySample
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TrackIt

Declared In
NSColor.h

magentaColor
Returns an NSColor object whose RGB value is 1.0, 0.0, 1.0 and whose alpha value is 1.0.

+ (NSColor *)magentaColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– magentaComponent (page 708)

Related Sample Code
CocoaVideoFrameToGWorld
LayoutManagerDemo
RGB Image

Declared In
NSColor.h

orangeColor
Returns an NSColor object whose RGB value is 1.0, 0.5, 0.0 and whose alpha value is 1.0.

686 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

+ (NSColor *)orangeColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DispatchFractal
Grady
MenuItemView

Declared In
NSColor.h

purpleColor
Returns an NSColor object whose RGB value is 0.5, 0.0, 0.5 and whose alpha value is 1.0.

+ (NSColor *)purpleColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MenuItemView

Declared In
NSColor.h

redColor
Returns an NSColor object whose RGB value is 1.0, 0.0, 0.0 and whose alpha value is 1.0.

+ (NSColor *)redColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– redComponent (page 710)

Related Sample Code
MatrixMixerTest
UIElementInspector
WebKitPluginStarter

Class Methods 687
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

WebKitPluginWithJavaScript
WhackedTV

Declared In
NSColor.h

scrollBarColor
Returns the system color used for scroll “bars”—that is, for the groove in which a scroller’s knob moves

+ (NSColor *)scrollBarColor

Return Value
The system color used for scroll bars. For general information about system colors, see Accessing System
Colors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColor.h

secondarySelectedControlColor
Returns the system color used in non-key views.

+ (NSColor *)secondarySelectedControlColor

Return Value
The system color used in non-key views. For general information about system colors, see Accessing System
Colors.

Availability
Available in Mac OS X v10.1 and later.

See Also
+ selectedControlColor (page 688)

Declared In
NSColor.h

selectedControlColor
Returns the system color used for the face of a selected control.

+ (NSColor *)selectedControlColor

Return Value
The system color used for the face of a selected control—a control being dragged or clicked. For general
information about system colors, see Accessing System Colors

688 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ selectedControlTextColor (page 689)
+ secondarySelectedControlColor (page 688)
+ alternateSelectedControlColor (page 666)

Related Sample Code
CocoaAUHost
DictionaryController

Declared In
NSColor.h

selectedControlTextColor
Returns the system color used for text in a selected control—a control being clicked or dragged.

+ (NSColor *)selectedControlTextColor

Return Value
The system color used for text in a selected control—a control being clicked or dragged. For general
information about system colors, see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ selectedControlColor (page 688)
+ alternateSelectedControlTextColor (page 667)

Related Sample Code
TextSizingExample

Declared In
NSColor.h

selectedKnobColor
Returns the system color used for the slider knob when it is selected.

+ (NSColor *)selectedKnobColor

Return Value
The system color used for a slider knob that is selected—that is, dragged. For general information about
system colors, see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 689
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

See Also
+ knobColor (page 685)

Declared In
NSColor.h

selectedMenuItemColor
Returns the system color used for the face of selected menu items.

+ (NSColor *)selectedMenuItemColor

Return Value
The system color used for selected menu items. For general information about system colors, see Accessing
System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ selectedMenuItemTextColor (page 690)

Declared In
NSColor.h

selectedMenuItemTextColor
Returns the system color used for the text in menu items.

+ (NSColor *)selectedMenuItemTextColor

Return Value
The system color used for text in selected menu items. For general information about system colors, see
Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ selectedMenuItemColor (page 690)

Declared In
NSColor.h

selectedTextBackgroundColor
Returns the system color used for the background of selected text.

+ (NSColor *)selectedTextBackgroundColor

690 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Return Value
The system color used for the background of selected text. For general information about system colors, see
Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ selectedTextColor (page 691)

Related Sample Code
TextSizingExample

Declared In
NSColor.h

selectedTextColor
Returns the system color used for selected text.

+ (NSColor *)selectedTextColor

Return Value
The system color used for selected text. For general information about system colors, see Accessing System
Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ selectedTextBackgroundColor (page 690)

Declared In
NSColor.h

setIgnoresAlpha:
Specifies whether an application supports alpha.

+ (void)setIgnoresAlpha:(BOOL)flag

Parameters
flag

YES to indicate that the application won’t support alpha. By default, applications ignore alpha.

Discussion
If the application doesn't support alpha, no opacity slider is displayed in the color panel, and colors dragged
in or pasted have their alpha values set to 1.0. Applications that need to import alpha can invoke this method
with flag set to NO and explicitly make colors opaque in cases where it matters to them. Note that calling
this with a value of YES overrides any value set with the NSColorPanel method setShowsAlpha: (page
735).

Availability
Available in Mac OS X v10.0 and later.

Class Methods 691
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

See Also
+ ignoresAlpha (page 684)
– alphaComponent (page 695)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CompositeLab
Quartz Composer QCTV
Tinted Image

Declared In
NSColor.h

shadowColor
Returns the system color that represents the virtual shadows cast by raised objects on the screen.

+ (NSColor *)shadowColor

Return Value
The system color for the virtual shadows case by raised objects on the screen.

Discussion
This method is invoked by shadowWithLevel: (page 712). For general information about system colors, see
Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
– shadowWithLevel: (page 712)

Declared In
NSColor.h

textBackgroundColor
Returns the system color used for the text background.

+ (NSColor *)textBackgroundColor

Return Value
The system color used for the background of text. When text is selected, its background color changes to
the return value of selectedTextBackgroundColor (page 690). For general information about system
colors, see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ textColor (page 693)

692 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Related Sample Code
TextSizingExample

Declared In
NSColor.h

textColor
Returns the system color used for text.

+ (NSColor *)textColor

Return Value
The system color used for text. When text is selected, its color changes to the return value of
selectedTextColor (page 691). For general information about system colors, see Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ textBackgroundColor (page 692)

Declared In
NSColor.h

whiteColor
Returns an NSColor object whose grayscale and alpha values are both 1.0.

+ (NSColor *)whiteColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– whiteComponent (page 712)

Related Sample Code
Cocoa OpenGL
DragItemAround
FilterDemo
Quartz Composer WWDC 2005 TextEdit
Sketch-112

Declared In
NSColor.h

Class Methods 693
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

windowBackgroundColor
Returns a pattern color that will draw the ruled lines for the window background.

+ (NSColor *)windowBackgroundColor

Return Value
The pattern color used for the background of a window. For general information about system colors, see
Accessing System Colors.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AnimatedTableView

Declared In
NSColor.h

windowFrameColor
Returns the system color used for window frames, except for their text.

+ (NSColor *)windowFrameColor

Return Value
The system color used for window frames. For general information about system colors, see Accessing System
Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ windowFrameTextColor (page 694)

Declared In
NSColor.h

windowFrameTextColor
Returns the system color used for the text in window frames.

+ (NSColor *)windowFrameTextColor

Return Value
The system color used for text in window frames. For general information about system colors, see Accessing
System Colors.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ windowFrameColor (page 694)

694 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Declared In
NSColor.h

yellowColor
Returns an NSColor object whose RGB value is 1.0, 1.0, 0.0 and whose alpha value is 1.0.

+ (NSColor *)yellowColor

Return Value
The NSColor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– yellowComponent (page 713)

Related Sample Code
LayoutManagerDemo
RGB Image
SimpleStickies
StickiesWithCoreData
WebKitPluginStarter

Declared In
NSColor.h

Instance Methods

alphaComponent
Returns the receiver’s alpha (opacity) component.

- (CGFloat)alphaComponent

Return Value
The alpha component of the color object. If the receiver has no alpha component, this is 1.0 (opaque).

Availability
Available in Mac OS X v10.0 and later.

See Also
– getCyan:magenta:yellow:black:alpha: (page 703)
– getHue:saturation:brightness:alpha: (page 704)
– getRed:green:blue:alpha: (page 705)
– getWhite:alpha: (page 706)

Related Sample Code
DragItemAround

Instance Methods 695
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Monochrome Image

Declared In
NSColor.h

blackComponent
Returns the receiver’s black component.

- (CGFloat)blackComponent

Return Value
The color object's black component.

Discussion
This method works only with objects representing colors in the NSDeviceCMYKColorSpace color space.
Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getCyan:magenta:yellow:black:alpha: (page 703)

Declared In
NSColor.h

blendedColorWithFraction:ofColor:
Creates and returns an NSColor object whose component values are a weighted sum of the receiver’s and
the specified color object's.

- (NSColor *)blendedColorWithFraction:(CGFloat)fraction ofColor:(NSColor *)color

Parameters
fraction

The amount of the color to blend with the receiver's color. The method converts color and a copy
of the receiver to RGB, and then sets each component of the returned color to fraction of color’s
value plus 1 – fraction of the receiver’s.

color
The color to blend with the receiver's color.

Return Value
The resulting color object or nil if the colors can’t be converted.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile
SpeedometerView
WebKitPluginStarter

696 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

WebKitPluginWithJavaScript

Declared In
NSColor.h

blueComponent
Returns the receiver’s blue component.

- (CGFloat)blueComponent

Return Value
The color object's blue component.

Discussion
This method works only with objects representing colors in the NSCalibratedRGBColorSpace or
NSDeviceRGBColorSpace color space. Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getRed:green:blue:alpha: (page 705)

Related Sample Code
CIColorTracking
Color Sampler
QTCoreVideo301
Sketch+Accessibility

Declared In
NSColor.h

brightnessComponent
Returns the brightness component of the HSB color equivalent to the receiver.

- (CGFloat)brightnessComponent

Return Value
The color object's brightness component.

Discussion
This method works only with objects representing colors in the NSCalibratedRGBColorSpace or
NSDeviceRGBColorSpace color space. Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getHue:saturation:brightness:alpha: (page 704)

Instance Methods 697
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Declared In
NSColor.h

catalogNameComponent
Returns the name of the catalog containing the receiver’s name.

- (NSString *)catalogNameComponent

Return Value
The name of the catalog containing the color object.

Discussion
This method raises an exception if the receiver’s color space isn’t NSNamedColorSpace.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ colorWithCatalogName:colorName: (page 672)
– colorNameComponent (page 698)
– localizedCatalogNameComponent (page 708)

Declared In
NSColor.h

colorNameComponent
Returns the receiver’s name.

- (NSString *)colorNameComponent

Return Value
The name of the color object.

Discussion
This method raises an exception if the receiver’s color space isn’t NSNamedColorSpace.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ colorWithCatalogName:colorName: (page 672)
– catalogNameComponent (page 698)
– localizedCatalogNameComponent (page 708)

Declared In
NSColor.h

698 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

colorSpace
Returns an object representing the color space of the receiver.

- (NSColorSpace *)colorSpace

Return Value
An object representing a color space. The returned NSColorSpace object may represent a custom color
space.

Discussion
Calling this method raises an exception if the receiver is not based on a color space represented by an
NSColorSpaceobject—specifically, colors designated byNSNamedColorSpace andNSPatternColorSpace.
If you are unsure about a color object, convert it to an equivalent NSColorSpace-based object before calling
this method. Color objects created with color-space names NSCalibratedWhiteColorSpace,
NSCalibratedBlackColorSpace, NSCalibratedRGBColorSpace, NSDeviceWhiteColorSpace,
NSDeviceBlackColorSpace, NSDeviceRGBColorSpace, NSDeviceCMYKColorSpace, or
NSCustomColorSpace—or with the NSColorSpace class methods corresponding to these names—are
safe to use with this method. See “About Color Spaces" in Color Programming Topics for a list of these
corresponding methods.

Availability
Available in Mac OS X v10.4 and later.

See Also
– getComponents: (page 703)
– numberOfComponents (page 709)

Declared In
NSColor.h

colorSpaceName
Returns the name of the receiver’s color space.

- (NSString *)colorSpaceName

Return Value
The name of the color space.

Discussion
This method should be implemented in subclasses of NSColor.

Availability
Available in Mac OS X v10.0 and later.

See Also
– colorUsingColorSpaceName: (page 700)
– colorUsingColorSpaceName:device: (page 701)

Related Sample Code
MyCustomColorPicker

Instance Methods 699
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Declared In
NSColor.h

colorUsingColorSpace:
Returns a new color object representing the color of the receiver in the specified color space.

- (NSColor *)colorUsingColorSpace:(NSColorSpace *)space

Parameters
space

The color space of the new NSColor object.

Return Value
The new NSColor object. This method converts the receiver's color to an equivalent one in the new color
space. Although the new color might have different component values, it looks the same as the original.
Returns nil if conversion is not possible.

If the receiver's color space is the same as that specified in space, this method returns the same NSColor
object.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ colorWithColorSpace:components:count: (page 673)

Related Sample Code
Quartz 2D Shadings
Quartz Composer QCTV

Declared In
NSColor.h

colorUsingColorSpaceName:
Creates and returns an NSColor whose color is the same as the receiver’s, except that the new NSColor is
in the specified color space.

- (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace

Parameters
colorSpace

The name of the color space containing the new NSColor object. If colorSpace is nil, the most
appropriate color space is used.

Return Value
The new NSColor object or nil if the specified conversion cannot be done.

Availability
Available in Mac OS X v10.0 and later.

See Also
– colorSpaceName (page 699)

700 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Related Sample Code
CoreAnimationText
CWCocoaComponent
DispatchFractal
MenuItemView
Reminders

Declared In
NSColor.h

colorUsingColorSpaceName:device:
Creates and returns an NSColor object whose color is the same as the receiver’s, except that the new NSColor
is in the given color space and is specific to the given device.

- (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace device:(NSDictionary
 *)deviceDescription

Parameters
colorSpace

The name of the color space containing the new NSColor object. If colorSpace is nil, the most
appropriate color space is used.

deviceDescription
The device description. Device descriptions can be obtained from windows, screens, and printers with
the deviceDescription method.

If deviceDescription is nil, the current device (as obtained from the currently lockFocus’ed view’s
window or, if printing, the current printer) is used.

Return Value
The new NSColor object or nil if the specified conversion cannot be done.

Availability
Available in Mac OS X v10.0 and later.

See Also
– colorSpaceName (page 699)
– colorUsingColorSpaceName: (page 700)

Declared In
NSColor.h

colorWithAlphaComponent:
Creates and returns an NSColor object that has the same color space and component values as the receiver,
but the specified alpha component.

- (NSColor *)colorWithAlphaComponent:(CGFloat)alpha

Parameters
alpha

The opacity value of the new NSColor object.

Instance Methods 701
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Return Value
The new NSColor object. If the receiver’s color space doesn’t include an alpha component, the receiver is
returned.

Discussion
A subclass with explicit opacity components should override this method to return a color with the specified
alpha.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alphaComponent (page 695)
– blendedColorWithFraction:ofColor: (page 696)

Related Sample Code
FunkyOverlayWindow
ImageMap
ImageMapExample
Sketch-112
WebKitPluginStarter

Declared In
NSColor.h

cyanComponent
Returns the receiver’s cyan component.

- (CGFloat)cyanComponent

Return Value
The color object's cyan component.

Discussion
This method works only with objects representing colors in the NSDeviceCMYKColorSpace color space.
Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getCyan:magenta:yellow:black:alpha: (page 703)

Declared In
NSColor.h

drawSwatchInRect:
Draws the current color in the given rectangle.

- (void)drawSwatchInRect:(NSRect)rect

702 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Parameters
rect

The rectangle in which to draw the color.

Discussion
Subclasses adorn the rectangle in some manner to indicate the type of color. This method is invoked by color
wells, swatches, and other user interface objects that need to display colors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColor.h

getComponents:
Returns the components of the receiver as an array.

- (void)getComponents:(CGFloat *)components

Parameters
components

An array containing the components of the color object as float values.

Discussion
You can invoke this method on NSColor objects created from custom color spaces to get the individual
floating point components, including alpha. Raises an exception if the receiver doesn’t have floating-point
components. To find out how many components are in the components array, send the receiver a
numberOfComponents (page 709) message.

Availability
Available in Mac OS X v10.4 and later.

See Also
– colorSpace (page 699)

Related Sample Code
AnimatedTableView
CoreAnimationText
DispatchFractal
Quartz Composer QCTV

Declared In
NSColor.h

getCyan:magenta:yellow:black:alpha:
Returns the receiver’s CMYK and opacity values.

- (void)getCyan:(CGFloat *)cyan magenta:(CGFloat *)magenta yellow:(CGFloat *)yellow
black:(CGFloat *)black alpha:(CGFloat *)alpha

Instance Methods 703
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Parameters
cyan

Upon return, contains the cyan component of the color object.

magenta
Upon return, contains the magenta component of the color object.

yellow
Upon return, contains the yellow component of the color object.

black
Upon return, contains the black component of the color object.

alpha
Upon return, contains opacity value of the color object.

Discussion
If NULL is passed in as an argument, the method doesn’t set that value. This method works only with objects
representing colors in the NSDeviceCMYKColorSpace. Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alphaComponent (page 695)
– blackComponent (page 696)
– cyanComponent (page 702)
– magentaComponent (page 708)
– yellowComponent (page 713)

Declared In
NSColor.h

getHue:saturation:brightness:alpha:
Returns the receiver’s HSB component and opacity values in the respective arguments.

- (void)getHue:(CGFloat *)hue saturation:(CGFloat *)saturation brightness:(CGFloat
 *)brightness alpha:(CGFloat *)alpha

Parameters
hue

Upon return, contains the hue component of the color object.

saturation
Upon return, contains the saturation component of the color object.

brightness
Upon return, contains the brightness component of the color object.

alpha
Upon return, contains the opacity value of the color object.

Discussion
If NULL is passed in as an argument, the method doesn’t set that value. This method works only with objects
representing colors in the NSCalibratedRGBColorSpace or NSDeviceRGBColorSpace color space.
Sending it to other objects raises an exception.

704 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– alphaComponent (page 695)
– brightnessComponent (page 697)
– hueComponent (page 707)
– saturationComponent (page 710)

Related Sample Code
MenuItemView

Declared In
NSColor.h

getRed:green:blue:alpha:
Returns the receiver’s RGB component and opacity values in the respective arguments.

- (void)getRed:(CGFloat *)red green:(CGFloat *)green blue:(CGFloat *)blue
alpha:(CGFloat *)alpha

Parameters
red

Upon return, contains the red component of the color object.

green
Upon return, contains the green component of the color object.

blue
Upon return, contains the blue component of the color object.

alpha
Upon return, contains the opacity value of the color object.

Discussion
If NULL is passed in as an argument, the method doesn’t set that value. This method works only with objects
representing colors in the NSCalibratedRGBColorSpace or NSDeviceRGBColorSpace color space.
Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alphaComponent (page 695)
– blueComponent (page 697)
– greenComponent (page 706)
– redComponent (page 710)

Related Sample Code
CWCocoaComponent
FunHouse
Quartz 2D Shadings
RadiantColorPicker

Instance Methods 705
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Reminders

Declared In
NSColor.h

getWhite:alpha:
Returns the receiver’s grayscale value and alpha values.

- (void)getWhite:(CGFloat *)white alpha:(CGFloat *)alpha

Parameters
white

Upon return, contains the grayscale value of the color object.

alpha
Upon return, contains the opacity value of the color object.

Discussion
If NULL is passed in as an argument, the method doesn’t set that value. This method works only with objects
representing colors in the NSCalibratedWhiteColorSpace, NSCalibratedBlackColorSpace,
NSDeviceBlackColorSpace, or NSDeviceWhiteColorSpace color space. Sending it to other objects
raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alphaComponent (page 695)
– whiteComponent (page 712)

Declared In
NSColor.h

greenComponent
Returns the receiver’s green component.

- (CGFloat)greenComponent

Return Value
The color object's green component.

Discussion
This method works only with objects representing colors in the NSCalibratedRGBColorSpace or
NSDeviceRGBColorSpace color space. Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getRed:green:blue:alpha: (page 705)

706 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Related Sample Code
CIColorTracking
Color Sampler
QTCoreVideo301
Sketch+Accessibility

Declared In
NSColor.h

highlightWithLevel:
Returns an NSColor object that represents a blend between the receiver and the highlight color returned
by highlightColor (page 684).

- (NSColor *)highlightWithLevel:(CGFloat)highlightLevel

Parameters
highlightLevel

The amount of the highlight color that is blended with the receiver's color. This should be a number
from 0.0 through 1.0. A highlightLevel below 0.0 is interpreted as 0.0; a highlightLevel above
1.0 is interpreted as 1.0.

Return Value
The new NSColor object. Returns nil if the colors can’t be converted.

Discussion
Invoke this method when you want to brighten the receiving NSColor for use in highlights.

Availability
Available in Mac OS X v10.0 and later.

See Also
– shadowWithLevel: (page 712)

Declared In
NSColor.h

hueComponent
Returns the hue component of the HSB color equivalent to the receiver.

- (CGFloat)hueComponent

Return Value
The color object's hue component.

Discussion
This method works only with objects representing colors in the NSCalibratedRGBColorSpace or
NSDeviceRGBColorSpace color space. Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 707
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

See Also
– getHue:saturation:brightness:alpha: (page 704)

Declared In
NSColor.h

localizedCatalogNameComponent
Returns the name of the catalog containing the receiver's name as a localized string.

- (NSString *)localizedCatalogNameComponent

Return Value
The name of catalog containing the color object's name as a localized string. This string may be displayed
in user interface items like color pickers.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ colorWithCatalogName:colorName: (page 672)
– colorNameComponent (page 698)

Declared In
NSColor.h

localizedColorNameComponent
Returns the name of the receiver as a localized string.

- (NSString *)localizedColorNameComponent

Return Value
The name of color object as a localized string. This string may be displayed in user interface items like color
pickers.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ colorWithCatalogName:colorName: (page 672)
– catalogNameComponent (page 698)
– colorNameComponent (page 698)
– localizedCatalogNameComponent (page 708)

Declared In
NSColor.h

magentaComponent
Returns the receiver’s magenta component.

708 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

- (CGFloat)magentaComponent

Return Value
The color object's magenta component.

Discussion
This method works only with objects representing colors in the NSDeviceCMYKColorSpace color space.
Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getCyan:magenta:yellow:black:alpha: (page 703)

Declared In
NSColor.h

numberOfComponents
Returns the number of components in the receiver.

- (NSInteger)numberOfComponents

Return Value
The number of components in the color object. The floating-point components counted include alpha. This
method raises an exception if the receiver doesn’t have floating-point components.

Availability
Available in Mac OS X v10.4 and later.

See Also
– colorSpace (page 699)
– getComponents: (page 703)

Related Sample Code
AnimatedTableView

Declared In
NSColor.h

patternImage
Returns the image that the receiver is using as a pattern.

- (NSImage *)patternImage

Return Value
The image used by the color object. If the receiver doesn’t have an image, this method raises an exception.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 709
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Declared In
NSColor.h

redComponent
Returns the receiver’s red component.

- (CGFloat)redComponent

Return Value
The color object's red component.

Discussion
This method works only with objects representing colors in the NSCalibratedRGBColorSpace or
NSDeviceRGBColorSpace color space. Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getRed:green:blue:alpha: (page 705)

Related Sample Code
CIColorTracking
Color Sampler
QTCoreVideo301
Sketch+Accessibility

Declared In
NSColor.h

saturationComponent
Returns the saturation component of the HSB color equivalent to the receiver.

- (CGFloat)saturationComponent

Return Value
The color object's saturation component.

Discussion
This method works only with objects representing colors in the NSCalibratedRGBColorSpace or
NSDeviceRGBColorSpace color space. Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getHue:saturation:brightness:alpha: (page 704)

Declared In
NSColor.h

710 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

set
Sets the color of subsequent drawing to the color that the receiver represents.

- (void)set

Discussion
This method should be implemented in subclasses.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile
FilterDemo
MatrixMixerTest
Sketch-112
WhackedTV

Declared In
NSColor.h

setFill
Sets the fill color of subsequent drawing to the receiver’s color.

- (void)setFill

Discussion
This method should be implemented in subclasses.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setStroke (page 711)

Related Sample Code
AnimatedTableView
JSPong
SampleRaster

Declared In
NSColor.h

setStroke
Sets the stroke color of subsequent drawing to the receiver’s color.

- (void)setStroke

Discussion
This method should be implemented in subclasses.

Instance Methods 711
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– setFill (page 711)

Related Sample Code
SampleRaster

Declared In
NSColor.h

shadowWithLevel:
Returns an NSColor object that represents a blend between the receiver and the shadow color returned by
shadowColor (page 692).

- (NSColor *)shadowWithLevel:(CGFloat)shadowLevel

Parameters
shadowLevel

The amount of the shadow color used for the blend. This should be a number from 0.0 through 1.0.
A shadowLevel below 0.0 is interpreted as 0.0; a shadowLevel above 1.0 is interpreted as 1.0.

Return Value
The new NSColor object. Returns nil if the colors can’t be converted.

Discussion
Invoke this method when you want to darken the receiving NSColor for use in shadows.

Availability
Available in Mac OS X v10.0 and later.

See Also
– highlightWithLevel: (page 707)

Declared In
NSColor.h

whiteComponent
Returns the receiver’s white component.

- (CGFloat)whiteComponent

Return Value
The color object's white component.

Discussion
This method works only with objects representing colors in the NSCalibratedWhiteColorSpace,
NSCalibratedBlackColorSpace, NSDeviceBlackColorSpace, or NSDeviceWhiteColorSpace color
space. Sending it to other objects raises an exception.

712 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– getWhite:alpha: (page 706)

Declared In
NSColor.h

writeToPasteboard:
Writes the receiver’s data to the specified pasteboard.

- (void)writeToPasteboard:(NSPasteboard *)pasteBoard

Parameters
pasteBoard

The pasteboard to which to write the receiver's color data. If this pasteboard doesn’t support color
data, the method does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ colorFromPasteboard: (page 669)

Declared In
NSColor.h

yellowComponent
Returns the receiver’s yellow component.

- (CGFloat)yellowComponent

Return Value
The color object's yellow component.

Discussion
This method works only with objects representing colors in the NSDeviceCMYKColorSpace color space.
Sending it to other objects raises an exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getCyan:magenta:yellow:black:alpha: (page 703)

Declared In
NSColor.h

Instance Methods 713
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Constants

For definitions of NSColor constants, as well as a discussion of their usage, see “About Color Spaces” in Color
Programming Topics.

AppKit Versions for NSColor Bug Fixes
The version of the AppKit framework containing a specific bug fix.

#define NSAppKitVersionNumberWithPatternColorLeakFix 641.0

Constants
NSAppKitVersionNumberWithPatternColorLeakFix

The specific version of the AppKit framework that introduced the fix for correctly autoreleasing objects
returned by the colorWithPatternImage: (page 677) method. Developers should not need to use
this constant unless they are writing applications for Mac OS X v10.1 and earlier.

Available in Mac OS X v10.2 and later.

Declared in NSColor.h.

Notifications

NSSystemColorsDidChangeNotification
Sent when the system colors have been changed (such as through a system control panel interface).

This notification contains no notification object and no userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColor.h

714 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 28

NSColor Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSColorList.h

Companion guide Color Programming Topics

Related sample code AnimatedTableView

Overview

An NSColorList object is an ordered list of NSColor objects, identified by keys. Instances of NSColorList,
or more simply color lists, are used to manage named lists of NSColor instances. The NSColorPanel list
mode color picker uses instances of NSColorList to represent any lists of colors that come with the system,
as well as any lists created by the user. An application can use NSColorList to manage document-specific
color lists.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

Tasks

Initializing an NSColorList Object

– initWithName: (page 718)
Initializes and returns the receiver, registering it under the given name if it isn’t in use already.

Overview 715
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 29

NSColorList Class Reference

– initWithName:fromFile: (page 719)
Initializes and returns the receiver, registering it under the given name if it isn’t in use already.

Getting Color Lists

+ availableColorLists (page 717)
Returns an array of all color lists found in the standard color list directories.

+ colorListNamed: (page 717)
Searches the array that’s returned by availableColorLists (page 717) and returns the color list
with the given name.

Getting Color List Properties

– name (page 720)
Returns the name of the receiver.

– isEditable (page 720)
Returns a Boolean value indicating whether the receiver can be modified.

Managing Colors By Key

– allKeys (page 718)
Returns an array of the keys by which the NSColor objects are stored in the receiver.

– colorWithKey: (page 718)
Returns the NSColor object associated with the given key.

– insertColor:key:atIndex: (page 719)
Inserts the specified color at the specified location in the receiver.

– removeColorWithKey: (page 721)
Removes the color associated with the specified key from the receiver.

– setColor:forKey: (page 721)
Associates the specified NSColor object with the specified key.

Writing and Removing Color-List Files

– removeFile (page 721)
Removes the file from which the list was created, if the file is in a standard search path and owned
by the user.

– writeToFile: (page 722)
Saves the receiver to a file at the specified path.

716 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 29

NSColorList Class Reference

Class Methods

availableColorLists
Returns an array of all color lists found in the standard color list directories.

+ (NSArray *)availableColorLists

Return Value
An array of NSColorList objects representing all of the color lists found in the standard color list directories,
including color catalogs (lists of colors identified only by name). Color lists created at runtime aren’t included
in this list unless they’re saved into one of the standard color list directories.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ colorListNamed: (page 717)

Declared In
NSColorList.h

colorListNamed:
Searches the array that’s returned by availableColorLists (page 717) and returns the color list with the
given name.

+ (NSColorList *)colorListNamed:(NSString *)name

Parameters
name

The name of the color list to retrieve. This name must not include the “.clr” suffix.

Return Value
The color list with the specified name or nil if no such color list exists.

Availability
Available in Mac OS X v10.0 and later.

See Also
– name (page 720)

Related Sample Code
AnimatedTableView

Declared In
NSColorList.h

Class Methods 717
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 29

NSColorList Class Reference

Instance Methods

allKeys
Returns an array of the keys by which the NSColor objects are stored in the receiver.

- (NSArray *)allKeys

Return Value
An array of NSString objects containing all the keys by which the NSColor objects are stored in the receiver.

The length of this array equals the number of colors, and its contents are arranged according to the ordering
specified when the colors were inserted.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AnimatedTableView

Declared In
NSColorList.h

colorWithKey:
Returns the NSColor object associated with the given key.

- (NSColor *)colorWithKey:(NSString *)key

Parameters
key

The key for which to retrieve the color.

Return Value
The color associated with the given key or nil if there is none.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AnimatedTableView

Declared In
NSColorList.h

initWithName:
Initializes and returns the receiver, registering it under the given name if it isn’t in use already.

- (id)initWithName:(NSString *)name

718 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 29

NSColorList Class Reference

Parameters
name

The name under which to register the color list. Specify @”” if you don’t want a name.

Return Value
The initialized color list.

Discussion
This method invokes initWithName:fromFile: (page 719) with a fromFile: argument of nil, indicating
that the color list doesn’t need to be initialized from a file. Note that this method does not add the color list
to availableColorLists (page 717) until the color list is saved into the user’s path with
writeToFile: (page 722) with a value of nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorList.h

initWithName:fromFile:
Initializes and returns the receiver, registering it under the given name if it isn’t in use already.

- (id)initWithName:(NSString *)name fromFile:(NSString *)path

Parameters
name

The name of the file for the color list (minus the “.clr” extension). Specify @”” if you don’t want a
name.

path
The full path to the file for the color list. A nil path indicates the color list should be initialized with
no colors.

Discussion
Note that this method does not add the color list to availableColorLists (page 717) until the color list
is saved into the user’s path with writeToFile: (page 722) with a value of nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorList.h

insertColor:key:atIndex:
Inserts the specified color at the specified location in the receiver.

- (void)insertColor:(NSColor *)color key:(NSString *)key atIndex:(NSUInteger)location

Parameters
color

The color to add to the color list.

Instance Methods 719
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 29

NSColorList Class Reference

key
The key with which to associate the color.

location
The location in the color list at which to place the specified color. Locations are numbered starting
with 0.

Discussion
If the list already contains a color with the same key at a different location, it’s removed from the old location.
This method posts NSColorListDidChangeNotification (page 722) to the default notification center. It
raises NSColorListNotEditableException if the color list isn’t editable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– colorWithKey: (page 718)
– removeColorWithKey: (page 721)
– setColor:forKey: (page 721)

Declared In
NSColorList.h

isEditable
Returns a Boolean value indicating whether the receiver can be modified.

- (BOOL)isEditable

Return Value
YES if the color list can be modified; otherwise NO. This result depends on the source of the list: If it came
from a write-protected file, this method returns NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorList.h

name
Returns the name of the receiver.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorList.h

720 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 29

NSColorList Class Reference

removeColorWithKey:
Removes the color associated with the specified key from the receiver.

- (void)removeColorWithKey:(NSString *)key

Parameters
key

The key for which to remove the color.

Discussion
This method does nothing if the receiver doesn’t contain the key. This method posts
NSColorListDidChangeNotification (page 722) to the default notification center. It raises
NSColorListNotEditableException if the receiver is not editable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertColor:key:atIndex: (page 719)
– setColor:forKey: (page 721)

Declared In
NSColorList.h

removeFile
Removes the file from which the list was created, if the file is in a standard search path and owned by the
user.

- (void)removeFile

Discussion
The receiver is removed from the list of available color lists returned by availableColorLists (page 717).
If there are no outstanding references to the color list, this method might deallocate the object as well.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorList.h

setColor:forKey:
Associates the specified NSColor object with the specified key.

- (void)setColor:(NSColor *)color forKey:(NSString *)key

Parameters
color

The color to associate with the given key.

key
The key.

Instance Methods 721
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 29

NSColorList Class Reference

Discussion
If the list already contains key, this method sets the corresponding color to color; otherwise, it inserts color
at the end of the list by invoking insertColor:key:atIndex: (page 719).

Availability
Available in Mac OS X v10.0 and later.

See Also
– colorWithKey: (page 718)
– insertColor:key:atIndex: (page 719)
– removeColorWithKey: (page 721)

Declared In
NSColorList.h

writeToFile:
Saves the receiver to a file at the specified path.

- (BOOL)writeToFile:(NSString *)path

Parameters
path

The path at which to save the color list. If path is a directory, the receiver is saved in a file named
listname.clr in that directory (where listname is the name with which the receiver was initialized).

If path includes a filename, this method saves the file under that name. If path is nil, the file is saved
as listname.clr in the user’s private colorlists directory.

Return Value
YES upon success and NO if the method fails to write the file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeFile (page 721)

Declared In
NSColorList.h

Notifications

NSColorListDidChangeNotification

Posted whenever a color list changes. The notification object is the NSColorList object that changed. This
notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

722 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 29

NSColorList Class Reference

Declared In
NSColorList.h

Notifications 723
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 29

NSColorList Class Reference

724 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 29

NSColorList Class Reference

Inherits from NSPanel : NSWindow : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSWindow)
NSAnimatablePropertyContainer (NSWindow)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSColorPanel.h

Companion guide Color Programming Topics

Related sample code CWCocoaComponent
QTAudioContextInsert
QTAudioExtractionPanel
QTCoreVideo301
QTKitPlayer

Overview

The NSColorPanel class provides a standard user interface for selecting color in an application. It provides
a number of standard color selection modes and, with the NSColorPickingDefault and
NSColorPickingCustom protocols, allows an application to add its own color selection modes. It allows
the user to save swatches containing frequently used colors.

Tasks

Obtaining the Shared Color-Panel Object

+ sharedColorPanel (page 729)
Returns the shared NSColorPanel instance, creating it if necessary.

+ sharedColorPanelExists (page 729)
Returns a Boolean value indicating whether the NSColorPanel has been created already.

Overview 725
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

Configuring the Color Panel

– accessoryView (page 729)
Returns the accessory view.

– isContinuous (page 731)
Returns a Boolean value indicating whether the receiver continuously sends the action message to
the target.

– mode (page 732)
Returns the color picker mode of the receiver.

– setAccessoryView: (page 732)
Sets the accessory view displayed in the receiver.

– setAction: (page 733)
Sets the color panel's action message.

– setContinuous: (page 734)
Sets the receiver to send the action message to its target continuously as the user sets the color.

– setMode: (page 734)
Sets the mode of the receiver the mode is one of the modes allowed by the color mask.

– setShowsAlpha: (page 735)
Tells the receiver whether or not to show alpha values and an opacity slider.

– setTarget: (page 735)
Sets the target of the receiver.

– showsAlpha (page 736)
Returns a Boolean value indicating whether or not the receiver shows alpha values and an opacity
slider.

Managing Color Lists

– attachColorList: (page 730)
Adds the list of NSColor objects specified to all the color pickers in the receiver that display color
lists by invoking attachColorList: (page 730) on all color pickers in the application.

– detachColorList: (page 731)
Removes the list of colors from all the color pickers in the receiver that display color lists by invoking
detachColorList: on all color pickers in the application.

Setting Color Picker Modes

+ setPickerMask: (page 728)
Determines which color selection modes are available in an application’s NSColorPanel.

+ setPickerMode: (page 728)
Specifies the color panel’s initial picker.

726 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

Setting Color

+ dragColor:withEvent:fromView: (page 727)
Drags a color into a destination view from the specified source view.

– setColor: (page 733)
Sets the color of the receiver.

Getting Color Information

– alpha (page 730)
Returns the receiver’s current alpha value based on its opacity slider.

– color (page 731)
Returns the currently selected color in the receiver.

Responding to a Color Change

– changeColor: (page 736) delegate method
Sent to the first responder when the user selects a color in an NSColorPanel object.

Class Methods

dragColor:withEvent:fromView:
Drags a color into a destination view from the specified source view.

+ (BOOL)dragColor:(NSColor *)color withEvent:(NSEvent *)anEvent fromView:(NSView
*)sourceView

Parameters
color

The color to drag.

anEvent
The drag event.

sourceView
The view from which the color was dragged.

Return Value
YES

Discussion
This method is usually invoked by the mouseDown: method of sourceView. The dragging mechanism
handles all subsequent events.

Because it is a class method, dragColor:withEvent:fromView: can be invoked whether or not the
instance of NSColorPanel exists.

Class Methods 727
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPanel.h

setPickerMask:
Determines which color selection modes are available in an application’s NSColorPanel.

+ (void)setPickerMask:(NSUInteger)mask

Parameters
mask

One or more logically ORed color mode masks described in Color Panel Mode Masks (page 737).

Discussion
This method has an effect only before an NSColorPanel object is instantiated.

If you create a class that implements the color-picking protocols (NSColorPickingDefault and
NSColorPickingCustom), you may want to give it a unique mask—one different from those defined for
the standard color pickers. To display your color picker, your application will need to logically OR that unique
mask with the standard color mask constants when invoking this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setPickerMode: (page 728)

Declared In
NSColorPanel.h

setPickerMode:
Specifies the color panel’s initial picker.

+ (void)setPickerMode:(NSColorPanelMode)mode

Parameters
mode

A constant specifying which color picker mode is initially visible. This is one of the symbolic constants
described in Color Panel Modes (page 738).

Discussion
This method may be called at any time, whether or not an application’s NSColorPanel has been instantiated.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setPickerMask: (page 728)
– setMode: (page 734)

728 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

Declared In
NSColorPanel.h

sharedColorPanel
Returns the shared NSColorPanel instance, creating it if necessary.

+ (NSColorPanel *)sharedColorPanel

Return Value
The shared NSColorPanel instance.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AnimatingViews
CWCocoaComponent
FunHouse
QTAudioExtractionPanel
QTCoreVideo301

Declared In
NSColorPanel.h

sharedColorPanelExists
Returns a Boolean value indicating whether the NSColorPanel has been created already.

+ (BOOL)sharedColorPanelExists

Return Value
YES if the NSColorPanel has been created already; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ sharedColorPanel (page 729)

Declared In
NSColorPanel.h

Instance Methods

accessoryView
Returns the accessory view.

Instance Methods 729
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

- (NSView *)accessoryView

Return Value
The accessory view or nil if there is none.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAccessoryView: (page 732)

Declared In
NSColorPanel.h

alpha
Returns the receiver’s current alpha value based on its opacity slider.

- (CGFloat)alpha

Return Value
The alpha value of the NSColorPanel. This is 1.0 (opaque) if the panel has no opacity slider.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShowsAlpha: (page 735)
– showsAlpha (page 736)

Declared In
NSColorPanel.h

attachColorList:
Adds the list of NSColor objects specified to all the color pickers in the receiver that display color lists by
invoking attachColorList: (page 730) on all color pickers in the application.

- (void)attachColorList:(NSColorList *)colorList

Parameters
colorList

The list of colors to add to the color pickers in the receiver.

Discussion
An application should use this method to add an NSColorList saved with a document in its file package
or in a directory other than NSColorList’s standard search directories.

Availability
Available in Mac OS X v10.0 and later.

See Also
– detachColorList: (page 731)

730 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

Declared In
NSColorPanel.h

color
Returns the currently selected color in the receiver.

- (NSColor *)color

Return Value
The currently selected color.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setColor: (page 733)

Declared In
NSColorPanel.h

detachColorList:
Removes the list of colors from all the color pickers in the receiver that display color lists by invoking
detachColorList: on all color pickers in the application.

- (void)detachColorList:(NSColorList *)colorList

Parameters
colorList

The list of NSColor objects to remove from the color pickers in the color panel.

Discussion
Your application should use this method to remove an NSColorList saved with a document in its file
package or in a directory other than NSColorList's standard search directories.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attachColorList: (page 730)

Declared In
NSColorPanel.h

isContinuous
Returns a Boolean value indicating whether the receiver continuously sends the action message to the target.

- (BOOL)isContinuous

Instance Methods 731
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

Return Value
YES if the receiver continuously sends the action message to the target as the user manipulates the color
picker; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContinuous: (page 734)

Declared In
NSColorPanel.h

mode
Returns the color picker mode of the receiver.

- (NSColorPanelMode)mode

Return Value
A constant indicating the current color picker mode. See Color Panel Modes (page 738).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setPickerMode: (page 728)
– setMode: (page 734)

Declared In
NSColorPanel.h

setAccessoryView:
Sets the accessory view displayed in the receiver.

- (void)setAccessoryView:(NSView *)aView

Parameters
aView

The accessory view displayed in the receiver. The accessory view can be any custom view you want
to display with NSColorPanel, such as a view offering color blends in a drawing program. The
accessory view is displayed below the color picker and above the color swatches in the NSColorPanel.
The NSColorPanel automatically resizes to accommodate the accessory view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– accessoryView (page 729)

Related Sample Code
QTCoreVideo301

732 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

Declared In
NSColorPanel.h

setAction:
Sets the color panel's action message.

- (void)setAction:(SEL)action

Return Value
The action message. When you select a color in the color panel NSColorPanel sends its action to its target,
provided that neither the action nor the target is nil. The action is NULL by default.

Discussion
See Action Messages for additional information on action messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTarget: (page 735)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Declared In
NSColorPanel.h

setColor:
Sets the color of the receiver.

- (void)setColor:(NSColor *)color

Parameters
color

The color of the NSColorPanel.

Discussion
This method posts an NSColorPanelColorDidChangeNotification (page 740) with the receiver to the
default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– color (page 731)

Related Sample Code
QTAudioContextInsert

Instance Methods 733
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Declared In
NSColorPanel.h

setContinuous:
Sets the receiver to send the action message to its target continuously as the user sets the color.

- (void)setContinuous:(BOOL)flag

Parameters
flag

YES to have the receiver send its action message to its target continuously as the color of the
NSColorPanel is set by the user; otherwise NO. Set this to YES if, for example, you want to continuously
update the color of the target.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isContinuous (page 731)

Declared In
NSColorPanel.h

setMode:
Sets the mode of the receiver the mode is one of the modes allowed by the color mask.

- (void)setMode:(NSColorPanelMode)mode

Parameters
mode

A constant specifying the mode of the color panel. These constants are described in Color Picker
Modes (page 738). The color mask is set when you first create the shared instance of NSColorPanel
for an application.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setPickerMode: (page 728)
– mode (page 732)

Declared In
NSColorPanel.h

734 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

setShowsAlpha:
Tells the receiver whether or not to show alpha values and an opacity slider.

- (void)setShowsAlpha:(BOOL)flag

Parameters
flag

YES to have the color panel show alpha values and an opacity slider; otherwise NO.

Discussion
Note that calling the NSColor method setIgnoresAlpha: (page 691) with a value of YES overrides any
value set with this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alpha (page 730)
– showsAlpha (page 736)

Related Sample Code
AnimatingViews
CWCocoaComponent
FunHouse
Quartz 2D Shadings

Declared In
NSColorPanel.h

setTarget:
Sets the target of the receiver.

- (void)setTarget:(id)target

Parameters
target

The target of the receiver. When you select a color in the color panel NSColorPanel sends its action
to its target, provided that neither the action nor the target is nil. The target is nil by default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAction: (page 733)
– setContinuous: (page 734)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Instance Methods 735
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

Declared In
NSColorPanel.h

showsAlpha
Returns a Boolean value indicating whether or not the receiver shows alpha values and an opacity slider.

- (BOOL)showsAlpha

Return Value
YES if the color picker shows alpha values and an opacity slider; otherwise NO.

Discussion
Note that calling the NSColor method setIgnoresAlpha: (page 691) with a value of YES overrides any
value set with setShowsAlpha: (page 735).

Availability
Available in Mac OS X v10.0 and later.

See Also
– alpha (page 730)
– setShowsAlpha: (page 735)

Declared In
NSColorPanel.h

Delegate Methods

changeColor:
Sent to the first responder when the user selects a color in an NSColorPanel object.

- (void)changeColor:(id)sender

Parameters
sender

The NSColorPanel sending the message.

Discussion
When the user selects a color in an NSColorPanel object, the panel sends a changeColor: action message
to the first responder. You can override this method in any responder that needs to respond to a color change.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPanel.h

736 Delegate Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

Constants

Color Picker Mode Masks
Used to specify in the setPickerMask: (page 728) class method which of the color modes the NSColorPanel
can use.

enum {
 NSColorPanelGrayModeMask = 0x00000001,
 NSColorPanelRGBModeMask = 0x00000002,
 NSColorPanelCMYKModeMask = 0x00000004,
 NSColorPanelHSBModeMask = 0x00000008,
 NSColorPanelCustomPaletteModeMask = 0x00000010,
 NSColorPanelColorListModeMask = 0x00000020,
 NSColorPanelWheelModeMask = 0x00000040,
 NSColorPanelCrayonModeMask = 0x00000080,
 NSColorPanelAllModesMask = 0x0000ffff
};

Constants
NSColorPanelGrayModeMask

Grayscale-alpha.

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSColorPanelRGBModeMask
Red-green-blue.

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSColorPanelCMYKModeMask
Cyan-yellow-magenta-black.

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSColorPanelHSBModeMask
Hue-saturation-brightness.

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSColorPanelCustomPaletteModeMask
Custom palette.

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSColorPanelColorListModeMask
Custom color list.

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

Constants 737
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

NSColorPanelWheelModeMask
Color wheel.

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSColorPanelCrayonModeMask
Crayons.

Declared in NSColorPanel.h.

Available in Mac OS X v10.2 and later.

NSColorPanelAllModesMask
All of the above.

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

Discussion
For more information, see “Choosing the Color Pickers in a Color Panel”.

Declared In
NSColorPanel.h

NSColorPanelMode
A type defined for the enum constants specifying color panel modes.

typedef NSInteger NSColorPanelMode;

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSColorPanel.h

Color Panel Modes
Specify the active color mode used when an application’s instance of NSColorPanel is masked for more
than one color mode.

738 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

enum {
 NSNoModeColorPanel = -1,
 NSGrayModeColorPanel = 0,
 NSRGBModeColorPanel = 1,
 NSCMYKModeColorPanel = 2,
 NSHSBModeColorPanel = 3,
 NSCustomPaletteModeColorPanel = 4,
 NSColorListModeColorPanel = 5,
 NSWheelModeColorPanel = 6,
 NSCrayonModeColorPanel = 7
};

Constants
NSNoModeColorPanel

Indicates no color panel mode.

Available in Mac OS X version 10.5 and later.

Declared in NSColorPanel.h.

NSGrayModeColorPanel
Grayscale-alpha

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSRGBModeColorPanel
Red-green-blue

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSCMYKModeColorPanel
Cyan-yellow-magenta-black

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSHSBModeColorPanel
Hue-saturation-brightness

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSCustomPaletteModeColorPanel
Custom palette

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSColorListModeColorPanel
Custom color list

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

NSWheelModeColorPanel
Color wheel

Available in Mac OS X v10.0 and later.

Declared in NSColorPanel.h.

Constants 739
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

NSCrayonModeColorPanel
Crayons.

Declared in NSColorPanel.h.

Available in Mac OS X v10.2 and later.

Discussion
These enum constants are specified or returned in the instance methods mode (page 732) and setMode: (page
734), and in the setPickerMode: (page 728)class method. For more information, see “Choosing the Color
Pickers in a Color Panel”.

Declared In
NSColorPanel.h

Notifications

NSColorPanelColorDidChangeNotification
Posted when the color of the NSColorPanel is set, as when setColor: (page 733) is invoked.

The notification object is the notifying NSColorPanel. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPanel.h

740 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 30

NSColorPanel Class Reference

Inherits from NSObject

Conforms to NSColorPickingDefault
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSColorPicker.h

Companion guide Color Programming Topics

Related sample code MyCustomColorPicker
RadiantColorPicker

Overview

The NSColorPicker class is an abstract superclass that implements the NSColorPickingDefault protocol.
The NSColorPickingDefault and NSColorPickingCustom protocols define a way to add color pickers
(custom user interfaces for color selection) to the NSColorPanel.

Adopted Protocols

NSColorPickingDefault
– alphaControlAddedOrRemoved: (page 3618)
– attachColorList: (page 3618)
– detachColorList: (page 744)
– initWithPickerMask:colorPanel: (page 3620)
– insertNewButtonImage:in: (page 3621)
– provideNewButtonImage (page 3621)
– setMode: (page 3622)
– viewSizeChanged: (page 746)

Overview 741
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 31

NSColorPicker Class Reference

Tasks

Initializing an NSColorPicker Object

– initWithPickerMask:colorPanel: (page 744)
Initializes the color picker with the specified color panel and color picker mode mask.

Getting the Color Panel

– colorPanel (page 743)
Returns the NSColorPanel that owns the receiver.

Adding Button Images

– insertNewButtonImage:in: (page 745)
Sets the image used for the specified button cell.

– provideNewButtonImage (page 746)
Returns the button image for the receiver.

Setting the Mode

– setMode: (page 746)
Does nothing. Override to set the color picker’s mode.

Mananging Color Lists

– attachColorList: (page 743)
Does nothing. Override to attach a color list to a color picker.

– detachColorList: (page 744)
Does nothing. Override to detach a color list from a color picker.

Responding to View Changes

– viewSizeChanged: (page 746)
Does nothing. Override to respond to a size change.

Customizing the Color Picker

– buttonToolTip (page 743)
Returns the tool tip to be shown when the mouse cursor is over the receiver’s button image.

742 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 31

NSColorPicker Class Reference

– minContentSize (page 745)
Returns the minimum content size for the receiver.

Instance Methods

attachColorList:
Does nothing. Override to attach a color list to a color picker.

- (void)attachColorList:(NSColorList *)colorList

Parameters
colorList

The color list to attach to the color picker.

Availability
Available in Mac OS X v10.0 and later.

See Also
– detachColorList: (page 744)

Declared In
NSColorPicker.h

buttonToolTip
Returns the tool tip to be shown when the mouse cursor is over the receiver’s button image.

- (NSString *)buttonToolTip

Return Value
A string representing the tool tip.

Discussion
Override this method to provide a custom tool tip. The default implementation of this method returns the
name of the receiver’s class. If you want the color picker to have no tool tip, return an empty string.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
RadiantColorPicker

Declared In
NSColorPicker.h

colorPanel
Returns the NSColorPanel that owns the receiver.

Instance Methods 743
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 31

NSColorPicker Class Reference

- (NSColorPanel *)colorPanel

Return Value
The owning color panel.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPicker.h

detachColorList:
Does nothing. Override to detach a color list from a color picker.

- (void)detachColorList:(NSColorList *)colorList

Parameters
colorList

The color list to detach.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attachColorList: (page 743)

Declared In
NSColorPicker.h

initWithPickerMask:colorPanel:
Initializes the color picker with the specified color panel and color picker mode mask.

- (id)initWithPickerMask:(NSUInteger)mask colorPanel:(NSColorPanel *)owningColorPanel

Parameters
mask

The color picker mask.

owningColorPanel
The NSColorPanel that owns the color picker. This value is cached so it can be returned later by the
colorPanel (page 743) method.

Return Value
An initialized color picker object.

Discussion
Override this method to respond to the values in mask or do other custom initialization. If you override this
method in a subclass, you should forward the message to super as part of the implementation.

Availability
Available in Mac OS X v10.0 and later.

744 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 31

NSColorPicker Class Reference

See Also
– colorPanel (page 743)

Declared In
NSColorPicker.h

insertNewButtonImage:in:
Sets the image used for the specified button cell.

- (void)insertNewButtonImage:(NSImage *)newButtonImage in:(NSButtonCell *)buttonCell

Parameters
newButtonImage

The image used for the specified button cell.

buttonCell
The button cell for which to set the image.

Discussion
Called by the color panel to insert a new image into the specified cell by invoking NSButtonCell’s
setImage: (page 69) method. Override this method to customize newButtonImage before insertion in
buttonCell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– provideNewButtonImage (page 746)

Declared In
NSColorPicker.h

minContentSize
Returns the minimum content size for the receiver.

- (NSSize)minContentSize

Return Value
The minimum size of the receiver, an NSColorPicker object. The NSColorPanel object does not allow the
color picker to be made smaller than this size.

Discussion
Override this method to return a minimum size for the color picker’s content area. The default implementation
of this method obtains the minimum content size from the view-autoresizing behavior specified for the
receiver and returns that. You should not have to override this method if you properly set up the color picker’s
auto-sizing attributes in Interface Builder.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSColorPicker.h

Instance Methods 745
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 31

NSColorPicker Class Reference

provideNewButtonImage
Returns the button image for the receiver.

- (NSImage *)provideNewButtonImage

Return Value
The image placed on the mode button the user uses to select this color picker. This is the same image the
color panel uses as an argument when sending the insertNewButtonImage:in: (page 745) message.) The
default implementation looks in the color picker’s bundle for a TIFF file named after the color picker’s class,
with the extension “.tiff”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertNewButtonImage:in: (page 745)

Related Sample Code
MyCustomColorPicker

Declared In
NSColorPicker.h

setMode:
Does nothing. Override to set the color picker’s mode.

- (void)setMode:(NSColorPanelMode)mode

Parameters
mode

A constant specifying the color picking mode. These constants are defined in
AppKit/NSColorPanel.h.

Discussion
In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPicker.h

viewSizeChanged:
Does nothing. Override to respond to a size change.

- (void)viewSizeChanged:(id)sender

746 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 31

NSColorPicker Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPicker.h

Instance Methods 747
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 31

NSColorPicker Class Reference

748 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 31

NSColorPicker Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.4 and later.

Declared in AppKit/AppKit.h

Companion guide Color Programming Topics

Related sample code AnimatedTableView
Quartz 2D Shadings
Quartz Composer QCTV

Overview

The NSColorSpace class enables the creation of objects representing custom color spaces. You can make
custom color spaces from ColorSync profiles or from ICC profiles. NSColorSpace also has factory methods
that return objects representing the system color spaces.

You can use the colorWithColorSpace:components:count: (page 673) method of the NSColor class
to create color objects using custom NSColorSpace objects. You can also send the
colorUsingColorSpace: (page 700) message to an NSColor object to convert it between two color spaces,
either of which may be a custom color space.

Tasks

Getting a Named NSColorSpace Object

+ deviceRGBColorSpace (page 752)
Returns an NSColorSpace object representing a calibrated or device-dependent RGB color space.

+ genericRGBColorSpace (page 754)
Returns an NSColorSpace object representing a device-independent RGB color space.

+ deviceCMYKColorSpace (page 751)
Returns an NSColorSpace object representing a calibrated or device-dependent CMYK color space.

Overview 749
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

+ genericCMYKColorSpace (page 753)
Returns an NSColorSpace object representing a device-independent CMYK color space.

+ deviceGrayColorSpace (page 752)
Returns an NSColorSpace object representing a calibrated or device-dependent gray color space.

+ genericGrayColorSpace (page 753)
Returns an NSColorSpace object representing a device-independent gray color space.

+ sRGBColorSpace (page 754)
Returns an NSColorSpace object representing an sRGB color space.

+ genericGamma22GrayColorSpace (page 753)
Returns an NSColorSpace object representing a gray color space with a gamma value of 2.2.

+ adobeRGB1998ColorSpace (page 751)
Returns an NSColorSpace object representing an Adobe RGB (1998) color space.

Getting the Color Spaces Available On the System

+ availableColorSpacesWithModel: (page 751)
Returns the list of color spaces available on the system that are displayed in the color panel, in the
order they are displayed in the color panel.

Initializing a Custom NSColorSpace Object

– initWithCGColorSpace: (page 756)
Initializes and returns an NSColorSpace object initialized from a Core Graphics color-space object.

– initWithColorSyncProfile: (page 757)
Initializes and returns an NSColorSpace object given a ColorSync profile.

– initWithICCProfileData: (page 757)
Initializes and returns an NSColorSpace object given an ICC profile.

Accessing Color-Space Data and Attributes

– CGColorSpace (page 755)
Returns a Core Graphics color-space object that represents a color space equivalent to the receiver’s.

– colorSpaceModel (page 755)
Returns the model on which the color space of the receiver is based.

– colorSyncProfile (page 755)
Returns the ColorSync profile from which the receiver was created.

– ICCProfileData (page 756)
Returns the ICC profile data from which the receiver was created.

– localizedName (page 758)
Returns the localized name of the receiver.

– numberOfColorComponents (page 758)
Returns the number of components supported by the receiver.

750 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

Class Methods

adobeRGB1998ColorSpace
Returns an NSColorSpace object representing an Adobe RGB (1998) color space.

+ (NSColorSpace *)adobeRGB1998ColorSpace

Return Value
The NSColorSpace object. This color-additive color space has red, green, blue, and alpha components.

Discussion
The Adobe RGB (1998) color space was designed to encompass most of the colors achievable on CMYK color
printers, but by using RGB primary colors on a device such as the computer display. For more information
on this color space, go to http://www.adobe.com/digitalimag/adobergb.html.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSColorSpace.h

availableColorSpacesWithModel:
Returns the list of color spaces available on the system that are displayed in the color panel, in the order they
are displayed in the color panel.

+ (NSArray *)availableColorSpacesWithModel:(NSColorSpaceModel)model

Parameters
model

The model to return the color spaces for.

Return Value
The list of color spaces, or an empty array if no color spaces are available for the specified model.

Discussion
This method doesn’t return color spaces created on the fly or spaces without user-displayable names. Pass
NSUnknownColorSpaceModel as model to get all available color spaces.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSColorSpace.h

deviceCMYKColorSpace
Returns an NSColorSpace object representing a calibrated or device-dependent CMYK color space.

+ (NSColorSpace *)deviceCMYKColorSpace

Class Methods 751
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

http://www.adobe.com/digitalimag/adobergb.html

Return Value
The NSColorSpace object. This color space has cyan, magenta, yellow, black, and alpha components. Typical
devices that use the color-subtractive CMYK color space are color printers. This object corresponds to the
Cocoa color space name NSDeviceCMYKColorSpace.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ genericCMYKColorSpace (page 753)

Declared In
NSColorSpace.h

deviceGrayColorSpace
Returns an NSColorSpace object representing a calibrated or device-dependent gray color space.

+ (NSColorSpace *)deviceGrayColorSpace

Return Value
The NSColorSpace object. The color space also includes an alpha component. Typical devices that use this
color space are grayscale printers and displays. This object corresponds to the Cocoa color space name
NSDeviceWhiteColorSpace.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ genericGrayColorSpace (page 753)
+ genericGamma22GrayColorSpace (page 753)

Declared In
NSColorSpace.h

deviceRGBColorSpace
Returns an NSColorSpace object representing a calibrated or device-dependent RGB color space.

+ (NSColorSpace *)deviceRGBColorSpace

Return Value
The NSColorSpace object. This color space has red, green, blue, and alpha components. Typical devices
that use the color-additive RGB color space are displays and scanners. This object corresponds to the Cocoa
color space name NSDeviceRGBColorSpace.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ genericRGBColorSpace (page 754)

752 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

Declared In
NSColorSpace.h

genericCMYKColorSpace
Returns an NSColorSpace object representing a device-independent CMYK color space.

+ (NSColorSpace *)genericCMYKColorSpace

Return Value
The NSColorSpace object. This color space has cyan, magenta, yellow, black and alpha component.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ deviceCMYKColorSpace (page 751)

Declared In
NSColorSpace.h

genericGamma22GrayColorSpace
Returns an NSColorSpace object representing a gray color space with a gamma value of 2.2.

+ (NSColorSpace *)genericGamma22GrayColorSpace

Return Value
The NSColorSpace object.

Availability
Available in Mac OS X v10.6 and later.

See Also
+ deviceGrayColorSpace (page 752)
+ genericGrayColorSpace (page 753)

Declared In
NSColorSpace.h

genericGrayColorSpace
Returns an NSColorSpace object representing a device-independent gray color space.

+ (NSColorSpace *)genericGrayColorSpace

Return Value
The NSColorSpace object. The color space also includes an alpha component. This object corresponds to
the Cocoa color space name NSCalibratedWhiteColorSpace.

Availability
Available in Mac OS X v10.4 and later.

Class Methods 753
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

See Also
+ deviceGrayColorSpace (page 752)
+ genericGamma22GrayColorSpace (page 753)

Declared In
NSColorSpace.h

genericRGBColorSpace
Returns an NSColorSpace object representing a device-independent RGB color space.

+ (NSColorSpace *)genericRGBColorSpace

Return Value
The NSColorSpace object. This color-additive color space has red, green, blue, and alpha components. This
object corresponds to the Cocoa color space name NSCalibratedRGBColorSpace.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ deviceRGBColorSpace (page 752)

Related Sample Code
Quartz 2D Shadings
Quartz Composer QCTV

Declared In
NSColorSpace.h

sRGBColorSpace
Returns an NSColorSpace object representing an sRGB color space.

+ (NSColorSpace *)sRGBColorSpace

Return Value
The NSColorSpace object. This color-additive color space has red, green, blue, and alpha components.

Discussion
The sRGB color space is a standard color space for use on monitors, printers, and the Internet. For further
information on sRGB, see http://www.color.org/srgb.html.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSColorSpace.h

754 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

http://www.color.org/srgb.html

Instance Methods

CGColorSpace
Returns a Core Graphics color-space object that represents a color space equivalent to the receiver’s.

- (CGColorSpaceRef)CGColorSpace

Return Value
A reference to an Core Graphics color-space object (CGColorSpaceRef) or NULL if the type of color space
represented by the receiver cannot be represented by a CGColorSpace object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithCGColorSpace: (page 756)

Declared In
NSColorSpace.h

colorSpaceModel
Returns the model on which the color space of the receiver is based.

- (NSColorSpaceModel)colorSpaceModel

Return Value
A constant specifying the color space model of the receiver. See Color Space Models (page 758) for a list of
valid NSColorSpaceModel constants.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSColorSpace.h

colorSyncProfile
Returns the ColorSync profile from which the receiver was created.

- (void *)colorSyncProfile

Return Value
The ColorSync profile on which the receiver is based. You need to cast this value to an object of opaque type
CMProfileRef. Returns NULL if the receiver was created from a ICC-profile data instead. See ColorSync
Manager Reference for further information on CMProfileRef.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 755
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

See Also
– initWithColorSyncProfile: (page 757)

Declared In
NSColorSpace.h

ICCProfileData
Returns the ICC profile data from which the receiver was created.

- (NSData *)ICCProfileData

Return Value
The ICC profile from which the receiver was created. This method attempts to compute the profile data from
a CMProfileRef object and returns nil if it is unable to.

For information on ICC profiles, see the latest ICC specification at the International Color Consortium website.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithICCProfileData: (page 757)

Declared In
NSColorSpace.h

initWithCGColorSpace:
Initializes and returns an NSColorSpace object initialized from a Core Graphics color-space object.

- (id)initWithCGColorSpace:(CGColorSpaceRef)cgColorSpace

Parameters
cgColorSpace

A reference to a Core Graphics color-space object (CGColorSpaceRef).

Return Value
The initialized NSColorSpace object or nil if initialization was not successful, which might happen if the
color space represented by the CGColorSpace object is not supported by NSColorSpace.

Discussion
Because NSColorSpace might retain or copy the CGColorSpace object depending on circumstances, you
should not assume pointer equality of the provided object with that returned by CGColorSpace (page 755).
And even if the pointer equality is preserved during runtime, it may not be after the NSColorSpace object
is archived and unarchived.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AnimatedTableView

756 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

http://www.color.org/icc_specs2.html

Declared In
NSColorSpace.h

initWithColorSyncProfile:
Initializes and returns an NSColorSpace object given a ColorSync profile.

- (id)initWithColorSyncProfile:(void *)prof

Parameters
prof

The ColorSync profile to use when initializing the NSColorSpace object. This should be an object of
opaque type CMProfileRef. See ColorSync Manager Reference for further information on
CMProfileRef.

Return Value
The initialized NSColorSpace object or nil if initialization was not successful.

Availability
Available in Mac OS X v10.4 and later.

See Also
– colorSyncProfile (page 755)

Declared In
NSColorSpace.h

initWithICCProfileData:
Initializes and returns an NSColorSpace object given an ICC profile.

- (id)initWithICCProfileData:(NSData *)iccData

Parameters
iccData

The ICC profile to use when initializing the NSColorSpace object. For information on ICC profiles,
see the latest ICC specification at the International Color Consortium website.

Return Value
The initialized NSColorSpace object or nil if initialization was not successful.

Availability
Available in Mac OS X v10.4 and later.

See Also
– ICCProfileData (page 756)

Declared In
NSColorSpace.h

Instance Methods 757
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

http://www.color.org/icc_specs2.html

localizedName
Returns the localized name of the receiver.

- (NSString *)localizedName

Return Value
The name of the color space as a localized string or nil if no localized name exists.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSColorSpace.h

numberOfColorComponents
Returns the number of components supported by the receiver.

- (NSInteger)numberOfColorComponents

Return Value
The number of components (excluding alpha) the receiver supports or zero if the receiver is not based on
float components.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSColorSpace.h

Constants

NSColorSpaceModel
The type of the color-space mode constants listed in “Color Space Models” (page 758).

typedef NSInteger NSColorSpaceModel;

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSColorSpace.h

Color Space Models
Identify the abstract model on which an NSColorSpace object is based.

758 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

typedef enum {
 NSUnknownColorSpaceModel = -1,
 NSGrayColorSpaceModel,
 NSRGBColorSpaceModel,
 NSCMYKColorSpaceModel,
 NSLABColorSpaceModel,
 NSDeviceNColorSpaceModel,
 NSIndexedColorSpaceModel,
 NSPatternColorSpaceModel
};

Constants
NSUnknownColorSpaceModel

This model is not known to NSColorSpace.

Available in Mac OS X v10.4 and later.

Declared in NSColorSpace.h.

NSGrayColorSpaceModel
The grayscale color-space model. Can refer to both device-dependent and generic color space variants.

Available in Mac OS X v10.4 and later.

Declared in NSColorSpace.h.

NSRGBColorSpaceModel
The RGB (red green blue) color-space model. Can refer to both device-dependent and generic color
space variants.

Available in Mac OS X v10.4 and later.

Declared in NSColorSpace.h.

NSCMYKColorSpaceModel
The CYMK (cyan, yellow, magenta, black) color-space model. Can refer to both device-dependent and
generic color space variants.

Available in Mac OS X v10.4 and later.

Declared in NSColorSpace.h.

NSLABColorSpaceModel
The L*a*b* device-independent color-space model, which represents colors relative to a reference
white point.

Available in Mac OS X v10.4 and later.

Declared in NSColorSpace.h.

NSDeviceNColorSpaceModel
DeviceN is a color-space model from Adobe Systems, Inc. used in PostScript and PDF color specification.

Available in Mac OS X v10.4 and later.

Declared in NSColorSpace.h.

NSIndexedColorSpaceModel
An indexed color space, which identifies specified discrete colors in a color list by index number. An
indexed color value (a color specification in indexed color space) consists of an index value that refers
to a color in a color list.

Available in Mac OS X v10.5 and later.

Declared in NSColorSpace.h.

Constants 759
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

NSPatternColorSpaceModel
Identifies a pattern color space, which is simply an image that is repeated over and over again in a
tiled pattern.

Available in Mac OS X v10.5 and later.

Declared in NSColorSpace.h.

Discussion
These constants are returned from colorSpaceModel (page 755) and are derived from the profile data
encapsulated by the object.

Declared In
NSColorSpace.h

760 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 32

NSColorSpace Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSColorWell.h

Companion guide Color Programming Topics

Related sample code ButtonMadness
PDF Annotation Editor
Quartz 2D Shadings
Quartz Composer QCTV
Sketch-112

Overview

An NSColorWell object is an NSControl for selecting and displaying a single color value. An example of
an NSColorWell object (or simply color well) is found in an NSColorPanel, which uses a color well to
display the current color selection. A color well is available from the Palettes panel of Interface Builder.

Tasks

Managing Color From Color Wells

– color (page 763)
Returns the color of the receiver.

– setColor: (page 765)
Sets the color of the receiver and redraws the receiver.

– takeColorFrom: (page 765)
Changes the color of the receiver to that of the specified object.

Overview 761
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 33

NSColorWell Class Reference

Activating and Deactivating Color Wells

– activate: (page 762)
Activates the receiver, displays the color panel, and makes the current color the same as its own.

– deactivate (page 763)
Deactivates the receiver and redraws it.

– isActive (page 764)
Returns a Boolean value indicating whether the receiver is active.

Managing Borders of Color Wells

– isBordered (page 764)
Returns a Boolean value indicating whether the receiver has a border.

– setBordered: (page 764)
Places or removes a border on the receiver and redraws the receiver.

Drawing a Color Well

– drawWellInside: (page 763)
Draws the colored area inside the receiver at the specified location without drawing borders.

Instance Methods

activate:
Activates the receiver, displays the color panel, and makes the current color the same as its own.

- (void)activate:(BOOL)exclusive

Parameters
exclusive

YES to deactivate any other color wells; NO to keep them active. If a color panel is active with
exclusive set to YES and another is subsequently activated with exclusive set to NO, the exclusive
setting of the first panel is ignored.

Discussion
This method redraws the receiver. An active color well will have its color updated when the current color of
the NSColorPanel changes. Any color well that shows its border highlights the border when it’s active.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deactivate (page 763)
– isActive (page 764)

762 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 33

NSColorWell Class Reference

Declared In
NSColorWell.h

color
Returns the color of the receiver.

- (NSColor *)color

Return Value
The color of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setColor: (page 765)
– takeColorFrom: (page 765)

Related Sample Code
CoreImageGLTextureFBO
DesktopImage
FunHouse
Grady
ObjectPath

Declared In
NSColorWell.h

deactivate
Deactivates the receiver and redraws it.

- (void)deactivate

Availability
Available in Mac OS X v10.0 and later.

See Also
– activate: (page 762)
– isActive (page 764)

Related Sample Code
CWCocoaComponent

Declared In
NSColorWell.h

drawWellInside:
Draws the colored area inside the receiver at the specified location without drawing borders.

Instance Methods 763
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 33

NSColorWell Class Reference

- (void)drawWellInside:(NSRect)insideRect

Parameters
insideRect

The rectangle specifying the area within which to draw.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorWell.h

isActive
Returns a Boolean value indicating whether the receiver is active.

- (BOOL)isActive

Return Value
YES if the receiver is active, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorWell.h

isBordered
Returns a Boolean value indicating whether the receiver has a border.

- (BOOL)isBordered

Return Value
YES if the receiver is bordered, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBordered: (page 764)

Declared In
NSColorWell.h

setBordered:
Places or removes a border on the receiver and redraws the receiver.

- (void)setBordered:(BOOL)bordered

764 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 33

NSColorWell Class Reference

Parameters
bordered

YES to place a border on the receiver, NO to remove it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isBordered (page 764)

Declared In
NSColorWell.h

setColor:
Sets the color of the receiver and redraws the receiver.

- (void)setColor:(NSColor *)color

Parameters
color

The new color for the color well.

Availability
Available in Mac OS X v10.0 and later.

See Also
– color (page 763)
– takeColorFrom: (page 765)

Related Sample Code
FunHouse
Grady
Sketch-112

Declared In
NSColorWell.h

takeColorFrom:
Changes the color of the receiver to that of the specified object.

- (void)takeColorFrom:(id)sender

Parameters
sender

The object from which to take the new color.

Availability
Available in Mac OS X v10.0 and later.

See Also
– color (page 763)

Instance Methods 765
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 33

NSColorWell Class Reference

– setColor: (page 765)

Declared In
NSColorWell.h

766 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 33

NSColorWell Class Reference

Inherits from NSTextField : NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSTextField)
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSComboBox.h

Companion guide Combo Box Programming Topics

Related sample code DemoAssistant
QTAudioExtractionPanel
QTKitPlayer
SimpleComboBox
URL CacheInfo

Overview

An NSComboBox is a kind of NSControl that allows you to either enter text directly (as you would with an
NSTextField) or click the attached arrow at the right of the combo box and select from a displayed (“pop-up”)
list of items.

Normally an instance of NSComboBox looks like this:

When you click the downward-pointing arrow at the right side of the text field, the pop-up list appears, like
this:

Overview 767
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

The NSComboBox class uses NSComboBoxCell to implement its user interface.

Also see the NSComboBoxDataSource informal protocol, which declares the methods that an NSComboBox
uses to access the contents of its data source object.

Tasks

Setting Display Attributes

– hasVerticalScroller (page 773)
Returns a Boolean value indicating whether the receiver will display a vertical scroller.

– intercellSpacing (page 775)
Returns the horizontal and vertical spacing between cells in the receiver’s pop-up list.

– isButtonBordered (page 775)
Returns whether the combo box button is set to display a border.

– itemHeight (page 775)
Returns the height of each item in the receiver’s pop-up list.

– numberOfVisibleItems (page 777)
Returns the maximum number of items visible in the pop-up list.

– setButtonBordered: (page 782)
Determines whether the button in the combo box is displayed with a border.

– setHasVerticalScroller: (page 783)
Determines whether the receiver displays a vertical scroller.

– setIntercellSpacing: (page 784)
Sets the spacing between pop-up list items.

– setItemHeight: (page 784)
Sets the height for items.

– setNumberOfVisibleItems: (page 785)
Sets the maximum number of items that are visible in the receiver’s pop-up list.

Setting a Data Source

– dataSource (page 772)
Returns the object that provides the data displayed in the receiver’s pop-up list.

768 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

– setDataSource: (page 783)
Sets the receiver’s data source to aSource.

– setUsesDataSource: (page 785)
Sets whether the receiver uses an external data source to populate the receiver’s pop-up list.

– usesDataSource (page 786)
Returns a Boolean value indicating whether the receiver uses an external data source to populate its
pop-up list.

Working with an Internal List

– addItemsWithObjectValues: (page 770)
Adds multiple objects to the end of the receiver’s internal item list.

– addItemWithObjectValue: (page 771)
Adds an object to the end of the receiver’s internal item list.

– insertItemWithObjectValue:atIndex: (page 774)
Inserts an object at the specified location in the receiver’s internal item list.

– objectValues (page 778)
Returns as an array the receiver’s internal item list.

– removeAllItems (page 779)
Removes all items from the receiver’s internal item list.

– removeItemAtIndex: (page 779)
Removes the object at the specified location from the receiver’s internal item list.

– removeItemWithObjectValue: (page 779)
Removes all occurrences of the given object from the receiver’s internal item list.

– numberOfItems (page 777)
Returns the total number of items in the pop-up list.

Manipulating the Displayed List

– indexOfItemWithObjectValue: (page 773)
Searches the receiver’s internal item list for the specified object and returns the lowest matching
index.

– itemObjectValueAtIndex: (page 776)
Returns the object located at the given index within the receiver’s internal item list.

– noteNumberOfItemsChanged (page 776)
Informs the receiver that the number of items in its data source has changed.

– reloadData (page 778)
Marks the receiver as needing redisplay, so that it will reload the data for visible pop-up items and
draw the new values.

– scrollItemAtIndexToTop: (page 780)
Scrolls the receiver’s pop-up list vertically so that the item at the specified index is as close to the top
as possible.

– scrollItemAtIndexToVisible: (page 780)
Scrolls the receiver’s pop-up list vertically so that the item at the specified index is visible.

Tasks 769
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

Manipulating the Selection

– deselectItemAtIndex: (page 772)
Deselects the pop-up list item at the specified index if it’s selected.

– indexOfSelectedItem (page 774)
Returns the index of the last item selected from the pop-up list.

– objectValueOfSelectedItem (page 777)
Returns the object corresponding to the last item selected from the pop-up list.

– selectItemAtIndex: (page 781)
Selects the pop-up list row at the given index.

– selectItemWithObjectValue: (page 781)
Selects the first pop-up list item that corresponds to the given object.

Completing the Text Field

– completes (page 771)
Returns a Boolean value indicating whether the receiver tries to complete what the user types in the
text field.

– setCompletes: (page 782)
Sets whether the receiver tries to complete what the user types in the text field.

New Methods

– delegate (page 772)
Returns the receiver’s delegate.

– setDelegate: (page 783)
Sets the receiver’s delegate.

Instance Methods

addItemsWithObjectValues:
Adds multiple objects to the end of the receiver’s internal item list.

- (void)addItemsWithObjectValues:(NSArray *)objects

Parameters
objects

An array of the objects to add to the internal item list.

Discussion
This method logs a warning if usesDataSource (page 786) returns YES.

Availability
Available in Mac OS X v10.0 and later.

770 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

Related Sample Code
LSMSmartCategorizer
QTAudioExtractionPanel
QTKitPlayer

Declared In
NSComboBox.h

addItemWithObjectValue:
Adds an object to the end of the receiver’s internal item list.

- (void)addItemWithObjectValue:(id)anObject

Parameters
anObject

The object to add to the internal item list.

Discussion
This method logs a warning if usesDataSource (page 786) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTAudioExtractionPanel
QTKitPlayer

Declared In
NSComboBox.h

completes
Returns a Boolean value indicating whether the receiver tries to complete what the user types in the text
field.

- (BOOL)completes

Return Value
YES if the receiver tries to complete what the user types in the text field; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCompletes: (page 782)

Declared In
NSComboBox.h

Instance Methods 771
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

dataSource
Returns the object that provides the data displayed in the receiver’s pop-up list.

- (id < NSComboBoxDataSource >)dataSource

Return Value
The data source for the combo box's pop-up list.

Discussion
This method logs a warning if usesDataSource (page 786) returns NO. See the class description and the
NSComboBoxDataSource informal protocol specification for more information on combo box data source
objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBox.h

delegate
Returns the receiver’s delegate.

- (id < NSComboBoxDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setDelegate: (page 783)

Declared In
NSComboBox.h

deselectItemAtIndex:
Deselects the pop-up list item at the specified index if it’s selected.

- (void)deselectItemAtIndex:(NSInteger)index

Parameters
index

The index of the item to deselect.

Discussion
If the selection does in fact change, this method posts an
NSComboBoxSelectionDidChangeNotification (page 786) to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

772 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

See Also
– indexOfSelectedItem (page 774)
– numberOfItems (page 777)
– selectItemAtIndex: (page 781)

Declared In
NSComboBox.h

hasVerticalScroller
Returns a Boolean value indicating whether the receiver will display a vertical scroller.

- (BOOL)hasVerticalScroller

Return Value
YES if the receiver will display a vertical scroller; otherwise NO.

Discussion
Note that the scroller will be displayed even if the pop-up list contains fewer items than will fit in the area
specified for display.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfItems (page 777)
– numberOfVisibleItems (page 777)

Declared In
NSComboBox.h

indexOfItemWithObjectValue:
Searches the receiver’s internal item list for the specified object and returns the lowest matching index.

- (NSInteger)indexOfItemWithObjectValue:(id)anObject

Parameters
anObject

The object for which to return the index.

Return Value
The lowest index in the internal item list whose corresponding value is equal to that of the specified object.
Objects are considered equal if they have the same id or if isEqual: returns YES.

If none of the objects in the receiver’s internal item list are equal to anObject,
indexOfItemWithObjectValue: returns NSNotFound.

Discussion
This method logs a warning if usesDataSource (page 786) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 773
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

See Also
– selectItemWithObjectValue: (page 781)

Declared In
NSComboBox.h

indexOfSelectedItem
Returns the index of the last item selected from the pop-up list.

- (NSInteger)indexOfSelectedItem

Return Value
The index of the last item selected from the receiver's pop-up list or -1 if no item is selected.

Discussion
Note that nothing is initially selected in a newly initialized combo box.

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectValueOfSelectedItem (page 777)

Related Sample Code
ClipboardViewer

Declared In
NSComboBox.h

insertItemWithObjectValue:atIndex:
Inserts an object at the specified location in the receiver’s internal item list.

- (void)insertItemWithObjectValue:(id)anObject atIndex:(NSInteger)index

Parameters
anObject

The object to add to the internal item list.

index
The index in the list at which to add the new object. The previous item at index—along with all
following items—is shifted down one slot to make room

Discussion
This method logs a warning if usesDataSource (page 786) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItemWithObjectValue: (page 771)
– numberOfItems (page 777)

774 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

Related Sample Code
DemoAssistant

Declared In
NSComboBox.h

intercellSpacing
Returns the horizontal and vertical spacing between cells in the receiver’s pop-up list.

- (NSSize)intercellSpacing

Return Value
The space between cells in the pop-up list. The default spacing is (3.0, 2.0).

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemHeight (page 775)
– numberOfVisibleItems (page 777)

Declared In
NSComboBox.h

isButtonBordered
Returns whether the combo box button is set to display a border.

- (BOOL)isButtonBordered

Return Value
YES if the button has a border; otherwise NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setButtonBordered: (page 782)

Declared In
NSComboBox.h

itemHeight
Returns the height of each item in the receiver’s pop-up list.

- (CGFloat)itemHeight

Return Value
The height of items in the pop-up list. The default item height is 16.0.

Instance Methods 775
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– intercellSpacing (page 775)
– numberOfVisibleItems (page 777)

Declared In
NSComboBox.h

itemObjectValueAtIndex:
Returns the object located at the given index within the receiver’s internal item list.

- (id)itemObjectValueAtIndex:(NSInteger)index

Parameters
index

The index of the object to retrieve. If index is beyond the end of the list, an NSRangeException is
raised.

Return Value
The object located at the specified index in the internal item list.

Discussion
This method logs a warning if usesDataSource (page 786) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectValueOfSelectedItem (page 777)

Declared In
NSComboBox.h

noteNumberOfItemsChanged
Informs the receiver that the number of items in its data source has changed.

- (void)noteNumberOfItemsChanged

Discussion
This method allows the receiver to update the scrollers in its displayed pop-up list without actually reloading
data into the receiver. It is particularly useful for a data source that continually receives data in the background
over a period of time, in which case the NSComboBox can remain responsive to the user while the data is
received.

See the NSComboBoxDataSource informal protocol specification for information on the messages an
NSComboBox sends to its data source.

Availability
Available in Mac OS X v10.0 and later.

776 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

See Also
– reloadData (page 778)

Declared In
NSComboBox.h

numberOfItems
Returns the total number of items in the pop-up list.

- (NSInteger)numberOfItems

Return Value
The number of items in the list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfVisibleItems (page 777)
– numberOfItemsInComboBox: (NSComboBoxDataSource protocol)

Related Sample Code
DemoAssistant

Declared In
NSComboBox.h

numberOfVisibleItems
Returns the maximum number of items visible in the pop-up list.

- (NSInteger)numberOfVisibleItems

Return Value
The maximum number of items visible at any one time in the pop-up list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfItems (page 777)

Declared In
NSComboBox.h

objectValueOfSelectedItem
Returns the object corresponding to the last item selected from the pop-up list.

- (id)objectValueOfSelectedItem

Instance Methods 777
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

Return Value
The object in the receiver's internal item list corresponding to the last item selected from the pop-up list, or
nil if no item is selected.

Discussion
Note that nothing is initially selected in a newly initialized combo box. This method logs a warning if
usesDataSource (page 786) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfSelectedItem (page 774)
– comboBox:objectValueForItemAtIndex: (NSComboBoxDataSource protocol)

Related Sample Code
QTAudioExtractionPanel
QTKitPlayer

Declared In
NSComboBox.h

objectValues
Returns as an array the receiver’s internal item list.

- (NSArray *)objectValues

Return Value
The array containing the objects in the receiver's internal item list.

Discussion
This method logs a warning if usesDataSource (page 786) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DemoAssistant

Declared In
NSComboBox.h

reloadData
Marks the receiver as needing redisplay, so that it will reload the data for visible pop-up items and draw the
new values.

- (void)reloadData

Availability
Available in Mac OS X v10.0 and later.

778 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

See Also
– noteNumberOfItemsChanged (page 776)

Declared In
NSComboBox.h

removeAllItems
Removes all items from the receiver’s internal item list.

- (void)removeAllItems

Discussion
This method logs a warning if usesDataSource (page 786) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectValues (page 778)

Declared In
NSComboBox.h

removeItemAtIndex:
Removes the object at the specified location from the receiver’s internal item list.

- (void)removeItemAtIndex:(NSInteger)index

Parameters
index

The index of the object to remove. All items beyond index are moved up one slot to fill the gap.

Discussion
The removed object receives a release message. This method raises an NSRangeException if index is
beyond the end of the list and logs a warning if usesDataSource (page 786) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DemoAssistant
QTAudioExtractionPanel
QTKitPlayer

Declared In
NSComboBox.h

removeItemWithObjectValue:
Removes all occurrences of the given object from the receiver’s internal item list.

Instance Methods 779
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

- (void)removeItemWithObjectValue:(id)anObject

Parameters
anObject

The object to remove from the internal item list. Objects are considered equal if they have the same
id or if isEqual: returns YES.

Discussion
This method logs a warning if usesDataSource (page 786) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItemWithObjectValue: (page 773)

Related Sample Code
QTAudioExtractionPanel
QTKitPlayer

Declared In
NSComboBox.h

scrollItemAtIndexToTop:
Scrolls the receiver’s pop-up list vertically so that the item at the specified index is as close to the top as
possible.

- (void)scrollItemAtIndexToTop:(NSInteger)index

Parameters
index

The index of the item to scroll to the top.

Discussion
The pop-up list need not be displayed at the time this method is invoked.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBox.h

scrollItemAtIndexToVisible:
Scrolls the receiver’s pop-up list vertically so that the item at the specified index is visible.

- (void)scrollItemAtIndexToVisible:(NSInteger)index

Parameters
index

The index of the item to make visible.

780 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

Discussion
The pop-up list need not be displayed at the time this method is invoked.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBox.h

selectItemAtIndex:
Selects the pop-up list row at the given index.

- (void)selectItemAtIndex:(NSInteger)index

Parameters
index

The index of the item to select in the pop-up list.

Discussion
Posts an NSComboBoxSelectionDidChangeNotification (page 786) to the default notification center if
the selection does in fact change. Note that this method does not alter the contents of the combo box’s text
field—see Setting the Combo Boxâ sValue for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setObjectValue: (page 836) (NSControl)

Declared In
NSComboBox.h

selectItemWithObjectValue:
Selects the first pop-up list item that corresponds to the given object.

- (void)selectItemWithObjectValue:(id)anObject

Parameters
anObject

The object to select in the pop-up list. Objects are considered equal if they have the same id or if
isEqual: returns YES.

Discussion
This method logs a warning if usesDataSource (page 786) returns YES. Posts an
NSComboBoxSelectionDidChangeNotification (page 786) to the default notification center if the
selection does in fact change. Note that this method doesn’t alter the contents of the combo box’s text
field—see Setting the Combo Boxâ sValue for more information.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 781
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

See Also
– setObjectValue: (page 836) (NSControl)

Declared In
NSComboBox.h

setButtonBordered:
Determines whether the button in the combo box is displayed with a border.

- (void)setButtonBordered:(BOOL)flag

Parameters
flag

YES to display a border; NO to display the button without a border. For example, it is often useful
when using a combo box in an NSTableView to display the button without the border.

Availability
Available in Mac OS X v10.3 and later.

See Also
– isButtonBordered (page 775)

Declared In
NSComboBox.h

setCompletes:
Sets whether the receiver tries to complete what the user types in the text field.

- (void)setCompletes:(BOOL)completes

Parameters
completes

YES to indicate that the receiver should try to complete test entered by the user. If completes is
YES, every time the user adds characters to the end of the text field, the combo box calls the
NSComboBoxCell method completedString: (page 792).

Discussion
If completedString: (page 792) returns a string that’s longer than the existing string, the combo box
replaces the existing string with the returned string and selects the additional characters. If the user is deleting
characters or adds characters somewhere besides the end of the string, the combo box does not try to
complete it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– completes (page 771)

Declared In
NSComboBox.h

782 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

setDataSource:
Sets the receiver’s data source to aSource.

- (void)setDataSource:(id < NSComboBoxDataSource >)aSource

Parameters
aSource

The new data source for the receiver. The data source should implement the appropriate methods
of the NSComboBoxDataSource informal protocol.

This method logs a warning if aSource doesn’t respond to either numberOfItemsInComboBox: or
comboBox:objectValueForItemAtIndex:.

Discussion
This method doesn’t automatically set usesDataSource (page 786) to NO and in fact logs a warning if
usesDataSource (page 786) returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setUsesDataSource: (page 785)

Declared In
NSComboBox.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSComboBoxDelegate >)anObject

Parameters
anObject

The delegate for the receiver. The delegate must conform to the NSComboBoxDelegate Protocol
protocol.

Availability
Available in Mac OS X v10.6 and later.

See Also
– delegate (page 772)

Declared In
NSComboBox.h

setHasVerticalScroller:
Determines whether the receiver displays a vertical scroller.

- (void)setHasVerticalScroller:(BOOL)flag

Instance Methods 783
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

Parameters
flag

YES to display a vertical scroller; NO otherwise. By default, flag is YES.

Discussion
If flag is NO and the combo box has more list items (either in its internal item list or from its data source)
than are allowed by numberOfVisibleItems (page 777), only a subset are displayed. The NSComboBox
class' scroll... methods can be used to position this subset within the pop-up list.

Note that if flag is YES, a scroller will be displayed even if the combo box has fewer list items than are allowed
by numberOfVisibleItems (page 777).

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfItems (page 777)
– scrollItemAtIndexToTop: (page 780)
– scrollItemAtIndexToVisible: (page 780)

Declared In
NSComboBox.h

setIntercellSpacing:
Sets the spacing between pop-up list items.

- (void)setIntercellSpacing:(NSSize)aSize

Parameters
aSize

The new width and height between pop-up list items. The default intercell spacing is (3.0, 2.0).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setItemHeight: (page 784)
– setNumberOfVisibleItems: (page 785)

Declared In
NSComboBox.h

setItemHeight:
Sets the height for items.

- (void)setItemHeight:(CGFloat)itemHeight

Parameters
itemHeight

The new height for items in the pop-up list.

784 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIntercellSpacing: (page 784)
– setNumberOfVisibleItems: (page 785)

Declared In
NSComboBox.h

setNumberOfVisibleItems:
Sets the maximum number of items that are visible in the receiver’s pop-up list.

- (void)setNumberOfVisibleItems:(NSInteger)visibleItems

Parameters
visibleItems

The maximum number of items that are visible at one time in the pop-up list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfItems (page 777)
– setItemHeight: (page 784)
– setIntercellSpacing: (page 784)

Declared In
NSComboBox.h

setUsesDataSource:
Sets whether the receiver uses an external data source to populate the receiver’s pop-up list.

- (void)setUsesDataSource:(BOOL)flag

Parameters
flag

YES if the receiver uses an external data source (specified by setDataSource: (page 783)); otherwise
NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBox.h

Instance Methods 785
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

usesDataSource
Returns a Boolean value indicating whether the receiver uses an external data source to populate its pop-up
list.

- (BOOL)usesDataSource

Return Value
YES if the receiver uses an external data source to populate the receiver’s pop-up list, NO if it uses an internal
item list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataSource (page 772)

Declared In
NSComboBox.h

Notifications

NSComboBoxSelectionDidChangeNotification
Posted after the pop-up list selection of the NSComboBox changes.

The notification object is the NSComboBox whose selection changed. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBox.h

NSComboBoxSelectionIsChangingNotification
Posted whenever the pop-up list selection of the NSComboBox is changing.

The notification object is the NSComboBox whose selection is changing. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBox.h

NSComboBoxWillDismissNotification
Posted whenever the pop-up list of the NSComboBox is about to be dismissed.

786 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

The notification object is the NSComboBox whose pop-up list will be dismissed. This notification does not
contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBox.h

NSComboBoxWillPopUpNotification
Posted whenever the pop-up list of the NSComboBox is going to be displayed.

The notification object is the NSComboBox whose pop-up window will be displayed. This notification does
not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBox.h

Notifications 787
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

788 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 34

NSComboBox Class Reference

Inherits from NSTextFieldCell : NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSComboBoxCell.h

Companion guide Combo Box Programming Topics

Related sample code SimpleComboBox

Overview

NSComboBoxCell is a subclass of NSTextFieldCell used to implement the user interface of “combo boxes”
(see NSComboBox for information on how combo boxes look and work). The NSComboBox subclass of
NSTextField uses a single NSComboBoxCell, and essentially all of the NSComboBox class’ methods simply
invoke the corresponding NSComboBoxCell method.

Also see the NSComboBoxCellDataSource protocol, which declares the methods that an NSComboBoxCell
object uses to access the contents of its data source object.

Tasks

Setting Display Attributes

– hasVerticalScroller (page 794)
Returns a Boolean value indicating whether the receiver will display a vertical scroller.

– isButtonBordered (page 796)
Returns a Boolean value indicating whether the combo box button is set to display a border.

– intercellSpacing (page 796)
Returns the spacing between cells in the receiver’s pop-up list.

– itemHeight (page 797)
Returns the height of each item in the receiver’s pop-up list.

Overview 789
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

– numberOfVisibleItems (page 798)
Returns the maximum number of items visible in the pop-up list.

– setButtonBordered: (page 803)
Determines whether the button in the combo box is displayed with a border.

– setHasVerticalScroller: (page 804)
Determines whether the receiver displays a vertical scroller.

– setIntercellSpacing: (page 805)
Sets the spacing between pop-up list items.

– setItemHeight: (page 805)
Sets the height for items.

– setNumberOfVisibleItems: (page 805)
Sets the maximum number of items that are visible in the pop-up list.

Setting a Data Source

– dataSource (page 793)
Returns the object that provides the data displayed in the receiver’s pop-up list.

– setDataSource: (page 804)
Sets the receiver’s data source.

– setUsesDataSource: (page 806)
Sets whether the receiver uses an external data source to populate its pop-up list.

– usesDataSource (page 806)
Returns a Boolean value indicating whether the receiver uses an external data source.

Working with an Internal List

– addItemsWithObjectValues: (page 792)
Adds multiple objects to the internal item list.

– addItemWithObjectValue: (page 792)
Adds the specified object to the internal item list.

– insertItemWithObjectValue:atIndex: (page 795)
Inserts an object at the specified location in the internal item list.

– objectValues (page 799)
Returns the receiver’s internal item list.

– removeAllItems (page 800)
Removes all items from the receiver’s internal item list.

– removeItemAtIndex: (page 800)
Removes the object at the specified location from the receiver’s internal item list.

– removeItemWithObjectValue: (page 801)
Removes all occurrences of the specified object from the receiver’s internal item list.

– numberOfItems (page 798)
Returns the total number of items in the pop-up list.

790 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

Manipulating the Displayed List

– indexOfItemWithObjectValue: (page 795)
Searches the receiver’s internal item list for the given object and returns the matching index number.

– itemObjectValueAtIndex: (page 797)
Returns the object located at the specified location in the internal item list.

– noteNumberOfItemsChanged (page 798)
Informs the receiver that the number of items in its data source has changed.

– reloadData (page 799)
Marks the receiver as needing redisplay, so that it will reload the data for visible pop-up items and
draw the new values.

– scrollItemAtIndexToTop: (page 801)
Scrolls the receiver’s pop-up list vertically so that the item at the given index is as close to the top as
possible.

– scrollItemAtIndexToVisible: (page 801)
Scrolls the receiver’s pop-up list vertically so that the item at the given index is visible.

Manipulating the Selection

– deselectItemAtIndex: (page 794)
Deselects the pop-up list item at the given index if it’s selected.

– indexOfSelectedItem (page 795)
Returns the index of the last item selected from the pop-up list.

– objectValueOfSelectedItem (page 799)
Returns the object corresponding to the last item selected from the pop-up list.

– selectItemAtIndex: (page 802)
Selects the pop-up list row at the given index.

– selectItemWithObjectValue: (page 802)
Selects the first pop-up list item that corresponds to the specified object.

Completing the Text Field

– completedString: (page 792)
Returns a string from the receiver’s pop-up list that starts with the given substring.

– completes (page 793)
Returns a Boolean value indicating whether the receiver tries to complete text entered by the user.

– setCompletes: (page 803)
Sets whether the receiver tries to complete what the user types in the text field.

Tasks 791
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

Instance Methods

addItemsWithObjectValues:
Adds multiple objects to the internal item list.

- (void)addItemsWithObjectValues:(NSArray *)objects

Parameters
objects

The object to add to the end of the receiver’s internal item list.

Discussion
This method logs a warning if usesDataSource (page 806) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBoxCell.h

addItemWithObjectValue:
Adds the specified object to the internal item list.

- (void)addItemWithObjectValue:(id)anObject

Parameters
anObject

The object to add to the end of the receiver's internal item list.

Discussion
This method logs a warning if usesDataSource (page 806) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBoxCell.h

completedString:
Returns a string from the receiver’s pop-up list that starts with the given substring.

- (NSString *)completedString:(NSString *)substring

Parameters
substring

The substring to search for. This is what the user entered in the combo box’s text field.

792 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

Return Value
The string from the receiver's pop-up list that starts with the specified substring or nil if there is no such
string.

Discussion
The default implementation of this method first checks whether the combo box uses a data source and
whether the data source responds tocomboBox:completedString:orcomboBoxCell:completedString:.
If so, the combo box cell returns that method’s return value. Otherwise, this method goes through the combo
box’s items one by one and returns an item that starts with substring.

Override this method only if your subclass completes strings differently. The overriding method does not
need to call the superclass’s method. Generally, you do not need to call this method directly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBoxCell.h

completes
Returns a Boolean value indicating whether the receiver tries to complete text entered by the user.

- (BOOL)completes

Return Value
YES if the receiver tries to complete what the user types in the text field; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCompletes: (page 803)

Declared In
NSComboBoxCell.h

dataSource
Returns the object that provides the data displayed in the receiver’s pop-up list.

- (id < NSComboBoxCellDataSource >)dataSource

Return Value
The data source for the receiver's pop-up list.

Discussion
This method logs a warning if usesDataSource (page 806) returns NO. See the class description and the
NSComboBoxCellDataSource informal protocol specification for more information on combo box cell data
source objects.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 793
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

Declared In
NSComboBoxCell.h

deselectItemAtIndex:
Deselects the pop-up list item at the given index if it’s selected.

- (void)deselectItemAtIndex:(NSInteger)index

Parameters
index

The index of the item to deselect.

Discussion
If the selection does in fact change, this method posts an
NSComboBoxSelectionDidChangeNotification (page 786) to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfSelectedItem (page 795)
– numberOfItems (page 798)
– selectItemAtIndex: (page 802)

Declared In
NSComboBoxCell.h

hasVerticalScroller
Returns a Boolean value indicating whether the receiver will display a vertical scroller.

- (BOOL)hasVerticalScroller

Return Value
YES if the receiver displays a vertical scroller; otherwise NO.

Discussion
Note that the scroller will be displayed even if the pop-up list contains fewer items than will fit in the area
specified for display.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfItems (page 798)
– numberOfVisibleItems (page 798)

Declared In
NSComboBoxCell.h

794 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

indexOfItemWithObjectValue:
Searches the receiver’s internal item list for the given object and returns the matching index number.

- (NSInteger)indexOfItemWithObjectValue:(id)anObject

Parameters
anObject

The object for which to return the index.

Return Value
The lowest index whose corresponding value is equal to anObject. Objects are considered equal if they
have the same id or if isEqual: returns YES. If none of the objects in the receiver’s internal item list is equal
to anObject, indexOfItemWithObjectValue: returns NSNotFound.

Discussion
This method logs a warning if usesDataSource (page 806) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectItemWithObjectValue: (page 802)

Declared In
NSComboBoxCell.h

indexOfSelectedItem
Returns the index of the last item selected from the pop-up list.

- (NSInteger)indexOfSelectedItem

Return Value
The index of the last item selected from the receiver's pop-up list or –1 if no item is selected.

Discussion
Note that nothing is initially selected in a newly initialized combo box cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectValueOfSelectedItem (page 799)

Declared In
NSComboBoxCell.h

insertItemWithObjectValue:atIndex:
Inserts an object at the specified location in the internal item list.

- (void)insertItemWithObjectValue:(id)anObject atIndex:(NSInteger)index

Instance Methods 795
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

Parameters
anObject

The object to add to the receiver's internal item list.

index
The index at which to add the specified object. The previous item at index—along with all following
items—is shifted down one slot to make room.

Discussion
This method logs a warning if usesDataSource (page 806) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItemWithObjectValue: (page 792)
– numberOfItems (page 798)

Declared In
NSComboBoxCell.h

intercellSpacing
Returns the spacing between cells in the receiver’s pop-up list.

- (NSSize)intercellSpacing

Return Value
The horizontal and vertical spacing between cells in the receiver’s pop-up list. The default spacing is (3.0,
2.0).

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemHeight (page 797)
– numberOfVisibleItems (page 798)

Declared In
NSComboBoxCell.h

isButtonBordered
Returns a Boolean value indicating whether the combo box button is set to display a border.

- (BOOL)isButtonBordered

Return Value
YES if the button has a border; otherwise NO.

Availability
Available in Mac OS X v10.3 and later.

796 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

See Also
– setButtonBordered: (page 803)

Declared In
NSComboBoxCell.h

itemHeight
Returns the height of each item in the receiver’s pop-up list.

- (CGFloat)itemHeight

Return Value
The height of each item in the pop-up list. The default item height is 16.0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– intercellSpacing (page 796)
– numberOfVisibleItems (page 798)

Declared In
NSComboBoxCell.h

itemObjectValueAtIndex:
Returns the object located at the specified location in the internal item list.

- (id)itemObjectValueAtIndex:(NSInteger)index

Parameters
index

The index of the object to return. If index is beyond the end of the list, an NSRangeException is
raised.

Return Value
The object at the given location in the receiver's internal item list.

Discussion
This method logs a warning if usesDataSource (page 806) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectValueOfSelectedItem (page 799)

Declared In
NSComboBoxCell.h

Instance Methods 797
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

noteNumberOfItemsChanged
Informs the receiver that the number of items in its data source has changed.

- (void)noteNumberOfItemsChanged

Discussion
This method allows the receiver to update the scrollers in its displayed pop-up list without actually reloading
data into the receiver. It is particularly useful for a data source that continually receives data in the background
over a period of time, in which case the NSComboBoxCell can remain responsive to the user while the data
is received.

See the NSComboBoxCellDataSource informal protocol specification for information on the messages an
NSComboBoxCell sends to its data source.

Availability
Available in Mac OS X v10.0 and later.

See Also
– reloadData (page 799)

Declared In
NSComboBoxCell.h

numberOfItems
Returns the total number of items in the pop-up list.

- (NSInteger)numberOfItems

Return Value
The number of items in the pop-up list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfVisibleItems (page 798)
– numberOfItemsInComboBoxCell: (NSComboBoxCellDataSource protocol)

Declared In
NSComboBoxCell.h

numberOfVisibleItems
Returns the maximum number of items visible in the pop-up list.

- (NSInteger)numberOfVisibleItems

Return Value
The maximum number of items that are visible in the receiver's pop-up list at any one time.

Availability
Available in Mac OS X v10.0 and later.

798 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

See Also
– numberOfItems (page 798)

Declared In
NSComboBoxCell.h

objectValueOfSelectedItem
Returns the object corresponding to the last item selected from the pop-up list.

- (id)objectValueOfSelectedItem

Return Value
The object from the receiver’s internal item list corresponding to the last item selected from the pop-up list,
or nil if no item is selected.

Discussion
Note that nothing is initially selected in a newly initialized combo box cell. This method logs a warning if
usesDataSource (page 806) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfSelectedItem (page 795)
– comboBoxCell:objectValueForItemAtIndex: (NSComboBoxCellDataSource protocol)

Declared In
NSComboBoxCell.h

objectValues
Returns the receiver’s internal item list.

- (NSArray *)objectValues

Return Value
An array containing the objects in the receiver's internal item list.

Discussion
This method logs a warning if usesDataSource (page 806) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBoxCell.h

reloadData
Marks the receiver as needing redisplay, so that it will reload the data for visible pop-up items and draw the
new values.

Instance Methods 799
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

- (void)reloadData

Availability
Available in Mac OS X v10.0 and later.

See Also
– noteNumberOfItemsChanged (page 798)

Declared In
NSComboBoxCell.h

removeAllItems
Removes all items from the receiver’s internal item list.

- (void)removeAllItems

Discussion
This method logs a warning if usesDataSource (page 806) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectValues (page 799)

Declared In
NSComboBoxCell.h

removeItemAtIndex:
Removes the object at the specified location from the receiver’s internal item list.

- (void)removeItemAtIndex:(NSInteger)index

Parameters
index

The index of the object to remove from the receiver's internal item list. All items beyond index are
moved up one slot to fill the gap.

Discussion
The removed object receives a release message. This method raises an NSRangeException if index is
beyond the end of the list and logs a warning if usesDataSource (page 806) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBoxCell.h

800 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

removeItemWithObjectValue:
Removes all occurrences of the specified object from the receiver’s internal item list.

- (void)removeItemWithObjectValue:(id)anObject

Parameters
anObject

The object to remove from the receiver's internal item list. Objects are considered equal if they have
the same id or if isEqual: returns YES.

Discussion
This method logs a warning if usesDataSource (page 806) returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItemWithObjectValue: (page 795)

Declared In
NSComboBoxCell.h

scrollItemAtIndexToTop:
Scrolls the receiver’s pop-up list vertically so that the item at the given index is as close to the top as possible.

- (void)scrollItemAtIndexToTop:(NSInteger)index

Parameters
index

The index of the item to scroll to the top.

Discussion
The pop-up list need not be displayed at the time this method is invoked.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBoxCell.h

scrollItemAtIndexToVisible:
Scrolls the receiver’s pop-up list vertically so that the item at the given index is visible.

- (void)scrollItemAtIndexToVisible:(NSInteger)index

Parameters
index

The index of the item to make visible.

Discussion
The pop-up list need not be displayed at the time this method is invoked.

Instance Methods 801
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBoxCell.h

selectItemAtIndex:
Selects the pop-up list row at the given index.

- (void)selectItemAtIndex:(NSInteger)index

Parameters
index

The index of the row to select.

Discussion
Posts an NSComboBoxSelectionDidChangeNotification (page 786) to the default notification center if
the selection does in fact change. Note that this method does not alter the contents of the combo box cell’s
text field—see Setting the Combo Boxâ sValue for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setObjectValue: (page 836) (NSControl)

Declared In
NSComboBoxCell.h

selectItemWithObjectValue:
Selects the first pop-up list item that corresponds to the specified object.

- (void)selectItemWithObjectValue:(id)anObject

Parameters
anObject

The object for which to select the corresponding pop-up list item. Objects are considered equal if
they have the same id or if isEqual: returns YES.

Discussion
This method logs a warning if usesDataSource (page 806) returns YES. Posts an
NSComboBoxSelectionDidChangeNotification (page 786) to the default notification center if the
selection does in fact change. Note that this method doesn’t alter the contents of the combo box cell’s text
field—see Setting the Combo Boxâ sValue for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setObjectValue: (page 836) (NSControl)

802 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

Declared In
NSComboBoxCell.h

setButtonBordered:
Determines whether the button in the combo box is displayed with a border.

- (void)setButtonBordered:(BOOL)flag

Parameters
flag

YES to display a border. For example, it is often useful when using a combo box in an NSTableView
to display the button without the border.

Availability
Available in Mac OS X v10.3 and later.

See Also
– isButtonBordered (page 796)

Declared In
NSComboBoxCell.h

setCompletes:
Sets whether the receiver tries to complete what the user types in the text field.

- (void)setCompletes:(BOOL)completes

Parameters
completes

YES to indicate that the receiver should try to complete text typed by the user. If completes is YES,
every time the user adds characters to the end of the text field, the combo box calls the
NSComboBoxCell method completedString: (page 792).

Discussion
If completedString: (page 792) returns a string that’s longer than the existing string, the combo box
replaces the existing string with the returned string and selects the additional characters. If the user is deleting
characters or adds characters somewhere besides the end of the string, the combo box does not try to
complete it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– completes (page 793)

Declared In
NSComboBoxCell.h

Instance Methods 803
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

setDataSource:
Sets the receiver’s data source.

- (void)setDataSource:(id < NSComboBoxCellDataSource >)aSource

Parameters
aSource

The data source for the receiver. aSource should implement the appropriate methods of the
NSComboBoxCellDataSource informal protocol.

This method logs a warning if aSource doesn’t respond to either numberOfItemsInComboBoxCell:
or comboBoxCell:objectValueForItemAtIndex:.

Discussion
This method doesn’t automatically set usesDataSource (page 806) to NO and in fact logs a warning if
usesDataSource returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setUsesDataSource: (page 806)

Declared In
NSComboBoxCell.h

setHasVerticalScroller:
Determines whether the receiver displays a vertical scroller.

- (void)setHasVerticalScroller:(BOOL)flag

Parameters
flag

YES to have the receiver display a vertical scroller. By default, flag is YES.

Discussion
If flag is NO and the combo box cell has more list items (either in its internal item list or from its data source)
than are allowed by numberOfVisibleItems (page 798), only a subset will be displayed. NSComboBoxCell’s
scroll... methods can be used to position this subset within the pop-up list.

Note that if flag is YES, a scroller will be displayed even if the combo box cell has fewer list items than are
allowed by numberOfVisibleItems.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfItems (page 798)
– scrollItemAtIndexToTop: (page 801)
– scrollItemAtIndexToVisible: (page 801)

Declared In
NSComboBoxCell.h

804 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

setIntercellSpacing:
Sets the spacing between pop-up list items.

- (void)setIntercellSpacing:(NSSize)aSize

Parameters
aSize

The width and height between pop-up list items. The default intercell spacing is (3.0, 2.0).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setItemHeight: (page 805)
– setNumberOfVisibleItems: (page 805)

Declared In
NSComboBoxCell.h

setItemHeight:
Sets the height for items.

- (void)setItemHeight:(CGFloat)itemHeight

Parameters
itemHeight

The height of pop-up list items.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIntercellSpacing: (page 805)
– setNumberOfVisibleItems: (page 805)

Declared In
NSComboBoxCell.h

setNumberOfVisibleItems:
Sets the maximum number of items that are visible in the pop-up list.

- (void)setNumberOfVisibleItems:(NSInteger)visibleItems

Parameters
visibleItems

The maximum number of items that should be visible at one time in the receiver's pop-up list.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 805
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

See Also
– numberOfItems (page 798)
– numberOfVisibleItems (page 798)
– setIntercellSpacing: (page 805)
– setItemHeight: (page 805)

Declared In
NSComboBoxCell.h

setUsesDataSource:
Sets whether the receiver uses an external data source to populate its pop-up list.

- (void)setUsesDataSource:(BOOL)flag

Parameters
flag

YES to indicate that the receiver uses an external data source (specified by setDataSource: (page
804)) to populate the receiver’s pop-up list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSComboBoxCell.h

usesDataSource
Returns a Boolean value indicating whether the receiver uses an external data source.

- (BOOL)usesDataSource

Return Value
YES if the receiver uses an external data source to populate the receiver’s pop-up list, NO if it uses an internal
item list.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataSource (page 793)

Declared In
NSComboBoxCell.h

806 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 35

NSComboBoxCell Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSControl.h

Companion guide Control and Cell Programming Topics for Cocoa

Related sample code ClockControl
EnhancedAudioBurn
ImageClient
QTMetadataEditor
Quartz Composer QCTV

Overview

NSControl is an abstract superclass that provides three fundamental features for implementing user interface
devices: drawing devices on the screen, responding to user events, and sending action messages. It works
closely with the NSCell class.

About Delegate Methods

The NSControl class provides several delegate methods for its subclasses that allow text editing, such as
NSTextField and NSMatrix. These include: controlTextDidBeginEditing: (page 846),
controlTextDidChange: (page 846), and controlTextDidEndEditing: (page 847).

Note that although NSControl defines delegate methods, it does not itself have a delegate. Any subclass
that uses these methods must have a delegate and the methods to get and set it. In addition, a formal
delegate protocol NSControlTextEditingDelegate also defines delegate methods used by control
delegates.

Overview 807
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Tasks

Initializing an NSControl

– initWithFrame: (page 820)
Returns an NSControl object initialized with the specified frame rectangle.

Setting the Control’s Cell

+ cellClass (page 812)
Returns the type of cell used by the receiver.

+ setCellClass: (page 813)
Sets the type of cell used by the receiver.

– cell (page 816)
Returns the receiver’s cell object.

– setCell: (page 830)
Sets the receiver’s cell

Enabling and Disabling the Control

– isEnabled (page 823)
Returns whether the receiver reacts to mouse events.

– setEnabled: (page 831)
Sets whether the receiver (and its cell) reacts to mouse events.

Identifying the Selected Cell

– selectedCell (page 825)
Returns the receiver’s selected cell.

– selectedTag (page 826)
Returns the tag of the receiver’s selected cell.

Setting the Control’s Value

– doubleValue (page 817)
Returns the value of the receiver’s cell as a double-precision floating-point number.

– setDoubleValue: (page 831)
Sets the value of the receiver’s cell using a double-precision floating-point number.

– floatValue (page 819)
Returns the value of the receiver’s cell as a single-precision floating-point number.

808 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

– setFloatValue: (page 832)
Sets the value of the receiver’s cell using a single-precision floating-point number.

– intValue (page 821)
Returns the value of the receiver’s cell as an integer.

– setIntValue: (page 835)
Sets the value of the receiver’s cell using an integer.

– integerValue (page 821)
Returns the value of the receiver’s cell as an NSInteger value.

– setIntegerValue: (page 834)
Sets the value of the receiver’s cell using an NSInteger value.

– objectValue (page 824)
Returns the value of the receiver’s cell as an Objective-C object.

– setObjectValue: (page 836)
Sets the value of the receiver’s cell using an Objective-C object.

– stringValue (page 840)
Returns the value of the receiver’s cell as an NSString object.

– setStringValue: (page 837)
Sets the value of the receiver’s cell using an NSString object.

– setNeedsDisplay (page 836)
Marks the receiver as needing redisplay (assuming automatic display is enabled).

– attributedStringValue (page 815)
Returns the value of the receiver’s cell as an attributed string.

– setAttributedStringValue: (page 829)
Sets the value of the receiver’s cell using an attributed string.

Interacting with Other Controls

– takeDoubleValueFrom: (page 841)
Sets the value of the receiver’s cell to a double-precision floating-point value obtained from the
specified object.

– takeFloatValueFrom: (page 841)
Sets the value of the receiver’s cell to a single-precision floating-point value obtained from the specified
object.

– takeIntValueFrom: (page 842)
Sets the value of the receiver’s cell to an integer value obtained from the specified object.

– takeIntegerValueFrom: (page 842)
Sets the value of the receiver’s cell to an NSInteger value obtained from the specified object.

– takeObjectValueFrom: (page 843)
Sets the value of the receiver’s cell to the object value obtained from the specified object.

– takeStringValueFrom: (page 843)
Sets the value of the receiver’s cell to the string value obtained from the specified object.

Tasks 809
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Formatting Text

– alignment (page 814)
Returns the alignment mode of the text in the receiver’s cell.

– setAlignment: (page 828)
Sets the alignment of text in the receiver’s cell.

– font (page 819)
Returns the font used to draw text in the receiver’s cell.

– setFont: (page 833)
Sets the font used to draw text in the receiver’s cell.

– formatter (page 820)
Returns the receiver’s formatter.

– setFormatter: (page 834)
Sets the receiver’s formatter

– baseWritingDirection (page 815)
Returns the initial writing direction used to determine the actual writing direction for text.

– setBaseWritingDirection: (page 829)
Sets the initial writing direction used to determine the actual writing direction for text .

– setFloatingPointFormat:left:right: (page 832) Deprecated in Mac OS X v10.0 Available in Mac
OS X v10.0 through Mac OS X v10.5

Sets the auto-ranging and floating point number format of the receiver’s cell.

Managing the Field Editor

– abortEditing (page 813)
Terminates the current editing operation and discards any edited text.

– currentEditor (page 817)
Returns the current field editor for the control.

– validateEditing (page 845)
Validates changes to any user-typed text.

Resizing the Control

– calcSize (page 816)
Recomputes any internal sizing information for the receiver, if necessary.

– sizeToFit (page 839)
Resizes the receiver’s frame so that it is the minimum size needed to contain its cell.

Displaying a Cell

– selectCell: (page 825)
Selects the specified cell and redraws the control as needed.

810 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

– drawCell: (page 818)
Draws the specified cell, as long as it belongs to the receiver.

– drawCellInside: (page 818)
Draws the inside of the receiver’s cell (the area within the bezel or border)

– updateCell: (page 844)
Marks the specified cell as in need of redrawing.

– updateCellInside: (page 845)
Marks the inside of the specified cell as in need of redrawing.

Implementing the Target/action Mechanism

– action (page 814)
Returns the default action-message selector associated with the control.

– setAction: (page 828)
Sets the receiver's action method to the specified selector.

– target (page 844)
Returns the target object of the receiver’s cell.

– setTarget: (page 838)
Sets the target object to receive action messages from the receiver’s cell.

– isContinuous (page 822)
Returns a Boolean value indicating whether the receiver’s cell sends its action message continuously
to its target during mouse tracking.

– setContinuous: (page 830)
Sets whether the receiver’s cell sends its action message continuously to its target during mouse
tracking.

– sendAction:to: (page 826)
Causes the specified action to be sent the target.

– sendActionOn: (page 827)
Sets the conditions on which the receiver sends action messages to its target.

Getting and Setting Tags

– tag (page 840)
Returns the tag identifying the receiver (not the tag of the receiver’s cell).

– setTag: (page 838)
Sets the tag of the receiver.

Activating from the Keyboard

– performClick: (page 824)
Simulates a single mouse click on the receiver.

– refusesFirstResponder (page 825)
Returns a Boolean value indicating whether the receiver refuses the first responder role.

Tasks 811
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

– setRefusesFirstResponder: (page 837)
Sets whether the receiver refuses first responder role.

Tracking the Mouse

– mouseDown: (page 823)
Informs the receiver that the user has pressed the left mouse button.

– ignoresMultiClick (page 820)
Returns a Boolean value indicating whether the receiver ignores multiple clicks made in rapid
succession.

– setIgnoresMultiClick: (page 834)
Sets whether the receiver ignores multiple clicks made in rapid succession.

Control Editing Notifications

– controlTextDidBeginEditing: (page 846) delegate method
Sent when a control with editable text begins an editing session.

– controlTextDidChange: (page 846) delegate method
Sent when the text in the receiving control changes.

– controlTextDidEndEditing: (page 847) delegate method
Sent when a control with editable text ends an editing session.

Class Methods

cellClass
Returns the type of cell used by the receiver.

+ (Class)cellClass

Return Value
The class of the cell used to manage the receiver's contents, or nil if no cell class has been set for the receiver
or its superclasses (up to NSControl).

Availability
Available in Mac OS X v10.0 and later.

See Also
– cell (page 816)
– setCell: (page 830)
+ setCellClass: (page 813)

Related Sample Code
ClockControl
TrackBall

812 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Declared In
NSControl.h

setCellClass:
Sets the type of cell used by the receiver.

+ (void)setCellClass:(Class)class

Parameters
class

The class of the cell to use with this control.

Discussion
If you have a custom cell subclass that you would like to substitute for the class of a cell object in a nib file,
you should set the cell class in the awakeFromNib (page 3731) method (NSNibAwaking protocol). You cannot
change the class programmatically after the cell object has been unarchived from the nib and instantiated,
which occurs immediately after awakeFromNib (page 3731) returns. If you are going to be using your custom
cell frequently, consider creating your own Interface Builder palette containing the cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cell (page 816)
– setCell: (page 830)
+ cellClass (page 812)

Declared In
NSControl.h

Instance Methods

abortEditing
Terminates the current editing operation and discards any edited text.

- (BOOL)abortEditing

Return Value
YES if there was a field editor associated with the control; otherwise, NO.

Discussion
If there was a field editor, this method removes the field editor’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentEditor (page 817)
– validateEditing (page 845)

Instance Methods 813
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Related Sample Code
QTMetadataEditor

Declared In
NSControl.h

action
Returns the default action-message selector associated with the control.

- (SEL)action

Return Value
The selector associated with the receiver's cell.

Discussion
The NSControl implementation of this method returns the action message selector of the receiver's cell.
Controls that support multiple cells (such as NSMatrix and NSForm) must override this method to return
the appropriate action-message selector.

If you want the action-message selector for a control that has multiple cells, it is better to use the get the
selector directly from the cell's own action method, as shown in the following example:

SEL someAction = [[theControl selectedCell] action];

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAction: (page 828)
– setTarget: (page 838)
– target (page 844)

Related Sample Code
SimpleToolbar

Declared In
NSControl.h

alignment
Returns the alignment mode of the text in the receiver’s cell.

- (NSTextAlignment)alignment

Return Value
One of the following constants: NSLeftTextAlignment,
NSRightTextAlignment,NSCenterTextAlignment, NSJustifiedTextAlignment, or
NSNaturalTextAlignment. The default value is NSNaturalTextAlignment.

Availability
Available in Mac OS X v10.0 and later.

814 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

See Also
– setAlignment: (page 828)

Declared In
NSControl.h

attributedStringValue
Returns the value of the receiver’s cell as an attributed string.

- (NSAttributedString *)attributedStringValue

Return Value
The value of the cell interpreted as an attributed string, or an empty attributed string if the receiver has no
cell.

Discussion
If the control contains many cells (for example, NSMatrix), then the value of the currently selected cell is
returned. If the control is in the process of editing the affected cell, then it invokes the
validateEditing (page 845) method before extracting and returning the value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttributedStringValue: (page 829)

Declared In
NSControl.h

baseWritingDirection
Returns the initial writing direction used to determine the actual writing direction for text.

- (NSWritingDirection)baseWritingDirection

Return Value
One of the following values: NSWritingDirectionNatural, NSWritingDirectionLeftToRight, or
NSWritingDirectionRightToLeft. The default value is NSWritingDirectionNatural.

Discussion
The Text system uses this value as a hint for calculating the actual direction for displaying Unicode characters.
You should not need to call this method directly.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBaseWritingDirection: (page 829)

Declared In
NSControl.h

Instance Methods 815
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

calcSize
Recomputes any internal sizing information for the receiver, if necessary.

- (void)calcSize

Discussion
This method uses the calcDrawInfo: (page 548) method of its cell to perform the calculations. Most controls
maintain a flag that informs them if any of their cells have been modified in such a way that the location or
size of the cell should be recomputed. If such a modification happens, this method is automatically invoked
before the control is displayed. You should never need to invoke it yourself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sizeToFit (page 839)

Declared In
NSControl.h

cell
Returns the receiver’s cell object.

- (id)cell

Return Value
The cell object of the receiver.

Discussion
For controls with multiple cells (such as NSMatrix or NSForm), use the selectedCell (page 825) method
or a similar method to retrieve a specific cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ cellClass (page 812)
+ setCellClass: (page 813)
– setCell: (page 830)

Related Sample Code
ButtonMadness
ClockControl
DatePicker
FunHouse
Quartz Composer QCTV

Declared In
NSControl.h

816 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

currentEditor
Returns the current field editor for the control.

- (NSText *)currentEditor

Return Value
The field editor for the current control, or nil if the receiver does not have a field editor.

Discussion
When the receiver is a control displaying editable text (for example, a text field) and it is the first responder,
it has a field editor, which is returned by this method. The field editor is a single NSTextView object that is
shared among all the controls in a window for light text-editing needs. It is automatically instantiated when
needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– abortEditing (page 813)
– validateEditing (page 845)

Declared In
NSControl.h

doubleValue
Returns the value of the receiver’s cell as a double-precision floating-point number.

- (double)doubleValue

Return Value
The value of the cell interpreted as a double-precision floating-point number.

Discussion
If the control contains many cells (for example, NSMatrix), then the value of the currently selected cell is
returned. If the control is in the process of editing the affected cell, then it invokes the
validateEditing (page 845) method before extracting and returning the value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– floatValue (page 819)
– intValue (page 821)
– integerValue (page 821)
– objectValue (page 824)
– stringValue (page 840)
– setDoubleValue: (page 831)

Related Sample Code
CarbonCocoaTempConverter
CocoaSpeechSynthesisExample

Instance Methods 817
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

FunHouse

Declared In
NSControl.h

drawCell:
Draws the specified cell, as long as it belongs to the receiver.

- (void)drawCell:(NSCell *)aCell

Parameters
aCell

The cell to draw. If the cell does not belong to the receiver, this method does nothing.

Discussion
This method is provided primarily to support a consistent set of methods between NSControl objects with
single and multiple cells, because a control with multiple cells needs to be able to draw individual cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectCell: (page 825)
– updateCell: (page 844)
– updateCellInside: (page 845)

Declared In
NSControl.h

drawCellInside:
Draws the inside of the receiver’s cell (the area within the bezel or border)

- (void)drawCellInside:(NSCell *)aCell

Parameters
aCell

The cell to draw. If the cell does not belong to the receiver, this method does nothing.

Discussion
If the receiver is transparent, the method causes the superview to draw itself. This method invokes the
drawInteriorWithFrame:inView: (page 553) method of NSCell. This method has no effect on controls
(such as NSMatrix and NSForm) that have multiple cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectCell: (page 825)
– updateCell: (page 844)
– updateCellInside: (page 845)

818 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Declared In
NSControl.h

floatValue
Returns the value of the receiver’s cell as a single-precision floating-point number.

- (float)floatValue

Return Value
The value of the cell interpreted as a single-precision floating-point number.

Discussion
If the control contains many cells (for example, NSMatrix), then the value of the currently selected cell is
returned. If the control is in the process of editing the affected cell, then it invokes the
validateEditing (page 845) method before extracting and returning the value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doubleValue (page 817)
– intValue (page 821)
– integerValue (page 821)
– objectValue (page 824)
– stringValue (page 840)
– setFloatValue: (page 832)

Related Sample Code
CoreImageGLTextureFBO
Fireworks
NineSlice
OpenALExample
WhackedTV

Declared In
NSControl.h

font
Returns the font used to draw text in the receiver’s cell.

- (NSFont *)font

Return Value
The font object used for drawing text.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 819
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

See Also
– setFont: (page 833)

Declared In
NSControl.h

formatter
Returns the receiver’s formatter.

- (id)formatter

Return Value
The formatter object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFormatter: (page 834)

Related Sample Code
TrackBall

Declared In
NSControl.h

ignoresMultiClick
Returns a Boolean value indicating whether the receiver ignores multiple clicks made in rapid succession.

- (BOOL)ignoresMultiClick

Return Value
YES if the receiver ignores multiple clicks; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIgnoresMultiClick: (page 834)

Declared In
NSControl.h

initWithFrame:
Returns an NSControl object initialized with the specified frame rectangle.

- (id)initWithFrame:(NSRect)frameRect

820 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Parameters
frameRect

The rectangle of the control, specified in points in the coordinate space of the enclosing view.

Return Value
An initialized control object, or nil if the object could not be initialized.

Discussion
If a cell has been specified for controls of this type, this method also creates an instance of the cell. Because
NSControl is an abstract class, invocations of this method should appear only in the designated initializers
of subclasses; that is, there should always be a more specific designated initializer for the subclass, as this
method is the designated initializer for NSControl.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

integerValue
Returns the value of the receiver’s cell as an NSInteger value.

- (NSInteger)integerValue

Return Value
The value of the cell interpreted as an NSInteger value.

Discussion
If the control contains many cells (for example, NSMatrix), then the value of the currently selected cell is
returned. If the control is in the process of editing the affected cell, then it invokes the
validateEditing (page 845) method before extracting and returning the value.

Availability
Available in Mac OS X v10.5 and later.

See Also
– doubleValue (page 817)
– floatValue (page 819)
– intValue (page 821)
– objectValue (page 824)
– stringValue (page 840)
– setIntegerValue: (page 834)

Declared In
NSControl.h

intValue
Returns the value of the receiver’s cell as an integer.

- (int)intValue

Instance Methods 821
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Return Value
The value of the cell interpreted as an integer.

Discussion
If the control contains many cells (for example, NSMatrix), then the value of the currently selected cell is
returned. If the control is in the process of editing the affected cell, then it invokes the
validateEditing (page 845) method before extracting and returning the value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doubleValue (page 817)
– floatValue (page 819)
– integerValue (page 821)
– objectValue (page 824)
– stringValue (page 840)
– setIntValue: (page 835)

Related Sample Code
CocoaSpeechSynthesisExample
EnhancedAudioBurn
EnhancedDataBurn
GLUT
QTKitTimeCode

Declared In
NSControl.h

isContinuous
Returns a Boolean value indicating whether the receiver’s cell sends its action message continuously to its
target during mouse tracking.

- (BOOL)isContinuous

Return Value
YES if the action message is sent continuously; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContinuous: (page 830)

Related Sample Code
Cropped Image

Declared In
NSControl.h

822 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

isEnabled
Returns whether the receiver reacts to mouse events.

- (BOOL)isEnabled

Return Value
YES if the receiver responds to mouse events; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEnabled: (page 831)

Related Sample Code
EnhancedDataBurn
TrackBall

Declared In
NSControl.h

mouseDown:
Informs the receiver that the user has pressed the left mouse button.

- (void)mouseDown:(NSEvent *)theEvent

Parameters
theEvent

The event resulting from the user action.

Discussion
Invoked when the mouse button is pressed while the cursor is within the bounds of the receiver, generating
theEvent. This method highlights the receiver’s cell and sends it a
trackMouse:inRect:ofView:untilMouseUp: (page 610) message. Whenever the cell finishes tracking
the mouse (for example, because the cursor has left the cell’s bounds), the cell is unhighlighted. If the mouse
button is still down and the cursor reenters the bounds, the cell is again highlighted and a new
trackMouse:inRect:ofView:untilMouseUp: (page 610) message is sent. This behavior repeats until the
mouse button goes up. If it goes up with the cursor in the control, the state of the control is changed, and
the action message is sent to the target. If the mouse button goes up when the cursor is outside the control,
no action message is sent.

Availability
Available in Mac OS X v10.0 and later.

See Also
– ignoresMultiClick (page 820)
– trackMouse:inRect:ofView:untilMouseUp: (page 610) (NSCell)

Declared In
NSControl.h

Instance Methods 823
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

objectValue
Returns the value of the receiver’s cell as an Objective-C object.

- (id)objectValue

Return Value
The value of the cell interpreted as an Objective-C object.

Discussion
If the control contains many cells (for example, NSMatrix), then the value of the currently selected cell is
returned. If the control is in the process of editing the affected cell, then it invokes the
validateEditing (page 845) method before extracting and returning the value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doubleValue (page 817)
– floatValue (page 819)
– intValue (page 821)
– stringValue (page 840)
– setObjectValue: (page 836)

Related Sample Code
FunHouse
PhotoSearch
PredicateEditorSample
TrackBall

Declared In
NSControl.h

performClick:
Simulates a single mouse click on the receiver.

- (void)performClick:(id)sender

Parameters
sender

The object requesting the action. This parameter is ignored.

Discussion
This method calls the performClick: (page 573) method of the receiver's cell with the sender being the
control itself. This method raises an exception if the action message cannot be successfully sent.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

824 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

refusesFirstResponder
Returns a Boolean value indicating whether the receiver refuses the first responder role.

- (BOOL)refusesFirstResponder

Return Value
YES if the receiver refuses the first responder role; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRefusesFirstResponder: (page 837)

Declared In
NSControl.h

selectCell:
Selects the specified cell and redraws the control as needed.

- (void)selectCell:(NSCell *)aCell

Parameters
aCell

The cell to select. The cell must belong to the receiver.

Discussion
If the cell is already selected (or does not belong to the receiver), this method does nothing. If the cell belongs
to the receiver and is not selected, this method changes its state to NSOnState and redraws the cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedCell (page 825)

Declared In
NSControl.h

selectedCell
Returns the receiver’s selected cell.

- (id)selectedCell

Return Value
The selected cell object.

Discussion
The default implementation of this method simply returns the control's associated cell (or nil if no cell has
been set). Subclasses of NSControl that manage multiple cells (such as NSMatrix and NSForm) must override
this method to return the cell selected by the user.

Instance Methods 825
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– cell (page 816)
– setCell: (page 830)

Related Sample Code
Cropped Image
PhotoSearch

Declared In
NSControl.h

selectedTag
Returns the tag of the receiver’s selected cell.

- (NSInteger)selectedTag

Return Value
The tag of the selected cell, or -1 if no cell is selected.

Discussion
When you set the tag of a control with a single cell in Interface Builder, it sets the tags of both the control
and the cell with the same value as a convenience.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTag: (page 838)
– tag (page 840)

Related Sample Code
CalendarItems
WhackedTV

Declared In
NSControl.h

sendAction:to:
Causes the specified action to be sent the target.

- (BOOL)sendAction:(SEL)theAction to:(id)theTarget

Parameters
theAction

The selector to invoke on the target. If the selector is NULL, no message is sent.

826 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

theTarget
The target object to receive the message. If the object is nil, the application searches the responder
chain for an object capable of handling the message. For more information on dispatching actions,
see the class description for NSActionCell.

Return Value
YES if the message was successfully sent; otherwise, NO.

Discussion
This method uses the sendAction:to:from: (page 166) method of NSApplication to invoke the specified
method on an object. The receiver is passed as the parameter to the action message. This method is invoked
primarily by the trackMouse:inRect:ofView:untilMouseUp: (page 610) method of NSCell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 814)
– target (page 844)

Declared In
NSControl.h

sendActionOn:
Sets the conditions on which the receiver sends action messages to its target.

- (NSInteger)sendActionOn:(NSInteger)mask

Parameters
mask

A bit mask containing the conditions for sending the action. The only conditions that are actually
checked are associated with the NSLeftMouseDownMask, NSLeftMouseUpMask,
NSLeftMouseDraggedMask, and NSPeriodicMask bits.

Return Value
A bit mask containing the previous settings. This bit mask uses the same values as specified in the mask
parameter.

Discussion
You use this method during mouse tracking when the mouse button changes state, the mouse moves, or if
the cell is marked to send its action continuously while tracking. Because of this, the only bits checked in
maskareNSLeftMouseDownMask,NSLeftMouseUpMask,NSLeftMouseDraggedMask, andNSPeriodicMask,
which are declared in the NSEvent class reference.

The default implementation of this method simply invokes the sendActionOn: (page 576) method of its
associated cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendAction:to: (page 826)
– sendActionOn: (page 576) (NSCell)

Instance Methods 827
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Declared In
NSControl.h

setAction:
Sets the receiver's action method to the specified selector.

- (void)setAction:(SEL)aSelector

Parameters
aSelector

The new action-message selector to associate with the receiver's cell. Specify NULL to prevent action
messages from being sent to the receiver's target.

Discussion
See Action Messages for additional information on action messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 814)
– setTarget: (page 838)
– target (page 844)

Related Sample Code
FunHouse
PrefsPane
QTAudioContextInsert
QTAudioExtractionPanel
Quartz Composer QCTV

Declared In
NSControl.h

setAlignment:
Sets the alignment of text in the receiver’s cell.

- (void)setAlignment:(NSTextAlignment)mode

Parameters
mode

One of the following constants: NSLeftTextAlignment,
NSRightTextAlignment,NSCenterTextAlignment, NSJustifiedTextAlignment, or
NSNaturalTextAlignment.

Discussion
If the cell is currently being edited, this method aborts the edits to change the alignment.

Availability
Available in Mac OS X v10.0 and later.

828 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

See Also
– alignment (page 814)

Related Sample Code
Quartz Composer QCTV

Declared In
NSControl.h

setAttributedStringValue:
Sets the value of the receiver’s cell using an attributed string.

- (void)setAttributedStringValue:(NSAttributedString *)object

Parameters
object

The value of the cell interpreted as an attributed string.

Discussion
If the cell is being edited, this method aborts all editing before setting the value. If the cell does not inherit
from NSActionCell, the method marks the cell’s interior as needing to be redisplayed; NSActionCell
performs its own updating of cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedStringValue (page 815)

Declared In
NSControl.h

setBaseWritingDirection:
Sets the initial writing direction used to determine the actual writing direction for text .

- (void)setBaseWritingDirection:(NSWritingDirection)writingDirection

Parameters
writingDirection

One of the following values: NSWritingDirectionNatural, NSWritingDirectionLeftToRight,
or NSWritingDirectionRightToLeft.

Discussion
If you know the base writing direction of the text you are rendering, you can use this method to specify that
direction to the text system.

Availability
Available in Mac OS X v10.4 and later.

See Also
– baseWritingDirection (page 815)

Instance Methods 829
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Declared In
NSControl.h

setCell:
Sets the receiver’s cell

- (void)setCell:(NSCell *)aCell

Parameters
aCell

The new cell for the receiver.

Discussion
Use this method with great care as it can irrevocably damage the affected control; specifically, you should
only use this method in initializers for subclasses of NSControl.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cell (page 816)
– selectedCell (page 825)

Declared In
NSControl.h

setContinuous:
Sets whether the receiver’s cell sends its action message continuously to its target during mouse tracking.

- (void)setContinuous:(BOOL)flag

Parameters
flag

YES if the action message should be sent continuously; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isContinuous (page 822)

Related Sample Code
Cropped Image
SurfaceVertexProgram

Declared In
NSControl.h

830 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

setDoubleValue:
Sets the value of the receiver’s cell using a double-precision floating-point number.

- (void)setDoubleValue:(double)aDouble

Parameters
aDouble

The value of the cell interpreted as a double-precision floating-point number.

Discussion
If the cell is being edited, this method aborts all editing before setting the value. If the cell does not inherit
from NSActionCell, the method marks the cell’s interior as needing to be redisplayed; NSActionCell
performs its own updating of cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doubleValue (page 817)
– setFloatValue: (page 832)
– setIntValue: (page 835)
– setIntegerValue: (page 834)
– setObjectValue: (page 836)
– setStringValue: (page 837)

Related Sample Code
CocoaSpeechSynthesisExample
FunHouse
QTKitMovieShuffler
QTMetadataEditor
Quartz 2D Shadings

Declared In
NSControl.h

setEnabled:
Sets whether the receiver (and its cell) reacts to mouse events.

- (void)setEnabled:(BOOL)flag

Parameters
flag

YES if you want the receiver to react to mouse events; otherwise, NO.

Discussion
If flag is NO, any editing is aborted. This method redraws the entire control if it is marked as needing redisplay.
Subclasses may want to override this method to redraw only a portion of the control when the enabled state
changes; NSButton and NSSlider do this.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 831
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

See Also
– isEnabled (page 823)

Related Sample Code
CocoaSpeechSynthesisExample
ColorMatching
GLUT
OpenALExample
WhackedTV

Declared In
NSControl.h

setFloatingPointFormat:left:right:
Sets the auto-ranging and floating point number format of the receiver’s cell. (Deprecated in Mac OS X v10.0.)

- (void)setFloatingPointFormat:(BOOL)autoRange left:(NSUInteger)leftDigits
right:(NSUInteger)rightDigits

Parameters
autoRange

YES to enable auto-ranging; otherwise, NO.

leftDigits
The number of digits to display to the left of the decimal point.

rightDigits
The number of digits to display to the right of the decimal point.

Discussion
For more information about auto-ranging and how it works, see the description of this method in the NSCell
class specification. If the cell is being edited, the current edits are discarded and the cell’s interior is redrawn.

Note: This method is being deprecated in favor of a new class of formatter objects. For more information,
see NSFormatter. This documentation is provided only for developers who need to modify older applications.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.

See Also
– setFloatingPointFormat:left:right: (page 586) (NSCell)

Declared In
NSControl.h

setFloatValue:
Sets the value of the receiver’s cell using a single-precision floating-point number.

- (void)setFloatValue:(float)aFloat

832 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Parameters
aFloat

The value of the cell interpreted as a single-precision floating-point number.

Discussion
If the cell is being edited, this method aborts all editing before setting the value. If the cell does not inherit
from NSActionCell, the method marks the cell’s interior as needing to be redisplayed; NSActionCell
performs its own updating of cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– floatValue (page 819)
– setDoubleValue: (page 831)
– setIntValue: (page 835)
– setIntegerValue: (page 834)
– setObjectValue: (page 836)
– setStringValue: (page 837)

Related Sample Code
FilterDemo
From A View to A Movie
From A View to A Picture
NineSlice
OpenALExample

Declared In
NSControl.h

setFont:
Sets the font used to draw text in the receiver’s cell.

- (void)setFont:(NSFont *)fontObject

Parameters
fontObject

The font object to use.

Discussion
If the cell is being edited, the text in the cell is redrawn in the new font, and the cell’s editor (the NSText
object used globally for editing) is updated with the new font object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– font (page 819)

Related Sample Code
ObjectPath

Instance Methods 833
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Declared In
NSControl.h

setFormatter:
Sets the receiver’s formatter

- (void)setFormatter:(NSFormatter *)newFormatter

Parameters
newFormatter

The new formatter object to use with the control.

Availability
Available in Mac OS X v10.0 and later.

See Also
– formatter (page 820)

Declared In
NSControl.h

setIgnoresMultiClick:
Sets whether the receiver ignores multiple clicks made in rapid succession.

- (void)setIgnoresMultiClick:(BOOL)flag

Parameters
flag

YES if the receiver should ignore multiple clicks; otherwise, NO.

Discussion
By default, controls treat double clicks as two distinct clicks, triple clicks as three distinct clicks, and so on.
However, if you pass YES to this method, additional clicks (within a predetermined interval after the first)
occurring after the first click are not processed by the receiver, and are instead passed on to super.

Availability
Available in Mac OS X v10.0 and later.

See Also
– ignoresMultiClick (page 820)

Declared In
NSControl.h

setIntegerValue:
Sets the value of the receiver’s cell using an NSInteger value.

- (void)setIntegerValue:(NSInteger)anInteger

834 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Parameters
anInteger

The value of the cell interpreted as an NSInteger value.

Discussion
If the cell is being edited, this method aborts all editing before setting the value. If the cell does not inherit
from NSActionCell, the method marks the cell’s interior as needing to be redisplayed; NSActionCell
performs its own updating of cells.

Availability
Available in Mac OS X v10.5 and later.

See Also
– integerValue (page 821)
– setDoubleValue: (page 831)
– setFloatValue: (page 832)
– setIntValue: (page 835)
– setObjectValue: (page 836)
– setStringValue: (page 837)

Declared In
NSControl.h

setIntValue:
Sets the value of the receiver’s cell using an integer.

- (void)setIntValue:(int)anInt

Parameters
anInt

The value of the cell interpreted as an integer.

Discussion
If the cell is being edited, this method aborts all editing before setting the value. If the cell does not inherit
from NSActionCell, the method marks the cell’s interior as needing to be redisplayed; NSActionCell
performs its own updating of cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– intValue (page 821)
– setDoubleValue: (page 831)
– setIntegerValue: (page 834)
– setFloatValue: (page 832)
– setObjectValue: (page 836)
– setStringValue: (page 837)

Related Sample Code
AESendThreadSafe
Fireworks

Instance Methods 835
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

From A View to A Movie
From A View to A Picture
ObjectPath

Declared In
NSControl.h

setNeedsDisplay
Marks the receiver as needing redisplay (assuming automatic display is enabled).

- (void)setNeedsDisplay

Discussion
This method also recalculates the dimensions of the control as needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setNeedsDisplay: (page 3225) (NSView)

Declared In
NSControl.h

setObjectValue:
Sets the value of the receiver’s cell using an Objective-C object.

- (void)setObjectValue:(id < NSCopying >)object

Parameters
object

The value of the cell interpreted as an Objective-C object.

Discussion
If the cell is being edited, this method aborts all editing before setting the value. If the cell does not inherit
from NSActionCell, the method marks the cell’s interior as needing to be redisplayed; NSActionCell
performs its own updating of cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– objectValue (page 824)
– setDoubleValue: (page 831)
– setFloatValue: (page 832)
– setIntValue: (page 835)
– setStringValue: (page 837)

Related Sample Code
EnhancedAudioBurn

836 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

EnhancedDataBurn
NewsReader
Quartz Composer QCTV

Declared In
NSControl.h

setRefusesFirstResponder:
Sets whether the receiver refuses first responder role.

- (void)setRefusesFirstResponder:(BOOL)flag

Parameters
flag

YES if the receiver should refuse the first responder role; otherwise, NO.

Discussion
By default, the user can advance the focus of keyboard events between controls by pressing the Tab key;
when this focus—or first responder status—is indicated for a control (by the insertion point or, for nontext
controls, a faint rectangle), the user can activate the control by pressing the Space bar.

Availability
Available in Mac OS X v10.0 and later.

See Also
– refusesFirstResponder (page 825)
– objectValue (page 824)
– setDoubleValue: (page 831)
– setFloatValue: (page 832)

Declared In
NSControl.h

setStringValue:
Sets the value of the receiver’s cell using an NSString object.

- (void)setStringValue:(NSString *)aString

Parameters
aString

The value of the cell interpreted as an NSString object.

Discussion
If the cell is being edited, this method aborts all editing before setting the value. If the cell does not inherit
from NSActionCell, the method marks the cell’s interior as needing to be redisplayed; NSActionCell
performs its own updating of cells.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 837
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

See Also
– setDoubleValue: (page 831)
– setFloatValue: (page 832)
– setIntValue: (page 835)
– setObjectValue: (page 836)
– stringValue (page 840)

Related Sample Code
EnhancedAudioBurn
FunHouse
GLUT
OpenALExample
PDFKitLinker2

Declared In
NSControl.h

setTag:
Sets the tag of the receiver.

- (void)setTag:(NSInteger)anInt

Parameters
anInt

The new tag.

Discussion
This method does not affect the tag of the receiver’s cell. Tags allow you to identify particular cells. Tag values
are not used internally; they are only changed by external invocations of setTag: (page 838). You typically
set tag values in Interface Builder and use them at runtime in your application. When you set the tag of a
control with a single cell in Interface Builder, it sets the tags of both the control and the cell to the same
value as a convenience.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tag (page 840)
– selectedTag (page 826)

Related Sample Code
FunHouse
Quartz Composer QCTV

Declared In
NSControl.h

setTarget:
Sets the target object to receive action messages from the receiver’s cell.

838 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

- (void)setTarget:(id)anObject

Parameters
anObject

The new target object to associate with the receiver's cell, or nil to remove the current target.

Discussion
If anObject is nil but the control still has a valid action message assigned, the application follows the
responder chain looking for an object that can respond to the message. See the description of the
NSActionCell class for details.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 814)
– setAction: (page 828)
– target (page 844)
– setTarget: (page 598) (NSCell)

Related Sample Code
FunHouse
PrefsPane
Quartz Composer QCTV
ScriptingBridgeFinder
SimpleCocoaApp

Declared In
NSControl.h

sizeToFit
Resizes the receiver’s frame so that it is the minimum size needed to contain its cell.

- (void)sizeToFit

Discussion
If you want a multiple-cell custom subclass of NSControl to size itself to fit its cells, you must override this
method. This method neither redisplays the receiver nor marks it as needing display. You must do this yourself
with either thedisplay (page 3163) or setNeedsDisplay (page 836) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– calcSize (page 816)

Related Sample Code
Quartz Composer QCTV

Declared In
NSControl.h

Instance Methods 839
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

stringValue
Returns the value of the receiver’s cell as an NSString object.

- (NSString *)stringValue

Return Value
The value of the cell interpreted as an NSString object.

Discussion
If the control contains many cells (for example, NSMatrix), then the value of the currently selected cell is
returned. If the control is in the process of editing the affected cell, then it invokes the
validateEditing (page 845) method before extracting and returning the value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doubleValue (page 817)
– floatValue (page 819)
– intValue (page 821)
– objectValue (page 824)
– setStringValue: (page 837)

Related Sample Code
CoreRecipes
EnhancedAudioBurn
FinalCutPro_AppleEvents
MovieAssembler
WhackedTV

Declared In
NSControl.h

tag
Returns the tag identifying the receiver (not the tag of the receiver’s cell).

- (NSInteger)tag

Return Value
The tag of this control object.

Discussion
Tags allow you to identify particular controls. Tag values are not used internally; they are only changed by
external invocations of setTag:. You typically set tag values in Interface Builder and use them at runtime
in your application. When you set the tag of a control with a single cell in Interface Builder, it sets the tags
of both the control and the cell to the same value as a convenience.

Availability
Available in Mac OS X v10.0 and later.

840 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

See Also
– setTag: (page 838)
– selectedTag (page 826)

Related Sample Code
Cropped Image
EnhancedDataBurn
OpenALExample
Quartz Composer QCTV
Quartz Composer WWDC 2005 TextEdit

Declared In
NSControl.h

takeDoubleValueFrom:
Sets the value of the receiver’s cell to a double-precision floating-point value obtained from the specified
object.

- (void)takeDoubleValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the doubleValue (page 817)
message.

Discussion
You can use this method to link action messages between controls. It permits one control or cell (sender)
to affect the value of another control (the receiver) by invoking this method in an action message to the
receiver. For example, a text field can be made the target of a slider. Whenever the slider is moved, it sends
this message to the text field. The text field then obtains the slider’s value, turns it into a text string, and
displays it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

takeFloatValueFrom:
Sets the value of the receiver’s cell to a single-precision floating-point value obtained from the specified
object.

- (void)takeFloatValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the floatValue (page 819)
message.

Instance Methods 841
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Discussion
You can use this method to link action messages between controls. It permits one control or cell (sender)
to affect the value of another control (the receiver) by invoking this method in an action message to the
receiver. For example, a text field can be made the target of a slider. Whenever the slider is moved, it sends
this message to the text field. The text field then obtains the slider’s value, turns it into a text string, and
displays it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

takeIntegerValueFrom:
Sets the value of the receiver’s cell to an NSInteger value obtained from the specified object.

- (void)takeIntegerValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the integerValue (page 821)
message.

Discussion
You can use this method to link action messages between controls. It permits one control or cell (sender)
to affect the value of another control (the receiver) by invoking this method in an action message to the
receiver. For example, a text field can be made the target of a slider. Whenever the slider is moved, it sends
this message to the text field. The text field then obtains the slider’s value, turns it into a text string, and
displays it.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSControl.h

takeIntValueFrom:
Sets the value of the receiver’s cell to an integer value obtained from the specified object.

- (void)takeIntValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the intValue (page 821)
message.

842 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Discussion
You can use this method to link action messages between controls. It permits one control or cell (sender)
to affect the value of another control (the receiver) by invoking this method in an action message to the
receiver. For example, a text field can be made the target of a slider. Whenever the slider is moved, it sends
this message to the text field. The text field then obtains the slider’s value, turns it into a text string, and
displays it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

takeObjectValueFrom:
Sets the value of the receiver’s cell to the object value obtained from the specified object.

- (void)takeObjectValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the objectValue (page 824)
message.

Discussion
You can use this method to link action messages between controls. It permits one control or cell (sender)
to affect the value of another control (the receiver) by invoking this method in an action message to the
receiver. For example, a text field can be made the target of a slider. Whenever the slider is moved, it sends
this message to the text field. The text field then obtains the slider’s value, turns it into a text string, and
displays it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

takeStringValueFrom:
Sets the value of the receiver’s cell to the string value obtained from the specified object.

- (void)takeStringValueFrom:(id)sender

Parameters
sender

The object from which to take the value. This object must respond to the stringValue (page 840)
message.

Instance Methods 843
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Discussion
You can use this method to link action messages between controls. It permits one control or cell (sender)
to affect the value of another control (the receiver) by invoking this method in an action message to the
receiver. For example, a text field can be made the target of a slider. Whenever the slider is moved, it sends
this message to the text field. The text field then obtains the slider’s value, turns it into a text string, and
displays it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

target
Returns the target object of the receiver’s cell.

- (id)target

Return Value
The target object that receives action messages from the cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 814)
– setAction: (page 828)
– setTarget: (page 838)

Related Sample Code
RadiantColorPicker
SimpleToolbar
UIElementInspector

Declared In
NSControl.h

updateCell:
Marks the specified cell as in need of redrawing.

- (void)updateCell:(NSCell *)aCell

Parameters
aCell

The cell to redraw.

Discussion
If the cell currently has the focus, this method updates the cell's focus ring; otherwise, the entire cell is marked
as needing redisplay. The cell is redrawn during the next update cycle.

844 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

updateCellInside:
Marks the inside of the specified cell as in need of redrawing.

- (void)updateCellInside:(NSCell *)aCell

Parameters
aCell

The cell to redraw.

Availability
Available in Mac OS X v10.0 and later.

See Also
– updateCell: (page 844)

Declared In
NSControl.h

validateEditing
Validates changes to any user-typed text.

- (void)validateEditing

Discussion
Validation sets the object value of the cell to the current contents of the cell’s editor (the NSText object used
for editing), storing it as a simple NSString or an attributed string object based on the attributes of the
editor.

Availability
Available in Mac OS X v10.0 and later.

See Also
– abortEditing (page 813)
– currentEditor (page 817)

Declared In
NSControl.h

Instance Methods 845
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Delegate Methods

controlTextDidBeginEditing:
Sent when a control with editable text begins an editing session.

- (void)controlTextDidBeginEditing:(NSNotification *)aNotification

Parameters
aNotification

The notification object. The name of the notification is always
NSControlTextDidBeginEditingNotification (page 847).

Discussion
This method is invoked when the user begins editing text in a control such as a text field or a form field. The
control posts a NSControlTextDidBeginEditingNotification (page 847) notification, and if the control’s
delegate implements this method, it is automatically registered to receive the notification. Use the key
@"NSFieldEditor" to obtain the field editor from the userInfo dictionary of the notification object.

See controlTextDidEndEditing: (page 847) for an explanation of why you may not always get one
invocation of controlTextDidBeginEditing: (page 846) for each invocation of
controlTextDidEndEditing: (page 847).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

controlTextDidChange:
Sent when the text in the receiving control changes.

- (void)controlTextDidChange:(NSNotification *)aNotification

Parameters
aNotification

The notification object. The name of the notification is always
NSControlTextDidChangeNotification (page 848).

Discussion
This method is invoked when text in a control such as a text field or form changes. The control posts a
NSControlTextDidChangeNotification (page 848) notification, and if the control’s delegate implements
this method, it is automatically registered to receive the notification. Use the key @"NSFieldEditor" to
obtain the field editor from the userInfo dictionary of the notification object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

846 Delegate Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

controlTextDidEndEditing:
Sent when a control with editable text ends an editing session.

- (void)controlTextDidEndEditing:(NSNotification *)aNotification

Parameters
aNotification

The notification object. The name of the notification is always
NSControlTextDidEndEditingNotification (page 848).

Discussion
This method is invoked when the user stops editing text in a control such as a text field or form. The control
posts a NSControlTextDidEndEditingNotification (page 848) notification, and if the control’s delegate
implements this method, it is automatically registered to receive the notification. Use the key
@"NSFieldEditor" to obtain the field editor from the userInfo dictionary of the notification object.

Warning: In some cases, such as when editing within an instance of NSOutlineView, this method may
be invoked without a previous invocation of controlTextDidBeginEditing: (page 846). You will
only get the controlTextDidBeginEditing: notification if the user actually types something, but
you can get the controlTextDidEndEditing: notification if the user just double-clicks the field and
then clicks outside the field, without typing.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

Notifications

An NSControl object posts the following notifications to interested observers and its delegate. Note that
although the NSControl class defines delegate methods, it does not itself have a delegate. Any subclass
that uses these methods must have a delegate and the methods to get and set it.

NSControlTextDidBeginEditingNotification
Sent when a control with editable cells begins an edit session.

The field editor of the edited cell originally sends an NSTextDidBeginEditingNotification (page 2752)
to the control, which passes it on in this form to its delegate. The notification object is the NSControl object
posting the notification. The userInfo dictionary contains the following information:

ValueKey

The edited cell’s field editor@"NSFieldEditor"

See the controlTextDidEndEditing: (page 847) method for details.

Notifications 847
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

NSControlTextDidChangeNotification
Sent when the text in the receiving control changes.

The field editor of the edited cell originally sends an NSTextDidChangeNotification (page 2752) to the
control, which passes it on in this form to its delegate. The notification object is the NSControl object posting
the notification. The userInfo dictionary contains the following information:

ValueKey

The edited cell’s field editor@"NSFieldEditor"

See the controlTextDidChange: (page 846) method for details.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

NSControlTextDidEndEditingNotification
Sent when a control with editable cells ends an editing session.

The field editor of the edited cell originally sends an NSControlTextDidEndEditingNotification (page
848) to the control, which passes it on in this form to its delegate. The notification object is the NSControl
object posting the notification. The userInfo dictionary contains the following information:

ValueKey

The edited cell’s field editor@"NSFieldEditor"

See the controlTextDidEndEditing: (page 847) method for details.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSControl.h

848 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 36

NSControl Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSController.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Bindings Programming Topics

Related sample code CIRAWFilterSample

Overview

NSController is an abstract class that implements the NSEditor and NSEditorRegistration informal protocols
required for controller classes.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

Tasks

Managing Editing

– objectDidBeginEditing: (page 852)
Invoked to inform the receiver that editor has uncommitted changes that can affect the receiver.

– objectDidEndEditing: (page 852)
Invoked to inform the receiver that editor has committed or discarded its changes.

Overview 849
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 37

NSController Class Reference

– commitEditing (page 850)
Causes the receiver to attempt to commit any pending edits, returning YES if successful or no edits
were pending.

– commitEditingWithDelegate:didCommitSelector:contextInfo: (page 850)
Attempts to commit any pending changes in known editors of the receiver.

– discardEditing (page 851)
Discards any pending changes by registered editors.

– isEditing (page 852)
Returns YES if there are any editors currently registered with the receiver, NO otherwise.

Instance Methods

commitEditing
Causes the receiver to attempt to commit any pending edits, returning YES if successful or no edits were
pending.

- (BOOL)commitEditing

Discussion
The receiver invokes commitEditing (page 3678) on any current editors, returning their response. A commit
is denied if the receiver fails to apply the changes to the model object, perhaps due to a validation error.

Availability
Available in Mac OS X v10.3 and later.

See Also
– discardEditing (page 851)

Declared In
NSController.h

commitEditingWithDelegate:didCommitSelector:contextInfo:
Attempts to commit any pending changes in known editors of the receiver.

-(void)commitEditingWithDelegate:(id)delegate
didCommitSelector:(SEL)didCommitSelector contextInfo:(void *)contextInfo

Parameters
delegate

An object that can serve as the receiver's delegate. It should implement the method specified by
didCommitSelector.

didCommitSelector
A selector that is invoked on delegate. The method specified by the selector must have the same
signature as the following method:

- (void)editor:(id)editor didCommit:(BOOL)didCommit contextInfo:(void
*)contextInfo

850 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 37

NSController Class Reference

contextInfo
Contextual information that is sent as the contextInfo argument to delegate when
didCommitSelector is invoked.

Discussion
Provides support for the NSEditor informal protocol. This method attempts to commit pending changes
in known editors. Known editors are either instances of a subclass of NSController or (more rarely) user
interface controls that may contain pending edits—such as text fields—that registered with the context
using objectDidBeginEditing: and have not yet unregistered using a subsequent invocation of
objectDidEndEditing:.

The receiver iterates through the array of its known editors and invokes commitEditing on each. The receiver
then sends the message specified by the didCommitSelector selector to the specified delegate.

The didCommit argument is the value returned by the editor specified by editor from the commitEditing
message. The contextInfo argument is the same value specified as the contextInfo parameter—you
may use this value however you wish.

If an error occurs while attempting to commit, for example if key-value coding validation fails, your
implementation of this method should typically send the view in which editing is being performed a
presentError:modalForWindow:delegate:didRecoverSelector:contextInfo:message, specifying
the view's containing window.

You may find this method useful in some situations (typically if you are using Cocoa Bindings) when you
want to ensure that pending changes are applied before a change in user interface state. For example, you
may need to ensure that changes pending in a text field are applied before a window is closed. See also
commitEditing (page 850) which performs a similar function but which allows you to handle any errors
directly, although it provides no information beyond simple success/failure.

Availability
Available in Mac OS X v10.4 and later.

See Also
– commitEditing (page 850)
– discardEditing (page 851)
– objectDidBeginEditing: (page 852)
– objectDidEndEditing: (page 852)

Declared In
NSController.h

discardEditing
Discards any pending changes by registered editors.

- (void)discardEditing

Discussion
The receiver invokes discardEditing (page 3679) on any current editors.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 851
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 37

NSController Class Reference

See Also
– commitEditing (page 850)

Declared In
NSController.h

isEditing
Returns YES if there are any editors currently registered with the receiver, NO otherwise.

- (BOOL)isEditing

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSController.h

objectDidBeginEditing:
Invoked to inform the receiver that editor has uncommitted changes that can affect the receiver.

- (void)objectDidBeginEditing:(id)editor

Availability
Available in Mac OS X v10.3 and later.

See Also
– objectDidEndEditing: (page 852)

Declared In
NSController.h

objectDidEndEditing:
Invoked to inform the receiver that editor has committed or discarded its changes.

- (void)objectDidEndEditing:(id)editor

Availability
Available in Mac OS X v10.3 and later.

See Also
– objectDidBeginEditing: (page 852)

Declared In
NSController.h

852 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 37

NSController Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSCursor.h

Companion guide Cursor Management

Related sample code DragItemAround
GLUT
Sketch+Accessibility
Sketch-112
TextLinks

Overview

Instances of the NSCursor class manage the appearance of the cursor.

The following table shows and describes the system cursors, and indicates the class method for obtaining
them:

DescriptionCursor

The arrow cursor (arrowCursor (page 857))

The I-beam cursor for indicating insertion points (IBeamCursor (page 860))

The cross-hair cursor (crosshairCursor (page 858))

The closed-hand cursor (closedHandCursor (page 857))

Overview 853
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

DescriptionCursor

The open-hand cursor (openHandCursor (page 861))

The pointing-hand cursor (pointingHandCursor (page 862))

The resize-left cursor (resizeLeftCursor (page 863))

The resize-right cursor (resizeRightCursor (page 863))

The resize-left-and-right cursor (resizeLeftRightCursor (page 863))

The resize-up cursor (resizeUpCursor (page 864))

The resize-down cursor (resizeDownCursor (page 862))

The resize-up-and-down cursor (resizeUpDownCursor (page 864))

The disappearing item cursor (disappearingItemCursor (page 859))

In Mac OS X version 10.3 and later, cursor size is no longer limited to 16 by 16 pixels.

Cursor Rectangles

In Cocoa, you can change the currently displayed cursor based on the position of the mouse over one of
your views. You might use this technique to provide visual feedback about what actions the user can take
with the mouse. For example, you might display one of the resize cursors whenever the mouse moves over
a portion of your view that acts as a custom resizing handle. To set this up, you associate a cursor object with
one or more cursor rectangles in the view.

Cursor rectangles are a specialized type of tracking rectangles, which are used to monitor the mouse location
in a view. Views implement cursor rectangles using tracking rectangles but provide methods for setting and
refreshing cursor rectangles that are distinct from the generic tracking rectangle interface. For information
on how to set up cursor rectangles, see Mouse-Tracking and Cursor-Update Events.

854 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Tasks

Initializing a New Cursor

– initWithImage:hotSpot: (page 867)
Initializes a cursor with the given image and hot spot.

– initWithImage:foregroundColorHint:backgroundColorHint:hotSpot: (page 866)
Initializes the cursor with the specified image and hot spot.

Setting Cursor Attributes

– image (page 866)
Returns the receiver's image.

– hotSpot (page 865)
Returns the position of the cursor's hot spot.

+ hide (page 860)
Makes the current cursor invisible.

+ unhide (page 865)
Negates an earlier call to hide (page 860) by showing the current cursor.

+ setHiddenUntilMouseMoves: (page 864)
Sets whether the cursor is hidden until the mouse moves.

Controlling Which Cursor Is Current

+ pop (page 862)
Pops the current cursor off the top of the stack.

– pop (page 869)
Sends a pop (page 862) message to the receiver’s class.

– push (page 870)
Puts the receiver on top of the cursor stack and makes it the current cursor.

– set (page 870)
Makes the receiver the current cursor.

– mouseEntered: (page 868)
Automatically sent to the receiver when the cursor enters a cursor rectangle owned by the receiver.

– setOnMouseEntered: (page 871)
Specifies whether the receiver accepts mouseEntered: (page 868) events.

– isSetOnMouseEntered (page 867)
Returns a Boolean value indicating whether the receiver becomes current on receiving a
mouseEntered: (page 868) message.

– mouseExited: (page 869)
Automatically sent to the receiver when the cursor exits a cursor rectangle owned by the receiver.

Tasks 855
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

– setOnMouseExited: (page 871)
Sets whether the receiver accepts mouseExited: (page 869) events.

– isSetOnMouseExited (page 868)
Returns a Boolean value indicating whether the receiver becomes current when it receives a
mouseExited: (page 869) message.

Retrieving Cursor Instances

+ currentCursor (page 858)
Returns the application’s current cursor.

+ currentSystemCursor (page 859)
Returns the current system cursor.

+ arrowCursor (page 857)
Returns the default cursor, the arrow cursor.

+ contextualMenuCursor (page 858)
Returns the contextual menu system cursor.

+ closedHandCursor (page 857)
Returns the closed-hand system cursor.

+ crosshairCursor (page 858)
Returns the cross-hair system cursor.

+ disappearingItemCursor (page 859)
Returns a cursor indicating that the current operation will result in a disappearing item.

+ dragCopyCursor (page 859)
Returns a cursor indicating that the current operation will result in a copy action.

+ dragLinkCursor (page 860)
Returns a cursor indicating that the current operation will result in a link action.

+ IBeamCursor (page 860)
Returns a cursor that looks like a capital I with a tiny crossbeam at its middle.

+ openHandCursor (page 861)
Returns the open-hand system cursor.

+ operationNotAllowedCursor (page 861)
Returns the operation not allowed cursor.

+ pointingHandCursor (page 862)
Returns the pointing-hand system cursor.

+ resizeDownCursor (page 862)
Returns the resize-down system cursor.

+ resizeLeftCursor (page 863)
Returns the resize-left system cursor.

+ resizeLeftRightCursor (page 863)
Returns the resize-left-and-right system cursor.

+ resizeRightCursor (page 863)
Returns the resize-right system cursor.

+ resizeUpCursor (page 864)
Returns the resize-up system cursor.

856 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

+ resizeUpDownCursor (page 864)
Returns the resize-up-and-down system cursor.

Class Methods

arrowCursor
Returns the default cursor, the arrow cursor.

+ (NSCursor *)arrowCursor

Return Value
The default cursor, a slanted arrow with its hot spot at the tip. The arrow cursor is the one you’re used to
seeing over buttons, scrollers, and many other objects in the window system.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ IBeamCursor (page 860)
+ currentCursor (page 858)
– hotSpot (page 865)

Related Sample Code
GLUT
PDFKitLinker2
Sketch+Accessibility
Sketch-112
TextLinks

Declared In
NSCursor.h

closedHandCursor
Returns the closed-hand system cursor.

+ (NSCursor *)closedHandCursor

Return Value
The closed-hand cursor.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
DragItemAround
GeekGameBoard

Class Methods 857
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Declared In
NSCursor.h

contextualMenuCursor
Returns the contextual menu system cursor.

+ (NSCursor *)contextualMenuCursor

Return Value
The contextual menu cursor

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCursor.h

crosshairCursor
Returns the cross-hair system cursor.

+ (NSCursor *)crosshairCursor

Return Value
The cross-hair cursor. This cursor is used for situations when precise location is required (where the lines
cross is the hot spot).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
TrackIt

Declared In
NSCursor.h

currentCursor
Returns the application’s current cursor.

+ (NSCursor *)currentCursor

Return Value
The top cursor on the application’s cursor stack. This cursor may not be the visible cursor on the screen if a
different application is currently active.

Discussion
The method only returns the cursor set by your application using NSCursor methods. It does return not
cursors set by other applications or cursors set by your application using Carbon API.

Availability
Available in Mac OS X v10.0 and later.

858 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

See Also
– set (page 870)
– push (page 870)
– pop (page 869)
– mouseEntered: (page 868)
– mouseExited: (page 869)

Declared In
NSCursor.h

currentSystemCursor
Returns the current system cursor.

+ (NSCursor *)currentSystemCursor

Return Value
A cursor whose image and hot spot match those of the currently-displayed cursor on the system

Discussion
This method returns the current system cursor regardless of which application set the cursor, and whether
Cocoa or Carbon APIs were used to set it.

This method replaces the now deprecated QDGetCursorData function.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCursor.h

disappearingItemCursor
Returns a cursor indicating that the current operation will result in a disappearing item.

+ (NSCursor *)disappearingItemCursor

Return Value
The system cursor that indicates that the current operation will result in a disappearing item (for example,
when dragging an item from the dock or a toolbar).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSCursor.h

dragCopyCursor
Returns a cursor indicating that the current operation will result in a copy action.

+ (NSCursor *)dragCopyCursor

Class Methods 859
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Return Value
The drag copy cursor.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCursor.h

dragLinkCursor
Returns a cursor indicating that the current operation will result in a link action.

+ (NSCursor *)dragLinkCursor

Return Value
The drag link cursor.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCursor.h

hide
Makes the current cursor invisible.

+ (void)hide

Discussion
If another cursor becomes current, that cursor will be invisible, too. It will remain invisible until you invoke
the unhide (page 865) method.

hide (page 860) overrides setHiddenUntilMouseMoves: (page 864).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreAnimationKioskStyleMenu
iChatTheater
LightTable

Declared In
NSCursor.h

IBeamCursor
Returns a cursor that looks like a capital I with a tiny crossbeam at its middle.

+ (NSCursor *)IBeamCursor

860 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Return Value
The I-beam cursor. This is the cursor that you’re used to seeing over editable or selectable text. The I-beam
cursor’s default hot spot is where the crossbeam intersects the I.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ arrowCursor (page 857)
+ currentCursor (page 858)

Related Sample Code
GLUT

Declared In
NSCursor.h

openHandCursor
Returns the open-hand system cursor.

+ (NSCursor *)openHandCursor

Return Value
The open-hand cursor.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
DragItemAround
GeekGameBoard

Declared In
NSCursor.h

operationNotAllowedCursor
Returns the operation not allowed cursor.

+ (NSCursor *)operationNotAllowedCursor

Return Value
The operation not allowed cursor.

Discussion
This cursor indicates that the operation that is being attempted, perhaps dragging to an item that can’t
accept the drag type, is being denied.

Availability
Available in Mac OS X v10.6 and later.

Class Methods 861
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Declared In
NSCursor.h

pointingHandCursor
Returns the pointing-hand system cursor.

+ (NSCursor *)pointingHandCursor

Return Value
The pointing-hand cursor. The tip of the pointing finger is the hot spot.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CocoaDVDPlayer

Declared In
NSCursor.h

pop
Pops the current cursor off the top of the stack.

+ (void)pop

Discussion
The new object on the top of the stack becomes the current cursor. If the current cursor is the only cursor
on the stack, this method does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– push (page 870)

Related Sample Code
DragItemAround
GeekGameBoard

Declared In
NSCursor.h

resizeDownCursor
Returns the resize-down system cursor.

+ (NSCursor *)resizeDownCursor

862 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Return Value
The resize-down cursor. This cursor is used when moving or resizing an object to indicate that the user can
move only in the indicated direction.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSCursor.h

resizeLeftCursor
Returns the resize-left system cursor.

+ (NSCursor *)resizeLeftCursor

Return Value
The resize-left cursor. This cursor is used when moving or resizing an object to indicate that the user can
move only in the indicated direction.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSCursor.h

resizeLeftRightCursor
Returns the resize-left-and-right system cursor.

+ (NSCursor *)resizeLeftRightCursor

Return Value
The resize-left-and-right cursor. This cursor is used when moving or resizing an object and the object can be
moved left or right.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSCursor.h

resizeRightCursor
Returns the resize-right system cursor.

+ (NSCursor *)resizeRightCursor

Return Value
The resize-right cursor. This cursor is used when moving or resizing an object to indicate that the user can
move only in the indicated direction.

Class Methods 863
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSCursor.h

resizeUpCursor
Returns the resize-up system cursor.

+ (NSCursor *)resizeUpCursor

Return Value
The resize-up cursor. This cursor is used when moving or resizing an object to indicate that the user can
move only in the indicated direction.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSCursor.h

resizeUpDownCursor
Returns the resize-up-and-down system cursor.

+ (NSCursor *)resizeUpDownCursor

Return Value
The resize-up-and-down cursor. This cursor is used when moving or resizing an object and the object can
be moved up or down.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSCursor.h

setHiddenUntilMouseMoves:
Sets whether the cursor is hidden until the mouse moves.

+ (void)setHiddenUntilMouseMoves:(BOOL)flag

Parameters
flag

YES to hide the cursor until one of the following occurs:

 ■ The mouse moves.

 ■ You invoke the method again, with flag set to NO.

864 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Discussion
Do not try to counter this method by invoking unhide (page 865). The results are undefined.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ hide (page 860)

Related Sample Code
LightTable
PhotoSearch

Declared In
NSCursor.h

unhide
Negates an earlier call to hide (page 860) by showing the current cursor.

+ (void)unhide

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setHiddenUntilMouseMoves: (page 864)
+ hide (page 860)

Related Sample Code
iChatTheater
LightTable

Declared In
NSCursor.h

Instance Methods

hotSpot
Returns the position of the cursor's hot spot.

- (NSPoint)hotSpot

Return Value
The point describing the position of the hot spot, specified according to the cursor’s flipped coordinate
system.

Discussion
For a more complete explanation, see the class description.

Instance Methods 865
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Note that an NSCursor object is immutable: you cannot change its hot spot after it’s created. Instead, use
initWithImage:hotSpot: (page 867) to create a new cursor with the new settings.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithImage:hotSpot: (page 867)

Declared In
NSCursor.h

image
Returns the receiver's image.

- (NSImage *)image

Return Value
The cursor image or nil if none exists

Discussion
Note that an NSCursor object is immutable: you cannot change its image after it’s created. Instead, use
initWithImage:hotSpot: (page 867) to create a new cursor with the new settings.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithImage:hotSpot: (page 867)

Declared In
NSCursor.h

initWithImage:foregroundColorHint:backgroundColorHint:hotSpot:
Initializes the cursor with the specified image and hot spot.

- (id)initWithImage:(NSImage *)newImage foregroundColorHint:(NSColor *)fg
backgroundColorHint:(NSColor *)bg hotSpot:(NSPoint)hotSpot

Parameters
newImage

The image to assign to the cursor.

fg
The foreground color. This is currently ignored.

bg
The background color. This is currently ignored.

hotSpot
The point to assign as the cursor's hot spot.

866 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Return Value
The initialized cursor object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithImage:hotSpot: (page 867)

Declared In
NSCursor.h

initWithImage:hotSpot:
Initializes a cursor with the given image and hot spot.

- (id)initWithImage:(NSImage *)newImage hotSpot:(NSPoint)aPoint

Parameters
newImage

The image to assign to the cursor.

aPoint
The point to set as the cursor's hot spot.

Return Value
An initialized cursor object.

Discussion
This method is the designated initializer for the class.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hotSpot (page 865)
– image (page 866)
– initWithImage:foregroundColorHint:backgroundColorHint:hotSpot: (page 866)

Related Sample Code
GLUT
PDFView
QuickLookSketch
Sketch-112
TextLinks

Declared In
NSCursor.h

isSetOnMouseEntered
Returns a Boolean value indicating whether the receiver becomes current on receiving amouseEntered: (page
868) message.

Instance Methods 867
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

- (BOOL)isSetOnMouseEntered

Return Value
YES if the receiver will become current when it receives a mouseEntered: (page 868) message; otherwise,
NO.

Discussion
To receive such a message, the receiver must first be assigned a cursor rectangle. This assignment can be
made using the NSView method addCursorRect:cursor: (page 3139). For a more complete explanation,
see the class description.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOnMouseEntered: (page 871)
– isSetOnMouseExited (page 868)

Declared In
NSCursor.h

isSetOnMouseExited
Returns a Boolean value indicating whether the receiver becomes current when it receives a
mouseExited: (page 869) message.

- (BOOL)isSetOnMouseExited

Return Value
YES if the receiver becomes current when it receives a mouseExited: (page 869) message; otherwise, NO.

Discussion
To receive such a message, the receiver must first be assigned a cursor rectangle. This assignment can be
made using the NSView method addCursorRect:cursor: (page 3139). For a more complete explanation,
see the class description.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOnMouseExited: (page 871)

Declared In
NSCursor.h

mouseEntered:
Automatically sent to the receiver when the cursor enters a cursor rectangle owned by the receiver.

- (void)mouseEntered:(NSEvent *)anEvent

868 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Parameters
anEvent

The event generated when the cursor enters the cursor rectangle.

Discussion
If used after setOnMouseEntered: (page 871) has been called with an argument of YES, mouseEntered:
can make the receiver the current cursor.

In your programs, you won’t invoke mouseEntered: explicitly. It’s only included in the class interface so
you can override it.

For a more complete explanation, see Mouse-Tracking and Cursor-Update Events and the NSView method
addTrackingRect:owner:userData:assumeInside: (page 3142).

Availability
Available in Mac OS X v10.0 and later.

See Also
– isSetOnMouseEntered (page 867)
– mouseExited: (page 869)

Declared In
NSCursor.h

mouseExited:
Automatically sent to the receiver when the cursor exits a cursor rectangle owned by the receiver.

- (void)mouseExited:(NSEvent *)anEvent

Parameters
anEvent

The event generated when the cursor exits the cursor rectangle.

Discussion
Like mouseEntered: (page 868), this message is part of the class interface only so you can override it.

For a more complete explanation, see Mouse-Tracking and Cursor-Update Events and the NSView method
addTrackingRect:owner:userData:assumeInside: (page 3142).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOnMouseExited: (page 871)
– isSetOnMouseExited (page 868)

Declared In
NSCursor.h

pop
Sends a pop (page 862) message to the receiver’s class.

Instance Methods 869
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

- (void)pop

Availability
Available in Mac OS X v10.0 and later.

See Also
– push (page 870)
– pop (page 869)

Declared In
NSCursor.h

push
Puts the receiver on top of the cursor stack and makes it the current cursor.

- (void)push

Availability
Available in Mac OS X v10.0 and later.

See Also
– pop (page 869)
– pop (page 869)

Related Sample Code
DragItemAround
GeekGameBoard

Declared In
NSCursor.h

set
Makes the receiver the current cursor.

- (void)set

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentCursor (page 858)

Related Sample Code
CocoaDVDPlayer
PDFKitLinker2
TrackIt

Declared In
NSCursor.h

870 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

setOnMouseEntered:
Specifies whether the receiver accepts mouseEntered: (page 868) events.

- (void)setOnMouseEntered:(BOOL)flag

Parameters
flag

YES if the receiver accepts future mouseEntered: (page 868) event messages; otherwise it ignores
them.

Discussion
Accepting mouseEntered: (page 868) event messages allows the cursor to be made the current cursor when
the cursor enters a view’s cursor rectangle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mouseEntered: (page 868)

Declared In
NSCursor.h

setOnMouseExited:
Sets whether the receiver accepts mouseExited: (page 869) events.

- (void)setOnMouseExited:(BOOL)flag

Parameters
flag

YES if the receiver accepts future mouseExited: (page 869) event messages; otherwise it ignores
them.

Discussion
Accepting mouseExited: (page 869) event messages allows the cursor to be made the current cursor when
the cursor exits a view’s cursor rectangle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCursor.h

Constants

AppKit Versions for NSCursor Bug Fixes
The version of the AppKit framework containing a specific bug fix.

Constants 871
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

#define NSAppKitVersionNumberWithCursorSizeSupport 682.0

Constants
NSAppKitVersionNumberWithCursorSizeSupport

The specific version of the AppKit framework that introduced support for cursors larger than 16 x 16
pixels in size. Developers should not need to use this constant unless they are writing applications
for Mac OS X v10.2 and earlier.

Available in Mac OS X v10.3 and later.

Declared in NSCursor.h.

872 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 38

NSCursor Class Reference

Inherits from NSImageRep : NSObject

Conforms to NSCoding (NSImageRep)
NSCopying (NSImageRep)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSCustomImageRep.h

Companion guide Cocoa Drawing Guide

Related sample code CompositeLab

Overview

An NSCustomImageRep object uses a delegate object to render an image. When called upon to produce an
image, it sends a message to its delegate to do the actual drawing. You can use this class to support custom
image formats without going to the trouble of subclassing NSImageRep directly.

Tasks

Initializing a New NSCustomImageRep

– initWithDrawSelector:delegate: (page 874)
Returns an NSCustomImageRep object initialized with the specified delegate information.

Identifying the Object

– delegate (page 874)
Returns the delegate object that renders the image for the receiver.

– drawSelector (page 874)
Returns the selector for the delegate's drawing method.

Overview 873
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 39

NSCustomImageRep Class Reference

Instance Methods

delegate
Returns the delegate object that renders the image for the receiver.

- (id)delegate

Return Value
The delegate object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCustomImageRep.h

drawSelector
Returns the selector for the delegate's drawing method.

- (SEL)drawSelector

Return Value
The selector for the delegate's drawing method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSCustomImageRep.h

initWithDrawSelector:delegate:
Returns an NSCustomImageRep object initialized with the specified delegate information.

- (id)initWithDrawSelector:(SEL)aMethod delegate:(id)anObject

Parameters
aMethod

The selector to call when it is time to draw the image. The method should take a single parameter of
type id that represents the NSCustomImageRep object that initiated drawing. The method must
draw the image starting at the point (0, 0) in the current coordinate system.

anObject
The delegate object that responds to the selector in aMethod.

Return Value
An initialized NSCustomImageRep object, or nil if the object could not be initialized.

874 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 39

NSCustomImageRep Class Reference

Discussion
When the receiver is asked to draw the image, it sends the specified message to the selector, passing itself
as a parameter to the delegate method. The delegate's drawing method should have the following form:

- (void)myCustomDrawMethod:(id)anNSCustomImageRep;

Availability
Available in Mac OS X v10.0 and later.

See Also
– draw (page 1415) (NSImageRep)

Related Sample Code
CompositeLab

Declared In
NSCustomImageRep.h

Instance Methods 875
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 39

NSCustomImageRep Class Reference

876 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 39

NSCustomImageRep Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.4 and later.

Declared in AppKit/NSDatePicker.h

Related sample code DatePicker
Mountains
ScriptingBridgeiCal

Overview

NSDatePicker is a subclass of NSControl that provides a user interface for displaying and editing an
NSDate object.

NSDatePickeruses anNSDatePickerCell to implement much of the control’s functionality.NSDatePicker
provides cover methods for most of NSDatePickerCell methods, which invoke the corresponding cell
method.

Tasks

Configuring Date Pickers

– isBezeled (page 882)
Returns whether the receiver has a bezeled border.

– setBezeled: (page 884)
Specifies whether the receiver draws a bezeled border.

– isBordered (page 883)
Returns whether the receiver has a plain border.

– setBordered: (page 885)
Specifies whether the receiver draws a plain border.

Overview 877
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

– backgroundColor (page 879)
Returns the background color of the receiver.

– setBackgroundColor: (page 884)
Sets the receiver’s background color.

– drawsBackground (page 882)
Returns whether the receiver draws the background.

– setDrawsBackground: (page 888)
Specifies whether the receiver draws the background.

– textColor (page 891)
Returns the text color of the receiver.

– setTextColor: (page 889)
Sets the text color of the receiver.

– datePickerStyle (page 881)
Returns the receiver’s date picker style.

– setDatePickerStyle: (page 886)
Sets the receiver’s date picker style.

– delegate (page 881)
Returns the delegate of the receiver’s date picker cell.

– setDelegate: (page 887)
Sets the delegate of the receiver’s date picker cell.

– datePickerElements (page 880)
Returns a bitmask that indicates which visual elements of the date picker are currently shown, and
which won't be usable because they are hidden.

– setDatePickerElements: (page 886)
Sets a bitmask that indicates which visual elements of the date picker are currently shown, and which
won't be usable because they are hidden.

Controlling Date Picker Range and Mode

– calendar (page 880)
Returns the calendar used by the receiver.

– setCalendar: (page 885)
Sets the receiver’s calendar.

– locale (page 883)
Returns the receiver’s locale.

– setLocale: (page 888)
Sets the receiver’s locale.

– datePickerMode (page 880)
Returns the receiver’s date picker mode.

– setDatePickerMode: (page 886)
Sets the receiver’s date picker mode.

– timeZone (page 891)
Returns the receiver’s time zone.

878 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

– setTimeZone: (page 890)
Sets the receiver’s time zone.

Accessing Object Values

– dateValue (page 881)
Returns the receiver’s date.

– setDateValue: (page 887)
Sets the receiver’s date to a new starting value.

– timeInterval (page 891)
Returns the time interval that represents the date range.

– setTimeInterval: (page 890)
Sets the time interval of the date range.

Constraining the Displayable/Selectable Range

– minDate (page 884)
Returns the minimum date value the receiver allows as input.

– setMinDate: (page 889)
Sets the minimum date allowed as input by the receiver.

– maxDate (page 883)
Returns the maximum date value the receiver allows as input.

– setMaxDate: (page 889)
Sets the maximum date allowed as input by the receiver.

Instance Methods

backgroundColor
Returns the background color of the receiver.

- (NSColor *)backgroundColor

Return Value
The background color of the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBackgroundColor: (page 884)

Declared In
NSDatePicker.h

Instance Methods 879
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

calendar
Returns the calendar used by the receiver.

- (NSCalendar *)calendar

Return Value
The calendar used by the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCalendar: (page 885)

Declared In
NSDatePicker.h

datePickerElements
Returns a bitmask that indicates which visual elements of the date picker are currently shown, and which
won't be usable because they are hidden.

- (NSDatePickerElementFlags)datePickerElements

Return Value
A bitmask that specifies the date picker elements displayed by the receiver. See “Constants” in
NSDatePickerCell for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDatePickerElements: (page 886)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

datePickerMode
Returns the receiver’s date picker mode.

- (NSDatePickerMode)datePickerMode

Return Value
The receiver’s date picker mode.

Availability
Available in Mac OS X v10.4 and later.

880 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

See Also
– setDatePickerMode: (page 886)

Declared In
NSDatePicker.h

datePickerStyle
Returns the receiver’s date picker style.

- (NSDatePickerStyle)datePickerStyle

Return Value
The receiver’s date picker style.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDatePickerStyle: (page 886)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

dateValue
Returns the receiver’s date.

- (NSDate *)dateValue

Return Value
The receiver’s date.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDateValue: (page 887)

Related Sample Code
DatePicker
ScriptingBridgeiCal

Declared In
NSDatePicker.h

delegate
Returns the delegate of the receiver’s date picker cell.

Instance Methods 881
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

- (id)delegate

Return Value
The delegate of the receiver’s date picker cell.

Discussion
The date picker’s NSDatePickerCell instance handles all delegate methods.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDelegate: (page 887)

Declared In
NSDatePicker.h

drawsBackground
Returns whether the receiver draws the background.

- (BOOL)drawsBackground

Return Value
TRUE if the receiver draws the background, FALSE otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDrawsBackground: (page 888)

Declared In
NSDatePicker.h

isBezeled
Returns whether the receiver has a bezeled border.

- (BOOL)isBezeled

Return Value
TRUE if the receiver has a bezeled border, FALSE otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBezeled: (page 884)

Declared In
NSDatePicker.h

882 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

isBordered
Returns whether the receiver has a plain border.

- (BOOL)isBordered

Return Value
TRUE if the receiver has a plain border, FALSE otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBordered: (page 885)

Declared In
NSDatePicker.h

locale
Returns the receiver’s locale.

- (NSLocale *)locale

Return Value
The receiver’s locale.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLocale: (page 888)

Declared In
NSDatePicker.h

maxDate
Returns the maximum date value the receiver allows as input.

- (NSDate *)maxDate

Return Value
The maximum date value the receiver allows as input. nil indicates no maximum date.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMaxDate: (page 889)

Declared In
NSDatePicker.h

Instance Methods 883
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

minDate
Returns the minimum date value the receiver allows as input.

- (NSDate *)minDate

Return Value
The minimum date value the receiver allows as input. nil indicates no minimum date.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMinDate: (page 889)

Declared In
NSDatePicker.h

setBackgroundColor:
Sets the receiver’s background color.

- (void)setBackgroundColor:(NSColor *)color

Parameters
color

The new background color.

Availability
Available in Mac OS X v10.4 and later.

See Also
– backgroundColor (page 879)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setBezeled:
Specifies whether the receiver draws a bezeled border.

- (void)setBezeled:(BOOL)flag

Parameters
flag

TRUE if the receiver has a bezeled border, FALSE otherwise.

Availability
Available in Mac OS X v10.4 and later.

884 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

See Also
– isBezeled (page 882)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setBordered:
Specifies whether the receiver draws a plain border.

- (void)setBordered:(BOOL)flag

Parameters
flag

TRUE if the receiver has a plain border, FALSE otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– isBordered (page 883)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setCalendar:
Sets the receiver’s calendar.

- (void)setCalendar:(NSCalendar *)newCalendar

Parameters
newCalendar

The new calendar.

Availability
Available in Mac OS X v10.4 and later.

See Also
– calendar (page 880)

Declared In
NSDatePicker.h

Instance Methods 885
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

setDatePickerElements:
Sets a bitmask that indicates which visual elements of the date picker are currently shown, and which won't
be usable because they are hidden.

- (void)setDatePickerElements:(NSDatePickerElementFlags)elementFlags

Parameters
elementFlags

A bitmask that specifies the date picker elements displayed by the receiver. See “Constants” in
NSDatePickerCell for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– datePickerElements (page 880)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setDatePickerMode:
Sets the receiver’s date picker mode.

- (void)setDatePickerMode:(NSDatePickerMode)newMode

Parameters
newMode

The new date picker mode.

Availability
Available in Mac OS X v10.4 and later.

See Also
– datePickerMode (page 880)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setDatePickerStyle:
Sets the receiver’s date picker style.

- (void)setDatePickerStyle:(NSDatePickerStyle)newStyle

886 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

Parameters
newStyle

The new date picker style.

Availability
Available in Mac OS X v10.4 and later.

See Also
– datePickerStyle (page 881)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setDateValue:
Sets the receiver’s date to a new starting value.

- (void)setDateValue:(NSDate *)newStartDate

Parameters
newStartDate

The new starting date.

Availability
Available in Mac OS X v10.4 and later.

See Also
– dateValue (page 881)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setDelegate:
Sets the delegate of the receiver’s date picker cell.

- (void)setDelegate:(id)anObject

Parameters
anObject

The new delegate.

Discussion
The date picker’s NSDatePickerCell instance handles all delegate methods.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 887
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

See Also
– delegate (page 881)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setDrawsBackground:
Specifies whether the receiver draws the background.

- (void)setDrawsBackground:(BOOL)flag

Parameters
flag

TRUE if the receiver draws the background, FALSE otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– drawsBackground (page 882)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setLocale:
Sets the receiver’s locale.

- (void)setLocale:(NSLocale *)newLocale

Parameters
newLocale

The new locale.

Availability
Available in Mac OS X v10.4 and later.

See Also
– locale (page 883)

Declared In
NSDatePicker.h

888 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

setMaxDate:
Sets the maximum date allowed as input by the receiver.

- (void)setMaxDate:(NSDate *)date

Parameters
date

The maximum date allowed as input by the receiver. nil indicates no maximum date.

Availability
Available in Mac OS X v10.4 and later.

See Also
– maxDate (page 883)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setMinDate:
Sets the minimum date allowed as input by the receiver.

- (void)setMinDate:(NSDate *)date

Parameters
date

The minimum date allowed as input by the receiver. nil indicates no minimum date.

Availability
Available in Mac OS X v10.4 and later.

See Also
– minDate (page 884)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setTextColor:
Sets the text color of the receiver.

- (void)setTextColor:(NSColor *)color

Parameters
color

The new text color.

Instance Methods 889
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– textColor (page 891)

Related Sample Code
DatePicker

Declared In
NSDatePicker.h

setTimeInterval:
Sets the time interval of the date range.

- (void)setTimeInterval:(NSTimeInterval)newTimeInterval

Parameters
newTimeInterval

The new time interval.

Discussion
The time interval only applies when the receiver is in the NSRangeDateMode mode.

Availability
Available in Mac OS X v10.4 and later.

See Also
– timeInterval (page 891)

Declared In
NSDatePicker.h

setTimeZone:
Sets the receiver’s time zone.

- (void)setTimeZone:(NSTimeZone *)newTimeZone

Parameters
newTimeZone

The new time zone.

Availability
Available in Mac OS X v10.4 and later.

See Also
– timeZone (page 891)

Declared In
NSDatePicker.h

890 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

textColor
Returns the text color of the receiver.

- (NSColor *)textColor

Return Value
The text color of the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTextColor: (page 889)

Declared In
NSDatePicker.h

timeInterval
Returns the time interval that represents the date range.

- (NSTimeInterval)timeInterval

Return Value
The time interval that represents the receiver’s date range. The date range begins at the date returned by
dateValue (page 881). This method returns 0 when the receiver is not in the NSRangeDateMode mode.

Special Considerations

Prior to Mac OS X v 10.5, this method always returned 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTimeInterval: (page 890)

Declared In
NSDatePicker.h

timeZone
Returns the receiver’s time zone.

- (NSTimeZone *)timeZone

Return Value
The receiver’s time zone.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTimeZone: (page 890)

Instance Methods 891
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

Declared In
NSDatePicker.h

892 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 40

NSDatePicker Class Reference

Inherits from NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.4 and later.

Declared in AppKit/NSDatePickerCell.h

Related sample code DatePicker

Overview

An NSDatePickerCell instance controls the behavior of an NSDatePicker control, or of a single date
picker cell in a matrix.

Tasks

Configuring Appearance

– backgroundColor (page 895)
Returns the receiver’s background color.

– setBackgroundColor: (page 899)
Sets the receiver’s background color

– drawsBackground (page 897)
Returns whether the receiver draws the background.

– setDrawsBackground: (page 901)
Sets whether the receiver draws the background.

– textColor (page 904)
Returns the receiver’s text color.

– setTextColor: (page 903)
Sets the receiver’s text color.

Overview 893
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

– datePickerStyle (page 896)
Returns the receiver’s date picker style.

– setDatePickerStyle: (page 900)
Sets the receiver’s date picker style.

– datePickerElements (page 896)
Returns a bitmask that indicates which visual elements of the date picker are currently shown, and
which won't be usable because they are hidden.

– setDatePickerElements: (page 900)
Sets a bitmask that indicates which visual elements of the date picker are currently shown, and which
won't be usable because they are hidden.

Range Mode

– datePickerMode (page 896)
Returns the receiver’s date picker mode.

– setDatePickerMode: (page 900)
Sets the receiver’s date picker mode.

Object Values

– dateValue (page 897)
Returns the receiver’s date.

– setDateValue: (page 901)
Sets the receiver’s date to a new starting value.

– timeInterval (page 904)
Returns the time interval that represents the date range.

– setTimeInterval: (page 903)
Sets the time interval of the date range.

– calendar (page 895)
Returns the calendar used by the receiver.

– setCalendar: (page 899)
Sets the receiver’s calendar.

– locale (page 898)
Returns the receiver’s locale.

– setLocale: (page 902)
Sets the receiver’s locale.

– timeZone (page 905)
Returns the receiver’s time zone.

– setTimeZone: (page 904)
Sets the receiver’s time zone.

894 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

Date Range Constraints

– minDate (page 899)
Returns the minimum date value that the receiver allows as input.

– setMinDate: (page 903)
Sets the minimum date allowed as input by the receiver to the given date.

– maxDate (page 898)
Returns the maximum date value that the receiver allows as input.

– setMaxDate: (page 902)
Sets the maximum date allowed as input by the receiver to the given date.

Getting and Setting the Delegate

– delegate (page 897)
Returns the receiver’s delegate.

– setDelegate: (page 901)
Sets the receiver's delegate.

Instance Methods

backgroundColor
Returns the receiver’s background color.

- (NSColor *)backgroundColor

Return Value
The receiver’s background color.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBackgroundColor: (page 899)

Declared In
NSDatePickerCell.h

calendar
Returns the calendar used by the receiver.

- (NSCalendar *)calendar

Return Value
The calendar used by the receiver.

Instance Methods 895
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCalendar: (page 899)

Declared In
NSDatePickerCell.h

datePickerElements
Returns a bitmask that indicates which visual elements of the date picker are currently shown, and which
won't be usable because they are hidden.

- (NSDatePickerElementFlags)datePickerElements

Return Value
A bitmask that specifies the date picker elements displayed by the receiver. See “Constants” (page 905) for a
description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDatePickerElements: (page 900)

Declared In
NSDatePickerCell.h

datePickerMode
Returns the receiver’s date picker mode.

- (NSDatePickerMode)datePickerMode

Return Value
The receiver’s date picker mode.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDatePickerMode: (page 900)

Declared In
NSDatePickerCell.h

datePickerStyle
Returns the receiver’s date picker style.

- (NSDatePickerStyle)datePickerStyle

896 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

Return Value
The receiver’s date picker style.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDatePickerStyle: (page 900)

Declared In
NSDatePickerCell.h

dateValue
Returns the receiver’s date.

- (NSDate *)dateValue

Return Value
The receiver’s date.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDateValue: (page 901)

Declared In
NSDatePickerCell.h

delegate
Returns the receiver’s delegate.

- (id < NSDatePickerCellDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDelegate: (page 901)

Declared In
NSDatePickerCell.h

drawsBackground
Returns whether the receiver draws the background.

Instance Methods 897
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

- (BOOL)drawsBackground

Return Value
YES if the receiver draws the background, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDrawsBackground: (page 901)

Declared In
NSDatePickerCell.h

locale
Returns the receiver’s locale.

- (NSLocale *)locale

Return Value
The receiver’s locale.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLocale: (page 902)

Declared In
NSDatePickerCell.h

maxDate
Returns the maximum date value that the receiver allows as input.

- (NSDate *)maxDate

Return Value
The maximum date value that the receiver allows as input.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMaxDate: (page 902)

Declared In
NSDatePickerCell.h

898 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

minDate
Returns the minimum date value that the receiver allows as input.

- (NSDate *)minDate

Return Value
The minimum date value that the receiver allows as input.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMinDate: (page 903)

Declared In
NSDatePickerCell.h

setBackgroundColor:
Sets the receiver’s background color

- (void)setBackgroundColor:(NSColor *)color

Parameters
color

The new background color.

Availability
Available in Mac OS X v10.4 and later.

See Also
– backgroundColor (page 895)

Declared In
NSDatePickerCell.h

setCalendar:
Sets the receiver’s calendar.

- (void)setCalendar:(NSCalendar *)newCalendar

Parameters
newCalendar

The calendar used by the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– backgroundColor (page 895)

Instance Methods 899
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

Declared In
NSDatePickerCell.h

setDatePickerElements:
Sets a bitmask that indicates which visual elements of the date picker are currently shown, and which won't
be usable because they are hidden.

- (void)setDatePickerElements:(NSDatePickerElementFlags)elementFlags

Parameters
elementFlags

A bitmask that specifies the date picker elements displayed by the receiver. See “Constants” (page
905) for a description of the possible values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– datePickerElements (page 896)

Declared In
NSDatePickerCell.h

setDatePickerMode:
Sets the receiver’s date picker mode.

- (void)setDatePickerMode:(NSDatePickerMode)newMode

Parameters
newMode

The new date picker mode.

Availability
Available in Mac OS X v10.4 and later.

See Also
– datePickerMode (page 896)

Declared In
NSDatePickerCell.h

setDatePickerStyle:
Sets the receiver’s date picker style.

- (void)setDatePickerStyle:(NSDatePickerStyle)newStyle

Parameters
newStyle

The new date picker style.

900 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– datePickerStyle (page 896)

Declared In
NSDatePickerCell.h

setDateValue:
Sets the receiver’s date to a new starting value.

- (void)setDateValue:(NSDate *)newStartDate

Parameters
newStartDate

The new starting date.

Availability
Available in Mac OS X v10.4 and later.

See Also
– dateValue (page 897)

Declared In
NSDatePickerCell.h

setDelegate:
Sets the receiver's delegate.

- (void)setDelegate:(id < NSDatePickerCellDelegate >)anObject

Parameters
anObject

The receiver's delegate.

Availability
Available in Mac OS X v10.4 and later.

See Also
– delegate (page 897)

Declared In
NSDatePickerCell.h

setDrawsBackground:
Sets whether the receiver draws the background.

- (void)setDrawsBackground:(BOOL)flag

Instance Methods 901
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

Parameters
flag

YES if the receiver draws the background, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– drawsBackground (page 897)

Declared In
NSDatePickerCell.h

setLocale:
Sets the receiver’s locale.

- (void)setLocale:(NSLocale *)newLocale

Parameters
newLocale

The receiver’s locale.

Availability
Available in Mac OS X v10.4 and later.

See Also
– locale (page 898)

Declared In
NSDatePickerCell.h

setMaxDate:
Sets the maximum date allowed as input by the receiver to the given date.

- (void)setMaxDate:(NSDate *)date

Parameters
date

The maximum date the receiver allows as input. Pass nil to allow any date as the maximum value.

Availability
Available in Mac OS X v10.4 and later.

See Also
– maxDate (page 898)

Declared In
NSDatePickerCell.h

902 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

setMinDate:
Sets the minimum date allowed as input by the receiver to the given date.

- (void)setMinDate:(NSDate *)date

Parameters
date

The minimum date the receiver allows as input. Pass nil to allow any date as the minimum value.

Discussion
Passing nil for date allows any date as the minimum value.

Availability
Available in Mac OS X v10.4 and later.

See Also
– minDate (page 899)

Declared In
NSDatePickerCell.h

setTextColor:
Sets the receiver’s text color.

- (void)setTextColor:(NSColor *)color

Parameters
color

The new text color.

Availability
Available in Mac OS X v10.4 and later.

See Also
– textColor (page 904)

Declared In
NSDatePickerCell.h

setTimeInterval:
Sets the time interval of the date range.

- (void)setTimeInterval:(NSTimeInterval)newTimeInterval

Parameters
newTimeInterval

The time interval of the date range.

Discussion
The time interval only applies when the receiver is in the NSRangeDateMode (page 907) mode.

Instance Methods 903
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– timeInterval (page 904)

Declared In
NSDatePickerCell.h

setTimeZone:
Sets the receiver’s time zone.

- (void)setTimeZone:(NSTimeZone *)newTimeZone

Parameters
newTimeZone

The receiver’s time zone.

Availability
Available in Mac OS X v10.4 and later.

See Also
– timeZone (page 905)

Declared In
NSDatePickerCell.h

textColor
Returns the receiver’s text color.

- (NSColor *)textColor

Return Value
The receiver’s text color.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTextColor: (page 903)

Declared In
NSDatePickerCell.h

timeInterval
Returns the time interval that represents the date range.

- (NSTimeInterval)timeInterval

904 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

Return Value
The time interval that represents the date range.

Discussion
The date range begins at the date returned by dateValue (page 897). This method returns 0 when the
receiver is not in the NSRangeDateMode (page 907) mode.

Special Considerations

Prior to Mac OS X v 10.5 this method always returned 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTimeInterval: (page 903)

Declared In
NSDatePickerCell.h

timeZone
Returns the receiver’s time zone.

- (NSTimeZone *)timeZone

Return Value
The receiver’s time zone.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTimeZone: (page 904)

Declared In
NSDatePickerCell.h

Constants

NSDatePickerStyle
Specifies a type for constants that define the visual appearance of the NSDatePickerCell.

typedef NSUInteger NSDatePickerStyle;

Discussion
For a discussion of possible values, see “Date Picker Style” (page 906).

Availability
Available in Mac OS X v10.4 and later.

Constants 905
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

Declared In
NSDatePickerCell.h

Date Picker Style
The NSDatePickerStyle constants define the visual appearance of the NSDatePickerCell. These values
are used by datePickerStyle (page 896) and setDatePickerStyle: (page 900).

enum {
 NSTextFieldAndStepperDatePickerStyle = 0,
 NSClockAndCalendarDatePickerStyle = 1,
 NSTextFieldDatePickerStyle = 2
};
typedef NSUInteger NSDatePickerStyle;

Constants
NSTextFieldAndStepperDatePickerStyle

Provide a text field and stepper style interface.

Available in Mac OS X v10.4 and later.

Declared in NSDatePickerCell.h.

NSClockAndCalendarDatePickerStyle
Provide a visual clock and calendar style interface.

Available in Mac OS X v10.4 and later.

Declared in NSDatePickerCell.h.

NSTextFieldDatePickerStyle
Provide a text field interface.

Available in Mac OS X v10.5 and later.

Declared in NSDatePickerCell.h.

Declared In
NSDatePickerCell.h

NSDatePickerMode
Specifies a type for constants that define whether the control provides a single date, or a range of dates.

typedef NSUInteger NSDatePickerMode;

Discussion
For a discussion of possible values, see “Date Picker Mode” (page 907).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDatePickerCell.h

906 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

Date Picker Mode
The NSDatePickerMode constants define whether the control provides a single date, or a range of dates.
These values are used by datePickerMode (page 896) and setDatePickerMode: (page 900).

enum {
 NSSingleDateMode = 0,
 NSRangeDateMode = 1
};
typedef NSUInteger NSDatePickerMode;

Constants
NSSingleDateMode

Allow selection of a single date.

Available in Mac OS X v10.4 and later.

Declared in NSDatePickerCell.h.

NSRangeDateMode
Allow selection of a range of dates. (First implemented in Mac OS X v 10.5.)

Available in Mac OS X v10.4 and later.

Declared in NSDatePickerCell.h.

Special Considerations

Prior to Mac OS X v 10.5 only NSSingleDateMode was implemented.

Declared In
NSDatePickerCell.h

NSDatePickerElementFlags
Specifies a type for constants that allow you to specify the date and time elements that the
NSDatePickerCell can edit.

typedef NSUInteger NSDatePickerElementFlags;

Discussion
For a discussion of possible values, see “Date Picker Elements” (page 907).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDatePickerCell.h

Date Picker Elements
The NSDatePickerElementFlag constants allow you to specify the date and time elements that the
NSDatePickerCell can edit by combining these constants using the C bitwise OR operator. These values
are used by datePickerElements (page 896) and setDatePickerElements: (page 900):

Constants 907
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

enum {
 NSHourMinuteDatePickerElementFlag = 0x000c,
 NSHourMinuteSecondDatePickerElementFlag = 0x000e,
 NSTimeZoneDatePickerElementFlag = 0x0010,
 NSYearMonthDatePickerElementFlag = 0x00c0,
 NSYearMonthDayDatePickerElementFlag = 0x00e0,
 NSEraDatePickerElementFlag = 0x0100,
};
typedef NSUInteger NSDatePickerElementFlags;

Constants
NSHourMinuteDatePickerElementFlag

Display and allow editing of the hour and minute elements of the date.

Available in Mac OS X v10.4 and later.

Declared in NSDatePickerCell.h.

NSHourMinuteSecondDatePickerElementFlag
Display and allow editing of the hour, minute and second elements of the date.

Available in Mac OS X v10.4 and later.

Declared in NSDatePickerCell.h.

NSTimeZoneDatePickerElementFlag
Display and allow editing of the time zone.

This flag has been declared for possible future use, and does not yet have any effect.

Available in Mac OS X v10.4 and later.

Declared in NSDatePickerCell.h.

NSYearMonthDatePickerElementFlag
Display and allow editing of the year and month elements of the date.

Available in Mac OS X v10.4 and later.

Declared in NSDatePickerCell.h.

NSYearMonthDayDatePickerElementFlag
Display and allow editing of the year, month and day elements of the date.

Available in Mac OS X v10.4 and later.

Declared in NSDatePickerCell.h.

NSEraDatePickerElementFlag
Display and allow editing of the era of the date, if applicable.

This flag has been declared for possible future use, and does not yet have any effect.

Available in Mac OS X v10.4 and later.

Declared in NSDatePickerCell.h.

Declared In
NSDatePickerCell.h

908 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 41

NSDatePickerCell Class Reference

Inherits from NSArrayController : NSObjectController : NSController : NSObject

Conforms to NSCoding (NSController)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSDictionaryController.h

Availability Available in Mac OS X v10.5 and later.

Companion guide Cocoa Bindings Programming Topics

Related sample code DictionaryController

Overview

NSDictionaryController is a bindings compatible class that manages display and editing of the contents
of an NSDictionary object. NSDictionaryController transforms the contents of a dictionary into an
array of key-value pairs that can be bound to user interface items such as the columns of an NSTableView.

The content of an NSDictionaryController instance is specified using the inherited method
setContent: (page 1756) or by binding an NSDictionary instance to the contentDictionary binding.
New key/value pairs inserted into the dictionary are created using the newObject method. The initial key
name is set to the string returned by initialKey (page 912) (specified using setInitialKey: (page 915)
or the initialKey binding). The initial value object is set to the object returned by initialValue (page
912) (specified using setInitialValue: (page 915) or the initialValue binding). The initial key name is
copied to the newly inserted object, while the object returned by initialValue (page 912) is simply retained.
As new items are inserted the controller enumerates the initial key name, resulting in key names such as
“key”, “key1”, “key2”, and so on. This behavior can be customized by overriding newObject (page 914).

An NSDictionaryController instance can be configured to exclude specified keys in a dictionary from
being returned by arrangedObjects (page 911) using the setExcludedKeys: (page 914) method or by
binding an array of key names to the excludedKeys binding. Similarly, you can specify an array of key names
that are always included in the arranged objects, even if they are not present in the content dictionary, using
the setIncludedKeys: (page 914) method or the includedKeys binding.

NSDictionaryController supports providing localized key names for the keys in the dictionary, allowing
a user-friendly representation of the key name to be displayed. The localized key names are specified by a
dictionary (using setLocalizedKeyDictionary: (page 915) or the localizedKeyDictionary binding)
or by providing a strings table (using setLocalizedKeyTable: (page 916)).

Overview 909
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 42

NSDictionaryController Class Reference

The arrangedObjects (page 911) method returns an array of objects that implement the
NSDictionaryControllerKeyValuePair informal protocol. User interface controls are bound to the
arranged objects array using key paths such as: arrangedObjects.key (displays the key name),
arrangedObjects.value (displays the value for the key), or arrangedObjects.localizedKey (displays
the localized key name). See NSDictionaryControllerKeyValuePair Protocol Reference for more information.

Note: You must enable the “Validates Immediately” option for the value binding of all controls that edit the
key names or values returned by arrangedObjects (page 911).

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

Tasks

Arranging Objects

– arrangedObjects (page 911)
Returns an array containing the objects that represent the receiver’s content.

Creating New Entries

– newObject (page 914)
Creates and returns a new key-value pair to represent an entry in the content dictionary.

Localizing Key Names

– setLocalizedKeyDictionary: (page 915)
Sets the localized key names that are displayed by the receiver in place of the key names.

– localizedKeyDictionary (page 913)
Returns the receiver’s localization dictionary.

– localizedKeyTable (page 913)
Returns the strings file used to localize key names.

– setLocalizedKeyTable: (page 916)
Specifies the strings file used to localize key names.

910 Adopted Protocols
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 42

NSDictionaryController Class Reference

Keys to Display

– setIncludedKeys: (page 914)
Sets the key names that are represented by a key-value pair, even if they are not present in the
receiver’s content dictionary.

– includedKeys (page 912)
Returns an array containing the key names that are represented by a key-value pair, even if they are
not present in the receiver’s content dictionary.

– setExcludedKeys: (page 914)
Sets the key names that are never displayed in the user interface items bound to the receiver.

– excludedKeys (page 911)
Returns an array containing the key names that are never displayed in the user interface items bound
to the receiver.

Setting Initial Key and Values

– setInitialKey: (page 915)
Sets the string used as the initial key name for a newly inserted item.

– initialKey (page 912)
Returns the string used as the initial key name for a newly inserted item.

– setInitialValue: (page 915)
Sets the string used as the initial value for a newly inserted item.

– initialValue (page 912)
Returns the string used as the initial value for a newly inserted item.

Instance Methods

arrangedObjects
Returns an array containing the objects that represent the receiver’s content.

- (id)arrangedObjects

Return Value
An array of objects that implement the NSDictionaryControllerKeyValuePair informal protocol. See
NSDictionaryControllerKeyValuePair Protocol Reference for more information.

excludedKeys
Returns an array containing the key names that are never displayed in the user interface items bound to the
receiver.

- (NSArray *)excludedKeys

Instance Methods 911
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 42

NSDictionaryController Class Reference

Return Value
An array containing the key names.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setExcludedKeys: (page 914)

Declared In
NSDictionaryController.h

includedKeys
Returns an array containing the key names that are represented by a key-value pair, even if they are not
present in the receiver’s content dictionary.

- (NSArray *)includedKeys

Return Value
An array containing the key names.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setIncludedKeys: (page 914)

Declared In
NSDictionaryController.h

initialKey
Returns the string used as the initial key name for a newly inserted item.

- (NSString *)initialKey

Return Value
The key name.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setInitialKey: (page 915)

Declared In
NSDictionaryController.h

initialValue
Returns the string used as the initial value for a newly inserted item.

912 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 42

NSDictionaryController Class Reference

- (id)initialValue

Return Value
The value.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setInitialValue: (page 915)

Declared In
NSDictionaryController.h

localizedKeyDictionary
Returns the receiver’s localization dictionary.

- (NSDictionary *)localizedKeyDictionary

Return Value
A dictionary containing localized string values for the key names.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setLocalizedKeyDictionary: (page 915)

Declared In
NSDictionaryController.h

localizedKeyTable
Returns the strings file used to localize key names.

- (NSString *)localizedKeyTable

Return Value
A string that specifies the string table to use when localizing key names.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setLocalizedKeyTable: (page 916)

Declared In
NSDictionaryController.h

Instance Methods 913
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 42

NSDictionaryController Class Reference

newObject
Creates and returns a new key-value pair to represent an entry in the content dictionary.

- (id)newObject

Return Value
An object that represents the key-value pair. The object must not be autoreleased, and must implement the
NSDictionaryControllerKeyValuePair informal protocol

Discussion
This method is invoked for insertions of new key-value pairs, as well as transforming existing dictionary
entries into key-value pairs for display. Objects returned by this method must implement the
NSDictionaryControllerKeyValuePair informal protocol.

Special Considerations

Subclass implementations must ensure that the object returned by newObject is not autoreleased.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSDictionaryController.h

setExcludedKeys:
Sets the key names that are never displayed in the user interface items bound to the receiver.

- (void)setExcludedKeys:(NSArray *)keys

Parameters
keys

An array containing the key names.

Availability
Available in Mac OS X v10.5 and later.

See Also
– excludedKeys (page 911)

Declared In
NSDictionaryController.h

setIncludedKeys:
Sets the key names that are represented by a key-value pair, even if they are not present in the receiver’s
content dictionary.

- (void)setIncludedKeys:(NSArray *)keys

Parameters
keys

An array containing the key names.

914 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 42

NSDictionaryController Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– includedKeys (page 912)

Declared In
NSDictionaryController.h

setInitialKey:
Sets the string used as the initial key name for a newly inserted item.

- (void)setInitialKey:(NSString *)key

Parameters
key

The key name. The string is copied by the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initialKey (page 912)

Declared In
NSDictionaryController.h

setInitialValue:
Sets the string used as the initial value for a newly inserted item.

- (void)setInitialValue:(id)value

Parameters
value

The initial value.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initialValue (page 912)

Declared In
NSDictionaryController.h

setLocalizedKeyDictionary:
Sets the localized key names that are displayed by the receiver in place of the key names.

- (void)setLocalizedKeyDictionary:(NSDictionary *)dictionary

Instance Methods 915
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 42

NSDictionaryController Class Reference

Parameters
dictionary

A dictionary containing the localized key name strings.

Discussion
The dictionary contains the key names as the keys, and the localized key names as the corresponding values.

Availability
Available in Mac OS X v10.5 and later.

See Also
– localizedKeyDictionary (page 913)

Declared In
NSDictionaryController.h

setLocalizedKeyTable:
Specifies the strings file used to localize key names.

- (void)setLocalizedKeyTable:(NSString *)stringsFile

Parameters
stringsFile

Specifies the string table to use when localizing key names.

Discussion
The string table must reside within the application’s resource . See Strings Files in Introduction to
Internationalization Programming Topics.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setLocalizedKeyDictionary: (page 915)– localizedKeyDictionary (page 913)

Declared In
NSDictionaryController.h

Constants

Exposed Bindings
The following constants are used to specify a binding to bind:toObject:withKeyPath:options: (page
3699),infoForBinding: (page 3700),unbind: (page 3701), andvalueClassForBinding: (page 3701). See the
Cocoa Bindings Reference for more information.

916 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 42

NSDictionaryController Class Reference

NSString *NSContentDictionaryBinding;
NSString *NSIncludedKeysBinding;
NSString *NSExcludedKeysBinding;
NSString *NSLocalizedKeyDictionaryBinding;
NSString *NSInitialKeyBinding;
NSString *NSInitialValueBinding;

Constants
NSContentDictionaryBinding

A dictionary used as the content dictionary.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSIncludedKeysBinding
An array containing the key-value pairs always represented by the receiver.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSExcludedKeysBinding
An array containing the key names that are never displayed in the user interface items bound to the
receiver.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSLocalizedKeyDictionaryBinding
A dictionary containing the localized key names that are displayed by the receiver in place of the key
names.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSInitialKeyBinding
A string used as the initial key name for newly inserted items.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSInitialValueBinding
A string used as the initial value for newly inserted items.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

Declared In
AppKit/NSDictionaryController.h

Constants 917
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 42

NSDictionaryController Class Reference

918 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 42

NSDictionaryController Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSDockTile.h

Companion guide Dock Tile Programming Guide

Related sample code DockTile

Overview

The NSDockTile class lets you customize the visual representation for your application’s miniaturized
windows and application icon as they appear in the Dock. You do not create Dock tile objects explicitly in
your application. Instead, you retrieve the Dock tile for an existing window or for the application by calling
that object’s dockTile method.

Typically, you do not subclass the NSDockTile class. Instead, you use the methods of the class to make the
following customizations:

 ■ Badge the tile with a custom string.

 ■ Remove or show the application icon badge.

 ■ Draw the tile content yourself.

If you decide to draw the tile content yourself, you must provide a custom content view to handle the drawing.

Application Dock Tiles

An application Dock tile defaults to display the application’s applicationIconImage (page 138).

The application Dock tile never shows a smaller application icon badge.

Whether using the default or custom view, the application Dock tile may be badged with a short custom
string.

Overview 919
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 43

NSDockTile Class Reference

Window Dock Tiles

A window Dock tile defaults to display a miniaturized version of the windows contents with a badge derived
from the application Dock icon, including any customized application Dock icon. The default window Dock
tile image may not be badged with a custom string.

A window Dock tile can use a custom view to draw the Dock icon. If a custom view is used, no application
badge will be added, but the text label will be overlaid on top of the icon.

Tasks

Drawing the Tile’s Content

– setContentView: (page 923)
Sets the view to use for drawing the dock tile contents.

– contentView (page 921)
Returns the view used to draw the dock tile contents.

Getting the Tile Information

– size (page 924)
Returns the size of the tile.

– owner (page 922)
Returns the object represented by the dock tile.

Applying Badge Icons to the Tile

– setShowsApplicationBadge: (page 923)
Sets whether the tile should be badged with the application’s icon.

– showsApplicationBadge (page 924)
Returns a Boolean value indicating whether the tile is badged with the application’s icon.

– setBadgeLabel: (page 922)
Sets the string to be displayed in the tile’s badging area.

– badgeLabel (page 921)
Returns the tile’s current badge label.

Updating the Dock Tile

– display (page 921)
Redraws the dock tile’s content.

920 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 43

NSDockTile Class Reference

Instance Methods

badgeLabel
Returns the tile’s current badge label.

- (NSString *)badgeLabel

Return Value
The localized string to be displayed in the tile’s badging area. This string may be empty or nil.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setBadgeLabel: (page 922)

Declared In
NSDockTile.h

contentView
Returns the view used to draw the dock tile contents.

- (NSView *)contentView

Return Value
The view used to draw the tile.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setContentView: (page 923)

Declared In
NSDockTile.h

display
Redraws the dock tile’s content.

- (void)display

Discussion
If a custom content view is provided, Cocoa calls the drawRect: method of that view (and its subviews) to
draw the tile’s content.

Instance Methods 921
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 43

NSDockTile Class Reference

You can call this method to force the redrawing of the dock tile contents. You might do this if the contents
of the underlying application or window change in a way that would require a refreshing of the tile. Some
types of system activity, such as resizing the dock, may trigger automatic redraws of the tile. In most cases,
however, your application is responsible for triggering redraws.

Cocoa does not automatically redraw the contents of your dock tile. Instead, your application must explicitly
send display messages to the dock tile object whenever the contents of your view change and need to be
redrawn.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
DockTile

Declared In
NSDockTile.h

owner
Returns the object represented by the dock tile.

- (id)owner

Return Value
The object represented by the dock tile. This is either the NSApplication object or one of your application’s
NSWindow objects.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSDockTile.h

setBadgeLabel:
Sets the string to be displayed in the tile’s badging area.

- (void)setBadgeLabel:(NSString *)string

Parameters
string

The localized string to display. This string can contain a count value or other badging information.
To clear the badge string, specify an empty string (@"") or nil.

Discussion
The appearance of the badge area is system defined.

Window dock tiles only display a badge label when there is a custom view associated with the dock tile.

Availability
Available in Mac OS X v10.5 and later.

922 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 43

NSDockTile Class Reference

See Also
– badgeLabel (page 921)
– showsApplicationBadge (page 924)

Declared In
NSDockTile.h

setContentView:
Sets the view to use for drawing the dock tile contents.

- (void)setContentView:(NSView *)view

Parameters
view

The view to use for drawing the tile. This view may contain additional subviews.

Discussion
The view you specify should be height and width resizable.

Cocoa does not automatically redraw the contents of your dock tile. Instead, your application must explicitly
send display messages to the dock tile object whenever the contents of your view change and need to be
redrawn. Your dock tile view is responsible for drawing the entire contents of the dock tile. Your view does
not need to draw the application or custom string badges.

Availability
Available in Mac OS X v10.5 and later.

See Also
– contentView (page 921)
– display (page 921)

Related Sample Code
DockTile

Declared In
NSDockTile.h

setShowsApplicationBadge:
Sets whether the tile should be badged with the application’s icon.

- (void)setShowsApplicationBadge:(BOOL)flag

Parameters
flag

YES to show the application icon; otherwise, NO to hide it.

Discussion
Miniaturized windows include the application badge by default to convey the associated application to the
user. In Mac OS X v10.5 and later, application tiles do not support the application badge. A miniaturized
window with a custom view does not draw the application badge.

Instance Methods 923
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 43

NSDockTile Class Reference

The application icon is positioned automatically in the tile by the NSDockTile object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– showsApplicationBadge (page 924)

Declared In
NSDockTile.h

showsApplicationBadge
Returns a Boolean value indicating whether the tile is badged with the application’s icon.

- (BOOL)showsApplicationBadge

Return Value
YES if the tile is badged; otherwise, NO. Returns YES by default.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setShowsApplicationBadge: (page 923)

Declared In
NSDockTile.h

size
Returns the size of the tile.

- (NSSize)size

Return Value
The size of the tile, measured in screen coordinates.

Discussion
The size returned by this method corresponds to the size of the backing store in the dock, which may be
bigger than the actual tile displayed on the screen.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
DockTile

Declared In
NSDockTile.h

924 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 43

NSDockTile Class Reference

Constants

Dock Tile Plug-In Support Version
The version of the AppKit framework containing support for dock tile plug-ins.

#define NSAppKitVersionNumberWithDockTilePlugInSupport 1001.0

Constants
NSAppKitVersionNumberWithDockTilePlugInSupport

The specific version of the AppKit framework that introduced support for dock tile plug-ins.. Developers
should not need to use this constant unless they are writing applications for Mac OS X v10.5 and
earlier.

Available in Mac OS X v10.6 and later.

Declared in NSDockTile.h.

Constants 925
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 43

NSDockTile Class Reference

926 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 43

NSDockTile Class Reference

Inherits from NSObject

Conforms to NSUserInterfaceValidations
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSDocument.h
AppKit/NSDocumentScripting.h

Companion guide Document-Based Applications Overview

Related sample code ImageApp
iSpend
iSpendPlugin
QTAudioExtractionPanel
Simple Bindings Adoption

Class at a Glance

NSDocument is an abstract class that defines the interface for documents, objects that can internally represent
data displayed in windows and that can read data from and write data to files. Documents create and manage
one or more window controllers and are in turn managed by a document controller. Documents respond to
first-responder action messages to save, revert, and print their data.

Principal Attributes

 ■ Window controllers

 ■ Filenames

 ■ Document types

 ■ Print information

init (page 954)
Designated initializer for new documents

initWithContentsOfURL:ofType:error: (page 957)
For existing documents

Class at a Glance 927
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Commonly Used Methods

dataOfType:error: (page 944)
Returns the document’s data in a specified type.

readFromData:ofType:error: (page 967)
Sets the contents of this document by reading from data of a specified type.

writeToURL:ofType:error: (page 996)
Writes the document’s data to a URL.

readFromURL:ofType:error: (page 970)
Reads the document’s data from a file.

windowNibName (page 992)
Returns the name of the document’s sole nib file (resulting in the creation of a window controller for
the window in that file).

makeWindowControllers (page 961)
Creates and returns the window controllers used to manage document windows.

Overview

NSDocument is an abstract class that defines the interface for documents.

Conceptually, a document is a container for a body of information identified by a name under which it is
stored in a disk file. In this sense, however, the document is not the same as the file but is an object in memory
that owns and manages the document data. In the context of the Application Kit, a document is an instance
of a custom NSDocument subclass that knows how to represent internally, in one or more formats, persistent
data that is displayed in windows.

A document can read that data from a file and write it to a file. It is also the first-responder target for many
menu commands related to documents, such as Save, Revert, and Print. A document manages its window’s
edited status and is set up to perform undo and redo operations. When a window is closing, the document
is asked before the window delegate to approve the closing.

NSDocument is one of the triad of Application Kit classes that establish an architectural basis for
document-based applications (the others being NSDocumentController and NSWindowController).

Subclassing NSDocument

NSDocument is designed to be subclassed. That is, NSDocument is an abstract class, and your application
must create at least one NSDocument subclass to use the document architecture. To create a useful
NSDocument subclass, you must override some methods, and you can optionally override others.

The NSDocument class itself knows how to handle document data as undifferentiated lumps; although it
understands that these lumps are typed, it knows nothing about particular types. In their overrides of the
data-based reading and writing methods, subclasses must add the knowledge of particular types and how
data of the document’s native type is structured internally. Subclasses are also responsible for the creation
of the window controllers that manage document windows and for the implementation of undo and redo.
The NSDocument class takes care of much of the rest, including generally managing the state of the document.

928 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

See “Creating a Subclass of NSDocument” in Document-Based Applications Overview for more information
about creating subclasses of NSDocument, particularly the list of primitive methods that subclasses must
override and those that you can optionally override.

Writing of HFS Creator and File Type Codes

The fileAttributesToWriteToFile:ofType:saveOperation: (page 946) method can be overridden
to specify that a creator code or file type code (or both) should be written to a file as it is being saved. See
NSFileManager for descriptions of the NSFileHFSCreatorCode and NSFileHFSTypeCode file attributes.
The NSDocument implementation of fileAttributesToWriteToFile:ofType:saveOperation: returns
zeroed-out creator and file type codes, effectively excluding creator code and file type code from the attribute
preservation described in fileAttributesToWriteToFile:ofType:saveOperation:.

NSDocument Saving Behavior

NSDocument implements document saving in a way that preserves, when possible, various attributes of each
document, including:

 ■ Creation date

 ■ Permissions/privileges

 ■ Location of the document’s icon in its parent folder’s Icon View Finder window

 ■ Value of the document’s Show Extension setting

Care is also taken to save documents in a way that does not break any user-created aliases that may point
to documents. As a result, some methods in any class of NSDocument may be invoked with parameters that
do not have the same meaning as they did in early releases of Mac OS X. It is important that overrides of
writeToURL:ofType:error: (page 996) and
writeToURL:ofType:forSaveOperation:originalContentsURL:error: (page 997) make no
assumptions about the file paths passed as parameters, including:

 ■ The location to which the file is being written. This location might be a hidden temporary directory.

 ■ The name of the file being written. It is possible that this file has no obvious relation to the document
name.

 ■ The relation of any file being passed, including the original file, to the return value of fileName (page
948).

When updating your application to link against Mac OS X v10.5, keep in mind that it's usually more appropriate
to invoke in your application code one of the NSDocument save... methods than one of the write...
methods. The write... methods are there primarily for you to override. The
saveToURL:ofType:forSaveOperation:error: (page 980) method that's meant always to be invoked
during document saving, invokes setFileModificationDate: (page 981) with the file's new modification
date after it has been written (for NSSaveOperation (page 999) and NSSaveAsOperation (page 999) only).

Overview 929
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Likewise, it's usually more appropriate to invoke in your application code one of the NSDocument revert...
methods than one of the read... methods. The read... methods are there primarily for you to override.
The revertToContentsOfURL:ofType:error: (page 971) method that's meant always to be invoked
during rereading of an open document, invokes setFileModificationDate: (page 981) with the file's
modification date after it has been read.

Multicore Considerations

In Mac OS X v10.6 and later, NSDocument supports the ability to open multiple documents concurrently.
However, this support requires the cooperation of the document object. If your document subclass is able
to read specific document types independently of other similar documents, you should override the
canConcurrentlyReadDocumentsOfType: (page 938) class method and return YES for the appropriate
document types. If specific document types rely on shared state information, however, you should return NO
for those types.

Tasks

Initializing

– init (page 954)
Initializes and returns an empty NSDocument object.

– initWithContentsOfURL:ofType:error: (page 957)
Initializes a document located by a URL of a specified type.

– initForURL:withContentsOfURL:ofType:error: (page 955)
Initializes a document located by a URL of a specified type, but by reading the contents for the
document from a different URL.

– initWithType:error: (page 957)
Initializes a document of a specified type.

Loading Document Data

– dataOfType:error: (page 944)
Creates and returns a data object that contains the contents of the document, formatted to a specified
type.

– fileWrapperOfType:error: (page 951)
Creates and returns a file wrapper that contains the contents of the document, formatted to the
specified type.

– readFromData:ofType:error: (page 967)
Sets the contents of this document by reading from data of a specified type and returns YES if
successful.

930 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Creating and Managing Window Controllers

– makeWindowControllers (page 961)
Subclasses may override this method to create the initial window controller(s) for the document.

– windowNibName (page 992)
Overridden by subclasses to return the name of the document’s sole nib file.

– windowControllerDidLoadNib: (page 990)
Sent after the specified window controller loads a nib file if the receiver is the nib file's owner.

– windowControllerWillLoadNib: (page 991)
Sent before the specified window controller loads a nib file if the receiver is the nib file's owner.

– windowControllers (page 991)
Returns the receiver’s current window controllers.

– addWindowController: (page 940)
Adds the specified window controller to the array of window controllers associated with the receiver.

– removeWindowController: (page 970)
Removes the specified window controller from the receiver’s array of window controllers.

– shouldCloseWindowController:delegate:shouldCloseSelector:contextInfo: (page 986)
Invokes shouldCloseSelector with the result of
canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo: (page 943) if the the
specified window controller that is closing is the last one or is marked as causing the document to
close.

Managing Document Windows

– showWindows (page 987)
Displays all of the document’s windows, bringing them to the front and making them main or key as
necessary.

– displayName (page 945)
Returns the name of the receiver as displayed in the title bars of the document’s windows and in alert
dialogs related to the document.

– setWindow: (page 985)
Sets the window Interface Builder outlet of this class.

– windowForSheet (page 992)
Returns the most appropriate window, of the windows associated with the receiver, to use as the
parent window of a document-modal sheet.

Reading From and Writing to Files

– readFromFileWrapper:ofType:error: (page 969)
Sets the contents of this document by reading from a file wrapper of a specified type.

– fileModificationDate (page 948)
Returns the last known modification date of the document's on-disk representation.

– setFileModificationDate: (page 981)
Sets the last known modification date of the document's on-disk representation to the given
modification date.

Tasks 931
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

– runModalSavePanelForSaveOperation:delegate:didSaveSelector:contextInfo: (page 975)
Presents a modal Save panel to the user, then tries to save the document if the user approves the
panel.

– shouldRunSavePanelWithAccessoryView (page 987)
Returns YES by default; as a result, when NSDocument displays the Save panel, it includes an accessory
view containing a pop-up menu of supported writable document types.

– keepBackupFile (page 958)
Returns a Boolean value indicating whether the receiver should keep the backup files created before
document data is written to a file (NO by default).

Reading From and Writing to URLs

– readFromURL:ofType:error: (page 970)
Sets the contents of this document by reading from a file or file package, of a specified type, located
by a URL.

– writeToURL:ofType:error: (page 996)
Writes the contents of the document to a file or file package located by a URL, formatted to a specified
type.

– writeSafelyToURL:ofType:forSaveOperation:error: (page 994)
Writes the contents of the document to a file or file package located by a URL.

– writeToURL:ofType:forSaveOperation:originalContentsURL:error: (page 997)
Writes the contents of the document to a file or file package located by a URL.

– setFileURL: (page 982)
Sets the location of the document's on-disk representation.

– fileURL (page 951)
Returns the location of the document's on-disk representation.

– fileAttributesToWriteToURL:ofType:forSaveOperation:originalContentsURL:error: (page
946)

As a file is being saved, returns the attributes that should be written to a file or file package located
by a URL, formatted to a specified type, for a particular kind of save operation.

– saveToURL:ofType:forSaveOperation:delegate:didSaveSelector:contextInfo: (page 979)
Saves the contents of the document to a file or file package located by a URL, formatted to a specified
type, for a particular kind of save operation.

– saveToURL:ofType:forSaveOperation:error: (page 980)
Saves the contents of the document to a file or file package located by a URL, formatted to a specified
type, for a particular kind of save operation, and returns YES if successful.

Autosaving

– hasUnautosavedChanges (page 954)
Return YES if the document has changes that have not been autosaved, as determined by the history
of previous invocations of updateChangeCount: (page 988).

– autosaveDocumentWithDelegate:didAutosaveSelector:contextInfo: (page 941)
Autosaves the document’s contents at an appropriate location.

932 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

– autosavingFileType (page 942)
Returns the document type that should be used for an autosave operation.

– setAutosavedContentsFileURL: (page 980)
Sets the location of the most recently autosaved document contents.

– autosavedContentsFileURL (page 941)
Returns the location of the most recently autosaved document contents.

Managing Document Status

– isDocumentEdited (page 958)
Returns YES if the receiver has changes that have not been saved, NO otherwise.

– updateChangeCount: (page 988)
Updates the receiver’s change count according to the given change type.

– fileNameExtensionWasHiddenInLastRunSavePanel (page 949)
Returns YES if a Save panel was presented by this document and the user chose to hide the name
extension of the file that was selected in that Save panel.

Handling User Actions

– prepareSavePanel: (page 962)
Invoked by
runModalSavePanelForSaveOperation:delegate:didSaveSelector:contextInfo: (page
975) to do any customization of the given Save panel.

– printDocument: (page 964)
Prints the receiver in response to the user choosing the Print menu command.

– runPageLayout: (page 975)
The action method invoked in the receiver as first responder when the user chooses the Page Setup
menu command.

– revertDocumentToSaved: (page 971)
The action of the File menu item Revert in a document-based application.

– saveDocument: (page 976)
The action method invoked in the receiver as first responder when the user chooses the Save menu
command.

– saveDocumentAs: (page 977)
The action method invoked in the receiver as first responder when the user chooses the Save As menu
command.

– saveDocumentTo: (page 977)
The action method invoked in the receiver as first responder when the user chooses the Save To menu
command.

– saveDocumentWithDelegate:didSaveSelector:contextInfo: (page 978)
Saves the document.

Tasks 933
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Closing Documents

– canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo: (page 943)
If the receiver is not dirty, this method immediately calls the shouldCloseSelector callback on the
specified delegate with YES.

– close (page 943)
Closes all windows owned by the receiver and removes the receiver from the list of documents
maintained by the document controller, which consequently releases it.

Reverting Documents

– revertToContentsOfURL:ofType:error: (page 971)
Discards all unsaved document modifications and replaces the document's contents by reading a file
or file package located by a URL of a specified type.

Printing Documents

– printInfo (page 966)
Returns the receiver’s customized NSPrintInfo object or the default NSPrintInfo instance.

– setPrintInfo: (page 984)
Sets the receiver’s NSPrintInfo object.

– preparePageLayout: (page 962)
Invoked by runModalPageLayoutWithPrintInfo: (page 973) and
runModalPageLayoutWithPrintInfo:delegate:didRunSelector:contextInfo: (page 973)
to do any customization of the Page Layout panel pageLayout, such as adding an accessory view.

– runModalPageLayoutWithPrintInfo:delegate:didRunSelector:contextInfo: (page 973)
Runs the modal page layout panel with the receiver’s printing information object

– runModalPrintOperation:delegate:didRunSelector:contextInfo: (page 974)
Runs the specified print operation modally.

– shouldChangePrintInfo: (page 985)
Returns a Boolean value indicating whether the receiver should allow changes to the default
NSPrintInfo object used in printing the document.

– printDocumentWithSettings:showPrintPanel:delegate:didPrintSelector:contextInfo: (page
965)

Prints the document.

– printOperationWithSettings:error: (page 966)
Creates a print operation and returns it if successful.

Handling Errors

– presentError:modalForWindow:delegate:didPresentSelector:contextInfo: (page 963)
Presents an error alert to the user as a modal panel.

– presentError: (page 962)
Presents an error alert to the user as a modal panel.

934 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

– willPresentError: (page 989)
Called when the receiver is about to present an error.

Working with Undo Manager

– hasUndoManager (page 954)
Returns a Boolean value indicating whether the receiver owns or should own an NSUndoManager
object.

– setHasUndoManager: (page 983)
Sets whether the receiver has its own NSUndoManager object.

– setUndoManager: (page 984)
Sets the undo manager owned by the receiver to the specified undo manager and releases any undo
manager currently owned by the receiver.

– undoManager (page 988)
Returns the receiver’s undo manager.

Managing File Types

– setFileType: (page 982)
Sets the document type under which the file is saved.

– fileType (page 950)
Returns the document type under which the receiver is saved.

– fileTypeFromLastRunSavePanel (page 950)
Returns the file type that was last selected in the Save panel.

+ isNativeType: (page 939)
Returns a Boolean value indicating whether document data of the specified type is a native type—one
the receiver can both read and write.

+ readableTypes (page 939)
Returns the types of data the receiver can read natively and any types filterable to that native type.

+ canConcurrentlyReadDocumentsOfType: (page 938)
Returns a Boolean value indicating whether the receiver reads multiple documents of the given type
concurrently.

+ writableTypes (page 940)
Returns the types of data the receiver can write natively and any types filterable to that native type.

– writableTypesForSaveOperation: (page 993)
Returns the names of the types to which this document can be saved for a specified kind of save
operation.

– fileNameExtensionForType:saveOperation: (page 949)
Returns a filename extension that can be appended to a base filename, for a specified file type and
kind of save operation.

Tasks 935
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Validating User Interface Items

– validateUserInterfaceItem: (page 989)
Validates the specified user interface item that the receiver manages.

Scripting

– handleCloseScriptCommand: (page 952)
Handles the Close AppleScript command by attempting to close the document.

– handlePrintScriptCommand: (page 953)
Handles the Print AppleScript command by attempting to print the document.

– handleSaveScriptCommand: (page 953)
Handles the Save AppleScript command by attempting to save the document.

– objectSpecifier (page 961)
Returns an object specifier for the document.

– lastComponentOfFileName (page 959)
Returns the document name in terms of the scripting name property (the name a script writer would
use to specify the document in a script).

– setLastComponentOfFileName: (page 983)
Sets the document name to the given string in terms of the scripting name property (the name a
script writer would use to specify the document in a script).

Deprecated Methods

– canCloseDocument (page 942) Available in Mac OS X v10.0 through Mac OS X v10.3
This method is no longer supported. (Deprecated. Use
canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo: (page 943) instead.)

– fileNameFromRunningSavePanelForSaveOperation: (page 950) Available in Mac OS X v10.0 through
Mac OS X v10.3

Returns the filename entered into the Save panel. (Deprecated. Use
saveDocumentWithDelegate:didSaveSelector:contextInfo: (page 978) instead.)

– shouldCloseWindowController: (page 986) Available in Mac OS X v10.0 through Mac OS X v10.3
Gives the user an opportunity to save the document. (Deprecated. Use
shouldCloseWindowController:delegate:shouldCloseSelector:contextInfo: (page 986)
instead.)

– validateMenuItem: (page 989) Available in Mac OS X v10.0 through Mac OS X v10.3
Validates the Revert menu item and items selected from the Save panel’s pop-up list of writable
document types items. (Deprecated. Use validateUserInterfaceItem: (page 989) instead.)

– dataRepresentationOfType: (page 945) Deprecated in Mac OS X v10.4
A primitive method overridden by subclasses to return a data object that represents the data of the
receiver in a given type. (Deprecated. Use dataOfType:error: (page 944) instead.)

– fileAttributesToWriteToFile:ofType:saveOperation: (page 946) Deprecated in Mac OS X v10.4
Returns the file attributes that should be written to the named document file of the specified type.
(Deprecated. Use

936 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

fileAttributesToWriteToURL:ofType:forSaveOperation:originalContentsURL:error: (page
946) instead.)

– fileName (page 948) Deprecated in Mac OS X v10.4
Returns the filename (as a fully qualified path) under which the receiver has been saved. (Deprecated.
Use fileURL (page 951) instead.)

– fileWrapperRepresentationOfType: (page 952) Deprecated in Mac OS X v10.4
Returns an NSFileWrapper object that represents the data of the receiver in a given type. (Deprecated.
Use fileWrapperOfType:error: (page 951) instead.)

– initWithContentsOfFile:ofType: (page 956) Deprecated in Mac OS X v10.4
Initializes and returns an NSDocument object. (Deprecated. Use
initWithContentsOfURL:ofType:error: (page 957) instead.)

– initWithContentsOfURL:ofType: (page 956) Deprecated in Mac OS X v10.4
Initializes and returns an NSDocument object of a given document type. (Deprecated. Use
initWithContentsOfURL:ofType:error: (page 957) instead.)

– loadDataRepresentation:ofType: (page 959) Deprecated in Mac OS X v10.4
Overridden by subclasses to load document data. (Deprecated. Use
readFromData:ofType:error: (page 967) instead.)

– loadFileWrapperRepresentation:ofType: (page 960) Deprecated in Mac OS X v10.4
Loads document data from a given file wrapper. (Deprecated. Use
readFromFileWrapper:ofType:error: (page 969) instead.)

– printShowingPrintPanel: (page 967) Deprecated in Mac OS X v10.4
Overridden by subclasses to print the current document’s (the receiver’s) data. (Deprecated. Use
printDocumentWithSettings:showPrintPanel:delegate:didPrintSelector:contextInfo: (page
965) instead.)

– readFromFile:ofType: (page 968) Deprecated in Mac OS X v10.4
Reads and loads document data of the given type from the given file. (Deprecated. Use
readFromURL:ofType:error: (page 970) instead.)

– readFromURL:ofType: (page 969) Deprecated in Mac OS X v10.4
Reads and loads document data. (Deprecated. UsereadFromURL:ofType:error: (page 970) instead.)

– revertToSavedFromFile:ofType: (page 972) Deprecated in Mac OS X v10.4
Reverts the receiver to the data stored in the file system. (Deprecated. Use
revertToContentsOfURL:ofType:error: (page 971) instead.)

– revertToSavedFromURL:ofType: (page 972) Deprecated in Mac OS X v10.4
Reverts the receiver. (Deprecated. Use revertToContentsOfURL:ofType:error: (page 971)
instead.)

– runModalPageLayoutWithPrintInfo: (page 973) Deprecated in Mac OS X v10.4
Runs the page layout modal panel with the receiver’s printing information object. (Deprecated. Use
runModalPageLayoutWithPrintInfo:delegate:didRunSelector:contextInfo: (page 973)
instead.)

– saveToFile:saveOperation:delegate:didSaveSelector:contextInfo: (page 978) Deprecated
in Mac OS X v10.4

Called after the user has been given the opportunity to select a destination through the modal Save
panel. (Deprecated. Use
saveToURL:ofType:forSaveOperation:delegate:didSaveSelector:contextInfo: (page
979) instead.)

Tasks 937
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

– setFileName: (page 981) Deprecated in Mac OS X v10.4
Sets the file (filename and directory path) under which document data is saved. (Deprecated. Use
setFileURL: (page 982) instead.)

– writeToFile:ofType: (page 995) Deprecated in Mac OS X v10.4
Writes document data to a file. (Deprecated. Use writeToURL:ofType:error: (page 996) instead.)

– writeToFile:ofType:originalFile:saveOperation: (page 995) Deprecated in Mac OS X v10.4
Writes the receiver document’s contents to a file. (Deprecated. Use
writeToURL:ofType:forSaveOperation:originalContentsURL:error: (page 997) instead.)

– writeToURL:ofType: (page 996) Deprecated in Mac OS X v10.4
Writes document data to a URL. (Deprecated. Use writeToURL:ofType:error: (page 996) instead.)

– writeWithBackupToFile:ofType:saveOperation: (page 998) Deprecated in Mac OS X v10.4
This method is called by action methods to save document contents to a file. (Deprecated. Use
writeSafelyToURL:ofType:forSaveOperation:error: (page 994) instead.)

Class Methods

canConcurrentlyReadDocumentsOfType:
Returns a Boolean value indicating whether the receiver reads multiple documents of the given type
concurrently.

+ (BOOL)canConcurrentlyReadDocumentsOfType:(NSString *)typeName

Parameters
typeName

The string that identifies the document type.

Return Value
NO by default; subclasses can override to return YES, thereby causing documents of the specified type to be
read concurrently.

Discussion
Your NSDocument subclass can implement this method to return YES to enable loading of documents
concurrently, using background threads. When this facility is enabled in this way,
initWithContentsOfURL:ofType:error: (page 957) executes on a background thread when opening
files via the Open panel or from the Finder. This allows concurrent reading of multiple documents and also
allows the application to be responsive while reading a large document.

The default implementation of this method returns NO. A subclass override should return YES only for
document types whose reading is thread-safe, as described in “Multicore Considerations” (page 930). You
should disable undo registration during document reading, which is a good idea even in the absence of
concurrency.

If you are checking the current Apple Event for a search string, you should not enable concurrent document
opening, because code handling a document opening triggered by an Apple Event cannot get the current
Apple Event. This happens because the event is suspended until all documents are read to enable correct
reporting of success or error.

Availability
Available in Mac OS X v10.6 and later.

938 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

See Also
+ readableTypes (page 939)

Declared In
NSDocument.h

isNativeType:
Returns a Boolean value indicating whether document data of the specified type is a native type—one the
receiver can both read and write.

+ (BOOL)isNativeType:(NSString *)aType

Parameters
aType

The string that identifies the document type to test.

Return Value
YES if the document type is a native type; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ readableTypes (page 939)
+ writableTypes (page 940)

Declared In
NSDocument.h

readableTypes
Returns the types of data the receiver can read natively and any types filterable to that native type.

+ (NSArray *)readableTypes

Return Value
An array of NSString objects representing the readable document types.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ isNativeType: (page 939)
+ writableTypes (page 940)
+ canConcurrentlyReadDocumentsOfType: (page 938)

Related Sample Code
ImageApp
iSpend

Declared In
NSDocument.h

Class Methods 939
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

writableTypes
Returns the types of data the receiver can write natively and any types filterable to that native type.

+ (NSArray *)writableTypes

Return Value
An array of NSString objects representing the writable document types.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ isNativeType: (page 939)
+ readableTypes (page 939)

Related Sample Code
FunHouse
ImageApp
iSpend

Declared In
NSDocument.h

Instance Methods

addWindowController:
Adds the specified window controller to the array of window controllers associated with the receiver.

- (void)addWindowController:(NSWindowController *)aController

Parameters
aController

The window controller that is added.

Discussion
An NSDocument object uses this list when it displays all document windows, sets window edited status upon
an undo or redo operation, and modifies window titles. The method also sets the document outlet of the
window controller to self if it is not already set. If you create window controllers by overriding
windowNibName (page 992), this method is invoked automatically. If you create window controllers in
makeWindowControllers (page 961) or in any other context, such as in response to a user event, you should
invoke this method for each created window controller. To remove a window controller from the list of active
controllers, send it the NSWindowController message close (page 3432).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDocument: (page 3437) (NSWindowController)

940 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Related Sample Code
FunHouse
QTAudioContextInsert
QTKitFrameStepper
Reviews
Sketch+Accessibility

Declared In
NSDocument.h

autosavedContentsFileURL
Returns the location of the most recently autosaved document contents.

- (NSURL *)autosavedContentsFileURL

Return Value
The location of the most recently autosaved document contents.

Discussion
The default implementation of this method just returns whatever was stored by a previous invocation of the
default implementation of setAutosavedContentsFileURL: (page 980).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAutosavedContentsFileURL: (page 980)

Declared In
NSDocument.h

autosaveDocumentWithDelegate:didAutosaveSelector:contextInfo:
Autosaves the document’s contents at an appropriate location.

- (void)autosaveDocumentWithDelegate:(id)delegate
didAutosaveSelector:(SEL)didAutosaveSelector contextInfo:(void *)contextInfo

Parameters
delegate

The delegate to which the selector message is sent.

didAutosaveSelector
The selector of the message sent to the delegate.

contextInfo
Object passed with the callback to provide any additional context information.

Discussion
After autosaving, sends the message selected by didAutosaveSelector to the delegate, with contextInfo
as the last argument. The method selected by didAutosaveSelector must have the same signature as:

Instance Methods 941
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

- (void)document:(NSDocument *)document didAutosave:(BOOL)didAutosaveSuccessfully
 contextInfo:(void *)contextInfo

If an error occurs while autosaving, the method reports it to the user before sending the delegate a
succeeded:NO message.

Availability
Available in Mac OS X v10.4 and later.

See Also
– autosavedContentsFileURL (page 941)

Declared In
NSDocument.h

autosavingFileType
Returns the document type that should be used for an autosave operation.

- (NSString *)autosavingFileType

Return Value
The string that identifies the document type.

Discussion
The default implementation just returns [self fileType]. You can override this method and return nil
in your override to completely disable autosaving of individual documents (because NSDocumentController
does not sendautosaveDocumentWithDelegate:didAutosaveSelector:contextInfo: to a document
that has no autosaving file type). You can also override it if your application defines a document type that
is specifically designed for autosaving, for example, one that efficiently represents document content changes
instead of complete document contents.

Overriding autosavingFileType can result in incorrect behavior during reopening of autosaved documents.
TheNSDocumentmethodinitForURL:withContentsOfURL:ofType:error: (page 955), which is invoked
during reopening of autosaved documents after a crash, takes two URLs, but only the type name of the
autosaved contents file. The default implementation invokes [self setFileType:] with that type name,
but that may not be the right thing to do if autosavingFileType returned something other than
fileType (page 950) during document autosaving. If you override autosavingFileType, you probably
need to overrideinitForURL:withContentsOfURL:ofType:error: (page 955) too, and make the override
invoke setFileType: (page 982) with the type of the actual document file, after invoking super. See
TextEdit's Document class for an example of how to do this.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocument.h

canCloseDocument
This method is no longer supported. (Available in Mac OS X v10.0 through Mac OS X v10.3. Use
canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo: (page 943) instead.)

942 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

- (BOOL)canCloseDocument

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
NSDocument.h

canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo:
If the receiver is not dirty, this method immediately calls the shouldCloseSelector callback on the specified
delegate with YES.

- (void)canCloseDocumentWithDelegate:(id)delegate
shouldCloseSelector:(SEL)shouldCloseSelector contextInfo:(void *)contextInfo

Parameters
delegate

The delegate to which the selector message is sent.

shouldCloseSelector
The selector of the message sent to the delegate.

contextInfo
Object passed with the callback to provide any additional context information.

Discussion
If the receiver is dirty, an alert is presented giving the user a chance to save, not save, or cancel. If the user
chooses to save, this method saves the document. If the save completes successfully, this method calls the
callback with YES. If the save is canceled or otherwise unsuccessful, this method calls the callback with NO.
This method may be called by
shouldCloseWindowController:delegate:shouldCloseSelector:contextInfo: (page 986). It is
also called by the NSDocumentController method closeAllDocuments. You should call it before you
call close (page 943) if you are closing the document and want to give the user a chance to save any edits.
Pass the contextInfo object with the callback.

The shouldCloseSelector callback method should have the following signature:

- (void)document:(NSDocument *)doc shouldClose:(BOOL)shouldClose
contextInfo:(void *)contextInfo

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocument.h

close
Closes all windows owned by the receiver and removes the receiver from the list of documents maintained
by the document controller, which consequently releases it.

- (void)close

Instance Methods 943
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Discussion
This method closes the document immediately, without asking users if they want to save the document.

This method may not always be called. Additional information on application termination can be found in
Graceful Application Termination.

Availability
Available in Mac OS X v10.0 and later.

See Also
– canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo: (page 943)
– shouldCloseWindowController:delegate:shouldCloseSelector:contextInfo: (page 986)

Related Sample Code
ThreadsExporter
ThreadsExportMovie
ThreadsImporter
ThreadsImportMovie
ZipBrowser

Declared In
NSDocument.h

dataOfType:error:
Creates and returns a data object that contains the contents of the document, formatted to a specified type.

- (NSData *)dataOfType:(NSString *)typeName error:(NSError **)outError

Parameters
typeName

The string that identifies the document type.

outError
On return, If the data object could not be created, a pointer to an error object that encapsulates the
reason it could not be created.

Return Value
A data object containing the document contents, or, if the data object could not be created, nil.

Discussion
The default implementation of this method throws an exception because at least one of the writing methods
(this method, writeToURL:ofType:error: (page 996), fileWrapperOfType:error: (page 951), or
writeToURL:ofType:forSaveOperation:originalContentsURL:error: (page 997)) must be overridden.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes dataRepresentationOfType:typeName on self if dataRepresentationOfType: is
overridden.

Availability
Available in Mac OS X v10.4 and later.

See Also
– writeToURL:ofType:error: (page 996)

944 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

– fileWrapperOfType:error: (page 951)

Declared In
NSDocument.h

dataRepresentationOfType:
A primitive method overridden by subclasses to return a data object that represents the data of the receiver
in a given type. (Deprecated in Mac OS X v10.4. Use dataOfType:error: (page 944) instead.)

- (NSData *)dataRepresentationOfType:(NSString *)aType

Discussion
A primitive method overridden by subclasses to return a data object that represents the data of the receiver
in a given type (aType). The default implementation raises an NSInternalInconsistencyException.
This method is invoked by the default implementation of fileWrapperRepresentationOfType:.

aType is the type name corresponding to the value of the CFBundleTypeName entry in the document type's
Info.plist dictionary.

Here is a typical implementation:

//Document type name
NSString *MyDocumentType = @"Rich Text Format (RTF) document";

...

- (NSData *)dataRepresentationOfType:(NSString *)aType {
 NSAssert([aType isEqualToString:MyDocumentType], @"Unknown type");
 return [textView RTFFromRange:NSMakeRange(0, [[textView textStorage]
length])];
}

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– loadDataRepresentation:ofType: (page 959)

Related Sample Code
FinalCutPro_AppleEvents

Declared In
NSDocument.h

displayName
Returns the name of the receiver as displayed in the title bars of the document’s windows and in alert dialogs
related to the document.

- (NSString *)displayName

Instance Methods 945
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Return Value
The display name of the receiver.

Discussion
If the document has been saved, the display name is the last component of the directory location of the
saved file (for example, “MyDocument” if the path is “/tmp/MyDocument.rtf”). If the document is new,
NSDocument makes the display name “Untitled n,” where n is a number in a sequence of new and unsaved
documents. The displayable name also takes into account whether the document’s filename extension should
be hidden. Subclasses of NSWindowController can override
windowTitleForDocumentDisplayName: (page 3444) to modify the display name as it appears in window
titles.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreTextArcCocoa
EnhancedAudioBurn
QTMetadataEditor

Declared In
NSDocument.h

fileAttributesToWriteToFile:ofType:saveOperation:
Returns the file attributes that should be written to the named document file of the specified type. (Deprecated
in Mac OS X v10.4. Use
fileAttributesToWriteToURL:ofType:forSaveOperation:originalContentsURL:error: (page
946) instead.)

- (NSDictionary *)fileAttributesToWriteToFile:(NSString *)fullDocumentPath
ofType:(NSString *)docType saveOperation:(NSSaveOperationType)saveOperationType

Discussion
Returns the file attributes that should be written to the named document file of the specified type docType,
as part of a particular saveOperationType. The set of valid file attributes is a subset of those understood
by the NSFileManager class.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSDocument.h

fileAttributesToWriteToURL:ofType:forSaveOperation:originalContentsURL:error:
As a file is being saved, returns the attributes that should be written to a file or file package located by a URL,
formatted to a specified type, for a particular kind of save operation.

946 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

- (NSDictionary *)fileAttributesToWriteToURL:(NSURL *)absoluteURL ofType:(NSString
 *)typeName forSaveOperation:(NSSaveOperationType)saveOperation
originalContentsURL:(NSURL *)absoluteOriginalContentsURL error:(NSError
**)outError

Parameters
absoluteURL

The location to which the document is being written.

typeName
The string that identifies the document type.

saveOperation
The type of save operation.

absoluteOriginalContentsURL
The location of the previously saved copy of the document (if not nil).

outError
On return, If the attributes could not be returned, a pointer to an error object that encapsulates the
reason they could not be returned.

Return Value
A dictionary containing the attributes to be written, or nil if unsuccessful.

Discussion
The set of valid file attributes is a subset of those understood by the NSFileManager class. The default
implementation of this method returns a dictionary with NSFileHFSCreatorCode and NSFileHFSTypeCode
entries that have a value of 0 for NSSaveOperation, or a dictionary with an appropriate
NSFileExtensionHidden entry for NSSaveAsOperation and NSSaveToOperation. You can override
this method to customize the attributes that are written to document files.

This method is meant to be used just for attributes that need to be written for the first time, for
NSSaveAsOperation and NSSaveToOperation.

Invokers of this method should silently ignore invalid attributes. Of particular interest is the
NSFileExtensionHidden attribute, which is documented in NSFileManager.

Your subclass of NSDocument can override this method to control the attributes that are set during a save
operation. An override of this method should return a copy of the dictionary returned by its superclass’s
version of this method, with appropriate alterations.

The dictionary returned by the default implementation of this method contains an NSFileExtensionHidden
entry when that is appropriate. For Save As or Export commands (NSSaveAsOperation or
NSSaveToOperation) the attributes dictionary contains an NSFileExtensionHidden entry whose value
is the result of [self fileNameExtensionWasHiddenInLastRunSavePanel]. For autosaving
(NSAutosaveOperation) the contents of documents that have already been saved (that is, not untitled
documents), there's an NSFileExtensionHidden entry whose value is the same as that in the file attributes
dictionary for the document itself, so the autosaved file has the same name extension hiding as the real
document.

An override of writeSafelyToURL:ofType:forSaveOperation:error: (page 994) should invoke this
method and set the returned attributes on the written document file, possibly using the NSFileManager
method changeFileAttributes:atPath:.

Implementers of overrides of this method should not assume that:

Instance Methods 947
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

 ■ The file pointed to by absoluteURL at the moment the method is invoked, if there is one, is related to
the document itself. It may be an unrelated file that is about to be overwritten.

 ■ The fileURL (page 951) or fileType (page 950) method will return anything useful at the moment.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocument.h

fileModificationDate
Returns the last known modification date of the document's on-disk representation.

- (NSDate *)fileModificationDate

Return Value
The file modification date.

Discussion
The NSDocument default file saving machinery uses this information to warn the user when the on-disk
representation of an open document has been modified by something other than the current application.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setFileModificationDate: (page 981)

Declared In
NSDocument.h

fileName
Returns the filename (as a fully qualified path) under which the receiver has been saved. (Deprecated in Mac
OS X v10.4. Use fileURL (page 951) instead.)

- (NSString *)fileName

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– setFileName: (page 981)

Related Sample Code
QTAudioExtractionPanel
QTKitPlayer

Declared In
NSDocument.h

948 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

fileNameExtensionForType:saveOperation:
Returns a filename extension that can be appended to a base filename, for a specified file type and kind of
save operation.

- (NSString *)fileNameExtensionForType:(NSString *)typeName
saveOperation:(NSSaveOperationType)saveOperation

Parameters
typeName

The file type.

saveOperation
The kind of save operation.

Return Value
The filename extension.

Discussion
The default implementation of this method invokes preferredFileNameExtensionForType: on the
shared workspace object if the type is a UTI or, if it is not, for backward binary compatibility with Mac OS X
v10.4 and earlier, invokes fileExtensionsFromType: (page 1015) on the shared document controller and
chooses the first filename extension in the returned array.

You can override this method to customize the appending of extensions to filenames by NSDocument. In
Mac OS X v10.5, it's only invoked from two places in the Application Kit:

1. The autosaveDocumentWithDelegate:didAutosaveSelector:contextInfo: (page 941) method
uses this method when creating a new filename for the autosaved contents.

2. The handleSaveScriptCommand: (page 953) method uses this method when adding an extension to
the filename specified by a script.

In all other cases, the name of any file being saved will have been fully specified by the user with the Save
panel (whether they know it or not).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSDocument.h

fileNameExtensionWasHiddenInLastRunSavePanel
Returns YES if a Save panel was presented by this document and the user chose to hide the name extension
of the file that was selected in that Save panel.

- (BOOL)fileNameExtensionWasHiddenInLastRunSavePanel

Return Value
YES if a Save panel was presented and the user chose to hide the extension; otherwise, NO.

Availability
Available in Mac OS X v10.1 and later.

Instance Methods 949
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Declared In
NSDocument.h

fileNameFromRunningSavePanelForSaveOperation:
Returns the filename entered into the Save panel. (Available in Mac OS X v10.0 through Mac OS X v10.3. Use
saveDocumentWithDelegate:didSaveSelector:contextInfo: (page 978) instead.)

- (NSString
*)fileNameFromRunningSavePanelForSaveOperation:(NSSaveOperationType)saveOperation

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
NSDocument.h

fileType
Returns the document type under which the receiver is saved.

- (NSString *)fileType

Return Value
The string that identifies the document type.

Discussion
When a document is saved, the type is determined by the entries in the application’s information property
list (specified in Info.plist).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFileType: (page 982)

Related Sample Code
ImageApp
ThreadsExporter
ThreadsImporter
ThreadsImportMovie

Declared In
NSDocument.h

fileTypeFromLastRunSavePanel
Returns the file type that was last selected in the Save panel.

- (NSString *)fileTypeFromLastRunSavePanel

950 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Return Value
The string that identifies the document type.

Discussion
This type is primarily used by the saveDocument: (page 976), saveDocumentAs: (page 977), and
saveDocumentTo: (page 977) methods to determine the type the user chose after the Save panel has been
run.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageApp

Declared In
NSDocument.h

fileURL
Returns the location of the document's on-disk representation.

- (NSURL *)fileURL

Return Value
The document’s location.

Discussion
The default implementation of this method returns whatever was stored by a previous invocation of the
default implementation of setFileURL: (page 982). For backward binary compatibility with Mac OS X v10.3
and earlier, if fileName (page 948) is overridden, the default implementation of this method instead invokes
[self fileName] and returns the result as a URL.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setFileURL: (page 982)

Related Sample Code
FunHouse
ImageApp
iSpend
QTMetadataEditor
QuickLookDownloader

Declared In
NSDocument.h

fileWrapperOfType:error:
Creates and returns a file wrapper that contains the contents of the document, formatted to the specified
type.

Instance Methods 951
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

- (NSFileWrapper *)fileWrapperOfType:(NSString *)typeName error:(NSError **)outError

Parameters
typeName

The string that identifies the document type.

outError
On return, If the file wrapper could not be created, a pointer to an error object that encapsulates the
reason it could not be created.

Return Value
A file wrapper containing the document contents, or, if the file wrapper could not be created, nil.

Discussion
For backward binary compatibility with Mac OS X v10.3 and earlier, if
fileWrapperRepresentationOfType: (page 952) is overridden, the default implementation of this method
instead invokes [self fileWrapperRepresentationOfType:typeName].

Availability
Available in Mac OS X v10.4 and later.

See Also
– dataOfType:error: (page 944)

Declared In
NSDocument.h

fileWrapperRepresentationOfType:
Returns an NSFileWrapper object that represents the data of the receiver in a given type. (Deprecated in Mac
OS X v10.4. Use fileWrapperOfType:error: (page 951) instead.)

- (NSFileWrapper *)fileWrapperRepresentationOfType:(NSString *)aType

Discussion
Returns an NSFileWrapper object that represents the data of the receiver in a given type (aType). This
method invokes dataRepresentationOfType: to get the data object from which to create a plain-file file
wrapper. Subclasses can override this method if dataRepresentationOfType: is not adequate for their
needs. This method is invoked by the default implementation of writeToFile:ofType: (page 995).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– loadFileWrapperRepresentation:ofType: (page 960)

Declared In
NSDocument.h

handleCloseScriptCommand:
Handles the Close AppleScript command by attempting to close the document.

952 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

- (id)handleCloseScriptCommand:(NSCloseCommand *)command

Parameters
command

A Close AppleScript command object.

Discussion
Extracts Close command arguments from the command object and uses them to determine how to close the
document—specifically, whether to ignore unsaved changes, save changes automatically, or ask the user
and to identify the file in which to save the document (by default, the file that was opened or previously
saved to). A Close AppleScript command may specify more than one document to close. If so, a message is
sent to each document object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentScripting.h

handlePrintScriptCommand:
Handles the Print AppleScript command by attempting to print the document.

- (id)handlePrintScriptCommand:(NSScriptCommand *)command

Parameters
command

An AppleScript command object.

Discussion
Extracts Print command arguments from the command object and uses them to determine how to print the
document—specifically, any print settings and whether to show the Print dialog. A Print AppleScript command
may specify more than one document to print. If so, a message is sent to each document.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentScripting.h

handleSaveScriptCommand:
Handles the Save AppleScript command by attempting to save the document.

- (id)handleSaveScriptCommand:(NSScriptCommand *)command

Parameters
command

An AppleScript command object.

Discussion
Extracts Save command arguments from the command object and uses them to determine the file in which
to save the document and the file type.

Instance Methods 953
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentScripting.h

hasUnautosavedChanges
Return YES if the document has changes that have not been autosaved, as determined by the history of
previous invocations of updateChangeCount: (page 988).

- (BOOL)hasUnautosavedChanges

Return Value
YES if the document has changes that have not been autosaved; otherwise, NO.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocument.h

hasUndoManager
Returns a Boolean value indicating whether the receiver owns or should own an NSUndoManager object.

- (BOOL)hasUndoManager

Return Value
YES if the receiver has its own undo manager; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHasUndoManager: (page 983)

Declared In
NSDocument.h

init
Initializes and returns an empty NSDocument object.

- (id)init

Return Value
An initialized NSDocument object.

Discussion
This initializer (the designated initializer) is invoked by each of the other NSDocument initialization methods.

954 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

You can override this method to perform initialization that must be done both when creating new empty
documents and when opening existing documents. Your override must invoke super to initialize private
NSDocument instance variables. It must never return nil. If an error can occur during object initialization,
check for the error in an override of initWithType:error: (page 957),
initWithContentsOfURL:ofType:error: (page 957), or
initForURL:withContentsOfURL:ofType:error: (page 955), because those methods can returnNSError
objects.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTAudioContextInsert
QTMetadataEditor
Simple Bindings Adoption
Sketch-112
ZipBrowser

Declared In
NSDocument.h

initForURL:withContentsOfURL:ofType:error:
Initializes a document located by a URL of a specified type, but by reading the contents for the document
from a different URL.

- (id)initForURL:(NSURL *)absoluteDocumentURL withContentsOfURL:(NSURL
*)absoluteDocumentContentsURL ofType:(NSString *)typeName error:(NSError
**)outError

Parameters
absoluteDocumentURL

The URL where the document is located.

absoluteDocumentContentsURL
The URL from which the contents of the document are obtained.

typeName
The string that identifies the document type.

outError
On return, If initialization is unsuccessful, a pointer to an error object that encapsulates the reason
the document could not be created.

Return Value
The initialized NSDocument object, or, if the document could not be created, nil.

Discussion
The absoluteDocumentURL argument is nil if the initializing is part of the reopening of an autosaved
document when the autosaved document was never explicitly saved.

During reopening of autosaved documents, this method uses the following NSDocumentChangeType
constant to indicate that an autosaved document is being reopened:

NSChangeReadOtherContents

Instance Methods 955
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocument.h

initWithContentsOfFile:ofType:
Initializes and returns an NSDocument object. (Deprecated in Mac OS X v10.4. Use
initWithContentsOfURL:ofType:error: (page 957) instead.)

- (id)initWithContentsOfFile:(NSString *)fileName ofType:(NSString *)docType

Discussion
Initializes and returns an NSDocument object of document type docType containing data stored in the file
fileName. In opening the file, invokes the readFromFile:ofType: (page 968) method. If the document
successfully opens the file, it calls setFileName: and setFileType: (page 982) with fileName and docType,
respectively, as arguments. If the file cannot be opened, or the document is unable to load the contents of
the file, this method returns nil. This initializer is typically invoked by the NSDocumentControllermethod
makeDocumentWithContentsOfFile:ofType: (page 1017).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitAdvancedDocument
QTKitImport
QTKitPlayer

Declared In
NSDocument.h

initWithContentsOfURL:ofType:
Initializes and returns an NSDocument object of a given document type. (Deprecated in Mac OS X v10.4. Use
initWithContentsOfURL:ofType:error: (page 957) instead.)

- (id)initWithContentsOfURL:(NSURL *)aURL ofType:(NSString *)docType

Discussion
Initializes and returns an NSDocument object of document type docType containing data stored at aURL.
In opening the location, invokes the readFromURL:ofType: (page 969) method. If the document successfully
opens the location, it calls setFileName: and setFileType: (page 982) with the location’s path and docType,
respectively, as arguments. If the location cannot be opened, or the document is unable to load the contents
of the location, this method returns nil. This initializer is typically invoked by the NSDocumentController
method makeDocumentWithContentsOfURL:ofType: (page 1018).

Availability
Available in Mac OS X v10.0 and later.

956 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Deprecated in Mac OS X v10.4.

Declared In
NSDocument.h

initWithContentsOfURL:ofType:error:
Initializes a document located by a URL of a specified type.

- (id)initWithContentsOfURL:(NSURL *)absoluteURL ofType:(NSString *)typeName
error:(NSError **)outError

Parameters
absoluteURL

The URL from which the contents of the document are obtained.

typeName
The string that identifies the document type.

outError
On return, If initialization is unsuccessful, a pointer to an error object that encapsulates the reason
the document could not be created.

Return Value
The initialized NSDocument object, or, if the document could not be created, nil.

Discussion
You can override this method to customize the reopening of autosaved documents.

This method is invoked by the NSDocumentController method
makeDocumentWithContentsOfURL:ofType:error: (page 1019). The default implementation of this
method invokes init (page 954), readFromURL:ofType:error: (page 970), setFileURL: (page 982),
setFileType: (page 982), and setFileModificationDate: (page 981).

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes initWithContentsOfFile:ofType: (page 956) if it is overridden and the URL uses the
file: scheme. It still invokes setFileModificationDate: in this situation.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QTKitCreateMovie
QTKitFrameStepper
QTMetadataEditor

Declared In
NSDocument.h

initWithType:error:
Initializes a document of a specified type.

- (id)initWithType:(NSString *)typeName error:(NSError **)outError

Instance Methods 957
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Parameters
typeName

The string that identifies the document type.

outError
On return, If initialization is unsuccessful, a pointer to an error object that encapsulates the reason
the document could not be created.

Return Value
The initialized NSDocument object, or, if the document could not be created, nil.

Discussion
The default implementation of this method just invokes[self init] and[self setFileType:typeName].

You can override this method to perform initialization that must be done when creating new documents
but should not be done when opening existing documents. Your override should typically invoke super, or
at least it must invoke init (page 954), the NSDocument designated initializer, to initialize the NSDocument
private instance variables.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocument.h

isDocumentEdited
Returns YES if the receiver has changes that have not been saved, NO otherwise.

- (BOOL)isDocumentEdited

Return Value
YES if the receiver has been edited; otherwise, NO.

Discussion
The edited status of each document window reflects the document’s edited status.

Availability
Available in Mac OS X v10.0 and later.

See Also
– updateChangeCount: (page 988)
– setDocumentEdited: (page 3379) (NSWindow)

Related Sample Code
FunHouse

Declared In
NSDocument.h

keepBackupFile
Returns a Boolean value indicating whether the receiver should keep the backup files created before document
data is written to a file (NO by default).

958 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

- (BOOL)keepBackupFile

Return Value
NO by default; subclasses can override to return YES, thereby causing backup files to be kept.

Availability
Available in Mac OS X v10.0 and later.

See Also
– writeToFile:ofType: (page 995)

Declared In
NSDocument.h

lastComponentOfFileName
Returns the document name in terms of the scripting name property (the name a script writer would use to
specify the document in a script).

- (NSString *)lastComponentOfFileName

Return Value
The scripting name of the document.

Discussion
Note that this name may be different than the name returned by fileName (page 948) or used in methods
such as writeToFile:ofType: (page 995).

Availability
Available in Mac OS X v10.0 and later.

See Also
– displayName (page 945)

Declared In
NSDocumentScripting.h

loadDataRepresentation:ofType:
Overridden by subclasses to load document data. (Deprecated in Mac OS X v10.4. Use
readFromData:ofType:error: (page 967) instead.)

- (BOOL)loadDataRepresentation:(NSData *)docData ofType:(NSString *)docType

Discussion
Overridden by subclasses to load document data (docData) of type docType into the receiver, display it in
windows, and return whether the operation was successful. This method is typically invoked by
loadFileWrapperRepresentation:ofType: (page 960) after an NSData object is created from the
contents of the file wrapper (which can include directories). The default implementation raises an
NSInternalInconsistencyException. Subclasses must override this method unless they override
readFromFile:ofType: (page 968) or loadFileWrapperRepresentation:ofType: (page 960) to do
specialized reading and loading of document data.

Instance Methods 959
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

The docType argument is the type name corresponding to the value of the CFBundleTypeName entry in
the document type's Info.plist dictionary.

Here is an example implementation:

//Document type name
NSString *MyDocumentType = @"Rich Text Format (RTF) document";

...

- (BOOL)loadDataRepresentation:(NSData *)data ofType:(NSString *)aType {
 NSAssert([aType isEqualToString: MyDocumentType], @"Unknown type");
 fileContents = [data copyWithZone:[self zone]];
 return YES;
}

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– dataRepresentationOfType: (page 945)

Related Sample Code
FinalCutPro_AppleEvents

Declared In
NSDocument.h

loadFileWrapperRepresentation:ofType:
Loads document data from a given file wrapper. (Deprecated in Mac OS X v10.4. Use
readFromFileWrapper:ofType:error: (page 969) instead.)

- (BOOL)loadFileWrapperRepresentation:(NSFileWrapper *)wrapper ofType:(NSString
*)docType

Discussion
Loads document data in file wrapper wrapper of type docType into the receiver, displays it in windows,
and returns whether the operation was successful. If wrapper is a simple file, it invokes
loadDataRepresentation:ofType: (page 959) to load the data. If wrapper is a directory, it returns NO
by default; subclasses can override to handle file wrappers that are directories. This method is typically
invoked by readFromFile:ofType: (page 968) after it creates an NSData object from the contents of the
file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– fileWrapperRepresentationOfType: (page 952)

Declared In
NSDocument.h

960 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

makeWindowControllers
Subclasses may override this method to create the initial window controller(s) for the document.

- (void)makeWindowControllers

Discussion
The base class implementation creates an NSWindowController object with windowNibName (page 992)
and with the document as the file’s owner if windowNibName (page 992) returns a name. If you override this
method to create your own window controllers, be sure to use addWindowController: (page 940) to add
them to the document after creating them.

This method is called by the NSDocumentController open... methods, but you might want to call it
directly in some circumstances.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowControllers (page 991)

Related Sample Code
QTAudioExtractionPanel
QTKitImport
QTKitPlayer
QTMetadataEditor
Sketch-112

Declared In
NSDocument.h

objectSpecifier
Returns an object specifier for the document.

- (NSScriptObjectSpecifier *)objectSpecifier

Return Value
The document object specifier.

Discussion
An object specifier represents an AppleScript reference form, which is a natural-language expression such
as words 10 through 20 or front document. During script processing, an object contained by a document
(such as the second paragraph or the third rectangle) may need to specify its container (the document).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QuickLookSketch
Sketch+Accessibility

Declared In
NSDocumentScripting.h

Instance Methods 961
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

preparePageLayout:
Invoked by runModalPageLayoutWithPrintInfo: (page 973) and
runModalPageLayoutWithPrintInfo:delegate:didRunSelector:contextInfo: (page 973) to do
any customization of the Page Layout panel pageLayout, such as adding an accessory view.

- (BOOL)preparePageLayout:(NSPageLayout *)pageLayout

Parameters
pageLayout

The page layout panel to prepare.

Return Value
YES if successfully prepared; otherwise, NO.

Discussion
The default implementation is empty and returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocument.h

prepareSavePanel:
Invoked byrunModalSavePanelForSaveOperation:delegate:didSaveSelector:contextInfo: (page
975) to do any customization of the given Save panel.

- (BOOL)prepareSavePanel:(NSSavePanel *)savePanel

Parameters
savePanel

The Save panel.

Return Value
YES if successfully prepared; otherwise, NO.

Discussion
The default implementation is empty and returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocument.h

presentError:
Presents an error alert to the user as a modal panel.

- (BOOL)presentError:(NSError *)error

962 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Parameters
error

The error object encapsulating the information to present to the user.

Return Value
YES if error recovery was done; otherwise, NO.

Discussion
This method does not return until the user dismisses the alert and, if the error has recovery options and a
recovery delegate, the error's recovery delegate is sent an attemptRecoveryFromError:optionIndex:
message.

The NSDocument default implementation of this method is equivalent to that of NSResponder and treats
the shared NSDocumentController as the next responder and forwards these messages to it.

The default implementation of this method invokes willPresentError: (page 989) to give subclasses an
opportunity to customize error presentation. You should not override this method but should instead override
willPresentError: (page 989).

Availability
Available in Mac OS X v10.4 and later.

See Also
– willPresentError: (page 989)
– presentError:modalForWindow:delegate:didPresentSelector:contextInfo: (page 963)

Declared In
NSDocument.h

presentError:modalForWindow:delegate:didPresentSelector:contextInfo:
Presents an error alert to the user as a modal panel.

- (void)presentError:(NSError *)error modalForWindow:(NSWindow *)window
delegate:(id)delegate didPresentSelector:(SEL)didPresentSelector
contextInfo:(void *)contextInfo

Parameters
error

The error object encapsulating the information to present to the user.

window
The window to which the modal alert belongs.

delegate
The delegate to which the selector message is sent.

didPresentSelector
The selector of the message sent to the delegate.

contextInfo
Object passed with the callback to provide any additional context information.

Discussion
When the user dismisses the alert and any recovery possible for the error and chosen by the user has been
attempted, sends the message didPresentSelector to the specified delegate.

Instance Methods 963
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

The NSDocument default implementation of this method is equivalent to that of NSResponder and treats
the shared NSDocumentController object as the next responder and forwards these messages to it. The
default implementations of several NSDocument methods invoke this method.

The default implementation of this method invokes willPresentError: (page 989) to give subclasses an
opportunity to customize error presentation. You should not override this method but should instead override
willPresentError:.

The method selected by didPresentSelector must have the same signature as:

- (void)didPresentErrorWithRecovery:(BOOL)didRecover contextInfo:(void
*)contextInfo

Availability
Available in Mac OS X v10.4 and later.

See Also
– presentError: (page 962)
– willPresentError: (page 989)

Related Sample Code
ZipBrowser

Declared In
NSDocument.h

printDocument:
Prints the receiver in response to the user choosing the Print menu command.

- (void)printDocument:(id)sender

Parameters
sender

The control sending the message.

Discussion
An NSDocument object receives this action message as it travels up the responder chain. The default
implementation invokes
printDocumentWithSettings:showPrintPanel:delegate:didPrintSelector:contextInfo: (page
965).

Availability
Available in Mac OS X v10.0 and later.

See Also
– printInfo (page 966)
– runPageLayout: (page 975)
– setPrintInfo: (page 984)
– shouldChangePrintInfo: (page 985)

Declared In
NSDocument.h

964 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

printDocumentWithSettings:showPrintPanel:delegate:didPrintSelector:contextInfo:
Prints the document.

- (void)printDocumentWithSettings:(NSDictionary *)printSettings
showPrintPanel:(BOOL)showPrintPanel delegate:(id)delegate
didPrintSelector:(SEL)didPrintSelector contextInfo:(void *)contextInfo

Parameters
printSettings

The print settings dictionary to use.

showPrintPanel
A Boolean value indicating whether the print panel is shown.

delegate
The delegate to which the selector message is sent.

didPrintSelector
The selector of the message sent to the delegate.

contextInfo
Object passed with the callback to provide any additional context information.

Discussion
If showing of the print panel is specified by showPrintPanel, the method presents it first and prints only
if the user approves the panel. The NSPrintInfo attributes in the passed-in printSettings dictionary are
added to a copy of the document's print info, and the resulting print info settings are used for the operation.
When printing is complete or canceled, the method sends the message selected by didPrintSelector to
the delegate, with the contextInfo as the last argument. The method selected by didPrintSelector
must have the same signature as:

- (void)document:(NSDocument *)document didPrint:(BOOL)didPrintSuccessfully
contextInfo: (void *)contextInfo

The default implementation of this method invokes printOperationWithSettings:error: (page 966).
If nil is returned it presents the error to the user in a document-modal panel before messaging the delegate.
Otherwise it invokes [thePrintOperation setShowsPrintPanel:showPrintPanel] then [self
runModalPrintOperation:thePrintOperation delegate:delegate
didRunSelector:didPrintSelector contextInfo:contextInfo].

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
invokesprintShowingPrintPanel: (page 967) if it is overridden. When doing this it uses private functionality
to arrange for the print settings to take effect (despite the fact that the override of
printShowingPrintPanel: can't possibly know about them) and to get notified when the print operation
has been completed, so it can message the delegate at the correct time. Correct messaging of the delegate
is necessary for correct handling of the Print Apple event.

Availability
Available in Mac OS X v10.4 and later.

See Also
– printOperationWithSettings:error: (page 966)

Declared In
NSDocument.h

Instance Methods 965
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

printInfo
Returns the receiver’s customized NSPrintInfo object or the default NSPrintInfo instance.

- (NSPrintInfo *)printInfo

Return Value
The receiver’s NSPrintInfo object.

Discussion
The document’s copy of the NSPrintInfo object can either be directly set or set as a result of running the
Page Layout panel. A subclass can override this method to always return the shared NSPrintInfo instance
if it does not want its own copy.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runPageLayout: (page 975)
– setPrintInfo: (page 984)
– shouldChangePrintInfo: (page 985)

Related Sample Code
ImageApp
QTAudioContextInsert
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSDocument.h

printOperationWithSettings:error:
Creates a print operation and returns it if successful.

- (NSPrintOperation *)printOperationWithSettings:(NSDictionary *)printSettings
error:(NSError **)outError

Parameters
printSettings

The print settings dictionary to use.

outError
On return, If the print operation could not be created, a pointer to an error object that encapsulates
the reason it could not be created.

Return Value
The print operation, or nil if unsuccessful.

966 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Discussion
The print operation can be run to print the document’s current contents. The NSPrintInfo attributes in
the passed-in printSettings dictionary are added to a copy of the document's print info, and the resulting
print info is used for the operation. The default implementation of this method does nothing. You must
override it to enable printing in your application.

Availability
Available in Mac OS X v10.4 and later.

See Also
– printDocumentWithSettings:showPrintPanel:delegate:didPrintSelector:contextInfo: (page
965)

Declared In
NSDocument.h

printShowingPrintPanel:
Overridden by subclasses to print the current document’s (the receiver’s) data. (Deprecated in Mac OS X
v10.4. Use
printDocumentWithSettings:showPrintPanel:delegate:didPrintSelector:contextInfo: (page
965) instead.)

- (void)printShowingPrintPanel:(BOOL)flag

Discussion
Overridden by subclasses to print the current document’s (the receiver’s) data; if flag is YES, the
implementation should first display the Print panel. This method is typically invoked by printDocument:
with an argument of YES. The default implementation does nothing. If there is any printing information other
than that encoded in the receiver’s NSPrintInfo object, subclasses should get it here.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– printInfo (page 966)

Declared In
NSDocument.h

readFromData:ofType:error:
Sets the contents of this document by reading from data of a specified type and returns YES if successful.

- (BOOL)readFromData:(NSData *)data ofType:(NSString *)typeName error:(NSError
**)outError

Parameters
data

The data object from which the document contents are read.

Instance Methods 967
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

typeName
The string that identifies the document type.

outError
On return, If the document contents could not be read, a pointer to an error object that encapsulates
the reason they could not be read.

Return Value
YES if the document contents could be read; otherwise, NO.

Discussion
The default implementation of this method throws an exception because at least one of the three reading
methods (this method, readFromURL:ofType:error: (page 970),
readFromFileWrapper:ofType:error: (page 969)), or every method that may invoke
readFromURL:ofType:error: (page 970), must be overridden.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocument.h

readFromFile:ofType:
Reads and loads document data of the given type from the given file. (Deprecated in Mac OS X v10.4. Use
readFromURL:ofType:error: (page 970) instead.)

- (BOOL)readFromFile:(NSString *)fileName ofType:(NSString *)docType

Discussion
Reads and loads document data of type docType from the file fileName, returning whether the operation
was successful. This method invokes loadDataRepresentation:ofType: and is invoked when the receiver
is first created and initialized by initWithContentsOfFile:ofType:. It uses NSData
initWithContentsOfFile: to get the document data.

This method is one of the location-based primitives. Subclasses can override this method instead of overriding
loadDataRepresentation:ofType: to read and load document data. Subclasses that handle file packages
such as RTFD or that treat locations of files as anything other than paths should override this method. Override
implementations of this method can filter the document data using NSPasteboard or other filtering services.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– dataRepresentationOfType: (page 945)
– writeToFile:ofType: (page 995)

Declared In
NSDocument.h

968 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

readFromFileWrapper:ofType:error:
Sets the contents of this document by reading from a file wrapper of a specified type.

- (BOOL)readFromFileWrapper:(NSFileWrapper *)fileWrapper ofType:(NSString *)typeName
error:(NSError **)outError

Parameters
fileWrapper

The file wrapper from which the document contents are read.

typeName
The string that identifies the document type.

outError
On return, If the document contents could not be read, a pointer to an error object that encapsulates
the reason they could not be read.

Return Value
YES if the document contents could be read; otherwise, NO.

Discussion
The default implementation of this method invokes [self readFromData:[fileWrapper
regularFileContents] ofType:typeName error:outError].

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes [self loadFileWrapperRepresentation:fileWrapper ofType:typeName] if
loadFileWrapperRepresentation:ofType: (page 960) is overridden.

Availability
Available in Mac OS X v10.4 and later.

See Also
– readFromURL:ofType:error: (page 970)
– readFromData:ofType:error: (page 967)

Declared In
NSDocument.h

readFromURL:ofType:
Reads and loads document data. (Deprecated in Mac OS X v10.4. Use readFromURL:ofType:error: (page
970) instead.)

- (BOOL)readFromURL:(NSURL *)aURL ofType:(NSString *)docType

Discussion
Reads and loads document data of type docType from the URL aURL, returning whether the operation was
successful. This method only supports URLs of the file: scheme and calls readFromFile:ofType: (page
968).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Instance Methods 969
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Declared In
NSDocument.h

readFromURL:ofType:error:
Sets the contents of this document by reading from a file or file package, of a specified type, located by a
URL.

- (BOOL)readFromURL:(NSURL *)absoluteURL ofType:(NSString *)typeName error:(NSError
 **)outError

Parameters
absoluteURL

The location from which the document contents are read.

typeName
The string that identifies the document type.

outError
On return, If the document contents could not be read, a pointer to an error object that encapsulates
the reason they could not be read.

Return Value
YES if the document contents could be read; otherwise, NO.

Discussion
The default implementation of this method just creates an NSFileWrapper and invokes [self
readFromFileWrapper:theFileWrapper ofType:typeName error:outError].

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes [self readFromFile:[absoluteURL path] ofType:typeName] if
readFromFile:ofType: (page 968) is overridden and the URL uses the file: scheme.

Availability
Available in Mac OS X v10.4 and later.

See Also
– readFromFileWrapper:ofType:error: (page 969)
– readFromData:ofType:error: (page 967)

Declared In
NSDocument.h

removeWindowController:
Removes the specified window controller from the receiver’s array of window controllers.

- (void)removeWindowController:(NSWindowController *)windowController

Parameters
windowController

The window controller that is removed.

970 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Discussion
A document with no window controllers is not necessarily closed. However, a window controller can be set
to close its associated document when the window is closed or the window controller is deallocated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– shouldCloseDocument (page 3440) (NSWindowController)

Declared In
NSDocument.h

revertDocumentToSaved:
The action of the File menu item Revert in a document-based application.

- (void)revertDocumentToSaved:(id)sender

Parameters
sender

The control sending the message.

Discussion
The default implementation of this method presents an alert dialog giving the user the opportunity to cancel
the operation. If the user chooses to continue, the method ensures that any editor registered using the Cocoa
Bindings NSEditorRegistration informal protocol has discarded its changes and then invokes
revertToContentsOfURL:ofType:error: (page 971). If that returns NO, the method presents the error
to the user in an document-modal alert dialog.

Availability
Available in Mac OS X v10.0 and later.

See Also
– updateChangeCount: (page 988)

Declared In
NSDocument.h

revertToContentsOfURL:ofType:error:
Discards all unsaved document modifications and replaces the document's contents by reading a file or file
package located by a URL of a specified type.

- (BOOL)revertToContentsOfURL:(NSURL *)absoluteURL ofType:(NSString *)typeName
error:(NSError **)outError

Parameters
absoluteURL

The location from which the document contents are read.

typeName
The string that identifies the document type.

Instance Methods 971
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

outError
On return, If the document could not be reverted, a pointer to an error object that encapsulates the
reason it could not be reverted.

Return Value
YES if the document could be reverted; otherwise, NO.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocument.h

revertToSavedFromFile:ofType:
Reverts the receiver to the data stored in the file system. (Deprecated in Mac OS X v10.4. Use
revertToContentsOfURL:ofType:error: (page 971) instead.)

- (BOOL)revertToSavedFromFile:(NSString *)fileName ofType:(NSString *)type

Discussion
Reverts the receiver to the data stored in the file system in file named fileName of file type type. Invokes
readFromFile:ofType: (page 968) and returns whether that method successfully read the file and processed
the document data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– revertDocumentToSaved: (page 971)

Declared In
NSDocument.h

revertToSavedFromURL:ofType:
Reverts the receiver. (Deprecated in Mac OS X v10.4. Use revertToContentsOfURL:ofType:error: (page
971) instead.)

- (BOOL)revertToSavedFromURL:(NSURL *)aURL ofType:(NSString *)type

Discussion
Reverts the receiver to the data stored at aURL of type type. Invokes readFromURL:ofType: (page 969)
and returns whether that method successfully read the file and processed the document data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– revertDocumentToSaved: (page 971)

972 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Declared In
NSDocument.h

runModalPageLayoutWithPrintInfo:
Runs the page layout modal panel with the receiver’s printing information object. (Deprecated in Mac OS X
v10.4. Use runModalPageLayoutWithPrintInfo:delegate:didRunSelector:contextInfo: (page
973) instead.)

- (NSInteger)runModalPageLayoutWithPrintInfo:(NSPrintInfo *)printInfo

Discussion
Runs the page layout modal panel with the receiver’s printing information object (printInfo) as argument
and returns the result constant (indicating the button pressed by the user). To run as sheet on the receiver’s
document window, use
runModalPageLayoutWithPrintInfo:delegate:didRunSelector:contextInfo: (page 973) instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– shouldChangePrintInfo: (page 985)
– runModalWithPrintInfo: (page 1857) (NSPageLayout)

Declared In
NSDocument.h

runModalPageLayoutWithPrintInfo:delegate:didRunSelector:contextInfo:
Runs the modal page layout panel with the receiver’s printing information object

- (void)runModalPageLayoutWithPrintInfo:(NSPrintInfo *)printInfo
delegate:(id)delegate didRunSelector:(SEL)didRunSelector contextInfo:(void
*)contextInfo

Parameters
printInfo

The NSPrintInfo object for the page layout panel to use.

delegate
The delegate to which the selector message is sent.

didRunSelector
The selector of the message sent to the delegate.

contextInfo
Object passed with the callback to provide any additional context information.

Discussion
Invoked from the action method runPageLayout: (page 975). Presents the page layout panel application
modally if there is no document window to which it can be presented document modally.

Instance Methods 973
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

When the panel is dismissed, delegate is sent a didRunSelectormessage. The didRunSelector callback
method should have the following signature:

- (void)documentDidRunModalPageLayout:(NSDocument *)document
accepted:(BOOL)accepted contextInfo:(void *)contextInfo

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocument.h

runModalPrintOperation:delegate:didRunSelector:contextInfo:
Runs the specified print operation modally.

- (void)runModalPrintOperation:(NSPrintOperation *)printOperation
delegate:(id)delegate didRunSelector:(SEL)didRunSelector contextInfo:(void
*)contextInfo

Parameters
printOperation

The print operation to run.

delegate
The delegate to which the selector message is sent.

didRunSelector
The selector of the message sent to the delegate.

contextInfo
Object passed with the callback to provide any additional context information.

Discussion
Overrides of printShowingPrintPanel: (page 967) can invoke this method.

When the panel is dismissed, delegate is sent a didRunSelector message. Pass the contextInfo object
with the callback. The didRunSelector callback method should have the following signature:

- (void)documentDidRunModalPrintOperation:(NSDocument *)document
success:(BOOL)success contextInfo:(void *)contextInfo

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Declared In
NSDocument.h

974 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

runModalSavePanelForSaveOperation:delegate:didSaveSelector:contextInfo:
Presents a modal Save panel to the user, then tries to save the document if the user approves the panel.

- (void)runModalSavePanelForSaveOperation:(NSSaveOperationType)saveOperation
delegate:(id)delegate didSaveSelector:(SEL)didSaveSelector contextInfo:(void
*)contextInfo

Parameters
saveOperation

The type of save operation.

delegate
The delegate to which the selector message is sent.

didSaveSelector
The selector of the message sent to the delegate.

contextInfo
Object passed with the callback to provide any additional context information.

Discussion
When saving is completed, regardless of success or failure, or has been canceled, sends the message selected
by didSaveSelector to the delegate, with contextInfo as the last argument. The method selected by
didSaveSelector must have the same signature as:

- (void)document:(NSDocument *)doc didSave:(BOOL)didSave contextInfo:(void
*)contextInfo

Invoked fromsaveDocumentWithDelegate:didSaveSelector:contextInfo: (page 978), and the action
methods saveDocumentAs: (page 977) and saveDocumentTo: (page 977). The default implementation of
this method first makes sure that any editor registered using the Cocoa Bindings NSEditorRegistration
informal protocol has committed its changes, then creates a Save panel, adds a standard file format accessory
view (if there is more than one file type for the user to choose from and
shouldRunSavePanelWithAccessoryView (page 987) returns YES), sets various attributes of the panel,
invokes prepareSavePanel: (page 962) to provide an opportunity for customization, then presents the
panel. If the user approves the panel, the default implementation sends the message
saveToURL:ofType:forSaveOperation:delegate:didSaveSelector:contextInfo: (page 979).

For backward binary compatibility with Mac OS 10.3 and earlier, the default implementation of this method
instead invokes the deprecated
saveToFile:saveOperation:delegate:didSaveSelector:contextInfo: (page 978) if it is overridden,
even if the user cancels the panel.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocument.h

runPageLayout:
The action method invoked in the receiver as first responder when the user chooses the Page Setup menu
command.

- (void)runPageLayout:(id)sender

Instance Methods 975
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Parameters
sender

The control sending the message.

Discussion
The default implementation invokes
runModalPageLayoutWithPrintInfo:delegate:didRunSelector:contextInfo: (page 973) with
the document’s current NSPrintInfo object as argument; if the user clicks the OK button and the document
authorizes changes to its printing information (shouldChangePrintInfo: (page 985)), the method sets the
document’s new NSPrintInfo object and increments the document’s change count.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPrintInfo: (page 984)
– updateChangeCount: (page 988)

Declared In
NSDocument.h

saveDocument:
The action method invoked in the receiver as first responder when the user chooses the Save menu command.

- (void)saveDocument:(id)sender

Parameters
sender

The control sending the message.

Discussion
The default implementation saves the document in two different ways, depending on whether the document
has a file path and a document type assigned. If path and type are assigned, it simply writes the document
under its current file path and type after making a backup copy of the previous file. If the document is new
(no file path and type), it runs the modal Save panel to get the file location under which to save the document.
It writes the document to this file, sets the document’s file location and document type (if a native type), and
clears the document’s edited status.

Availability
Available in Mac OS X v10.0 and later.

See Also
– saveDocumentWithDelegate:didSaveSelector:contextInfo: (page 978)
– setFileName: (page 981)
– setFileType: (page 982)
– updateChangeCount: (page 988)

Declared In
NSDocument.h

976 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

saveDocumentAs:
The action method invoked in the receiver as first responder when the user chooses the Save As menu
command.

- (void)saveDocumentAs:(id)sender

Parameters
sender

The control sending the message.

Discussion
The default implementation runs the modal Save panel to get the file location under which to save the
document. It writes the document to this file, sets the document’s file location and document type (if a native
type), and clears the document’s edited status.

Availability
Available in Mac OS X v10.0 and later.

See Also
– saveDocumentWithDelegate:didSaveSelector:contextInfo: (page 978)
– setFileName: (page 981)
– setFileType: (page 982)
– updateChangeCount: (page 988)

Declared In
NSDocument.h

saveDocumentTo:
The action method invoked in the receiver as first responder when the user chooses the Save To menu
command.

- (void)saveDocumentTo:(id)sender

Parameters
sender

The control sending the message.

Discussion
The default implementation is identical to saveDocumentAs: except that this method doesn’t clear the
document’s edited status and doesn’t reset file location and document type if the document is a native type.

Availability
Available in Mac OS X v10.0 and later.

See Also
– saveDocumentWithDelegate:didSaveSelector:contextInfo: (page 978)

Declared In
NSDocument.h

Instance Methods 977
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

saveDocumentWithDelegate:didSaveSelector:contextInfo:
Saves the document.

- (void)saveDocumentWithDelegate:(id)delegate didSaveSelector:(SEL)didSaveSelector
contextInfo:(void *)contextInfo

Parameters
delegate

The delegate to which the selector message is sent.

didSaveSelector
The selector of the message sent to the delegate.

contextInfo
Object passed with the callback to provide any additional context information.

Discussion
If an NSSaveOperation can be performed without further user intervention (at the very least, neither
fileURL (page 951) nor fileType (page 950) return nil), then the method immediately saves the document.
Otherwise, it presents a Save panel to the user and saves the document if the user approves the panel. When
saving has been completed or canceled, the method sends the message selected by didSaveSelector to
the delegate, with the contextInfo as the last argument.

As of Mac OS X v10.5, this method checks to see if the document's file has been modified since the document
was opened or most recently saved or reverted, in addition to the checking for file moving, renaming, and
trashing that it has done since Mac OS X v10.1. When it senses file modification it presents an alert telling
the user "This document’s file has been changed by another application since you opened or saved it,” giving
them the choice of saving or not saving. For backward binary compatibility this is only done in applications
linked against Mac OS X v10.5 or later.

The didSaveSelector callback method should have the following signature:

- (void)document:(NSDocument *)doc didSave:(BOOL)didSave contextInfo:(void
*)contextInfo

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocument.h

saveToFile:saveOperation:delegate:didSaveSelector:contextInfo:
Called after the user has been given the opportunity to select a destination through the modal Save panel.
(Deprecated in Mac OS X v10.4. Use
saveToURL:ofType:forSaveOperation:delegate:didSaveSelector:contextInfo: (page 979)
instead.)

- (void)saveToFile:(NSString *)fileName
saveOperation:(NSSaveOperationType)saveOperation delegate:(id)delegate
didSaveSelector:(SEL)didSaveSelector contextInfo:(void *)contextInfo

978 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Discussion
Called after the user has been given the opportunity to select a destination through the modal Save panel
presented by
runModalSavePanelForSaveOperation:delegate:didSaveSelector:contextInfo: (page 975). The
delegate is assigned to the Save panel. If fileName is non-nil, this method writes the document to
fileName, sets the document’s file location and document type (if a native type), and clears the document’s
edited status. didSaveSelector gets called with YES if the document is saved successfully, and NO otherwise.
The saveOperation is one of the constants in “Constants” (page 999). Pass contextInfowith the callback.

The didSaveSelector callback method should have the following signature:

- (void)document:(NSDocument *)doc didSave:(BOOL)didSave contextInfo:(void
*)contextInfo

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSDocument.h

saveToURL:ofType:forSaveOperation:delegate:didSaveSelector:contextInfo:
Saves the contents of the document to a file or file package located by a URL, formatted to a specified type,
for a particular kind of save operation.

- (void)saveToURL:(NSURL *)absoluteURL ofType:(NSString *)typeName
forSaveOperation:(NSSaveOperationType)saveOperation delegate:(id)delegate
didSaveSelector:(SEL)didSaveSelector contextInfo:(void *)contextInfo

Parameters
absoluteURL

The location of the file or file package to which the document contents are saved.

typeName
The string that identifies the document type.

saveOperation
The type of save operation.

delegate
The delegate to which the selector message is sent.

didSaveSelector
The selector of the message sent to the delegate.

contextInfo
Object passed with the callback to provide any additional context information.

Discussion
When saving is completed, regardless of success or failure, the method sends the message selected by
didSaveSelector to the delegate, with the contextInfo as the last argument. The method selected by
didSaveSelector must have the same signature as:

- (void)document:(NSDocument *)document didSave:(BOOL)didSaveSuccessfully
contextInfo:(void *)contextInfo;

Instance Methods 979
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

The default implementation of this method invokes [self saveToURL:absoluteURL ofType:typeName
forSaveOperation:saveOperation error:&anError] and, if NO is returned, presents the error to the
user in a document-modal panel before messaging the delegate.

Availability
Available in Mac OS X v10.4 and later.

See Also
– saveToURL:ofType:forSaveOperation:error: (page 980)

Declared In
NSDocument.h

saveToURL:ofType:forSaveOperation:error:
Saves the contents of the document to a file or file package located by a URL, formatted to a specified type,
for a particular kind of save operation, and returns YES if successful.

- (BOOL)saveToURL:(NSURL *)absoluteURL ofType:(NSString *)typeName
forSaveOperation:(NSSaveOperationType)saveOperation error:(NSError **)outError

Parameters
absoluteURL

The location of the file or file package to which the document contents are saved.

typeName
The string that identifies the document type.

saveOperation
The type of save operation.

outError
On return, If the document contents could not be saved, a pointer to an error object that encapsulates
the reason they could not be saved.

Return Value
YES if the document contents were successfully saved; otherwise, NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– saveToURL:ofType:forSaveOperation:delegate:didSaveSelector:contextInfo: (page 979)

Declared In
NSDocument.h

setAutosavedContentsFileURL:
Sets the location of the most recently autosaved document contents.

- (void)setAutosavedContentsFileURL:(NSURL *)absoluteURL

980 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Parameters
absoluteURL

The location of the most recently autosaved document contents.

Discussion
The default implementation of this method records the URL and notifies the shared document controller
that this document should be automatically reopened if the application quits or crashes before the document
is saved.

Availability
Available in Mac OS X v10.4 and later.

See Also
– autosavedContentsFileURL (page 941)

Declared In
NSDocument.h

setFileModificationDate:
Sets the last known modification date of the document's on-disk representation to the given modification
date.

- (void)setFileModificationDate:(NSDate *)modificationDate

Parameters
modificationDate

The date to which the file modification date is set.

Discussion
The NSDocument default file saving machinery uses this information to warn the user when the on-disk
representation of an open document has been modified by something other than the current application.

Availability
Available in Mac OS X v10.4 and later.

See Also
– fileModificationDate (page 948)

Declared In
NSDocument.h

setFileName:
Sets the file (filename and directory path) under which document data is saved. (Deprecated in Mac OS X
v10.4. Use setFileURL: (page 982) instead.)

- (void)setFileName:(NSString *)fileName

Discussion
Sets the file (filename and directory path) under which document data is saved to fileName. As a side effect,
synchronizes the titles of the document’s windows with the new name or location. A document’s filename
is automatically set when it is saved as a new document (Save) and when an existing document is saved

Instance Methods 981
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

under a different filename or path (Save As). The Finder also keeps track of open documents and their
associated files. When a user moves or renames a file in the Finder that corresponds to an open document,
the Finder calls setFileName: with the new filename.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– fileName (page 948)

Declared In
NSDocument.h

setFileType:
Sets the document type under which the file is saved.

- (void)setFileType:(NSString *)docType

Parameters
docType

The string that identifies the document type.

Discussion
The document type affects how the data is filtered when it is written to or read from a file. This method isn't
for changing the document's format; it's just for initially recording the document's format during opening
or saving.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileType (page 950)

Related Sample Code
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Declared In
NSDocument.h

setFileURL:
Sets the location of the document's on-disk representation.

- (void)setFileURL:(NSURL *)absoluteURL

Parameters
absoluteURL

The document’s location.

982 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Discussion
This method doesn't actually rename the document; it's just for recording the document's location during
initial opening or saving. The default implementation of this method just records the URL so that the default
implementation of fileURL (page 951) can return it.

For backward binary compatibility with Mac OS X v10.3 and earlier, if setFileName: (page 981) is overridden
and the URL is nil or uses the file: scheme, the default implementation of this method instead invokes
[self setFileName:[absoluteURL path]].

Availability
Available in Mac OS X v10.4 and later.

See Also
– fileURL (page 951)

Related Sample Code
FunHouse
QTMetadataEditor

Declared In
NSDocument.h

setHasUndoManager:
Sets whether the receiver has its own NSUndoManager object.

- (void)setHasUndoManager:(BOOL)flag

Parameters
flag

A Boolean value setting whether the receiver should own an NSUndoManager object.

Discussion
If flag is NO and the receiver currently owns an NSUndoManager object, the NSUndoManager object is
released after being removed as an observer of undo-related notifications.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasUndoManager (page 954)

Declared In
NSDocument.h

setLastComponentOfFileName:
Sets the document name to the given string in terms of the scripting name property (the name a script writer
would use to specify the document in a script).

- (void)setLastComponentOfFileName:(NSString *)str

Instance Methods 983
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Parameters
str

The scripting name of the document.

Discussion
Note that this name may be different than the name used in setFileName: (page 981).

Availability
Available in Mac OS X v10.0 and later.

See Also
– displayName (page 945)

Declared In
NSDocumentScripting.h

setPrintInfo:
Sets the receiver’s NSPrintInfo object.

- (void)setPrintInfo:(NSPrintInfo *)printInfo

Parameters
printInfo

The NSPrintInfo object for the receiver to use.

Discussion
This NSPrintInfo object is used in laying out the document for printing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– printInfo (page 966)

Declared In
NSDocument.h

setUndoManager:
Sets the undo manager owned by the receiver to the specified undo manager and releases any undo manager
currently owned by the receiver.

- (void)setUndoManager:(NSUndoManager *)undoManager

Parameters
undoManager

The undo manager to be owned by the receiver; may be nil.

Discussion
If undoManager is nil, it turns off the hasUndoManager flag. If undoManager is non-nil, it adds the receiver
as an observer of NSUndoManagerDidUndoChangeNotification,
NSUndoManagerDidRedoChangeNotification, and
NSUndoManagerWillCloseUndoGroupNotification.

984 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– undoManager (page 988)

Declared In
NSDocument.h

setWindow:
Sets the window Interface Builder outlet of this class.

- (void)setWindow:(NSWindow *)aWindow

Parameters
aWindow

The window to which the receiver’s window outlet points.

Discussion
This method is invoked automatically during the loading of any nib for which this document is the file’s
owner, if the file’s owner window outlet is connected in the nib. You should not invoke this method directly,
and typically you would not override it either.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocument.h

shouldChangePrintInfo:
Returns a Boolean value indicating whether the receiver should allow changes to the default NSPrintInfo
object used in printing the document.

- (BOOL)shouldChangePrintInfo:(NSPrintInfo *)newPrintInfo

Parameters
newPrintInfo

The NSPrintInfo object that is the result of the user approving the page layout panel presented
by runPageLayout: (page 975).

Return Value
YES by default; subclasses can override this method to return NO.

Discussion
This method is invoked by the runPageLayout: (page 975) method, which sets a new NSPrintInfoobject
for the document only if this method returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocument.h

Instance Methods 985
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

shouldCloseWindowController:
Gives the user an opportunity to save the document. (Available in Mac OS X v10.0 through Mac OS X v10.3.
Use shouldCloseWindowController:delegate:shouldCloseSelector:contextInfo: (page 986)
instead.)

- (BOOL)shouldCloseWindowController:(NSWindowController *)windowController

Discussion
If closing the windowController would cause the receiver to be closed, invokes
canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo: (page 943) to display a Save
panel and give the user an opportunity to save the document. Returns the return value of
canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo:. Note that the receiver
doesn’t close until its window controller closes.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
NSDocument.h

shouldCloseWindowController:delegate:shouldCloseSelector:contextInfo:
Invokes shouldCloseSelector with the result of
canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo: (page 943) if the the specified
window controller that is closing is the last one or is marked as causing the document to close.

- (void)shouldCloseWindowController:(NSWindowController *)windowController
delegate:(id)delegate shouldCloseSelector:(SEL)shouldCloseSelector
contextInfo:(void *)contextInfo

Parameters
windowController

The window controller that is closed.

delegate
The delegate to which the selector message is sent.

shouldCloseSelector
The selector of the message sent to the delegate.

contextInfo
Object passed with the callback to provide any additional context information.

Discussion
Otherwise it invokes shouldCloseSelector with YES. This method is called automatically by NSWindow
for any window that has a window controller and a document associated with it. NSWindow calls this method
prior to sending its delegate the windowShouldClose: message. Pass the contextInfo object with the
callback.

The shouldCloseSelector callback method should have the following signature:

- (void)document:(NSDocument *)document shouldClose:(BOOL)shouldClose
contextInfo:(void *)contextInfo

Availability
Available in Mac OS X v10.0 and later.

986 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Declared In
NSDocument.h

shouldRunSavePanelWithAccessoryView
Returns YES by default; as a result, when NSDocument displays the Save panel, it includes an accessory view
containing a pop-up menu of supported writable document types.

- (BOOL)shouldRunSavePanelWithAccessoryView

Return Value
YES by default; subclasses can override to return NO, thereby excluding the accessory view from the Save
panel.

Discussion
Here is an example implementation:

- (BOOL)shouldRunSavePanelWithAccessoryView {
 return [self fileName] == nil;
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– runModalSavePanelForSaveOperation:delegate:didSaveSelector:contextInfo: (page 975)

Declared In
NSDocument.h

showWindows
Displays all of the document’s windows, bringing them to the front and making them main or key as necessary.

- (void)showWindows

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer
QTMetadataEditor

Declared In
NSDocument.h

Instance Methods 987
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

undoManager
Returns the receiver’s undo manager.

- (NSUndoManager *)undoManager

Return Value
The NSUndoManager object used by the receiver or nil if the receiver should not own one.

Discussion
If the undo manager doesn’t exist and hasUndoManager returns YES, the method creates one and invokes
setUndoManager: with the NSUndoManager as argument.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DemoMonkey
File Wrappers with Core Data Documents
FunHouse
Sketch+Accessibility
Sketch-112

Declared In
NSDocument.h

updateChangeCount:
Updates the receiver’s change count according to the given change type.

- (void)updateChangeCount:(NSDocumentChangeType)changeType

Parameters
changeType

The type of change made to the document.

Discussion
The change count indicates the document’s edited status; if the change count is 0, the document has no
changes to save, and if the change count is greater than 0, the document has been edited and is unsaved.
The changeType is described in “Constants” (page 999). If you are implementing undo and redo in an
application, you should increment the change count every time you create an undo group and decrement
the change count when an undo or redo operation is performed.

Note that if you are using the NSDocument default undo/redo features, setting the document’s edited status
by updating the change count happens automatically. You only need to invoke this method when you are
not using these features.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

988 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

StillMotion

Declared In
NSDocument.h

validateMenuItem:
Validates the Revert menu item and items selected from the Save panel’s pop-up list of writable document
types items. (Available in Mac OS X v10.0 through Mac OS X v10.3. Use validateUserInterfaceItem: (page
989) instead.)

- (BOOL)validateMenuItem:(NSMenuItem *)anItem

Discussion
Returns YES if anItem should be enabled, NO otherwise. Returns YES for Revert if the document has been
edited and a file exists for the document. Returns YES for an item representing a writable type if, during a
Save or Save As operation, it is a native type for the document. Subclasses can override this method to
perform additional validations.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
NSDocument.h

validateUserInterfaceItem:
Validates the specified user interface item that the receiver manages.

- (BOOL)validateUserInterfaceItem:(id < NSValidatedUserInterfaceItem >)anItem

Parameters
anItem

The user interface item to validate.

Return Value
YES if the item is valid; otherwise, NO.

Discussion
These items currently include only Revert (which is enabled only if the document has a fileName (page 948))
and Save. You can override this method to add more selectors validated by your document subclass.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocument.h

willPresentError:
Called when the receiver is about to present an error.

Instance Methods 989
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

- (NSError *)willPresentError:(NSError *)error

Parameters
error

The error object that is about to be presented to the user.

Return Value
The error that should actually be presented.

Discussion
The default implementation of this method merely returns the passed-in error. The returned error may simply
be forwarded to the document controller.

You can override this method to customize the presentation of errors by examining the passed-in error and,
for example, returning more specific information. When you override this method always check the NSError
object's domain and code to discriminate between errors whose presentation you want to customize and
those you don't. For errors you don't want to customize, call the superclass implementation, passing the
original error.

Availability
Available in Mac OS X v10.4 and later.

See Also
– presentError: (page 962)
– presentError:modalForWindow:delegate:didPresentSelector:contextInfo: (page 963)

Declared In
NSDocument.h

windowControllerDidLoadNib:
Sent after the specified window controller loads a nib file if the receiver is the nib file's owner.

- (void)windowControllerDidLoadNib:(NSWindowController *)windowController

Parameters
windowController

The window controller that loads the nib file.

Discussion
See the class description for NSWindowController for additional information about nib files and the file's
owner object.

Typically an NSDocument subclass overrides windowNibName (page 992) or makeWindowControllers (page
961), but not both. If windowNibName is overridden, the default implementation of makeWindowControllers
will load the named nib file, making the NSDocument object the nib file's owner. In that case, you can override
windowControllerDidLoadNib: and do custom processing after the nib file is loaded.

The default implementation of this method does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowControllerWillLoadNib: (page 991)

990 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

– windowControllers (page 991)

Related Sample Code
ColorMatching
ThreadsExporter
ThreadsExportMovie
ThreadsImporter
ThreadsImportMovie

Declared In
NSDocument.h

windowControllers
Returns the receiver’s current window controllers.

- (NSArray *)windowControllers

Return Value
An array containing NSWindowController objects belonging to the current document. If there are no
window controllers, returns an empty NSArray object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeWindowControllers (page 961)
– windowControllerDidLoadNib: (page 990)
– windowControllerWillLoadNib: (page 991)
– windowNibName (page 992)

Related Sample Code
CoreTextArcCocoa
QTRecorder
Sketch-112

Declared In
NSDocument.h

windowControllerWillLoadNib:
Sent before the specified window controller loads a nib file if the receiver is the nib file's owner.

- (void)windowControllerWillLoadNib:(NSWindowController *)windowController

Parameters
windowController

The window controller that loads the nib file.

Instance Methods 991
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Discussion
See the class description for NSWindowController for additional information about nib files and the file's
owner object.

Typically an NSDocument subclass overrides windowNibName (page 992) or makeWindowControllers (page
961), but not both. If windowNibName is overridden, the default implementation of makeWindowControllers
will load the named nib file, making the NSDocument the nib file's owner. In that case, you can override
windowControllerWillLoadNib: and do custom processing before the nib file is loaded.

The default implementation of this method does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowControllerDidLoadNib: (page 990)
– windowControllers (page 991)

Declared In
NSDocument.h

windowForSheet
Returns the most appropriate window, of the windows associated with the receiver, to use as the parent
window of a document-modal sheet.

- (NSWindow *)windowForSheet

Return Value
The window to use as the parent window of the sheet.

Discussion
May return nil, in which case the sender should present an application-modal panel. The NSDocument
implementation of this method returns the window of the first window controller, or [NSApp mainWindow]
if there are no window controllers or if the first window controller has no window.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
MovieAssembler
MyMediaPlayer

Declared In
NSDocument.h

windowNibName
Overridden by subclasses to return the name of the document’s sole nib file.

- (NSString *)windowNibName

992 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Return Value
The name of the document nib file.

Discussion
Using this name, NSDocument creates and instantiates a default instance of NSWindowController to
manage the window. If your document has multiple nib files, each with its own single window, or if the
default NSWindowController instance is not adequate for your purposes, you should override
makeWindowControllers.

The default implementation returns nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowControllers (page 991)

Related Sample Code
ImageApp
QTMetadataEditor
Simple Bindings Adoption
With and Without Bindings
ZipBrowser

Declared In
NSDocument.h

writableTypesForSaveOperation:
Returns the names of the types to which this document can be saved for a specified kind of save operation.

- (NSArray *)writableTypesForSaveOperation:(NSSaveOperationType)saveOperation

Parameters
saveOperation

The kind of save operation.

Return Value
An array of NSString objects representing the writable document types.

Discussion
The save operation type is represented by saveOperation. For every kind of save operation except
NSSaveToOperation, the returned array must only include types for which the the application can play the
Editor role. For NSSaveToOperation the returned array may include types for which the application can
only play the Viewer role, and other types that the application can merely export. The default implementation
of this method returns [[self class] writableTypes]with, except during NSSaveToOperation, types
for which isNativeType: (page 939) returns NO filtered out.

You can override this method to limit the set of writable types when the document currently contains data
that is not representable in all types. For example, you can disallow saving to RTF files when the document
contains an attachment and can only be saved properly to RTFD files.

You can invoke this method when creating a custom save panel accessory view to present easily the same
set of types as NSDocument does in its standard file format popup menu.

Instance Methods 993
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocument.h

writeSafelyToURL:ofType:forSaveOperation:error:
Writes the contents of the document to a file or file package located by a URL.

- (BOOL)writeSafelyToURL:(NSURL *)absoluteURL ofType:(NSString *)typeName
forSaveOperation:(NSSaveOperationType)saveOperation error:(NSError **)outError

Parameters
absoluteURL

The location to which the document contents are written.

typeName
The string that identifies the document type.

saveOperation
The type of save operation.

outError
On return, If the document contents could not be written, a pointer to an error object that encapsulates
the reason they could not be written.

Return Value
YES if the document contents could be written; otherwise, NO.

Discussion
The default implementation of this method invokes
writeToURL:ofType:forSaveOperation:originalContentsURL:error: (page 997). It also invokes
fileAttributesToWriteToURL:ofType:forSaveOperation:originalContentsURL:error: (page
946) and writes the returned attributes, if any, to the file. It may copy some attributes from the old on-disk
revision of the document at the same time, if applicable.

This method is responsible for doing document writing in a way that minimizes the danger of leaving the
disk to which writing is being done in an inconsistent state in the event of an application crash, system crash,
hardware failure, power outage, and so on. If you override this method, be sure to invoke the superclass
implementation.

For NSSaveOperation, the default implementation of this method invokes keepBackupFile (page 958) to
determine whether or not the old on-disk revision of the document, if there was one, should be preserved
after being renamed.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes writeWithBackupToFile:ofType:saveOperation: (page 998) if that method is is
overridden and the URL uses the file: scheme. The save operation in this case is never
NSAutosaveOperation; NSSaveToOperation is used instead.

Availability
Available in Mac OS X v10.4 and later.

See Also
– writeToURL:ofType:forSaveOperation:originalContentsURL:error: (page 997)

994 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

– fileAttributesToWriteToURL:ofType:forSaveOperation:originalContentsURL:error: (page
946)

Related Sample Code
QTMetadataEditor

Declared In
NSDocument.h

writeToFile:ofType:
Writes document data to a file. (Deprecated in Mac OS X v10.4. Use writeToURL:ofType:error: (page
996) instead.)

- (BOOL)writeToFile:(NSString *)fileName ofType:(NSString *)docType

Discussion
Writes document data of type docType to the file fileName, returning whether the operation was successful.
This method invokes dataRepresentationOfType: (page 945) and is indirectly invoked whenever the
document file is saved. It uses the NSData method writeToFile:atomically: to write to the file.

This method is one of the location-based primitives. Subclasses can override this method instead of overriding
dataRepresentationOfType: to write document data to the file system as an NSData object after creating
that object from internal data structures. Subclasses that handle file packages such as RTFD or that treat
locations of files as anything other than paths should override this method. Override implementations of
this method should ensure that they filter document data appropriately using NSPasteboard filtering
services.

See “NSDocument Saving Behavior” (page 929) for additional information about saving documents.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– loadDataRepresentation:ofType: (page 959)
– readFromFile:ofType: (page 968)
– writeToFile:ofType:originalFile:saveOperation: (page 995)

Declared In
NSDocument.h

writeToFile:ofType:originalFile:saveOperation:
Writes the receiver document’s contents to a file. (Deprecated in Mac OS X v10.4. Use
writeToURL:ofType:forSaveOperation:originalContentsURL:error: (page 997) instead.)

- (BOOL)writeToFile:(NSString *)fullDocumentPath ofType:(NSString *)docType
originalFile:(NSString *)fullOriginalDocumentPath
saveOperation:(NSSaveOperationType)saveOperationType

Instance Methods 995
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Discussion
This method is called from writeWithBackupToFile:ofType:saveOperation: (page 998) to actually
write the file of type docType to fullDocumentPath. fullOriginalDocumentPath is the path to the
original file if there is one and nil otherwise. The default implementation simply calls
writeToFile:ofType: (page 995). You should not need to call this method directly, but subclasses that
need access to the previously saved copy of their document while saving the new one can override this
method. The saveOperationType argument is one of the constants listed in “Constants” (page 999).

See “NSDocument Saving Behavior” (page 929) for additional information about saving documents.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSDocument.h

writeToURL:ofType:
Writes document data to a URL. (Deprecated in Mac OS X v10.4. Use writeToURL:ofType:error: (page
996) instead.)

- (BOOL)writeToURL:(NSURL *)aURL ofType:(NSString *)docType

Discussion
Writes document data of type docType to the URL aURL, returning whether the operation was successful.
This method only supports URLs of the file: scheme and calls writeToFile:ofType: (page 995).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSDocument.h

writeToURL:ofType:error:
Writes the contents of the document to a file or file package located by a URL, formatted to a specified type.

- (BOOL)writeToURL:(NSURL *)absoluteURL ofType:(NSString *)typeName error:(NSError
 **)outError

Parameters
absoluteURL

The location to which the document contents are written.

typeName
The string that identifies the document type.

outError
On return, If the document contents could not be written, a pointer to an error object that encapsulates
the reason they could not be written.

996 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Return Value
YES if the document contents could be written; otherwise, NO.

Discussion
The default implementation of this method just invokes [self fileWrapperOfType:typeName
error:outError] and writes the returned file wrapper to disk.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes [self writeToFile:[absoluteURL path] ofType:typeName] if
writeToFile:ofType: (page 995) is overridden and the URL uses the file: scheme.

Availability
Available in Mac OS X v10.4 and later.

See Also
– fileWrapperOfType:error: (page 951)
– dataOfType:error: (page 944)

Declared In
NSDocument.h

writeToURL:ofType:forSaveOperation:originalContentsURL:error:
Writes the contents of the document to a file or file package located by a URL.

- (BOOL)writeToURL:(NSURL *)absoluteURL ofType:(NSString *)typeName
forSaveOperation:(NSSaveOperationType)saveOperation originalContentsURL:(NSURL
 *)absoluteOriginalContentsURL error:(NSError **)outError

Parameters
absoluteURL

The location to which the document contents are written.

typeName
The string that identifies the document type.

saveOperation
The type of save operation.

absoluteOriginalContentsURL
The location of the previously saved copy of the document (if not nil).

outError
On return, If the document contents could not be written, a pointer to an error object that encapsulates
the reason they could not be written.

Return Value
YES if the document contents could be written; otherwise, NO.

Discussion
The default implementation of this method merely invokes [self writeToURL:absoluteURL
ofType:typeName error:outError]. You can override this method instead of one of the three simple
writing methods (writeToURL:ofType:error: (page 996),fileWrapperOfType:error: (page 951), and
dataOfType:error: (page 944)) if your document writing machinery needs access to the on-disk
representation of the document revision that is about to be overwritten. The value of absoluteURL is often
not the same as [self fileURL]. Other times it is not the same as the URL for the final save destination.

Instance Methods 997
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Likewise, absoluteOriginalContentsURL is often not the same value as [self fileURL]. If
absoluteOriginalContentsURL is nil, either the document has never been saved or the user deleted
the document file since it was opened.

For backward binary compatibility with Mac OS X v10.3 and earlier, if
writeToFile:ofType:originalFile:saveOperation: (page 995) is overridden and both URLs use the
file: scheme, the default implementation of this method instead invokes:

[self writeToFile:[absoluteURL path]
 ofType:typeName
 originalFile:[absoluteOriginalContentsURL path]
 saveOperation:aSaveOperation];

The save operation used in this case is never NSAutosaveOperation; NSSaveToOperation is used instead.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocument.h

writeWithBackupToFile:ofType:saveOperation:
This method is called by action methods to save document contents to a file. (Deprecated in Mac OS X v10.4.
Use writeSafelyToURL:ofType:forSaveOperation:error: (page 994) instead.)

- (BOOL)writeWithBackupToFile:(NSString *)fullDocumentPath ofType:(NSString *)docType
saveOperation:(NSSaveOperationType)saveOperationType

Discussion
This method is called by action methods like saveDocument: (page 976), saveDocumentAs: (page 977),
and saveDocumentTo: (page 977). It is responsible for handling backup of the existing file, if any, and removal
of that backup if keepBackupFile (page 958) returns NO. In between those two things, it calls
writeToFile:ofType:originalFile:saveOperation: (page 995) to write the document of typedocType
tofullDocumentPath. You should never need to callwriteWithBackupToFile:ofType:saveOperation:,
but subclasses that want to change the way the backup works can override it. The saveOperationType
argument is one of the constants listed in “Constants” (page 999).

If you override this method, you should invoke
fileAttributesToWriteToFile:ofType:saveOperation: (page 946) and set the variables returned
from this method when writing fullDocumentPath. NSFileManager changeFileAttributes:atPath:
can be used to do this.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

998 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Declared In
NSDocument.h

Constants

NSSaveOperationType
The following constants specify types of save operations. These values are used with method parameters of
type NSSaveOperationType. Depending on the method, those parameters can affect the title of the Save
panel, as well as the files displayed.

enum {
 NSSaveOperation = 0,
 NSSaveAsOperation = 1,
 NSSaveToOperation = 2
 NSAutosaveOperation = 3
};
typedef NSUInteger NSSaveOperationType;

Constants
NSSaveOperation

Specifies a Save operation, the overwriting of a document's file or file package with the document's
current contents.

Available in Mac OS X v10.0 and later.

Declared in NSDocument.h.

NSSaveAsOperation
Specifies a Save As operation, the writing of a document's current contents to a new file or file package,
and then making the just-written file or file package the document's current one.

Available in Mac OS X v10.0 and later.

Declared in NSDocument.h.

NSSaveToOperation
Specifies a Save To operation, the writing of a document's current contents to a new file or file package
without changing the document's current one.

Available in Mac OS X v10.0 and later.

Declared in NSDocument.h.

NSAutosaveOperation
Specifies an autosave operation, writing a document’s contents to a file or file package separate from
the document's current one, without changing the document's current one.

Available in Mac OS X v10.4 and later.

Declared in NSDocument.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocument.h

Constants 999
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

NSDocumentChangeType
Change counts indicate a document’s edit status. These constants indicate how a document should operate
on its change count and are passed to updateChangeCount: (page 988).

enum {
 NSChangeDone = 0,
 NSChangeUndone = 1,
 NSChangeCleared = 2,
 NSChangeReadOtherContents = 3,
 NSChangeAutosaved = 4,
 NSChangeRedone = 5
};
typedef NSUInteger NSDocumentChangeType;

Constants
NSChangeDone

Increment change count. The value to pass to updateChangeCount: (page 988) to indicate that a
single change has been done. For example, the built-in undo support of NSDocument passes this
value whenever a document receives an NSUndoManagerWillCloseUndoGroupNotification
from its own undo manager.

Available in Mac OS X v10.0 and later.

Declared in NSDocument.h.

NSChangeUndone
Decrement change count. A single change has been undone. For example, the built-in undo support
of NSDocument passes this value whenever a document receives an
NSUndoManagerDidUndoChangeNotification from its own undo manager.

Available in Mac OS X v10.0 and later.

Declared in NSDocument.h.

NSChangeCleared
Set change count to 0. The document has been synchronized with its file or file package. For example,
saveToURL:ofType:forSaveOperation:error: (page 980) passes this value for a successful
NSSaveOperation (page 999) or NSSaveAsOperation (page 999). The
revertDocumentToSaved: (page 971) method does too.

Available in Mac OS X v10.0 and later.

Declared in NSDocument.h.

NSChangeReadOtherContents
The document has been initialized with the contents of a file or file package other than the one whose
location would be returned by fileURL (page 951), and therefore can't possibly be synchronized with
its persistent representation. For example,initForURL:withContentsOfURL:ofType:error: (page
955) passes this value when the two passed-in URLs are not equal to indicate that an autosaved
document is being reopened.

Available in Mac OS X v10.4 and later.

Declared in NSDocument.h.

NSChangeAutosaved
The document's contents have been autosaved. For example,
saveToURL:ofType:forSaveOperation:error: (page 980) passes this value for a successful
NSAutosaveOperation (page 999).

Available in Mac OS X v10.4 and later.

Declared in NSDocument.h.

1000 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

NSChangeRedone
A single change has been redone. For example, the built-in undo support of NSDocument passes this
value whenever a document receives an NSUndoManagerDidRedoChangeNotification from its
own undo manager.

Available in Mac OS X v10.5 and later.

Declared in NSDocument.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocument.h

Constants 1001
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

1002 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 44

NSDocument Class Reference

Inherits from NSObject

Conforms to NSUserInterfaceValidations
NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSDocumentController.h

Companion guide Document-Based Applications Overview

Related sample code CIRAWFilterSample
QTAudioContextInsert
QTAudioExtractionPanel
QTKitPlayer
Quartz Composer WWDC 2005 TextEdit

Overview

An NSDocumentController object manages an application’s documents. As the first-responder target of
New and Open menu commands, it creates and opens documents and tracks them throughout a session of
the application. When opening documents, an NSDocumentController runs and manages the modal Open
panel. NSDocumentController objects also maintain and manage the mappings of document types,
extensions, and NSDocument subclasses as specified in the CFBundleDocumentTypes property loaded from
the information property list (Info.plist).

You can use various NSDocumentControllermethods to get a list of the current documents; get the current
document (which is the document whose window is currently key); get documents based on a given filename
or window; and find out about a document’s extension, type, display name, and document class.

In some situations, it is worthwhile to subclass NSDocumentController in non-NSDocument-based
applications to get some of its features. For example, the NSDocumentController management of the
Open Recent menu is useful in applications that don’t use subclasses of NSDocument.

Adopted Protocols

NSCoding

Overview 1003
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

encodeWithCoder:

initWithCoder:

Tasks

Obtaining the Shared Document Controller

+ sharedDocumentController (page 1008)
Returns the shared NSDocumentController instance.

Initializing a New NSDocumentController

– init (page 1017)
This method is the designated initializer for NSDocumentController.

Creating and Opening Documents

– documentForURL: (page 1014)
Returns, for a given URL, the open document whose file or file package is located by the URL, or nil
if there is no such open document.

– openUntitledDocumentAndDisplay:error: (page 1024)
Creates a new untitled document, presents its user interface if displayDocument is YES, and returns
the document if successful.

– makeUntitledDocumentOfType:error: (page 1020)
Instantiates a new untitled document of the specified type and returns it if successful.

– openDocumentWithContentsOfURL:display:error: (page 1023)
Opens a document located by the given URL presents its user interface if requested, and returns the
document if successful.

– makeDocumentWithContentsOfURL:ofType:error: (page 1019)
Instantiates a document located by a URL, of a specified type, and returns it if successful.

– reopenDocumentForURL:withContentsOfURL:error: (page 1027)
Reopens an autosaved document located by a URL, by reading the contents for the document from
another URL, presents its user interface, and returns YES if successful.

– makeDocumentForURL:withContentsOfURL:ofType:error: (page 1017)
Instantiates a document located by a URL, of a specified type, but by reading the contents for the
document from another URL, and returns it if successful.

Managing Documents

– documents (page 1015)
Returns the NSDocument objects managed by the receiver.

1004 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

– addDocument: (page 1009)
Adds the given document to the list of open documents.

– currentDocument (page 1011)
Returns the NSDocument object associated with the main window.

– documentForWindow: (page 1014)
Returns the document object whose window controller owns a specified window.

– hasEditedDocuments (page 1016)
Returns a Boolean value that indicates whether the receiver has any documents with unsaved changes.

– removeDocument: (page 1026)
Removes the given document from the list of open documents.

Managing Document Types

– documentClassNames (page 1013)
Returns the names of NSDocument subclasses supported by this application.

– defaultType (page 1011)
Returns the name of the document type that should be used when creating new documents.

– documentClassForType: (page 1012)
Returns the NSDocument subclass associated with a given document type.

– displayNameForType: (page 1012)
Returns the descriptive name for the specified document type, which is used in the File Format pop-up
menu of the Save As dialog.

– typeForContentsOfURL:error: (page 1030)
Returns, for a specified URL, the name of the document type that should be used when opening the
document at that location, if successful.

– fileExtensionsFromType: (page 1015) Deprecated in Mac OS X v10.5
Returns the allowable file extensions for the given document type. (Deprecated. Use the NSDocument
method fileNameExtensionForType:saveOperation: (page 949) instead.)

– typeFromFileExtension: (page 1030) Deprecated in Mac OS X v10.5
Returns the document type associated with files having extension fileExtensionOrHFSFileType.
(Deprecated. Use typeForContentsOfURL:error: (page 1030) instead.)

Autosaving

– autosavingDelay (page 1009)
Returns the time interval in seconds for periodic autosaving.

– setAutosavingDelay: (page 1028)
Sets the time interval in seconds for periodic autosaving.

Closing Documents

– closeAllDocumentsWithDelegate:didCloseAllSelector:contextInfo: (page 1010)
Iterates through all the open documents and tries to close them one by one using the specified
delegate.

Tasks 1005
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

– reviewUnsavedDocumentsWithAlertTitle:cancellable:delegate:didReviewAllSelector:contextInfo: (page
1027)

Displays an alert dialog asking if the user wants to review unsaved documents (only if there are two
or more unsaved documents), quit regardless of unsaved documents, or (if the choice is allowed)
cancel the impending save operation.

Responding to Action Messages

– newDocument: (page 1020)
An action method invoked by the New menu command, this method creates a new NSDocument
object and adds it to the list of such objects managed by the document controller.

– openDocument: (page 1021)
An action method invoked by the Open menu command, it runs the modal Open panel and, based
on the selected filenames, creates one or more NSDocument objects from the contents of the files.

– saveAllDocuments: (page 1028)
As the action method invoked by the Save All command, saves all open documents of the application
that need to be saved.

Managing the Open Panel

– runModalOpenPanel:forTypes: (page 1028)
Invokes the NSOpenPanel runModalForTypes: (page 1821) method, passing the openPanel object
and the file extensions associated with a document type.

– currentDirectory (page 1010)
Returns the directory path to be used as the starting point in the Open panel.

– URLsFromRunningOpenPanel (page 1031)
Creates an NSOpenPanel instance and initializes it appropriately.

Managing the Open Recent Menu

– maximumRecentDocumentCount (page 1020)
Returns the maximum number of items that may be presented in the standard Open Recent menu.

– clearRecentDocuments: (page 1009)
Empties the recent documents list for the application.

– noteNewRecentDocumentURL: (page 1021)
This method should be called by applications not based on NSDocument when they open or save
documents identified by the given URL.

– noteNewRecentDocument: (page 1021)
This method is called by NSDocument objects at appropriate times for managing the recent-documents
list.

– recentDocumentURLs (page 1026)
Returns the list of recent-document URLs.

1006 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Validating User Interface Items

– validateUserInterfaceItem: (page 1031)
Returns a Boolean value that indicates whether a given user interface item should be enabled.

Handling Errors

– presentError: (page 1025)
Presents an error alert to the user as a modal panel.

– presentError:modalForWindow:delegate:didPresentSelector:contextInfo: (page 1026)
Presents an error alert to the user as a modal panel.

– willPresentError: (page 1031)
Called when the receiver is about to present an error, returns the error that should actually be
presented.

Deprecated Methods

– documentForFileName: (page 1013) Deprecated in Mac OS X v10.4
Returns the document object for the file in which the document data is stored. (Deprecated. Use
documentForURL: (page 1014) instead.)

– fileNamesFromRunningOpenPanel (page 1016) Deprecated in Mac OS X v10.4
Returns a selection of files chosen by the user in the Open panel. (Deprecated. Use
URLsFromRunningOpenPanel (page 1031) instead.)

– makeDocumentWithContentsOfFile:ofType: (page 1017) Deprecated in Mac OS X v10.4
Creates and returns a document object of a given document type from the contents of a file.
(Deprecated. Use makeDocumentWithContentsOfURL:ofType:error: (page 1019) instead.)

– makeDocumentWithContentsOfURL:ofType: (page 1018) Deprecated in Mac OS X v10.4
Creates and returns a ocument object for the given document type from the contents of a given URL.
(Deprecated. Use makeDocumentWithContentsOfURL:ofType:error: (page 1019) instead.)

– makeUntitledDocumentOfType: (page 1019) Deprecated in Mac OS X v10.4
Creates and returns a document object for document type. (Deprecated. Use
makeUntitledDocumentOfType:error: (page 1020) instead.)

– openDocumentWithContentsOfFile:display: (page 1022) Deprecated in Mac OS X v10.4
Returns a document object created from the contents of a given file and optionally displays it.
(Deprecated. Use openDocumentWithContentsOfURL:display:error: (page 1023) instead.)

– openDocumentWithContentsOfURL:display: (page 1023) Deprecated in Mac OS X v10.4
Returns a document object created from the contents of a given URL and optionally displays it.
(Deprecated. Use openDocumentWithContentsOfURL:display:error: (page 1023) instead.)

– openUntitledDocumentOfType:display: (page 1024) Deprecated in Mac OS X v10.4
Returns a document object instantiated from the subclass of the given document type and optionally
displays it. (Deprecated. Use openUntitledDocumentAndDisplay:error: (page 1024) with
defaultType (page 1011) instead.)

Tasks 1007
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

– setShouldCreateUI: (page 1029) Deprecated in Mac OS X v10.4
Sets whether the window controllers of a document should be created when the document is created.
(Deprecated. Use the display parameter of openUntitledDocumentAndDisplay:error: (page
1024) or openDocumentWithContentsOfURL:display:error: (page 1023) instead.)

– shouldCreateUI (page 1029) Deprecated in Mac OS X v10.4
Returns a Boolean value that indicates whether the window controllers of a document should be
created when the document is created. (Deprecated. Use the display parameter of
openUntitledDocumentAndDisplay:error: (page 1024) or
openDocumentWithContentsOfURL:display:error: (page 1023) instead.)

Class Methods

sharedDocumentController
Returns the shared NSDocumentController instance.

+ (id)sharedDocumentController

Return Value
The shared NSDocumentController instance.

Discussion
If an NSDocumentController instance doesn’t exist yet, it is created.

Initialization reads in the document types from the CFBundleDocumentTypes property list (in Info.plist),
registers the instance for NSWorkspaceWillPowerOffNotification (page 3495)s, and turns on the flag
indicating that document user interfaces should be visible. You should always obtain your application’s
NSDocumentController using this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShouldCreateUI: (page 1029)

Related Sample Code
FunHouse
QTAudioContextInsert
QTAudioExtractionPanel
QTKitPlayer
Quartz Composer WWDC 2005 TextEdit

Declared In
NSDocumentController.h

1008 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Instance Methods

addDocument:
Adds the given document to the list of open documents.

- (void)addDocument:(NSDocument *)document

Discussion
The open... methods automatically call addDocument:. This method is mostly provided for subclasses
that want to know when documents arrive.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer
QTMetadataEditor

Declared In
NSDocumentController.h

autosavingDelay
Returns the time interval in seconds for periodic autosaving.

- (NSTimeInterval)autosavingDelay

Discussion
A value of 0 indicates that periodic autosaving should not be done at all. NSDocumentController uses this
number as the amount of time to wait between detecting that a document has unautosaved changes and
sending the document an
autosaveDocumentWithDelegate:didAutosaveSelector:contextInfo: (page 941) message. The
default value is 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAutosavingDelay: (page 1028)

Declared In
NSDocumentController.h

clearRecentDocuments:
Empties the recent documents list for the application.

Instance Methods 1009
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

- (IBAction)clearRecentDocuments:(id)sender

Discussion
This is the action for the Clear menu command, but it can be invoked directly if necessary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentController.h

closeAllDocumentsWithDelegate:didCloseAllSelector:contextInfo:
Iterates through all the open documents and tries to close them one by one using the specified delegate.

- (void)closeAllDocumentsWithDelegate:(id)delegate
didCloseAllSelector:(SEL)didCloseAllSelector contextInfo:(void *)contextInfo

Discussion
Each NSDocument object is sent
canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo: (page 943), which, if the
document is dirty, gives it a chance to refuse to close or to save itself first. This method may ask whether to
save or to perform a save.

The didCloseAllSelector callback method is invoked with YES if all documents are closed, and NO
otherwise. Pass the contextInfo object with the callback. The didCloseAllSelector callback method
should have the following signature:

- (void)documentController:(NSDocumentController *)docController didCloseAll:
 (BOOL)didCloseAll contextInfo:(void *)contextInfo

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentController.h

currentDirectory
Returns the directory path to be used as the starting point in the Open panel.

- (NSString *)currentDirectory

Discussion
The first valid directory from the following list is returned:

 ■ The directory location where the current document was last saved

 ■ The last directory visited in the Open panel

 ■ The user’s home directory

Availability
Available in Mac OS X v10.0 and later.

1010 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

See Also
– documentForFileName: (page 1013)

Declared In
NSDocumentController.h

currentDocument
Returns the NSDocument object associated with the main window.

- (id)currentDocument

Discussion
This method returns nil if it is called when its application is not active. This can occur during processing of
a drag-and-drop operation, for example, in an implementation of readSelectionFromPasteboard:. In
such a case, send the following message instead from an NSView subclass associated with the document:

[[[self window] windowController] document];

Availability
Available in Mac OS X v10.0 and later.

See Also
– documentForFileName: (page 1013)
– documentForWindow: (page 1014)
– documents (page 1015)

Related Sample Code
FinalCutPro_AppleEvents
FunHouse
QTAudioContextInsert
QTAudioExtractionPanel
QTKitPlayer

Declared In
NSDocumentController.h

defaultType
Returns the name of the document type that should be used when creating new documents.

- (NSString *)defaultType

Discussion
The default implementation of this method returns the first Editor type declared by the
CFBundleDocumentTypes array in the application's Info.plist, or returns nil if no Editor type is declared.
You can override it to customize the type of document that is created when, for instance, the user chooses
New in the File menu.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1011
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Related Sample Code
CIRAWFilterSample
ImageApp

Declared In
NSDocumentController.h

displayNameForType:
Returns the descriptive name for the specified document type, which is used in the File Format pop-up menu
of the Save As dialog.

- (NSString *)displayNameForType:(NSString *)documentTypeName

Parameters
documentTypeName

The name of a document type, specified by CFBundleTypeName in the application’s Info.plist
file.

Return Value
The descriptive name for the document type specified by documentTypeName. If there is no descriptive
name, returns documentTypeName.

Discussion
For a document-based application, supported document types are specified in the Info.plist file by the
CFBundleDocumentTypes array. Each document type is specified by a dictionary in this array, and is named
by the CFBundleTypeName attribute. You can provide a descriptive, localized, representation of this name
by providing a corresponding entry in the InfoPlist.strings file(s). For example, given an Info.plist
file that contains the following fragment:

<dict>
 <key>CFBundleDocumentTypes</key>
 <array>
 <dict>
 <key>CFBundleTypeName</key>
 <string>BinaryFile</string>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>binary</string>
 </array>

you could provide a descriptive name by adding an entry in the InfoPlist.strings file:

BinaryFile = "Binary file format";

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentController.h

documentClassForType:
Returns the NSDocument subclass associated with a given document type.

1012 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

- (Class)documentClassForType:(NSString *)documentTypeName

Parameters
documentTypeName

The name of a document type, specified by CFBundleTypeName in the application’s Info.plist
file.

The document type must be one the receiver can read.

Return Value
Returns the NSDocument subclass associated with documentTypeName. If the class cannot be found, returns
nil.

Discussion
Para

Availability
Available in Mac OS X v10.0 and later.

See Also
– displayNameForType: (page 1012)

Declared In
NSDocumentController.h

documentClassNames
Returns the names of NSDocument subclasses supported by this application.

- (NSArray *)documentClassNames

Return Value
The names of NSDocument subclasses supported by this application.

Discussion
The default implementation of this method returns information derived from the application's Info.plist
property list file. You can override it to return the names of document classes that are dynamically loaded
from plugins.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
ImageApp

Declared In
NSDocumentController.h

documentForFileName:
Returns the document object for the file in which the document data is stored. (Deprecated in Mac OS X
v10.4. Use documentForURL: (page 1014) instead.)

- (id)documentForFileName:(NSString *)fileName

Instance Methods 1013
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Discussion
The fileName argument is a fully qualified path in the file system. Returns nil if no document can be found.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– documentForWindow: (page 1014)
– documents (page 1015)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitAdvancedDocument
QTKitImport
QTKitPlayer

Declared In
NSDocumentController.h

documentForURL:
Returns, for a given URL, the open document whose file or file package is located by the URL, or nil if there
is no such open document.

- (id)documentForURL:(NSURL *)absoluteURL

Discussion
The default implementation of this method queries each open document to find one whose URL matches,
and returns the first one whose URL does match.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes documentForFileName: (page 1013) if it is overridden and the URL uses the file: scheme.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QTKitCreateMovie
QTKitFrameStepper
QTMetadataEditor

Declared In
NSDocumentController.h

documentForWindow:
Returns the document object whose window controller owns a specified window.

- (id)documentForWindow:(NSWindow *)window

1014 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Return Value
The document object whose window controller owns window. Returns nil if window is nil, if window has
no window controller, or if the window controller does not have an association with an instance of
NSDocument.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentDocument (page 1011)
– documentForFileName: (page 1013)
– documents (page 1015)

Related Sample Code
ImageApp

Declared In
NSDocumentController.h

documents
Returns the NSDocument objects managed by the receiver.

- (NSArray *)documents

Return Value
The NSDocument objects managed by the receiver. If there are currently no documents, returns an empty
NSArray object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentDocument (page 1011)
– documentForFileName: (page 1013)
– documentForWindow: (page 1014)

Related Sample Code
DemoMonkey
QTAudioExtractionPanel

Declared In
NSDocumentController.h

fileExtensionsFromType:
Returns the allowable file extensions for the given document type. (Deprecated in Mac OS X v10.5. Use the
NSDocument method fileNameExtensionForType:saveOperation: (page 949) instead.)

- (NSArray *)fileExtensionsFromType:(NSString *)documentTypeName

Instance Methods 1015
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Parameters
documentTypeName

The name of a document type, specified by CFBundleTypeName in the application’s Info.plist
file.

Return Value
The allowable file extensions (as NSString objects) for documentTypeName.

Discussion
Type extensions are specified by the CFBundleTypeExtensions array for the given type in the Info.plist
file.

The first string in the returned array is typically the most common extension. The array may also contain
encoded HFS file types as will as filename extensions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– displayNameForType: (page 1012)

Declared In
NSDocumentController.h

fileNamesFromRunningOpenPanel
Returns a selection of files chosen by the user in the Open panel. (Deprecated in Mac OS X v10.4. Use
URLsFromRunningOpenPanel (page 1031) instead.)

- (NSArray *)fileNamesFromRunningOpenPanel

Discussion
Each file in the returned NSArray is a fully qualified path to the file’s location in the file system. This method
is invoked byopenDocument: (page 1021), and it invokesrunModalOpenPanel:forTypes: (page 1028) after
initializing the Open panel (which includes getting the starting directory with currentDirectory (page
1010)). Returns nil if the user cancels the Open panel or makes no selection.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSDocumentController.h

hasEditedDocuments
Returns a Boolean value that indicates whether the receiver has any documents with unsaved changes.

- (BOOL)hasEditedDocuments

Return Value
YES if the receiver has any documents with unsaved changes, otherwise NO.

1016 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– documents (page 1015)

Declared In
NSDocumentController.h

init
This method is the designated initializer for NSDocumentController.

- (id)init

Discussion
The first instance of NSDocumentController or any of its subclasses that is created becomes the shared
instance.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentController.h

makeDocumentForURL:withContentsOfURL:ofType:error:
Instantiates a document located by a URL, of a specified type, but by reading the contents for the document
from another URL, and returns it if successful.

- (id)makeDocumentForURL:(NSURL *)absoluteDocumentURL withContentsOfURL:(NSURL
*)absoluteDocumentContentsURL ofType:(NSString *)typeName error:(NSError
**)outError

Discussion
The URL is specified by absoluteDocumentURL, the type by typeName, and the other URL providing the
contents by absoluteDocumentContentsURL. If not successful, the method returns nil after setting
outError to point to an NSError object that encapsulates the reason why the document could not be
instantiated. The default implementation of this method invokes documentClassForType: (page 1012) to
find out the class of document to instantiate, allocates a document object, and initializes it by sending it an
initForURL:withContentsOfURL:ofType:error: (page 955) message.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocumentController.h

makeDocumentWithContentsOfFile:ofType:
Creates and returns a document object of a given document type from the contents of a file. (Deprecated
in Mac OS X v10.4. Use makeDocumentWithContentsOfURL:ofType:error: (page 1019) instead.)

Instance Methods 1017
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

- (id)makeDocumentWithContentsOfFile:(NSString *)fileName ofType:(NSString *)docType

Discussion
Creates and returns an NSDocument object for document type docType from the contents of the file
fileName, which must be a fully qualified path. The returned object is not retained. Returns nil if the
NSDocument subclass for docType couldn’t be determined or if the object couldn’t be created. This method
invokes the NSDocument method initWithContentsOfFile:ofType: (page 956) and is invoked by
openDocumentWithContentsOfFile:display: (page 1022).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– makeUntitledDocumentOfType: (page 1019)
– openDocument: (page 1021)

Related Sample Code
QTKitImport

Declared In
NSDocumentController.h

makeDocumentWithContentsOfURL:ofType:
Creates and returns a ocument object for the given document type from the contents of a given URL.
(Deprecated in Mac OS X v10.4. Use makeDocumentWithContentsOfURL:ofType:error: (page 1019)
instead.)

- (id)makeDocumentWithContentsOfURL:(NSURL *)aURL ofType:(NSString *)docType

Discussion
Creates and returns an NSDocument object for document type docType from the contents of aURL. The
returned object is not retained. Returns nil if the NSDocument subclass for docType couldn’t be determined
or if the object couldn’t be created. This method invokes the NSDocument method
initWithContentsOfURL:ofType: (page 956) and is invoked by
openDocumentWithContentsOfURL:display: (page 1023).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– makeUntitledDocumentOfType: (page 1019)
– makeUntitledDocumentOfType:error: (page 1020)
– openDocument: (page 1021)

Related Sample Code
QTAudioExtractionPanel

Declared In
NSDocumentController.h

1018 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

makeDocumentWithContentsOfURL:ofType:error:
Instantiates a document located by a URL, of a specified type, and returns it if successful.

- (id)makeDocumentWithContentsOfURL:(NSURL *)absoluteURL ofType:(NSString *)typeName
error:(NSError **)outError

Discussion
The URL is specified by absoluteURL and the document type by typeName. If not successful, the method
returns nil after setting outError to point to an NSError that encapsulates the reason why the document
could not be instantiated. The default implementation of this method invokes
documentClassForType: (page 1012) to find out the class of document to instantiate, allocates a document
object, and initializes it by sending it an initWithContentsOfURL:ofType:error: (page 957) message.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes makeDocumentWithContentsOfFile:ofType: (page 1017) if it is overridden and the URL
uses the file: scheme.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QTKitPlayer

Declared In
NSDocumentController.h

makeUntitledDocumentOfType:
Creates and returns a document object for document type. (Deprecated in Mac OS X v10.4. Use
makeUntitledDocumentOfType:error: (page 1020) instead.)

- (id)makeUntitledDocumentOfType:(NSString *)type

Discussion
Creates and returns an NSDocument object for document type type. The returned object is not retained.
Returns nil if the NSDocument subclass for type couldn’t be determined or if the object couldn’t be created.
This method invokes the NSDocument init (page 954) method and is invoked by
openUntitledDocumentOfType:display: (page 1024).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– makeDocumentWithContentsOfFile:ofType: (page 1017)
– newDocument: (page 1020)

Declared In
NSDocumentController.h

Instance Methods 1019
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

makeUntitledDocumentOfType:error:
Instantiates a new untitled document of the specified type and returns it if successful.

- (id)makeUntitledDocumentOfType:(NSString *)typeName error:(NSError **)outError

Discussion
The document type is specified by typeName. If not successful, the method returns nil after setting outError
to point to an NSError object that encapsulates the reason why a new untitled document could not be
instantiated. The default implementation of this method invokes documentClassForType: (page 1012) to
find out the class of document to instantiate, then allocates and initializes a document by sending it
initWithType:error: (page 957).

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes makeUntitledDocumentOfType: (page 1019) if it is overridden.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocumentController.h

maximumRecentDocumentCount
Returns the maximum number of items that may be presented in the standard Open Recent menu.

- (NSUInteger)maximumRecentDocumentCount

Discussion
A value of 0 indicates that NSDocumentController will not attempt to add an Open Recent menu to your
application's File menu, although NSDocumentControllerwill not attempt to remove any preexisting Open
Recent menu item. The default implementation returns a value that is subject to change and may or may
not be derived from a setting made by the user in System Preferences.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocumentController.h

newDocument:
An action method invoked by the New menu command, this method creates a new NSDocument object and
adds it to the list of such objects managed by the document controller.

- (IBAction)newDocument:(id)sender

Discussion
This method invokes openUntitledDocumentAndDisplay:error: (page 1024), as described in “Message
Flow in the Document Architecture”.

Availability
Available in Mac OS X v10.0 and later.

1020 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

See Also
– openDocument: (page 1021)

Declared In
NSDocumentController.h

noteNewRecentDocument:
This method is called by NSDocument objects at appropriate times for managing the recent-documents list.

- (void)noteNewRecentDocument:(NSDocument *)aDocument

Discussion
This method constructs a URL and callsnoteNewRecentDocumentURL: (page 1021). Subclasses might override
this method to prevent certain documents or kinds of documents from getting into the list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentController.h

noteNewRecentDocumentURL:
This method should be called by applications not based on NSDocumentwhen they open or save documents
identified by the given URL.

- (void)noteNewRecentDocumentURL:(NSURL *)aURL

Discussion
NSDocument automatically calls this method when appropriate for NSDocument-based applications.
Applications not based on NSDocument must also implement the application:openFile: method in
the application delegate to handle requests from the Open Recent menu command. You can override this
method in an NSDocument-based application to prevent certain kinds of documents from getting into the
list (but you have to identify them by URL).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSDocumentController.h

openDocument:
An action method invoked by the Open menu command, it runs the modal Open panel and, based on the
selected filenames, creates one or more NSDocument objects from the contents of the files.

- (IBAction)openDocument:(id)sender

Instance Methods 1021
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Discussion
The method adds the newly created objects to the list of NSDocument objects managed by the document
controller. This method invokes openDocumentWithContentsOfURL:display:error: (page 1023), which
actually creates the NSDocument objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileNamesFromRunningOpenPanel (page 1016)
– newDocument: (page 1020)

Related Sample Code
CIRAWFilterSample

Declared In
NSDocumentController.h

openDocumentWithContentsOfFile:display:
Returns a document object created from the contents of a given file and optionally displays it. (Deprecated
in Mac OS X v10.4. Use openDocumentWithContentsOfURL:display:error: (page 1023) instead.)

- (id)openDocumentWithContentsOfFile:(NSString *)fileName display:(BOOL)flag

Discussion
Returns an NSDocument object created from the contents of the file fileName (an absolute path) and
displays it if flag is YES. The returned object is not retained, but is added to the receiver’s list of managed
documents. Returns nil if the object could not be created, typically because fileName does not point to
a valid file or because there is no NSDocument subclass for the document type (as indicated by the file
extension or HFS file type). Even if flag is YES, the document is not displayed if shouldCreateUI (page
1029) returnsNO. This method invokesmakeDocumentWithContentsOfFile:ofType: (page 1017) to obtain
the created NSDocument object. If you override this method, your implementation should be prepared to
handle either YES or NO.

To handle an Open Documents Apple event, the Application Kit’s built-in Apple event handling automatically
invokes this method with the path to the file to open and a display argument.

Invoked with a display argument of YES instead of NO when a Print Documents Apple event is handled. This
may have been handled differently in versions of Mac OS X prior to version 10.3.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– openDocument: (page 1021)
– openUntitledDocumentOfType:display: (page 1024)
– setShouldCreateUI: (page 1029)

Related Sample Code
ColorMatching
QTAudioContextInsert

1022 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

QTAudioExtractionPanel
QTKitPlayer
QTMetadataEditor

Declared In
NSDocumentController.h

openDocumentWithContentsOfURL:display:
Returns a document object created from the contents of a given URL and optionally displays it. (Deprecated
in Mac OS X v10.4. Use openDocumentWithContentsOfURL:display:error: (page 1023) instead.)

- (id)openDocumentWithContentsOfURL:(NSURL *)aURL display:(BOOL)flag

Discussion
Returns an NSDocument object created from the contents of aURL and displays it if flag is YES. The returned
object is not retained, but is added to the receiver’s list of managed documents. Returns nil if the object
could not be created, typically because aURL does not point to a valid location or because there is no
NSDocument subclass for the document type. Even if flag is YES, the document is not displayed if
shouldCreateUI (page 1029) returns NO. This method invokes
makeDocumentWithContentsOfURL:ofType: (page 1018) to obtain the created NSDocument object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– openDocument: (page 1021)
– openUntitledDocumentOfType:display: (page 1024)
– setShouldCreateUI: (page 1029)

Declared In
NSDocumentController.h

openDocumentWithContentsOfURL:display:error:
Opens a document located by the given URL presents its user interface if requested, and returns the document
if successful.

- (id)openDocumentWithContentsOfURL:(NSURL *)absoluteURL
display:(BOOL)displayDocument error:(NSError **)outError

Discussion
If not successful, the method returns nil after setting outError to point to an NSError object that
encapsulates the reason why the document could not be opened.

The default implementation of this method checks to see if the document is already open according to
documentForURL: (page 1014), and if it is not open determines the type of the document, invokes
makeDocumentWithContentsOfURL:ofType:error: (page 1019) to instantiate it, then invokes
addDocument: (page 1009) to record its opening, and sends the document makeWindowControllers (page
961) and showWindows (page 987) messages if displayDocument is YES. If the document is already open it
is just sent a showWindows (page 987) message if displayDocument is YES.

Instance Methods 1023
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes openDocumentWithContentsOfFile:display: (page 1022), if it is overridden and the URL
uses the file: scheme.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Reviews

Declared In
NSDocumentController.h

openUntitledDocumentAndDisplay:error:
Creates a new untitled document, presents its user interface if displayDocument is YES, and returns the
document if successful.

- (id)openUntitledDocumentAndDisplay:(BOOL)displayDocument error:(NSError **)outError

Discussion
If not successful, the method returns nil after setting outError to point to an NSError that encapsulates
the reason why a new untitled document could not be created.

The default implementation of this method invokes defaultType (page 1011) to determine the type of new
document to create, invokes makeUntitledDocumentOfType:error: (page 1020) to create it, then invokes
addDocument: (page 1009) to record its opening. IfdisplayDocument isYES, it then sends the new document
makeWindowControllers (page 961) and showWindows (page 987) messages.

For backward binary compatibility with Mac OS X v10.3 and earlier, the default implementation of this method
instead invokes openUntitledDocumentOfType:display: (page 1024) if it is overridden.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
FinalCutPro_AppleEvents
iSpend

Declared In
NSDocumentController.h

openUntitledDocumentOfType:display:
Returns a document object instantiated from the subclass of the given document type and optionally displays
it. (Deprecated in Mac OS X v10.4. Use openUntitledDocumentAndDisplay:error: (page 1024) with
defaultType (page 1011) instead.)

- (id)openUntitledDocumentOfType:(NSString *)docType display:(BOOL)display

1024 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Discussion
Returns an NSDocument object instantiated from the NSDocument subclass required by document type
docType and displays it if flag is YES. The returned object is not retained, but is added to the receiver’s list
of managed documents. Returns nil if the object could not be created, typically because no NSDocument
subclass could be found for docType. Even if flag is YES, the document is not displayed if
shouldCreateUI (page 1029) returnsNO. This method invokesmakeUntitledDocumentOfType: (page 1019)
to obtain the created NSDocument object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– newDocument: (page 1020)
– openDocumentWithContentsOfFile:display: (page 1022)
– setShouldCreateUI: (page 1029)

Declared In
NSDocumentController.h

presentError:
Presents an error alert to the user as a modal panel.

- (BOOL)presentError:(NSError *)error

Discussion
Returns YES if error recovery was done, NO otherwise. This method does not return until the user dismisses
the alert and, if the error has recovery options and a recovery delegate, the error's recovery delegate is sent
an attemptRecoveryFromError:optionIndex: message.

The default NSDocumentController implementation of this method is equivalent to that of NSResponder
while treating the application object as the next responder and forwarding error presentation messages to
it. (The default NSDocument implementation of this method treats the shared NSDocumentController
instance as the next responder and forwards these messages to it.) The default implementations of several
NSDocumentController methods invoke this method.

The default implementation of this method invokes willPresentError: (page 1031) to give subclasses an
opportunity to customize error presentation. You should not override this method but should instead override
willPresentError: (page 1031).

Availability
Available in Mac OS X v10.4 and later.

See Also
– willPresentError: (page 1031)
– presentError:modalForWindow:delegate:didPresentSelector:contextInfo: (page 1026)

Declared In
NSDocumentController.h

Instance Methods 1025
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

presentError:modalForWindow:delegate:didPresentSelector:contextInfo:
Presents an error alert to the user as a modal panel.

- (void)presentError:(NSError *)error modalForWindow:(NSWindow *)window
delegate:(id)delegate didPresentSelector:(SEL)didPresentSelector
contextInfo:(void *)contextInfo

Discussion
When the user dismisses the alert and any recovery possible for the error and chosen by the user has been
attempted, sends the message didPresentSelector to the specified delegate. The method selected by
didPresentSelector must have the same signature as:

- (void)didPresentErrorWithRecovery:(BOOL)didRecover contextInfo:(void
*)contextInfo;

The default NSDocumentController implementation of this method is equivalent to that of NSResponder
while treating the application object as the next responder and forwarding error presentation messages to
it. (The default NSDocument implementation of this method treats the shared NSDocumentController
instance as the next responder and forwards these messages to it.)

The default implementation of this method invokes willPresentError: (page 1031) to give subclasses an
opportunity to customize error presentation. You should not override this method but should instead override
willPresentError: (page 1031).

Availability
Available in Mac OS X v10.4 and later.

See Also
– willPresentError: (page 1031)
– presentError: (page 1025)

Declared In
NSDocumentController.h

recentDocumentURLs
Returns the list of recent-document URLs.

- (NSArray *)recentDocumentURLs

Discussion
This method is not a good one to override since the internals of NSDocumentController do not generally
use it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentController.h

removeDocument:
Removes the given document from the list of open documents.

1026 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

- (void)removeDocument:(NSDocument *)document

Discussion
A document will automatically call removeDocument: (page 1026) when it closes. This method is mostly
provided for subclasses that want to know when documents close.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend

Declared In
NSDocumentController.h

reopenDocumentForURL:withContentsOfURL:error:
Reopens an autosaved document located by a URL, by reading the contents for the document from another
URL, presents its user interface, and returns YES if successful.

- (BOOL)reopenDocumentForURL:(NSURL *)absoluteDocumentURL withContentsOfURL:(NSURL
 *)absoluteDocumentContentsURL error:(NSError **)outError

Discussion
The document is located by absoluteDocumentURL and the contents are read from
absoluteDocumentContentsURL. If not successful, the method returns NO after setting outError to point
to an NSError object that encapsulates the reason why the document could not be reopened.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocumentController.h

reviewUnsavedDocumentsWithAlertTitle:cancellable:delegate:didReviewAllSelector:
contextInfo:
Displays an alert dialog asking if the user wants to review unsaved documents (only if there are two or more
unsaved documents), quit regardless of unsaved documents, or (if the choice is allowed) cancel the impending
save operation.

- (void)reviewUnsavedDocumentsWithAlertTitle:(NSString *)title
cancellable:(BOOL)cancellable delegate:(id)delegate
didReviewAllSelector:(SEL)didReviewAllSelector contextInfo:(void *)contextInfo

Discussion
Assigns delegate to the panel. Invokes didReviewAllSelector with YES if quit without saving is chosen
or if there are no dirty documents, and NO otherwise. If the user selects the “Review Unsaved” option,
closeAllDocumentsWithDelegate:didCloseAllSelector:contextInfo: (page 1010) is invoked. This
method is invoked when the user chooses the Quit menu command, and also when the computer power is
being turned off. Note that title is ignored. Pass the contextInfo object with the callback.

The didReviewAllSelector callback method should have the following signature:

Instance Methods 1027
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

- (void)documentController:(NSDocumentController *)docController didReviewAll:
 (BOOL)didReviewAll contextInfo:(void *)contextInfo

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentController.h

runModalOpenPanel:forTypes:
Invokes the NSOpenPanel runModalForTypes: (page 1821) method, passing the openPanel object and
the file extensions associated with a document type.

- (NSInteger)runModalOpenPanel:(NSOpenPanel *)openPanel forTypes:(NSArray
*)extensions

Discussion
This method is invoked by theURLsFromRunningOpenPanel (page 1031) method. Theextensionsparameter
may also contain encoded HFS file types as well as filename extensions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentController.h

saveAllDocuments:
As the action method invoked by the Save All command, saves all open documents of the application that
need to be saved.

- (IBAction)saveAllDocuments:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– saveDocument: (page 976) (NSDocument)

Declared In
NSDocumentController.h

setAutosavingDelay:
Sets the time interval in seconds for periodic autosaving.

- (void)setAutosavingDelay:(NSTimeInterval)autosavingDelay

1028 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Discussion
A value of 0 indicates that periodic autosaving should not be done at all. NSDocumentController uses this
number as the amount of time to wait between detecting that a document has unautosaved changes and
sending the document an
autosaveDocumentWithDelegate:didAutosaveSelector:contextInfo: (page 941) message. The
default value is 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
– autosavingDelay (page 1009)

Related Sample Code
Sketch+Accessibility

Declared In
NSDocumentController.h

setShouldCreateUI:
Sets whether the window controllers of a document should be created when the document is created.
(Deprecated in Mac OS X v10.4. Use the display parameter of
openUntitledDocumentAndDisplay:error: (page 1024) or
openDocumentWithContentsOfURL:display:error: (page 1023) instead.)

- (void)setShouldCreateUI:(BOOL)flag

Discussion
Sets whether the window controllers (NSWindowController instances) of a document should be created
when the document is created. When a window controller is created, it loads the nib file containing the
window it manages. Often flag is set to NO for scripting or searching operations involving the document’s
data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– shouldCreateUI (page 1029)

Declared In
NSDocumentController.h

shouldCreateUI
Returns a Boolean value that indicates whether the window controllers of a document should be created
when the document is created. (Deprecated in Mac OS X v10.4. Use the display parameter of
openUntitledDocumentAndDisplay:error: (page 1024) or
openDocumentWithContentsOfURL:display:error: (page 1023) instead.)

- (BOOL)shouldCreateUI

Instance Methods 1029
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Return Value
A Boolean value that indicates whether the window controllers (NSWindowController instances) of a
document should be created when the document is created.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– setShouldCreateUI: (page 1029)

Declared In
NSDocumentController.h

typeForContentsOfURL:error:
Returns, for a specified URL, the name of the document type that should be used when opening the document
at that location, if successful.

- (NSString *)typeForContentsOfURL:(NSURL *)inAbsoluteURL error:(NSError **)outError

Discussion
The URL is represented by absoluteURL. If not successful, the method returns nil after setting outError
to point to an NSError object that encapsulates the reason why the document type could not be determined,
or the fact that the document type is unrecognized.

You can override this method to customize type determination for documents being opened.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSDocumentController.h

typeFromFileExtension:
Returns the document type associated with files having extension fileExtensionOrHFSFileType.
(Deprecated in Mac OS X v10.5. Use typeForContentsOfURL:error: (page 1030) instead.)

- (NSString *)typeFromFileExtension:(NSString *)fileExtensionOrHFSFileType

Discussion
The fileExtensionOrHFSFileType parameter may also be an encoded HFS file type, as well as a filename
extension.

This method only works when passed a file name extension used in a CFBundleDocumentTypes entry that
does not have an LSItemContentTypes subentry.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

1030 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

See Also
– displayNameForType: (page 1012)

Declared In
NSDocumentController.h

URLsFromRunningOpenPanel
Creates an NSOpenPanel instance and initializes it appropriately.

- (NSArray *)URLsFromRunningOpenPanel

Discussion
This method uses runModalOpenPanel:forTypes: (page 1028) to run the open panel. Returns the chosen
files as an array of URLs. Returns nil if the user cancels the Open panel or makes no selection.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentController.h

validateUserInterfaceItem:
Returns a Boolean value that indicates whether a given user interface item should be enabled.

- (BOOL)validateUserInterfaceItem:(id < NSValidatedUserInterfaceItem >)anItem

Parameters
anItem

The user interface item to validate. You can send anItem the action (page 3925) and tag (page 3926)
messages.

Return Value
YES if anItem should be enabled, otherwise NO.

Discussion
Subclasses can override this method to perform additional validations. Subclasses should call super in their
implementation for items they don’t handle themselves.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDocumentController.h

willPresentError:
Called when the receiver is about to present an error, returns the error that should actually be presented.

- (NSError *)willPresentError:(NSError *)error

Instance Methods 1031
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Discussion
The default implementation of this method merely returns the passed-in error. The returned error may simply
be forwarded to the application object.

You can override this method to customize the presentation of errors by examining the passed-in error and,
for example, returning more specific information. When you override this method always check the NSError
object's domain and code to discriminate between errors whose presentation you want to customize and
those you don't. For errors you don't want to customize, call the superclass implementation, passing the
original error.

Availability
Available in Mac OS X v10.4 and later.

See Also
– presentError: (page 1025)
– presentError:modalForWindow:delegate:didPresentSelector:contextInfo: (page 1026)

Declared In
NSDocumentController.h

1032 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 45

NSDocumentController Class Reference

Inherits from NSResponder : NSObject

Conforms to NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSDrawer.h

Companion guide Drawers

Related sample code CocoaAUHost
DrawerMadness
PDFKitLinker2
QTAudioExtractionPanel

Overview

An NSDrawer object is a user interface element that contains and displays view objects including NSTextView,
NSScrollView, NSBrowser, and other classes that inherit from NSView. A drawer is associated with a
window, called its parent, and can appear only while its parent is visible onscreen. A drawer cannot be moved
or ordered independently of a window, but is instead attached to one edge of its parent and moves along
with it.

Tasks

Creating Drawers

– initWithContentSize:preferredEdge: (page 1037)
Creates a new drawer with the given size on the specified edge of the parent window.

– delegate (page 1037)
Returns the receiver’s delegate.

– setDelegate: (page 1042)
Sets the receiver’s delegate.

Overview 1033
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

Opening and Closing Drawers

– close (page 1035)
If the receiver is open, this method closes it.

– close: (page 1036)
An action method to close the receiver.

– open (page 1039)
If the receiver is closed, this method opens it.

– open: (page 1039)
An action method to open the drawer.

– openOnEdge: (page 1040)
Causes the receiver to open on the specified edge of the parent window.

– toggle: (page 1045)
Toggles the drawer open or closed.

– state (page 1044)
Returns the state of the receiver.

Managing Drawer Size

– contentSize (page 1036)
Returns the size of the receiver’s content area.

– leadingOffset (page 1038)
Returns the receiver’s leading offset.

– maxContentSize (page 1038)
Returns the maximum allowed size of the receiver’s content area.

– minContentSize (page 1039)
Returns the minimum allowed size of the receiver’s content area.

– setContentSize: (page 1041)
Sets the size of the receiver’s content area.

– setLeadingOffset: (page 1042)
Sets the receiver’s leading offset.

– setMaxContentSize: (page 1042)
Specifies the maximum size of the receiver’s content area.

– setMinContentSize: (page 1043)
Specifies the minimum size of the receiver’s content area.

– setTrailingOffset: (page 1044)
Sets the receiver’s trailing offset.

– trailingOffset (page 1045)
Returns the receiver’s trailing offset.

1034 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

Managing Drawer Edges

– edge (page 1037)
Returns the edge of the window that the receiver is connected to.

– preferredEdge (page 1040)
Returns the receiver’s preferred, or default, edge.

– setPreferredEdge: (page 1044)
Sets the receiver’s preferred, or default, edge.

Managing Drawer Views

– contentView (page 1036)
Returns the receiver’s content view.

– parentWindow (page 1040)
Returns the receiver’s parent window.

– setContentView: (page 1041)
Sets the receiver’s content view.

– setParentWindow: (page 1043)
Sets the receiver’s parent window.

Instance Methods

close
If the receiver is open, this method closes it.

- (void)close

Discussion
Calling close on a closed drawer does nothing. You can get the state of a drawer by sending it state (page
1044).

Availability
Available in Mac OS X v10.0 and later.

See Also
– open (page 1039)

Related Sample Code
DrawerMadness

Declared In
NSDrawer.h

Instance Methods 1035
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

close:
An action method to close the receiver.

- (void)close:(id)sender

Parameters
sender

A user interface element, such as a button or menu item, that invokes the action method.

Discussion
This method is an action method and likely would not be invoked programatically. Rather, it is an action that
is commonly connected in Interface Builder.

Availability
Available in Mac OS X v10.0 and later.

See Also
– open: (page 1039)

Declared In
NSDrawer.h

contentSize
Returns the size of the receiver’s content area.

- (NSSize)contentSize

Return Value
The size of the receiver’s content area.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContentSize: (page 1041)
– setMaxContentSize: (page 1042)
– setMinContentSize: (page 1043)

Declared In
NSDrawer.h

contentView
Returns the receiver’s content view.

- (NSView *)contentView

Return Value
The receiver’s content view.

Availability
Available in Mac OS X v10.0 and later.

1036 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

See Also
– setContentView: (page 1041)

Declared In
NSDrawer.h

delegate
Returns the receiver’s delegate.

- (id < NSDrawerDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 1042)

Declared In
NSDrawer.h

edge
Returns the edge of the window that the receiver is connected to.

- (NSRectEdge)edge

Return Value
The edge of the parent window at which the drawer is attached. See “Constants” (page 1046) for a list of edge
constants and locations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDrawer.h

initWithContentSize:preferredEdge:
Creates a new drawer with the given size on the specified edge of the parent window.

- (id)initWithContentSize:(NSSize)contentSize preferredEdge:(NSRectEdge)edge

Parameters
contentSize

The size of the new drawer.

edge
The edge to which to attach the new drawer.

Instance Methods 1037
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

Discussion
You must specify the parent window and content view of the drawer using the methods in this class. When
you create a drawer in Interface Builder, this constructor is invoked. The NSDrawer Inspector in Interface
Builder allows you to set the edge, and you can specify the size by changing the content view in Interface
Builder.

See Positioning and Sizing a Drawer for additional detail on content size and drawer positioning.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DrawerMadness

Declared In
NSDrawer.h

leadingOffset
Returns the receiver’s leading offset.

- (CGFloat)leadingOffset

Return Value
The receiver’s leading offset. This is the distance from the top or left edge of the parent window to the drawer.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLeadingOffset: (page 1042)

Declared In
NSDrawer.h

maxContentSize
Returns the maximum allowed size of the receiver’s content area.

- (NSSize)maxContentSize

Return Value
The maximum size of the receiver’s content area. This is useful for determining if an opened drawer would
fit onscreen given the current window position.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaxContentSize: (page 1042)

Declared In
NSDrawer.h

1038 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

minContentSize
Returns the minimum allowed size of the receiver’s content area.

- (NSSize)minContentSize

Return Value
The minimum size of the receiver’s content area.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMinContentSize: (page 1043)

Declared In
NSDrawer.h

open
If the receiver is closed, this method opens it.

- (void)open

Discussion
Calling open on an open drawer does nothing. You can get the state of a drawer by sending it state (page
1044). If an edge is not specified, an attempt will be made to choose an edge based on the space available to
display the drawer onscreen. If you need to ensure that a drawer opens on a particular edge, use
openOnEdge: (page 1040).

Availability
Available in Mac OS X v10.0 and later.

See Also
– close (page 1035)

Declared In
NSDrawer.h

open:
An action method to open the drawer.

- (void)open:(id)sender

Parameters
sender

A user interface element, such as a button or menu item, that invokes the action method.

Discussion
This method is an action method and likely would not be invoked programatically. Rather, it is an action that
is commonly connected in Interface Builder.

Instance Methods 1039
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– close: (page 1036)

Declared In
NSDrawer.h

openOnEdge:
Causes the receiver to open on the specified edge of the parent window.

- (void)openOnEdge:(NSRectEdge)edge

Parameters
edge

The edge of the parent window on which to open the receiver. See “Constants” (page 1046) for a list
of edge constants and locations.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DrawerMadness

Declared In
NSDrawer.h

parentWindow
Returns the receiver’s parent window.

- (NSWindow *)parentWindow

Return Value
The receiver’s parent window. By definition, a drawer can appear onscreen only if it has a parent.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setParentWindow: (page 1043)

Declared In
NSDrawer.h

preferredEdge
Returns the receiver’s preferred, or default, edge.

- (NSRectEdge)preferredEdge

1040 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

Return Value
The receiver’s preferred edge. If a drawer is told to open and an edge is not specified at that time, it opens
on its preferred edge. When you a create a drawer with Interface Builder, the preferred edge is set to the left
by default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPreferredEdge: (page 1044)

Declared In
NSDrawer.h

setContentSize:
Sets the size of the receiver’s content area.

- (void)setContentSize:(NSSize)size

Parameters
size

The new size of the receiver’s content area. See Positioning and Sizing a Drawer for additional detail.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentSize (page 1036)
– setMaxContentSize: (page 1042)
– setMinContentSize: (page 1043)

Declared In
NSDrawer.h

setContentView:
Sets the receiver’s content view.

- (void)setContentView:(NSView *)aView

Parameters
aView

The content view of the receiver. Rather than connect a drawer to its content view in Interface Builder,
you can specify it programatically with this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentView (page 1036)

Instance Methods 1041
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

Declared In
NSDrawer.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSDrawerDelegate >)anObject

Parameters
anObject

The object to assign as the receiver’s delegate. The object must conform to the NSDrawerDelegate
Protocol Reference.

Discussion
You may find it useful to associate a delegate with a drawer, especially since drawers do not open and close
instantly. A drawer’s delegate can better regulate drawer behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 1037)

Declared In
NSDrawer.h

setLeadingOffset:
Sets the receiver’s leading offset.

- (void)setLeadingOffset:(CGFloat)offset

Parameters
offset

The leading offset of the receiver. This is the distance from the top or left edge of the parent window
to the drawer. See Positioning and Sizing a Drawer for additional detail.

Availability
Available in Mac OS X v10.0 and later.

See Also
– leadingOffset (page 1038)
– setTrailingOffset: (page 1044)

Declared In
NSDrawer.h

setMaxContentSize:
Specifies the maximum size of the receiver’s content area.

1042 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

- (void)setMaxContentSize:(NSSize)size

Parameters
size

The new maximum size of the receiver’s content area. See Positioning and Sizing a Drawer for additional
detail.

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxContentSize (page 1038)

Declared In
NSDrawer.h

setMinContentSize:
Specifies the minimum size of the receiver’s content area.

- (void)setMinContentSize:(NSSize)size

Parameters
size

The new minimum size of the receiver’s content area. See Positioning and Sizing a Drawer for additional
detail.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minContentSize (page 1039)

Declared In
NSDrawer.h

setParentWindow:
Sets the receiver’s parent window.

- (void)setParentWindow:(NSWindow *)parent

Parameters
parent

The parent window of the receiver. Every drawer must be associated with a parent window for a
drawer to appear onscreen. If this argument is nil, the drawer is removed from its parent.

Discussion
Changes in a drawer’s parent window do not take place while the drawer is onscreen; they are delayed until
the drawer next closes.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1043
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

See Also
– parentWindow (page 1040)

Declared In
NSDrawer.h

setPreferredEdge:
Sets the receiver’s preferred, or default, edge.

- (void)setPreferredEdge:(NSRectEdge)preferredEdge

Parameters
preferredEdge

The edge on which the receiver should open by default. A drawer can be told to open on a specific
edge (page 1037); if an edge is not specified, however, it opens on the preferred edge.

Availability
Available in Mac OS X v10.0 and later.

See Also
– preferredEdge (page 1040)

Declared In
NSDrawer.h

setTrailingOffset:
Sets the receiver’s trailing offset.

- (void)setTrailingOffset:(CGFloat)offset

Parameters
offset

The receiver’s trailing offset. This is the distance to the right or bottom edge of the drawer from the
right or bottom edge of the parent window. See Positioning and Sizing a Drawer for additional detail.

Availability
Available in Mac OS X v10.0 and later.

See Also
– leadingOffset (page 1038)

Declared In
NSDrawer.h

state
Returns the state of the receiver.

- (NSInteger)state

1044 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

Return Value
The drawer's state. Refer to NSDrawerState (page 1046) for a list of possible values.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DrawerMadness

Declared In
NSDrawer.h

toggle:
Toggles the drawer open or closed.

- (void)toggle:(id)sender

Parameters
sender

The sender of the message.

Discussion
If the receiver is closed, or in the process of either opening or closing, it is opened. Otherwise, the drawer is
closed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTAudioExtractionPanel

Declared In
NSDrawer.h

trailingOffset
Returns the receiver’s trailing offset.

- (CGFloat)trailingOffset

Return Value
The receiver’s trailing offset. This is the distance to the right or bottom edge of the drawer from the right or
bottom edge of the parent window.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTrailingOffset: (page 1044)

Declared In
NSDrawer.h

Instance Methods 1045
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

Constants

NSDrawerState
These constants specify the possible states of a drawer.

typedef enum _NSDrawerState {
 NSDrawerClosedState = 0,
 NSDrawerOpeningState = 1,
 NSDrawerOpenState = 2,
 NSDrawerClosingState = 3
} NSDrawerState;

Constants
NSDrawerClosedState

The drawer is closed (not visible onscreen).

Available in Mac OS X v10.0 and later.

Declared in NSDrawer.h.

NSDrawerOpeningState
The drawer is in the process of opening.

Available in Mac OS X v10.0 and later.

Declared in NSDrawer.h.

NSDrawerOpenState
The drawer is open (visible onscreen).

Available in Mac OS X v10.0 and later.

Declared in NSDrawer.h.

NSDrawerClosingState
The drawer is in the process of closing.

Available in Mac OS X v10.0 and later.

Declared in NSDrawer.h.

Discussion
These constants are returned by state (page 1044).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDrawer.h

Notifications

NSDrawerDidCloseNotification
Posted whenever the drawer is closed.

The notification object is the NSDrawer object that closed. This notification does not contain a userInfo
dictionary.

1046 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDrawer.h

NSDrawerDidOpenNotification
Posted whenever the drawer is opened.

The notification object is the NSDrawer object that opened. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDrawer.h

NSDrawerWillCloseNotification
Posted whenever the drawer is about to close.

The notification object is the NSDrawerobject about to close. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDrawer.h

NSDrawerWillOpenNotification
Posted whenever the drawer is about to open.

The notification object is the NSDrawer object about to open. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDrawer.h

Notifications 1047
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

1048 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 46

NSDrawer Class Reference

Inherits from NSImageRep : NSObject

Conforms to NSCoding (NSImageRep)
NSCopying (NSImageRep)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSEPSImageRep.h

Companion guide Cocoa Drawing Guide

Overview

An NSEPSImageRep object can render an image from encapsulated PostScript (EPS) code.

Tasks

Creating an NSEPSImageRep

+ imageRepWithData: (page 1050)
Creates and returns an NSEPSImageRep object initialized with the specified EPS data.

– initWithData: (page 1051)
Returns an NSEPSImageRep object initialized with the specified EPS data.

Getting Image Data

– boundingBox (page 1050)
Returns the rectangle that bounds the receiver.

– EPSRepresentation (page 1051)
Returns the EPS representation of the receiver.

Overview 1049
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 47

NSEPSImageRep Class Reference

Drawing the Image

– prepareGState (page 1051)
Implemented by subclasses to configure the graphics state prior to drawing.

Class Methods

imageRepWithData:
Creates and returns an NSEPSImageRep object initialized with the specified EPS data.

+ (id)imageRepWithData:(NSData *)epsData

Parameters
epsData

The EPS data representing the desired image.

Return Value
A new, initialized NSEPSImageRep object or nil if the object could not be initialized.

Discussion
The size of the receiver is set using the bounding box information specified in the EPS header comments.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSEPSImageRep.h

Instance Methods

boundingBox
Returns the rectangle that bounds the receiver.

- (NSRect)boundingBox

Return Value
The bounding box of the receiver. This rectangle is obtained from the “%%BoundingBox:” comment in the
EPS header when the NSEPSImageRep object is initialized.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imageRepWithData: (page 1050)
– initWithData: (page 1051)

1050 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 47

NSEPSImageRep Class Reference

Declared In
NSEPSImageRep.h

EPSRepresentation
Returns the EPS representation of the receiver.

- (NSData *)EPSRepresentation

Return Value
A data object containing the EPS data for the image.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSEPSImageRep.h

initWithData:
Returns an NSEPSImageRep object initialized with the specified EPS data.

- (id)initWithData:(NSData *)epsData

Parameters
epsData

The EPS data representing the desired image.

Return Value
The initialized NSEPSImageRep object or nil if the object could not be initialized

Discussion
The size of the receiver is set using the bounding box information specified in the EPS header comments.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSEPSImageRep.h

prepareGState
Implemented by subclasses to configure the graphics state prior to drawing.

- (void)prepareGState

Discussion
The draw (page 1415) method of NSEPSImageRep sends this message to itself just before rendering the EPS
code. The default implementation of this method does nothing. You can override it in your subclass to prepare
the graphics state as needed.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1051
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 47

NSEPSImageRep Class Reference

Declared In
NSEPSImageRep.h

1052 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 47

NSEPSImageRep Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSEvent.h

Companion guide Cocoa Event-Handling Guide

Related sample code Cocoa OpenGL
DragItemAround
GLUT
LightTable
Sketch-112

Overview

An NSEvent object, or simply an event, contains information about an input action such as a mouse click or
a key down. The Application Kit associates each such user action with a window, reporting the event to the
application that created the window. The NSEvent object contains pertinent information about each event,
such as where the cursor was located or which character was typed. As the application receives events, it
temporarily places them in a buffer called the event queue. When the application is ready to process an
event, it takes one from the queue.

Beginning with Mac OS X version 10.4, NSEvent objects can represent tablet-pointing and tablet-proximity
events. A tablet-proximity event is generated when a pointing device enters or leaves proximity of its tablet;
such event objects have a type of NSTypeProximity or a mouse subtype of
NSTabletProximityEventSubtype. A tablet-pointing event is generated when a pointing device changes
state, such as location, pressure, or tilt; such event objects have a type of NSTypePoint or a mouse subtype
of NSTabletPointEventSubtype. The Application Kit reports all pure tablet events to responder objects
through theNSRespondermethodstabletPoint: (page 2199) andtabletProximity: (page 2200). Mouse
events can also contain tablet data (as event subtypes), so you can handle these events by overriding the
NSRespondermethods mouseDown: (page 2164), mouseDragged: (page 2164), and mouseUp: (page 2166).

Overview 1053
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Support for touch and gesture events masks have been added to NSEvent in Mac OS X v10.6. Magnify (pinch),
swipe, and rotate masks are supported, as are more generic gesture masks. Using
touchesMatchingPhase:inView: (page 1086) method a view can get all of the touch events associated
with a gesture without overriding the individual touch responder methods defined in NSResponder.

Mac OS X v10.6 adds the ability to create application event monitors that call block object handlers for certain
event types that are sent through the NSApplication sendEvent: (page 167) method. You can create a
local monitor that will be informed of the events in your application and allow you to modify or cancel them.
You can also create a global event monitor that allows you to monitor events in other applications, although
you are unable to alter those events. See “Monitoring Application Events” (page 1058) for more information.

Tasks

Creating Events

+ keyEventWithType:location:modifierFlags:timestamp:windowNumber:context:characters:charactersIgnoringModifiers:isARepeat:keyCode: (page
1063)

Returns a new NSEvent object describing a key event.

+ mouseEventWithType:location:modifierFlags:timestamp:windowNumber:context:eventNumber:clickCount:pressure: (page
1066)

Returns a new NSEvent object describing a mouse-down, -up, -moved, or -dragged event.

+ enterExitEventWithType:location:modifierFlags:timestamp:windowNumber:context:eventNumber:trackingNumber:userData: (page
1061)

Returns a new NSEvent object describing a tracking-rectangle or cursor-update event.

+ otherEventWithType:location:modifierFlags:timestamp:windowNumber:context:subtype:data1:data2: (page
1067)

Returns a new NSEvent object describing a custom event.

+ eventWithEventRef: (page 1063)
Creates an event object that is based on a Carbon type of event.

+ eventWithCGEvent: (page 1062)
Creates and returns an event object that is based on a Core Graphics type of event.

Getting General Event Information

– context (page 1075)
Returns the display graphics context of the receiver.

– locationInWindow (page 1080)
Returns the receiver’s location in the base coordinate system of the associated window.

– modifierFlags (page 1082)
Returns an integer bit field indicating the modifier keys in effect for the receiver.

– timestamp (page 1086)
Returns the time the receiver occurred in seconds since system startup.

– type (page 1088)
Returns the type of the receiving event.

1054 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

– window (page 1090)
Returns the window object associated with the receiver.

– windowNumber (page 1091)
Returns the identifier for the window device associated with the receiver.

– eventRef (page 1079)
Returns the Carbon type associated with the receiver for representing an event.

– CGEvent (page 1073)
Returns a Core Graphics event object corresponding to the receiver.

Getting Key Event Information

+ modifierFlags (page 1065)
Returns the currently pressed modifier flags.

+ keyRepeatDelay (page 1065)
Returns the length of time a key must be held down in order to generate the first key repeat event.

+ keyRepeatInterval (page 1065)
Returns the length between subsequent key repeat events being posted.

– characters (page 1074)
Returns the characters associated with the receiving key-up or key-down event.

– charactersIgnoringModifiers (page 1074)
Returns the characters generated by the receiving key event as if no modifier key (except for Shift)
applies.

– isARepeat (page 1079)
Returns YES if the receiving key event is a repeat caused by the user holding the key down, NO if the
key event is new.

– keyCode (page 1080)
Returns the virtual key code for the keyboard key associated with the receiving key event.

Getting Mouse Event Information

+ pressedMouseButtons (page 1068)
Returns the indices of the currently depressed mouse buttons.

+ doubleClickInterval (page 1061)
Returns the time, in seconds, in which a second mouse click must occur in order to be considered a
double click.

+ mouseLocation (page 1067)
Reports the current mouse position in screen coordinates.

– buttonNumber (page 1073)
Returns the button number for the mouse button that generated an NSOtherMouse... event.

– clickCount (page 1075)
Returns the number of mouse clicks associated with the receiver, which represents a mouse-down
or mouse-up event.

Tasks 1055
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

– pressure (page 1083)
Returns a value from 0.0 through 1.0 indicating the pressure applied to the input device (used for
appropriate devices).

+ setMouseCoalescingEnabled: (page 1069)
Controls whether mouse-movement event coalescing is enabled.

+ isMouseCoalescingEnabled (page 1063)
Indicates whether mouse-movement event coalescing is enabled.

Getting Mouse-Tracking Event Information

– eventNumber (page 1078)
Returns the counter value of the latest mouse or tracking-rectangle event object; every
system-generated mouse and tracking-rectangle event increments this counter.

– trackingNumber (page 1087)
Returns the identifier of a mouse-tracking event.

– trackingArea (page 1087)
Returns the NSTrackingArea object that generated the event represented by the receiver.

– userData (page 1089)
Returns data associated with a mouse-tracking event,

Getting Custom Event Information

– data1 (page 1076)
Returns additional data associated with the receiver.

– data2 (page 1076)
Returns additional data associated with the receiver.

– subtype (page 1084)
Returns the subtype of the receiving event object.

Getting Scroll Wheel Event Information

– deltaX (page 1077)
Returns the x-coordinate change for a scroll wheel, mouse-move, or mouse-drag event.

– deltaY (page 1077)
Returns the y-coordinate change for a scroll wheel, mouse-move, or mouse-drag event.

– deltaZ (page 1077)
Returns the z-coordinate change for a scroll wheel, mouse-move, or mouse-drag event.

Getting Tablet Proximity Information

– capabilityMask (page 1073)
Returns a mask whose set bits indicate the capabilities of the tablet device that generated the event
represented by the receiver.

1056 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

– deviceID (page 1078)
Returns a special identifier that is used to match tablet-pointer events with the tablet-proximity event
represented by the receiver.

– isEnteringProximity (page 1080)
Returns YES to indicate that a pointing device is entering the proximity of its tablet and NO when it
is leaving it.

– pointingDeviceID (page 1082)
Returns the index of the pointing device currently in proximity with the tablet.

– pointingDeviceSerialNumber (page 1082)
Returns the vendor-assigned serial number of a pointing device of a certain type.

– pointingDeviceType (page 1083)
Returns a NSPointingDeviceType constant indicating the kind of pointing device associated with
the receiver.

– systemTabletID (page 1085)
Returns the index of the tablet device connected to the system.

– tabletID (page 1085)
Returns the USB model identifier of the tablet device associated with the receiver.

– uniqueID (page 1088)
Returns the unique identifier of the pointing device that generated the event represented by the
receiver.

– vendorID (page 1090)
Returns the vendor identifier of the tablet associated with the receiver.

– vendorPointingDeviceType (page 1090)
Returns a coded bit field whose set bits indicate the type of pointing device (within a vendor selection)
associated with the receiver.

Getting Tablet Pointing Information

– absoluteX (page 1071)
Reports the absolute x coordinate of a pointing device on its tablet at full tablet resolution.

– absoluteY (page 1071)
Reports the absolute y coordinate of a pointing device on its tablet at full tablet resolution.

– absoluteZ (page 1072)
Reports the absolute z coordinate of pointing device on its tablet at full tablet resolution.

– buttonMask (page 1072)
Returns a bit mask identifying the buttons pressed when the tablet event represented by the receiver
was generated.

– rotation (page 1084)
Returns the rotation in degrees of the tablet pointing device associated with the receiver.

– tangentialPressure (page 1085)
Reports the tangential pressure on the device that generated the event represented by the receiver.

– tilt (page 1086)
Reports the scaled tilt values of the pointing device that generated the event represented by the
receiver.

Tasks 1057
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

– vendorDefined (page 1089)
Returns an array of three vendor-defined NSNumber objects associated with the pointing-type event
represented by the receiver.

Requesting and Stopping Periodic Events

+ startPeriodicEventsAfterDelay:withPeriod: (page 1070)
Begins generating periodic events for the current thread.

+ stopPeriodicEvents (page 1070)
Stops generating periodic events for the current thread and discards any periodic events remaining
in the queue.

Getting Touch and Gesture Information

– magnification (page 1081)
Returns the change in magnification.

– touchesMatchingPhase:inView: (page 1086)
Returns all the NSTouch objects associated with a specific phase.

Monitoring Application Events

+ addGlobalMonitorForEventsMatchingMask:handler: (page 1058)
Installs an event monitor that receives copies of events posted to other applications.

+ addLocalMonitorForEventsMatchingMask:handler: (page 1060)
Installs an event monitor that receives copies of events posted to this application before they are
dispatched.

+ removeMonitor: (page 1069)
Remove the specified event monitor.

Class Methods

addGlobalMonitorForEventsMatchingMask:handler:
Installs an event monitor that receives copies of events posted to other applications.

+ (id)addGlobalMonitorForEventsMatchingMask:(NSEventMask)mask handler:(void
(^)(NSEvent*))block

Parameters
mask

An event mask specifying which events you wish to monitor. See Masks for event types (page
1096) for possible values.

1058 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

block
The event handler block object. It is passed the event to monitor. You are unable to change the event,
merely observe it.

Return Value
An event handler object.

Discussion
Events are delivered asynchronously to your app and you can only observe the event; you cannot modify or
otherwise prevent the event from being delivered to its original target application.

Key-related events may only be monitored if accessibility is enabled or if your application is trusted for
accessibility access (see AXIsProcessTrusted).

Note that your handler will not be called for events that are sent to your own application.

Special Considerations

In Mac OS X v 10.6, event monitors are only able to monitor the following event types:

 ■ NSFlagsChanged (page 1095)

 ■ NSLeftMouseDragged (page 1094)

 ■ NSRightMouseDragged (page 1094)

 ■ NSOtherMouseDragged (page 1094)

 ■ NSLeftMouseUp (page 1093)

 ■ NSRightMouseUp (page 1093)

 ■ NSOtherMouseUp (page 1094)

 ■ NSLeftMouseDown (page 1093)

 ■ NSRightMouseDown (page 1093)

 ■ NSOtherMouseDown (page 1094)

 ■ NSMouseMoved (page 1094)

 ■ NSFlagsChanged (page 1095)

 ■ NSScrollWheel (page 1095)

 ■ NSTabletPoint (page 1095)

 ■ NSTabletProximity (page 1095)

 ■ NSKeyDown (page 1094) (Key repeats are determined by sending the event an isARepeat (page 1079)
message.)

Availability
Available in Mac OS X v10.6 and later.

See Also
+ addLocalMonitorForEventsMatchingMask:handler: (page 1060)
+ removeMonitor: (page 1069)

Declared In
NSEvent.h

Class Methods 1059
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

addLocalMonitorForEventsMatchingMask:handler:
Installs an event monitor that receives copies of events posted to this application before they are dispatched.

+ (id)addLocalMonitorForEventsMatchingMask:(NSEventMask)mask handler:(NSEvent*
(^)(NSEvent*))block

Parameters
mask

An event mask specifying which events you wish to monitor. See Masks for event types (page
1096) for possible values.

block
The event handler block object. It is passed the event to monitor. You can return the event unmodified,
create and return a new NSEvent object, or return nil to stop the dispatching of the event.

Return Value
An event handler object.

Discussion
Your handler will not be called for events that are consumed by nested event-tracking loops such as control
tracking, menu tracking, or window dragging; only events that are dispatched through the applications
sendEvent: (page 167) method will be passed to your handler.

Special Considerations

In Mac OS X v 10.6, event monitors are only able to monitor the following event types:

 ■ NSFlagsChanged (page 1095)

 ■ NSLeftMouseDragged (page 1094)

 ■ NSRightMouseDragged (page 1094)

 ■ NSOtherMouseDragged (page 1094)

 ■ NSLeftMouseUp (page 1093)

 ■ NSRightMouseUp (page 1093)

 ■ NSOtherMouseUp (page 1094)

 ■ NSLeftMouseDown (page 1093)

 ■ NSRightMouseDown (page 1093)

 ■ NSOtherMouseDown (page 1094)

 ■ NSMouseMoved (page 1094)

 ■ NSFlagsChanged (page 1095)

 ■ NSScrollWheel (page 1095)

 ■ NSTabletPoint (page 1095)

 ■ NSTabletProximity (page 1095)

 ■ NSKeyDown (page 1094) (Key repeats are determined by sending the event an isARepeat (page 1079)
message.)

Availability
Available in Mac OS X v10.6 and later.

1060 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

See Also
+ addGlobalMonitorForEventsMatchingMask:handler: (page 1058)
+ removeMonitor: (page 1069)

Related Sample Code
AnimatedTableView

Declared In
NSEvent.h

doubleClickInterval
Returns the time, in seconds, in which a second mouse click must occur in order to be considered a double
click.

+ (NSTimeInterval)doubleClickInterval

Return Value
The double-click time interval, in seconds.

Discussion
This is a system setting, overriding this method will have no effect.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSEvent.h

enterExitEventWithType:location:modifierFlags:timestamp:windowNumber:context:
eventNumber:trackingNumber:userData:
Returns a new NSEvent object describing a tracking-rectangle or cursor-update event.

+ (NSEvent *)enterExitEventWithType:(NSEventType)type location:(NSPoint)location
modifierFlags:(NSUInteger)flags timestamp:(NSTimeInterval)time
windowNumber:(NSInteger)windowNumber context:(NSGraphicsContext *)context
eventNumber:(NSInteger)eventNumber trackingNumber:(NSInteger)trackingNumber
userData:(void *)userData

Parameters
type

One of the following event-type constants: NSMouseEntered, NSMouseExited, NSCursorUpdate.
If the specified constant is not one of these, an NSInternalInconsistencyException is raised

location
The cursor location in the base coordinate system of the window specified by windowNum.

flags
An integer bit field containing any of the modifier key masks described in “Constants” (page 1091),
combined using the C bitwise OR operator.

time
The time the event occurred in seconds since system startup.

Class Methods 1061
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

windowNum
An integer that identifies the window device associated with the event, which is associated with the
NSWindow that will receive the event.

context
The display graphics context of the event.

eventNumber
An identifier for the new event. It’s normally taken from a counter for mouse events, which continually
increases as the application runs.

trackingNumber
A number that identifies the tracking rectangle. This identifier is the same as that returned by the
NSView method addTrackingRect:owner:userData:assumeInside: (page 3142).

userData
Data arbitrarily associated with the tracking rectangle when it was set up using the NSView method
addTrackingRect:owner:userData:assumeInside: (page 3142).

Return Value
The created NSEvent object or nil if the object could not be created.

Availability
Available in Mac OS X v10.0 and later.

See Also
– eventNumber (page 1078)
– trackingNumber (page 1087)
– userData (page 1089)

Declared In
NSEvent.h

eventWithCGEvent:
Creates and returns an event object that is based on a Core Graphics type of event.

+ (NSEvent *)eventWithCGEvent:(CGEventRef)cgEvent

Parameters
cgEvent

A CGEventRef opaque type that represents an event.

Return Value
An autoreleased NSEvent object that is equivalent to cgEvent.

Discussion
The returned object retains the CGEventRef object (cgEvent) until it (the Objective-C object) is freed—it
then releases the CGEventRef object. If no Cocoa event corresponds to the CGEventRef object, this method
returns nil.

Availability
Available in Mac OS X v10.5 and later.

See Also
– CGEvent (page 1073)

1062 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Declared In
NSEvent.h

eventWithEventRef:
Creates an event object that is based on a Carbon type of event.

+ (NSEvent *)eventWithEventRef:(const void *)eventRef

Parameters
eventRef

The EventRef opaque type to be associated with the created NSEvent object.

Return Value
An autoreleased NSEvent object corresponding to eventRef or nil if eventRef cannot be converted into
an equivalent NSEvent object.

Discussion
This method is valid for all events. The created NSEvent object retains the EventRef object and is released
when the NSEvent object is freed.

Availability
Available in Mac OS X v10.5 and later.

See Also
– eventRef (page 1079)

Declared In
NSEvent.h

isMouseCoalescingEnabled
Indicates whether mouse-movement event coalescing is enabled.

+ (BOOL)isMouseCoalescingEnabled

Return Value
YES if mouse-movement event coalescing is enabled, NO if it is disabled.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ setMouseCoalescingEnabled: (page 1069)

Declared In
NSEvent.h

keyEventWithType:location:modifierFlags:timestamp:windowNumber:context:
characters:charactersIgnoringModifiers:isARepeat:keyCode:
Returns a new NSEvent object describing a key event.

Class Methods 1063
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

+ (NSEvent *)keyEventWithType:(NSEventType)type location:(NSPoint)location
modifierFlags:(NSUInteger)flags timestamp:(NSTimeInterval)time
windowNumber:(NSInteger)windowNum context:(NSGraphicsContext *)context
characters:(NSString *)characters charactersIgnoringModifiers:(NSString
*)unmodCharacters isARepeat:(BOOL)repeatKey keyCode:(unsigned short)code

Parameters
type

One of the following event-type constants: NSKeyDown, NSKeyUp, NSFlagsChanged. If anything else
is specified, an NSInternalInconsistencyException is raised.

location
The cursor location in the base coordinate system of the window specified by windowNum.

flags
An integer bit field containing any of the modifier key masks described in “Constants” (page 1091),
combined using the C bitwise OR operator.

time
The time the event occurred in seconds since system startup.

windowNum
An integer that identifies the window device associated with the event, which is associated with the
NSWindow that will receive the event.

context
The display graphics context of the event.

characters
A string of characters associated with the key event. Though most key events contain only one
character, it is possible for a single keypress to generate a series of characters.

unmodCharacters
The string of characters generated by the key event as if no modifier key had been pressed (except
for Shift). This argument is useful for getting the “basic” key value in a hardware-independent manner.

repeatKey
YES if the key event is a repeat caused by the user holding the key down, NO if the key event is new.

code
A number that identifies the keyboard key associated with the key event. Its value is
hardware-independent.

Return Value
The created NSEvent instance or nil if the instance could not be created.

Availability
Available in Mac OS X v10.0 and later.

See Also
– characters (page 1074)
– charactersIgnoringModifiers (page 1074)
– isARepeat (page 1079)
– keyCode (page 1080)

Declared In
NSEvent.h

1064 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

keyRepeatDelay
Returns the length of time a key must be held down in order to generate the first key repeat event.

+ (NSTimeInterval)keyRepeatDelay

Return Value
The delay interval, in seconds.

Discussion
This is a system setting, overriding this method will have no effect.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSEvent.h

keyRepeatInterval
Returns the length between subsequent key repeat events being posted.

+ (NSTimeInterval)keyRepeatInterval

Return Value
The repeat interval, in seconds.

Discussion
This is a system setting, overriding this method will have no effect.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSEvent.h

modifierFlags
Returns the currently pressed modifier flags.

+ (NSUInteger)modifierFlags

Return Value
A mask of the current modifiers using the values in “Modifier Flags” (page 1100).

Discussion
This returns the state of devices combined with synthesized events at the moment, independent of which
events have been delivered via the event stream.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
ClockControl

Class Methods 1065
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

GLUT
LightTable
Rulers
Sketch-112

Declared In
NSEvent.h

mouseEventWithType:location:modifierFlags:timestamp:windowNumber:context:
eventNumber:clickCount:pressure:
Returns a new NSEvent object describing a mouse-down, -up, -moved, or -dragged event.

+ (NSEvent *)mouseEventWithType:(NSEventType)type location:(NSPoint)location
modifierFlags:(NSUInteger)flags timestamp:(NSTimeInterval)time
windowNumber:(NSInteger)windowNum context:(NSGraphicsContext *)context
eventNumber:(NSInteger)eventNumber clickCount:(NSInteger)clickNumber
pressure:(float)pressure

Parameters
type

One of the modifier key masks described in “Constants” (page 1091), or an
NSInternalInconsistencyException is raised.

location
The cursor location in the base coordinate system of the window specified by windowNum.

flags
An integer bit field containing any of the modifier key masks described in “Constants” (page 1091),
combined using the C bitwise OR operator.

time
The time the event occurred in seconds since system startup.

windowNum
An integer that identifies the window device associated with the event, which is associated with the
NSWindow that will receive the event.

context
The display graphics context of the event.

eventNumber
An identifier for the new event. It’s normally taken from a counter for mouse events, which continually
increases as the application runs.

clickNumber
The number of mouse clicks associated with the mouse event.

pressure
A value from 0.0 to 1.0 indicating the pressure applied to the input device on a mouse event, used
for an appropriate device such as a graphics tablet. For devices that aren’t pressure-sensitive, the
value should be either 0.0 or 1.0.

Return Value
The created NSEvent instance or nil if the instance could not be created.

1066 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– clickCount (page 1075)
– eventNumber (page 1078)
– pressure (page 1083)

Declared In
NSEvent.h

mouseLocation
Reports the current mouse position in screen coordinates.

+ (NSPoint)mouseLocation

Return Value
The current mouse location in screen coordinates.

Discussion
This method is similar to the NSWindow method mouseLocationOutsideOfEventStream (page 3348). It
returns the location regardless of the current event or pending events. The difference between these methods
is that mouseLocationOutsideOfEventStream returns a point in the receiving window’s coordinates and
mouseLocation returns the same information in screen coordinates.

Note: The y coordinate of the returned point will never be less than 1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageMap
ImageMapExample
PhotoSearch
Quartz Composer Matrix
UIElementInspector

Declared In
NSEvent.h

otherEventWithType:location:modifierFlags:timestamp:windowNumber:context:
subtype:data1:data2:
Returns a new NSEvent object describing a custom event.

+ (NSEvent *)otherEventWithType:(NSEventType)type location:(NSPoint)location
modifierFlags:(NSUInteger)flags timestamp:(NSTimeInterval)time
windowNumber:(NSInteger)windowNum context:(NSGraphicsContext *)context
subtype:(short)subtype data1:(NSInteger)data1 data2:(NSInteger)data2

Class Methods 1067
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Parameters
type

One of the following event-type constants:

NSAppKitDefined

NSSystemDefined

NSApplicationDefined

NSPeriodic

If type is anything else, an NSInternalInconsistencyException is raised. Your code should only
create events of type NSApplicationDefined.

location
The cursor location in the base coordinate system of the window specified by windowNum.

flags
An integer bit field containing any of the modifier key masks described in “Constants” (page 1091),
combined using the C bitwise OR operator.

time
The time the event occurred in seconds since system startup.

windowNum
An integer that identifies the window device associated with the event, which is associated with the
NSWindow that will receive the event.

context
The display graphics context of the event.

subtype
A numeric identifier that further differentiates custom events of types NSAppKitDefined,
NSSystemDefined, and NSApplicationDefined. NSPeriodic events don’t use this attribute.

data1
Additional data associated with the event. NSPeriodic events don’t use these attributes.

data2
Additional data associated with the event. NSPeriodic events don’t use these attributes.

Return Value
The created NSEvent object or nil if the object couldn't be created.

Availability
Available in Mac OS X v10.0 and later.

See Also
– subtype (page 1084)
– data1 (page 1076)
– data2 (page 1076)

Declared In
NSEvent.h

pressedMouseButtons
Returns the indices of the currently depressed mouse buttons.

+ (NSUInteger)pressedMouseButtons

1068 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Return Value
The indices of the currently depressed mouse buttons.

Discussion
A return value of 1 << 0 corresponds to left the mouse, 1 << 1 corresponds to the right mouse, 1<< n, n
>=2 to other mouse buttons.

This returns the state of devices combined with synthesized events at the moment, independent of which
events have been delivered via the event stream, so this method is not suitable for tracking.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSEvent.h

removeMonitor:
Remove the specified event monitor.

+ (void)removeMonitor:(id)eventMonitor

Parameters
eventMonitor

The event handler object to remove.

Discussion
You must ensure that eventMonitor is removed only once. Removing the same eventMonitor instance
multiple times results in an over-release condition, even in a Garbage Collected environment

Availability
Available in Mac OS X v10.6 and later.

See Also
+ addGlobalMonitorForEventsMatchingMask:handler: (page 1058)
+ addLocalMonitorForEventsMatchingMask:handler: (page 1060)
+ removeMonitor: (page 1069)

Related Sample Code
AnimatedTableView

Declared In
NSEvent.h

setMouseCoalescingEnabled:
Controls whether mouse-movement event coalescing is enabled.

+ (void)setMouseCoalescingEnabled:(BOOL)flag

Parameters
flag

YES to enable mouse-movement event coalescing, NO to disable it.

Class Methods 1069
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Discussion
This method affects mouse-moved, mouse-dragged, and tablet events. Mouse-movement event coalescing
is enabled by default.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ isMouseCoalescingEnabled (page 1063)

Declared In
NSEvent.h

startPeriodicEventsAfterDelay:withPeriod:
Begins generating periodic events for the current thread.

+ (void)startPeriodicEventsAfterDelay:(NSTimeInterval)delaySeconds
withPeriod:(NSTimeInterval)periodSeconds

Parameters
delaySeconds

The number of seconds that NSEvent should wait before beginning to generate periodic events.

periodSeconds
The period in seconds between the generated events.

Discussion
Raises an NSInternalInconsistencyException if periodic events are already being generated for the
current thread. This method is typically used in a modal loop while tracking mouse-dragged events.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ stopPeriodicEvents (page 1070)

Related Sample Code
Rulers

Declared In
NSEvent.h

stopPeriodicEvents
Stops generating periodic events for the current thread and discards any periodic events remaining in the
queue.

+ (void)stopPeriodicEvents

Discussion
This message is ignored if periodic events aren’t currently being generated.

1070 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ startPeriodicEventsAfterDelay:withPeriod: (page 1070)

Related Sample Code
Rulers

Declared In
NSEvent.h

Instance Methods

absoluteX
Reports the absolute x coordinate of a pointing device on its tablet at full tablet resolution.

- (NSInteger)absoluteX

Discussion
For the coordinate to be valid, the receiver should represent an event generated by a tablet pointing device
(otherwise 0 is returned). This method is valid only for mouse events with a subtype of
NSTabletPointEventSubtype and for events of type NSTabletPoint. Use this value if you want to scale
from tablet location to screen location yourself; otherwise use the class method mouseLocation (page 1067)
or the instance method locationInWindow (page 1080).

Availability
Available in Mac OS X v10.4 and later.

See Also
– absoluteY (page 1071)
– absoluteZ (page 1072)

Declared In
NSEvent.h

absoluteY
Reports the absolute y coordinate of a pointing device on its tablet at full tablet resolution.

- (NSInteger)absoluteY

Discussion
For the coordinate to be valid, the receiver should represent an event generated by a tablet pointing device
(otherwise 0 is returned). This method is valid only for mouse events with a subtype of
NSTabletPointEventSubtype and for events of type NSTabletPoint. Use this value if you want to scale
from tablet location to screen location yourself; otherwise use the class method mouseLocation (page 1067)
or the instance method locationInWindow (page 1080).

Instance Methods 1071
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– absoluteX (page 1071)
– absoluteZ (page 1072)

Declared In
NSEvent.h

absoluteZ
Reports the absolute z coordinate of pointing device on its tablet at full tablet resolution.

- (NSInteger)absoluteZ

Discussion
For the coordinate to be valid, the receiver should represent an event generated by a tablet pointing device
(otherwise 0 is returned). The z coordinate does not represent pressure. It registers the depth coordinate
returned by some tablet devices with wheels; if the device is something other than these, 0 is returned. This
method is valid only for mouse events with a subtype of NSTabletPointEventSubtype and for events of
type NSTabletPoint.

Availability
Available in Mac OS X v10.4 and later.

See Also
– absoluteX (page 1071)
– absoluteY (page 1071)

Declared In
NSEvent.h

buttonMask
Returns a bit mask identifying the buttons pressed when the tablet event represented by the receiver was
generated.

- (NSUInteger)buttonMask

Discussion
Use one or more of the button-mask constants described in “Constants” (page 1091) to determine which
buttons of the pointing device are pressed. This method is valid only for mouse events with a subtype of
NSTabletPointEventSubtype and for events of type NSTabletPoint.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSEvent.h

1072 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

buttonNumber
Returns the button number for the mouse button that generated an NSOtherMouse... event.

- (NSInteger)buttonNumber

Discussion
This method is intended for use with theNSOtherMouseDown,NSOtherMouseUp, andNSOtherMouseDragged
events, but will return values for NSLeftMouse... and NSRightMouse... events also.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSEvent.h

capabilityMask
Returns a mask whose set bits indicate the capabilities of the tablet device that generated the event
represented by the receiver.

- (NSUInteger)capabilityMask

Discussion
These bits are vendor-defined. This method is valid only for mouse events with a subtype of
NSTabletProximityEventSubtype and for events of type NSTabletProximity.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSEvent.h

CGEvent
Returns a Core Graphics event object corresponding to the receiver.

- (CGEventRef)CGEvent

Discussion
The returned CGEventRef opaque type is autoreleased. If no CGEventRef object corresponding to the
NSEvent object can be created, this method returns NULL.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ eventWithCGEvent: (page 1062)

Declared In
NSEvent.h

Instance Methods 1073
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

characters
Returns the characters associated with the receiving key-up or key-down event.

- (NSString *)characters

Discussion
These characters are derived from a keyboard mapping that associates various key combinations with Unicode
characters. Raises an NSInternalInconsistencyException if sent to any other kind of event object.

This method returns an empty string for dead keys, such as Option-e. However, for a key combination such
as Option-Shift-e this method returns the standard accent ("´").

For a list of constants corresponding to commonly-used Unicode characters, see NSText Class Reference.

Availability
Available in Mac OS X v10.0 and later.

See Also
– charactersIgnoringModifiers (page 1074)
+ keyEventWithType:location:modifierFlags:timestamp:windowNumber:context:characters:charactersIgnoringModifiers:isARepeat:keyCode: (page
1063)

Related Sample Code
Cocoa OpenGL
CocoaDVDPlayer
FunHouse
GLUT
TrackBall

Declared In
NSEvent.h

charactersIgnoringModifiers
Returns the characters generated by the receiving key event as if no modifier key (except for Shift) applies.

- (NSString *)charactersIgnoringModifiers

Discussion
Raises an NSInternalInconsistencyException if sent to a nonkey event.

This method returns the non-modifier key character pressed for dead keys, such as Option-e. For example,
Option-e (no shift key) returns an “e" for this method, whereas the characters (page 1074) method returns
an empty string.

This method is useful for determining “basic” key values in a hardware-independent manner, enabling such
features as keyboard equivalents defined in terms of modifier keys plus character keys. For example, to
determine if the user typed Alt-S, you don’t have to know whether Alt-S generates a German double ess, an
integral sign, or a section symbol. You simply examine the string returned by this method along with the
event’s modifier flags, checking for “s” and NSAlternateKeyMask.

For a list of constants corresponding to commonly-used Unicode characters, see NSText Class Reference.

1074 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– characters (page 1074)
– modifierFlags (page 1082)
+ keyEventWithType:location:modifierFlags:timestamp:windowNumber:context:characters:charactersIgnoringModifiers:isARepeat:keyCode: (page
1063)

Related Sample Code
DragItemAround
LayerBackedOpenGLView
NSOpenGL Fullscreen
OpenCL NBody Simulation Example
PDFKitLinker2

Declared In
NSEvent.h

clickCount
Returns the number of mouse clicks associated with the receiver, which represents a mouse-down or mouse-up
event.

- (NSInteger)clickCount

Discussion
Raises an NSInternalInconsistencyException if sent to a nonmouse event.

Returns 0 for a mouse-up event if a time threshold has passed since the corresponding mouse-down event.
This is because if this time threshold passes before the mouse button is released, it is no longer considered
a mouse click, but a mouse-down event followed by a mouse-up event.

The return value of this method is meaningless for events other than mouse-down or mouse-up events.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ mouseEventWithType:location:modifierFlags:timestamp:windowNumber:context:eventNumber:clickCount:pressure: (page
1066)

Declared In
NSEvent.h

context
Returns the display graphics context of the receiver.

- (NSGraphicsContext *)context

Instance Methods 1075
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSEvent.h

data1
Returns additional data associated with the receiver.

- (NSInteger)data1

Discussion
The value returned by this method is dependent on the event type, and is defined by the originator of the
event. Raises an NSInternalInconsistencyException if sent to an event not of type NSAppKitDefined,
NSSystemDefined, NSApplicationDefined, or NSPeriodic.

NSPeriodic events don’t use this attribute.

Availability
Available in Mac OS X v10.0 and later.

See Also
– data2 (page 1076)
– subtype (page 1084)
+ otherEventWithType:location:modifierFlags:timestamp:windowNumber:context:subtype:data1:data2: (page
1067)

Declared In
NSEvent.h

data2
Returns additional data associated with the receiver.

- (NSInteger)data2

Discussion
The value returned by this method is dependent on the event type, and is defined by the originator of the
event. Raises an NSInternalInconsistencyException if sent to an event not of type NSAppKitDefined,
NSSystemDefined, NSApplicationDefined, or NSPeriodic.

NSPeriodic events don’t use this attribute.

Availability
Available in Mac OS X v10.0 and later.

See Also
– data1 (page 1076)
– subtype (page 1084)
+ otherEventWithType:location:modifierFlags:timestamp:windowNumber:context:subtype:data1:data2: (page
1067)

1076 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Declared In
NSEvent.h

deltaX
Returns the x-coordinate change for a scroll wheel, mouse-move, or mouse-drag event.

- (CGFloat)deltaX

Availability
Available in Mac OS X v10.0 and later.

See Also
– deltaY (page 1077)
– deltaZ (page 1077)

Declared In
NSEvent.h

deltaY
Returns the y-coordinate change for a scroll wheel, mouse-move, or mouse-drag event.

- (CGFloat)deltaY

Discussion
The behavior of this method may seem counter-intuitive: as the mouse moves up the screen, the value is
negative; and as it moves down the screen, the value is positive. The reason for this behavior is that NSEvent
computes this delta value in device space, which is flipped, but both the screen and the window’s base
coordinate system are not flipped.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deltaX (page 1077)
– deltaZ (page 1077)

Declared In
NSEvent.h

deltaZ
Returns the z-coordinate change for a scroll wheel, mouse-move, or mouse-drag event.

- (CGFloat)deltaZ

Discussion
This value is typically 0.0.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1077
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

See Also
– deltaX (page 1077)
– deltaY (page 1077)

Related Sample Code
Cocoa OpenGL
TrackBall

Declared In
NSEvent.h

deviceID
Returns a special identifier that is used to match tablet-pointer events with the tablet-proximity event
represented by the receiver.

- (NSUInteger)deviceID

Discussion
All tablet-pointer events generated in the period between the device entering and leaving tablet proximity
have the same device ID. This message is valid only for mouse events with subtype
NSTabletPointEventSubtype or NSTabletProximityEventSubtype, and for NSTabletPoint and
NSTabletProximity events.

Availability
Available in Mac OS X v10.4 and later.

See Also
– pointingDeviceID (page 1082)
– systemTabletID (page 1085)
– tabletID (page 1085)

Declared In
NSEvent.h

eventNumber
Returns the counter value of the latest mouse or tracking-rectangle event object; every system-generated
mouse and tracking-rectangle event increments this counter.

- (NSInteger)eventNumber

Discussion
Raises an NSInternalInconsistencyException if sent to any other type of event object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ enterExitEventWithType:location:modifierFlags:timestamp:windowNumber:context:eventNumber:trackingNumber:userData: (page
1061)

1078 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

+ mouseEventWithType:location:modifierFlags:timestamp:windowNumber:context:eventNumber:clickCount:pressure: (page
1066)

Declared In
NSEvent.h

eventRef
Returns the Carbon type associated with the receiver for representing an event.

- (const void *)eventRef

Return Value
Returns an EventRef opaque type corresponding to the receiver. User-input events typically are created
with an associated EventRef. An NSEvent object created through other means creates an EventRef in this
method if that is necessary and possible. If there is no equivalent NSEvent for the receiver, this method
returns NULL.

Discussion
This method is valid for all types of events. The EventRef object is retained by the receiver, so it is valid as
long as the NSEvent object is valid, and is released when the NSEvent object is freed. You can use
RetainEvent to extend the lifetime of the EventRef object, with a corresponding ReleaseEvent when
you are done with it.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ eventWithEventRef: (page 1063)

Declared In
NSEvent.h

isARepeat
Returns YES if the receiving key event is a repeat caused by the user holding the key down, NO if the key
event is new.

- (BOOL)isARepeat

Discussion
Raises an NSInternalInconsistencyException if sent to an NSFlagsChanged event or other nonkey
event.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ keyEventWithType:location:modifierFlags:timestamp:windowNumber:context:characters:charactersIgnoringModifiers:isARepeat:keyCode: (page
1063)

Declared In
NSEvent.h

Instance Methods 1079
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

isEnteringProximity
Returns YES to indicate that a pointing device is entering the proximity of its tablet and NO when it is leaving
it.

- (BOOL)isEnteringProximity

Discussion
This method is valid for mouse events with subtype NSTabletProximityEventSubtype and for
NSTabletProximity events.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSEvent.h

keyCode
Returns the virtual key code for the keyboard key associated with the receiving key event.

- (unsigned short)keyCode

Return Value
The virtual key code. The returned value is hardware-independent. The value returned is the same as the
value returned in the kEventParamKeyCode when using Carbon Events.

Discussion
Raises an NSInternalInconsistencyException if sent to a non-key event.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ keyEventWithType:location:modifierFlags:timestamp:windowNumber:context:characters:charactersIgnoringModifiers:isARepeat:keyCode: (page
1063)

Related Sample Code
JSPong
NURBSSurfaceVertexProg
SurfaceVertexProgram
Vertex Optimization

Declared In
NSEvent.h

locationInWindow
Returns the receiver’s location in the base coordinate system of the associated window.

- (NSPoint)locationInWindow

1080 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Discussion
For non-mouse events the return value of this method is undefined.

With NSMouseMoved (page 1094) and possibly other events, the receiver can have a nil window (that is,
window (page 1090) returns nil). In this case, locationInWindow returns the event location in screen
coordinates.

In a method of a custom view that handles mouse events, you commonly use the locationInWindow
method in conjunction with the NSView method convertPoint:fromView: (page 3155)to get the mouse
location in the view’s coordinate system. For example:

NSPoint event_location = [theEvent locationInWindow];
NSPoint local_point = [self convertPoint:event_location fromView:nil];

Note: The y coordinate in the returned point starts from a base of 1, not 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– window (page 1090)

Related Sample Code
Cocoa OpenGL
GLSL Showpiece Lite
LightTable
Sketch+Accessibility
Sketch-112

Declared In
NSEvent.h

magnification
Returns the change in magnification.

- (CGFloat)magnification

Return Value
The change in magnification that should be added to the current scaling of an item to achieve the new scale
factor.

Discussion
This message is valid for events of type NSEventTypeMagnify (page 1096).

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSEvent.h

Instance Methods 1081
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

modifierFlags
Returns an integer bit field indicating the modifier keys in effect for the receiver.

- (NSUInteger)modifierFlags

Discussion
You can examine individual flag settings using the C bitwise AND operator with the predefined key masks
described in “Constants” (page 1091). The lower 16 bits of the modifier flags are reserved for device-dependent
bits.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSEvent.h

pointingDeviceID
Returns the index of the pointing device currently in proximity with the tablet.

- (NSUInteger)pointingDeviceID

Discussion
This index is significant for multimode (or Dual Tracking) tablets that support multiple concurrent pointing
devices; the index is incremented for each pointing device that comes into proximity. Otherwise, zero is
always returned. The receiver of this message should be a mouse event object with subtype
NSTabletProximityEventSubtype or an event of type NSTabletProximity.

Availability
Available in Mac OS X v10.4 and later.

See Also
– pointingDeviceSerialNumber (page 1082)
– pointingDeviceType (page 1083)
– systemTabletID (page 1085)

Declared In
NSEvent.h

pointingDeviceSerialNumber
Returns the vendor-assigned serial number of a pointing device of a certain type.

- (NSUInteger)pointingDeviceSerialNumber

Discussion
Devices of different types, such as a puck and a pen, may have the same serial number. The receiver of this
message should be a mouse event object with subtype NSTabletProximityEventSubtype or an event
of type NSTabletProximity.

Availability
Available in Mac OS X v10.4 and later.

1082 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

See Also
– pointingDeviceID (page 1082)
– pointingDeviceType (page 1083)

Declared In
NSEvent.h

pointingDeviceType
Returns a NSPointingDeviceType constant indicating the kind of pointing device associated with the
receiver.

- (NSPointingDeviceType)pointingDeviceType

Discussion
For example, the device could be a pen, eraser, or cursor pointing device. This method is valid for mouse
events with subtype NSTabletProximityEventSubtype and for NSTabletProximity events. See
“Constants” (page 1091) for descriptions of valid NSPointingDeviceType constants.

Availability
Available in Mac OS X v10.4 and later.

See Also
– pointingDeviceSerialNumber (page 1082)
– pointingDeviceType (page 1083)

Declared In
NSEvent.h

pressure
Returns a value from 0.0 through 1.0 indicating the pressure applied to the input device (used for appropriate
devices).

- (float)pressure

Discussion
For devices that aren’t pressure-sensitive, the value is either 0.0 or 1.0. Raises an
NSInternalInconsistencyException if sent to a nonmouse event.

For tablet pointing devices that are in proximity, the pressure value is 0.0 if they are not actually touching
the tablet. As the device is pressed into the tablet, the value is increased.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ mouseEventWithType:location:modifierFlags:timestamp:windowNumber:context:eventNumber:clickCount:pressure: (page
1066)
– rotation (page 1084)

Instance Methods 1083
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Declared In
NSEvent.h

rotation
Returns the rotation in degrees of the tablet pointing device associated with the receiver.

- (float)rotation

Discussion
Many devices do not support rotation, in which case the returned value is 0.0. This method is valid only for
mouse events with subtype NSTabletPointEventSubtype and for NSTabletPoint events.

Availability
Available in Mac OS X v10.4 and later.

See Also
– pressure (page 1083)
– tilt (page 1086)

Declared In
NSEvent.h

subtype
Returns the subtype of the receiving event object.

- (short)subtype

Discussion
Raises an NSInternalInconsistencyException if sent to an event not of type NSAppKitDefined,
NSSystemDefined, NSApplicationDefined, or NSPeriodic.

NSPeriodic events don’t use this attribute.

This method is also valid for mouse events on Mac OS X v10.4 and later. See “Constants” (page 1091) for the
predefined mouse and tablet subtypes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– data1 (page 1076)
– data2 (page 1076)
+ otherEventWithType:location:modifierFlags:timestamp:windowNumber:context:subtype:data1:data2: (page
1067)

Declared In
NSEvent.h

1084 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

systemTabletID
Returns the index of the tablet device connected to the system.

- (NSUInteger)systemTabletID

Discussion
If multiple tablets are connected to the system, the system-tablet ID is incremented for each subsequent
one. If there is only one tablet device, its system-tablet ID is zero. The receiver of this message should be a
mouse event object with subtype NSTabletProximityEventSubtype or an event of type
NSTabletProximity.

Availability
Available in Mac OS X v10.4 and later.

See Also
– pointingDeviceID (page 1082)
– tabletID (page 1085)

Declared In
NSEvent.h

tabletID
Returns the USB model identifier of the tablet device associated with the receiver.

- (NSUInteger)tabletID

Discussion
This method is valid for mouse events with subtype NSTabletProximityEventSubtype and for
NSTabletProximity events.

Availability
Available in Mac OS X v10.4 and later.

See Also
– pointingDeviceID (page 1082)
– systemTabletID (page 1085)

Declared In
NSEvent.h

tangentialPressure
Reports the tangential pressure on the device that generated the event represented by the receiver.

- (float)tangentialPressure

Discussion
The value returned can range from -1.0 to 1.0. Tangential pressure is also known as barrel pressure. Only
some pointing devices support tangential pressure. This method is valid for mouse events with subtype
NSTabletPointEventSubtype and for NSTabletPoint events.

Instance Methods 1085
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– pressure (page 1083)

Declared In
NSEvent.h

tilt
Reports the scaled tilt values of the pointing device that generated the event represented by the receiver.

- (NSPoint)tilt

Discussion
The value returned can range from -1.0 to 1.0 for both axes. An x-coordinate value that is negative indicates
a tilt to the left and a positive value indicates a tilt to the right; a y-coordinate value that is negative indicates
a tilt to the top and a positive value indicates a tilt to the bottom. If the device is perfectly perpendicular to
the table surface, the values are 0.0 for both axes. This method is valid for mouse events with subtype
NSTabletPointEventSubtype and for NSTabletPoint events.

Availability
Available in Mac OS X v10.4 and later.

See Also
– pressure (page 1083)
– rotation (page 1084)

Declared In
NSEvent.h

timestamp
Returns the time the receiver occurred in seconds since system startup.

- (NSTimeInterval)timestamp

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSEvent.h

touchesMatchingPhase:inView:
Returns all the NSTouch objects associated with a specific phase.

- (NSSet *)touchesMatchingPhase:(NSTouchPhase)phase inView:(NSView *)view

1086 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Parameters
phase

The touch phase for which you want touches. See “Touch Phases” (page 1091) for the possible values.

view
The view for which touches are wanted. Touches that target this view, or any of the view’s descendants
will be returned. Passing nil as the view gets all touches regardless of their targeted view.

Return Value
A set of applicable NSTouch objects.

Discussion
This method is only valid for gesture events (gesture, magnify, swipe, rotate, etc.). Using this method a view
can get all of the touches associated with a gesture without overriding the individual touch responder
methods.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
LightTable

Declared In
NSEvent.h

trackingArea
Returns the NSTrackingArea object that generated the event represented by the receiver.

- (NSTrackingArea *)trackingArea

Return Value
Returns the NSTrackingArea object that generated the event represented by the receiver. If the receiver
is not a mouse-tracking event (that is, an event of type NSMouseEntered (page 1094), NSMouseExited (page
1094), orNSCursorUpdate (page 1094)), this method raises anNSInternalInconsistencyException. This
method returns nil if the event was generated by a tracking rectangle (pre-Mac OS X version 10.5) instead
of a NSTrackingArea object.

Discussion
If no NSTrackingArea object is associated with the event because the event corresponds to a tracking
rectangle installed with the NSViewmethod addTrackingRect:owner:userData:assumeInside: (page
3142), this method returns nil. Note that the trackingNumber (page 1087) method returns either an
NSTrackingArea object or the NSTrackingRectTag (page 3251) constant depending on how the event
was generated.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSEvent.h

trackingNumber
Returns the identifier of a mouse-tracking event.

Instance Methods 1087
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

- (NSInteger)trackingNumber

Discussion
This method returns either an NSTrackingArea object or a NSTrackingRectTag (page 3251) constant
depending on whether the event was generated from an NSTrackingArea object or a call to
addTrackingRect:owner:userData:assumeInside: (page 3142). Valid mouse-tracking methods are of
types NSMouseEntered (page 1094), NSMouseExited (page 1094), and NSCursorUpdate (page 1094). This
method raises an NSInternalInconsistencyException if sent to any other type of event.

The NSTrackingArea class is new with Mac OS X version 10.5

Availability
Available in Mac OS X v10.0 and later.

See Also
+ enterExitEventWithType:location:modifierFlags:timestamp:windowNumber:context:eventNumber:trackingNumber:userData: (page
1061)
– trackingArea (page 1087)

Declared In
NSEvent.h

type
Returns the type of the receiving event.

- (NSEventType)type

Return Value
Returns the event type. The possible values are described in “Event Types” (page 1092).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
People
VBL

Declared In
NSEvent.h

uniqueID
Returns the unique identifier of the pointing device that generated the event represented by the receiver.

- (unsigned long long)uniqueID

Discussion
Also known as tool ID, this is a unique number recorded in the chip inside every pointing device. The unique
ID makes it possible to assign a specific pointing device to a specific tablet. You can also use it to “sign”
documents or to restrict access to document layers to a specific pointing device. This method is valid for
mouse events with subtype NSTabletProximityEventSubtype and for NSTabletProximity events.

1088 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– vendorDefined (page 1089)
– vendorID (page 1090)

Declared In
NSEvent.h

userData
Returns data associated with a mouse-tracking event,

- (void *)userData

Discussion
The returned data was assigned to the mouse-tracking event when it was set up using the NSView method
addTrackingRect:owner:userData:assumeInside: (page 3142). It is only valid to send this message if
the receiver represents an NSMouseEntered (page 1094) or NSMouseExited (page 1094) event. Raises an
NSInternalInconsistencyException if sent to any other type of event object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ enterExitEventWithType:location:modifierFlags:timestamp:windowNumber:context:eventNumber:trackingNumber:userData: (page
1061)

Related Sample Code
MenuItemView
PhotoSearch
TrackIt

Declared In
NSEvent.h

vendorDefined
Returns an array of three vendor-defined NSNumber objects associated with the pointing-type event
represented by the receiver.

- (id)vendorDefined

Discussion
The NSNumber objects encapsulate short values that vendors may return for various reasons; see the vendor
documentation for details.This method is valid for mouse events with subtype NSTabletPointEventSubtype
and for NSTabletPoint events.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1089
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Declared In
NSEvent.h

vendorID
Returns the vendor identifier of the tablet associated with the receiver.

- (NSUInteger)vendorID

Discussion
The tablet is typically a USB device. This method is valid only for mouse events with subtype
NSTabletProximityEventSubtype and for NSTabletProximity events.

Availability
Available in Mac OS X v10.4 and later.

See Also
– tabletID (page 1085)
– vendorPointingDeviceType (page 1090)

Declared In
NSEvent.h

vendorPointingDeviceType
Returns a coded bit field whose set bits indicate the type of pointing device (within a vendor selection)
associated with the receiver.

- (NSUInteger)vendorPointingDeviceType

Discussion
See the vendor documentation for an interpretation of significant bits. This method is valid only for mouse
events with subtype NSTabletProximityEventSubtype and for NSTabletProximity events.

Availability
Available in Mac OS X v10.4 and later.

See Also
– vendorID (page 1090)

Declared In
NSEvent.h

window
Returns the window object associated with the receiver.

- (NSWindow *)window

Discussion
A periodic event, however, has no window; in this case the return value is undefined.

1090 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowNumber (page 1091)

Declared In
NSEvent.h

windowNumber
Returns the identifier for the window device associated with the receiver.

- (NSInteger)windowNumber

Discussion
A periodic event, however, has no window; in this case the return value is undefined.

Availability
Available in Mac OS X v10.0 and later.

See Also
– window (page 1090)

Declared In
NSEvent.h

Constants

Touch Phases
These constants represent the possible phases during a touch gesture.

enum {
 NSTouchPhaseBegan = 1 << 0,
 NSTouchPhaseMoved = 1 << 1,
 NSTouchPhaseStationary = 1 << 2,
 NSTouchPhaseEnded = 1 << 3,
 NSTouchPhaseCancelled = 1 << 4,
 NSTouchPhaseTouching = NSTouchPhaseBegan | NSTouchPhaseMoved |
NSTouchPhaseStationary,
 NSTouchPhaseAny = NSUIntegerMax
};
typedef NSUInteger NSTouchPhase;

Constants
NSTouchPhaseBegan

A finger for a given event touched the screen.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

Constants 1091
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSTouchPhaseMoved
A finger for a given event moved on the screen.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

NSTouchPhaseStationary
A finger is touching the surface but hasn't moved since the previous event.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

NSTouchPhaseEnded
A finger for a given event was lifted from the screen.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

NSTouchPhaseCancelled
The system cancelled tracking for the touch.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

NSTouchPhaseTouching
An NSTouchPhaseBegan, or NSTouchPhaseMoved, or NSTouchPhaseStationary phase is in progress.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

NSTouchPhaseAny
Any touch phase.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

Event Types
These constants represent various kinds of events. They are returned by type (page 1088) and are used as the
first argument to the methods
enterExitEventWithType:location:modifierFlags:timestamp:windowNumber:context:
eventNumber:trackingNumber:userData: (page 1061),
keyEventWithType:location:modifierFlags:timestamp:windowNumber:context:
characters:charactersIgnoringModifiers:isARepeat:keyCode: (page 1063),
mouseEventWithType:location:modifierFlags:timestamp:windowNumber:context:
eventNumber:clickCount:pressure: (page 1066), and
otherEventWithType:location:modifierFlags:timestamp:windowNumber:context:
subtype:data1:data2: (page 1067).

1092 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

enum {
 NSLeftMouseDown = 1,
 NSLeftMouseUp = 2,
 NSRightMouseDown = 3,
 NSRightMouseUp = 4,
 NSMouseMoved = 5,
 NSLeftMouseDragged = 6,
 NSRightMouseDragged = 7,
 NSMouseEntered = 8,
 NSMouseExited = 9,
 NSKeyDown = 10,
 NSKeyUp = 11,
 NSFlagsChanged = 12,
 NSAppKitDefined = 13,
 NSSystemDefined = 14,
 NSApplicationDefined = 15,
 NSPeriodic = 16,
 NSCursorUpdate = 17,
 NSScrollWheel = 22,
 NSTabletPoint = 23,
 NSTabletProximity = 24,
 NSOtherMouseDown = 25,
 NSOtherMouseUp = 26,
 NSOtherMouseDragged = 27
 NSEventTypeGesture = 29,
 NSEventTypeMagnify = 30,
 NSEventTypeSwipe = 31,
 NSEventTypeRotate = 18,
 NSEventTypeBeginGesture = 19,
 NSEventTypeEndGesture = 20
};
typedef NSUInteger NSEventType;

Constants
NSLeftMouseDown

See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSLeftMouseUp
See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSRightMouseDown
See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSRightMouseUp
See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

Constants 1093
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSOtherMouseDown
See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.1 and later.

Declared in NSEvent.h.

NSOtherMouseUp
See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.1 and later.

Declared in NSEvent.h.

NSMouseMoved
See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSLeftMouseDragged
See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSRightMouseDragged
See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSOtherMouseDragged
See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.1 and later.

Declared in NSEvent.h.

NSMouseEntered
See “Mouse-Tracking and Cursor-Update Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSMouseExited
See “Mouse-Tracking and Cursor-Update Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSCursorUpdate
See “Mouse-Tracking and Cursor-Update Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSKeyDown
See “Handling Key Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

1094 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSKeyUp
See “Handling Key Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSFlagsChanged
See “Handling Key Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSAppKitDefined
See “Event Objects and Types” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSSystemDefined
See “Event Objects and Types” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSApplicationDefined
See “Event Objects and Types” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSPeriodic
See “Event Objects and Types” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSScrollWheel
See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSTabletPoint
An event representing the current state of a tablet pointing device, including its location, pressure,
and tilt.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSTabletProximity
An event representing the proximity of a pointing device to its tablet.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSEventTypeGesture
An event that represents some type of gesture such as NSEventTypeMagnify, NSEventTypeSwipe,
NSEventTypeRotate, NSEventTypeBeginGesture, or NSEventTypeEndGesture.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

Constants 1095
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSEventTypeMagnify
An event representing a pinch open or pinch close gesture.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

NSEventTypeSwipe
An event representing a swipe gesture.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

NSEventTypeRotate
An event representing a rotation gesture.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

NSEventTypeBeginGesture
An event that represents a gesture beginning.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

NSEventTypeEndGesture
An event that represents a gesture ending.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

Masks for event types
These constants are masks for the events defined in “Event Types” (page 1092). Pass them to the NSCell
method sendActionOn: (page 576) to specify when an NSCell should send its action message.

1096 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

enum {
 NSLeftMouseDownMask = 1 << NSLeftMouseDown,
 NSLeftMouseUpMask = 1 << NSLeftMouseUp,
 NSRightMouseDownMask = 1 << NSRightMouseDown,
 NSRightMouseUpMask = 1 << NSRightMouseUp,
 NSMouseMovedMask = 1 << NSMouseMoved,
 NSLeftMouseDraggedMask = 1 << NSLeftMouseDragged,
 NSRightMouseDraggedMask = 1 << NSRightMouseDragged,
 NSMouseEnteredMask = 1 << NSMouseEntered,
 NSMouseExitedMask = 1 << NSMouseExited,
 NSKeyDownMask = 1 << NSKeyDown,
 NSKeyUpMask = 1 << NSKeyUp,
 NSFlagsChangedMask = 1 << NSFlagsChanged,
 NSAppKitDefinedMask = 1 << NSAppKitDefined,
 NSSystemDefinedMask = 1 << NSSystemDefined,
 NSApplicationDefinedMask = 1 << NSApplicationDefined,
 NSPeriodicMask = 1 << NSPeriodic,
 NSCursorUpdateMask = 1 << NSCursorUpdate,
 NSScrollWheelMask = 1 << NSScrollWheel,
 NSTabletPointMask = 1 << NSTabletPoint,
 NSTabletProximityMask = 1 << NSTabletProximity,
 NSOtherMouseDownMask = 1 << NSOtherMouseDown,
 NSOtherMouseUpMask = 1 << NSOtherMouseUp,
 NSOtherMouseDraggedMask = 1 << NSOtherMouseDragged,
 NSEventMaskGesture = 1 << NSEventTypeGesture,
 NSEventMaskMagnify = 1 << NSEventTypeMagnify,
 NSEventMaskSwipe = 1U << NSEventTypeSwipe,
 NSEventMaskRotate = 1 << NSEventTypeRotate,
 NSEventMaskBeginGesture = 1 << NSEventTypeBeginGesture,
 NSEventMaskEndGesture = 1 << NSEventTypeEndGesture,
 NSAnyEventMask = 0xffffffffU
};
NSUInteger NSEventMaskFromType(NSEventType type) { return (1 << type); };

Constants
NSLeftMouseDownMask

Corresponds to NSLeftMouseDown. See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSLeftMouseUpMask
Corresponds to NSLeftMouseUp. See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSRightMouseDownMask
Corresponds to NSRightMouseDown. See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSRightMouseUpMask
Corresponds to NSRightMouseUp. See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

Constants 1097
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSOtherMouseDownMask
Corresponds to NSOtherMouseDown. See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.1 and later.

Declared in NSEvent.h.

NSOtherMouseUpMask
Corresponds to NSOtherMouseUp. See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.1 and later.

Declared in NSEvent.h.

NSMouseMovedMask
Corresponds to NSMouseMoved. See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSLeftMouseDraggedMask
Corresponds to NSLeftMouseDragged. See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSRightMouseDraggedMask
Corresponds to NSRightMouseDragged. See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSOtherMouseDraggedMask
Corresponds to NSOtherMouseDragged. See “Handling Mouse Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.1 and later.

Declared in NSEvent.h.

NSMouseEnteredMask
Corresponds to NSMouseEntered. See See “Mouse-Tracking and Cursor-Update Events” in Cocoa
Event-Handling Guide..

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSMouseExitedMask
Corresponds to NSMouseExited. See See “Mouse-Tracking and Cursor-Update Events” in Cocoa
Event-Handling Guide..

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSCursorUpdateMask
Corresponds to NSCursorUpdate. See See “Mouse-Tracking and Cursor-Update Events” in Cocoa
Event-Handling Guide..

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSKeyDownMask
Corresponds to NSKeyDown. See “Handling Key Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

1098 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSKeyUpMask
Corresponds to NSKeyUp. See “Handling Key Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSFlagsChangedMask
Corresponds to NSFlagsChanged. See “Handling Key Events” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSAppKitDefinedMask
Corresponds to NSAppKitDefined. See “Event Objects and Types” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSSystemDefinedMask
Corresponds to NSSystemDefined. See “Event Objects and Types” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSApplicationDefinedMask
Corresponds to NSApplicationDefined. See “Event Objects and Types” in Cocoa Event-Handling
Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSPeriodicMask
Corresponds to NSPeriodic. See “Event Objects and Types” in Cocoa Event-Handling Guide.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSScrollWheelMask
Corresponds to NSScrollWheel. See “Handling Mouse Events” in Cocoa Event-Handling Guide..

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSTabletPointMask
Corresponds to NSTabletPoint.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSTabletProximityMask
Corresponds to NSTabletProximity.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSEventMaskGesture
Corresponds to NSEventTypeGesture.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

Constants 1099
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSEventMaskMagnify
Corresponds to NSEventTypeMagnify.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

NSEventMaskSwipe
Corresponds to NSEventTypeSwipe.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

NSEventMaskRotate
Corresponds to NSEventTypeRotate.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

NSEventMaskBeginGesture
Corresponds to NSEventTypeBeginGesture.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

NSEventMaskEndGesture
Corresponds to NSEventTypeEndGesture.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

NSAnyEventMask
Corresponds to any event mask.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

Modifier Flags
The following constants (except for NSDeviceIndependentModifierFlagsMask) represent
device-independent bits found in event modifier flags:

enum {
 NSAlphaShiftKeyMask = 1 << 16,
 NSShiftKeyMask = 1 << 17,
 NSControlKeyMask = 1 << 18,
 NSAlternateKeyMask = 1 << 19,
 NSCommandKeyMask = 1 << 20,
 NSNumericPadKeyMask = 1 << 21,
 NSHelpKeyMask = 1 << 22,
 NSFunctionKeyMask = 1 << 23,
 NSDeviceIndependentModifierFlagsMask = 0xffff0000U
};

Constants
NSAlphaShiftKeyMask

Set if Caps Lock key is pressed.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

1100 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSShiftKeyMask
Set if Shift key is pressed.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSControlKeyMask
Set if Control key is pressed.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSAlternateKeyMask
Set if Option or Alternate key is pressed.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSCommandKeyMask
Set if Command key is pressed.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSNumericPadKeyMask
Set if any key in the numeric keypad is pressed. The numeric keypad is generally on the right side of
the keyboard. This is also set if any of the arrow keys are pressed (NSUpArrowFunctionKey (page
1107), NSDownArrowFunctionKey (page 1107), NSLeftArrowFunctionKey (page 1107), and
NSRightArrowFunctionKey (page 1107)).

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSHelpKeyMask
Set if the Help key is pressed.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSFunctionKeyMask
Set if any function key is pressed. The function keys include the F keys at the top of most keyboards
(F1, F2, and so on) and the navigation keys in the center of most keyboards (Help, Forward Delete,
Home, End, Page Up, Page Down, and the arrow keys).

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSDeviceIndependentModifierFlagsMask
Used to retrieve only the device-independent modifier flags, allowing applications to mask off the
device-dependent modifier flags, including event coalescing information.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSPointingDeviceType
The following constants represent pointing-device types for NSTabletProximity events or mouse events
with subtype NSTabletProximityEventSubtype. The pointingDeviceType (page 1083) method returns
one of these constants.

Constants 1101
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

typedef enum {
 NSUnknownPointingDevice = NX_TABLET_POINTER_UNKNOWN,
 NSPenPointingDevice = NX_TABLET_POINTER_PEN,
 NSCursorPointingDevice = NX_TABLET_POINTER_CURSOR,
 NSEraserPointingDevice = NX_TABLET_POINTER_ERASER
} NSPointingDeviceType;

Constants
NSUnknownPointingDevice

Represents an unknown type of pointing device.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSPenPointingDevice
Represents the tip end of a stylus-like pointing device.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSCursorPointingDevice
Represents a cursor (or puck-like) pointing device.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSEraserPointingDevice
Represents the eraser end of a stylus-like pointing device.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

Mouse-event subtypes
The following constants represent mouse-event subtypes for mouse and tablet events (accessed with the
subtype (page 1084) method).

enum {
 NSMouseEventSubtype = NX_SUBTYPE_DEFAULT,
 NSTabletPointEventSubtype = NX_SUBTYPE_TABLET_POINT,
 NSTabletProximityEventSubtype = NX_SUBTYPE_TABLET_PROXIMITY
 NSTouchEventSubtype = NX_SUBTYPE_MOUSE_TOUCH
};

Constants
NSMouseEventSubtype

Indicates a purely mouse event.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSTabletPointEventSubtype
Indicates a tablet-pointer event; see description of NSTabletPoint.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

1102 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSTabletProximityEventSubtype
Indicates a tablet-proximity event; see description of NSTabletProximity.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSTouchEventSubtype
Indicates a touch event subtype.

Available in Mac OS X v10.6 and later.

Declared in NSEvent.h.

Tablet event masks
The following constants represent button masks for NSTabletPoint events or mouse events with subtype
NSTabletPointEventSubtype. The buttonMask (page 1072) method returns a bit mask, which you test
with one or more of these constants to determine the state of the buttons on a tablet pointing device.

enum {
 NSPenTipMask = NX_TABLET_BUTTON_PENTIPMASK,
 NSPenLowerSideMask = NX_TABLET_BUTTON_PENLOWERSIDEMASK,
 NSPenUpperSideMask = NX_TABLET_BUTTON_PENUPPERSIDEMASK
};

Constants
NSPenTipMask

The pen tip is activated.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSPenLowerSideMask
The button on the lower side of the device is activated.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

NSPenUpperSideMask
The button on the upper side of the device is activated.

Available in Mac OS X v10.4 and later.

Declared in NSEvent.h.

Types Defined by the Application Kit
These constants represent the types of events defined by the Application Kit.

Constants 1103
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

enum {
 NSWindowExposedEventType = 0,
 NSApplicationActivatedEventType = 1,
 NSApplicationDeactivatedEventType = 2,
 NSWindowMovedEventType = 4,
 NSScreenChangedEventType = 8,
 NSAWTEventType = 16
};

Constants
NSWindowExposedEventType

A non-retained NSWindow has been exposed.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSApplicationActivatedEventType
The application has been activated.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSApplicationDeactivatedEventType
The application has been deactivated.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSWindowMovedEventType
An NSWindow has moved.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSScreenChangedEventType
An NSWindow has changed screens.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSAWTEventType
An event type used to support Java applications.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

Power-off event
This constant denotes that the user is turning off the computer.

1104 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

enum {
 NSPowerOffEventType = 1
};

Constants
NSPowerOffEventType

Specifies that the user is turning off the computer.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

Function-Key Unicodes
These constants represent Unicode characters (0xF700–0xF8FF) that are reserved for function keys on the
keyboard. Combined in NSStrings, they are the return values of the NSEvent methods characters (page
1074) andcharactersIgnoringModifiers (page 1074) and may be used in some parameters in the NSEvent
method keyEventWithType:location:modifierFlags:timestamp:windowNumber:context:
characters:charactersIgnoringModifiers:isARepeat:keyCode: (page 1063).

Constants 1105
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

enum {
 NSUpArrowFunctionKey = 0xF700,
 NSDownArrowFunctionKey = 0xF701,
 NSLeftArrowFunctionKey = 0xF702,
 NSRightArrowFunctionKey = 0xF703,
 NSF1FunctionKey = 0xF704,
 NSF2FunctionKey = 0xF705,
 NSF3FunctionKey = 0xF706,
 NSF4FunctionKey = 0xF707,
 NSF5FunctionKey = 0xF708,
 NSF6FunctionKey = 0xF709,
 NSF7FunctionKey = 0xF70A,
 NSF8FunctionKey = 0xF70B,
 NSF9FunctionKey = 0xF70C,
 NSF10FunctionKey = 0xF70D,
 NSF11FunctionKey = 0xF70E,
 NSF12FunctionKey = 0xF70F,
 NSF13FunctionKey = 0xF710,
 NSF14FunctionKey = 0xF711,
 NSF15FunctionKey = 0xF712,
 NSF16FunctionKey = 0xF713,
 NSF17FunctionKey = 0xF714,
 NSF18FunctionKey = 0xF715,
 NSF19FunctionKey = 0xF716,
 NSF20FunctionKey = 0xF717,
 NSF21FunctionKey = 0xF718,
 NSF22FunctionKey = 0xF719,
 NSF23FunctionKey = 0xF71A,
 NSF24FunctionKey = 0xF71B,
 NSF25FunctionKey = 0xF71C,
 NSF26FunctionKey = 0xF71D,
 NSF27FunctionKey = 0xF71E,
 NSF28FunctionKey = 0xF71F,
 NSF29FunctionKey = 0xF720,
 NSF30FunctionKey = 0xF721,
 NSF31FunctionKey = 0xF722,
 NSF32FunctionKey = 0xF723,
 NSF33FunctionKey = 0xF724,
 NSF34FunctionKey = 0xF725,
 NSF35FunctionKey = 0xF726,
 NSInsertFunctionKey = 0xF727,
 NSDeleteFunctionKey = 0xF728,
 NSHomeFunctionKey = 0xF729,
 NSBeginFunctionKey = 0xF72A,
 NSEndFunctionKey = 0xF72B,
 NSPageUpFunctionKey = 0xF72C,
 NSPageDownFunctionKey = 0xF72D,
 NSPrintScreenFunctionKey = 0xF72E,
 NSScrollLockFunctionKey = 0xF72F,
 NSPauseFunctionKey = 0xF730,
 NSSysReqFunctionKey = 0xF731,
 NSBreakFunctionKey = 0xF732,
 NSResetFunctionKey = 0xF733,
 NSStopFunctionKey = 0xF734,
 NSMenuFunctionKey = 0xF735,
 NSUserFunctionKey = 0xF736,
 NSSystemFunctionKey = 0xF737,
 NSPrintFunctionKey = 0xF738,

1106 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

 NSClearLineFunctionKey = 0xF739,
 NSClearDisplayFunctionKey = 0xF73A,
 NSInsertLineFunctionKey = 0xF73B,
 NSDeleteLineFunctionKey = 0xF73C,
 NSInsertCharFunctionKey = 0xF73D,
 NSDeleteCharFunctionKey = 0xF73E,
 NSPrevFunctionKey = 0xF73F,
 NSNextFunctionKey = 0xF740,
 NSSelectFunctionKey = 0xF741,
 NSExecuteFunctionKey = 0xF742,
 NSUndoFunctionKey = 0xF743,
 NSRedoFunctionKey = 0xF744,
 NSFindFunctionKey = 0xF745,
 NSHelpFunctionKey = 0xF746,
 NSModeSwitchFunctionKey = 0xF747
};

Constants
NSUpArrowFunctionKey

Up Arrow key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSDownArrowFunctionKey
Down Arrow key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSLeftArrowFunctionKey
Left Arrow key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSRightArrowFunctionKey
Right Arrow key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF1FunctionKey
F1 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF2FunctionKey
F2 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF3FunctionKey
F3 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

Constants 1107
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSF4FunctionKey
F4 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF5FunctionKey
F5 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF6FunctionKey
F6 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF7FunctionKey
F7 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF8FunctionKey
F8 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF9FunctionKey
F9 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF10FunctionKey
F10 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF11FunctionKey
F11 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF12FunctionKey
F12 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF13FunctionKey
F13 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

1108 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSF14FunctionKey
F14 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF15FunctionKey
F15 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF16FunctionKey
F16 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF17FunctionKey
F17 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF18FunctionKey
F18 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF19FunctionKey
F19 key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF20FunctionKey
F20 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF21FunctionKey
F21 keyc. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF22FunctionKey
F22 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF23FunctionKey
F23 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

Constants 1109
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSF24FunctionKey
F24 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF25FunctionKey
F25 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF26FunctionKey
F26 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF27FunctionKey
F27 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF28FunctionKey
F28 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF29FunctionKey
F29 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF30FunctionKey
F30 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF31FunctionKey
F31 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF32FunctionKey
F32 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF33FunctionKey
F33 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

1110 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSF34FunctionKey
F34 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSF35FunctionKey
F35 key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSInsertFunctionKey
Insert key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSDeleteFunctionKey
Forward Delete key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSHomeFunctionKey
Home key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSBeginFunctionKey
Begin key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSEndFunctionKey
End key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSPageUpFunctionKey
Page Up key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSPageDownFunctionKey
Page Down key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSPrintScreenFunctionKey
Print Screen key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

Constants 1111
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSScrollLockFunctionKey
Scroll Lock key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSPauseFunctionKey
Pause key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSSysReqFunctionKey
System Request key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSBreakFunctionKey
Break key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSResetFunctionKey
Reset key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSStopFunctionKey
Stop key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSMenuFunctionKey
Menu key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSUserFunctionKey
User key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSSystemFunctionKey
System key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSPrintFunctionKey
Print key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

1112 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSClearLineFunctionKey
Clear/Num Lock key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSClearDisplayFunctionKey
Clear Display key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSInsertLineFunctionKey
Insert Line key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSDeleteLineFunctionKey
Delete Line key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSInsertCharFunctionKey
Insert Character key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSDeleteCharFunctionKey
Delete Character key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSPrevFunctionKey
Previous key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSNextFunctionKey
Next key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSSelectFunctionKey
Select key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSExecuteFunctionKey
Execute key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

Constants 1113
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

NSUndoFunctionKey
Undo key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSRedoFunctionKey
Redo key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSFindFunctionKey
Find key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSHelpFunctionKey
Help key.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

NSModeSwitchFunctionKey
Mode Switch key. Not on most Macintosh keyboards.

Available in Mac OS X v10.0 and later.

Declared in NSEvent.h.

Discussion
Note that some function keys are handled at a lower level and are never seen by your application. They
include the Volume Up key, Volume Down key, Volume Mute key, Eject key, and Function key found on many
iBook and PowerBook computers.

1114 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 48

NSEvent Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/Foundation.framework

Availability Available in Mac OS X v10.0 and later.

Declared in Foundation/NSFileWrapper.h

Companion guide Application File Management

Related sample code File Wrappers with Core Data Documents
FunHouse
GLUT
Quartz Composer WWDC 2005 TextEdit
SimpleStickies

Overview

The NSFileWrapper class provides access to the attributes and contents of file-system nodes. A file-system
node is a file, directory, or symbolic link. Instances of this class are known as file wrappers.

File wrappers represent a file-system node as an object that can be displayed as an image (and possibly
edited in place), saved to the file system, or transmitted to another application.

There are three types of file wrappers:

 ■ Regular-file file wrapper: Represents a regular file.

 ■ Directory file wrapper: Represents a directory.

 ■ Symbolic-link file wrapper: Represents a symbolic link.

A file wrapper has these attributes:

 ■ Filename. Name of the file-system node the file wrapper represents.

 ■ file-system attributes. See NSFileManager Class Reference for information on the contents of the
attributes dictionary.

 ■ Regular-file contents. Applicable only to regular-file file wrappers.

 ■ File wrappers. Applicable only to directory file wrappers.

Overview 1115
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

 ■ Destination node. Applicable only to symbolic-link file wrappers.

Adopted Protocols

NSCoding
encodeWithCoder:

initWithCoder:

Tasks

Creating File Wrappers
This class has several designated initializers.

– initWithURL:options:error: (page 1127)
Initializes a file wrapper instance whose kind is determined by the type of file-system node located
by the URL.

– initWithPath: (page 1126)
Initializes a file wrapper instance whose kind is determined by the type of file-system node located
by the path. (Deprecated. Use initWithURL:options:error: (page 1127) instead.)

– initDirectoryWithFileWrappers: (page 1123)
Initializes the receiver as a directory file wrapper, with a given file-wrapper list.

– initRegularFileWithContents: (page 1124)
Initializes the receiver as a regular-file file wrapper.

– initSymbolicLinkWithDestinationURL: (page 1125)
Initializes the receiver as a symbolic-link file wrapper that links to a specified file.

– initWithSerializedRepresentation: (page 1126)
Initializes the receiver as a regular-file file wrapper from given serialized data.

– initSymbolicLinkWithDestination: (page 1124) Deprecated in Mac OS X v10.6
Initializes the receiver as a symbolic-link file wrapper. (Deprecated. Use
initSymbolicLinkWithDestinationURL: (page 1125) instead.)

Querying File Wrappers

– isRegularFile (page 1128)
Indicates whether the receiver is a regular-file file wrapper.

– isDirectory (page 1128)
Indicates whether the receiver is a directory file wrapper.

– isSymbolicLink (page 1128)
Indicates whether the receiver is a symbolic-link file wrapper.

1116 Adopted Protocols
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Accessing File-Wrapper Information

– fileWrappers (page 1122)
Returns the file wrappers contained by a directory file wrapper.

– addFileWrapper: (page 1119)
Adds a child file wrapper to the receiver, which must be a directory file wrapper.

– removeFileWrapper: (page 1133)
Removes a child file wrapper from the receiver, which must be a directory file wrapper.

– addRegularFileWithContents:preferredFilename: (page 1120)
Creates a regular-file file wrapper with the given contents and adds it to the receiver, which must be
a directory file wrapper.

– keyForFileWrapper: (page 1129)
Returns the dictionary key used by a directory to identify a given file wrapper.

– symbolicLinkDestinationURL (page 1136)
Provides the URL referenced by the receiver, which must be a symbolic-link file wrapper.

– addFileWithPath: (page 1118) Deprecated in Mac OS X v10.6
Creates a file wrapper from a given file-system node and adds it to the receiver, which must be a
directory file wrapper. (Deprecated. Use addFileWrapper: (page 1119) instead.)

– addSymbolicLinkWithDestination:preferredFilename: (page 1121) Deprecated in Mac OS X v10.6
Creates a symbolic-link file wrapper pointing to a given file-system node and adds it to the receiver,
which must be a directory file wrapper. (Deprecated. Use addFileWrapper: (page 1119) instead.)

– symbolicLinkDestination (page 1136) Deprecated in Mac OS X v10.6
Provides the pathname referenced by the receiver, which must be a symbolic-link file wrapper.
(Deprecated. Use symbolicLinkDestinationURL (page 1136) instead.)

Updating File Wrappers

– matchesContentsOfURL: (page 1129)
Indicates whether the contents of a file wrapper matches a directory, regular file, or symbolic link on
disk.

– readFromURL:options:error: (page 1132)
Recursively rereads the entire contents of a file wrapper from the specified location on disk.

– needsToBeUpdatedFromPath: (page 1130) Deprecated in Mac OS X v10.6
Indicates whether the file wrapper needs to be updated to match a given file-system node. (Deprecated.
Use matchesContentsOfURL: (page 1129) instead.)

– updateFromPath: (page 1137) Deprecated in Mac OS X v10.6
Updates the file wrapper to match a given file-system node. (Deprecated. Use
readFromURL:options:error: (page 1132) instead.)

Serializing

– serializedRepresentation (page 1133)
Returns the contents of the file wrapper as an opaque collection of data.

Tasks 1117
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Accessing Files

– filename (page 1122)
Provides the filename of a file wrapper.

– setFilename: (page 1134)
Specifies the filename of a file wrapper.

– preferredFilename (page 1131)
Provides the preferred filename for a file wrapper.

– setPreferredFilename: (page 1135)
Specifies the receiver’s preferred filename.

– fileAttributes (page 1121)
Returns a file wrapper’s file attributes.

– setFileAttributes: (page 1134)
Specifies a file wrapper’s file attributes.

– regularFileContents (page 1132)
Returns the contents of the file-system node associated with a regular-file file wrapper.

Writing Files

– writeToURL:options:originalContentsURL:error: (page 1138)
Recursively writes the entire contents of a file wrapper to a given file-system URL.

– writeToFile:atomically:updateFilenames: (page 1137) Deprecated in Mac OS X v10.6
Writes a file wrapper’s contents to a given file-system node. (Deprecated. Use
writeToURL:options:originalContentsURL:error: (page 1138) instead.)

Instance Methods

addFileWithPath:
Creates a file wrapper from a given file-system node and adds it to the receiver, which must be a directory
file wrapper. (Deprecated in Mac OS X v10.6. Use addFileWrapper: (page 1119) instead.)

- (NSString *)addFileWithPath:(NSString *)node

Parameters
node

file-system node from which to create the file wrapper to add to the directory.

Return Value
Dictionary key used to store the new file wrapper in the directory’s list of file wrappers. See “Working With
Directory Wrappers” for more information.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Instead of
using this method, you can instantiate NSFileWrapper with one of the initializers, send it
setPreferredFilename: (page 1135) if necessary, and pass the result to addFileWrapper: (page 1119).

1118 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– addRegularFileWithContents:preferredFilename: (page 1120)
– addSymbolicLinkWithDestination:preferredFilename: (page 1121)
– removeFileWrapper: (page 1133)
– fileWrappers (page 1122)

Related Sample Code
File Wrappers with Core Data Documents

Declared In
NSFileWrapper.h

addFileWrapper:
Adds a child file wrapper to the receiver, which must be a directory file wrapper.

- (NSString *)addFileWrapper:(NSFileWrapper *)child

Parameters
child

File wrapper to add to the directory.

Return Value
Dictionary key used to store fileWrapper in the directory’s list of file wrappers. The dictionary key is a
unique filename, which is the same as the passed-in file wrapper's preferred filename unless that name is
already in use as a key in the directory’s dictionary of children. See “Working With Directory Wrappers” in
Application File Management for more information about the file-wrapper list structure.

Discussion
Use this method to add an existing file wrapper as a child of a directory file wrapper. If the file wrapper does
not have a preferred filename, use the setPreferredFilename: (page 1135) method to give it one before
calling addFileWrapper:. To create a new file wrapper and add it to a directory, use the
addRegularFileWithContents:preferredFilename: (page 1120) method.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

This method raises NSInvalidArgumentException if the child file wrapper doesn’t have a preferred name.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addRegularFileWithContents:preferredFilename: (page 1120)
– removeFileWrapper: (page 1133)
– fileWrappers (page 1122)
– preferredFilename (page 1131)

Instance Methods 1119
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Related Sample Code
File Wrappers with Core Data Documents

Declared In
NSFileWrapper.h

addRegularFileWithContents:preferredFilename:
Creates a regular-file file wrapper with the given contents and adds it to the receiver, which must be a
directory file wrapper.

- (NSString *)addRegularFileWithContents:(NSData *)data preferredFilename:(NSString
 *)filename

Parameters
data

Contents for the new regular-file file wrapper.

filename
Preferred filename for the new regular-file file wrapper.

Return Value
Dictionary key used to store the new file wrapper in the directory’s list of file wrappers. The dictionary key is
a unique filename, which is the same as the passed-in file wrapper's preferred filename unless that name is
already in use as a key in the directory's dictionary of children. See “Working With Directory Wrappers” in
Application File Management for more information about the file-wrapper list structure.

Discussion
This is a convenience method. The default implementation allocates a new file wrapper, initializes it with
initRegularFileWithContents: (page 1124), sends it setPreferredFilename: (page 1135), adds it to
the directory with addFileWrapper: (page 1119), and returns what addFileWrapper: returned.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

This method raises NSInvalidArgumentException if you pass nil or an empty value for filename.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addFileWrapper: (page 1119)
– removeFileWrapper: (page 1133)
– fileWrappers (page 1122)

Related Sample Code
FunHouse
SimpleStickies

Declared In
NSFileWrapper.h

1120 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

addSymbolicLinkWithDestination:preferredFilename:
Creates a symbolic-link file wrapper pointing to a given file-system node and adds it to the receiver, which
must be a directory file wrapper. (Deprecated in Mac OS X v10.6. Use addFileWrapper: (page 1119) instead.)

- (NSString *)addSymbolicLinkWithDestination:(NSString *)node
preferredFilename:(NSString *)preferredFilename

Parameters
node

Pathname the new symbolic-link file wrapper is to reference.

preferredFilename
Preferred filename for the new symbolic-link file wrapper.

Return Value
Dictionary key used to store the new file wrapper in the directory’s list of file wrappers. See “Working With
Directory Wrappers” for more information.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Instead of
using this method, you can instantiate NSFileWrapper with one of the initializers, send it
setPreferredFilename: (page 1135) if necessary, and pass the result to addFileWrapper: (page 1119).

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

This method raises NSInvalidArgumentException if you pass nil or an empty value for
preferredFilename.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– addFileWrapper: (page 1119)
– addRegularFileWithContents:preferredFilename: (page 1120)
– removeFileWrapper: (page 1133)
– fileWrappers (page 1122)

Declared In
NSFileWrapper.h

fileAttributes
Returns a file wrapper’s file attributes.

- (NSDictionary *)fileAttributes

Return Value
File attributes, in a dictionary of the same sort as that returned by attributesOfItemAtPath:error:
(NSFileManager).

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1121
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

See Also
– setFileAttributes: (page 1134)

Declared In
NSFileWrapper.h

filename
Provides the filename of a file wrapper.

- (NSString *)filename

Return Value
The file wrapper’s filename; nil when the file wrapper has no corresponding file-system node.

Discussion
The filename is used for record-keeping purposes only and is set automatically when the file wrapper is
created from the file system using initWithURL:options:error: (page 1127) and when it’s saved to the
file system usingwriteToURL:options:originalContentsURL:error: (page 1138) (although this method
allows you to request that the filename not be updated).

The filename is usually the same as the preferred filename, but might instead be a name derived from the
preferred filename. You can use this method to get the name of a child that's just been read. Don’t use this
method to get the name of a child that's about to be written, because the name might be about to change;
send keyForFileWrapper: (page 1129) to the parent instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– preferredFilename (page 1131)
– setFilename: (page 1134)

Related Sample Code
File Wrappers with Core Data Documents
Quartz Composer WWDC 2005 TextEdit

Declared In
NSFileWrapper.h

fileWrappers
Returns the file wrappers contained by a directory file wrapper.

- (NSDictionary *)fileWrappers

Return Value
A key-value dictionary of the file wrappers contained in the directory. The dictionary contains entries whose
values are the file wrappers and whose keys are the unique filenames that have been assigned to each one.
See “Working With Directory Wrappers” in Application File Management for more information about the
file-wrapper list structure.

1122 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Discussion
Returns a dictionary whose values are the file wrapper's children and whose keys are the unique filenames
that have been assigned to each one. This method may return nil if the user modifies the directory after
you call readFromURL:options:error: (page 1132) or initWithURL:options:error: (page 1127) but
before NSFileWrapper has read the contents of the directory. Use the NSFileWrapperReadingImmediate
reading option to reduce the likelihood of that problem.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

Availability
Available in Mac OS X v10.0 and later.

See Also
– filename (page 1122)
– addFileWrapper: (page 1119)

Related Sample Code
File Wrappers with Core Data Documents
FunHouse

Declared In
NSFileWrapper.h

initDirectoryWithFileWrappers:
Initializes the receiver as a directory file wrapper, with a given file-wrapper list.

- (id)initDirectoryWithFileWrappers:(NSDictionary *)childrenByPreferredName

Parameters
childrenByPreferredName

Key-value dictionary of file wrappers with which to initialize the receiver. The dictionary must contain
entries whose values are the file wrappers that are to become children and whose keys are filenames.
See “Working With Directory Wrappers” in Application File Management for more information about
the file-wrapper list structure.

Return Value
Initialized file wrapper for fileWrappers.

Discussion
After initialization, the file wrapper is not associated with a file-system node until you save it using
writeToURL:options:originalContentsURL:error: (page 1138).

The receiver is initialized with open permissions: anyone can read, write, or modify the directory on disk.

If any file wrapper in the directory doesn’t have a preferred filename, its preferred name is automatically set
to its corresponding key in the childrenByPreferredName dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPreferredFilename: (page 1135)

Instance Methods 1123
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

– filename (page 1122)
– setFileAttributes: (page 1134)

Related Sample Code
File Wrappers with Core Data Documents
FunHouse
SimpleStickies

Declared In
NSFileWrapper.h

initRegularFileWithContents:
Initializes the receiver as a regular-file file wrapper.

- (id)initRegularFileWithContents:(NSData *)contents

Parameters
contents

Contents of the file.

Return Value
Initialized regular-file file wrapper containing contents.

Discussion
After initialization, the file wrapper is not associated with a file-system node until you save it using
writeToURL:options:originalContentsURL:error: (page 1138).

The file wrapper is initialized with open permissions: anyone can write to or read the file wrapper. .

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPreferredFilename: (page 1135)
– filename (page 1122)
– fileAttributes (page 1121)
– regularFileContents (page 1132)

Related Sample Code
File Wrappers with Core Data Documents
FunHouse

Declared In
NSFileWrapper.h

initSymbolicLinkWithDestination:
Initializes the receiver as a symbolic-link file wrapper. (Deprecated in Mac OS X v10.6. Use
initSymbolicLinkWithDestinationURL: (page 1125) instead.)

- (id)initSymbolicLinkWithDestination:(NSString *)node

1124 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Parameters
node

Pathname the receiver is to represent.

Return Value
Initialized symbolic-link file wrapper referencing node.

Discussion
The receiver is not associated to a file-system node until you save it using
writeToFile:atomically:updateFilenames: (page 1137). It’s also initialized with open permissions;
anyone can read or write the disk representations it saves.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor of initSymbolicLinkWithDestinationURL: (page 1125).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setPreferredFilename: (page 1135)
– filename (page 1122)
– fileAttributes (page 1121)

Declared In
NSFileWrapper.h

initSymbolicLinkWithDestinationURL:
Initializes the receiver as a symbolic-link file wrapper that links to a specified file.

- (id)initSymbolicLinkWithDestinationURL:(NSURL *)url

Parameters
url

URL of the file the file wrapper is to reference.

Return Value
Initialized symbolic-link file wrapper referencing url.

Discussion
The file wrapper is not associated with a file-system node until you save it using
writeToURL:options:originalContentsURL:error: (page 1138).

The file wrapper is initialized with open permissions: anyone can modify or read the file reference. .

Availability
Available in Mac OS X v10.6 and later.

See Also
– setPreferredFilename: (page 1135)
– filename (page 1122)
– fileAttributes (page 1121)

Instance Methods 1125
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Declared In
NSFileWrapper.h

initWithPath:
Initializes a file wrapper instance whose kind is determined by the type of file-system node located by the
path. (Deprecated in Mac OS X v10.6. Use initWithURL:options:error: (page 1127) instead.)

- (id)initWithPath:(NSString *)node

Parameters
node

Pathname of the file-system node the file wrapper is to represent.

Return Value
File wrapper for node.

Discussion
If node is a directory, this method recursively creates file wrappers for each node within that directory.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor of initWithURL:options:error: (page 1127).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setPreferredFilename: (page 1135)
– filename (page 1122)
– fileAttributes (page 1121)

Declared In
NSFileWrapper.h

initWithSerializedRepresentation:
Initializes the receiver as a regular-file file wrapper from given serialized data.

- (id)initWithSerializedRepresentation:(NSData *)serializedRepresentation

Parameters
serializedRepresentation

Serialized representation of a file wrapper in the format used for the NSFileContentsPboardType
pasteboard type. Data of this format is returned by such methods as
serializedRepresentation (page 1133) andRTFDFromRange:documentAttributes: (page 268)
(NSAttributedString).

Return Value
Regular-file file wrapper initialized from serializedRepresentation.

1126 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Discussion
The file wrapper is not associated with a file-system node until you save it using
writeToURL:options:originalContentsURL:error: (page 1138).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPreferredFilename: (page 1135)
– filename (page 1122)
– fileAttributes (page 1121)

Declared In
NSFileWrapper.h

initWithURL:options:error:
Initializes a file wrapper instance whose kind is determined by the type of file-system node located by the
URL.

- (id)initWithURL:(NSURL *)url options:(NSFileWrapperReadingOptions)options
error:(NSError **)outError

Parameters
url

URL of the file-system node the file wrapper is to represent.

options
Option flags for reading the node located at url. See “File Wrapper Reading Options” (page 1139) for
possible values.

outError
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
File wrapper for the file-system node at url. May be a directory, file, or symbolic link, depending on what is
located at the URL. Returns NO (0) if reading is not successful.

Discussion
If url is a directory, this method recursively creates file wrappers for each node within that directory. Use
the fileWrappers (page 1122) method to get the file wrappers of the nodes contained by the directory.

Availability
Available in Mac OS X v10.6 and later.

See Also
– fileWrappers (page 1122)
– setPreferredFilename: (page 1135)
– filename (page 1122)
– fileAttributes (page 1121)
– readFromURL:options:error: (page 1132)

Instance Methods 1127
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Declared In
NSFileWrapper.h

isDirectory
Indicates whether the receiver is a directory file wrapper.

- (BOOL)isDirectory

Return Value
YES when the receiver is a directory file wrapper, NO otherwise.

Discussion
Invocations of readFromURL:options:error: (page 1132) may change what is returned by subsequent
invocations of this method if the type of the file on disk has changed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isRegularFile (page 1128)
– isSymbolicLink (page 1128)

Declared In
NSFileWrapper.h

isRegularFile
Indicates whether the receiver is a regular-file file wrapper.

- (BOOL)isRegularFile

Return Value
YES when the receiver is a regular-file wrapper, NO otherwise.

Discussion
Invocations of readFromURL:options:error: (page 1132) may change what is returned by subsequent
invocations of this method if the type of the file on disk has changed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isDirectory (page 1128)
– isSymbolicLink (page 1128)

Declared In
NSFileWrapper.h

isSymbolicLink
Indicates whether the receiver is a symbolic-link file wrapper.

1128 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

- (BOOL)isSymbolicLink

Return Value
YES when the receiver is a symbolic-link file wrapper, NO otherwise.

Discussion
Invocations of readFromURL:options:error: (page 1132) may change what is returned by subsequent
invocations of this method if the type of the file on disk has changed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isDirectory (page 1128)
– isRegularFile (page 1128)

Declared In
NSFileWrapper.h

keyForFileWrapper:
Returns the dictionary key used by a directory to identify a given file wrapper.

- (NSString *)keyForFileWrapper:(NSFileWrapper *)child

Parameters
child

The child file wrapper for which you want the key.

Return Value
Dictionary key used to store the file wrapper in the directory’s list of file wrappers. The dictionary key is a
unique filename, which may not be the same as the passed-in file wrapper's preferred filename if more than
one file wrapper in the directory's dictionary of children has the same preferred filename. See “Working With
Directory Wrappers” in Application File Management for more information about the file-wrapper list structure.
Returns nil if the file wrapper specified in child is not a child of the directory.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

Availability
Available in Mac OS X v10.0 and later.

See Also
– filename (page 1122)

Declared In
NSFileWrapper.h

matchesContentsOfURL:
Indicates whether the contents of a file wrapper matches a directory, regular file, or symbolic link on disk.

- (BOOL)matchesContentsOfURL:(NSURL *)url

Instance Methods 1129
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Parameters
url

URL of the file-system node with which to compare the file wrapper.

Return Value
YES when the contents of the file wrapper match the contents of url, NO otherwise.

Discussion
The contents of files are not compared; matching of regular files is based on file modification dates. For a
directory, children are compared against the files in the directory, recursively.

Because children of directory file wrappers are not read immediately by the
initWithURL:options:error: (page 1127) method unless the NSFileWrapperReadingImmediate
reading option is used, even a newly-created directory file wrapper might not have the same contents as
the directory on disk. You can use this method to determine whether the file wrapper's contents in memory
need to be updated.

If the file wrapper needs updating, use the readFromURL:options:error: (page 1132) method with the
NSFileWrapperReadingImmediate reading option.

This table describes which attributes of the file wrapper and file-system node are compared to determine
whether the file wrapper matches the node on disk:

Comparison determinantsFile-wrapper type

Modification date and access permissions.Regular file

Children (recursive).Directory

Destination pathname.Symbolic link

Availability
Available in Mac OS X v10.6 and later.

See Also
– readFromURL:options:error: (page 1132)
– fileAttributes (page 1121)

Declared In
NSFileWrapper.h

needsToBeUpdatedFromPath:
Indicates whether the file wrapper needs to be updated to match a given file-system node. (Deprecated in
Mac OS X v10.6. Use matchesContentsOfURL: (page 1129) instead.)

- (BOOL)needsToBeUpdatedFromPath:(NSString *)node

Parameters
node

file-system node with which to compare the file wrapper.

Return Value
YES when the file wrapper needs to be updated to match node, NO otherwise.

1130 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Discussion
This table describes which attributes of the file wrapper and node are compared to determine whether the
file wrapper needs to be updated:

Comparison determinantsFile-wrapper type

Modification date and access permissions.Regular file

Member hierarchy (recursive).Directory

Destination pathname.Symbolic link

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor of matchesContentsOfURL: (page 1129).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– updateFromPath: (page 1137)
– fileAttributes (page 1121)

Declared In
NSFileWrapper.h

preferredFilename
Provides the preferred filename for a file wrapper.

- (NSString *)preferredFilename

Return Value
The file wrapper’s preferred filename.

Discussion
This name is normally used as the dictionary key when a child file wrapper is added to a directory file wrapper.
However, if another file wrapper with the same preferred name already exists in the directory file wrapper
when the receiver is added, the filename assigned as the dictionary key may differ from the preferred filename.

Availability
Available in Mac OS X v10.0 and later.

See Also
– filename (page 1122)
– setPreferredFilename: (page 1135)

Declared In
NSFileWrapper.h

Instance Methods 1131
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

readFromURL:options:error:
Recursively rereads the entire contents of a file wrapper from the specified location on disk.

- (BOOL)readFromURL:(NSURL *)url options:(NSFileWrapperReadingOptions)options
error:(NSError **)outError

Parameters
url

URL of the file-system node corresponding to the file wrapper.

options
Option flags for reading the node located at url. See “File Wrapper Reading Options” (page 1139) for
possible values.

outError
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YES if successful. If not successful, returns NO after setting outError to an NSError object that describes
the reason why the file wrapper could not be reread.

Discussion
When reading a directory, children are added and removed as necessary to match the file system.

Availability
Available in Mac OS X v10.6 and later.

See Also
– initWithURL:options:error: (page 1127)
– fileWrappers (page 1122)
– filename (page 1122)
– fileAttributes (page 1121)
– writeToURL:options:originalContentsURL:error: (page 1138)

Declared In
NSFileWrapper.h

regularFileContents
Returns the contents of the file-system node associated with a regular-file file wrapper.

- (NSData *)regularFileContents

Return Value
Contents of the file-system node the file wrapper represents.

Discussion
This method may return nil if the user modifies the file after you call readFromURL:options:error: (page
1132) or initWithURL:options:error: (page 1127) but before NSFileWrapper has read the contents of
the file. Use the NSFileWrapperReadingImmediate reading option to reduce the likelihood of that problem.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a regular-file file wrapper.

1132 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– initRegularFileWithContents: (page 1124)
– readFromURL:options:error: (page 1132)

Related Sample Code
File Wrappers with Core Data Documents
FunHouse
SimpleStickies

Declared In
NSFileWrapper.h

removeFileWrapper:
Removes a child file wrapper from the receiver, which must be a directory file wrapper.

- (void)removeFileWrapper:(NSFileWrapper *)child

Parameters
child

File wrapper to remove from the directory.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a directory file wrapper.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addFileWrapper: (page 1119)
– addRegularFileWithContents:preferredFilename: (page 1120)
– fileWrappers (page 1122)

Related Sample Code
File Wrappers with Core Data Documents

Declared In
NSFileWrapper.h

serializedRepresentation
Returns the contents of the file wrapper as an opaque collection of data.

- (NSData *)serializedRepresentation

Return Value
The file wrapper’s contents in the format used for the pasteboard type NSFileContentsPboardType.

Instance Methods 1133
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Discussion
Returns an NSData object suitable for passing to initWithSerializedRepresentation: (page 1126). This
method may return nil if the user modifies the contents of the file-system node after you call
readFromURL:options:error: (page 1132) or initWithURL:options:error: (page 1127) but before
NSFileWrapper has read the contents of the file. Use the NSFileWrapperReadingImmediate reading
option to reduce the likelihood of that problem.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithSerializedRepresentation: (page 1126)

Declared In
NSFileWrapper.h

setFileAttributes:
Specifies a file wrapper’s file attributes.

- (void)setFileAttributes:(NSDictionary *)fileAttributes

Parameters
fileAttributes

File attributes for the file wrapper, in a dictionary of the same sort as that used by
setAttributes:ofItemAtPath:error: (NSFileManager).

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileAttributes (page 1121)
– writeToURL:options:originalContentsURL:error: (page 1138)

Declared In
NSFileWrapper.h

setFilename:
Specifies the filename of a file wrapper.

- (void)setFilename:(NSString *)filename

Parameters
filename

Filename of the file wrapper.

Discussion
The file name is a dictionary key used to store fileWrapper in a directory’s list of child file wrappers. The
dictionary key is a unique filename, which is the same as the child file wrapper's preferred filename unless
that name is already in use as a key in the directory’s dictionary of children. See “Working With Directory
Wrappers” in Application File Management for more information about the file-wrapper list structure. In
general, the filename is set for you by the initWithURL:options:error: (page 1127),

1134 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

initDirectoryWithFileWrappers: (page 1123), or
writeToURL:options:originalContentsURL:error: (page 1138) methods; you do not normally have
to call this method directly.

Special Considerations

This method raises NSInvalidArgumentException if you pass nil or an empty value for filename.

Availability
Available in Mac OS X v10.0 and later.

See Also
– filename (page 1122)
– setPreferredFilename: (page 1135)
– initWithURL:options:error: (page 1127)
– initDirectoryWithFileWrappers: (page 1123)
– writeToURL:options:originalContentsURL:error: (page 1138)

Declared In
NSFileWrapper.h

setPreferredFilename:
Specifies the receiver’s preferred filename.

- (void)setPreferredFilename:(NSString *)filename

Parameters
filename

Preferred filename for the receiver.

Discussion
When a file wrapper is added to a parent directory file wrapper, the parent attempts to use the child’s preferred
filename as the key in its dictionary of children. If that key is already in use, then the parent derives a unique
filename from the preferred filename and uses that for the key.

When you change the preferred filename of a file wrapper, the default implementation of this method causes
existing parent directory file wrappers to remove and re-add the child to accommodate the change. Preferred
filenames of children are not preserved when you write a file wrapper to disk and then later instantiate
another file wrapper by reading the file from disk. If you need to preserve the user-visible names of
attachments, you have to store the names yourself.

Special Considerations

This method raises NSInvalidArgumentException if you pass nil or an empty value for filename.

Availability
Available in Mac OS X v10.0 and later.

See Also
– preferredFilename (page 1131)
– setFilename: (page 1134)
– addFileWrapper: (page 1119)
– initWithURL:options:error: (page 1127)

Instance Methods 1135
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

– initDirectoryWithFileWrappers: (page 1123)
– writeToURL:options:originalContentsURL:error: (page 1138)

Related Sample Code
File Wrappers with Core Data Documents
GLUT

Declared In
NSFileWrapper.h

symbolicLinkDestination
Provides the pathname referenced by the receiver, which must be a symbolic-link file wrapper. (Deprecated
in Mac OS X v10.6. Use symbolicLinkDestinationURL (page 1136) instead.)

- (NSString *)symbolicLinkDestination

Return Value
Pathname the file wrapper references (the destination of the symbolic link the file wrapper represents).

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor of symbolicLinkDestinationURL (page 1136).

This method raises NSInternalInconsistencyException if the receiver is not a symbolic-link file wrapper.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSFileWrapper.h

symbolicLinkDestinationURL
Provides the URL referenced by the receiver, which must be a symbolic-link file wrapper.

- (NSURL *)symbolicLinkDestinationURL

Return Value
Pathname the file wrapper references (that is, the destination of the symbolic link the file wrapper represents).

Discussion
This method may return nil if the user modifies the symbolic link after you call
readFromURL:options:error: (page 1132) or initWithURL:options:error: (page 1127) but before
NSFileWrapper has read the contents of the link. Use the NSFileWrapperReadingImmediate reading
option to reduce the likelihood of that problem.

Special Considerations

This method raises NSInternalInconsistencyException if the receiver is not a symbolic-link file wrapper.

1136 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSFileWrapper.h

updateFromPath:
Updates the file wrapper to match a given file-system node. (Deprecated in Mac OS X v10.6. Use
readFromURL:options:error: (page 1132) instead.)

- (BOOL)updateFromPath:(NSString *)path

Return Value
YES if the update is carried out, NO if it isn’t needed.

Discussion
For a directory file wrapper, the contained file wrappers are also sent updateFromPath: messages. If nodes
in the corresponding directory on the file system have been added or removed, corresponding file wrappers
are released or created as needed.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor of readFromURL:options:error: (page 1132).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– needsToBeUpdatedFromPath: (page 1130)
updateAttachmentsFromPath: (page 1714) (NSAttributedString)

Declared In
NSFileWrapper.h

writeToFile:atomically:updateFilenames:
Writes a file wrapper’s contents to a given file-system node. (Deprecated in Mac OS X v10.6. Use
writeToURL:options:originalContentsURL:error: (page 1138) instead.)

- (BOOL)writeToFile:(NSString *)node atomically:(BOOL)atomically
updateFilenames:(BOOL)updateNames

Parameters
node

Pathname of the file-system node to which the receiver’s contents are written.

Instance Methods 1137
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

atomically
YES to write the file safely so that:

 ■ An existing file is not overwritten

 ■ The method fails if the file cannot be written in its entirety

NO to overwrite an existing file and ignore incomplete writes.

updateNames
YES to update the receiver’s filenames (its filename and—for directory file wrappers—the filenames
of its sub–file wrappers) be changed to the filenames of the corresponding nodes in the file system,
after a successful write operation. Use this in Save or Save As operations.

NO to specify that the receiver’s filenames not be updated. Use this in Save To operations.

Return Value
YES when the write operation is successful, NO otherwise.

Special Considerations

Beginning with Mac OS X v10.6, the preferred method of referring to files is with a file:// URL. Therefore,
this method has been deprecated in favor ofwriteToURL:options:originalContentsURL:error: (page
1138).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– filename (page 1122)
– writeToURL:options:originalContentsURL:error: (page 1138)

Related Sample Code
File Wrappers with Core Data Documents
Quartz Composer WWDC 2005 TextEdit

Declared In
NSFileWrapper.h

writeToURL:options:originalContentsURL:error:
Recursively writes the entire contents of a file wrapper to a given file-system URL.

- (BOOL)writeToURL:(NSURL *)url options:(NSFileWrapperWritingOptions)options
originalContentsURL:(NSURL *)originalContentsURL error:(NSError **)outError

Parameters
url

URL of the file-system node to which the file wrapper’s contents are written.

options
Option flags for writing to the node located at url. See “File Wrapper Writing Options” (page 1140) for
possible values.

1138 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

originalContentsURL
The location of a previous revision of the contents being written. The default implementation of this
method attempts to avoid unnecessary I/O by writing hard links to regular files instead of actually
writing out their contents when the contents have not changed. The child file wrappers must return
accurate values when sent the filename (page 1122) method for this to work. Use the
NSFileWrapperWritingWithNameUpdating writing option to increase the likelihood of that.

Specify nil for this parameter if there is no earlier version of the contents or if you want to ensure
that all the contents are written to files.

updateNames
YES to update the receiver’s filenames (its filename and—for directory file wrappers—the filenames
of its sub–file wrappers) be changed to the filenames of the corresponding nodes in the file system,
after a successful write operation. Use this in Save or Save As operations.

NO to specify that the receiver’s filenames not be updated. Use this in Save To operations.

outError
If an error occurs, upon return contains an NSError object that describes the problem. Pass NULL if
you do not want error information.

Return Value
YESwhen the write operation is successful. If not successful, returns NO after setting outError to an NSError
object that describes the reason why the file wrapper’s contents could not be written.

Availability
Available in Mac OS X v10.6 and later.

See Also
– filename (page 1122)
– readFromURL:options:error: (page 1132)

Declared In
NSFileWrapper.h

Constants

File Wrapper Reading Options
Reading options that can be set by the initWithURL:options:error: (page 1127) and
readFromURL:options:error: (page 1132) methods.

Constants 1139
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

enum {
 NSFileWrapperReadingImmediate = 1 << 0,
 NSFileWrapperReadingWithoutMapping = 1 << 1
};
typedef NSUInteger NSFileWrapperReadingOptions;

Constants
NSFileWrapperReadingImmediate

If reading with this option succeeds, then subsequent invocations of fileWrappers (page 1122),
regularFileContents (page 1132), symbolicLinkDestinationURL (page 1136), and
serializedRepresentation (page 1133) sent to the file wrapper and all its child file wrappers will
fail and return nil only if an actual error occurs (for example, the volume has disappeared or the file
server is unreachable)—not as a result of the user moving or deleting files.

For performance reasons, NSFileWrapper may not read the contents of some file packages
immediately even when this option is chosen. For example, because the contents of bundles (not all
file packages are bundles) are immutable to the user, NSFileWrapper may read the children of such
a directory lazily.

You can use this option to take a snapshot of a file or folder for writing later. For example, an application
like TextEdit can use this option when creating new file wrappers to represent attachments that the
user creates by copying and pasting or dragging and dropping from the Finder to a TextEdit document.
Don't use this option when reading a document file package, because that would cause unnecessarily
bad performance. For example, an application wouldn't use this option when creating file wrappers
to represent attachments as it's opening a document stored in a file package.

Available in Mac OS X v10.6 and later.

Declared in NSFileWrapper.h.

NSFileWrapperReadingWithoutMapping
Whether file mapping for regular file wrappers is disallowed.

You can use this option to keep NSFileWrapper from memory-mapping files. This is useful if you
want to make sure your application doesn't hold files open (mapped files are open files), therefore
preventing the user from ejecting DVDs, unmounting disk partitions, or unmounting disk images. In
Mac OS X v10.6 and later, NSFileWrapper memory-maps files that are on internal drives only. It
never memory-maps files on external drives or network volumes, regardless of whether this option
is used.

Available in Mac OS X v10.6 and later.

Declared in NSFileWrapper.h.

Discussion
You can use the NSFileWrapperReadingImmediate and NSFileWrapperReadingWithoutMapping
reading options together to take an exact snapshot of a file-system hierarchy that is safe from all errors
(including the ones mentioned above) once reading has succeeded. If reading with both options succeeds,
then subsequent invocations of the methods listed in the comment for the
NSFileWrapperReadingImmediate reading option to the receiver and all its descendant file wrappers will
never fail. However, note that reading with both options together is expensive in terms of both I/O and
memory for large files, or directories containing large files, or even directories containing many small files.

File Wrapper Writing Options
Writing options that can be set by the writeToURL:options:originalContentsURL:error: (page 1138)
method.

1140 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

enum {
 NSFileWrapperWritingAtomic = 1 << 0,
 NSFileWrapperWritingWithNameUpdating = 1 << 1
};
typedef NSUInteger NSFileWrapperWritingOptions;

Constants
NSFileWrapperWritingAtomic

Whether writing is done atomically.

You can use this option to ensure that, when overwriting a file package, the overwriting either
completely succeeds or completely fails, with no possibility of leaving the file package in an inconsistent
state. Because this option causes additional I/O, you shouldn't use it unnecessarily. For example, don't
use this option in an override of -[NSDocument writeToURL:ofType:error: (page 996)], because
NSDocument safe-saving is already done atomically.

Available in Mac OS X v10.6 and later.

Declared in NSFileWrapper.h.

NSFileWrapperWritingWithNameUpdating
Whether descendant file wrappers are sent the setFilename: (page 1134) method if the writing
succeeds.

This option is necessary when your application passes a URL in the originalContentsURL parameter
to the writeToURL:options:originalContentsURL:error: (page 1138) method. Without using
this option (and reusing child file wrappers properly), subsequent invocations of
writeToURL:options:originalContentsURL:error: (page 1138) would not be able to reliably
create hard links in a new file package, because the record of names in the old file package would be
out of date.

Available in Mac OS X v10.6 and later.

Declared in NSFileWrapper.h.

Constants 1141
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

1142 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 49

NSFileWrapper Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSFont.h

Companion guide Font Handling

Related sample code CoreTextArcCocoa
FunHouse
GeekGameBoard
IBFragmentView
Quartz Composer WWDC 2005 TextEdit

Overview

NSFont objects represent fonts to an application, providing access to characteristics of the font and assistance
in laying out glyphs relative to one another. Font objects are also used to establish the current font for
drawing text directly into a graphics context, using the set (page 1179) method.

You don’t create NSFont objects using the alloc and init methods. Instead, you use either
fontWithDescriptor:size: (page 1150) orfontWithName:size: (page 1152) to look up an available font
and alter its size or matrix to your needs. These methods check for an existing font object with the specified
characteristics, returning it if there is one. Otherwise, they look up the font data requested and create the
appropriate object. NSFont also defines a number of methods for getting standard system fonts, such as
systemFontOfSize: (page 1157),userFontOfSize: (page 1161), andmessageFontOfSize: (page 1154). To
request the default size for these standard fonts, pass a negative number or 0 as the font size.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

Overview 1143
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

NSCopying
– copyWithZone:

Tasks

Creating Arbitrary Fonts

+ fontWithName:size: (page 1152)
Creates a font object for the specified font name and font size.

+ fontWithDescriptor:size: (page 1150)
Returns a font object for the specified font descriptor and font size.

+ fontWithDescriptor:textTransform: (page 1150)
Returns a font object for the specified font descriptor and text transform.

+ fontWithName:matrix: (page 1151)
Returns a font object for the specified font name and matrix.

Creating User Fonts

+ userFontOfSize: (page 1161)
Returns the font used by default for documents and other text under the user’s control (that is, text
whose font the user can normally change), in the specified size.

+ userFixedPitchFontOfSize: (page 1161)
Returns the font used by default for documents and other text under the user’s control (that is, text
whose font the user can normally change), when that font should be fixed-pitch, in the specified size.

Creating System Fonts

+ boldSystemFontOfSize: (page 1149)
Returns the Aqua system font used for standard interface items that are rendered in boldface type
in the specified size.

+ controlContentFontOfSize: (page 1149)
Returns the font used for the content of controls in the specified size.

+ labelFontOfSize: (page 1152)
Returns the Aqua font used for standard interface labels in the specified size.

+ menuFontOfSize: (page 1154)
Returns the font used for menu items, in the specified size.

+ menuBarFontOfSize: (page 1153)
Returns the font used for menu bar items, in the specified size.

+ messageFontOfSize: (page 1154)
Returns the font used for standard interface items, such as button labels, menu items, and so on, in
the specified size.

1144 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

+ paletteFontOfSize: (page 1155)
Returns the font used for palette window title bars, in the specified size.

+ systemFontOfSize: (page 1157)
Returns the Aqua system font used for standard interface items, such as button labels, menu items,
and so on, in the specified size.

+ titleBarFontOfSize: (page 1159)
Returns the font used for window title bars, in the specified size.

+ toolTipsFontOfSize: (page 1160)
Returns the font used for tool tips labels, in the specified size.

Using a Font to Draw

– set (page 1179)
Sets this font as the font for the current graphics context.

– setInContext: (page 1180)
Sets this font as the font for the specified graphics context.

Getting General Font Information

– coveredCharacterSet (page 1165)
Returns an NSCharacterSet object containing all of the nominal characters renderable by the
receiver, which is all of the entries mapped in the receiver’s ‘cmap’ table.

– fontDescriptor (page 1167)
Returns the receiver’s font descriptor.

– isFixedPitch (page 1171)
Returns a Boolean value indicating whether all glyphs in the receiver have the same advancement.

– mostCompatibleStringEncoding (page 1173)
Returns the string encoding that works best with the receiver, where there are the fewest possible
unmatched characters in the string encoding and glyphs in the font.

– renderingMode (page 1178)
Returns the rendering mode of the receiver.

Getting Information About Glyphs

– glyphWithName: (page 1170)
Returns the named encoded glyph, or –1 if the receiver contains no such glyph.

Getting Metrics Information

+ labelFontSize (page 1153)
Returns the size of the standard label font.

+ smallSystemFontSize (page 1157)
Returns the size of the standard small system font.

Tasks 1145
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

+ systemFontSize (page 1158)
Returns the size of the standard system font.

+ systemFontSizeForControlSize: (page 1159)
Returns the font size used for the specified control size.

– advancementForGlyph: (page 1162)
Returns the nominal spacing for the given glyph—the distance the current point moves after showing
the glyph—accounting for the receiver’s size.

– ascender (page 1163)
Returns the top y-coordinate, offset from the baseline, of the receiver’s longest ascender.

– boundingRectForFont (page 1163)
Returns the receiver’s bounding rectangle, scaled to the font’s size.

– boundingRectForGlyph: (page 1164)
Returns the bounding rectangle for the specified glyph, scaled to the receiver’s size.

– capHeight (page 1164)
Returns the receiver’s cap height.

– descender (page 1166)
Returns the bottom y coordinate, offset from the baseline, of the receiver’s longest descender.

– getAdvancements:forGlyphs:count: (page 1168)
Returns an array of the advancements for the specified glyphs rendered by the receiver.

– getAdvancements:forPackedGlyphs:length: (page 1168)
Returns an array of the advancements for the specified packed glyphs and rendered by the receiver.

– getBoundingRects:forGlyphs:count: (page 1169)
Returns an array of the bounding rectangles for the specified glyphs rendered by the receiver.

– italicAngle (page 1171)
Returns the receiver’s italic angle, the amount that the font is slanted in degrees counterclockwise
from the vertical, as read from its AFM file. Because the slant is measured counterclockwise, English
italic fonts typically return a negative value.

– leading (page 1172)
Returns the receiver’s leading.

– matrix (page 1172)
Returns the receiver’s font matrix, a standard six-element transformation matrix as used in the PostScript
language, specifically with the makefont operator.

– maximumAdvancement (page 1172)
Returns the greatest advancement of any of the receiver’s glyphs.

– numberOfGlyphs (page 1173)
Returns the number of glyphs in the receiver.

– pointSize (page 1174)
Returns the receiver’s point size, or the effective vertical point size for a font with a nonstandard
matrix.

– textTransform (page 1180)
Returns the current transformation matrix for the receiver.

– underlinePosition (page 1181)
Returns the baseline offset that should be used when drawing underlines with the receiver, as
determined by the font’s AFM file.

1146 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

– underlineThickness (page 1181)
Returns the thickness that should be used when drawing underlines with the receiver, as determined
by the font’s AFM file.

– xHeight (page 1182)
Returns the x-height of the receiver.

Getting Font Names

– displayName (page 1166)
Returns the name, including family and face, used to represent the font in the user interface, typically
localized for the user’s language.

– familyName (page 1167)
Returns the receiver’s family name—for example, “Times” or “Helvetica.”

– fontName (page 1167)
Returns the receiver’s full font name, as used in PostScript language code—for example, “Times-Roman”
or “Helvetica-Oblique.”

Setting User Fonts

+ setUserFont: (page 1157)
Sets the font used by default for documents and other text under the user’s control to the specified
font.

+ setUserFixedPitchFont: (page 1156)
Sets the font used by default for documents and other text under the user’s control, when that font
should be fixed-pitch, to the specified font.

Getting Corresponding Device Fonts

– printerFont (page 1178)
Returns the scalable PostScript font corresponding to itself.

– screenFont (page 1178)
Returns the bitmapped screen font corresponding to itself.

– screenFontWithRenderingMode: (page 1179)
Returns a bitmapped screen font, when sent to a font object representing a scalable PostScript font,
with the specified rendering mode, matching the receiver in typeface and matrix (or size), or nil if
such a font can’t be found.

Deprecated Methods

+ preferredFontNames (page 1155) Deprecated in Mac OS X v10.4
Returns the names of fonts that the Application Kit tries first when a character has no font specified.
(Deprecated. The NSFontDescriptor constant NSFontCascadeListAttribute offers more
powerful font substitution management.)

Tasks 1147
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

+ setPreferredFontNames: (page 1156) Deprecated in Mac OS X v10.4
Sets the list of preferred font names. (Deprecated. The NSFontDescriptor constant
NSFontCascadeListAttribute offers more powerful font substitution management.)

+ useFont: (page 1160) Deprecated in Mac OS X v10.4
Records the given font name as one used in the current print operation. (Deprecated. This is now
automatically handled by Quartz.)

– afmDictionary (page 1163) Deprecated in Mac OS X v10.4
Returns the AFM font’s dictionary. (Deprecated. Use accessor functions listed in “Keys to the AFM
Dictionary” (page 1184) instead.)

– defaultLineHeightForFont (page 1165) Deprecated in Mac OS X v10.4
Returns the default line height for the receiver. (Deprecated. Use the NSLayoutManager method
defaultLineHeightForFont: (page 1456) instead.)

– encodingScheme (page 1166) Deprecated in Mac OS X v10.4
Returns the name of the receiver’s encoding scheme. (Deprecated. Use
mostCompatibleStringEncoding (page 1173) instead.)

– glyphIsEncoded: (page 1169) Deprecated in Mac OS X v10.4
Returns a Boolean value indicating whether the receiver encodes the given glyph. (Deprecated. The
value can be deduced by aGlyph < [NSFont numberOfGlyphs] since only
NSNativeShortGlyphPacking is supported.)

– glyphPacking (page 1170) Deprecated in Mac OS X v10.4
Returns the best way to encode the receiver’s glyphs into an array of bytes. (Deprecated. Only
NSNativeShortGlyphPacking (page 1184) is supported.)

– isBaseFont (page 1170) Deprecated in Mac OS X v10.4
Returns a Boolean value indicating whether the receiver is a PostScript base font. (Deprecated. This
information is not relevant to Mac OS X.)

– positionOfGlyph:forCharacter:struckOverRect: (page 1174) Deprecated in Mac OS X v10.4
Calculates and returns a suitable location for the given glyph to be drawn. (Deprecated.
Context-sensitive interglyph spacing is now performed at the typesetting stage.)

– positionOfGlyph:precededByGlyph:isNominal: (page 1175) Deprecated in Mac OS X v10.4
Calculates and returns the location of a glyph. (Deprecated. Context-sensitive interglyph spacing is
now performed at the typesetting stage.)

– positionOfGlyph:struckOverGlyph:metricsExist: (page 1175) Deprecated in Mac OS X v10.4
Calculates and returns a suitable location for the given glyph to be drawn. (Deprecated.
Context-sensitive interglyph spacing is now performed at the typesetting stage.)

– positionOfGlyph:struckOverRect:metricsExist: (page 1176) Deprecated in Mac OS X v10.4
Overridden by subclasses to calculate and return a suitable location for a glyph to be drawn.
(Deprecated. Context-sensitive interglyph spacing is now performed at the typesetting stage.)

– positionOfGlyph:withRelation:toBaseGlyph:totalAdvancement:metricsExist: (page 1176)
Deprecated in Mac OS X v10.4

Calculates and returns a suitable location for a glyph to be drawn. (Deprecated. Context-sensitive
interglyph spacing is now performed at the typesetting stage.)

– positionsForCompositeSequence:numberOfGlyphs:pointArray: (page 1177) Deprecated in Mac
OS X v10.4

Calculates glyph locations. (Deprecated. Context-sensitive interglyph spacing is now performed at
the typesetting stage.)

1148 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

– widthOfString: (page 1181) Deprecated in Mac OS X v10.4
Returns the x-axis offset of the current point when the specified string is drawn with a show operator
in the receiving font. (Deprecated. Use the Application Kit string-drawing methods, as described in
NSString Additions (page 2581).)

Class Methods

boldSystemFontOfSize:
Returns the Aqua system font used for standard interface items that are rendered in boldface type in the
specified size.

+ (NSFont *)boldSystemFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Return Value
A font object of the specified size.

Discussion
If fontSize is 0 or negative, returns the boldface system font at the default size.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fontWithName:size: (page 1152)

Related Sample Code
ImageBrowserViewAppearance
ImageKitDemo
PDF Calendar
PDFKitLinker2
Worm

Declared In
NSFont.h

controlContentFontOfSize:
Returns the font used for the content of controls in the specified size.

+ (NSFont *)controlContentFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Class Methods 1149
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Return Value
A font object of the specified size.

Discussion
For example, in a table, the user’s input uses the control content font, and the table’s header uses another
font. If fontSize is 0 or negative, returns the control content font at the default size.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fontWithName:size: (page 1152)

Declared In
NSFont.h

fontWithDescriptor:size:
Returns a font object for the specified font descriptor and font size.

+ (NSFont *)fontWithDescriptor:(NSFontDescriptor *)fontDescriptor
size:(CGFloat)fontSize

Parameters
fontDescriptor

A font descriptor object.

fontSize
The size in points to which the font is scaled.

Return Value
A font object for the specified descriptor and size.

Discussion
In most cases, you can simply use fontWithName:size: (page 1152) to create standard scaled fonts.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ fontWithName:size: (page 1152)

Declared In
NSFont.h

fontWithDescriptor:textTransform:
Returns a font object for the specified font descriptor and text transform.

+ (NSFont *)fontWithDescriptor:(NSFontDescriptor *)fontDescriptor
textTransform:(NSAffineTransform *)textTransform

1150 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Parameters
fontDescriptor

The font descriptor object describing the font to return.

textTransform
An affine transformation applied to the font.

Return Value
A font object for the specified name and transform.

Discussion
In most cases, you can simply use fontWithName:size: (page 1152) to create standard scaled fonts. If
textTransform is non-nil, it has precedence over NSFontMatrixAttribute in fontDescriptor.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ fontWithName:size: (page 1152)

Declared In
NSFont.h

fontWithName:matrix:
Returns a font object for the specified font name and matrix.

+ (NSFont *)fontWithName:(NSString *)fontName matrix:(const CGFloat *)fontMatrix

Parameters
fontName

The fully specified family-face name of the font.

fontMatrix
A transformation matrix applied to the font.

Return Value
A font object for the specified name and transformation matrix.

Discussion
The fontName is a fully specified family-face name, such as Helvetica-BoldOblique or Times-Roman (not a
name as shown in the Font Panel). The fontMatrix is a standard 6-element transformation matrix as used
in the PostScript language, specifically with the makefont operator. In most cases, you can simply use
fontWithName:size: (page 1152) to create standard scaled fonts.

You can use the defined value NSFontIdentityMatrix for [1 0 0 1 0 0]. Fonts created with a matrix other
than NSFontIdentityMatrix don’t automatically flip themselves in flipped views.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isFlipped (page 3181) (NSView)

Declared In
NSFont.h

Class Methods 1151
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

fontWithName:size:
Creates a font object for the specified font name and font size.

+ (NSFont *)fontWithName:(NSString *)fontName size:(CGFloat)fontSize

Parameters
fontName

The fully specified family-face name of the font.

fontSize
The size in points to which the font is scaled.

Return Value
A font object for the specified name and size.

Discussion
The fontName is a fully specified family-face name, such as Helvetica-BoldOblique or Times-Roman. The
fontSize is equivalent to using a font matrix of [fontSize 0 0 fontSize 0 0] with
fontWithDescriptor:size: (page 1150). If you use a fontSize of 0.0, this method uses the default User
Font size.

Fonts created with this method automatically flip themselves in flipped views. This method is the preferred
means for creating fonts.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa OpenGL
CocoaVideoFrameToGWorld
From A View to A Movie
FunHouse
JSInterpreter

Declared In
NSFont.h

labelFontOfSize:
Returns the Aqua font used for standard interface labels in the specified size.

+ (NSFont *)labelFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Return Value
A font object of the specified size.

Discussion
If fontSize is 0 or negative, returns the label font with the default size.

1152 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
DockTile
TrackBall
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSFont.h

labelFontSize
Returns the size of the standard label font.

+ (CGFloat)labelFontSize

Return Value
The label font size in points.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFont.h

menuBarFontOfSize:
Returns the font used for menu bar items, in the specified size.

+ (NSFont *)menuBarFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Return Value
A font object of the specified size.

Discussion
If fontSize is 0 or negative, returns the menu bar font with the default size.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ fontWithName:size: (page 1152)

Declared In
NSFont.h

Class Methods 1153
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

menuFontOfSize:
Returns the font used for menu items, in the specified size.

+ (NSFont *)menuFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Return Value
A font object of the specified size.

Discussion
If fontSize is 0 or negative, returns the menu items font with the default size.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fontWithName:size: (page 1152)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
NSFont.h

messageFontOfSize:
Returns the font used for standard interface items, such as button labels, menu items, and so on, in the
specified size.

+ (NSFont *)messageFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Return Value
A font object of the specified size.

Discussion
If fontSize is 0 or negative, returns this font at the default size. This method is equivalent to
systemFontOfSize: (page 1157).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fontWithName:size: (page 1152)

Related Sample Code
CIAnnotation

1154 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

CIVideoDemoGL
ClockControl
MenuMadness

Declared In
NSFont.h

paletteFontOfSize:
Returns the font used for palette window title bars, in the specified size.

+ (NSFont *)paletteFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Return Value
A font object of the specified size.

Discussion
If fontSize is 0 or negative, returns the palette title font at the default size.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fontWithName:size: (page 1152)
+ titleBarFontOfSize: (page 1159)

Declared In
NSFont.h

preferredFontNames
Returns the names of fonts that the Application Kit tries first when a character has no font specified.
(Deprecated in Mac OS X v10.4. The NSFontDescriptor constant NSFontCascadeListAttribute offers
more powerful font substitution management.)

+ (NSArray *)preferredFontNames

Discussion
Returns the names of fonts that the Application Kit tries first when a character has no font specified or when
the font specified doesn’t have a glyph for that character. If none of these fonts provides a glyph, the remaining
fonts on the system are searched for a glyph.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

See Also
+ setPreferredFontNames: (page 1156)

Class Methods 1155
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Declared In
NSFont.h

setPreferredFontNames:
Sets the list of preferred font names. (Deprecated in Mac OS X v10.4. The NSFontDescriptor constant
NSFontCascadeListAttribute offers more powerful font substitution management.)

+ (void)setPreferredFontNames:(NSArray *)fontNames

Discussion
Sets the list of preferred font names to fontNames and records them in the user defaults database for all
applications. The Application Kit tries these fonts first when a character has no font specified or when the
font specified doesn’t have a glyph for that character. If none of these fonts provides a glyph, the remaining
fonts on the system are searched for a glyph.

This method is useful for optimizing glyph rendering for uncommon scripts, by guaranteeing that appropriate
fonts are searched first. For example, suppose you have three hundred Latin alphabet fonts and one Cyrillic
alphabet font. When you read a document in Russian, you want it to find the Cyrillic font quickly. Ordinarily,
the Application Kit will search for the Cyrillic font among all 301 fonts. But if it is in the list of preferred fonts,
the Cyrillic font will be one of the first searched.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

See Also
+ preferredFontNames (page 1155)

Declared In
NSFont.h

setUserFixedPitchFont:
Sets the font used by default for documents and other text under the user’s control, when that font should
be fixed-pitch, to the specified font.

+ (void)setUserFixedPitchFont:(NSFont *)aFont

Discussion
Specifying aFont as nil causes the default to be removed from the application domain.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setUserFont: (page 1157)
+ userFixedPitchFontOfSize: (page 1161)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

1156 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Declared In
NSFont.h

setUserFont:
Sets the font used by default for documents and other text under the user’s control to the specified font.

+ (void)setUserFont:(NSFont *)aFont

Discussion
Specifying aFont as nil causes the default to be removed from the application domain.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setUserFixedPitchFont: (page 1156)
+ userFontOfSize: (page 1161)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSFont.h

smallSystemFontSize
Returns the size of the standard small system font.

+ (CGFloat)smallSystemFontSize

Return Value
The small system font size in points.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ButtonMadness
Quartz Composer QCTV
Sketch+Accessibility
SourceView
WhackedTV

Declared In
NSFont.h

systemFontOfSize:
Returns the Aqua system font used for standard interface items, such as button labels, menu items, and so
on, in the specified size.

Class Methods 1157
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

+ (NSFont *)systemFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Return Value
A font object of the specified size.

Discussion
If fontSize is 0 or negative, returns the system font at the default size.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ boldSystemFontOfSize: (page 1149)
+ userFontOfSize: (page 1161)
+ userFixedPitchFontOfSize: (page 1161)
+ fontWithName:size: (page 1152)

Related Sample Code
DatePicker
FunHouse
Quartz Composer QCTV
QuickLookDownloader
WhackedTV

Declared In
NSFont.h

systemFontSize
Returns the size of the standard system font.

+ (CGFloat)systemFontSize

Return Value
The standard system font size in points.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iChatTheater
Mountains
PDFKitLinker2
PhotoSearch

Declared In
NSFont.h

1158 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

systemFontSizeForControlSize:
Returns the font size used for the specified control size.

+ (CGFloat)systemFontSizeForControlSize:(NSControlSize)controlSize

Parameters
controlSize

The control size constant.

Return Value
The font size in points for the specified control size.

Discussion
If controlSize does not correspond to a valid NSControlSize, returns the size of the standard system
font.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
IBFragmentView
ObjectPath

Declared In
NSFont.h

titleBarFontOfSize:
Returns the font used for window title bars, in the specified size.

+ (NSFont *)titleBarFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Return Value
A font object of the specified size.

Discussion
If fontSize is 0 or negative, returns the title bar font at the default size. This method is equivalent to
boldSystemFontOfSize: (page 1149).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ paletteFontOfSize: (page 1155)

Declared In
NSFont.h

Class Methods 1159
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

toolTipsFontOfSize:
Returns the font used for tool tips labels, in the specified size.

+ (NSFont *)toolTipsFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Return Value
A font object of the specified size.

Discussion
If fontSize is 0 or negative, returns the tool tips font at the default size.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fontWithName:size: (page 1152)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TipWrapper

Declared In
NSFont.h

useFont:
Records the given font name as one used in the current print operation. (Deprecated in Mac OS X v10.4. This
is now automatically handled by Quartz.)

+ (void)useFont:(NSString *)fontName

Discussion
Records fontName as one used in the current print operation.

The NSFont class object keeps track of the fonts used in an NSView by recording each one that receives a
set (page 1179) message. When the view is called upon to generate conforming PostScript language output
(such as during printing), the NSFont class provides the list of fonts required for the %%DocumentFonts
comment, as required by Adobe’s document structuring conventions.

The useFont: argument augments this system by providing a way to register fonts that are included in the
document but not set using NSFont’s set (page 1179) method. For example, you might set a font by executing
the setfont operator within a function created by the pswrap utility. In such a case, be sure to pair the use
of the font with a useFont: message to register the font for listing in the document comments.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

1160 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Declared In
NSFont.h

userFixedPitchFontOfSize:
Returns the font used by default for documents and other text under the user’s control (that is, text whose
font the user can normally change), when that font should be fixed-pitch, in the specified size.

+ (NSFont *)userFixedPitchFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Return Value
A font object of the specified size.

Discussion
If fontSize is 0 or negative, returns the fixed-pitch font at the default size.

The system does not guarantee that all the glyphs in a fixed-pitch font are the same width. For example,
certain Japanese fonts are dual-pitch, and other fonts may have nonspacing marks that can affect the display
of other glyphs.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ userFontOfSize: (page 1161)
+ fontWithName:size: (page 1152)
+ setUserFixedPitchFont: (page 1156)

Related Sample Code
ClipboardViewer
PTPPassThrough
Quartz Composer WWDC 2005 TextEdit
TextSizingExample

Declared In
NSFont.h

userFontOfSize:
Returns the font used by default for documents and other text under the user’s control (that is, text whose
font the user can normally change), in the specified size.

+ (NSFont *)userFontOfSize:(CGFloat)fontSize

Parameters
fontSize

The size in points to which the font is scaled.

Class Methods 1161
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Return Value
A font object of the specified size.

Discussion
If fontSize is 0 or negative, returns the user font at the default size.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ userFixedPitchFontOfSize: (page 1161)
+ fontWithName:size: (page 1152)
+ setUserFont: (page 1157)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
UIElementInspector

Declared In
NSFont.h

Instance Methods

advancementForGlyph:
Returns the nominal spacing for the given glyph—the distance the current point moves after showing the
glyph—accounting for the receiver’s size.

- (NSSize)advancementForGlyph:(NSGlyph)aGlyph

Parameters
aGlyph

The glyph whose advancement is returned.

Return Value
The advancement spacing in points.

Discussion
This spacing is given according to the glyph’s movement direction, which is either strictly horizontal or strictly
vertical.

Availability
Available in Mac OS X v10.0 and later.

See Also
– boundingRectForGlyph: (page 1164)
– maximumAdvancement (page 1172)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

1162 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Declared In
NSFont.h

afmDictionary
Returns the AFM font’s dictionary. (Deprecated in Mac OS X v10.4. Use accessor functions listed in “Keys
to the AFM Dictionary” (page 1184) instead.)

- (NSDictionary *)afmDictionary

Discussion
Always returns nil.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NSFont.h

ascender
Returns the top y-coordinate, offset from the baseline, of the receiver’s longest ascender.

- (CGFloat)ascender

Return Value
The distance of the longest ascender’s top y-coordinate from the baseline in points.

Availability
Available in Mac OS X v10.0 and later.

See Also
– descender (page 1166)
– capHeight (page 1164)
– xHeight (page 1182)

Related Sample Code
GeekGameBoard
NSFontAttributeExplorer
QTKitTimeCode

Declared In
NSFont.h

boundingRectForFont
Returns the receiver’s bounding rectangle, scaled to the font’s size.

- (NSRect)boundingRectForFont

Instance Methods 1163
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Discussion
The bounding rectangle is the union of the bounding rectangles of every glyph in the font.

Availability
Available in Mac OS X v10.0 and later.

See Also
– boundingRectForGlyph: (page 1164)

Related Sample Code
NSFontAttributeExplorer

Declared In
NSFont.h

boundingRectForGlyph:
Returns the bounding rectangle for the specified glyph, scaled to the receiver’s size.

- (NSRect)boundingRectForGlyph:(NSGlyph)aGlyph

Discussion
Japanese fonts encoded with the scheme “EUC12-NJE-CFEncoding” do not have individual metrics or bounding
boxes available for the glyphs above 127. For those glyphs, this method returns the bounding rectangle for
the font instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– boundingRectForFont (page 1163)
– getBoundingRects:forGlyphs:count: (page 1169)
– getAdvancements:forGlyphs:count: (page 1168)
– getAdvancements:forPackedGlyphs:length: (page 1168)

Declared In
NSFont.h

capHeight
Returns the receiver’s cap height.

- (CGFloat)capHeight

Availability
Available in Mac OS X v10.0 and later.

See Also
– ascender (page 1163)
– descender (page 1166)
– xHeight (page 1182)

1164 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Related Sample Code
NSFontAttributeExplorer

Declared In
NSFont.h

coveredCharacterSet
Returns an NSCharacterSet object containing all of the nominal characters renderable by the receiver,
which is all of the entries mapped in the receiver’s ‘cmap’ table.

- (NSCharacterSet *)coveredCharacterSet

Return Value
An NSCharacterSet object containing all of the nominal characters renderable by the receiver.

Discussion
The number of glyphs supported by a given font is often larger than the number of characters contained in
the character set returned by this method.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSFont.h

defaultLineHeightForFont
Returns the default line height for the receiver. (Deprecated in Mac OS X v10.4. Use the NSLayoutManager
method defaultLineHeightForFont: (page 1456) instead.)

- (CGFloat)defaultLineHeightForFont

Discussion
Equivalent to ascent plus descent plus linegap.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

See Also
– ascender (page 1163)
– descender (page 1166)

Related Sample Code
NSFontAttributeExplorer

Declared In
NSFont.h

Instance Methods 1165
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

descender
Returns the bottom y coordinate, offset from the baseline, of the receiver’s longest descender.

- (CGFloat)descender

Discussion
Thus, if the longest descender extends 2 points below the baseline, descender will return –2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile
GeekGameBoard
NSFontAttributeExplorer
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSFont.h

displayName
Returns the name, including family and face, used to represent the font in the user interface, typically localized
for the user’s language.

- (NSString *)displayName

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NSFontAttributeExplorer
Quartz Composer WWDC 2005 TextEdit

Declared In
NSFont.h

encodingScheme
Returns the name of the receiver’s encoding scheme. (Deprecated in Mac OS X v10.4. Use
mostCompatibleStringEncoding (page 1173) instead.)

- (NSString *)encodingScheme

Discussion
Returns the name of the receiver’s encoding scheme, such as “AdobeStandardEncoding,” “ISOLatin1Encoding,”
“FontSpecific,” and so on.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

1166 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Not available to 64-bit applications.

Declared In
NSFont.h

familyName
Returns the receiver’s family name—for example, “Times” or “Helvetica.”

- (NSString *)familyName

Discussion
This name is the one that NSFontManager uses and may differ slightly from the AFM name.

The value returned by this method is intended for an application’s internal usage and not for display. Use
displayName (page 1166) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fontName (page 1167)

Declared In
NSFont.h

fontDescriptor
Returns the receiver’s font descriptor.

- (NSFontDescriptor *)fontDescriptor

Return Value
A font descriptor object that describes the receiver.

Discussion
The font descriptor contains a mutable dictionary of optional attributes for creating an NSFont object. See
documentation on NSFontDescriptor for more information.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CoreTextArcCocoa

Declared In
NSFont.h

fontName
Returns the receiver’s full font name, as used in PostScript language code—for example, “Times-Roman” or
“Helvetica-Oblique.”

Instance Methods 1167
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

- (NSString *)fontName

Discussion
The value returned by this method is intended for an application’s internal usage and not for display. Use
displayName (page 1166) instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– familyName (page 1167)

Related Sample Code
FunHouse

Declared In
NSFont.h

getAdvancements:forGlyphs:count:
Returns an array of the advancements for the specified glyphs rendered by the receiver.

- (void)getAdvancements:(NSSizeArray)advancements forGlyphs:(const NSGlyph *)glyphs
count:(NSUInteger)glyphCount

Discussion
Returns in advancements an array of the advancements for the glyphs specified by glyphs and rendered
by the receiver. The glyphCount must specify the count of glyphs passed in glyphs.

Availability
Available in Mac OS X v10.4 and later.

See Also
– boundingRectForFont (page 1163)
– boundingRectForGlyph: (page 1164)
– getAdvancements:forPackedGlyphs:length: (page 1168)
– getBoundingRects:forGlyphs:count: (page 1169)

Declared In
NSFont.h

getAdvancements:forPackedGlyphs:length:
Returns an array of the advancements for the specified packed glyphs and rendered by the receiver.

- (void)getAdvancements:(NSSizeArray)advancements forPackedGlyphs:(const void
*)packedGlyphs length:(NSUInteger)length- (void)getAdvancements

Discussion
Returns in advancements an array of the advancements for the packed glyphs specified by packedGlyphs
and rendered by the receiver. The glyphCount must specify the count of glyphs passed in packedGlyphs.

1168 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– boundingRectForFont (page 1163)
– boundingRectForGlyph: (page 1164)
– getBoundingRects:forGlyphs:count: (page 1169)
– getAdvancements:forGlyphs:count: (page 1168)

Declared In
NSFont.h

getBoundingRects:forGlyphs:count:
Returns an array of the bounding rectangles for the specified glyphs rendered by the receiver.

- (void)getBoundingRects:(NSRectArray)bounds forGlyphs:(const NSGlyph *)glyphs
count:(NSUInteger)glyphCount

Discussion
Returns in bounds an array of the bounding rectangles for the glyphs specified by glyphs and rendered by
the receiver. The glyphCount must specify the count of glyphs passed in glyphs.

Availability
Available in Mac OS X v10.4 and later.

See Also
– boundingRectForFont (page 1163)
– boundingRectForGlyph: (page 1164)
– getAdvancements:forGlyphs:count: (page 1168)
– getAdvancements:forPackedGlyphs:length: (page 1168)

Declared In
NSFont.h

glyphIsEncoded:
Returns a Boolean value indicating whether the receiver encodes the given glyph. (Deprecated in Mac OS X
v10.4. The value can be deduced by aGlyph < [NSFont numberOfGlyphs] since only
NSNativeShortGlyphPacking is supported.)

- (BOOL)glyphIsEncoded:(NSGlyph)aGlyph

Discussion
Returns YES if the receiver encodes aGlyph, NO if it doesn’t contain it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Instance Methods 1169
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Declared In
NSFont.h

glyphPacking
Returns the best way to encode the receiver’s glyphs into an array of bytes. (Deprecated in Mac OS X v10.4.
Only NSNativeShortGlyphPacking (page 1184) is supported.)

- (NSMultibyteGlyphPacking)glyphPacking

Discussion
Returns the best way to encode the receiver’s glyphs into an array of bytes. The return value is one of values
described in “Constants” (page 1182).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NSFont.h

glyphWithName:
Returns the named encoded glyph, or –1 if the receiver contains no such glyph.

- (NSGlyph)glyphWithName:(NSString *)glyphName

Parameters
glyphName

The name of the glyph.

Return Value
The named encoded glyph.

Discussion
Returns –1 if the glyph named glyphName isn’t encoded.

Glyph names in fonts do not always accurately identify the glyph. If possible, look up the appropriate glyph
on your own.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFont.h

isBaseFont
Returns a Boolean value indicating whether the receiver is a PostScript base font. (Deprecated in Mac OS X
v10.4. This information is not relevant to Mac OS X.)

1170 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

- (BOOL)isBaseFont

Discussion
Returns YES if the receiver is a PostScript base font, NO if it’s a PostScript composite font composed of other
base fonts.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NSFont.h

isFixedPitch
Returns a Boolean value indicating whether all glyphs in the receiver have the same advancement.

- (BOOL)isFixedPitch

Return Value
YES if all glyphs in the receiver have the same advancement; NO if any advancements differ.

Discussion
Some Japanese fonts encoded with the scheme “EUC12-NJE-CFEncoding” return that they have the same
advancement, but actually encode glyphs with one of two advancements, for historical compatibility. You
may need to handle such fonts specially for some applications.

Availability
Available in Mac OS X v10.0 and later.

See Also
– advancementForGlyph: (page 1162)

Related Sample Code
NSFontAttributeExplorer

Declared In
NSFont.h

italicAngle
Returns the receiver’s italic angle, the amount that the font is slanted in degrees counterclockwise from the
vertical, as read from its AFM file. Because the slant is measured counterclockwise, English italic fonts typically
return a negative value.

- (CGFloat)italicAngle

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NSFontAttributeExplorer

Instance Methods 1171
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Declared In
NSFont.h

leading
Returns the receiver’s leading.

- (CGFloat)leading

Availability
Available in Mac OS X v10.4 and later.

See Also
+ fontWithDescriptor:size: (page 1150)

Related Sample Code
NSFontAttributeExplorer

Declared In
NSFont.h

matrix
Returns the receiver’s font matrix, a standard six-element transformation matrix as used in the PostScript
language, specifically with the makefont operator.

- (const CGFloat *)matrix

Discussion
In most cases, with a font of fontSize, this matrix is [fontSize 0 0 fontSize 0 0].

Availability
Available in Mac OS X v10.0 and later.

See Also
+ fontWithDescriptor:size: (page 1150)

Declared In
NSFont.h

maximumAdvancement
Returns the greatest advancement of any of the receiver’s glyphs.

- (NSSize)maximumAdvancement

Discussion
This advancement is always either strictly horizontal or strictly vertical.

Availability
Available in Mac OS X v10.0 and later.

1172 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

See Also
– advancementForGlyph: (page 1162)

Related Sample Code
NSFontAttributeExplorer
Quartz Composer WWDC 2005 TextEdit

Declared In
NSFont.h

mostCompatibleStringEncoding
Returns the string encoding that works best with the receiver, where there are the fewest possible unmatched
characters in the string encoding and glyphs in the font.

- (NSStringEncoding)mostCompatibleStringEncoding

Return Value
The string encoding that works best with the receiver.

Discussion
You can use NSString‘s dataUsingEncoding: or dataUsingEncoding:allowLossyConversion:
method to convert the string to this encoding.

If this method returns NSASCIIStringEncoding, it could not determine the correct encoding and assumed
that the font can render only ASCII characters.

This method works heuristically using well-known font encodings, so for nonstandard encodings it may not
in fact return the optimal string encoding.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NSFontAttributeExplorer

Declared In
NSFont.h

numberOfGlyphs
Returns the number of glyphs in the receiver.

- (NSUInteger)numberOfGlyphs

Discussion
Glyphs are numbered starting at 0.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NSFontAttributeExplorer

Instance Methods 1173
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Declared In
NSFont.h

pointSize
Returns the receiver’s point size, or the effective vertical point size for a font with a nonstandard matrix.

- (CGFloat)pointSize

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FunHouse
GeekGameBoard
Quartz Composer WWDC 2005 TextEdit

Declared In
NSFont.h

positionOfGlyph:forCharacter:struckOverRect:
Calculates and returns a suitable location for the given glyph to be drawn. (Deprecated in Mac OS X v10.4.
Context-sensitive interglyph spacing is now performed at the typesetting stage.)

- (NSPoint)positionOfGlyph:(NSGlyph)aGlyph forCharacter:(unichar)aChar
struckOverRect:(NSRect)aRect

Discussion
Calculates and returns a suitable location for aGlyph to be drawn as a diacritic or nonspacing mark relative
to aRect, assuming that aGlyph represents aChar. Returns NSZeroPoint if the location can’t be calculated.
The nature of aChar as one appearing above or below its base character determines the location returned.
For example, in the first figure below, the gray tilde and box represent aGlyph and aRect, and the black
dot is the point returned (defined relative to the origin of the aRect).

To place multiple glyphs with respect to a rectangle, work from the innermost glyphs to the outermost. As
you calculate the position of each glyph, enlarge the rectangle to include the bounding rectangle of the
glyph in preparation for the next glyph. The second figure shows a tilde, acute accent, and cedilla all placed
in their appropriate positions with respect to a rectangle, with the acute accent placed relative to the expanded
bounding box of the base rectangle and the tilde.

1174 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

This method is the last fallback mechanism for performing minimally legible typography when metrics aren’t
available. Use it when positionOfGlyph:struckOverGlyph:metricsExist: (page 1175) indicates that
metrics don’t exist for the base glyph specified, or when you are combining glyphs from different fonts (for
example, the base glyph is in a different font than the accent). It can account for the layout and placement
of most Latin, Greek, and Cyrillic nonspacing marks. You should draw the glyph at the returned location,
even if it’s NSZeroRect.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NSFont.h

positionOfGlyph:precededByGlyph:isNominal:
Calculates and returns the location of a glyph. (Deprecated in Mac OS X v10.4. Context-sensitive interglyph
spacing is now performed at the typesetting stage.)

- (NSPoint)positionOfGlyph:(NSGlyph)aGlyph precededByGlyph:(NSGlyph)prevGlyph
isNominal:(BOOL *)flag

Discussion
Calculates and returns the location of aGlyph relative to prevGlyph, assuming that prevGlyph precedes
it in the layout (not necessarily in the character stream). The point returned should be used relative to whatever
location is used for prevGlyph. If flag is non-nil, it’s filled with NO if kerning tables are available and were
used in the calculation; it is filled with YES if the default spacing is used.

Returns NSZeroPoint if either aGlyph or prevGlyph is NSControlGlyph or is invalid. Returns the nominal
advancement of prevGlyph if aGlyph is NSNullGlyph.

This method is useful for sequential glyph placement when glyphs aren’t drawn with a single PostScript
operation.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NSFont.h

positionOfGlyph:struckOverGlyph:metricsExist:
Calculates and returns a suitable location for the given glyph to be drawn. (Deprecated in Mac OS X v10.4.
Context-sensitive interglyph spacing is now performed at the typesetting stage.)

- (NSPoint)positionOfGlyph:(NSGlyph)aGlyph struckOverGlyph:(NSGlyph)baseGlyph
metricsExist:(BOOL *)flag

Instance Methods 1175
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Discussion
Calculates and returns a suitable location for aGlyph to be drawn as a diacritic or nonspacing mark relative
to baseGlyph. The point returned should be used relative to whatever location is used for baseGlyph. If
flag is non-nil it’s filled with YES if font metrics are available, NO if they’re not. If flag is returned as NO, the
result isn’t valid and shouldn’t be used. In that case, use
positionOfGlyph:struckOverRect:metricsExist: (page 1176) or
positionOfGlyph:forCharacter:struckOverRect: (page 1174) to calculate a reasonable offset.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

See Also
– positionsForCompositeSequence:numberOfGlyphs:pointArray: (page 1177)
– positionOfGlyph:struckOverRect:metricsExist: (page 1176)

Declared In
NSFont.h

positionOfGlyph:struckOverRect:metricsExist:
Overridden by subclasses to calculate and return a suitable location for a glyph to be drawn. (Deprecated in
Mac OS X v10.4. Context-sensitive interglyph spacing is now performed at the typesetting stage.)

- (NSPoint)positionOfGlyph:(NSGlyph)aGlyph struckOverRect:(NSRect)aRect
metricsExist:(BOOL *)flag

Discussion
Overridden by subclasses to calculate and return a suitable location for aGlyph to be drawn as a diacritic or
nonspacing mark relative to aRect, provided metrics exist. Returns NSZeroRect if the location can’t be
determined. If flag is non-nil it’s filled with YES if font metrics are available, NO if they’re not. If flag is
returned as NO, the result isn’t valid and shouldn’t be used. In that case, use
positionOfGlyph:forCharacter:struckOverRect: (page 1174) to calculate a reasonable offset.

Because current PostScript font metrics don’t include support for generic placement relative to rectangles,
NSFont’s implementation of this method always returns NSZeroPoint and returns flag as NO.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NSFont.h

positionOfGlyph:withRelation:toBaseGlyph:totalAdvancement:metricsExist:
Calculates and returns a suitable location for a glyph to be drawn. (Deprecated in Mac OS X v10.4.
Context-sensitive interglyph spacing is now performed at the typesetting stage.)

1176 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

- (NSPoint)positionOfGlyph:(NSGlyph)aGlyph withRelation:(NSGlyphRelation)relation
toBaseGlyph:(NSGlyph)baseGlyph totalAdvancement:(NSSizePointer)offset
metricsExist:(BOOL *)flag

Discussion
Calculates and returns a suitable location for aGlyph to be drawn relative to baseGlyph, where relation
is NSGlyphBelow or NSGlyphAbove. The point returned should be used relative to whatever location is
used for baseGlyph. This method is useful for calculating the layout of stacked glyphs, found in some
non-Western scripts.

If offset is non-NULL, this method sets it to the larger of the two glyphs’ advancements, allowing for
reasonable layout of following glyphs.

If flag is non-nil, this method sets it to whether font metrics are available: YES if they are, NO if they’re not.
If metrics aren’t available, the location is calculated as a simple stacking with no gap between baseGlyph
and aGlyph. Current Postscript fonts do not contain appropriate font metrics, so this method always sets
flag to NO. If you subclass NSFont to handle fonts that do contain metrics, override this method.

This method supports only horizontally laid out base glyphs.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NSFont.h

positionsForCompositeSequence:numberOfGlyphs:pointArray:
Calculates glyph locations. (Deprecated in Mac OS X v10.4. Context-sensitive interglyph spacing is now
performed at the typesetting stage.)

- (NSInteger)positionsForCompositeSequence:(NSGlyph *)glyphs
numberOfGlyphs:(NSInteger)numGlyphs pointArray:(NSPointArray)points

Discussion
Calculates and fills points with the locations for glyphs, assuming the first glyph is a base character and
those following are nonspacing marks. These points should all be interpreted as relative to the location of
the first glyph in glyphs. The storage block points points to should be large enough for at least numGlyphs
points. Returns the number of points that could be calculated.

If the number of points calculated is less than numGlyphs, the number of glyphs provided, you can use
positionOfGlyph:struckOverRect:metricsExist: (page 1176) to determine the positions for the
remaining glyphs. When using that method, calculate the base rectangle for each glyph from the bounding
rectangles and positions of all preceding glyphs.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NSFont.h

Instance Methods 1177
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

printerFont
Returns the scalable PostScript font corresponding to itself.

- (NSFont *)printerFont

Discussion
When sent to a font object representing a scalable PostScript font, returns self. When sent to a font object
representing a bitmapped screen font, returns its corresponding scalable PostScript font.

Availability
Available in Mac OS X v10.0 and later.

See Also
– screenFont (page 1178)

Related Sample Code
DockTile
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSFont.h

renderingMode
Returns the rendering mode of the receiver.

- (NSFontRenderingMode)renderingMode

Return Value
The rendering mode of the receiver.

Discussion
For valid rendering modes, see “Constants” (page 1182).

Availability
Available in Mac OS X v10.4 and later.

See Also
– screenFontWithRenderingMode: (page 1179)

Declared In
NSFont.h

screenFont
Returns the bitmapped screen font corresponding to itself.

- (NSFont *)screenFont

1178 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Discussion
When sent to a font object representing a scalable PostScript font, returns a bitmapped screen font matching
the receiver in typeface and matrix (or size), or nil if such a font can’t be found. When sent to a font object
representing a bitmapped screen font, returns nil.

Screen fonts are for direct use with the window server only. Never use them with Application Kit objects,
such as in setFont: methods. Internally, the Application Kit automatically uses the corresponding screen
font for a font object as long as the view is not rotated or scaled.

Availability
Available in Mac OS X v10.0 and later.

See Also
– printerFont (page 1178)
– screenFontWithRenderingMode: (page 1179)

Declared In
NSFont.h

screenFontWithRenderingMode:
Returns a bitmapped screen font, when sent to a font object representing a scalable PostScript font, with
the specified rendering mode, matching the receiver in typeface and matrix (or size), or nil if such a font
can’t be found.

- (NSFont *)screenFontWithRenderingMode:(NSFontRenderingMode)renderingMode

Discussion
For valid rendering modes, see NSFontRenderingMode (page 1182).

Screen fonts are for direct use with the window server only. Never use them with Application Kit objects,
such as in setFont: methods. Internally, the Application Kit automatically uses the corresponding screen
font for a font object as long as the view is not rotated or scaled.

Availability
Available in Mac OS X v10.4 and later.

See Also
– printerFont (page 1178)
– screenFont (page 1178)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSFont.h

set
Sets this font as the font for the current graphics context.

- (void)set

Instance Methods 1179
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Discussion
This method sets the font for the graphics system but does not affect the higher-level settings of the Cocoa
text system, which are controlled by text attributes.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ useFont: (page 1160)
– setInContext: (page 1180)

Declared In
NSFont.h

setInContext:
Sets this font as the font for the specified graphics context.

- (void)setInContext:(NSGraphicsContext *)graphicsContext

Parameters
graphicsContext

The graphics context for which the font is set.

Discussion
This method sets the font for the graphics system but does not affect the higher-level settings of the Cocoa
text system, which are controlled by text attributes.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ useFont: (page 1160)
– set (page 1179)

Declared In
NSFont.h

textTransform
Returns the current transformation matrix for the receiver.

- (NSAffineTransform *)textTransform

Availability
Available in Mac OS X v10.4 and later.

See Also
+ useFont: (page 1160)
– set (page 1179)

Declared In
NSFont.h

1180 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

underlinePosition
Returns the baseline offset that should be used when drawing underlines with the receiver, as determined
by the font’s AFM file.

- (CGFloat)underlinePosition

Discussion
This value is usually negative, which must be considered when drawing in a flipped coordinate system.

Availability
Available in Mac OS X v10.0 and later.

See Also
– underlineThickness (page 1181)

Related Sample Code
NSFontAttributeExplorer

Declared In
NSFont.h

underlineThickness
Returns the thickness that should be used when drawing underlines with the receiver, as determined by the
font’s AFM file.

- (CGFloat)underlineThickness

Availability
Available in Mac OS X v10.0 and later.

See Also
– underlinePosition (page 1181)

Related Sample Code
NSFontAttributeExplorer

Declared In
NSFont.h

widthOfString:
Returns the x-axis offset of the current point when the specified string is drawn with a show operator in the
receiving font. (Deprecated in Mac OS X v10.4. Use the Application Kit string-drawing methods, as described
in NSString Additions (page 2581).)

- (CGFloat)widthOfString:(NSString *)aString

Discussion
This method is for backward compatibility only. This method performs lossy conversion of aString to the
most compatible encoding for the receiving font. Use this method only when you’re sure all of aString can
be rendered with the receiving font.

Instance Methods 1181
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

See Also
– mostCompatibleStringEncoding (page 1173)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSFont.h

xHeight
Returns the x-height of the receiver.

- (CGFloat)xHeight

Availability
Available in Mac OS X v10.0 and later.

See Also
– ascender (page 1163)
– descender (page 1166)

Related Sample Code
NSFontAttributeExplorer

Declared In
NSFont.h

Constants

NSFontRenderingMode
These constants specify the font rendering mode.

1182 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

typedef enum {
 NSFontDefaultRenderingMode = 0,
 NSFontAntialiasedRenderingMode = 1,
 NSFontIntegerAdvancementsRenderingMode = 2,
 NSFontAntialiasedIntegerAdvancementsRenderingMode = 3
} NSFontRenderingMode;

Constants
NSFontDefaultRenderingMode

Determines the actual mode based on the user preference settings.

Available in Mac OS X v10.4 and later.

Declared in NSFont.h.

NSFontAntialiasedRenderingMode
Specifies antialiased, floating-point advancements rendering mode (synonymous with printerFont).

Available in Mac OS X v10.4 and later.

Declared in NSFont.h.

NSFontIntegerAdvancementsRenderingMode
Specifies integer advancements rendering mode.

Available in Mac OS X v10.4 and later.

Declared in NSFont.h.

NSFontAntialiasedIntegerAdvancementsRenderingMode
Specifies antialiased, integer advancements rendering mode.

Available in Mac OS X v10.4 and later.

Declared in NSFont.h.

Declared In
NSFont.h

PostScript Transformation Matrix
The identity matrix.

const float *NSFontIdentityMatrix;

Constants
NSFontIdentityMatrix

A transformation matrix useful as a parameter to fontWithDescriptor:size: (page 1150).

Available in Mac OS X v10.0 and later.

Declared in NSFont.h.

Declared In
NSFont.h

NSMultibyteGlyphPacking
A constant for glyph packing.

Constants 1183
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

typedef enum {
 NSNativeShortGlyphPacking = 5
} NSMultibyteGlyphPacking;

Constants
NSNativeShortGlyphPacking

The native format for Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in NSFont.h.

Discussion
Cocoa stores all text data as Unicode. The text system converts Unicode into glyph IDs and places them in
1-, 2-, or 4-byte storage depending on the context. To render text, you must convert the storage into a format
the text engine understands. The following constants describe the glyph packing schemes the text rendering
engine can use. They are used to extract glyphs from a font for making a multibyte (or single-byte) array of
glyphs for passing to an interpreter, such as the window server, which expects a big-endian multibyte stream
(that is, “packed glyphs”) instead of a pure NSGlyph stream. They’re used by glyphPacking (page 1170). With
Quartz, the engine always expects the format to be in 2-byte short array, so NSNativeShortGlyphPacking
is the only format currently in use.

Declared In
NSFont.h

Reserved Glyph Codes
These constants define reserved glyph codes.

enum {
 NSControlGlyph = 0x00FFFFFF,
 NSNullGlyph = 0x0
};

Constants
NSControlGlyph

NSGlyphGenerator generates NSControlGlyph for all characters in the Unicode General Category
C* and U200B (ZERO WIDTH SPACE).

Available in Mac OS X v10.0 and later.

Declared in NSFont.h.

NSNullGlyph
A null glyph.

Available in Mac OS X v10.0 and later.

Declared in NSFont.h.

Declared In
NSFont.h

Keys to the AFM Dictionary
These constants are used as keys retrieve information from an AFM dictionary. (Deprecated. The AFM dictionary
is no longer used in Mac OS X. Use the font metrics accessor methods listed with the individual constants
instead.)

1184 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

NSString *NSAFMFamilyName;
NSString *NSAFMFontName;
NSString *NSAFMFormatVersion;
NSString *NSAFMFullName;
NSString *NSAFMNotice;
NSString *NSAFMVersion;
NSString *NSAFMWeight;
NSString *NSAFMEncodingScheme;
NSString *NSAFMCharacterSet;
NSString *NSAFMCapHeight;
NSString *NSAFMXHeight;
NSString *NSAFMAscender;
NSString *NSAFMDescender;
NSString *NSAFMUnderlinePosition;
NSString *NSAFMUnderlineThickness;
NSString *NSAFMItalicAngle;
NSString *NSAFMMappingScheme;

Constants
NSAFMFamilyName

Font family name key. (Deprecated. Use familyName (page 1167) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMFontName

Font name key. (Deprecated. Use displayName (page 1166) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMFormatVersion

Format version name key. (Deprecated. This information is not relevant to Mac OS X.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMFullName

Full font name key. (Deprecated. Use fontName (page 1167) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

Constants 1185
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

NSAFMNotice

Font notice key. (Deprecated. Use Apple Type Services instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMVersion

Font version key. (Deprecated. Use Apple Type Services instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMWeight

Font weight key. (Deprecated. Use the NSFontManagermethod weightOfFont: (page 1239) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMEncodingScheme

Font encoding scheme key. (Deprecated. UsemostCompatibleStringEncoding (page 1173) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMCharacterSet

Font character set key. (Deprecated. Use coveredCharacterSet (page 1165) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMCapHeight

Font cap-height key. (Deprecated. Use capHeight (page 1164) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

1186 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

NSAFMXHeight

Font x-height key. (Deprecated. Use xHeight (page 1182) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMAscender

Font ascender height key. (Deprecated. Use ascender (page 1163) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMDescender

Font descender depth key. (Deprecated. Use descender (page 1166) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMUnderlinePosition

Font underline rule position key. (Deprecated. Use underlinePosition (page 1181) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMUnderlineThickness

Font underline rule thickness key. (Deprecated. Use underlineThickness (page 1181) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

NSAFMItalicAngle

Font italic angle key. (Deprecated. Use italicAngle (page 1171) instead.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

Constants 1187
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

NSAFMMappingScheme

Font mapping scheme key. (Deprecated. This information is irrelevant to Mac OS X.)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4.

Not available to 64-bit applications.

Declared in NSFont.h.

Declared In
NSFont.h

NSGlyph
This type is used to specify glyphs in such methods as glyphWithName:.

typedef unsigned int NSGlyph;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFont.h

NSGlyphRelation
These constants are used for calculating the layout of stacked glyphs. (Deprecated. Context-sensitive interglyph
spacing is now performed at the typesetting stage)

typedef enum _NSGlyphRelation {
 NSGlyphBelow = 1,
 NSGlyphAbove = 2
} NSGlyphRelation;

Constants
NSGlyphBelow

The glyph is located below the base glyph. (Deprecated. Context-sensitive interglyph spacing is now
performed at the typesetting stage.)

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in NSFont.h.

NSGlyphAbove

The glyph is located above the base glyph. (Deprecated. Context-sensitive interglyph spacing is now
performed at the typesetting stage.)

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in NSFont.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1188 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Declared In
NSFont.h

NSMultibyteGlyphPacking
Glyph packing constants are used to extract glyphs from a font for making a multibyte (or single-byte) array
of glyphs for passing to an interpreter, such as the window server. With Quartz, the engine always expects
the format to be in 2-byte short array, so NSNativeShortGlyphPacking (page 1184) is the only format
currently in use. (Deprecated. Use NSNativeShortGlyphPacking (page 1184) instead.)

enum {
 NSOneByteGlyphPacking,
 NSJapaneseEUCGlyphPacking,
 NSAsciiWithDoubleByteEUCGlyphPacking,
 NSTwoByteGlyphPacking,
 NSFourByteGlyphPacking,
}

Constants
NSOneByteGlyphPacking

One-byte storage format. (Deprecated. Use NSNativeShortGlyphPacking (page 1184) instead.)

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in NSFont.h.

NSJapaneseEUCGlyphPacking

Extended Unix Code for Japanese format. (Deprecated. Use NSNativeShortGlyphPacking (page
1184) instead.)

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in NSFont.h.

NSAsciiWithDoubleByteEUCGlyphPacking

Two-byte Extended Unix Code format. (Deprecated. Use NSNativeShortGlyphPacking (page 1184)
instead.)

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in NSFont.h.

NSTwoByteGlyphPacking

Two-byte storage format. (Deprecated. Use NSNativeShortGlyphPacking (page 1184) instead.)

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in NSFont.h.

NSFourByteGlyphPacking

Four-byte storage format. (Deprecated. Use NSNativeShortGlyphPacking (page 1184) instead.)

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in NSFont.h.

Declared In
NSFont.h

Constants 1189
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Notifications

NSAntialiasThresholdChangedNotification
Posted after the threshold for anti-aliasing changes.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSFont.h

NSFontSetChangedNotification
Posted after the the currently-set font changes.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSFont.h

1190 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 50

NSFont Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSFontDescriptor.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Font Handling

Overview

NSFontDescriptor objects provide a mechanism to describe a font with a dictionary of attributes. This
font descriptor can be used later to create or modify an NSFont object. Mac OS X v10.4 and later provides
a font matching capability, so that you can partially describe a font by creating a font descriptor with, for
example, just a family name. You can then find all the available fonts on the system with a matching family
name using matchingFontDescriptorsWithMandatoryKeys: (page 1198).

There are several ways to create a new NSFontDescriptor object. You can use alloc and
initWithFontAttributes: (page 1197), fontDescriptorWithFontAttributes: (page 1193),
fontDescriptorWithName:matrix: (page 1193), or fontDescriptorWithName:size: (page 1194). to
create a font descriptor based on either your custom attributes dictionary or on a specific font’s name and
size. Alternatively you can use one of the fontDescriptor… instance methods (such as
fontDescriptorWithFace: (page 1195)) to create a modified version of an existing descriptor. The latter
methods are useful if you have an existing descriptor and simply want to change one aspect.

All attributes in the attributes dictionary are optional.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

NSCopying
– copyWithZone:

Overview 1191
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

Tasks

Creating a Font Descriptor

+ fontDescriptorWithFontAttributes: (page 1193)
Returns a font descriptor with a dictionary of attributes.

+ fontDescriptorWithName:matrix: (page 1193)
Returns a font descriptor with the NSFontNameAttribute and NSFontMatrixAttribute dictionary
attributes set to the given values.

+ fontDescriptorWithName:size: (page 1194)
Returns a font descriptor with the NSFontNameAttribute and NSFontSizeAttribute dictionary
attributes set to the given values.

– fontDescriptorByAddingAttributes: (page 1195)
Returns a new font descriptor that is the same as the receiver but with the specified attributes taking
precedence over the existing ones.

– fontDescriptorWithFace: (page 1195)
Returns a new font descriptor that is the same as the receiver but with the specified face.

– fontDescriptorWithFamily: (page 1196)
Returns a new font descriptor whose attributes are the same as the receiver but from the specified
family.

– fontDescriptorWithMatrix: (page 1196)
Returns a new font descriptor that is the same as the receiver but with the specified matrix.

– fontDescriptorWithSize: (page 1196)
Returns a new font descriptor that is the same as the receiver but with the specified point size.

– fontDescriptorWithSymbolicTraits: (page 1197)
Returns a new font descriptor that is the same as the receiver but with the specified symbolic traits
taking precedence over the existing ones.

Initializing a Font Descriptor

– initWithFontAttributes: (page 1197)
Initializes and returns a new font descriptor with the specified attributes.

Finding Fonts

– matchingFontDescriptorsWithMandatoryKeys: (page 1198)
Returns all the fonts available on the system whose specified attributes match those of the receiver.

– matchingFontDescriptorWithMandatoryKeys: (page 1198)
Returns a normalized font descriptor whose specified attributes match those of the receiver.

1192 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

Querying a Font Descriptor

– fontAttributes (page 1194)
Returns the receiver’s dictionary of attributes.

– matrix (page 1199)
Returns the current transform matrix of the receiver.

– objectForKey: (page 1199)
Returns the font attribute specified by the given key.

– pointSize (page 1199)
Returns the point size of the receiver.

– postscriptName (page 1200)
Returns the PostScript name of the receiver.

– symbolicTraits (page 1200)
Returns a bit mask that describes the traits of the receiver.

Class Methods

fontDescriptorWithFontAttributes:
Returns a font descriptor with a dictionary of attributes.

+ (NSFontDescriptor *)fontDescriptorWithFontAttributes:(NSDictionary *)attributes

Parameters
attributes

The attributes for the font descriptor. If nil, the font descriptor’s dictionary will be empty.

Return Value
The new font descriptor.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ fontDescriptorWithName:matrix: (page 1193)
+ fontDescriptorWithName:matrix: (page 1193)

Declared In
NSFontDescriptor.h

fontDescriptorWithName:matrix:
Returns a font descriptor with the NSFontNameAttribute and NSFontMatrixAttribute dictionary
attributes set to the given values.

+ (NSFontDescriptor *)fontDescriptorWithName:(NSString *)fontName
matrix:(NSAffineTransform *)matrix

Class Methods 1193
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

Parameters
fontName

The value for NSFontNameAttribute.

matrix
The value for NSFontMatrixAttribute.

Return Value
The new font descriptor.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ fontDescriptorWithFontAttributes: (page 1193)
+ fontDescriptorWithName:size: (page 1194)

Declared In
NSFontDescriptor.h

fontDescriptorWithName:size:
Returns a font descriptor with the NSFontNameAttribute and NSFontSizeAttribute dictionary attributes
set to the given values.

+ (NSFontDescriptor *)fontDescriptorWithName:(NSString *)fontName size:(CGFloat)size

Parameters
fontName

The value for NSFontNameAttribute.

size
The value for NSFontSizeAttribute.

Return Value
The new font descriptor.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ fontDescriptorWithFontAttributes: (page 1193)
+ fontDescriptorWithName:matrix: (page 1193)

Declared In
NSFontDescriptor.h

Instance Methods

fontAttributes
Returns the receiver’s dictionary of attributes.

1194 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

- (NSDictionary *)fontAttributes

Return Value
The attribute dictionary.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSFontDescriptor.h

fontDescriptorByAddingAttributes:
Returns a new font descriptor that is the same as the receiver but with the specified attributes taking
precedence over the existing ones.

- (NSFontDescriptor *)fontDescriptorByAddingAttributes:(NSDictionary *)attributes

Parameters
attributes

The new attributes.

Return Value
The new font descriptor.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ fontDescriptorWithFontAttributes: (page 1193)

Declared In
NSFontDescriptor.h

fontDescriptorWithFace:
Returns a new font descriptor that is the same as the receiver but with the specified face.

- (NSFontDescriptor *)fontDescriptorWithFace:(NSString *)newFace

Parameters
newFace

The new font face.

Return Value
The new font descriptor.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ fontDescriptorWithFontAttributes: (page 1193)

Instance Methods 1195
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

Declared In
NSFontDescriptor.h

fontDescriptorWithFamily:
Returns a new font descriptor whose attributes are the same as the receiver but from the specified family.

- (NSFontDescriptor *)fontDescriptorWithFamily:(NSString *)newFamily

Parameters
newFamily

The new font family.

Return Value
The new font descriptor.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ fontDescriptorWithFontAttributes: (page 1193)

Declared In
NSFontDescriptor.h

fontDescriptorWithMatrix:
Returns a new font descriptor that is the same as the receiver but with the specified matrix.

- (NSFontDescriptor *)fontDescriptorWithMatrix:(NSAffineTransform *)matrix

Parameters
matrix

The new font matrix.

Return Value
The new font descriptor.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ fontDescriptorWithFontAttributes: (page 1193)

Declared In
NSFontDescriptor.h

fontDescriptorWithSize:
Returns a new font descriptor that is the same as the receiver but with the specified point size.

- (NSFontDescriptor *)fontDescriptorWithSize:(CGFloat)newPointSize

1196 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

Parameters
newPointSize

The new point size.

Return Value
The new font descriptor.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ fontDescriptorWithFontAttributes: (page 1193)

Declared In
NSFontDescriptor.h

fontDescriptorWithSymbolicTraits:
Returns a new font descriptor that is the same as the receiver but with the specified symbolic traits taking
precedence over the existing ones.

- (NSFontDescriptor
*)fontDescriptorWithSymbolicTraits:(NSFontSymbolicTraits)symbolicTraits

Parameters
symbolicTraits

The new symbolic traits.

Return Value
The new font descriptor.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ fontDescriptorWithFontAttributes: (page 1193)

Declared In
NSFontDescriptor.h

initWithFontAttributes:
Initializes and returns a new font descriptor with the specified attributes.

- (id)initWithFontAttributes:(NSDictionary *)attributes

Parameters
attributes

The attributes for the new font descriptor. If nil, the font descriptor’s attribute dictionary will be
empty.

Return Value
The new font descriptor.

Instance Methods 1197
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
+ fontDescriptorWithFontAttributes: (page 1193)

Declared In
NSFontDescriptor.h

matchingFontDescriptorsWithMandatoryKeys:
Returns all the fonts available on the system whose specified attributes match those of the receiver.

- (NSArray *)matchingFontDescriptorsWithMandatoryKeys:(NSSet *)mandatoryKeys

Parameters
mandatoryKeys

Keys that must be identical to be matched. Can be nil.

Return Value
The matching font descriptors.

Discussion
For example, suppose there are two versions of a given font installed that differ in the number of glyphs
covered (the new version has more glyphs). If you explicitly specify NSFontNameAttribute (page 1201) as
the only mandatory key, then a font descriptor that specifies a font name and character set by default matches
both versions, since the character set attribute is not used for matching. If you specify that font name and
character set keys are mandatory, the returned array contains only the font that matches both keys.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSFontDescriptor.h

matchingFontDescriptorWithMandatoryKeys:
Returns a normalized font descriptor whose specified attributes match those of the receiver.

- (NSFontDescriptor *)matchingFontDescriptorWithMandatoryKeys:(NSSet *)mandatoryKeys

Parameters
mandatoryKeys

Keys that must be identical to be matched. Can be nil.

Return Value
The matching font descriptor.

Discussion
The returned font descriptor is the first element returned from
matchingFontDescriptorsWithMandatoryKeys: (page 1198).

Availability
Available in Mac OS X v10.5 and later.

1198 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

Declared In
NSFontDescriptor.h

matrix
Returns the current transform matrix of the receiver.

- (NSAffineTransform *)matrix

Return Value
The transform matrix.

Availability
Available in Mac OS X v10.4 and later.

See Also
– pointSize (page 1199)

Declared In
NSFontDescriptor.h

objectForKey:
Returns the font attribute specified by the given key.

- (id)objectForKey:(NSString *)anAttribute

Parameters
anAttribute

The font attribute key.

Return Value
The font attribute corresponding to anAttribute. For valid values of anAttribute, see “Font
attributes” (page 1201).

Availability
Available in Mac OS X v10.4 and later.

See Also
+ fontDescriptorWithFontAttributes: (page 1193)
– fontAttributes (page 1194)
– symbolicTraits (page 1200)

Declared In
NSFontDescriptor.h

pointSize
Returns the point size of the receiver.

- (CGFloat)pointSize

Instance Methods 1199
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

Return Value
The receiver’s point size.

Availability
Available in Mac OS X v10.4 and later.

See Also
– fontAttributes (page 1194)
– matrix (page 1199)

Declared In
NSFontDescriptor.h

postscriptName
Returns the PostScript name of the receiver.

- (NSString *)postscriptName

Return Value
The receiver’s Postscript name.

Availability
Available in Mac OS X v10.4 and later.

See Also
– fontAttributes (page 1194)
– symbolicTraits (page 1200)

Declared In
NSFontDescriptor.h

symbolicTraits
Returns a bit mask that describes the traits of the receiver.

- (NSFontSymbolicTraits)symbolicTraits

Return Value
The receiver’s font traits.

Discussion
The traits describe the font’s characteristics—see NSFontSymbolicTraits (page 1205).

Availability
Available in Mac OS X v10.4 and later.

See Also
– fontAttributes (page 1194)
– postscriptName (page 1200)

Declared In
NSFontDescriptor.h

1200 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

Constants

Font Attributes
These font attributes are defined by NSFontDescriptor.

NSString *NSFontFamilyAttribute;
NSString *NSFontNameAttribute;
NSString *NSFontFaceAttribute;
NSString *NSFontSizeAttribute;
NSString *NSFontVisibleNameAttribute;
NSString *NSFontColorAttribute;
NSString *NSFontMatrixAttribute;
NSString *NSFontVariationAttribute;
NSString *NSFontCharacterSetAttribute;
NSString *NSFontCascadeListAttribute;
NSString *NSFontTraitsAttribute;
NSString *NSFontFixedAdvanceAttribute;
NSString *NSFontFeatureSettingsAttribute

Constants
NSFontFamilyAttribute

An optional NSString object that specifies the font family.

Available in Mac OS X v10.3 and later.

Declared in NSFontDescriptor.h.

NSFontNameAttribute
An optional NSString object that specifies the font name.

Available in Mac OS X v10.3 and later.

Declared in NSFontDescriptor.h.

NSFontFaceAttribute
An optional NSString object that specifies the font face.

Available in Mac OS X v10.3 and later.

Declared in NSFontDescriptor.h.

NSFontSizeAttribute
An optional NSString object, containing a float value, that specifies the font size.

Available in Mac OS X v10.3 and later.

Declared in NSFontDescriptor.h.

NSFontVisibleNameAttribute
An optional NSString object that specifies the font’s visible name.

Available in Mac OS X v10.3 and later.

Declared in NSFontDescriptor.h.

Constants 1201
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

NSFontColorAttribute

An optional NSData object that specifies the font color. (Deprecated. Use
NSForegroundColorAttributeName (page 271) instead.)

Available in Mac OS X v10.3 and later.

Deprecated in Mac OS X v10.4.

Declared in NSFontDescriptor.h.

NSFontMatrixAttribute
An NSAffineTransform instance that specifies the font’s transformation matrix.

The default value is the identity matrix.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontVariationAttribute
An NSDictionary instance that describes the font’s variation axis.

The default value is supplied by the font. See “Font variation axis dictionary keys” (page
1204) for dictionary keys.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontCharacterSetAttribute
An NSCharacterSet instance that represents the set of Unicode characters covered by the font.

The default value is supplied by the font.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontCascadeListAttribute
An NSArray instance—each member of the array is a sub-descriptor.

The default value is the system default cascading list for user's locale.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontTraitsAttribute
An NSDictionary instance instance fully describing font traits.

The default value is supplied by the font. See “Font traits dictionary keys” (page 1203) for
dictionary keys.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontFixedAdvanceAttribute
An NSNumber instance containing a float value that overrides the glyph advancement specified by
the font.

The default value is 0.0.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

1202 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

NSFontFeatureSettingsAttribute
An array of dictionaries representing non-default font feature settings.

Each dictionary contains NSFontFeatureTypeIdentifierKey (page 1205) and
NSFontFeatureSelectorIdentifierKey (page 1205).

Available in Mac OS X v10.5 and later.

Declared in NSFontDescriptor.h.

Discussion
You can retrieve the values for these attributes using objectForKey: (page 1199).

Declared In
NSFontDescriptor.h

Font Traits Dictionary Keys
The following constants can be used as keys to retrieve information about a font descriptor from its trait
dictionary.

NSString *NSFontSymbolicTrait;
NSString *NSFontWeightTrait;
NSString *NSFontWidthTrait;
NSString *NSFontSlantTrait;

Constants
NSFontSymbolicTrait

The symbolic traits value as an NSNumber object.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontWeightTrait
The normalized weight value as an NSNumber object.

The valid value range is from -1.0 to 1.0. The value of 0.0 corresponds to the regular or medium
font weight.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontWidthTrait
The relative inter-glyph spacing value as an NSNumber object.

The valid value range is from -1.0 to 1.0. The value of 0.0 corresponds to the regular glyph spacing.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontSlantTrait
The relative slant angle value as an NSNumber object.

The valid value range is from -1.0 to 1.0. The value of 0.0 corresponds to 0 degree clockwise rotation
from the vertical and 1.0 corresponds to 30 degrees clockwise rotation.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

Discussion
These keys are used with NSFontTraitsAttribute (page 1202).

Constants 1203
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

Declared In
NSFontDescriptor.h

Font Variation Axis Dictionary Keys
The following constants can be used as keys to retrieve information about a font descriptor from its variation
axis dictionary.

NSString *NSFontVariationAxisIdentifierKey;
NSString *NSFontVariationAxisMinimumValueKey;
NSString *NSFontVariationAxisMaximumValueKey;
NSString *NSFontVariationAxisDefaultValueKey;
NSString *NSFontVariationAxisNameKey;

Constants
NSFontVariationAxisIdentifierKey

The axis identifier value as an NSNumber object.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontVariationAxisMinimumValueKey
The minimum axis value as an NSNumber object.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontVariationAxisMaximumValueKey
The maximum axis value as an NSNumber object.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontVariationAxisDefaultValueKey
The default axis value as an NSNumber object.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontVariationAxisNameKey
The localized variation axis name.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

Discussion
These keys are used with NSFontVariationAttribute (page 1202).

Declared In
NSFontDescriptor.h

Font Feature Keys
The following constants can be used as keys to retrieve information about a font descriptor from its feature
dictionary.

1204 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

NSString *NSFontFeatureTypeIdentifierKey;
NSString *NSFontFeatureSelectorIdentifierKey;

Constants
NSFontFeatureTypeIdentifierKey

An NSNumber object specifying a font feature type such as ligature, character shape, and so on. See
“Font Features“ in ATSUI Programming Guide for predefined feature types.

Available in Mac OS X v10.5 and later.

Declared in NSFontDescriptor.h.

NSFontFeatureSelectorIdentifierKey
An NSNumber object specifying a font feature selector such as common ligature off, traditional
character shape, and so on. See “Font Features“ in ATSUI Programming Guide for predefined feature
selectors.

Available in Mac OS X v10.5 and later.

Declared in NSFontDescriptor.h.

Discussion
These keys are used with NSFontFeatureSettingsAttribute (page 1203).

Declared In
NSFontDescriptor.h

NSFontSymbolicTraits
NSFontSymbolicTraits symbolically describes stylistic aspects of a font.

typedef uint32_t NSFontSymbolicTraits;

Discussion
The upper 16 bits is used to describe appearance of the font (see NSFontFamilyClass (page 1205)) whereas
the lower 16 bits is used for typeface information (see Typeface information (page 1207)). The font
appearance information represented by the upper 16 bits can be used for stylistic font matching. The symbolic
traits supersede the existing NSFontTraitMask type used by NSFontManager. The corresponding values
are kept compatible between NSFontTraitMask and NSFontSymbolicTraits.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSFontDescriptor.h

NSFontFamilyClass
These constants classify certain stylistic qualities of the font. These values correspond closely to the font class
values in the OpenType OS/2 table. The class values are bundled in the upper four bits of the
NSFontSymbolicTraits and can be accessed via NSFontFamilyClassMask. For more information about
the specific meaning of each identifier, refer to the OpenType specification.

Constants 1205
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

enum {
 NSFontUnknownClass = 0 << 28,
 NSFontOldStyleSerifsClass = 1 << 28,
 NSFontTransitionalSerifsClass = 2 << 28,
 NSFontModernSerifsClass = 3 << 28,
 NSFontClarendonSerifsClass = 4 << 28,
 NSFontSlabSerifsClass = 5 << 28,
 NSFontFreeformSerifsClass = 7 << 28,
 NSFontSansSerifClass = 8 << 28,
 NSFontOrnamentalsClass = 9 << 28,
 NSFontScriptsClass = 10 << 28,
 NSFontSymbolicClass = 12 << 28
};
typedef uint32_t NSFontFamilyClass;

Constants
NSFontUnknownClass

The font has no design classification.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontOldStyleSerifsClass
The font’s style is based on the Latin printing style of the 15th to 17th century.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontTransitionalSerifsClass
The font’s style is based on the Latin printing style of the 18th to 19th century.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontModernSerifsClass
The font’s style is based on the Latin printing style of the 20th century.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontClarendonSerifsClass
The font’s style is a variation of the Oldstyle Serifs and the Transitional Serifs.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontSlabSerifsClass
The font’s style is characterized by serifs with a square transition between the strokes and the serifs
(no brackets).

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontFreeformSerifsClass
The font’s style includes serifs, but it expresses a design freedom that does not generally fit within
the other serif design classifications.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

1206 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

NSFontSansSerifClass
The font’s style includes most basic letter forms (excluding Scripts and Ornamentals) that do not have
serifs on the strokes.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontOrnamentalsClass
The font’s style includes highly decorated or stylized character shapes such as those typically used in
headlines.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontScriptsClass
The font’s style is among those typefaces designed to simulate handwriting.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontSymbolicClass
The font’s style is generally design independent, making it suitable for special characters (icons,
dingbats, technical symbols, and so on) that may be used equally well with any font.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSFontDescriptor.h

NSFontFamilyClassMask
This constant is used to accessNSFontFamilyClass values in the upper four bits ofNSFontSymbolicTraits.

enum {
 NSFontFamilyClassMask = 0xF0000000
};

Constants
NSFontFamilyClassMask

The font family class mask used to access NSFontFamilyClass values.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

Typeface Information
Typeface information is specified by the lower 16 bits of NSFontSymbolicTraits using the following
constants.

Constants 1207
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

enum {
 NSFontItalicTrait = (1 << 0),
 NSFontBoldTrait = (1 << 1),
 NSFontExpandedTrait = (1 << 5),
 NSFontCondensedTrait = (1 << 6),
 NSFontMonoSpaceTrait = (1 << 10),
 NSFontVerticalTrait = (1 << 11),
 NSFontUIOptimizedTrait = (1 << 12)
};

Constants
NSFontItalicTrait

The font’s typestyle is italic.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontBoldTrait
The font’s typestyle is boldface.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontExpandedTrait
The font’s typestyle is expanded. Expanded and condensed traits are mutually exclusive.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontCondensedTrait
The font’s typestyle is condensed. Expanded and condensed traits are mutually exclusive.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontMonoSpaceTrait
The font uses fixed-pitch glyphs if available. The font may have multiple glyph advances (many CJK
glyphs contain two spaces).

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontVerticalTrait
The font uses vertical glyph variants and metrics.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

NSFontUIOptimizedTrait
The font synthesizes appropriate attributes for user interface rendering, such as control titles, if
necessary.

Available in Mac OS X v10.4 and later.

Declared in NSFontDescriptor.h.

Declared In
NSFontDescriptor.h

1208 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 51

NSFontDescriptor Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSFontManager.h

Companion guide Font Panel

Related sample code CoreTextArcCocoa
NewsReader
QTKitTimeCode
Quartz Composer WWDC 2005 TextEdit
ToolbarSample

Overview

NSFontManager is the center of activity for the font conversion system. It records the currently selected
font, updates the Font panel and Font menu to reflect the selected font, initiates font changes, and converts
fonts in response to requests from text-bearing objects. In a more prosaic role, NSFontManager can be
queried for the fonts available to the application and for the particular attributes of a font, such as whether
it’s condensed or extended.

You normally set up a font manager and the Font menu using Interface Builder. However, you can also do
so programmatically by getting the shared font manager instance and having it create the standard Font
menu at runtime:

NSFontManager *fontManager = [NSFontManager sharedFontManager];
NSMenu *fontMenu = [fontManager fontMenu:YES];

You can then add the Font menu to your application’s main menu. Once the Font menu is installed, your
application automatically gains the functionality of both the Font menu and the Font panel.

As of Mac OS X version 10.3, font collections are managed by NSFontManager.

Overview 1209
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Tasks

Getting the Shared Font Manager

+ sharedFontManager (page 1215)
Returns the shared instance of the font manager for the application, creating it if necessary.

Changing the Default Font Conversion Classes

+ setFontManagerFactory: (page 1214)
Sets the class object used to create the font manager to the given class.

+ setFontPanelFactory: (page 1214)
Sets the class used to create the Font panel to the given class.

Getting Available Fonts

– availableFonts (page 1218)
Returns the names of the fonts available in the system (not the NSFont objects themselves).

– availableFontFamilies (page 1217)
Returns the names of the font families available in the system.

– availableFontNamesWithTraits: (page 1218)
Returns the names of the fonts available in the system whose traits are described exactly by the given
font trait mask (not the NSFont objects themselves).

– availableMembersOfFontFamily: (page 1219)
Returns an array with one entry for each available member of a font family.

Setting and Examining the Selected Font

– setSelectedFont:isMultiple: (page 1237)
Records the given font as the currently selected font and updates the Font panel to reflect this.

– selectedFont (page 1234)
Returns the last font recorded.

– isMultiple (page 1230)
Indicates whether the last font selection recorded has multiple fonts.

– sendAction (page 1234)
Sends the receiver’s action message up the responder chain, initiating a font change for whatever
conversion and trait to change were last requested.

– localizedNameForFamily:face: (page 1230)
Returns a localized string with the name of the specified font family and face, if one exists.

1210 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Sending Action Methods

– addFontTrait: (page 1216)
This action method causes the receiver to send its action message up the responder chain.

– removeFontTrait: (page 1233)
This action method causes the receiver to send its action message up the responder chain.

– modifyFont: (page 1230)
This action method causes the receiver to send its action message up the responder chain.

– modifyFontViaPanel: (page 1231)
This action method causes the receiver to send its action message up the responder chain.

– orderFrontStylesPanel: (page 1232)
This action method opens the Font styles panel.

– orderFrontFontPanel: (page 1232)
This action method opens the Font panel by sending it an orderFront: (page 3351) message, creating
the Font panel if necessary.

Converting Fonts Automatically

– convertFont: (page 1220)
Converts the given font according to the object that initiated a font change, typically the Font panel
or Font menu.

– changeFont: (page 1239) delegate method
Informs responders of a font change.

Converting Fonts Manually

– convertFont:toFace: (page 1221)
Returns a font whose traits are as similar as possible to those of the given font except for the typeface,
which is changed to the given typeface.

– convertFont:toFamily: (page 1222)
Returns a font whose traits are as similar as possible to those of the given font except for the font
family, which is changed to the given family.

– convertFont:toHaveTrait: (page 1222)
Returns a font whose traits are the same as those of the given font, except that the traits are changed
to include the single specified trait.

– convertFont:toNotHaveTrait: (page 1223)
Returns an NSFont object with the same traits as the given font, except for the traits in the given
font trait mask, which are removed.

– convertFont:toSize: (page 1224)
Returns an NSFont object whose traits are the same as those of the given font, except for the size,
which is changed to the given size.

– convertWeight:ofFont: (page 1225)
Returns an NSFont object whose weight is greater or lesser than that of the given font, if possible.

– currentFontAction (page 1226)
Returns the current font conversion action.

Tasks 1211
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

– convertFontTraits: (page 1224)
Converts font traits to a new traits mask value.

Getting a Particular Font

– fontWithFamily:traits:weight:size: (page 1229)
Attempts to load a font with the specified characteristics.

Examining Fonts

– traitsOfFont: (page 1238)
Returns the traits of the given font.

– fontNamed:hasTraits: (page 1228)
Indicates whether the given font has all the specified traits.

– weightOfFont: (page 1239)
Returns a rough numeric measure the weight of the given font.

Managing the Font Panel and Font Menu

– setEnabled: (page 1236)
Controls whether the font conversion system’s user interface items (the Font panel and Font menu
items) are enabled.

– isEnabled (page 1229)
Indicates whether the font conversion system’s user interface items (the Font panel and Font menu
items) are enabled.

– fontManager:willIncludeFont: (page 1240) delegate method
Requests permission from the Font panel delegate to display the given font name in the Font panel.

– fontPanel: (page 1228)
Returns the application’s shared Font panel object, optionally creating it if necessary.

– setFontMenu: (page 1236)
Records the given menu as the application’s Font menu.

– fontMenu: (page 1227)
Returns the menu that’s hooked up to the font conversion system, optionally creating it if necessary.

Setting the Delegate

– setDelegate: (page 1235)
Sets the receiver’s delegate to the given object.

– delegate (page 1226)
Returns the receiver’s delegate.

1212 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Accessing the Action Method

– setAction: (page 1235)
Sets the action that’s sent to the first responder, when the user selects a new font from the Font panel
or chooses a command from the Font menu, to the given selector.

– action (page 1215)
Returns the action sent to the first responder when the user selects a new font from the Font panel
or chooses a command from the Font menu.

– setTarget: (page 1238)
Sets the target for the sendAction (page 1234) method.

– target (page 1238)
Returns the target for the sendAction (page 1234) method.

Setting Attributes

– setSelectedAttributes:isMultiple: (page 1236)
Informs the paragraph and character formatting panels when text in a selection has changed attributes.

– convertAttributes: (page 1220)
Converts attributes in response to an object initiating an attribute change, typically the Font panel
or Font menu.

Working with Font Descriptors

– availableFontNamesMatchingFontDescriptor: (page 1217)
Returns the names of the fonts that match the attributes in the given font descriptor.

– collectionNames (page 1219)
Returns the names of the currently loaded font collections.

– fontDescriptorsInCollection: (page 1227)
Returns an array of the font descriptors in the collection specified by the given collection name.

– addCollection:options: (page 1216)
Adds a specified font collection to the font manager with a given set of options.

– removeCollection: (page 1233)
Removes the specified font collection.

– addFontDescriptors:toCollection: (page 1216)
Adds an array of font descriptors to the specified font collection.

– removeFontDescriptor:fromCollection: (page 1233)
Removes the specified font descriptor from the specified collection.

Tasks 1213
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Class Methods

setFontManagerFactory:
Sets the class object used to create the font manager to the given class.

+ (void)setFontManagerFactory:(Class)aClass

Parameters
aClass

The new font manager factory class, which should be a subclass of NSFontManager.

Discussion
When the NSFontManager class object receives a sharedFontManager (page 1215) message, it creates an
instance of aClass, if no instance already exists. Your font manager class should implement init as its
designated initializer. The default font manager factory is NSFontManager.

This method must be invoked before your application’s main nib file is loaded, such as in the application
delegate’s applicationWillFinishLaunching: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setFontPanelFactory: (page 1214)

Declared In
NSFontManager.h

setFontPanelFactory:
Sets the class used to create the Font panel to the given class.

+ (void)setFontPanelFactory:(Class)factoryId

Parameters
factoryId

The new font panel factory class, which should be a subclass of NSFontPanel.

Discussion
Invoke this method before accessing the Font panel in any way, such as in the application delegate’s
applicationWillFinishLaunching: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setFontManagerFactory: (page 1214)

Declared In
NSFontManager.h

1214 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

sharedFontManager
Returns the shared instance of the font manager for the application, creating it if necessary.

+ (NSFontManager *)sharedFontManager

Return Value
The shared font manager.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setFontManagerFactory: (page 1214)

Related Sample Code
CoreTextArcCocoa
NewsReader
QTKitTimeCode
Quartz Composer WWDC 2005 TextEdit
ToolbarSample

Declared In
NSFontManager.h

Instance Methods

action
Returns the action sent to the first responder when the user selects a new font from the Font panel or chooses
a command from the Font menu.

- (SEL)action

Return Value
The selector for the action.

Discussion
The default action is changeFont: (page 1239).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAction: (page 1235)

Declared In
NSFontManager.h

Instance Methods 1215
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

addCollection:options:
Adds a specified font collection to the font manager with a given set of options.

- (BOOL)addCollection:(NSString *)collectionName options:(NSInteger)collectionOptions

Parameters
collectionName

The collection to add.

collectionOptions
The option described in “Font Collection Mask” (page 1241). This option is not yet implemented.

Return Value
YES if the font collection was successfully added; otherwise, NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeCollection: (page 1233)

Declared In
NSFontManager.h

addFontDescriptors:toCollection:
Adds an array of font descriptors to the specified font collection.

- (void)addFontDescriptors:(NSArray *)descriptors toCollection:(NSString
*)collectionName

Parameters
descriptors

The font descriptors to add.

collectionName
The font collection to which descriptors are added.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeFontDescriptor:fromCollection: (page 1233)

Declared In
NSFontManager.h

addFontTrait:
This action method causes the receiver to send its action message up the responder chain.

- (void)addFontTrait:(id)sender

1216 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Parameters
sender

The control that sent the message.

Discussion
By default, the action message is changeFont: (page 1239).

When a responder replies by providing a font to convert in a convertFont: (page 1220) message, the receiver
converts the font by adding the trait specified by sender. This trait is determined by sending a tag message
to sender and interpreting it as a font trait mask for a convertFont:toHaveTrait: (page 1222) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeFontTrait: (page 1233)
– modifyFont: (page 1230)
– modifyFontViaPanel: (page 1231)

Declared In
NSFontManager.h

availableFontFamilies
Returns the names of the font families available in the system.

- (NSArray *)availableFontFamilies

Return Value
The names of the available font families.

Discussion
These fonts are in various system font directories.

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableFontNamesWithTraits: (page 1218)
– availableFonts (page 1218)

Declared In
NSFontManager.h

availableFontNamesMatchingFontDescriptor:
Returns the names of the fonts that match the attributes in the given font descriptor.

- (NSArray *)availableFontNamesMatchingFontDescriptor:(NSFontDescriptor *)descriptor

Parameters
descriptor

The font descriptor whose attributes are matched.

Instance Methods 1217
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Return Value
The names of the matching fonts.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSFontManager.h

availableFontNamesWithTraits:
Returns the names of the fonts available in the system whose traits are described exactly by the given font
trait mask (not the NSFont objects themselves).

- (NSArray *)availableFontNamesWithTraits:(NSFontTraitMask)fontTraitMask

Parameters
fontTraitMask

The font traits for which to return font names. You specify the desired traits by combining the font
trait mask values described in “Constants” (page 1241) using the C bitwise OR operator.

Return Value
The names of the corresponding fonts.

Discussion
These fonts are in various system font directories.

If fontTraitMask is 0, this method returns all fonts that are neither italic nor bold. This result is the same
one you’d get if fontTraitMask were NSUnitalicFontMask | NSUnboldFontMask.

Availability
Available in Mac OS X v10.0 and later.

See Also
– availableFontFamilies (page 1217)
– availableFonts (page 1218)

Declared In
NSFontManager.h

availableFonts
Returns the names of the fonts available in the system (not the NSFont objects themselves).

- (NSArray *)availableFonts

Return Value
The names of the available fonts.

Discussion
These fonts are in various system font directories.

Availability
Available in Mac OS X v10.0 and later.

1218 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

See Also
– availableFontFamilies (page 1217)
– availableFontNamesWithTraits: (page 1218)

Related Sample Code
NSFontAttributeExplorer

Declared In
NSFontManager.h

availableMembersOfFontFamily:
Returns an array with one entry for each available member of a font family.

- (NSArray *)availableMembersOfFontFamily:(NSString *)family

Parameters
family

The name of a font family, like one that availableFontFamilies (page 1217) returns.

Return Value
The available members of family. See the following discussion for a specific description.

Discussion
Each entry of the returned NSArray is another NSArray with four members, as follows:

0. The PostScript font name, as an NSString object.
1. The part of the font name used in the font panel that’s not the font name, as an NSString object.
This value is not localized—for example, "Roman", "Italic", or "Bold".
2. The font’s weight, as an NSNumber.
3. The font’s traits, as an NSNumber.

The members of the family are arranged in the font panel order (narrowest to widest, lightest to boldest,
plain to italic).

For example, if you call availableMembersOfFontFamily:@"Times", it might return an array like this:

(("Times-Roman", "Roman", 5, 4),
 ("Times-Italic", "Italic", 6, 5),
 ("Times-Bold", "Bold", 9, 2),
 ("Times-BoldItalic", "Bold Italic", 9, 3)
)

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFontManager.h

collectionNames
Returns the names of the currently loaded font collections.

Instance Methods 1219
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

- (NSArray *)collectionNames

Return Value
The names of the current font collections.

Availability
Available in Mac OS X v10.3 and later.

See Also
– fontDescriptorsInCollection: (page 1227)

Declared In
NSFontManager.h

convertAttributes:
Converts attributes in response to an object initiating an attribute change, typically the Font panel or Font
menu.

- (NSDictionary *)convertAttributes:(NSDictionary *)attributes

Parameters
attributes

The current attributes.

Return Value
The converted attributes, or attributes itself if the conversion isn’t possible.

Discussion
Attributes unused by the sender should not be changed or removed.

This method is usually invoked on the sender of changeAttributes: (page 2883). See NSTextView for more
information.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSelectedAttributes:isMultiple: (page 1236)

Declared In
NSFontManager.h

convertFont:
Converts the given font according to the object that initiated a font change, typically the Font panel or Font
menu.

- (NSFont *)convertFont:(NSFont *)aFont

Parameters
aFont

The font to convert.

1220 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Return Value
The converted font, or aFont itself if the conversion isn’t possible.

Discussion
This method is invoked in response to an action message such as addFontTrait: (page 1216) or
modifyFontViaPanel: (page 1231). These initiating methods cause the font manager to query the sender
for the action to take and the traits to change. See “Converting Fonts Manually” (page 1211) for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertFont:toFace: (page 1221)
– convertFont:toFamily: (page 1222)
– convertFont:toHaveTrait: (page 1222)
– convertFont:toNotHaveTrait: (page 1223)
– convertFont:toSize: (page 1224)
– convertWeight:ofFont: (page 1225)

Declared In
NSFontManager.h

convertFont:toFace:
Returns a font whose traits are as similar as possible to those of the given font except for the typeface, which
is changed to the given typeface.

- (NSFont *)convertFont:(NSFont *)aFont toFace:(NSString *)typeface

Parameters
aFont

The font whose traits are matched.

typeface
The new typeface; a fully specified family-face name, such as Helvetica-BoldOblique or Times-Roman.

Return Value
A font with matching traits and the given typeface, or aFont if it can’t be converted.

Discussion
This method attempts to match the weight and posture of aFont as closely as possible. Italic is mapped to
Oblique, for example. Weights are mapped based on an approximate numeric scale of 0 to 15.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertFont:toFamily: (page 1222)
– convertFont:toHaveTrait: (page 1222)
– convertFont:toNotHaveTrait: (page 1223)
– convertFont:toSize: (page 1224)
– convertWeight:ofFont: (page 1225)
– convertFont: (page 1220)

Instance Methods 1221
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Declared In
NSFontManager.h

convertFont:toFamily:
Returns a font whose traits are as similar as possible to those of the given font except for the font family,
which is changed to the given family.

- (NSFont *)convertFont:(NSFont *)aFont toFamily:(NSString *)family

Parameters
aFont

The font whose traits are matched.

family
The new font famliy; a generic font name, such as Helvetica or Times.

Return Value
A font with matching traits and the given family, or aFont if it can’t be converted.

Discussion
This method attempts to match the weight and posture of aFont as closely as possible. Italic is mapped to
Oblique, for example. Weights are mapped based on an approximate numeric scale of 0 to 15.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertFont:toFace: (page 1221)
– convertFont:toHaveTrait: (page 1222)
– convertFont:toNotHaveTrait: (page 1223)
– convertFont:toSize: (page 1224)
– convertWeight:ofFont: (page 1225)
– convertFont: (page 1220)

Declared In
NSFontManager.h

convertFont:toHaveTrait:
Returns a font whose traits are the same as those of the given font, except that the traits are changed to
include the single specified trait.

- (NSFont *)convertFont:(NSFont *)aFont toHaveTrait:(NSFontTraitMask)fontTrait

Parameters
aFont

The font whose traits are matched.

fontTrait
The new trait; may be any one of the traits described in “Constants” (page 1241). Using
NSUnboldFontMask or NSUnitalicFontMask removes the bold or italic trait, respectively.

1222 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Return Value
A font with matching traits including the given trait, or aFont if it can’t be converted.

Discussion
Using NSUnboldFontMask or NSUnitalicFontMask removes the bold or italic trait, respectively.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertFont:toNotHaveTrait: (page 1223)
– convertFont:toFace: (page 1221)
– convertFont:toFamily: (page 1222)
– convertFont:toSize: (page 1224)
– convertWeight:ofFont: (page 1225)
– convertFont: (page 1220)

Related Sample Code
CoreTextArcCocoa
NewsReader
ToolbarSample

Declared In
NSFontManager.h

convertFont:toNotHaveTrait:
Returns an NSFont object with the same traits as the given font, except for the traits in the given font trait
mask, which are removed.

- (NSFont *)convertFont:(NSFont *)aFont toNotHaveTrait:(NSFontTraitMask)fontTraitMask

Parameters
aFont

The font whose traits are matched.

fontTraitMask
The mask for the traits to remove, created using the C bitwise OR operator to combine the traits
described in “Constants” (page 1241). Using NSUnboldFontMask or NSUnitalicFontMask removes
the bold or italic trait, respectively.

Return Value
A font with matching traits minus the given traits, or aFont if it can’t be converted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertFont:toHaveTrait: (page 1222)
– convertFont:toFace: (page 1221)
– convertFont:toFamily: (page 1222)
– convertFont:toSize: (page 1224)
– convertWeight:ofFont: (page 1225)

Instance Methods 1223
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

– convertFont: (page 1220)

Related Sample Code
CoreTextArcCocoa
ToolbarSample

Declared In
NSFontManager.h

convertFont:toSize:
Returns an NSFont object whose traits are the same as those of the given font, except for the size, which is
changed to the given size.

- (NSFont *)convertFont:(NSFont *)aFont toSize:(CGFloat)size

Parameters
aFont

The font whose traits are matched.

size
The new font size.

Return Value
A font with matching traits except in the new size, or aFont if it can’t be converted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertFont:toFace: (page 1221)
– convertFont:toFamily: (page 1222)
– convertFont:toHaveTrait: (page 1222)
– convertFont:toNotHaveTrait: (page 1223)
– convertWeight:ofFont: (page 1225)
– convertFont: (page 1220)

Related Sample Code
ToolbarSample

Declared In
NSFontManager.h

convertFontTraits:
Converts font traits to a new traits mask value.

- (NSFontTraitMask)convertFontTraits:(NSFontTraitMask)traits

Parameters
traits

The current font traits.

1224 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Return Value
The new traits mask value to be used by convertFont: (page 1220).

Discussion
This method is intended to be invoked to query the font traits while the action message (usually
changeFont: (page 1239)) is being invoked when the current font action is either
NSAddTraitFontAction (page 1244) or NSRemoveTraitFontAction (page 1244).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSFontManager.h

convertWeight:ofFont:
Returns an NSFont object whose weight is greater or lesser than that of the given font, if possible.

- (NSFont *)convertWeight:(BOOL)increaseFlag ofFont:(NSFont *)aFont

Parameters
increaseFlag

If YES, a heavier font is returned; if it’s NO, a lighter font is returned.

aFont
The font whose weight is increased or decreased.

Return Value
A font with matching traits except for the new weight, or aFont if it can’t be converted.

Discussion
Weights are graded along the following scale. The list on the left gives Apple’s terminology, and the list on
the right gives the ISO equivalents. Names on the same line are treated as identical:

ISO EquivalentApple Terminology

1. ultralight

W1. ultralight2. thin

W2. extralight3. light, extralight

W3. light4. book

W4. semilight5. regular, plain, display, roman

W5. medium6. medium

7. demi, demibold

W6. semibold8. semi, semibold

W7. bold9. bold

W8. extrabold10. extra, extrabold

Instance Methods 1225
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

ISO EquivalentApple Terminology

11. heavy, heavyface

W9. ultrabold12. black, super

13. ultra, ultrablack, fat

14. extrablack, obese, nord

The NSFontManager implementation of this method refuses to convert a font’s weight if it can’t maintain
all other traits, such as italic and condensed. You might wish to override this method to allow a looser
interpretation of weight conversion.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertFont:toFace: (page 1221)
– convertFont:toFamily: (page 1222)
– convertFont:toHaveTrait: (page 1222)
– convertFont:toNotHaveTrait: (page 1223)
– convertFont:toSize: (page 1224)
– convertFont: (page 1220)

Declared In
NSFontManager.h

currentFontAction
Returns the current font conversion action.

- (NSFontAction)currentFontAction

Return Value
The current font action used by the convertFont: (page 1220) method.

Discussion
This method is intended to be invoked to query the font conversion action while the action message (usually
changeFont: (page 1239)) is being invoked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSFontManager.h

delegate
Returns the receiver’s delegate.

1226 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

- (id)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 1235)

Declared In
NSFontManager.h

fontDescriptorsInCollection:
Returns an array of the font descriptors in the collection specified by the given collection name.

- (NSArray *)fontDescriptorsInCollection:(NSString *)collectionName

Parameters
collectionName

The font collection for which to return descriptors.

Return Value
The font descriptors.

Availability
Available in Mac OS X v10.3 and later.

See Also
– collectionNames (page 1219)

Declared In
NSFontManager.h

fontMenu:
Returns the menu that’s hooked up to the font conversion system, optionally creating it if necessary.

- (NSMenu *)fontMenu:(BOOL)createFlag

Parameters
createFlag

If YES, the menu object is created if necessary; if NO, it is not.

Return Value
The font conversion system menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFontMenu: (page 1236)

Instance Methods 1227
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Declared In
NSFontManager.h

fontNamed:hasTraits:
Indicates whether the given font has all the specified traits.

- (BOOL)fontNamed:(NSString *)typeface hasTraits:(NSFontTraitMask)fontTraitMask

Parameters
typeface

The name of the font.

fontTraitMask
The font traits to test, specified by combining the font trait mask values described in “Constants” (page
1241) using the C bitwise OR operator.

Return Value
YES if the font named typeface has all the traits specified in fontTraitMask; NO if it doesn’t.

Discussion
Using NSUnboldFontMask returns YES if the font is not bold, NO otherwise. Using NSUnitalicFontMask
returns YES if the font is not italic, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFontManager.h

fontPanel:
Returns the application’s shared Font panel object, optionally creating it if necessary.

- (NSFontPanel *)fontPanel:(BOOL)createFlag

Parameters
createFlag

If YES, the Font panel object is created if necessary; if NO, it is not.

Return Value
The application’s shared Font panel object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ sharedFontPanel (page 1248) (NSFontPanel)
+ sharedFontPanelExists (page 1249) (NSFontPanel)
+ setFontPanelFactory: (page 1214)

Declared In
NSFontManager.h

1228 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

fontWithFamily:traits:weight:size:
Attempts to load a font with the specified characteristics.

- (NSFont *)fontWithFamily:(NSString *)family traits:(NSFontTraitMask)fontTraitMask
weight:(NSInteger)weight size:(CGFloat)size

Parameters
family

The generic name of the desired font, such as Times or Helvetica.

fontTraitMask
The font traits, specified by combining the font trait mask values described in “Constants” (page 1241)
using the C bitwise OR operator. Using NSUnboldFontMask or NSUnitalicFontMask loads a font
that doesn’t have either the bold or italic trait, respectively.

weight
A hint for the weight desired, on a scale of 0 to 15: a value of 5 indicates a normal or book weight,
and 9 or more a bold or heavier weight. The weight is ignored if fontTraitMask includes
NSBoldFontMask.

size
The point size of the desired font.

Return Value
A font with the specified characteristics if successful, or nil if not.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFontManager.h

isEnabled
Indicates whether the font conversion system’s user interface items (the Font panel and Font menu items)
are enabled.

- (BOOL)isEnabled

Return Value
YES if the font conversion system’s user interface items (the Font panel and Font menu items) are enabled;
NO if they’re not.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEnabled (page 1250) (NSFontPanel)
– isEnabled (NSMenuItem)
– setEnabled: (page 1236)

Declared In
NSFontManager.h

Instance Methods 1229
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

isMultiple
Indicates whether the last font selection recorded has multiple fonts.

- (BOOL)isMultiple

Return Value
YES if the last font selection recorded has multiple fonts; NO if it’s a single font.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectedFont:isMultiple: (page 1237)
– selectedFont (page 1234)

Declared In
NSFontManager.h

localizedNameForFamily:face:
Returns a localized string with the name of the specified font family and face, if one exists.

- (NSString *)localizedNameForFamily:(NSString *)family face:(NSString *)face

Parameters
family

The font family, for example, @"Times".

face
The font face, for example, @"Roman".

Return Value
A localized string with the name of the specified font family and face, or, if face is nil, the font family only.

Discussion
The user’s locale is determined from the user’s NSLanguages default setting. The method also loads the
localized strings for the font, if they aren’t already loaded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFontManager.h

modifyFont:
This action method causes the receiver to send its action message up the responder chain.

- (void)modifyFont:(id)sender

Parameters
sender

The control that sent the message.

1230 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Discussion
By default, the action message is changeFont: (page 1239).

When a responder replies by providing a font to convert in a convertFont: (page 1220) message, the receiver
converts the font in the manner specified by sender. The conversion is determined by sending a tagmessage
to sender and invoking a corresponding method:

Method UsedSender’s Tag

None; the font is returned unchanged.NSNoFontChangeAction

The Font panel’s panelConvertFont: (page 1250).NSViaPanelFontAction

convertFont:toHaveTrait: (page 1222).NSAddTraitFontAction

convertFont:toNotHaveTrait: (page 1223).NSRemoveTraitFontAction

convertFont:toSize: (page 1224).NSSizeUpFontAction

convertFont:toSize: (page 1224).NSSizeDownFontAction

convertWeight:ofFont: (page 1225).NSHeavierFontAction

convertWeight:ofFont: (page 1225).NSLighterFontAction

Availability
Available in Mac OS X v10.0 and later.

See Also
– addFontTrait: (page 1216)
– removeFontTrait: (page 1233)
– modifyFontViaPanel: (page 1231)

Declared In
NSFontManager.h

modifyFontViaPanel:
This action method causes the receiver to send its action message up the responder chain.

- (void)modifyFontViaPanel:(id)sender

Parameters
sender

The control that sent the message.

Discussion
By default, the action message is changeFont: (page 1239).

When a responder replies by providing a font to convert in a convertFont: (page 1220) message, the receiver
converts the font by sending a panelConvertFont: (page 1250) message to the Font panel. The panel in
turn may sendconvertFont:toFamily: (page 1222),convertFont:toHaveTrait: (page 1222), and other
specific conversion methods to make its change.

Instance Methods 1231
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– addFontTrait: (page 1216)
– removeFontTrait: (page 1233)
– modifyFont: (page 1230)

Declared In
NSFontManager.h

orderFrontFontPanel:
This action method opens the Font panel by sending it an orderFront: (page 3351) message, creating the
Font panel if necessary.

- (void)orderFrontFontPanel:(id)sender

Parameters
sender

The control that sent the message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fontPanel: (page 1228)
+ setFontPanelFactory: (page 1214)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSFontManager.h

orderFrontStylesPanel:
This action method opens the Font styles panel.

- (void)orderFrontStylesPanel:(id)sender

Parameters
sender

The control that sent the message.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSFontManager.h

1232 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

removeCollection:
Removes the specified font collection.

- (BOOL)removeCollection:(NSString *)collectionName

Parameters
collectionName

The collection to remove.

Return Value
YES if the font collection was successfully removed; otherwise, NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– addCollection:options: (page 1216)

Declared In
NSFontManager.h

removeFontDescriptor:fromCollection:
Removes the specified font descriptor from the specified collection.

- (void)removeFontDescriptor:(NSFontDescriptor *)descriptor fromCollection:(NSString
 *)collection

Parameters
descriptor

The font descriptor to remove.

collection
The font collection from which to remove the descriptor.

Availability
Available in Mac OS X v10.3 and later.

See Also
– addFontDescriptors:toCollection: (page 1216)

Declared In
NSFontManager.h

removeFontTrait:
This action method causes the receiver to send its action message up the responder chain.

- (void)removeFontTrait:(id)sender

Parameters
sender

The control that sent the message.

Instance Methods 1233
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Discussion
By default, the action message is changeFont: (page 1239).

When a responder replies by providing a font to convert in a convertFont: (page 1220) message, the receiver
converts the font by removing the trait specified by sender. This trait is determined by sending a tag
message to sender and interpreting it as a font trait mask for a convertFont:toNotHaveTrait: (page
1223) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addFontTrait: (page 1216)
– modifyFont: (page 1230)
– modifyFontViaPanel: (page 1231)

Declared In
NSFontManager.h

selectedFont
Returns the last font recorded.

- (NSFont *)selectedFont

Return Value
The last font recorded with a setSelectedFont:isMultiple: (page 1237) message

Discussion
While fonts are being converted in response to a convertFont: (page 1220) message, you can determine
the font selected in the Font panel like this:

NSFontManager *fontManager = [NSFontManager sharedFontManager];
panelFont = [fontManager convertFont:[fontManager selectedFont]];

Availability
Available in Mac OS X v10.0 and later.

See Also
– isMultiple (page 1230)

Related Sample Code
QTKitTimeCode

Declared In
NSFontManager.h

sendAction
Sends the receiver’s action message up the responder chain, initiating a font change for whatever conversion
and trait to change were last requested.

- (BOOL)sendAction

1234 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Return Value
YES if some object handled the changeFont: (page 1239) message; NO if the message went unheard.

Discussion
By default, the receiver’s action message is changeFont: (page 1239).

This method is used internally by the font conversion system. You should never need to invoke it directly.
Instead, use the action methods such asaddFontTrait: (page 1216) or modifyFontViaPanel: (page 1231).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAction: (page 1235)

Declared In
NSFontManager.h

setAction:
Sets the action that’s sent to the first responder, when the user selects a new font from the Font panel or
chooses a command from the Font menu, to the given selector.

- (void)setAction:(SEL)aSelector

Parameters
aSelector

The selector to set.

Discussion
The default action is changeFont: (page 1239). You should rarely need to change this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 1215)

Declared In
NSFontManager.h

setDelegate:
Sets the receiver’s delegate to the given object.

- (void)setDelegate:(id)anObject

Parameters
anObject

The new delegate.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1235
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

See Also
– delegate (page 1226)

Related Sample Code
PDF Annotation Editor

Declared In
NSFontManager.h

setEnabled:
Controls whether the font conversion system’s user interface items (the Font panel and Font menu items)
are enabled.

- (void)setEnabled:(BOOL)flag

Parameters
flag

If YES, they’re enabled; if NO, they’re disabled.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEnabled: (page 1251) (NSFontPanel)
– isEnabled (page 1229)

Declared In
NSFontManager.h

setFontMenu:
Records the given menu as the application’s Font menu.

- (void)setFontMenu:(NSMenu *)aMenu

Parameters
aMenu

The new Font menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fontMenu: (page 1227)

Declared In
NSFontManager.h

setSelectedAttributes:isMultiple:
Informs the paragraph and character formatting panels when text in a selection has changed attributes.

1236 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

- (void)setSelectedAttributes:(NSDictionary *)attributes isMultiple:(BOOL)flag

Parameters
attributes

The new attributes.

flag
If YES, informs the panel that multiple fonts or attributes are enclosed within the selection.

Discussion
This method is used primarily by NSTextView.

Availability
Available in Mac OS X v10.3 and later.

See Also
– convertAttributes: (page 1220)

Declared In
NSFontManager.h

setSelectedFont:isMultiple:
Records the given font as the currently selected font and updates the Font panel to reflect this.

- (void)setSelectedFont:(NSFont *)aFont isMultiple:(BOOL)flag

Parameters
aFont

The font to set as selected.

flag
If YES, the Font panel indicates that more than one font is contained in the selection; if NO, it does
not.

Discussion
An object that manipulates fonts should invoke this method whenever it becomes first responder and
whenever its selection changes. It shouldn’t invoke this method in the process of handling a
changeFont: (page 1239) message, as this causes the font manager to lose the information necessary to
effect the change. After all fonts have been converted, the font manager itself records the new selected font.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedFont (page 1234)
– isMultiple (page 1230)

Related Sample Code
QTKitTimeCode
Quartz Composer WWDC 2005 TextEdit

Declared In
NSFontManager.h

Instance Methods 1237
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

setTarget:
Sets the target for the sendAction (page 1234) method.

- (void)setTarget:(id)aTarget

Parameters
aTarget

The target to set.

Availability
Available in Mac OS X v10.5 and later.

See Also
– target (page 1238)

Related Sample Code
CoreTextArcCocoa

Declared In
NSFontManager.h

target
Returns the target for the sendAction (page 1234) method.

- (id)target

Return Value
The target for the receiver’s sendAction (page 1234) method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setTarget: (page 1238)

Declared In
NSFontManager.h

traitsOfFont:
Returns the traits of the given font.

- (NSFontTraitMask)traitsOfFont:(NSFont *)aFont

Parameters
aFont

The font whose traits are returned.

Return Value
The font traits, returned as a mask created by combining values listed in “Constants” (page 1241) with the C
bitwise OR operator.

1238 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitTimeCode

Declared In
NSFontManager.h

weightOfFont:
Returns a rough numeric measure the weight of the given font.

- (NSInteger)weightOfFont:(NSFont *)aFont

Parameters
aFont

The font whose weight is returned.

Return Value
A rough numeric measure the weight of the given font, where 0 indicates the lightest possible weight, 5
indicates a normal or book weight, and 9 or more indicates a bold or heavier weight.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFontManager.h

Delegate Methods

changeFont:
Informs responders of a font change.

- (void)changeFont:(id)sender

Parameters
sender

The object that sent the message.

Discussion
Generally this change is because the user changed the font either in the selection of a rich text field or in a
whole plain text field. Any object that contains a font the user can change must respond to the changeFont:
message by sending a convertFont: (page 1220) message back to sender (an NSFontManager object) for
each font in the selection. For more information, see “Responding to Font Changes”.

Be aware that selectedFont (page 1234) at this point may return unpredictable results. The font returned
from this method may not be the last font selected, or there may be multiple fonts selected at the time
changeFont: is called. The use of selectedFont from within changeFont: is strongly discouraged.

Delegate Methods 1239
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– addFontTrait: (page 1216)
– convertFont:toHaveTrait: (page 1222)
– convertFont:toFace: (page 1221)
– convertFont:toFamily: (page 1222)
– convertFont:toNotHaveTrait: (page 1223)
– convertFont:toSize: (page 1224)
– convertWeight:ofFont: (page 1225)
– convertFont: (page 1220)
– removeFontTrait: (page 1233)
– modifyFontViaPanel: (page 1231)
– modifyFont: (page 1230)

Declared In
NSFontManager.h

fontManager:willIncludeFont:
Requests permission from the Font panel delegate to display the given font name in the Font panel.

- (BOOL)fontManager:(id)theFontManager willIncludeFont:(NSString *)fontName

Parameters
theFontManager

The font manager making the request.

fontName
The full PostScript name of the font to display, such as Helvetica-BoldOblique or Helvetica-Narrow-Bold.

Return Value
If the Font panel delegate returns YES, fontName is listed; if the delegate returns NO, it isn’t.

Discussion
In Mac OS X versions 10.2 and earlier, this method is invoked repeatedly as necessary whenever the Font
panel needs updating, such as when the Font panel is first loaded, and when the user selects a family name
to see which typefaces in that family are available. Your implementation should execute fairly quickly to
ensure the responsiveness of the Font panel.

Important: This delegate method is not called in Mac OS X versions 10.3 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFontManager.h

1240 Delegate Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Constants

Font Collection Mask
This constant specifies options accepted by addCollection:options: (page 1216).

enum {
 NSFontCollectionApplicationOnlyMask = 1 << 0
};

Constants
NSFontCollectionApplicationOnlyMask

Makes the collection available only to the application. This option is not yet implemented.

Available in Mac OS X v10.3 and later.

Declared in NSFontManager.h.

Declared In
NSFontManager.h

NSFontTraitMask
Mask of traits assigned to a font, assigned using the values in Font traits (page 1241).

typedef unsigned int NSFontTraitMask;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFontManager.h

Font traits
Font traits defined and supported by NSFontManager.

Constants 1241
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

enum {
 NSItalicFontMask = 0x00000001,
 NSBoldFontMask = 0x00000002,
 NSUnboldFontMask = 0x00000004,
 NSNonStandardCharacterSetFontMask = 0x00000008,
 NSNarrowFontMask = 0x00000010,
 NSExpandedFontMask = 0x00000020,
 NSCondensedFontMask = 0x00000040,
 NSSmallCapsFontMask = 0x00000080,
 NSPosterFontMask = 0x00000100,
 NSCompressedFontMask = 0x00000200,
 NSFixedPitchFontMask = 0x00000400,
 NSUnitalicFontMask = 0x01000000
};

Constants
NSItalicFontMask

A mask that specifies an italic font.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSBoldFontMask
A mask that specifies a bold font.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSUnboldFontMask
A mask that specifies a font that is not bold.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSNonStandardCharacterSetFontMask
A mask that specifies a font that uses a non-standard character set.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSNarrowFontMask
A mask that specifies a narrow font.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSExpandedFontMask
A mask that specifies an expanded font.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSCondensedFontMask
A mask that specifies a condensed font.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

1242 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

NSSmallCapsFontMask
A mask that specifies a small-caps font.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSPosterFontMask
A mask that specifies a poster-style font.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSCompressedFontMask
A mask that specifies a compressed font.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSFixedPitchFontMask
A mask that specifies a fixed pitch font.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSUnitalicFontMask
A mask that specifies a font that is not italic.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

Discussion
NSFontManager categorizes fonts according to a small set of traits. You can convert fonts by adding and
removing individual traits, and you can get a font with a specific combination of traits.

These pairs of traits are mutually exclusive:

NSCondensedFontMask and NSExpandedFontMask

NSBoldFontMask and NSUnboldFontMask

NSItalicFontMask and NSUnitalicFontMask

Declared In
NSFontManager.h

NSFontAction
These constants specify what action modifyFont: (page 1230) will take.

Constants 1243
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

typedef enum _NSFontAction {
 NSNoFontChangeAction = 0,
 NSViaPanelFontAction = 1,
 NSAddTraitFontAction = 2,
 NSSizeUpFontAction = 3,
 NSSizeDownFontAction = 4,
 NSHeavierFontAction = 5,
 NSLighterFontAction = 6,
 NSRemoveTraitFontAction = 7
} NSFontAction;

Constants
NSNoFontChangeAction

No action; the font is returned unchanged.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSViaPanelFontAction
Converts the font according to the NSFontPanel method panelConvertFont:.

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSAddTraitFontAction
Converts the font to have an additional trait using convertFont:toHaveTrait: (page 1222).

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSSizeUpFontAction
Converts the font to a larger size using convertFont:toSize: (page 1224).

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSSizeDownFontAction
Converts the font to a smaller size using convertFont:toSize: (page 1224).

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSHeavierFontAction
Converts the font to a heavier weight using convertWeight:ofFont: (page 1225).

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSLighterFontAction
Converts the font to a lighter weight using convertWeight:ofFont: (page 1225).

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

NSRemoveTraitFontAction
Converts the font to remove a trait using convertFont:toNotHaveTrait: (page 1223).

Available in Mac OS X v10.0 and later.

Declared in NSFontManager.h.

Availability
Available in Mac OS X v10.0 and later.

1244 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Declared In
NSFontManager.h

Constants 1245
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

1246 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 52

NSFontManager Class Reference

Inherits from NSPanel : NSWindow : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSWindow)
NSAnimatablePropertyContainer (NSWindow)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSFontPanel.h

Companion guide Font Panel

Related sample code Aperture Edit Plugin - Borders & Titles
CoreAnimationText
CoreTextArcCocoa
PDF Annotation Editor
QTKitTimeCode

Overview

The NSFontPanel class implements the Font panel—a user interface object that displays a list of available
fonts, letting the user preview them and change the font used to display text. The actual changes are made
through conversion messages sent to the shared NSFontManager instance. There’s only one Font panel for
each application.

Tasks

Getting the Font Panel

+ sharedFontPanel (page 1248)
Returns the single NSFontPanel instance for the application, creating it if necessary.

+ sharedFontPanelExists (page 1249)
Returns YES if the shared Font panel has been created, NO if it hasn’t.

Overview 1247
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 53

NSFontPanel Class Reference

Enabling Font Changes

– isEnabled (page 1250)
Indicates whether the receiver’s Set button is enabled.

– reloadDefaultFontFamilies (page 1250)
Triggers a reload to the default state, so that the delegate is called.

– setEnabled: (page 1251) Available in Mac OS X v10.0 through Mac OS X v10.5
Specifies whether the receiver’s Set button is enabled.

Updating the Font Panel

– setPanelFont:isMultiple: (page 1252)
Sets the selected font in the receiver to the specified font.

Converting Fonts

– panelConvertFont: (page 1250)
Converts the specified font using the settings in the receiver, with the aid of the shared
NSFontManager if necessary.

Working in Modal Loops

– worksWhenModal (page 1252)
Indicates whether the receiver allows fonts to be changed in modal windows and panels.

Setting an Accessory View

– setAccessoryView: (page 1251)
Establishes the specified view as the receiver’s accessory view, allowing you to add custom controls
to your application’s Font panel without having to create a subclass.

– accessoryView (page 1249)
Returns the receiver’s accessory view.

Class Methods

sharedFontPanel
Returns the single NSFontPanel instance for the application, creating it if necessary.

+ (NSFontPanel *)sharedFontPanel

Return Value
The NSFontPanel instance for the application.

1248 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 53

NSFontPanel Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ sharedFontPanelExists (page 1249)
+ setFontPanelFactory: (page 1214) (NSFontManager)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CoreAnimationText
CoreTextArcCocoa
PDF Annotation Editor

Declared In
NSFontPanel.h

sharedFontPanelExists
Returns YES if the shared Font panel has been created, NO if it hasn’t.

+ (BOOL)sharedFontPanelExists

Availability
Available in Mac OS X v10.0 and later.

See Also
+ sharedFontPanel (page 1248)

Declared In
NSFontPanel.h

Instance Methods

accessoryView
Returns the receiver’s accessory view.

- (NSView *)accessoryView

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAccessoryView: (page 1251)

Declared In
NSFontPanel.h

Instance Methods 1249
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 53

NSFontPanel Class Reference

isEnabled
Indicates whether the receiver’s Set button is enabled.

- (BOOL)isEnabled

Return Value
YES if the receiver’s Set button is enabled; NO if it isn’t.

Discussion
The receiver continues to reflect the font of the selection for cooperating text objects regardless of this
setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEnabled: (page 1251)

Declared In
NSFontPanel.h

panelConvertFont:
Converts the specified font using the settings in the receiver, with the aid of the shared NSFontManager if
necessary.

- (NSFont *)panelConvertFont:(NSFont *)aFont

Parameters
aFont

The font to be converted.

Return Value
The converted font, or aFont itself if it can’t be converted.

Discussion
For example, if aFont is Helvetica Oblique 12.0 point and the user has selected the Times font family (and
nothing else) in the Font panel, the font returned is Times Italic 12.0 point.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertFont: (page 1220) (NSFontManager)

Declared In
NSFontPanel.h

reloadDefaultFontFamilies
Triggers a reload to the default state, so that the delegate is called.

- (void)reloadDefaultFontFamilies

1250 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 53

NSFontPanel Class Reference

Discussion
This reloading provides the delegate opportunity to scrutinize the default list of fonts to be displayed in the
panel.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFontPanel.h

setAccessoryView:
Establishes the specified view as the receiver’s accessory view, allowing you to add custom controls to your
application’s Font panel without having to create a subclass.

- (void)setAccessoryView:(NSView *)aView

Parameters
aView

The view to set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– accessoryView (page 1249)

Declared In
NSFontPanel.h

setEnabled:
Specifies whether the receiver’s Set button is enabled.

- (void)setEnabled:(BOOL)flag

Parameters
flag

If YES the Set button is enabled; if NO, it’s disabled.

Discussion
The receiver continues to reflect the font of the selection for cooperating text objects regardless of this
setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEnabled (page 1250)

Declared In
NSFontPanel.h

Instance Methods 1251
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 53

NSFontPanel Class Reference

setPanelFont:isMultiple:
Sets the selected font in the receiver to the specified font.

- (void)setPanelFont:(NSFont *)aFont isMultiple:(BOOL)flag

Parameters
aFont

The font to be selected.

flag
If NO, selects the specified font; otherwise selects no font and displays a message in the preview area
indicating that multiple fonts are selected.

Discussion
You normally don’t use this method directly; instead, you send setSelectedFont:isMultiple: (page
1237) to the shared NSFontManager, which in turn invokes this method.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CoreTextArcCocoa
PDF Annotation Editor

Declared In
NSFontPanel.h

worksWhenModal
Indicates whether the receiver allows fonts to be changed in modal windows and panels.

- (BOOL)worksWhenModal

Return Value
YES, regardless of the setting established using the NSPanel method setWorksWhenModal: (page 1862).

Availability
Available in Mac OS X v10.0 and later.

See Also
– worksWhenModal (page 3409) (NSWindow)
– worksWhenModal (page 1862) (NSPanel)

Declared In
NSFontPanel.h

1252 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 53

NSFontPanel Class Reference

Constants

Tags of Views in the FontPanel
These constants are obsolete and should not be used. (Deprecated. Use the method and constants described
in NSFontPanelValidation Protocol Reference instead.)

enum {
 NSFPPreviewButton = 131,
 NSFPRevertButton = 130,
 NSFPSetButton = 132,
 NSFPPreviewField = 128,
 NSFPSizeField = 129,
 NSFPSizeTitle = 133,
 NSFPCurrentField = 134
};

Constants
NSFPPreviewButton

Show the Preview button.

Available in Mac OS X v10.0 and later.

Declared in NSFontPanel.h.

NSFPRevertButton
Show the Revert button.

Available in Mac OS X v10.0 and later.

Declared in NSFontPanel.h.

NSFPSetButton
Show the Set button.

Available in Mac OS X v10.0 and later.

Declared in NSFontPanel.h.

NSFPPreviewField
Show the Preview field.

Available in Mac OS X v10.0 and later.

Declared in NSFontPanel.h.

NSFPSizeField
Show the Size field.

Available in Mac OS X v10.0 and later.

Declared in NSFontPanel.h.

NSFPSizeTitle
Show the Size title.

Available in Mac OS X v10.0 and later.

Declared in NSFontPanel.h.

NSFPCurrentField
Show the Current field.

Available in Mac OS X v10.0 and later.

Declared in NSFontPanel.h.

Constants 1253
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 53

NSFontPanel Class Reference

1254 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 53

NSFontPanel Class Reference

Inherits from NSMatrix : NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSMatrix)
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSForm.h

Companion guides Forms
Matrix Programming Guide

Related sample code SimpleComboBox
SourceView

Overview

An NSForm object is a vertical matrix of NSFormCell objects. Here’s an example:

An NSForm object uses NSFormCell to implement its user interface.

Tasks

Adding and Removing Entries

– addEntry: (page 1257)
Adds a new entry to the end of the receiver and gives it the specified title.

Overview 1255
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 54

NSForm Class Reference

– insertEntry:atIndex: (page 1259)
Inserts an entry with the specified title into the receiver.

– removeEntryAtIndex: (page 1259)
Removes and releases the entry at the specified index.

Changing the Appearance of All the Entries

– setBezeled: (page 1260)
Sets whether the receiver's entries should display a bezel around their editable text.

– setBordered: (page 1260)
Sets whether the receiver's entries should display a border around their editable text fields.

– setEntryWidth: (page 1261)
Sets the width of all the entries in the receiver.

– setFrameSize: (page 1261)
Sets the size of the receiver’s frame size to the specified value.

– setInterlineSpacing: (page 1262)
Sets the spacing between entries

– setTitleAlignment: (page 1263)
Sets the alignment for all of the entry titles.

– setTitleBaseWritingDirection: (page 1263)
Sets the writing direction for the title of every control embedded in the form.

– setTextAlignment: (page 1262)
Sets the alignment for all of the receiver’s editable text.

– setTextBaseWritingDirection: (page 1262)
Sets the writing direction for the text content of every control embedded in the form.

– setTitleFont: (page 1264)
Sets the font for all of the entry titles.

– setTextFont: (page 1263)
Sets the font for all of the receiver’s editable text fields

Getting Cells and Indices

– indexOfCellWithTag: (page 1258)
Returns the index of the entry whose tag is tag.

– indexOfSelectedItem (page 1259)
Returns the index of the selected entry.

– cellAtIndex: (page 1257)
Returns the entry at the specified index.

Displaying a Cell

– drawCellAtIndex: (page 1258)
Displays the entry at the specified index.

1256 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 54

NSForm Class Reference

Editing Text

– selectTextAtIndex: (page 1260)
Selects the entry at the specified index.

Instance Methods

addEntry:
Adds a new entry to the end of the receiver and gives it the specified title.

- (NSFormCell *)addEntry:(NSString *)title

Parameters
title

The title for the new form entry.

Return Value
The form cell object that was created for the entry.

Discussion
The new entry has no tag, target, or action, but is enabled and editable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertEntry:atIndex: (page 1259)
– setEditable: (page 584) (NSCell)
– setTag: (page 69) (NSActionCell)
– setTarget: (page 70) (NSActionCell)
– setAction: (page 65) (NSActionCell)
– setEnabled: (page 67) (NSActionCell)

Declared In
NSForm.h

cellAtIndex:
Returns the entry at the specified index.

- (id)cellAtIndex:(NSInteger)entryIndex

Parameters
entryIndex

The index of the desired entry.

Return Value
The form cell object at the specified index.

Instance Methods 1257
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 54

NSForm Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfCellWithTag: (page 1258)
– indexOfSelectedItem (page 1259)

Declared In
NSForm.h

drawCellAtIndex:
Displays the entry at the specified index.

- (void)drawCellAtIndex:(NSInteger)entryIndex

Parameters
entryIndex

The index of the entry to draw.

Discussion
Because this method is called automatically whenever a cell needs drawing, you never need to invoke it
explicitly. It is included in the API so you can override it if you subclass NSFormCell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfCellWithTag: (page 1258)
– indexOfSelectedItem (page 1259)

Declared In
NSForm.h

indexOfCellWithTag:
Returns the index of the entry whose tag is tag.

- (NSInteger)indexOfCellWithTag:(NSInteger)tag

Parameters
tag

The tag of the desired entry.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tag (page 605) (NSCell)

Declared In
NSForm.h

1258 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 54

NSForm Class Reference

indexOfSelectedItem
Returns the index of the selected entry.

- (NSInteger)indexOfSelectedItem

Return Value
The index of the selected entry, or -1 if no entry is selected.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSForm.h

insertEntry:atIndex:
Inserts an entry with the specified title into the receiver.

- (NSFormCell *)insertEntry:(NSString *)title atIndex:(NSInteger)entryIndex

Parameters
title

The title for the new form entry.

entryIndex
The zero-based index at which to insert the entry.

Return Value
The form cell object that was created for the entry.

Discussion
The new entry has no tag, target, or action, but is enabled and editable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addEntry: (page 1257)
– removeEntryAtIndex: (page 1259)

Declared In
NSForm.h

removeEntryAtIndex:
Removes and releases the entry at the specified index.

- (void)removeEntryAtIndex:(NSInteger)entryIndex

Parameters
entryIndex

The zero-based index identifying the desired entry.

Instance Methods 1259
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 54

NSForm Class Reference

Discussion
If the specified index is invalid, this method does nothing.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSForm.h

selectTextAtIndex:
Selects the entry at the specified index.

- (void)selectTextAtIndex:(NSInteger)entryIndex

Parameters
entryIndex

The index of the entry to select. If the specified index is invalid, this method does nothing.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSForm.h

setBezeled:
Sets whether the receiver's entries should display a bezel around their editable text.

- (void)setBezeled:(BOOL)flag

Parameters
flag

YES to display a bezel around all entries; otherwise, NO to show no bezel around all entries.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBordered: (page 1260)
– isBezeled (page 566) (NSCell)

Declared In
NSForm.h

setBordered:
Sets whether the receiver's entries should display a border around their editable text fields.

- (void)setBordered:(BOOL)flag

1260 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 54

NSForm Class Reference

Parameters
flag

YES to display a border around all entries; otherwise, NO to show no border around all entries.

Discussion
The border is drawn as a thin line around the editable text field. An entry can have a border or a bezel, but
not both.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBezeled: (page 1260)
– isBordered (page 566) (NSCell)

Declared In
NSForm.h

setEntryWidth:
Sets the width of all the entries in the receiver.

- (void)setEntryWidth:(CGFloat)width

Parameters
width

The width of all entries, measured in points in the user coordinate space. This value represents the
width of both the title and the text field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSForm.h

setFrameSize:
Sets the size of the receiver’s frame size to the specified value.

- (void)setFrameSize:(NSSize)newSize

Parameters
newSize

The new size of the form.

Discussion
The width of NSFormCell objects always match the width of their encompassing NSForm object. The cell
width is always changed to match the view regardless of the value returned by autosizesCells (page 1556).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSForm.h

Instance Methods 1261
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 54

NSForm Class Reference

setInterlineSpacing:
Sets the spacing between entries

- (void)setInterlineSpacing:(CGFloat)spacing

Parameters
spacing

The spacing between entries, measured in points in the user coordinate space.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSForm.h

setTextAlignment:
Sets the alignment for all of the receiver’s editable text.

- (void)setTextAlignment:(NSInteger)alignment

Parameters
alignment

The alignment can be one of the following constants: NSRightTextAlignment,
NSCenterTextAlignment, or NSLeftTextAlignment.

Discussion
The default alignment is NSLeftTextAlignment.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitleAlignment: (page 1263)

Declared In
NSForm.h

setTextBaseWritingDirection:
Sets the writing direction for the text content of every control embedded in the form.

- (void)setTextBaseWritingDirection:(NSWritingDirection)writingDirection

Parameters
writingDirection

This value can be one of the following constants: NSWritingDirectionNatural,
NSWritingDirectionLeftToRight, or NSWritingDirectionRightToLeft.

Availability
Available in Mac OS X v10.4 and later.

1262 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 54

NSForm Class Reference

See Also
– baseWritingDirection (page 815) (NSControl)

Declared In
NSForm.h

setTextFont:
Sets the font for all of the receiver’s editable text fields

- (void)setTextFont:(NSFont *)font

Parameters
font

The font to use for all editable text fields.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextFont: (page 1263)

Declared In
NSForm.h

setTitleAlignment:
Sets the alignment for all of the entry titles.

- (void)setTitleAlignment:(NSTextAlignment)alignment

Parameters
alignment

The alignment can be one of the following constants: NSRightTextAlignment,
NSCenterTextAlignment, or NSLeftTextAlignment.

Discussion
The default alignment is NSRightTextAlignment.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextAlignment: (page 1262)

Declared In
NSForm.h

setTitleBaseWritingDirection:
Sets the writing direction for the title of every control embedded in the form.

Instance Methods 1263
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 54

NSForm Class Reference

- (void)setTitleBaseWritingDirection:(NSWritingDirection)writingDirection

Parameters
writingDirection

This value can be one of the following constants: NSWritingDirectionNatural,
NSWritingDirectionLeftToRight, or NSWritingDirectionRightToLeft.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSForm.h

setTitleFont:
Sets the font for all of the entry titles.

- (void)setTitleFont:(NSFont *)font

Parameters
font

The font to use for all entry titles.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextFont: (page 1263)

Declared In
NSForm.h

1264 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 54

NSForm Class Reference

Inherits from NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSFormCell.h

Companion guide Forms

Related sample code DragNDropOutlineView
SimpleComboBox
TemperatureConverter

Overview

The NSFormCell class is used to implement text entry fields in a form. The left part of an NSFormCell object
contains a title. The right part contains an editable text entry field.

An NSFormCell object implements the user interface of an NSForm object.

Tasks

Initializing an NSFormCell

– initTextCell: (page 1267)
Returns an NSFormCell object initialized with the specified title string.

Asking About a Cell’s Appearance

– isOpaque (page 1268)
Returns a Boolean value indicating whether the title is empty and an opaque bezel is set.

Overview 1265
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 55

NSFormCell Class Reference

Asking About a Cell’s Title

– attributedTitle (page 1267)
Returns the title of the cell as an attributed string.

– title (page 1272)
Returns the receiver’s title.

– titleAlignment (page 1272)
Returns the alignment of the title.

– titleBaseWritingDirection (page 1273)
Returns the default writing direction used to render the form cell’s title.

– titleFont (page 1273)
Returns the font used to draw the receiver’s title.

– titleWidth (page 1273)
Returns the width of the title field.

– titleWidth: (page 1274)
Returns the width of the title field constrained to the specified size.

Changing the Cell’s Title

– setAttributedTitle: (page 1269)
Sets the receiver’s title using an attributed string.

– setTitle: (page 1270)
Sets the receiver’s title to the specified plain-text string.

– setTitleAlignment: (page 1270)
Sets the alignment of the title.

– setTitleBaseWritingDirection: (page 1271)
Sets the default writing direction used to render the form cell’s title.

– setTitleFont: (page 1271)
Sets the font of the receiver's title.

– setTitleWidth: (page 1271)
Sets the width of the title.

Setting a Keyboard Equivalent

– setTitleWithMnemonic: (page 1272)
Sets the cell title and mnemonic character.

Asking About Placeholder Values

– placeholderAttributedString (page 1268)
Returns the cell’s attributed placeholder string.

– placeholderString (page 1268)
Returns the cell’s plain text placeholder string.

1266 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 55

NSFormCell Class Reference

– setPlaceholderAttributedString: (page 1269)
Sets the attributed placeholder string for the cell.

– setPlaceholderString: (page 1269)
Sets the plain-text placeholder string for the cell.

Instance Methods

attributedTitle
Returns the title of the cell as an attributed string.

- (NSAttributedString *)attributedTitle

Return Value
The title of the cell.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormCell.h

initTextCell:
Returns an NSFormCell object initialized with the specified title string.

- (id)initTextCell:(NSString *)aString

Parameters
aString

The title for the new form cell object.

Return Value
An initialized NSFormCell object.

Discussion
The contents of the cell's editable text entry field are set to the empty string (@“”). The font for both title and
text is the user’s chosen system font in 12.0 point, and the text area is drawn with a bezel. This method is
the designated initializer for the NSFormCell class.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 1270)

Declared In
NSFormCell.h

Instance Methods 1267
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 55

NSFormCell Class Reference

isOpaque
Returns a Boolean value indicating whether the title is empty and an opaque bezel is set.

- (BOOL)isOpaque

Return Value
YES if the title is empty and an opaque bezel is set; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormCell.h

placeholderAttributedString
Returns the cell’s attributed placeholder string.

- (NSAttributedString *)placeholderAttributedString

Return Value
The attributed placeholder string, or nil if the cell has no attributed placeholder string.

Discussion
If this method returns nil, you can also call placeholderString to see if the cell has a plain text placeholder
string.

Availability
Available in Mac OS X v10.4 and later.

See Also
– placeholderString (page 1268)
– setPlaceholderAttributedString: (page 1269)

Declared In
NSFormCell.h

placeholderString
Returns the cell’s plain text placeholder string.

- (NSString *)placeholderString

Return Value
The plain-text placeholder string, or nil if the cell has no plain-text placeholder string.

Discussion
If this method returns nil, you can also call placeholderAttributedString to see if the cell has an
attributed placeholder string.

Availability
Available in Mac OS X v10.4 and later.

1268 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 55

NSFormCell Class Reference

See Also
– placeholderAttributedString (page 1268)
– setPlaceholderString: (page 1269)

Declared In
NSFormCell.h

setAttributedTitle:
Sets the receiver’s title using an attributed string.

- (void)setAttributedTitle:(NSAttributedString *)anAttributedString

Parameters
anAttributedString

The formatted title of the cell.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormCell.h

setPlaceholderAttributedString:
Sets the attributed placeholder string for the cell.

- (void)setPlaceholderAttributedString:(NSAttributedString *)string

Parameters
string

The attributed placeholder string.

Discussion
Note that invoking this method clears out any plain text string set by calling the
setPlaceholderString: (page 1269) method.

Availability
Available in Mac OS X v10.4 and later.

See Also
– placeholderAttributedString (page 1268)
– setPlaceholderString: (page 1269)

Declared In
NSFormCell.h

setPlaceholderString:
Sets the plain-text placeholder string for the cell.

- (void)setPlaceholderString:(NSString *)string

Instance Methods 1269
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 55

NSFormCell Class Reference

Parameters
string

The plain-text placeholder string.

Discussion
Note that invoking this method clears out any attributed string set by the
setPlaceholderAttributedString: (page 1269) method.

Availability
Available in Mac OS X v10.4 and later.

See Also
– placeholderString (page 1268)
– setPlaceholderAttributedString: (page 1269)

Declared In
NSFormCell.h

setTitle:
Sets the receiver’s title to the specified plain-text string.

- (void)setTitle:(NSString *)aString

Parameters
aString

The plain-text title of the cell.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormCell.h

setTitleAlignment:
Sets the alignment of the title.

- (void)setTitleAlignment:(NSTextAlignment)alignment

Parameters
alignment

The alignment can be one of the following constants: NSRightTextAlignment,
NSCenterTextAlignment, or NSLeftTextAlignment.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormCell.h

1270 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 55

NSFormCell Class Reference

setTitleBaseWritingDirection:
Sets the default writing direction used to render the form cell’s title.

- (void)setTitleBaseWritingDirection:(NSWritingDirection)writingDirection

Parameters
writingDirection

This value can be one of the following constants: NSWritingDirectionNatural,
NSWritingDirectionLeftToRight, or NSWritingDirectionRightToLeft.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTitleBaseWritingDirection: (page 1271)
– baseWritingDirection (page 547) (NSCell)

Declared In
NSFormCell.h

setTitleFont:
Sets the font of the receiver's title.

- (void)setTitleFont:(NSFont *)font

Parameters
font

The font to use.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormCell.h

setTitleWidth:
Sets the width of the title.

- (void)setTitleWidth:(CGFloat)width

Parameters
width

The width of the title, measured in points in the user coordinate space.

Discussion
You usually do not need to invoke this method. The Application Kit automatically sets the title width whenever
the title changes. If the automatic width doesn’t suit your needs, though, you can use this method to set the
width explicitly.

Instance Methods 1271
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 55

NSFormCell Class Reference

Once you have set the width this way, the Application Kit stops setting the width automatically; you must
invoke this method every time the title changes. If you want the Application Kit to resume automatic width
assignments, invoke this method with a negative width value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormCell.h

setTitleWithMnemonic:
Sets the cell title and mnemonic character.

- (void)setTitleWithMnemonic:(NSString *)titleWithAmpersand

Parameters
titleWithAmpersand

The title of the cell, including a mnemonic identifier. To specify the mnemonic character, place an
ampersand (&) in the front of the desired character.

Discussion
Mnemonics are not supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 1270)

Declared In
NSFormCell.h

title
Returns the receiver’s title.

- (NSString *)title

Return Value
The title of the cell. The default value is "Field:".

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormCell.h

titleAlignment
Returns the alignment of the title.

1272 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 55

NSFormCell Class Reference

- (NSTextAlignment)titleAlignment

Return Value
The alignment can be one of the following values: NSLeftTextAlignment, NSCenterTextAlignment, or
NSRightTextAlignment. The default alignment is NSRightTextAlignment.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormCell.h

titleBaseWritingDirection
Returns the default writing direction used to render the form cell’s title.

- (NSWritingDirection)titleBaseWritingDirection

Return Value
One of the following constants: NSWritingDirectionNatural, NSWritingDirectionLeftToRight, or
NSWritingDirectionRightToLeft.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTitleBaseWritingDirection: (page 1271)

Declared In
NSFormCell.h

titleFont
Returns the font used to draw the receiver’s title.

- (NSFont *)titleFont

Return Value
The font object used for the title.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFormCell.h

titleWidth
Returns the width of the title field.

- (CGFloat)titleWidth

Instance Methods 1273
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 55

NSFormCell Class Reference

Return Value
The width of the title field, measured in points in the user coordinate space.

Discussion
If you set the width using setTitleWidth: (page 1271), this method returns the value you set; otherwise, it
returns the width calculated automatically by the Application Kit.

Availability
Available in Mac OS X v10.0 and later.

See Also
– titleWidth: (page 1274)

Declared In
NSFormCell.h

titleWidth:
Returns the width of the title field constrained to the specified size.

- (CGFloat)titleWidth:(NSSize)aSize

Parameters
aSize

The maximum size of the field when calculated by the Application Kit.

Return Value
The width of the title field, measured in points in the user coordinate space.

Discussion
If you set the width using setTitleWidth: (page 1271), this method returns the value you set; otherwise,
the Application Kit calculates the width, constraining the field size to the specified value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– titleWidth (page 1273)

Declared In
NSFormCell.h

1274 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 55

NSFormCell Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSGlyphGenerator.h

Availability Available in Mac OS X v10.3 and later.

Companion guides Text System Overview
Text Layout Programming Guide

Overview

An NSGlyphGenerator object performs the initial, nominal glyph generation phase in the layout process.

The nominal glyph generation pass essentially generates one glyph per character; the typesetter may later
make substitutions in the glyph stream, for example, changing an acute accent glyph followed by an “e”
glyph into a single acute-accented “é” glyph.

NSGlyphGenerator communicates via the NSGlyphStorage protocol. An example of a class conforming
to the protocol is NSLayoutManager.

Tasks

Obtaining a Glyph Generator

+ sharedGlyphGenerator (page 1276)
Returns a shared instance of NSGlyphGenerator.

Generating Glyphs

– generateGlyphsForGlyphStorage:desiredNumberOfCharacters:glyphIndex:characterIndex: (page
1276)

Generates glyphs for the specified glyph storage object (NSLayoutManager by default).

Overview 1275
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 56

NSGlyphGenerator Class Reference

Class Methods

sharedGlyphGenerator
Returns a shared instance of NSGlyphGenerator.

+ (id)sharedGlyphGenerator

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGlyphGenerator.h

Instance Methods

generateGlyphsForGlyphStorage:desiredNumberOfCharacters:glyphIndex:
characterIndex:
Generates glyphs for the specified glyph storage object (NSLayoutManager by default).

- (void)generateGlyphsForGlyphStorage:(id < NSGlyphStorage >)glyphStorage
desiredNumberOfCharacters:(NSUInteger)nChars glyphIndex:(NSUInteger *)glyphIndex
characterIndex:(NSUInteger *)charIndex

Discussion
Generates glyphs for the glyph storage object specified by glyphStorage, beginning with the character at
charIndex and continuing for nChars characters. The glyphIndex specifies the index of the first glyph
generated.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGlyphGenerator.h

1276 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 56

NSGlyphGenerator Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSGlyphInfo.h

Availability Available in Mac OS X v10.2 and later.

Companion guide Font Handling

Overview

An NSGlyphInfo object represents a glyph attribute value (NSGlyphInfoAttributeName) in an attributed
string. NSGlyphInfo allows you to override a font’s specified mapping from Unicode to the glyph ID.
Overriding the mapping allows you to specify a variant glyph for a given character if the font contains multiple
variations for that character or to specify a glyph that doesn’t have a standard mapping (such as some ligature
glyphs).

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

Tasks

Creating an NSGlyphInfo Object

+ glyphInfoWithCharacterIdentifier:collection:baseString: (page 1278)
Instantiates and returns an NSGlyphInfo object using a character identifier and a character collection.

Overview 1277
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 57

NSGlyphInfo Class Reference

+ glyphInfoWithGlyph:forFont:baseString: (page 1278)
Instantiates and returns an NSGlyphInfo object using a glyph index and a specified font.

+ glyphInfoWithGlyphName:forFont:baseString: (page 1279)
Instantiates and returns an NSGlyphInfo object using a glyph name and a specified font.

Getting Information About an NSGlyphInfo Object

– characterIdentifier (page 1280)
Returns the receiver’s character identifier (CID).

– characterCollection (page 1279)
Returns an NSCharacterCollection value specifying the glyph–to–character identifier mapping
of the receiver.

– glyphName (page 1280)
Returns the receiver’s glyph name.

Class Methods

glyphInfoWithCharacterIdentifier:collection:baseString:
Instantiates and returns an NSGlyphInfo object using a character identifier and a character collection.

+ (NSGlyphInfo *)glyphInfoWithCharacterIdentifier:(NSUInteger)cid
collection:(NSCharacterCollection)characterCollection baseString:(NSString
*)theString

Parameters
cid

A character identifier.

characterCollection
A string constant representing a character collection. Possible values for characterCollection are
described in “Constants” (page 1281).

theString
The part of the attributed string the returned instance is intended to override.

Return Value
The created NSGlyphInfo object or nil if the object couldn't be created.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSGlyphInfo.h

glyphInfoWithGlyph:forFont:baseString:
Instantiates and returns an NSGlyphInfo object using a glyph index and a specified font.

1278 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 57

NSGlyphInfo Class Reference

+ (NSGlyphInfo *)glyphInfoWithGlyph:(NSGlyph)glyph forFont:(NSFont *)font
baseString:(NSString *)theString

Parameters
glyph

The identifier of the glyph.

font
The font object to be associated with the returned NSGlyphInfo object,

theString
The part of the attributed string the returned instance is intended to override.

Return Value
The created NSGlyphInfo object or nil if the object couldn't be created.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSGlyphInfo.h

glyphInfoWithGlyphName:forFont:baseString:
Instantiates and returns an NSGlyphInfo object using a glyph name and a specified font.

+ (NSGlyphInfo *)glyphInfoWithGlyphName:(NSString *)glyphName forFont:(NSFont *)font
baseString:(NSString *)theString

Parameters
glyphName

The name of the glyph.

font
The font object to be associated with the returned NSGlyphInfo object,

theString
The part of the attributed string the returned instance is intended to override.

Return Value
The created NSGlyphInfo object or nil if the object couldn't be created.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSGlyphInfo.h

Instance Methods

characterCollection
Returns an NSCharacterCollection value specifying the glyph–to–character identifier mapping of the
receiver.

Instance Methods 1279
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 57

NSGlyphInfo Class Reference

- (NSCharacterCollection)characterCollection

Discussion
This method returns NSIdentityMappingCharacterCollection if the receiver was instantiated with
either an NSGlyph identifier or a glyph name. It returns other possible values if the receiver was instantiated
usingglyphInfoWithCharacterIdentifier:collection:baseString: (page 1278). These constants
are described in NSCharacterCollection (page 1281).

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSGlyphInfo.h

characterIdentifier
Returns the receiver’s character identifier (CID).

- (NSUInteger)characterIdentifier

Discussion
If the receiver was instantiated with a method other than
glyphInfoWithCharacterIdentifier:collection:baseString: (page 1278), this method returns
NULL.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSGlyphInfo.h

glyphName
Returns the receiver’s glyph name.

- (NSString *)glyphName

Discussion
If the receiver was instantiated with a method other than
glyphInfoWithGlyphName:forFont:baseString: (page 1279), this method returns nil.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSGlyphInfo.h

1280 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 57

NSGlyphInfo Class Reference

Constants

NSCharacterCollection
The following values specify the mapping of character identifiers to glyphs, and are returned by
characterCollection (page 1279).

typedef enum {
 NSIdentityMappingCharacterCollection = 0,
 NSAdobeCNS1CharacterCollection = 1,
 NSAdobeGB1CharacterCollection = 2,
 NSAdobeJapan1CharacterCollection = 3,
 NSAdobeJapan2CharacterCollection = 4,
 NSAdobeKorea1CharacterCollection = 5,
} NSCharacterCollection;

Constants
NSIdentityMappingCharacterCollection

Indicates that the character identifier is equal to the glyph index.

Available in Mac OS X v10.2 and later.

Declared in NSGlyphInfo.h.

NSAdobeCNS1CharacterCollection
Indicates the Adobe-CNS1 mapping.

Available in Mac OS X v10.2 and later.

Declared in NSGlyphInfo.h.

NSAdobeGB1CharacterCollection
Indicates the Adobe-GB1 mapping.

Available in Mac OS X v10.2 and later.

Declared in NSGlyphInfo.h.

NSAdobeJapan1CharacterCollection
Indicates the Adobe-Japan1 mapping.

Available in Mac OS X v10.2 and later.

Declared in NSGlyphInfo.h.

NSAdobeJapan2CharacterCollection
Indicates the Adobe-Japan2 mapping.

Available in Mac OS X v10.2 and later.

Declared in NSGlyphInfo.h.

NSAdobeKorea1CharacterCollection
Indicates the Adobe-Korea1 mapping.

Available in Mac OS X v10.2 and later.

Declared in NSGlyphInfo.h.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSGlyphInfo.h

Constants 1281
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 57

NSGlyphInfo Class Reference

1282 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 57

NSGlyphInfo Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSGradient.h

Companion guide Cocoa Drawing Guide

Related sample code CocoaSlides
DispatchFractal
Grady
IconCollection
MenuItemView

Overview

The NSGradient class provides support for drawing gradient fill colors, also known as shadings in Quartz.
This class provides convenience methods for drawing radial or linear (axial) gradients for rectangles and
NSBezierPath objects. It also supports primitive methods that let you customize the shape of the gradient
fill.

A gradient consists of two or more color changes over the range of the gradient shape. When creating a
gradient object, you specify the colors and their locations relative to the start and end of the gradient. This
combination of color and location is known as a color stop. During drawing, the NSGradient object uses
the color stop information to compute color changes for you and passes that information to the Quartz
shading functions.

Because the NSGradient class uses Quartz shadings, drawing is handled by computing the colors at a given
point mathematically. This technique results in smooth gradients regardless of the resolution of the target
device.

For more information about gradients and their appearance, see Gradients in Quartz 2D Programming Guide.

Overview 1283
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

Tasks

Initialization

– initWithStartingColor:endingColor: (page 1292)
Initializes a newly allocated gradient object with two colors.

– initWithColors: (page 1290)
Initializes a newly allocated gradient object with an array of colors.

– initWithColorsAndLocations: (page 1291)
Initializes a newly allocated gradient object with a comma-separated list of arguments.

– initWithColors:atLocations:colorSpace: (page 1291)
Initializes a newly allocated gradient object with the specified colors, color locations, and color space.

Primitive Drawing Methods

– drawFromPoint:toPoint:options: (page 1286)
Draws a linear gradient between the specified start and end points.

– drawFromCenter:radius:toCenter:radius:options: (page 1285)
Draws a radial gradient between the specified circles.

Drawing Linear Gradients

– drawInRect:angle: (page 1288)
Fills the specified rectangle with a linear gradient.

– drawInBezierPath:angle: (page 1286)
Fills the specified path with a linear gradient.

Drawing Radial Gradients

– drawInRect:relativeCenterPosition: (page 1289)
Draws a radial gradient starting at the center of the specified rectangle.

– drawInBezierPath:relativeCenterPosition: (page 1287)
Draws a radial gradient starting at the center point of the specified path.

Getting Gradient Properties

– colorSpace (page 1285)
Returns the color space of the colors associated with the receiver.

– numberOfColorStops (page 1293)
Returns the number of color stops associated with the receiver.

1284 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

– getColor:location:atIndex: (page 1289)
Returns information about the color stop at the specified index in the receiver’s color array.

– interpolatedColorAtLocation: (page 1292)
Returns the color of the rendered gradient at the specified relative location.

Instance Methods

colorSpace
Returns the color space of the colors associated with the receiver.

- (NSColorSpace *)colorSpace

Return Value
The color space object used by the receiver’s colors.

Discussion
When the receiver is initialized, colors that do not conform to the receiver’s color space are converted
automatically.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSGradient.h

drawFromCenter:radius:toCenter:radius:options:
Draws a radial gradient between the specified circles.

- (void)drawFromCenter:(NSPoint)startCenter radius:(CGFloat)startRadius
toCenter:(NSPoint)endCenter radius:(CGFloat)endRadius
options:(NSGradientDrawingOptions)options

Parameters
startCenter

The center point of the circle that represents the beginning of the gradient.

startRadius
The radius of the circle that represents the beginning of the gradient.

endCenter
The center point of the circle that represents the end of the gradient.

endRadius
The radius of the circle that represents the end of the gradient.

options
The gradient options, if any. You can use these options to extend the gradient size beyond the start
and end circles. For more information, see “Gradient Drawing Options” (page 1294).

Instance Methods 1285
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

Discussion
This method draws a radial gradient pattern starting at the first circle and ending at the second circle. The
gradient color transitions occur in circular bands emanating from the starting circle and ending at the second
circle.

This is a primitive method used by the NSGradient class to draw radial gradients. Because this method does
not perform any clipping of the gradient fill pattern, you must ensure that the clipping region is configured
properly if you intend to invoke this method directly. By default, the clipping region is set to the current view
or window in which drawing occurs.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSGradient.h

drawFromPoint:toPoint:options:
Draws a linear gradient between the specified start and end points.

- (void)drawFromPoint:(NSPoint)startingPoint toPoint:(NSPoint)endingPoint
options:(NSGradientDrawingOptions)options

Parameters
startingPoint

The starting point for the gradient, in the local coordinate system. The gradient’s first color is drawn
at this point.

endingPoint
The end point for the gradient, in the local coordinate system. The gradient’s last color is drawn at
this point.

options
The gradient options, if any. You can use these options to extend the gradient size beyond the start
and end points. For more information, see “Gradient Drawing Options” (page 1294).

Discussion
This method draws the gradient color changes along the line formed by the two points. The gradient fill
extends perpendicularly outward from line until it reaches the edges of the current clipping region.

This is a primitive method used by the NSGradient class to draw linear gradients. Because this method does
not perform any clipping of the gradient fill pattern, you must ensure that the clipping region is configured
properly if you intend to invoke this method directly. By default, the clipping region is set to the current view
or window in which drawing occurs.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSGradient.h

drawInBezierPath:angle:
Fills the specified path with a linear gradient.

1286 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

- (void)drawInBezierPath:(NSBezierPath *)path angle:(CGFloat)angle

Parameters
path

The path object to fill.

angle
The angle of the linear gradient, specified in degrees. Positive values indicate rotation in the
counter-clockwise direction relative to the horizontal axis.

Discussion
This convenience method behaves in a similar way to the drawInRect:angle: method, with the path
object replacing the rectangle as the clipping region. Like the other method, the start and end colors are
guaranteed to be visible at the farthest ends of the path.

The gradient formed by this method is clipped to path.

Availability
Available in Mac OS X v10.5 and later.

See Also
– drawInRect:angle: (page 1288)
– drawFromPoint:toPoint:options: (page 1286)

Related Sample Code
CocoaSlides

Declared In
NSGradient.h

drawInBezierPath:relativeCenterPosition:
Draws a radial gradient starting at the center point of the specified path.

- (void)drawInBezierPath:(NSBezierPath *)path
relativeCenterPosition:(NSPoint)relativeCenterPosition

Parameters
path

The path to fill.

relativeCenterPosition
The relative location within the bounding rectangle of path to use as the center point of the gradient’s
end circle. Each coordinate must contain a value between -1.0 and 1.0. A coordinate value of 0
represents the center of the path’s bounding rectangle along the given axis. In the default coordinate
system, a value of -1.0 corresponds to the bottom or left edge of the bounding rectangle and a value
of 1.0 corresponds to the top or right edge.

Discussion
The center point of the starting circle is the same as the center point of path. The radius of the starting circle
is 0, resulting in the starting circle being just a point.

Instance Methods 1287
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

The center point of the end circle starts at the center point of path and is modified by the value in the
relativeCenterPosition parameter. For example, if relativeCenterPosition contains the point (1.0,
1.0), the center of the end circle is located in the top-right corner of the path’s bounding rectangle. The radius
of the end circle is set to the smallest value that ensures rect is covered by the end circle.

The gradient formed by this method is clipped to path.

Availability
Available in Mac OS X v10.5 and later.

See Also
– drawInRect:relativeCenterPosition: (page 1289)
– drawFromCenter:radius:toCenter:radius:options: (page 1285)

Declared In
NSGradient.h

drawInRect:angle:
Fills the specified rectangle with a linear gradient.

- (void)drawInRect:(NSRect)rect angle:(CGFloat)angle

Parameters
rect

The rectangle to fill.

angle
The angle of the linear gradient, specified in degrees. Positive values indicate rotation in the
counter-clockwise direction relative to the horizontal axis.

Discussion
This convenience method draws a linear gradient inside the specified rectangle. The gradient is drawn so
that the start and end colors are guaranteed to be visible in opposite corners of the rectangle. The angle of
rotation determines which corner contains the start color; see Table 58-1.

Table 58-1 Linear gradient starting points.

Start cornerRotation angle

Lower-left0-89 degrees

Lower-right90-179 degrees

Upper-right180-269 degrees

Upper-left270-359 degrees

The gradient’s color transitions occur along the line formed by the angle of rotation. For example, a rotation
of 0 degrees results in colors changing from left-to-right across the rectangle, while a rotation of 90 degrees
results in colors changing from bottom to top.

The gradient drawn by this method is clipped to rect.

1288 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– drawInBezierPath:angle: (page 1286)
– drawFromPoint:toPoint:options: (page 1286)

Declared In
NSGradient.h

drawInRect:relativeCenterPosition:
Draws a radial gradient starting at the center of the specified rectangle.

- (void)drawInRect:(NSRect)rect
relativeCenterPosition:(NSPoint)relativeCenterPosition

Parameters
rect

The rectangle to fill.

relativeCenterPosition
The relative location within the rectangle to use as the center point of the gradient’s end circle. Each
coordinate must contain a value between -1.0 and 1.0. A coordinate value of 0 represents the center
of rect along the given axis. In the default coordinate system, a value of -1.0 corresponds to the
bottom or left edge of the rectangle and a value of 1.0 corresponds to the top or right edge.

Discussion
The center point of the starting circle is the same as the center point of rect. The radius of the starting circle
is 0, resulting in the starting circle being just a point.

The center point of the end circle starts at the center point of rect and is modified by the value in the
relativeCenterPosition parameter. For example, if relativeCenterPosition contains the point (1.0,
1.0), the center of the end circle is located in the top-right corner of rect. The radius of the end circle is set
to the smallest value that ensures rect is covered by the end circle.

The gradient formed by this method is clipped to rect.

Availability
Available in Mac OS X v10.5 and later.

See Also
– drawInRect:relativeCenterPosition: (page 1289)
– drawFromCenter:radius:toCenter:radius:options: (page 1285)

Declared In
NSGradient.h

getColor:location:atIndex:
Returns information about the color stop at the specified index in the receiver’s color array.

Instance Methods 1289
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

- (void)getColor:(NSColor **)color location:(CGFloat *)location
atIndex:(NSInteger)index

Parameters
color

On input, a pointer to a color object. On output, the color at the specified index in the receiver’s color
array. You may specify nil if you are not interested in this parameter.

location
On input, a pointer to a floating point number. On output, contains the location value associated with
the color. This value is between 0.0 and 1.0. It is used to determine the position of the color relative
to the start and end points of the gradient. You may specify NULL if you are not interested in this
parameter.

index
The index of the color you want.

Discussion
This method returns the color stop information that was used to create the receiver. It does not return the
interpolated color values at any point along the gradient. The location of the gradient’s first color is typically
0.0 and the location of the last color is typically 1.0, although the locations can vary depending on how the
receiver was created.

Availability
Available in Mac OS X v10.5 and later.

See Also
– numberOfColorStops (page 1293)
– interpolatedColorAtLocation: (page 1292)

Declared In
NSGradient.h

initWithColors:
Initializes a newly allocated gradient object with an array of colors.

- (id)initWithColors:(NSArray *)colorArray

Parameters
colorArray

An array of NSColor objects representing the colors to use to initialize the gradient. There must be
at least two colors in the array. The first color is placed at location 0.0 and the last at location 1.0. If
there are more than two colors, the additional colors are placed at evenly spaced intervals between
the first and last colors.

Return Value
The initialized NSGradient object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithColors:atLocations:colorSpace: (page 1291)

1290 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

Related Sample Code
DispatchFractal

Declared In
NSGradient.h

initWithColors:atLocations:colorSpace:
Initializes a newly allocated gradient object with the specified colors, color locations, and color space.

- (id)initWithColors:(NSArray *)colorArray atLocations:(const CGFloat *)locations
colorSpace:(NSColorSpace *)colorSpace

Parameters
colorArray

An array of NSColor objects representing the colors in the gradient.

locations
An array of CGFloat values containing the location for each color in the gradient. Each value must
be in the range 0.0 to 1.0. There must be the same number of locations as are colors in the colorArray
parameter.

colorSpace
The color space to use for the gradient.

Return Value
The initialized NSGradient object.

Discussion
This method is the designated initializer of NSGradient. The colors in the colorArray parameter are
converted to the specified color space if they are not already in that color space.

Typically, at least one color should have a location of 0.0 and one should have a location of 1.0. If these
locations are not specified, the color at the closest color stop is used to fill the gap.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSGradient.h

initWithColorsAndLocations:
Initializes a newly allocated gradient object with a comma-separated list of arguments.

- (id)initWithColorsAndLocations:(NSColor *)firstColor, ...

Parameters
firstColor

The first color in the gradient.

...
A comma-separated list of alternating NSColor objects and location arguments (specified as CGFloat
values). The first value after firstColor must be a location. Each location value must be between
0.0 and 1.0. The list must be nil-terminated.

Instance Methods 1291
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

Return Value
The initialized NSGradient object.

Discussion
Typically, at least one color should have a location of 0.0 and one should have a location of 1.0. If these
locations are not specified, the color at the closest color stop is used to fill the gap.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithColors:atLocations:colorSpace: (page 1291)

Declared In
NSGradient.h

initWithStartingColor:endingColor:
Initializes a newly allocated gradient object with two colors.

- (id)initWithStartingColor:(NSColor *)startingColor endingColor:(NSColor
*)endingColor

Parameters
startingColor

The starting color of the gradient. The location of this color is fixed at 0.0.

endingColor
The ending color of the gradient. The location of this color is fixed at 1.0.

Return Value
The initialized NSGradient object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithColors:atLocations:colorSpace: (page 1291)

Related Sample Code
CocoaSlides
Grady
IconCollection
MenuItemView

Declared In
NSGradient.h

interpolatedColorAtLocation:
Returns the color of the rendered gradient at the specified relative location.

- (NSColor *)interpolatedColorAtLocation:(CGFloat)location

1292 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

Parameters
location

The location value for the color you want. This value must be between 0.0 and 1.0. This value need
not correspond to the location of one of the color objects used to create the gradient.

Discussion
This method does not simply return the color values used to initialize the receiver. Instead, it computes the
value that would be drawn at the specified location.

The start color of the gradient is always located at 0.0 and the end color is always at 1.0.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
DispatchFractal

Declared In
NSGradient.h

numberOfColorStops
Returns the number of color stops associated with the receiver.

- (NSInteger)numberOfColorStops

Return Value
The number of colors in the receiver’s color array.

Discussion
Gradients must have at least two color stops: one defining the location of the start color and one defining
the location of the end color. Gradients may have additional color stops located at different transition points
in between the start and end stops.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSGradient.h

Constants

NSGradientDrawingOptions
Specifies gradient drawing options.

typedef NSUInteger NSGradientDrawingOptions;

Discussion
The constant values associated with this type are listed in “Gradient Drawing Options” (page 1294).

Constants 1293
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSGradient.h

Gradient Drawing Options
These constants are used by the primitive drawing methods to determine if drawing occurs outside of the
gradient start and end locations.

enum {
 NSGradientDrawsBeforeStartingLocation = (1 << 0),
 NSGradientDrawsAfterEndingLocation = (1 << 1),
};

Constants
NSGradientDrawsBeforeStartingLocation

Drawing extends before the gradient starting point.

Available in Mac OS X v10.5 and later.

Declared in NSGradient.h.

NSGradientDrawsAfterEndingLocation
Drawing extends beyond the gradient end point.

Available in Mac OS X v10.5 and later.

Declared in NSGradient.h.

Declared In
AppKit/NSGradient.h

1294 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 58

NSGradient Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSGraphicsContext.h

Companion guide Cocoa Drawing Guide

Related sample code FunHouse
Quartz EB
QuickLookSketch
Reducer
Sketch-112

Overview

The NSGraphicsContext class is the programmatic interface to objects that represent graphics contexts.
A context can be thought of as a destination to which drawing and graphics state operations are sent for
execution. Each graphics context contains its own graphics environment and state.

The NSGraphicsContext class is an abstract superclass for destination-specific graphics contexts. You obtain
instances of concrete subclasses with the class methods currentContext (page 1298),
graphicsContextWithAttributes: (page 1299),graphicsContextWithBitmapImageRep: (page 1299),
graphicsContextWithGraphicsPort:flipped: (page 1300), andgraphicsContextWithWindow: (page
1300).

At any time there is the notion of the current context. The current context for the current thread may be set
using setCurrentContext: (page 1302).

Graphics contexts are maintained on a stack. You push a graphics context onto the stack by sending it a
saveGraphicsState (page 1308) message, and pop it off the stack by sending it a
restoreGraphicsState (page 1307) message. By sending restoreGraphicsState (page 1307) to an
NSGraphicsContext object you remove it from the stack, and the next graphics context on the stack
becomes the current graphics context.

Overview 1295
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Tasks

Creating a Graphics Context

+ graphicsContextWithAttributes: (page 1299)
Instantiates and returns an instance of NSGraphicsContext using the specified attributes.

+ graphicsContextWithBitmapImageRep: (page 1299)
Instantiates and returns a new graphics context using the supplied NSBitmapImageRep object as
the context destination.

+ graphicsContextWithGraphicsPort:flipped: (page 1300)
Instantiates and returns a new graphics context from the given graphics port.

+ graphicsContextWithWindow: (page 1300)
Creates and returns a new graphics context for drawing into a window.

Managing the Current Context

+ currentContext (page 1298)
Returns the current graphics context of the current thread.

+ setCurrentContext: (page 1302)
Sets the current graphics context of the current thread.

– graphicsPort (page 1305)
Returns the low-level, platform-specific graphics context represented by the receiver.

Managing the Graphics State

+ setGraphicsState: (page 1302)
Makes the graphics context of the specified graphics state current, and resets graphics state.

+ restoreGraphicsState (page 1301)
Pops a graphics context from the per-thread stack, makes it current, and sends the context a
restoreGraphicsState (page 1307) message.

– restoreGraphicsState (page 1307)
Removes the receiver’s graphics state from the top of the graphics state stack and makes the next
graphics state the current graphics state.

+ saveGraphicsState (page 1301)
Saves the graphics state of the current graphics context.

– saveGraphicsState (page 1308)
Saves the current graphics state and creates a new graphics state on the top of the stack.

Testing the Drawing Destination

+ currentContextDrawingToScreen (page 1298)
Returns a Boolean value that indicates whether the current context is drawing to the screen.

1296 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

– isDrawingToScreen (page 1306)
Returns a Boolean value that indicates whether the drawing destination is the screen.

Getting Information About a Context

– attributes (page 1303)
Returns the receiver’s attributes.

– isFlipped (page 1306)
Returns a Boolean value that indicates the receiver’s flipped state.

Flushing Graphics to the Context

– flushGraphics (page 1305)
Forces any buffered operations or data to be sent to the receiver’s destination.

Managing the Focus Stack

– focusStack (page 1305) Available in Mac OS X v10.0 through Mac OS X v10.5
Returns the object used by the context to track the hierarchy of views with locked focus.

– setFocusStack: (page 1309) Available in Mac OS X v10.0 through Mac OS X v10.5
Sets the object used by the receiver to track the hierarchy of views with locked focus.

Configuring Rendering Options

– setCompositingOperation: (page 1309)
Sets the receiver’s global compositing operation.

– compositingOperation (page 1304)
Returns the receiver’s global compositing operation setting.

– setImageInterpolation: (page 1310)
Sets the receiver’s interpolation behavior.

– imageInterpolation (page 1306)
Returns a constant that specifies the receiver’s interpolation behavior.

– setShouldAntialias: (page 1311)
Sets whether the receiver should use antialiasing.

– shouldAntialias (page 1311)
Returns a Boolean value that indicates whether the receiver uses antialiasing.

– setPatternPhase: (page 1310)
Sets the amount to offset the pattern color when filling the receiver.

– patternPhase (page 1307)
Returns the amount to offset the pattern color when filling the receiver.

Tasks 1297
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Getting the Core Image Context

– CIContext (page 1303)
Returns a CIContext object that you can use to render into the receiver.

Managing the Color Rendering Intent

– colorRenderingIntent (page 1304)
Returns the current rendering intent in the receiver’s graphics state.

– setColorRenderingIntent: (page 1308)
Sets the rendering intent in the receiver’s graphics state.

Class Methods

currentContext
Returns the current graphics context of the current thread.

+ (NSGraphicsContext *)currentContext

Return Value
The current graphics context of the current thread.

Discussion
Returns an instance of a concrete subclass of NSGraphicsContext.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FunHouse
Quartz EB
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSGraphicsContext.h

currentContextDrawingToScreen
Returns a Boolean value that indicates whether the current context is drawing to the screen.

+ (BOOL)currentContextDrawingToScreen

Return Value
YES if the current context is drawing to the screen, otherwise NO.

1298 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Discussion
This convenience method is equivalent to sending isDrawingToScreen (page 1306) to the result of
currentContext (page 1298).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

graphicsContextWithAttributes:
Instantiates and returns an instance of NSGraphicsContext using the specified attributes.

+ (NSGraphicsContext *)graphicsContextWithAttributes:(NSDictionary *)attributes

Parameters
attributes

A dictionary of values associated with the keys described in “Attribute dictionary keys” (page
1312). The attributes specify such things as representation format and destination.

Return Value
A new NSGraphicsContext object or nil if the object could not be created.

Discussion
Use this method to create a graphics context for a window or bitmap destination. If you want to create a
graphics context for a PDF or PostScript destination, do not use this method; instead, use the
NSPrintOperation class to set up the printing environment needed to generate that type of information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

graphicsContextWithBitmapImageRep:
Instantiates and returns a new graphics context using the supplied NSBitmapImageRep object as the context
destination.

+ (NSGraphicsContext *)graphicsContextWithBitmapImageRep:(NSBitmapImageRep
*)bitmapRep

Parameters
bitmapRep

The NSBitmapImageRep object to use as the destination.

Return Value
The created NSGraphicsContext object or nil if the object could not be created.

Discussion
This method accepts only single plane NSBitmapImageRep instances. It is the equivalent of using
graphicsContextWithAttributes: (page 1299) and passing bitmapRep as the value for the dictionary’s
NSGraphicsContextDestinationAttributeName key.

Class Methods 1299
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
+ graphicsContextWithAttributes: (page 1299)

Related Sample Code
AnimatedTableView
Reducer

Declared In
NSGraphicsContext.h

graphicsContextWithGraphicsPort:flipped:
Instantiates and returns a new graphics context from the given graphics port.

+ (NSGraphicsContext *)graphicsContextWithGraphicsPort:(void *)graphicsPort
flipped:(BOOL)initialFlippedState

Parameters
graphicsPort

The graphics port used to create the graphics-context object. Typically graphicsPort is a
CGContextRef (opaque type) object.

initialFlippedState
Specifies the receiver's initial flipped state. This is the value returned by isFlipped (page 1306) when
no view has focus.

Return Value
The created NSGraphicsContext object or nil if the object could not be created.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation
CIVideoDemoGL
FunHouse
iChatTheater
QuickLookSketch

Declared In
NSGraphicsContext.h

graphicsContextWithWindow:
Creates and returns a new graphics context for drawing into a window.

+ (NSGraphicsContext *)graphicsContextWithWindow:(NSWindow *)aWindow

1300 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Parameters
aWindow

The window object representing the window to use for drawing.

Return Value
The created NSGraphicsContext object or nil if the object could not be created.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
JAWTExample

Declared In
NSGraphicsContext.h

restoreGraphicsState
Pops a graphics context from the per-thread stack, makes it current, and sends the context a
restoreGraphicsState (page 1307) message.

+ (void)restoreGraphicsState

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QuickLookSketch
Reducer
Sketch+Accessibility
Sketch-112
TrackBall

Declared In
NSGraphicsContext.h

saveGraphicsState
Saves the graphics state of the current graphics context.

+ (void)saveGraphicsState

Discussion
This method sends the current graphics context a saveGraphicsState (page 1308) message and pushes the
context onto the per-thread stack.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QuickLookSketch
Reducer

Class Methods 1301
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Sketch+Accessibility
Sketch-112
TrackBall

Declared In
NSGraphicsContext.h

setCurrentContext:
Sets the current graphics context of the current thread.

+ (void)setCurrentContext:(NSGraphicsContext *)context

Parameters
context

The graphics-context object to set as the current one. This must be an instance of a concrete subclass
of NSGraphicsContext.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIAnnotation
CIVideoDemoGL
FunHouse
iChatTheater
QuickLookSketch

Declared In
NSGraphicsContext.h

setGraphicsState:
Makes the graphics context of the specified graphics state current, and resets graphics state.

+ (void)setGraphicsState:(NSInteger)graphicsState

Discussion
The graphicState identifier must be created in the calling thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

1302 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Instance Methods

attributes
Returns the receiver’s attributes.

- (NSDictionary *)attributes

Return Value
The receiver’s attributes, if any.

Discussion
Screen-based graphics contexts do not store attributes, even if you create them using
graphicsContextWithAttributes: (page 1299).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

CIContext
Returns a CIContext object that you can use to render into the receiver.

- (CIContext *)CIContext

Return Value
A CIContext object or nil if the object could not be created.

Discussion
The CIContext object is created on demand and remains in existence for the lifetime of its owning
NSGraphicsContext object. A CIContext object is an evaluation context for rendering a CIImage object
through Quartz 2D or OpenGL. You use CIContextobjects in conjunction with CIFilter, CIImage,
CIVector, and CIColor objects to take advantage of the built-in Core Image filters when processing images.

For more on CIContext objects and related Core Image objects, see Core Image Programming Guide.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
AnimatedTableView
CIHazeFilterSample
CITransitionSelectorSample
FunHouse
Reducer

Declared In
NSGraphicsContext.h

Instance Methods 1303
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

colorRenderingIntent
Returns the current rendering intent in the receiver’s graphics state.

- (NSColorRenderingIntent)colorRenderingIntent

Return Value
An “Creating a Graphics Context” (page 1296)value that specifies the rendering intent currently used
by the receiver. For possible values see “Color Rendering Intent Constants” (page 1313).

Discussion
The rendering intent specifies how Cocoa should handle colors that are not located within the gamut of the
destination color space of a graphics context.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setColorRenderingIntent: (page 1308)

Declared In
NSGraphicsContext.h

compositingOperation
Returns the receiver’s global compositing operation setting.

- (NSCompositingOperation)compositingOperation

Return Value
The receiver’s global compositing operation setting. See NSCompositingOperation (page 1375) for valid
constants.

Discussion
The compositing operation is a global attribute of the graphics context and affects drawing operations that
do not take an explicit compositing operation parameter. For methods that do take an explicit compositing
operation parameter, the value of that parameter supersedes the global value.

The compositing operations are related to (but different from) the blend mode settings used in Quartz. Only
the default compositing operation (NSCompositeCopy) is supported for PDF or PostScript content.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCompositingOperation: (page 1309)

Related Sample Code
ImageMap
ImageMapExample

Declared In
NSGraphicsContext.h

1304 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

flushGraphics
Forces any buffered operations or data to be sent to the receiver’s destination.

- (void)flushGraphics

Discussion
Graphics contexts use buffers to queue pending operations but for efficiency reasons may not always empty
those buffers immediately. This method forces the buffers to be emptied.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaAUHost
iChatTheater

Declared In
NSGraphicsContext.h

focusStack
Returns the object used by the context to track the hierarchy of views with locked focus. (Available in Mac
OS X v10.0 through Mac OS X v10.5.)

- (void *)focusStack

Return Value
The object used by the context to track the hierarchy of views with locked focus.

Discussion
You should never need to get or modify the focus stack information. The use of focus stacks may be deprecated
in a future release.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSGraphicsContext.h

graphicsPort
Returns the low-level, platform-specific graphics context represented by the receiver.

- (void *)graphicsPort

Discussion
In Mac OS X, this is the Core Graphics context, a CGContextRef object (opaque type).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FunHouse

Instance Methods 1305
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

ImageApp
Quartz EB
UnsharpMask
WebKitDOMElementPlugIn

Declared In
NSGraphicsContext.h

imageInterpolation
Returns a constant that specifies the receiver’s interpolation behavior.

- (NSImageInterpolation)imageInterpolation

Return Value
The receiver’s interpolation (image smoothing) behavior.

Discussion
The NSImageInterpolation constants are described in NSImageInterpolation (page 1313).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImageInterpolation: (page 1310)

Declared In
NSGraphicsContext.h

isDrawingToScreen
Returns a Boolean value that indicates whether the drawing destination is the screen.

- (BOOL)isDrawingToScreen

Return Value
YES if the drawing destination is the screen, otherwise NO.

Discussion
A return value of NO may mean that the drawing destination is a printer, but the destination may also be a
PDF or EPS file. If this method returns NO, you can call attributes (page 1303) to see if additional information
is available about the drawing destination.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

isFlipped
Returns a Boolean value that indicates the receiver’s flipped state.

1306 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

- (BOOL)isFlipped

Return Value
YES if the receiver is flipped, otherwise NO.

Discussion
The state is determined by sending isFlipped to the receiver’s view that has focus. If no view has focus,
returns NO unless the receiver is instantiated using graphicsContextWithGraphicsPort:flipped: (page
1300) specifying YES as the flipped parameter.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ graphicsContextWithGraphicsPort:flipped: (page 1300)

Declared In
NSGraphicsContext.h

patternPhase
Returns the amount to offset the pattern color when filling the receiver.

- (NSPoint)patternPhase

Return Value
The amount to offset the pattern color when filling the receiver.

Discussion
The pattern phase is a translation (width, height) applied before a pattern is drawn in the current context
and is part of the saved graphics state of the context. The default pattern phase is (0,0). Setting the pattern
phase has the effect of temporarily changing the pattern matrix of any pattern you decide to draw. For
example, setting the pattern phase to (2,3) has the effect of moving the start of pattern cell tiling to the point
(2,3) in default user space.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setPatternPhase: (page 1310)

Declared In
NSGraphicsContext.h

restoreGraphicsState
Removes the receiver’s graphics state from the top of the graphics state stack and makes the next graphics
state the current graphics state.

- (void)restoreGraphicsState

Instance Methods 1307
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Discussion
This method must have been preceded with a saveGraphicsState (page 1308) message to add the graphics
state to the stack. Invocations of saveGraphicsState and restoreGraphicsState methods may be
nested.

Restoring the graphics state restores such attributes as the current drawing style, transformation matrix,
color, and font of the original graphics state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

saveGraphicsState
Saves the current graphics state and creates a new graphics state on the top of the stack.

- (void)saveGraphicsState

Discussion
The new graphics state is a copy of the previous state that can be modified to handle new drawing operations.

Saving the graphics state saves such attributes as the current drawing style, transformation matrix, color,
and font. To set drawing style attributes, use the methods of NSBezierPath. Other attributes are accessed
through appropriate objects such as NSAffineTransform, NSColor, and NSFont.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

setColorRenderingIntent:
Sets the rendering intent in the receiver’s graphics state.

- (void)setColorRenderingIntent:(NSColorRenderingIntent)renderingIntent

Parameters
renderingIntent

An “Creating a Graphics Context” (page 1296)value that specifies the rendering intent to be
used. For possible values see “NSColorRenderingIntent” (page 1313).

Discussion
The rendering intent specifies how Cocoa should handle colors that are not located within the gamut of the
destination color space of a graphics context. If you do not explicitly set the rendering intent, and sampled
images are being drawn, NSGraphicsContext uses perceptual rendering intent. Otherwise,
NSGraphicsContext uses relative colorimetric rendering intent

Availability
Available in Mac OS X v10.5 and later.

1308 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

See Also
– colorRenderingIntent (page 1304)

Declared In
NSGraphicsContext.h

setCompositingOperation:
Sets the receiver’s global compositing operation.

- (void)setCompositingOperation:(NSCompositingOperation)operation

Parameters
operation

A constant that specifies a compositing operating. See NSCompositingOperation (page 1375) for
valid constants.

Discussion
The compositing operation is a global attribute of the graphics context and affects drawing operations that
do not take an explicit compositing operation parameter. For methods that do take an explicit compositing
operation parameter, the value of that parameter supersedes the global value.

The compositing operations are related to (but different from) the blend mode settings used in Quartz. Only
the default compositing operation (NSCompositeCopy) is supported when rendering PDF or PostScript
content.

Availability
Available in Mac OS X v10.4 and later.

See Also
– compositingOperation (page 1304)

Related Sample Code
ImageMap
ImageMapExample

Declared In
NSGraphicsContext.h

setFocusStack:
Sets the object used by the receiver to track the hierarchy of views with locked focus. (Available in Mac OS
X v10.0 through Mac OS X v10.5.)

- (void)setFocusStack:(void *)stack

Parameters
stack

The object used by the graphics context for view-hierarchy tracking.

Discussion
You should never need to get or modify the focus stack information. The use of focus stacks may be deprecated
in a future release.

Instance Methods 1309
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSGraphicsContext.h

setImageInterpolation:
Sets the receiver’s interpolation behavior.

- (void)setImageInterpolation:(NSImageInterpolation)interpolation

Parameters
interpolation

A constant specifying the image-interpolation behavior. The NSImageInterpolation constants are
described in NSImageInterpolation (page 1313).

Discussion
Note that this value is not part of the graphics state, so it cannot be reset using restoreGraphicsState (page
1307).

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageInterpolation (page 1306)

Related Sample Code
WebKitDOMElementPlugIn

Declared In
NSGraphicsContext.h

setPatternPhase:
Sets the amount to offset the pattern color when filling the receiver.

- (void)setPatternPhase:(NSPoint)phase

Parameters
phase

A point specifying the offset.

Discussion
Use this method when you need to line up the pattern color with another pattern, such as the pattern in a
superview.

The pattern phase is a translation (width, height) applied before a pattern is drawn in the current context
and is part of the saved graphics state of the context. The default pattern phase is (0,0). Setting the pattern
phase has the effect of temporarily changing the pattern matrix of any pattern you decide to draw. For
example, setting the pattern phase to (2,3) has the effect of moving the start of pattern cell tiling to the point
(2,3) in default user space.

1310 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
– patternPhase (page 1307)

Declared In
NSGraphicsContext.h

setShouldAntialias:
Sets whether the receiver should use antialiasing.

- (void)setShouldAntialias:(BOOL)antialias

Parameters
antialias

YES if the receiver should use antialiasing, otherwise NO.

Discussion
This value is part of the graphics state and is restored by restoreGraphicsState (page 1307).

Availability
Available in Mac OS X v10.0 and later.

See Also
– shouldAntialias (page 1311)

Related Sample Code
Cocoa OpenGL
Cropped Image
From A View to A Movie
From A View to A Picture

Declared In
NSGraphicsContext.h

shouldAntialias
Returns a Boolean value that indicates whether the receiver uses antialiasing.

- (BOOL)shouldAntialias

Return Value
YES if the receiver uses antialiasing, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShouldAntialias: (page 1311)

Instance Methods 1311
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Declared In
NSGraphicsContext.h

Constants

Attribute dictionary keys
These constants are dictionary keys used by graphicsContextWithAttributes: (page 1299) and
attributes (page 1303).

NSString *NSGraphicsContextDestinationAttributeName;
NSString *NSGraphicsContextRepresentationFormatAttributeName;

Constants
NSGraphicsContextDestinationAttributeName

Can be an instance of NSWindow or NSBitmapImageRep when creating a graphics context.

When determining the type of a graphics context, this value can be an NSMutableData, NSString,
or NSURL object.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

NSGraphicsContextRepresentationFormatAttributeName
Specifies the destination file format.

This value should be retrieved only and not used to create a graphics context.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

Representation format attribute keys
These constants are possible values for the NSGraphicsContextRepresentationFormatAttributeName
key in a graphic context’s attribute dictionary.

NSString *NSGraphicsContextPSFormat;
NSString *NSGraphicsContextPDFFormat;

Constants
NSGraphicsContextPDFFormat

Destination file format is PDF.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

NSGraphicsContextPSFormat
Destination file format is PostScript.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

1312 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

NSImageInterpolation
These interpolations are used by imageInterpolation (page 1306) and setImageInterpolation: (page
1310).

enum {
 NSImageInterpolationDefault,
 NSImageInterpolationNone,
 NSImageInterpolationLow,
 NSImageInterpolationMedium,
 NSImageInterpolationHigh
};
typedef NSUInteger NSImageInterpolation;

Constants
NSImageInterpolationDefault

Use the context’s default interpolation.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

NSImageInterpolationNone
No interpolation.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

NSImageInterpolationLow
Fast, low-quality interpolation.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

NSImageInterpolationMedium
Medium quality, slower than NSImageInterpolationLow.

Available in Mac OS X v10.6 and later.

Declared in NSGraphicsContext.h.

NSImageInterpolationHigh
Slower, higher-quality interpolation.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

NSColorRenderingIntent
These constants specify how Cocoa should handle colors that are not located within the destination color
space of a graphics context. These constants are used by the methods setColorRenderingIntent: (page
1308) and colorRenderingIntent (page 1304).

Constants 1313
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

enum {
 NSColorRenderingIntentDefault,
 NSColorRenderingIntentAbsoluteColorimetric,
 NSColorRenderingIntentRelativeColorimetric,
 NSColorRenderingIntentPerceptual,
 NSColorRenderingIntentSaturation
};
typedef NSInteger NSColorRenderingIntent;

Constants
NSColorRenderingIntentDefault

Use the default rendering intent for the graphics context.

Available in Mac OS X v10.5 and later.

Declared in NSGraphics.h.

NSColorRenderingIntentAbsoluteColorimetric
Map colors outside of the gamut of the output device to the closest possible match inside the gamut
of the output device.

This operation can produce a clipping effect, where two different color values in the gamut of the
graphics context are mapped to the same color value in the output device’s gamut. Unlike the relative
colorimetric, absolute colorimetric does not modify colors inside the gamut of the output device.

Available in Mac OS X v10.5 and later.

Declared in NSGraphics.h.

NSColorRenderingIntentRelativeColorimetric
Map colors outside of the gamut of the output device to the closest possible match inside the gamut
of the output device.

This operation can produce a clipping effect, where two different color values in the gamut of the
graphics context are mapped to the same color value in the output device’s gamut. The relative
colorimetric shifts all colors (including those within the gamut) to account for the difference between
the white point of the graphics context and the white point of the output device.

Available in Mac OS X v10.5 and later.

Declared in NSGraphics.h.

NSColorRenderingIntentPerceptual
Preserve the visual relationship between colors by compressing the gamut of the graphics context
to fit inside the gamut of the output device.

Perceptual intent is good for photographs and other complex, detailed images.

Available in Mac OS X v10.5 and later.

Declared in NSGraphics.h.

NSColorRenderingIntentSaturation
Preserve the relative saturation value of the colors when converting into the gamut of the output
device.

The result is an image with bright, saturated colors. Saturation intent is good for reproducing images
with low detail, such as presentation charts and graphs.

Available in Mac OS X v10.5 and later.

Declared in NSGraphics.h.

1314 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 59

NSGraphicsContext Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSHelpManager.h

Companion guide Online Help

Overview

The NSHelpManager class provides an approach to displaying online help. An application contains one
NSHelpManager object.

Tasks

Getting the Help Manager

+ sharedHelpManager (page 1317)
Returns the shared NSHelpManager (page 1315) instance, creating it if it does not already exist.

Displaying Help

– findString:inBook: (page 1318)
Performs a search for the specified string in the specified book.

– openHelpAnchor:inBook: (page 1318)
Finds and displays the text at the given anchor location in the given book.

Dynamically Adding Help Books

– registerBooksInBundle: (page 1319)
Registers one or more help books in the given bundle.

Overview 1315
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 60

NSHelpManager Class Reference

Configuring Context-Sensitive Help

+ isContextHelpModeActive (page 1316)
Indicates whether context-sensitive help mode is active.

+ setContextHelpModeActive: (page 1316)
Specifies whether context-sensitive help mode is active.

– setContextHelp:forObject: (page 1320)
Associates help content with an object.

– removeContextHelpForObject: (page 1319)
Removes the association between an object and its context-sensitive help.

Displaying Context-Sensitive Help

– contextHelpForObject: (page 1317)
Returns context-sensitive help for an object.

– showContextHelpForObject:locationHint: (page 1320)
Displays the context-sensitive help for a given object at or near the point on the screen specified by
a given point.

Class Methods

isContextHelpModeActive
Indicates whether context-sensitive help mode is active.

+ (BOOL)isContextHelpModeActive

Return Value
YES when the application is in context-sensitive help mode, NO otherwise.

Discussion
In context-sensitive help mode, when a user clicks a user interface item, help for that item is displayed in a
small window just below the cursor.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setContextHelpModeActive: (page 1316)

Declared In
NSHelpManager.h

setContextHelpModeActive:
Specifies whether context-sensitive help mode is active.

1316 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 60

NSHelpManager Class Reference

+ (void)setContextHelpModeActive:(BOOL)contextHelpActive

Parameters
contextHelpActive

YES turns on context-sensitive help, NO turns it off.

Discussion
You never send this message directly; instead, the NSApplication method
activateContextHelpMode: (page 136) activates context-sensitive help mode, and the first mouse click
after displaying the context-sensitive help window deactivates it.

When the application enters context-sensitive help mode, the help manager posts an
NSContextHelpModeDidActivateNotification (page 1321) to the default notification center. When the
application returns to normal operation, the help manager posts an
NSContextHelpModeDidDeactivateNotification (page 1321).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ isContextHelpModeActive (page 1316)

Declared In
NSHelpManager.h

sharedHelpManager
Returns the shared NSHelpManager (page 1315) instance, creating it if it does not already exist.

+ (NSHelpManager *)sharedHelpManager

Return Value
Shared help manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSHelpManager.h

Instance Methods

contextHelpForObject:
Returns context-sensitive help for an object.

- (NSAttributedString *)contextHelpForObject:(id)object

Parameters
object

Object for which context-sensitive help is sought.

Instance Methods 1317
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 60

NSHelpManager Class Reference

Return Value
Context-sensitive help content.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContextHelp:forObject: (page 1320)
– showContextHelpForObject:locationHint: (page 1320)

Declared In
NSHelpManager.h

findString:inBook:
Performs a search for the specified string in the specified book.

- (void)findString:(NSString *)query inBook:(NSString *)book

Parameters
query

String to search for.

book
Localized help book to search. When nil, all installed help books are searched.

Discussion
To search for a string in your bundle’s localized help book, you could use code similar to the following:

NSString *locBookName = [[NSBundle mainBundle] objectForInfoDictionaryKey:
@"CFBundleHelpBookName"];
[[NSHelpManager sharedHelpManager] findString:@"Hello" inBook:locBookName];

This is a wrapper for AHRegisterHelpBook (which is called only once to register the help book specified
in the application's main bundle) and AHSearch.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSHelpManager.h

openHelpAnchor:inBook:
Finds and displays the text at the given anchor location in the given book.

- (void)openHelpAnchor:(NSString *)anchor inBook:(NSString *)book

Parameters
anchor

Location of the desired text.

book
Help book containing the anchor. When nil, all installed help books are searched.

1318 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 60

NSHelpManager Class Reference

Discussion
To open an anchor in your bundle’s localized help book, you could use code similar to the following:

NSString *locBookName = [[NSBundle mainBundle] objectForInfoDictionaryKey:
@"CFBundleHelpBookName"];
[[NSHelpManager sharedHelpManager] openHelpAnchor:@"anchor1" inBook:locBookName];

This method is a wrapper for AHRegisterHelpBook (which is called only once to register the help book
specified in the application's main bundle) and AHLookupAnchor.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSHelpManager.h

registerBooksInBundle:
Registers one or more help books in the given bundle.

- (BOOL)registerBooksInBundle:(NSBundle *)bundle

Parameters
bundle

The bundle for additional help books. Books in the main bundle are automatically registered.

Return Value
YES if registration is successful, NO if if the bundle doesn't contain any help books or if registration fails.

Discussion
You use registerBooksInBundle: to register help books in, for example, a plug-in bundle. The Info.plist
in the bundle should contain a help book directory path, which specifies one or more folders containing help
books.

The main bundle is automatically registered by openHelpAnchor:inBook: (page 1318) and
findString:inBook: (page 1318).

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSHelpManager.h

removeContextHelpForObject:
Removes the association between an object and its context-sensitive help.

- (void)removeContextHelpForObject:(id)object

Parameters
object

Object to disassociate from its help content.

Instance Methods 1319
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 60

NSHelpManager Class Reference

Discussion
If object does not have context-sensitive help associated with it, this method does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContextHelp:forObject: (page 1320)

Declared In
NSHelpManager.h

setContextHelp:forObject:
Associates help content with an object.

- (void)setContextHelp:(NSAttributedString *)help forObject:(id)object

Parameters
help

Help content to associate with object.

object
Object to associate with help.

Discussion
When the application enters context-sensitive help mode, if object is clicked, help appears in the
context-sensitive help window.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeContextHelpForObject: (page 1319)

Declared In
NSHelpManager.h

showContextHelpForObject:locationHint:
Displays the context-sensitive help for a given object at or near the point on the screen specified by a given
point.

- (BOOL)showContextHelpForObject:(id)object locationHint:(NSPoint)point

Parameters
object

Object for which context-sensitive help is sought.

point
Screen location at which to display the help content; it’s usually under the cursor.

Return Value
YES when help content is successfully displayed. NO if help content is not displayed (for example, when there
is no context-sensitive help associated with object).

1320 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 60

NSHelpManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– contextHelpForObject: (page 1317)

Declared In
NSHelpManager.h

Notifications

NSContextHelpModeDidActivateNotification
Posted when the application enters context-sensitive help mode. This typically happens when the user holds
down the Help key.

The notification object is the help manager. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSHelpManager.h

NSContextHelpModeDidDeactivateNotification
Posted when the application exits context-sensitive help mode. This happens when the user clicks the mouse
button while the cursor is anywhere on the screen after displaying a context-sensitive help topic.

The notification object is the help manager. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSHelpManager.h

Notifications 1321
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 60

NSHelpManager Class Reference

1322 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 60

NSHelpManager Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSPasteboardWriting
NSPasteboardReading
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSImage.h

Companion guide Cocoa Drawing Guide

Related sample code AnimatedTableView
ImageBackground
MyPhoto
RGB Image
Sketch-112

Overview

An NSImage object is a high-level class for manipulating image data. You use this class to load existing images
or create new ones and composite them into a view or other image. This class works in conjunction with one
or more image representation objects (subclasses of NSImageRep), which manage the actual image data.

Tasks

Initializing a New NSImage Object

– initByReferencingFile: (page 1350)
Initializes and returns an NSImage instance and associates it with the specified file.

– initByReferencingURL: (page 1351)
Initializes and returns an NSImage instance and associates it with the specified URL.

– initWithCGImage:size: (page 1351)
Initializes and returns an NSImage instance with the contents of the CGImage.

Overview 1323
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

– initWithContentsOfFile: (page 1352)
Initializes and returns an NSImage instance with the contents of the specified file.

– initWithContentsOfURL: (page 1352)
Initializes and returns an NSImage instance with the contents of the specified URL.

– initWithData: (page 1353)
Initializes and returns an NSImage instance with the contents of the specified NSData object.

– initWithDataIgnoringOrientation: (page 1353)
Initializes and returns an NSImage instance with the contents of the specified NSData object, ignoring
the EXIF orientation tags..

– initWithPasteboard: (page 1354)
Initializes and returns an NSImage instance with data from the specified pasteboard.

– initWithSize: (page 1355)
Initializes and returns an NSImage instance whose size is set to the specified value.

– initWithIconRef: (page 1354)
Initializes the image object with a Carbon-style icon resource.

Setting the Image Attributes

– setSize: (page 1370)
Sets the width and height of the image.

– size (page 1372)
Returns the size of the receiver.

– isTemplate (page 1357)
Returns a Boolean value indicating whether the image is a template image.

– setTemplate: (page 1371)
Sets whether the image represents a template image.

Referring to Images by Name

+ imageNamed: (page 1330)
Returns the NSImage instance associated with the specified name.

– setName: (page 1368)
Registers the receiver under the specified name.

– name (page 1360)
Returns the name associated with the receiver, if any.

Determining the Supported Image Types

+ canInitWithPasteboard: (page 1329)
Tests whether the receiver can create an instance of itself using pasteboard data.

+ imageTypes (page 1332)
Returns an array of UTI strings identifying the image types supported by the registered NSImageRep
objects, either directly or through a user-installed filter service.

1324 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

+ imageUnfilteredTypes (page 1334)
Returns an array of UTI strings identifying the image types supported directly by the registered
NSImageRep objects.

+ imageFileTypes (page 1330)
Returns an array of strings identifying the image types supported by the registered NSImageRep
objects.

+ imageUnfilteredFileTypes (page 1333)
Returns an array of strings identifying the file types supported directly by the registered NSImageRep
objects.

+ imagePasteboardTypes (page 1332)
Returns an array of strings identifying the pasteboard types supported directly by the registered
NSImageRep objects.

+ imageUnfilteredPasteboardTypes (page 1333)
Returns an array of strings identifying the pasteboard types supported directly by the registered
NSImageRep objects.

Working With Image Representations

– addRepresentation: (page 1335)
Adds the specified image representation object to to the receiver.

– addRepresentations: (page 1335)
Adds an array of image representation objects to the receiver.

– representations (page 1362)
Returns an array containing all of the receiver's image representations.

– removeRepresentation: (page 1362)
Removes the specified image representation from the receiver and releases it.

– bestRepresentationForRect:context:hints: (page 1338)
Returns the best representation of the image for the specified rect using the provided hints.

– bestRepresentationForDevice: (page 1337) Deprecated in Mac OS X v10.6
Returns the best representation for the device with the specified characteristics.

Hit Testing an Image

– hitTestRect:withImageDestinationRect:context:hints:flipped: (page 1349)
Returns whether the destination rectangle would intersect a non-transparent portion of the image.

Setting the Image Representation Selection Criteria

– setPrefersColorMatch: (page 1369)
Sets whether choosing an image representation favors color matching over resolution matching.

– prefersColorMatch (page 1361)
Returns a Boolean value indicating whether the image prefers to choose image representations using
color matching or resolution matching.

Tasks 1325
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

– setUsesEPSOnResolutionMismatch: (page 1371)
Sets whether EPS image representations are preferred when no other representations match the
resolution of the device.

– usesEPSOnResolutionMismatch (page 1374)
Returns a Boolean value indicating whether EPS representations are preferred when no other
representations match the resolution of the device.

– setMatchesOnMultipleResolution: (page 1368)
Sets whether image representations whose resolutions are integral multiples of the device resolution
are considered a match.

– matchesOnMultipleResolution (page 1360)
Returns a Boolean value indicating whether image representations whose resolution is an integral
multiple of the device resolution are considered a match.

Managing the Focus

– lockFocus (page 1358)
Prepares the image to receive drawing commands.

– lockFocusFlipped: (page 1359)
Prepares the image to receive drawing commands using the specified flipped state.

– unlockFocus (page 1374)
Removes the focus from the receiver.

– lockFocusOnRepresentation: (page 1359) Deprecated in Mac OS X v10.6
Prepares the specified image representation to receive drawing commands. (Deprecated. Use the
code fragment shown in the special considerations below.)

Drawing the Image

– drawAtPoint:fromRect:operation:fraction: (page 1346)
Draws all or part of the image at the specified point in the current coordinate system.

– drawInRect:fromRect:operation:fraction: (page 1347)
Draws all or part of the image in the specified rectangle in the current coordinate system.

– drawRepresentation:inRect: (page 1348)
Draws the image using the specified image representation object.

– drawInRect:fromRect:operation:fraction:respectFlipped:hints: (page 1347)
Draws all or part of the image in the specified rectangle respecting the flippedness and hints.

– compositeToPoint:fromRect:operation: (page 1340) Deprecated in Mac OS X v10.6
Composites a portion of the image to the specified point in the current coordinate system.

– compositeToPoint:fromRect:operation:fraction: (page 1341) Deprecated in Mac OS X v10.6
Composites a portion of the image at the specified opacity to the current coordinate system.

– compositeToPoint:operation: (page 1342) Deprecated in Mac OS X v10.6
Composites the entire image to the specified point in the current coordinate system.

– compositeToPoint:operation:fraction: (page 1343) Deprecated in Mac OS X v10.6
Composites the entire image at the specified opacity in the current coordinate system.

1326 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

– dissolveToPoint:fraction: (page 1344) Deprecated in Mac OS X v10.6
Composites the entire image to the specified location using the NSCompositeSourceOver operator.

– dissolveToPoint:fromRect:fraction: (page 1345) Deprecated in Mac OS X v10.6
Composites a portion of the image to the specified location using the NSCompositeSourceOver
operator.

Working With Alignment Metadata

– alignmentRect (page 1336)
Returns alignment metadata that your code can use to position the image during layout.

– setAlignmentRect: (page 1363)
Sets the alignment metadata that your code can use to position the image during layout.

Setting the Image Storage Options

– cacheMode (page 1339)
Returns the receiver’s caching mode.

– setCacheMode: (page 1365)
Set the receiver’s caching mode.

– cacheDepthMatchesImageDepth (page 1338) Deprecated in Mac OS X v10.6
Returns a Boolean value indicating whether an image's offscreen window caches use the same bit
depth as the image data itself. (Deprecated. NSImage no longer caches to windows. A cache is now
generated appropriate for the destination where an image is drawn. There is no replacement method.)

– isCachedSeparately (page 1356) Deprecated in Mac OS X v10.6
Returns a Boolean value indicating whether each image representation caches its contents in a separate
offscreen window. (Deprecated. NSImage no longer caches to windows. There is no replacement
method)

– isDataRetained (page 1356) Deprecated in Mac OS X v10.6
Returns a Boolean value indicating whether the receiver retains its source image data. (Deprecated.
In Mac OS v10.6, NSImage no longer discards data in such a way that the original can no longer be
reconstructed. There is no replacement method.)

– setCacheDepthMatchesImageDepth: (page 1364) Deprecated in Mac OS X v10.6
Sets whether the receiver's offscreen window caches use the same bit depth as the image data itself.
(Deprecated. NSImage no longer caches to windows. A cache is now generated appropriate for the
destination where an image is drawn. There is no replacement method.)

– setCachedSeparately: (page 1365) Deprecated in Mac OS X v10.6
Sets whether each image representation uses a separate offscreen window to cache its contents.
(Deprecated. NSImage no longer caches to windows. There is no replacement method)

– setDataRetained: (page 1366) Deprecated in Mac OS X v10.6
Sets whether the receiver retains its source image data. (Deprecated. In Mac OS v10.6, NSImage no
longer discards data in such a way that the original can no longer be reconstructed. There is no
replacement method.)

Tasks 1327
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Setting the Image Drawing Options

– isValid (page 1357)
Returns a Boolean value indicating whether an image representation from the receiver can be drawn.

– setBackgroundColor: (page 1364)
Sets the background color of the image.

– backgroundColor (page 1336)
Returns the background color of image.

– isFlipped (page 1357)
Returns a Boolean value indicating whether the image uses a flipped coordinate system. (Deprecated.
The flipped property of an image was widely misunderstood and has been deprecated. Use
drawInRect:fromRect:operation:fraction:respectFlipped:hints: (page 1347) to draw
respecting a context’s flipped status and lockFocusFlipped: (page 1359) to draw into a flipped
image.)

– recache (page 1361)
Invalidates and frees the offscreen caches of all image representations.

– scalesWhenResized (page 1362) Deprecated in Mac OS X v10.6
Returns a Boolean value indicating whether image representations are scaled to fit the receiver's size.
(Deprecated. This method was related to caching behavior. In Mac OS X v10.6 and later image caching
is no long necessary and as a resuilt there is no replacement necessary.)

– setFlipped: (page 1367) Deprecated in Mac OS X v10.6
Sets whether the polarity of the y axis is inverted when drawing an image. (Deprecated. The flipped
property of an image was widely misunderstood and has been deprecated. Use
drawInRect:fromRect:operation:fraction:respectFlipped:hints: (page 1347) to draw
respecting a context’s flipped status and lockFocusFlipped: (page 1359) to draw into a flipped
image.)

– setScalesWhenResized: (page 1369) Deprecated in Mac OS X v10.6
Sets whether different-sized image representations are scaled to fit the receiver's size. (Deprecated.
This method was related to caching behavior. In Mac OS X v10.6 and later image caching is no long
necessary and as a resuilt there is no replacement necessary.)

Assigning a Delegate

– setDelegate: (page 1366)
Sets the delegate object of the receiver.

– delegate (page 1344)
Returns the delegate object of the receiver

Producing TIFF Data for the Image

– TIFFRepresentation (page 1372)
Returns a data object containing TIFF data for all of the image representations in the receiver.

– TIFFRepresentationUsingCompression:factor: (page 1373)
Returns a data object containing TIFF data with the specified compression settings for all of the image
representations in the receiver.

1328 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Producing a CGImage from an Image

– CGImageForProposedRect:context:hints: (page 1339)
Returns a CGImage capturing the drawing of the receiver.

Managing Incremental Loads

– cancelIncrementalLoad (page 1339)
Cancels the current download operation immediately, if the image is being incrementally loaded.

Image Accessibility

– accessibilityDescription (page 1334)
Returns the image’s accessibility description.

– setAccessibilityDescription: (page 1363)
Sets the image’s accessibility description.

Class Methods

canInitWithPasteboard:
Tests whether the receiver can create an instance of itself using pasteboard data.

+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

The pasteboard containing the image data.

Return Value
YES if the receiver knows how to handle the data on the pasteboard; otherwise, NO.

Discussion
This method uses the NSImageRep class method imageUnfilteredPasteboardTypes (page 1411) to find
a class that can handle the data in the specified pasteboard. If you create your own NSImageRep subclasses,
override the imageUnfilteredPasteboardTypes (page 1411) method to notify NSImage of the pasteboard
types your class supports.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imagePasteboardTypes (page 1332)

Related Sample Code
CocoaDragAndDrop
People

Class Methods 1329
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Declared In
NSImage.h

imageFileTypes
Returns an array of strings identifying the image types supported by the registered NSImageRep objects.

+ (NSArray *)imageFileTypes

Return Value
An array of NSString objects, each of which identifies a single supported file type. The array can include
encoded HFS file types as well as filename extensions.

Discussion
This list includes all file types supported by registered subclasses of NSImageRep plus those that can be
converted to a supported type by a user-installed filter service. You can pass the array returned by this method
directly to the runModalForTypes: (page 1821) method of NSOpenPanel.

When creating a subclass of NSImageRep, do not override this method. Instead, override the
imageUnfilteredFileTypes (page 1410) method to notify NSImage of the file types your class supports
directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imageUnfilteredFileTypes (page 1333)

Related Sample Code
CocoaSlides
DeskPictAppDockMenu
Quartz Composer SlideShow
TrackBall

Declared In
NSImage.h

imageNamed:
Returns the NSImage instance associated with the specified name.

+ (id)imageNamed:(NSString *)name

Parameters
name

The name associated with the desired image.

Return Value
The NSImage object associated with the specified name, or nil if no such image was found.

Discussion
This method searches for named images in several places, returning the first image it finds matching the
given name. The order of the search is as follows:

1330 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

1. Search for an object whose name was set explicitly using the setName: method and currently resides in
the image cache.

2. Search the application's main bundle for a file whose name matches the specified string. (For information
on how the bundle is searched, see ““Accessing a Bundle's Contents”“ in Bundle Programming Guide.)

3. Search the Application Kit framework for a shared image with the specified name.

When looking for files in the application bundle, it is better (but not required) to include the filename extension
in the name parameter. When naming an image with the setName: method, it is also convention not to
include filename extensions in the names you specify. That way, you can easily distinguish between images
you have named explicitly and those you want to load from the application's bundle.

One particularly useful image you can retrieve is your application's icon. This image is set by Cocoa
automatically and referenced by the string @"NSApplicationIcon". Icons for other applications can be
obtained through the use of methods declared in the NSWorkspace class. You can also retrieve many of the
standard system images using Cocoa defined constants; for more information, see the “Image Template
Constants” (page 1380), “Sharing Permissions Named Images” (page 1385), “System Entity Images” (page 1386),
“Toolbar Named Images” (page 1387), and “View Type Template Images” (page 1390) sections for applicable
constants.

If an application is linked in Mac OS X v10.5 or later, images requested using this method and whose name
ends in the word “Template” are automatically marked as template images.

The NSImage class may cache a reference to the returned image object for performance in some cases.
However, the class holds onto cached objects only while the object exists. If the image object is subsequently
released, either because its retain count was 0 or it was not referenced anywhere in a garbage-collected
application, the object may be quietly removed from the cache. Thus, if you plan to hold onto a returned
image object, you must retain it like you would any Cocoa object. You can clear an image object from the
cache explicitly by calling the object’s setName: method and passing nil for the image name.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setName: (page 1368)
– name (page 1360)
iconForFile: (page 3460) (NSWorkspace)
+ imageFileTypes (page 1330)

Related Sample Code
EnhancedDataBurn
FunHouse
GridCalendar
IconCollection
MenuMadness

Declared In
NSImage.h

Class Methods 1331
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

imagePasteboardTypes
Returns an array of strings identifying the pasteboard types supported directly by the registered NSImageRep
objects.

+ (NSArray *)imagePasteboardTypes

Return Value
An array of NSString objects, each of which identifies a single supported pasteboard type. By default, this
list contains the NSPDFPboardType, NSPICTPboardType, NSPostScriptPboardType, and
NSTIFFPboardType types.

Discussion
This list includes all pasteboard types supported by registered subclasses of NSImageRep plus those that
can be converted to a supported type by a user-installed filter service.

When creating a subclass of NSImageRep, do not override this method. Instead, override the
imageUnfilteredPasteboardTypes (page 1411) method to notify NSImage of the pasteboard types your
class supports.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imageUnfilteredPasteboardTypes (page 1333)

Related Sample Code
CocoaDragAndDrop
GeekGameBoard
GLUT
Sketch+Accessibility
Sketch-112

Declared In
NSImage.h

imageTypes
Returns an array of UTI strings identifying the image types supported by the registered NSImageRep objects,
either directly or through a user-installed filter service.

+ (NSArray *)imageTypes

Return Value
An array of NSString objects, each of which contains a UTI identifying a supported image type. Some sample
image-related UTI strings include "public.image”, "public.jpeg”, and "public.tiff”. For a list of
supported types, see UTCoreTypes.h.

Discussion
The returned list includes UTIs all file types supported by registered subclasses of NSImageRep plus those
that can be converted to a supported type by a user-installed filter service. You can use the returned UTI
strings with any method that supports UTIs.

1332 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

You should not override this method directly. Instead, you should override the imageTypes method of
NSImageRep.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ imageUnfilteredTypes (page 1334)

Related Sample Code
AnimatedTableView
LightTable

Declared In
NSImage.h

imageUnfilteredFileTypes
Returns an array of strings identifying the file types supported directly by the registered NSImageRep objects.

+ (NSArray *)imageUnfilteredFileTypes

Return Value
An array of NSString objects, each of which identifies a single supported file type. File types are identified
by file extension and HFS file types.

Discussion
The returned list does not contain pasteboard types that are available only through a user-installed filter
service.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imageFileTypes (page 1330)

Declared In
NSImage.h

imageUnfilteredPasteboardTypes
Returns an array of strings identifying the pasteboard types supported directly by the registered NSImageRep
objects.

+ (NSArray *)imageUnfilteredPasteboardTypes

Return Value
An array of NSString objects, each of which identifies a single supported pasteboard type.

Discussion
The returned list does not contain pasteboard types that are supported only through a user-installed filter
service.

Class Methods 1333
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imagePasteboardTypes (page 1332)

Related Sample Code
GeekGameBoard

Declared In
NSImage.h

imageUnfilteredTypes
Returns an array of UTI strings identifying the image types supported directly by the registered NSImageRep
objects.

+ (NSArray *)imageUnfilteredTypes

Return Value
An array of NSString objects, each of which contains a UTI identifying a supported image type. Some sample
image-related UTI strings include "public.image”, "public.jpeg”, and "public.tiff”. For a list of
supported types, see UTCoreTypes.h.

Discussion
The returned list includes UTI strings only for those file types that are supported directly by registered
subclasses of NSImageRep. It does not include types that are supported through user-installed filter services.
You can use the returned UTI strings with any method that supports UTIs.

You should not override this method directly. Instead, you should override the imageUnfilteredTypes
method of NSImageRep.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ imageTypes (page 1332)

Declared In
NSImage.h

Instance Methods

accessibilityDescription
Returns the image’s accessibility description.

- (NSString *)accessibilityDescription

Return Value
A short localized string that does not include the name of the interface element.

1334 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Availability
Available in Mac OS X v10.6 and later.

See Also
– setAccessibilityDescription: (page 1363)

Declared In
NSImage.h

addRepresentation:
Adds the specified image representation object to to the receiver.

- (void)addRepresentation:(NSImageRep *)imageRep

Parameters
imageRep

The image representation to add.

Discussion
After invoking this method, you may need to explicitly set features of the new image representation, such
as the size, number of colors, and so on. This is true particularly when the NSImage object has multiple image
representations to choose from. See NSImageRep and its subclasses for the methods you use to complete
initialization.

Any representation added by this method is retained by the receiver. Image representations cannot be shared
among multiple NSImage objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representations (page 1362)
– removeRepresentation: (page 1362)

Related Sample Code
CocoaVideoFrameToNSImage
CompositeLab
Reducer
Son of Grab
StillMotion

Declared In
NSImage.h

addRepresentations:
Adds an array of image representation objects to the receiver.

- (void)addRepresentations:(NSArray *)imageReps

Instance Methods 1335
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Parameters
imageReps

An array of NSImageRep objects.

Discussion
After invoking this method, you may need to explicitly set features of the new image representations, such
as their size, number of colors, and so on. This is true particularly when the NSImage object has multiple
image representations to choose from. See NSImageRep and its subclasses for the methods you use to
complete initialization.

Representations added by this method are retained by the receiver. Image representations cannot be shared
among multiple NSImage objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representations (page 1362)
– removeRepresentation: (page 1362)

Declared In
NSImage.h

alignmentRect
Returns alignment metadata that your code can use to position the image during layout.

- (NSRect)alignmentRect

Return Value
A rectangle containing the layout information for the image. If not set, the returned rectangle has an origin
of (0, 0) and a size that matches the size of the image.

Discussion
The returned rectangle is merely a hint that your own code can use to determine positioning. The NSImage
class does not use this rectangle during drawing. However, instances of NSCell typically use this information
when laying out images within their own boundaries.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAlignmentRect: (page 1363)

Declared In
NSImage.h

backgroundColor
Returns the background color of image.

- (NSColor *)backgroundColor

1336 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Return Value
The background color of the image. The default color is transparent, as returned by the clearColor (page
668) method of NSColor.

Discussion
The background color is visible only if the drawn image representation does not completely cover all of the
pixels available for the image's current size.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

bestRepresentationForDevice:
Returns the best representation for the device with the specified characteristics. (Deprecated in Mac OS X
v10.6.)

- (NSImageRep *)bestRepresentationForDevice:(NSDictionary *)deviceDescription

Parameters
deviceDescription

A dictionary of attributes for the specified device, or nil to specify the current device. For a list of
dictionary keys and values appropriate to display and print devices, see the constants in NSScreen.

Return Value
The image representation that most closely matches the specified criteria.

Discussion
If deviceDescription is nil, this method uses the attributes of the device on which the content is to be
drawn.

For information on how the "best" representation is chosen, see the “Images” chapter of Cocoa Drawing
Guide.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– representations (page 1362)
– prefersColorMatch (page 1361)
– matchesOnMultipleResolution (page 1360)
– usesEPSOnResolutionMismatch (page 1374)

Related Sample Code
LayerBackedOpenGLView
NSOpenGL Fullscreen
PDF Annotation Editor
Sketch-112

Instance Methods 1337
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Declared In
NSImage.h

bestRepresentationForRect:context:hints:
Returns the best representation of the image for the specified rect using the provided hints.

- (NSImageRep *)bestRepresentationForRect:(NSRect)rect context:(NSGraphicsContext
 *)referenceContext hints:(NSDictionary *)hints

Parameters
rect

The area of the image to return.

referenceContext
A graphics context. This value can be nil.

hints
An optional dictionary of hints that provide more context for selecting or generating a CGImage, and
may override properties of the referenceContext. See “Image Hint Dictionary Keys” (page 1375) for
a summary of the possible key-value pairs.

Return Value
The image representation that most closely matches the specified criteria.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSImage.h

cacheDepthMatchesImageDepth
Returns a Boolean value indicating whether an image's offscreen window caches use the same bit depth as
the image data itself. (Deprecated in Mac OS X v10.6. NSImage no longer caches to windows. A cache is now
generated appropriate for the destination where an image is drawn. There is no replacement method.)

- (BOOL)cacheDepthMatchesImageDepth

Return Value
YES if the offscreen window caches use the same bit depth as the image data; otherwise, NO. The default
value is NO.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setCacheDepthMatchesImageDepth: (page 1364)

Declared In
NSImage.h

1338 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

cacheMode
Returns the receiver’s caching mode.

- (NSImageCacheMode)cacheMode

Return Value
A value indicating the caching mode. For a list of possible values, see NSImageCacheMode (page 1379). This
value is set to NSImageCacheDefault by default.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setCacheMode: (page 1365)

Declared In
NSImage.h

cancelIncrementalLoad
Cancels the current download operation immediately, if the image is being incrementally loaded.

- (void)cancelIncrementalLoad

Discussion
This call has no effect if the image is not loading.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSImage.h

CGImageForProposedRect:context:hints:
Returns a CGImage capturing the drawing of the receiver.

- (CGImageRef)CGImageForProposedRect:(NSRect *)proposedDestRect
context:(NSGraphicsContext *)referenceContext hints:(NSDictionary *)hints

Parameters
proposedDestRect

On input, the proposed destination rectangle for drawing the image. If NULL, it defaults to the smallest
pixel-integral rectangle containing {{0,0}, [self size]}. The proposedDestRect is in user space in the
reference context.

referenceContext
A graphics context.

hints
A dictionary of hints that provide more context for selecting or generating a CGImage, and may
override properties of the referenceContext.

Instance Methods 1339
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Return Value
A CGImageRef. This may be an existing CGImage if one is available. If not, a new CGImage is created.

Discussion
An NSImage is potentially resolution independent, and may have representations that allow it to draw well
in many contexts. A CGImage is more like a single pixel-based representation. This method produces a
snapshot of how the NSImage would draw if it was asked to draw in the proposed rectangle in the graphics
context.

All input parameters are optional. They provide hints for how to choose among existing CGImages, or how
to create one if there isn't already a CGImage available. The parameters are only hints.

This method is typically called, not overridden.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSImage.h

compositeToPoint:fromRect:operation:
Composites a portion of the image to the specified point in the current coordinate system. (Deprecated in
Mac OS X v10.6.)

- (void)compositeToPoint:(NSPoint)aPoint fromRect:(NSRect)srcRect
operation:(NSCompositingOperation)op

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

srcRect
The portion of the image you want to draw, specified in the image's coordinate system.

op
The compositing operation to use when drawing the image to the screen. The supported compositing
operations are described in “Constants” (page 1375).

Discussion
This method draws the specified portion of the image without checking the bounds rectangle you pass into
the srcRect parameter. If you specify a source rectangle that strays outside of the image's bounds rectangle,
it is conceivable that you could composite parts of the offscreen cache window that do not belong to the
receiver's image. You can avoid this problem using the
drawAtPoint:fromRect:operation:fraction: (page 1346) method, which checks the source rectangle
before drawing.

During drawing, the image is composited from its offscreen window cache. Because the offscreen cache is
not created until the image representation is first used, this method may need to render the image before
compositing. Bitmap representations in particular are not cached until they are explicitly rendered. You can
use the lockFocus (page 1358) and unlockFocus (page 1374) methods to force the cached version to be
created.

1340 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Compositing part of an image is as efficient as compositing the whole image, but printing just part of an
image is not. When printing, it’s necessary to draw the whole image and rely on a clipping path to be sure
that only the desired portion appears.

During printing, this method ignores the op parameter. Even though this parameter is ignored, this method
attempts to render the image as close as possible to its appearance when the compositing operation is used
on the screen. In either case, the best image representation is chosen for the printing context.

Important: If you are writing new code, or updating old code, you should avoid using this method. Instead,
you should use the drawAtPoint:fromRect:operation:fraction: or
drawInRect:fromRect:operation:fraction: method to draw the image. Although the method itself
is not deprecated, the behavior it provides is not recommended for general use.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– dissolveToPoint:fromRect:fraction: (page 1345)
– drawAtPoint:fromRect:operation:fraction: (page 1346)
– drawInRect:fromRect:operation:fraction: (page 1347)

Declared In
NSImage.h

compositeToPoint:fromRect:operation:fraction:
Composites a portion of the image at the specified opacity to the current coordinate system. (Deprecated
in Mac OS X v10.6.)

- (void)compositeToPoint:(NSPoint)aPoint fromRect:(NSRect)srcRect
operation:(NSCompositingOperation)op fraction:(CGFloat)delta

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

srcRect
The portion of the image you want to draw, specified in the image's coordinate system.

op
The compositing operation to use when drawing the image to the screen. The supported compositing
operations are described in “Constants” (page 1375).

delta
The desired opacity of the image, specified as a value between 0.0 and 1.0, with 1.0 representing total
opacity. Values larger than 1.0 are interpreted as 1.0. This method always expects to render something,
so for values that are equal to or less than 0, this method renders at full opacity.

Discussion
Behaves the same as compositeToPoint:fromRect:operation: (page 1340) except that you can specify
the amount of opacity to use when drawing the image.

Instance Methods 1341
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Important: If you are writing new code, or updating old code, you should avoid using this method. Instead,
you should use the drawAtPoint:fromRect:operation:fraction: or
drawInRect:fromRect:operation:fraction: method to draw the image. Although the method itself
is not deprecated, the behavior it provides is not recommended for general use.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– dissolveToPoint:fromRect:fraction: (page 1345)
– drawAtPoint:fromRect:operation:fraction: (page 1346)
– drawInRect:fromRect:operation:fraction: (page 1347)

Declared In
NSImage.h

compositeToPoint:operation:
Composites the entire image to the specified point in the current coordinate system. (Deprecated in Mac OS
X v10.6.)

- (void)compositeToPoint:(NSPoint)aPoint operation:(NSCompositingOperation)op

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

op
The compositing operation to use when drawing the image to the screen. The supported compositing
operations are described in “Constants” (page 1375).

Discussion
This method draws the receiver's best image representation at the specified point in the currently focused
view. The entire image is drawn using its current size information. During drawing, the image is composited
from its offscreen window cache. Because the offscreen cache is not created until the image representation
is first used, this method may need to render the image before compositing. Bitmap representations in
particular are not cached until they are explicitly rendered. You can use the lockFocus (page 1358) and
unlockFocus (page 1374) methods to force the cached version to be created.

During printing, this method ignores the op parameter. Even though this parameter is ignored, this method
attempts to render the image as close as possible to its appearance when the compositing operation is used
on the screen. In either case, the best image representation is chosen for the printing context.

Important: If you are writing new code, or updating old code, you should avoid using this method. Instead,
you should use the drawAtPoint:fromRect:operation:fraction: or
drawInRect:fromRect:operation:fraction: method to draw the image. Although the method itself
is not deprecated, the behavior it provides is not recommended for general use.

Availability
Available in Mac OS X v10.0 and later.

1342 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Deprecated in Mac OS X v10.6.

See Also
– dissolveToPoint:fraction: (page 1344)
– drawAtPoint:fromRect:operation:fraction: (page 1346)
– drawInRect:fromRect:operation:fraction: (page 1347)

Related Sample Code
Image Difference
QTKitMovieShuffler
RGB ValueTransformers
Sketch-112
STUCAuthoringDeviceCocoaSample

Declared In
NSImage.h

compositeToPoint:operation:fraction:
Composites the entire image at the specified opacity in the current coordinate system. (Deprecated in Mac
OS X v10.6.)

- (void)compositeToPoint:(NSPoint)aPoint operation:(NSCompositingOperation)op
fraction:(CGFloat)delta

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

op
The compositing operation to use when drawing the image to the screen. The supported compositing
operations are described in “Constants” (page 1375).

delta
The desired opacity of the image, specified as a value between 0.0 and 1.0, with 1.0 representing total
opacity. Values larger than 1.0 are interpreted as 1.0. This method always expects to render something,
so for values that are equal to or less than 0, this method renders at full opacity.

Discussion
Behaves the same as compositeToPoint:operation: (page 1342) except that you can specify the amount
of opacity to use when drawing the image.

Important: If you are writing new code, or updating old code, you should avoid using this method. Instead,
you should use the drawAtPoint:fromRect:operation:fraction: or
drawInRect:fromRect:operation:fraction: method to draw the image. Although the method itself
is not deprecated, the behavior it provides is not recommended for general use.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Instance Methods 1343
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

See Also
– dissolveToPoint:fraction: (page 1344)
– drawAtPoint:fromRect:operation:fraction: (page 1346)
– drawInRect:fromRect:operation:fraction: (page 1347)

Declared In
NSImage.h

delegate
Returns the delegate object of the receiver

- (id < NSImageDelegate >)delegate

Return Value
The current delegate object, or nil if no delegate has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 1366)

Declared In
NSImage.h

dissolveToPoint:fraction:
Composites the entire image to the specified location using the NSCompositeSourceOver operator.
(Deprecated in Mac OS X v10.6.)

- (void)dissolveToPoint:(NSPoint)aPoint fraction:(CGFloat)delta

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

delta
The desired opacity of the image, specified as a value between 0.0 and 1.0. A value of 0.0 renders the
image totally transparent while 1.0 renders it fully opaque. Values larger than 1.0 are interpreted as
1.0.

Discussion
Except for the choice of compositing operator, this method behaves in the same way as the
compositeToPoint:operation: (page 1342) method. During printing, the delta parameter is ignored.

If the source image contains alpha information, this operation may promote the destination NSWindow object
to contain alpha information.

1344 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

To slowly dissolve this image onto another, you can invoke this method (or the
dissolveToPoint:fromRect:fraction: (page 1345) method) repeatedly with an ever-increasing delta
value. Because the delta parameter refers to the visible fraction of the source image, increasing the value
causes the source image to replace the destination content gradually. You should generally perform this
type of operation using a buffered window or other offscreen drawing environment.

Special Considerations

If you are writing new code, or updating old code, you should avoid using this method. Instead, you should
use the drawAtPoint:fromRect:operation:fraction: or drawInRect:fromRect:operation:fraction:
method to draw the image. Although the method itself is not deprecated, the behavior it provides is not
recommended for general use.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSImage.h

dissolveToPoint:fromRect:fraction:
Composites a portion of the image to the specified location using the NSCompositeSourceOver operator.
(Deprecated in Mac OS X v10.6.)

- (void)dissolveToPoint:(NSPoint)aPoint fromRect:(NSRect)srcRect
fraction:(CGFloat)delta

Parameters
aPoint

The point at which to draw the image, specified in the current coordinate system.

srcRect
The portion of the image you want to draw, specified in the image's coordinate system.

delta
The desired opacity of the image, specified as a value between 0.0 and 1.0. A value of 0.0 renders the
image totally transparent while 1.0 renders it fully opaque. Values larger than 1.0 are interpreted as
1.0.

Discussion
Except for the choice of compositing operator, this method behaves in the same way as the
compositeToPoint:fromRect:operation: (page 1340) method. During printing, the delta parameter is
ignored.

If the source image contains alpha information, this operation may promote the destination NSWindow object
to contain alpha information.

Special Considerations

If you are writing new code, or updating old code, you should avoid using this method. Instead, you should
use the drawAtPoint:fromRect:operation:fraction: or drawInRect:fromRect:operation:fraction:
method to draw the image. Although the method itself is not deprecated, the behavior it provides is not
recommended for general use.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1345
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Deprecated in Mac OS X v10.6.

See Also
– dissolveToPoint:fraction: (page 1344)

Declared In
NSImage.h

drawAtPoint:fromRect:operation:fraction:
Draws all or part of the image at the specified point in the current coordinate system.

- (void)drawAtPoint:(NSPoint)point fromRect:(NSRect)srcRect
operation:(NSCompositingOperation)op fraction:(CGFloat)delta

Parameters
point

The location in the current coordinate system at which to draw the image.

srcRect
The source rectangle specifying the portion of the image you want to draw. The coordinates of this
rectangle are specified in the image's own coordinate system. If you pass in NSZeroRect, the entire
image is drawn.

op
The compositing operation to use when drawing the image. See theNSCompositingOperation (page
1375) constants.

delta
The opacity of the image, specified as a value from 0.0 to 1.0. Specifying a value of 0.0 draws the
image as fully transparent while a value of 1.0 draws the image as fully opaque. Values greater than
1.0 are interpreted as 1.0.

Discussion
The image content is drawn at its current resolution and is not scaled unless the CTM of the current coordinate
system itself contains a scaling factor. The image is otherwise positioned and oriented using the current
coordinate system.

Unlike the compositeToPoint:fromRect:operation: (page 1340) and
compositeToPoint:fromRect:operation:fraction: (page 1341) methods, this method checks the
rectangle you pass to the srcRect parameter and makes sure it does not lie outside the image bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dissolveToPoint:fraction: (page 1344)
– drawInRect:fromRect:operation:fraction: (page 1347)

Related Sample Code
ComplexBrowser
Reducer

Declared In
NSImage.h

1346 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

drawInRect:fromRect:operation:fraction:
Draws all or part of the image in the specified rectangle in the current coordinate system.

- (void)drawInRect:(NSRect)dstRect fromRect:(NSRect)srcRect
operation:(NSCompositingOperation)op fraction:(CGFloat)delta

Parameters
dstRect

The rectangle in which to draw the image, specified in the current coordinate system.

srcRect
The source rectangle specifying the portion of the image you want to draw. The coordinates of this
rectangle must be specified using the image's own coordinate system. If you pass in NSZeroRect,
the entire image is drawn.

op
The compositing operation to use when drawing the image. See theNSCompositingOperation (page
1375) constants.

delta
The opacity of the image, specified as a value from 0.0 to 1.0. Specifying a value of 0.0 draws the
image as fully transparent while a value of 1.0 draws the image as fully opaque. Values greater than
1.0 are interpreted as 1.0.

Discussion
If the srcRect and dstRect rectangles have different sizes, the source portion of the image is scaled to fit
the specified destination rectangle. The image is otherwise positioned and oriented using the current
coordinate system.

Unlike the compositeToPoint:fromRect:operation: (page 1340) and
compositeToPoint:fromRect:operation:fraction: (page 1341) methods, this method checks the
rectangle you pass to the srcRect parameter and makes sure it does not lie outside the image bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dissolveToPoint:fraction: (page 1344)
– drawAtPoint:fromRect:operation:fraction: (page 1346)

Related Sample Code
AnimatedTableView
CocoaVideoFrameToNSImage
PhotoSearch
Transformed Image
WebKitDOMElementPlugIn

Declared In
NSImage.h

drawInRect:fromRect:operation:fraction:respectFlipped:hints:
Draws all or part of the image in the specified rectangle respecting the flippedness and hints.

Instance Methods 1347
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

- (void)drawInRect:(NSRect)dstSpacePortionRect fromRect:(NSRect)srcSpacePortionRect
operation:(NSCompositingOperation)op fraction:(CGFloat)requestedAlpha
respectFlipped:(BOOL)respectContextIsFlipped hints:(NSDictionary *)hints

Parameters
dstSpacePortionRect

The rectangle in which to draw the image, specified in the current coordinate system.

srcSpacePortionRect
The source rectangle specifying the portion of the image you want to draw. The coordinates of this
rectangle must be specified using the image's own coordinate system. If you pass in NSZeroRect,
the entire image is drawn.

op
The compositing operation to use when drawing the image. See theNSCompositingOperation (page
1375) constants.

requestedAlpha
The alpha of the image, specified as a value from 0.0 to 1.0. Specifying a value of 0.0 draws the image
as fully transparent while a value of 1.0 draws the image as fully opaque. Values greater than 1.0 are
interpreted as 1.0.

respectContextIsFlipped
YES if the drawing should respect the context flipped state, otherwise NO.

hints
An optional dictionary of hints that provide more context for selecting or generating the image. See
“Image Hint Dictionary Keys” (page 1375) for a summary of the possible key-value pairs.

Discussion
If the srcSpacePortionRect and dstSpacePortionRect rectangles have different sizes, the source
portion of the image is scaled to fit the specified destination rectangle.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSImage.h

drawRepresentation:inRect:
Draws the image using the specified image representation object.

- (BOOL)drawRepresentation:(NSImageRep *)imageRep inRect:(NSRect)dstRect

Parameters
imageRep

The image representation object to be drawn.

dstRect
The rectangle in which to draw the image representation, specified in the current coordinate system.

Return Value
YES if the image was successfully drawn; otherwise, returns NO.

1348 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Discussion
This method fills the specified rectangle with the image's current background color and then sends a message
to the specified image representation asking if to draw itself. If the image supports the ability to scale itself
when it is resized, this method sends a drawInRect: (page 1417) message; otherwise, it sends a
drawAtPoint: (page 1416) message.

You should not call this method directly; an NSImage object uses it to cache and print its image
representations. You can override this method to change the way images are rendered into their caches and
onto the printed page. For example, you could scale or rotate the coordinate system before sending this
message to super to continue rendering the image representation.

If the background color is fully transparent and the image data is not being cached, the specified rectangle
is not to be filled before the representation draws.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 1336)

Declared In
NSImage.h

hitTestRect:withImageDestinationRect:context:hints:flipped:
Returns whether the destination rectangle would intersect a non-transparent portion of the image.

-
(BOOL)hitTestRect:(NSRect)testRectDestSpacewithImageDestinationRect:(NSRect)imageRectDestSpacecontext:(NSGraphicsContext
 *)referenceContexthints:(NSDictionary *)hintsflipped:(BOOL)flipped

Parameters
testRectDestSpace

The rectangle to hit test.

imageRectDestSpace
A rectangle representing the drawn size of the image.

referenceContext
A graphics context. This value can be nil.

hints
An optional dictionary of hints that provide more context for selecting or generating a CGImage, and
may override properties of the referenceContext. See “Image Hint Dictionary Keys” (page 1375) for
a summary of the possible key-value pairs.

flipped
YES if the image is flipped, otherwise NO.

Return Value
YES if the testRectDestSpace intersects with non-transparent content within the imageRectDestSpace,
otherwise NO.

Discussion
This method simulates the results of hit-testing the test rectangle as if the image was drawn in the graphics
context using the provided hints and respecting the specified flippedness..

Instance Methods 1349
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSImage.h

initByReferencingFile:
Initializes and returns an NSImage instance and associates it with the specified file.

- (id)initByReferencingFile:(NSString *)filename

Parameters
filename

A full or relative path name specifying the file with the desired image data. Relative paths must be
relative to the current working directory.

Return Value
An initialized NSImage instance, or nil if the new instance cannot be initialized.

Discussion
This method initializes the image object lazily. It does not actually open the specified file or create any image
representations from its data until an application attempts to draw the image or request information about
it.

The filename parameter should include the file extension that identifies the type of the image data. The
mechanism that actually creates the image representation for filename looks for an NSImageRep subclass
that handles that data type from among those registered with NSImage.

Because this method doesn’t actually create image representations for the image data, your application
should do error checking before attempting to use the image; one way to do so is by invoking the
isValid (page 1357) method to check whether the image can be drawn.

This method invokes setDataRetained: (page 1366) with an argument of YES, thus enabling it to hold onto
its filename. When archiving an image created with this method, only the image's filename is written to the
archive.

If the cached version of the image uses less memory than the original image data, the original data is flushed
and the cached image is used. (This can occur for images whose resolution is greater than 72 dpi.) If you
resize the image by less than 50%, the data is loaded in again from the file. If you expect the file to change
or be deleted, you should use initWithContentsOfFile: (page 1352) instead.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CompositeLab
FilterDemo
ImagePicker
PictureTaker
Rulers

Declared In
NSImage.h

1350 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

initByReferencingURL:
Initializes and returns an NSImage instance and associates it with the specified URL.

- (id)initByReferencingURL:(NSURL *)url

Parameters
url

The URL identifying the image.

Return Value
An initialized NSImage instance, or nil if the new instance cannot be initialized.

Discussion
This method initializes the image object lazily. It does not attempt to retrieve the data from the specified
URL or create any image representations from that data until an application attempts to draw the image or
request information about it.

This url parameter should include a file extension that identifies the type of the image data. The mechanism
that actually creates the image representation looks for an NSImageRep subclass that handles that data type
from among those registered with NSImage.

Because this method doesn’t actually create image representations for the image data, your application
should do error checking before attempting to use the image; one way to do so is by invoking the
isValid (page 1357) method to check whether the image can be drawn.

This method invokes setDataRetained: (page 1366) with an argument of YES, thus enabling it to hold onto
its URL. When archiving an image created with this method, only the image's URL is written to the archive.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
AnimatedTableView
TrackBall

Declared In
NSImage.h

initWithCGImage:size:
Initializes and returns an NSImage instance with the contents of the CGImage.

- (id)initWithCGImage:(CGImageRef)cgImagesize:(NSSize)size

Parameters
cgImage

The source CGImage.

size
The size of the new image. If size is NSZeroSize, the pixel dimensions of cgImage are assumed as
the image’s size.

Return Value
An initialized NSImage instance, or nil if the new instance cannot be initialized.

Instance Methods 1351
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Discussion
You should not assume anything about the image, other than that drawing it is equivalent to drawing the
CGImage.

This is not a designated initializer.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
CameraBrowser
QuickLookDownloader
SimpleCameraBrowser

Declared In
NSImage.h

initWithContentsOfFile:
Initializes and returns an NSImage instance with the contents of the specified file.

- (id)initWithContentsOfFile:(NSString *)filename

Parameters
filename

A full or relative path name specifying the file with the desired image data. Relative paths must be
relative to the current working directory.

Return Value
An initialized NSImage instance, or nil if the method cannot create an image representation from the
contents of the specified file.

Discussion
Unlike initByReferencingFile: (page 1350), which initializes an NSImage object lazily, this method
immediately opens the specified file and creates one or more image representations from its data.

The filename parameter should include the file extension that identifies the type of the image data. This
method looks for an NSImageRep subclass that handles that data type from among those registered with
NSImage.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

initWithContentsOfURL:
Initializes and returns an NSImage instance with the contents of the specified URL.

- (id)initWithContentsOfURL:(NSURL *)aURL

1352 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Parameters
aUrl

The URL identifying the image.

Return Value
An initialized NSImage instance, or nil if the method cannot create an image representation from the
contents of the specified URL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaCreateMovie

Declared In
NSImage.h

initWithData:
Initializes and returns an NSImage instance with the contents of the specified NSData object.

- (id)initWithData:(NSData *)data

Parameters
data

The data object containing the image data.

Return Value
An initialized NSImage instance, or nil if the method cannot create an image representation from the
contents of the specified data object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

initWithDataIgnoringOrientation:
Initializes and returns an NSImage instance with the contents of the specified NSData object, ignoring the
EXIF orientation tags..

- (id)initWithDataIgnoringOrientation:(NSData *)data

Parameters
data

The data object containing the image data.

Return Value
An initialized NSImage instance, or nil if the method cannot create an image representation from the
contents of the specified data object.

Availability
Available in Mac OS X v10.6 and later.

Instance Methods 1353
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Declared In
NSImage.h

initWithIconRef:
Initializes the image object with a Carbon-style icon resource.

- (id)initWithIconRef:(IconRef)iconRef

Parameters
iconRef

A reference to a Carbon icon resource.

Return Value
An initialized NSImage instance.

Discussion
Creates one or more bitmap image representations, one for each size icon contained in the IconRef data
structure. This initialization method automatically retains the data in the iconRef parameter and loads the
bitmaps from that data file lazily.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSImage.h

initWithPasteboard:
Initializes and returns an NSImage instance with data from the specified pasteboard.

- (id)initWithPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

The pasteboard containing the image data.

Return Value
An initialized NSImage instance, or nil if the method cannot create an image representation from the
contents of the pasteboard.

Discussion
The specified pasteboard should contain a type supported by one of the registered NSImageRep subclasses.
Table 61-1 lists the default pasteboard types and file extensions for several NSImageRep subclasses.

Table 61-1 Default pasteboard types for image representations

Default file extensionsDefault pasteboard typeImage representation class

tiff, gif, jpg, and othersNSTIFFPboardTypeNSBitmapImageRep

pdfNSPDFPboardTypeNSPDFImageRep

epsNSPostscriptPboardTypeNSEPSImageRep

1354 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Default file extensionsDefault pasteboard typeImage representation class

pictNSPICTPboardTypeNSPICTImageRep

If the specified pasteboard contains the value NSFilenamesPboardType, each filename on the pasteboard
should have an extension supported by one of the registered NSImageRep subclasses. You can use the
imageUnfilteredFileTypes (page 1410) method of a given subclass to obtain the list of supported types
for that class.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImage.h

initWithSize:
Initializes and returns an NSImage instance whose size is set to the specified value.

- (id)initWithSize:(NSSize)aSize

Parameters
aSize

The size of the image, measured in points.

Return Value
An initialized NSImage instance.

Discussion
This method does not add any image representations to the image object.. It is permissible to initialize the
receiver by passing a size of (0.0, 0.0); however, the receiver’s size must be set to a non-zero value before the
NSImage object is used or an exception will be raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSize: (page 1370)

Related Sample Code
CompositeLab
FunHouse
RGB Image
RGB ValueTransformers
Sketch-112

Declared In
NSImage.h

Instance Methods 1355
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

isCachedSeparately
Returns a Boolean value indicating whether each image representation caches its contents in a separate
offscreen window. (Deprecated in Mac OS X v10.6. NSImage no longer caches to windows. There is no
replacement method)

- (BOOL)isCachedSeparately

Return Value
YES if the image representations cache their content in separate offscreen windows; otherwise, NO. The
default value is NO.

Discussion
If this method returns NO, it means that the image may be cached in a shared window but is not required to
be. Images are cached in a shared window if they have the same general attributes, such as color space,
resolution, and bit depth.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSImage.h

isDataRetained
Returns a Boolean value indicating whether the receiver retains its source image data. (Deprecated in Mac
OS X v10.6. In Mac OS v10.6, NSImage no longer discards data in such a way that the original can no longer
be reconstructed. There is no replacement method.)

- (BOOL)isDataRetained

Return Value
YES if the image retains its source data; otherwise, NO. The default value is NO with some exceptions, which
are covered in the discussion.

Discussion
For image objects initialized using either the initByReferencingFile: (page 1350) or
initByReferencingURL: (page 1351) method, this value is YES by default. The reason is that for these
methods, data retention simply involves retaining the filename or URL.

Data retention increases the memory used by the NSImage object and its image representations.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSImage.h

1356 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

isFlipped
Returns a Boolean value indicating whether the image uses a flipped coordinate system. (Deprecated in Mac
OS X v10.6. The flipped property of an image was widely misunderstood and has been deprecated. Use
drawInRect:fromRect:operation:fraction:respectFlipped:hints: (page 1347) to draw respecting
a context’s flipped status and lockFocusFlipped: (page 1359) to draw into a flipped image.)

- (BOOL)isFlipped

Return Value
YES if the image's coordinate system is flipped; otherwise, NO. The default is NO.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setFlipped: (page 1367)

Declared In
NSImage.h

isTemplate
Returns a Boolean value indicating whether the image is a template image.

- (BOOL)isTemplate

Return Value
YES if the image is a template image; otherwise, NO.

Discussion
Template images consist of black and clear colors (and an alpha channel). Template images are not intended
to be used as standalone images and are usually mixed with other content to create the desired final
appearance.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setTemplate: (page 1371)

Declared In
NSImage.h

isValid
Returns a Boolean value indicating whether an image representation from the receiver can be drawn.

- (BOOL)isValid

Return Value
YES if the receiver can be drawn; otherwise, NO.

Instance Methods 1357
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Discussion
If the receiver is initialized with an existing image file, but the corresponding image data is not yet loaded
into memory, this method loads the data and expands it as needed. If the receiver contains no image
representations and no associated image file, this method creates a valid cached image representation and
initializes it to the default bit depth. This method returns NO in cases where the file or URL from which it was
initialized is nonexistent or when the data in an existing file is invalid.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initByReferencingFile: (page 1350)
– initByReferencingURL: (page 1351)

Declared In
NSImage.h

lockFocus
Prepares the image to receive drawing commands.

- (void)lockFocus

Discussion
This method sets the current drawing context to the area of the offscreen window used to cache the receiver's
contents. Subsequent drawing commands are composited to this offscreen window. If the offscreen drawing
area already has some content, any new drawing commands are composited with that content. This method
does not modify the original image data directly.

When locking focus, this method chooses the best image representation object available and locks focus on
that object. If the receiver has no image representations, this method creates one with the default depth
and locks focus on it. For information on how the "best" representation is chosen, see the “Images” chapter
of Cocoa Drawing Guide.

A successful lockFocusmessage must be balanced with a matching unlockFocus (page 1374) message to
the same NSImage object. These messages bracket the code that draws the image.

If lockFocus is unable to focus on the image, it raises an NSImageCacheException.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bestRepresentationForDevice: (page 1337)
– isValid (page 1357)
– prefersColorMatch (page 1361)
– representations (page 1362)

Related Sample Code
FunHouse
Image Difference
RGB Image
RGB ValueTransformers

1358 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Sketch-112

Declared In
NSImage.h

lockFocusFlipped:
Prepares the image to receive drawing commands using the specified flipped state.

- (void)lockFocusFlipped:(BOOL)flipped

Parameters
flipped

YES if the drawing context should be flipped, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSImage.h

lockFocusOnRepresentation:
Prepares the specified image representation to receive drawing commands. (Deprecated in Mac OS X v10.6.
Use the code fragment shown in the special considerations below.)

- (void)lockFocusOnRepresentation:(NSImageRep *)imageRepresentation

Parameters
imageRepresentation

An image representation belonging to the receiver, or nil if you want the receiver to choose which
image representation to use.

Discussion
This method sets the current drawing context to the area of the offscreen window used to cache the specified
image representation's contents. Subsequent drawing commands are composited to this offscreen window.
If the offscreen drawing area already has some content, any new drawing commands are composited with
that content. This method does not modify the original image data directly.

If imageRepresentation is nil, this method acts like the lockFocus (page 1358) method, setting the focus
to the best representation for the NSImage object.

A successful lockFocusOnRepresentation: message must be balanced with a matching
unlockFocus (page 1374) message to the same NSImage object. These messages bracket the code that draws
the image.

If lockFocusOnRepresentation: is unable to focus on the specified image representation, it raises an
NSImageCacheException.

Special Considerations

This method is deprecated as it did not set up imageRepresentation as a drawing destination, it set the
image up as a drawing destination, then drew imageRepresentation into it. You can replace this
functionality with the following code fragment

Instance Methods 1359
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

[image lockFocus];
[imageRepresentation drawInRect:NSMakeRect(0,0,[image size].width, [image
size].height)];

image unlockFocus;

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– isValid (page 1357)

Declared In
NSImage.h

matchesOnMultipleResolution
Returns a Boolean value indicating whether image representations whose resolution is an integral multiple
of the device resolution are considered a match.

- (BOOL)matchesOnMultipleResolution

Return Value
YES if image representations whose resolution is an integral multiple of the device resolution are considered
a match; otherwise, NO.

Discussion
When this method returns NO, only image representations whose resolution is exactly the same as the device
resolution are considered matches. If this method returns YES and multiple image representations fit this
criteria, the one whose resolution is closest to the device resolution is chosen.

The default value is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMatchesOnMultipleResolution: (page 1368)

Declared In
NSImage.h

name
Returns the name associated with the receiver, if any.

- (NSString *)name

Return Value
The name associated with the receiver, or nil if no name is assigned.

Availability
Available in Mac OS X v10.0 and later.

1360 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

See Also
– setName: (page 1368)

Declared In
NSImage.h

prefersColorMatch
Returns a Boolean value indicating whether the image prefers to choose image representations using color
matching or resolution matching.

- (BOOL)prefersColorMatch

Return Value
YES if color matching is preferred over resolution matching; otherwise NO if resolution matching is preferred.

Discussion
Both color matching and resolution matching may influence the choice of an image representation. This
method simply indicates which technique is used first during the selection process. The default value is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPrefersColorMatch: (page 1369)

Declared In
NSImage.h

recache
Invalidates and frees the offscreen caches of all image representations.

- (void)recache

Discussion
If you modify an image representation, you must send a recache (page 1361) message to the corresponding
image object to force the changes to be recached. The next time any image representation is drawn, it is
asked to recreate its cached image. If you do not send this message, the image representation may use the
old cache data. This method simply clears the cached image data; it does not delete the NSCachedImageRep
objects associated with any image representations.

If you do not plan to use an image again right away, you can free its caches to reduce the amount of memory
consumed by your program.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
TextInputView

Declared In
NSImage.h

Instance Methods 1361
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

removeRepresentation:
Removes the specified image representation from the receiver and releases it.

- (void)removeRepresentation:(NSImageRep *)imageRep

Parameters
imageRep

The image representation object you want to remove.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representations (page 1362)

Declared In
NSImage.h

representations
Returns an array containing all of the receiver's image representations.

- (NSArray *)representations

Return Value
An array containing zero or more NSImageRep objects.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaCreateMovie
Reducer

Declared In
NSImage.h

scalesWhenResized
Returns a Boolean value indicating whether image representations are scaled to fit the receiver's size.
(Deprecated in Mac OS X v10.6. This method was related to caching behavior. In Mac OS X v10.6 and later
image caching is no long necessary and as a resuilt there is no replacement necessary.)

- (BOOL)scalesWhenResized

Return Value
YES if image representations are scaled to fit the receiver; otherwise, NO. The default value is NO.

Discussion
Images are not resized during drawing if this method returns YES. They are only resized when you change
the size by sending the receiver a setSize: (page 1370) message.

1362 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setScalesWhenResized: (page 1369)

Declared In
NSImage.h

setAccessibilityDescription:
Sets the image’s accessibility description.

- (void)setAccessibilityDescription:(NSString *)description

Parameters
description

A short localized string that does not include the name of the interface element.

Discussion
This description will be used automatically by interface elements that display images. Like all accessibility
descriptions, the string should be a short localized string that does not include the name of the interface
element. For instance, "delete" rather than "delete button".

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSImage.h

setAlignmentRect:
Sets the alignment metadata that your code can use to position the image during layout.

- (void)setAlignmentRect:(NSRect)rect

Parameters
rect

The alignment rectangle for the image.

Discussion
Alignment rectangles specify baselines that you can use to position the content of an image more accurately.
These baselines are merely hints that your own code can use to determine positioning and are not used
internally by NSImage itself during drawing. For example, if you have a 20 x 20 pixel icon that includes a
glow effect, you might set the alignment rectangle to {{2, 2}, {16, 16}} to indicate the position of the underlying
icon without the glow effect.

Availability
Available in Mac OS X v10.5 and later.

See Also
– alignmentRect (page 1336)

Instance Methods 1363
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Declared In
NSImage.h

setBackgroundColor:
Sets the background color of the image.

- (void)setBackgroundColor:(NSColor *)aColor

Parameters
aColor

The new background color for the image.

Discussion
The background color is visible only if the drawn image representation does not completely cover all of the
pixels available for the image's current size. The background color is ignored for cached image representations;
such caches are always created with a white background. This method does not cause the receiver to recache
itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– recache (page 1361)
– backgroundColor (page 1336)

Declared In
NSImage.h

setCacheDepthMatchesImageDepth:
Sets whether the receiver's offscreen window caches use the same bit depth as the image data itself.
(Deprecated in Mac OS X v10.6. NSImage no longer caches to windows. A cache is now generated appropriate
for the destination where an image is drawn. There is no replacement method.)

- (void)setCacheDepthMatchesImageDepth:(BOOL)flag

Parameters
flag

YES if the offscreen caches use the same bit-depth associated with the image data; otherwise, NO to
indicate they should use the default bit depth.

Discussion
This method does not cause the receiver to recache itself. The default depth limit is equal to the bit depth
of the deepest screen on the system.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– cacheDepthMatchesImageDepth (page 1338)
– lockFocus (page 1358)

1364 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

– recache (page 1361)

Declared In
NSImage.h

setCachedSeparately:
Sets whether each image representation uses a separate offscreen window to cache its contents. (Deprecated
in Mac OS X v10.6. NSImage no longer caches to windows. There is no replacement method)

- (void)setCachedSeparately:(BOOL)flag

Parameters
flag

YES if you want each of the receiver's image representation objects to use a separate offscreen window
for caching; otherwise, NO.

Discussion
If you specify NO, a representation can be cached together with other images, though in practice it might
not be. This method does not invalidate any existing caches.

If you plan to resize an NSImage object frequently, it is usually more efficient to cache its representations
separately. In some situations, you might also want to enable separate caching if you plan to use the
compositeToPoint:fromRect:operation: (page 1340) or
compositeToPoint:fromRect:operation:fraction: (page 1341)methods to draw the image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– recache (page 1361)

Declared In
NSImage.h

setCacheMode:
Set the receiver’s caching mode.

- (void)setCacheMode:(NSImageCacheMode)mode

Parameters
mode

The caching mode to use with this image. For a list of possible values, see NSImageCacheMode (page
1379).

Discussion
The caching mode determines when the receiver's image representations use offscreen caches. Offscreen
caches speed up rendering time but do so by using extra memory. In the default caching mode
(NSImageCacheDefault), each image representation chooses the caching technique that produces the

Instance Methods 1365
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

fastest drawing times. For example, in the default mode, the NSPDFImageRep and NSEPSImageRep classes
use the NSImageCacheAlways mode but the NSBitmapImageRep class uses the NSImageCacheBySize
mode.

For more information on image caching behavior, see the “Images” chapter of Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.2 and later.

See Also
– cacheMode (page 1339)

Declared In
NSImage.h

setDataRetained:
Sets whether the receiver retains its source image data. (Deprecated in Mac OS X v10.6. In Mac OS v10.6,
NSImage no longer discards data in such a way that the original can no longer be reconstructed. There is no
replacement method.)

- (void)setDataRetained:(BOOL)flag

Parameters
flag

YES if you want the source image data to be retained; otherwise NO.

Discussion
Retention of the source image data is important if the source of the image data could change, be moved, or
be deleted. Data retention is also useful if you plan to resize an image frequently; otherwise, resizing occurs
on a cached copy of the image, which can lose image quality during successive scaling operations. With data
retention enabled, the image is resized from the original source data.

If the responsibility for drawing the image is delegated to another object, there is no reason to retain the
image data. Similarly, if the source of the image data is not expected to change or you do not plan to resize
the image, you do not need to retain the data. In fact, retaining the data leads to increased memory usage,
which could have a negative impact on performance.

If you create your image object using the initByReferencingFile: (page 1350) method, the only data
retained is the name of the source file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSImage.h

setDelegate:
Sets the delegate object of the receiver.

- (void)setDelegate:(id < NSImageDelegate >)anObject

1366 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Parameters
anObject

The new delegate object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 1344)

Declared In
NSImage.h

setFlipped:
Sets whether the polarity of the y axis is inverted when drawing an image. (Deprecated in Mac OS X v10.6.
The flipped property of an image was widely misunderstood and has been deprecated. Use
drawInRect:fromRect:operation:fraction:respectFlipped:hints: (page 1347) to draw respecting
a context’s flipped status and lockFocusFlipped: (page 1359) to draw into a flipped image.)

- (void)setFlipped:(BOOL)flag

Parameters
flag

YES if you want the image data to be inverted before drawing; otherwise, NO.

Discussion
If flag is YES, the y-axis of the image's internal coordinate system is inverted, with the origin in the upper-left
corner and the positive y axis extending downward. This method affects only the coordinate system used
internally by the image and the orientation of the image when it is drawn; it does not affect the coordinate
system used to specify the position of an image in a view. This method does not cause the receiver to recache
itself.

If you set flag to YES and then lock focus and draw into the image, the content you draw is cached in the
inverted (flipped) orientation. Changing the value for flag does not affect the orientation of the cached
image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– isFlipped (page 1357)
– recache (page 1361)

Related Sample Code
ImageMap
ImageMapExample
PhotoSearch
Sketch-112
WebKitPluginStarter

Instance Methods 1367
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Declared In
NSImage.h

setMatchesOnMultipleResolution:
Sets whether image representations whose resolutions are integral multiples of the device resolution are
considered a match.

- (void)setMatchesOnMultipleResolution:(BOOL)flag

Parameters
flag

YES if image representations whose resolution is an integral multiple of the device resolution should
be considered a match; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– matchesOnMultipleResolution (page 1360)

Declared In
NSImage.h

setName:
Registers the receiver under the specified name.

- (BOOL)setName:(NSString *)aString

Parameters
aString

The name to associate with the receiver.

Return Value
YES if the receiver was successfully registered with the given name; otherwise, NO.

Discussion
If the receiver is already registered under a different name, this method unregisters the other name. If a
different image is registered under the name specified in aString, this method does nothing and returns
NO.

When naming an image using this method, it is convention not to include filename extensions in the names
you specify. That way, you can easily distinguish between images you have named explicitly and those you
want to load from the application's bundle. For information about the rules used to search for images, and
for information about the ownership policy of named images, see the imageNamed: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– name (page 1360)
+ imageNamed: (page 1330)

1368 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Related Sample Code
ClockControl
QTKitMovieShuffler

Declared In
NSImage.h

setPrefersColorMatch:
Sets whether choosing an image representation favors color matching over resolution matching.

- (void)setPrefersColorMatch:(BOOL)flag

Parameters
flag

YES if the receiver should match the color capabilities of the rendering device first; otherwise, NO to
indicate that resolution matching is preferred.

Discussion
Both color matching and resolution matching may influence the choice of an image representation. You use
this method to choose which technique should be used first during the selection process.

Availability
Available in Mac OS X v10.0 and later.

See Also
– prefersColorMatch (page 1361)

Declared In
NSImage.h

setScalesWhenResized:
Sets whether different-sized image representations are scaled to fit the receiver's size. (Deprecated in Mac
OS X v10.6. This method was related to caching behavior. In Mac OS X v10.6 and later image caching is no
long necessary and as a resuilt there is no replacement necessary.)

- (void)setScalesWhenResized:(BOOL)flag

Parameters
flag

YES if image representations are scaled to fit; otherwise NO.

Discussion
Most images (especially those loaded from files and URLs) contain only a single image representation whose
size is the same as the receiver. It is possible to add image representations using the
addRepresentation: (page 1335) or addRepresentations: (page 1335) methods but doing so is rarely
necessary because modern hardware is powerful enough to resize and scale images quickly. The only reason
to consider creating new representations is if each representations contains a customized version of the
image at a specific size. (TIFF images may also contain a thumbnail version of an image, which is stored using
a separate image representation.) If you pass YES in the flag parameter, and subsequently send a
setSize: (page 1370) message to the receiver, all such image representations would be scaled to the same
size. Scaling of bitmap images usually results in the interpolation of the bitmap data.

Instance Methods 1369
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

This method does not invalidate the caches of any of the receiver's image representations. The caches are
not invalidated until you change the image size using a setSize: (page 1370) message. Scaling affects only
the cached offscreen data for a given image representation.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– scalesWhenResized (page 1362)

Related Sample Code
CocoaDragAndDrop
CompositeLab
FunkyOverlayWindow
MyCustomColorPicker
STUCAuthoringDeviceCocoaSample

Declared In
NSImage.h

setSize:
Sets the width and height of the image.

- (void)setSize:(NSSize)aSize

Parameters
aSize

The new size of the image, measured in points.

Discussion
The size of an NSImage object must be set before it can be used. If the size of the image hasn’t already been
set when an image representation is added, the size is taken from the image representation's data. For EPS
images, the size is taken from the image's bounding box. For TIFF images, the size is taken from the
ImageLength and ImageWidth attributes.

Changing the size of an NSImage after it has been used effectively resizes the image. Changing the size
invalidates all its caches and frees them. When the image is next composited, the selected representation
will draw itself in an offscreen window to recreate the cache.

Availability
Available in Mac OS X v10.0 and later.

See Also
– size (page 1372)
– initWithSize: (page 1355)

Related Sample Code
ButtonMadness
DesktopImage
FunkyOverlayWindow

1370 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

SourceView
STUCAuthoringDeviceCocoaSample

Declared In
NSImage.h

setTemplate:
Sets whether the image represents a template image.

- (void)setTemplate:(BOOL)isTemplate

Parameters
isTemplate

Specify YES if the image is a template image; otherwise, NO.

Discussion
Images you mark as template images should consist of only black and clear colors. You can use the alpha
channel in the image to adjust the opacity of black content, however.

Template images are not intended to be used as standalone images. They are always mixed with other
content and processed to create the desired appearance. You can mark an image as a “template image” to
notify clients who care that the image contains only black and clear content. The most common use for
template images is in image cells. For example, you might use a template image to provide the content for
a button or segmented control. Cocoa cells take advantage of the nature of template images—that is, their
simplified color scheme and use of transparency—to improve the appearance of the corresponding control
in each of its supported states.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isTemplate (page 1357)

Declared In
NSImage.h

setUsesEPSOnResolutionMismatch:
Sets whether EPS image representations are preferred when no other representations match the resolution
of the device.

- (void)setUsesEPSOnResolutionMismatch:(BOOL)flag

Parameters
flag

YES if EPS image representations are preferred; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesEPSOnResolutionMismatch (page 1374)

Instance Methods 1371
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

– setMatchesOnMultipleResolution: (page 1368)

Declared In
NSImage.h

size
Returns the size of the receiver.

- (NSSize)size

Return Value
The size of the receiver or (0.0, 0.0) if no size has been set and the size cannot be determined from any of
the receiver's image representations.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSize: (page 1370)

Related Sample Code
FunHouse
QTKitMovieShuffler
QuickLookSketch
RGB Image
Sketch-112

Declared In
NSImage.h

TIFFRepresentation
Returns a data object containing TIFF data for all of the image representations in the receiver.

- (NSData *)TIFFRepresentation

Return Value
A data object containing the TIFF data, or nil if the TIFF data could not be created.

Discussion
You can use the returned data object to write the TIFF data to a file. For each image representation, this
method uses the TIFF compression option associated with that representation or NSTIFFCompressionNone,
if no option is set.

If one of the receiver's image representations does not support the creation of TIFF data natively (PDF and
EPS images, for example), this method creates the TIFF data from that representation's cached content.

Additional image formats can be saved by using the NSBitmapImageRep method
representationUsingType:properties: (page 363).

Availability
Available in Mac OS X v10.0 and later.

1372 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

See Also
– TIFFRepresentationUsingCompression:factor: (page 1373)
representationUsingType:properties: (page 363) (NSBitmapImageRep)
TIFFRepresentation (page 366) (NSBitmapImageRep)
TIFFRepresentationUsingCompression:factor: (page 367) (NSBitmapImageRep)

Related Sample Code
GLSLShowpiece
ImageKitDemo
OpenCL_OceanWave
People
Sketch-112

Declared In
NSImage.h

TIFFRepresentationUsingCompression:factor:
Returns a data object containing TIFF data with the specified compression settings for all of the image
representations in the receiver.

- (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp
factor:(float)aFloat

Parameters
comp

The type of compression to use. For a list of values, see the constants in NSBitmapImageRep.

aFloat
Provides a hint for compression types that implement variable compression ratios. Currently, only
JPEG compression uses a compression factor.

Return Value
A data object containing the TIFF data, or nil if the TIFF data could not be created.

Discussion
You can use the returned data object to write the TIFF data to a file. If the specified compression isn’t
applicable, no compression is used. If a problem is encountered during generation of the TIFF data, this
method may raise an exception.

If one of the receiver's image representations does not support the creation of TIFF data natively (PDF and
EPS images, for example), this method creates the TIFF data from that representation's cached content.

Additional image formats can be saved by using the NSBitmapImageRep method
representationUsingType:properties: (page 363).

Availability
Available in Mac OS X v10.0 and later.

See Also
– TIFFRepresentation (page 1372)
representationUsingType:properties: (page 363) (NSBitmapImageRep)
TIFFRepresentation (page 366) (NSBitmapImageRep)

Instance Methods 1373
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

TIFFRepresentationUsingCompression:factor: (page 367) (NSBitmapImageRep)

Related Sample Code
PDFKitLinker2

Declared In
NSImage.h

unlockFocus
Removes the focus from the receiver.

- (void)unlockFocus

Discussion
This message must be sent after a successful lockFocus or lockFocusOnRepresentation: message and
the completion of any intermediate drawing commands. This method restores the focus to the previous
owner, if any.

Do not send this message if the preceding call to lock focus raised an NSImageCacheException.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FunHouse
Image Difference
RGB Image
RGB ValueTransformers
Sketch-112

Declared In
NSImage.h

usesEPSOnResolutionMismatch
Returns a Boolean value indicating whether EPS representations are preferred when no other representations
match the resolution of the device.

- (BOOL)usesEPSOnResolutionMismatch

Return Value
YES if EPS image representations are preferred; otherwise NO.

Discussion
The default value is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setUsesEPSOnResolutionMismatch: (page 1371)

1374 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

– matchesOnMultipleResolution (page 1360)

Declared In
NSImage.h

Constants

Image Hint Dictionary Keys
These constants are a subset of the dictionary keys used in the hints dictionary for the methods
CGImageForProposedRect:context:hints: (page 1339),
bestRepresentationForRect:context:hints: (page 1338),
drawInRect:fromRect:operation:fraction:respectFlipped:hints: (page 1347), and
hitTestRect:withImageDestinationRect:context:hints:flipped: (page 1349). Additional hint keys
are also valid including: Context Options in CIContext, and the entries in an NSScreen device description
dictionary as described in deviceDescription (page 2317).

NSString *const NSImageHintCTM;
NSString *const NSImageHintInterpolation;

Constants
NSImageHintCTM

Provides a context transform hint. The value for this key is an NSAffineTransform.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageHintInterpolation
Provides an interpolation hint. The value for this key is an NSNumber with an
NSImageInterpolation (page 1313) value.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSCompositingOperation
These constants specify compositing operators described in terms of having source and destination images,
each having an opaque and transparent region. The destination image after the operation is defined in terms
of the source and destination before images.

Constants 1375
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

enum {
 NSCompositeClear = 0,
 NSCompositeCopy = 1,
 NSCompositeSourceOver = 2,
 NSCompositeSourceIn = 3,
 NSCompositeSourceOut = 4,
 NSCompositeSourceAtop = 5,
 NSCompositeDestinationOver = 6,
 NSCompositeDestinationIn = 7,
 NSCompositeDestinationOut = 8,
 NSCompositeDestinationAtop = 9,
 NSCompositeXOR = 10,
 NSCompositePlusDarker = 11,
 NSCompositeHighlight = 12,
 NSCompositePlusLighter = 13
}
typedef NSUInteger NSCompositingOperation;

Constants
NSCompositeClear

Transparent. (R = 0)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeCopy
Source image. (R = S)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeSourceOver
Source image wherever source image is opaque, and destination image elsewhere. (R = S + D*(1
- Sa))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeSourceIn
Source image wherever both images are opaque, and transparent elsewhere. (R = S*Da)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeSourceOut
Source image wherever source image is opaque but destination image is transparent, and transparent
elsewhere. (R = S*(1 - Da))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeSourceAtop
Source image wherever both images are opaque, destination image wherever destination image is
opaque but source image is transparent, and transparent elsewhere. (R = S*Da + D*(1 - Sa))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

1376 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSCompositeDestinationOver
Destination image wherever destination image is opaque, and source image elsewhere. (R = S*(1
- Da) + D)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeDestinationIn
Destination image wherever both images are opaque, and transparent elsewhere. (R = D*Sa)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeDestinationOut
Destination image wherever destination image is opaque but source image is transparent, and
transparent elsewhere. (R = D*(1 - Sa))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeDestinationAtop
Destination image wherever both images are opaque, source image wherever source image is opaque
but destination image is transparent, and transparent elsewhere. (R = S*(1 - Da) + D*Sa)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeXOR
Exclusive OR of source and destination images. (R = S*(1 - Da) + D*(1 - Sa))

Works only with black and white images and is not recommended for color contexts.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositePlusDarker
Sum of source and destination images, with color values approaching 0 as a limit. (R = MAX(0, (1
- D) + (1 - S)))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositeHighlight

Source image wherever source image is opaque, and destination image elsewhere. (Deprecated.
Mapped to NSCompositeSourceOver.)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCompositePlusLighter
Sum of source and destination images, with color values approaching 1 as a limit. (R = MIN(1, S
+ D))

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

Discussion
These compositing operators are defined in and used by compositeToPoint:fromRect:operation: (page
1340), compositeToPoint:operation: (page 1342),
compositeToPoint:fromRect:operation:fraction: (page 1341),
compositeToPoint:operation:fraction: (page 1343),

Constants 1377
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

drawAtPoint:fromRect:operation:fraction: (page 1346), and
drawInRect:fromRect:operation:fraction: (page 1347). They are also used by drawing methods in
other classes that take a compositing operator.

The equations after each constant represent the mathematical formulas used to calculate the color value of
the resulting pixel. Table 61-2 lists the meaning of each placeholder value in the equations.

Table 61-2 Placeholder values for compositing equations

ParaPara

The premultiplied result color.R

The source colorS

The destination colorD

The alpha value of the source colorSa

The alpha value of the destination colorDa

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSImageLoadStatus
These constants are status values passed to the incremental loading delegate method
image:didLoadRepresentation:withStatus: (page 3694).

enum {
 NSImageLoadStatusCompleted,
 NSImageLoadStatusCancelled,
 NSImageLoadStatusInvalidData,
 NSImageLoadStatusUnexpectedEOF,
 NSImageLoadStatusReadError
}
typedef NSUInteger NSImageLoadStatus;

Constants
NSImageLoadStatusCompleted

Enough data has been provided to completely decompress the image.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

NSImageLoadStatusCancelled
Image loading was canceled.

The image contains the portions of the data that have already been successfully decompressed, if
any.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

1378 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSImageLoadStatusInvalidData
An error occurred during image decompression.

The image data is probably corrupt. The image contains the portions of the data that have already
been successfully decompressed, if any.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

NSImageLoadStatusUnexpectedEOF
Not enough data was available for full decompression of the image.

The image contains the portions of the data that have already been successfully decompressed, if
any.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

NSImageLoadStatusReadError
Not enough data was available for full decompression of the image.

The image contains the portions of the data that have already been successfully decompressed, if
any.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSImage.h

NSImageCacheMode
These constants specify the caching policy on a per NSImage basis. The caching policy is set using
cacheMode (page 1339) and setCacheMode: (page 1365).

enum {
 NSImageCacheDefault,
 NSImageCacheAlways,
 NSImageCacheBySize,
 NSImageCacheNever
}
typedef NSUInteger NSImageCacheMode;

Constants
NSImageCacheDefault

Caching is unspecified.

Use the image rep's default.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

NSImageCacheAlways
Always generate a cache when drawing.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

Constants 1379
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSImageCacheBySize
Cache if cache size is smaller than the original data.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

NSImageCacheNever
Never cache; always draw direct.

Available in Mac OS X v10.2 and later.

Declared in NSImage.h.

Discussion
The following table specifies the default caching policy for the various types of image representation.

Default caching policyImage Rep Class

NSImageCacheBySize. Cache if bitmap is 32-bits in 16-bit world or greater than
72 dpi.

NSBitmapImageRep

NSImageCacheBySize. Same reasoning as NSBitmapImageRep in the event the
PICT contains a bitmap.

NSPICTImageRep

NSImageCacheAlwaysNSPDFImageRep

NSImageCacheBySize. Cache if the bitmap depth does not match the screen depth
or the resolution is greater than 72 dpi.

NSCIImageRep

NSImageCacheAlwaysNSEPSImageRep

NSImageCacheAlwaysNSCustomImageRep

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSImage.h

Image Template Constants
Images representing standard artwork and icons that you can use in your applications

1380 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSString *const NSImageNameQuickLookTemplate;
NSString *const NSImageNameBluetoothTemplate;
NSString *const NSImageNameIChatTheaterTemplate;
NSString *const NSImageNameSlideshowTemplate;
NSString *const NSImageNameActionTemplate;
NSString *const NSImageNameSmartBadgeTemplate;
NSString *const NSImageNamePathTemplate;
NSString *const NSImageNameInvalidDataFreestandingTemplate;
NSString *const NSImageNameLockLockedTemplate;
NSString *const NSImageNameLockUnlockedTemplate;
NSString *const NSImageNameGoRightTemplate;
NSString *const NSImageNameGoLeftTemplate;
NSString *const NSImageNameRightFacingTriangleTemplate;
NSString *const NSImageNameLeftFacingTriangleTemplate;
NSString *const NSImageNameAddTemplate;
NSString *const NSImageNameRemoveTemplate;
NSString *const NSImageNameRevealFreestandingTemplate;
NSString *const NSImageNameFollowLinkFreestandingTemplate;
NSString *const NSImageNameEnterFullScreenTemplate;
NSString *const NSImageNameExitFullScreenTemplate;
NSString *const NSImageNameStopProgressTemplate;
NSString *const NSImageNameStopProgressFreestandingTemplate;
NSString *const NSImageNameRefreshTemplate;
NSString *const NSImageNameRefreshFreestandingTemplate;
NSString *const NSImageNameFolder;
NSString *const NSImageNameTrashEmpty;
NSString *const NSImageNameTrashFull;
NSString *const NSImageNameHomeTemplate;
NSString *const NSImageNameBookmarksTemplate;
NSString *const NSImageNameCaution;
NSString *const NSImageNameStatusAvailable;
NSString *const NSImageNameStatusPartiallyAvailable;
NSString *const NSImageNameStatusUnavailable;
NSString *const NSImageNameStatusNone;
NSString *const NSImageNameApplicationIcon;
NSString *const NSImageNameMenuOnStateTemplate;
NSString *const NSImageNameMenuMixedStateTemplate;
NSString *const NSImageNameUserGuest;
NSString *const NSImageNameMobileMe;

Constants
NSImageNameQuickLookTemplate

A Quick Look template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameBluetoothTemplate

A Bluetooth template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameIChatTheaterTemplate

An iChat Theater template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Constants 1381
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSImageNameSlideshowTemplate

A slideshow template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameActionTemplate

An action menu template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameSmartBadgeTemplate

A badge for a “smart” item.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNamePathTemplate
A path button template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameInvalidDataFreestandingTemplate
An invalid data template image. Place this icon to the right of any fields containing invalid data. You

can use this image to implement a borderless button.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameLockLockedTemplate

A locked lock template image. Use to indicate locked content.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameLockUnlockedTemplate

An unlocked lock template image. Use to indicate modifiable content that can be locked.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameGoRightTemplate
A “go forward” template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameGoLeftTemplate

A “go back” template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

1382 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSImageNameRightFacingTriangleTemplate

A generic right-facing triangle template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameLeftFacingTriangleTemplate

A generic left-facing triangle template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameAddTemplate
An add item template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameRemoveTemplate
A remove item template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameRevealFreestandingTemplate

A reveal contents template image. You can use this image to implement a borderless button.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameFollowLinkFreestandingTemplate

A link template image. You can use this image to implement a borderless button.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameEnterFullScreenTemplate

An enter full-screen mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameExitFullScreenTemplate

An exit full-screen mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameStopProgressTemplate

A stop progress button template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameStopProgressFreestandingTemplate

A stop progress template image. You can use this image to implement a borderless button.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Constants 1383
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSImageNameRefreshTemplate

A refresh template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameRefreshFreestandingTemplate

A refresh template image. You can use this image to implement a borderless button.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Discussion
To access these images, pass the specified constant to the imageNamed: (page 1330) method.

Images with the word “Template” in their title identify shapes that are not intended as standalone images.
You would typically use these icons as the custom image for a button, or you might apply them to a cell in
a control. For example, you might use the NSImageNameLockLockedTemplate image to indicate an item
is not modifiable. Template images should use black and clear colors only and it is fine to include varying
levels of alpha.

Images with the word “Freestanding” in their title can be used to implement borderless buttons. You do not
need to include any extra bezel artwork behind such images.

You should always use named images according to their intended purpose, and not according to how the
image appears when loaded. The appearance of images can change between releases. If you use an image
for its intended purpose (and not because of it looks), your code should look correct from release to release.

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameRefreshFreestandingTemplate would correspond to an image named
“NSRefreshFreestandingTemplate” in Interface Builder.

Declared In
NSImage.h

Multiple Documents Drag Image
Drag images you can use in your applications. To access this image, pass the specified constant to the
imageNamed: (page 1330) method.

1384 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSString *const NSImageNameMultipleDocuments;

Constants
NSImageNameMultipleDocuments

A drag image for multiple items.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Discussion
You can use this icon as the drag image when dragging multiple items. You should not use this image for
any other intended purpose, however. The appearance of images can change between releases. If you use
an image for its intended purpose (and not because of how it looks), your code should look correct from
release to release.

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameMultipleDocuments would correspond to an image named “NSMultipleDocuments” in
Interface Builder.

Sharing Permissions Named Images
Images representing sharing permission icons that you can use in your applications. To access this image,
pass the specified constant to the imageNamed: (page 1330) method.

NSString *const NSImageNameUser;
NSString *const NSImageNameUserGroup;
NSString *const NSImageNameEveryone;

Constants
NSImageNameUser

Permissions for a single user.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameUserGroup

Permissions for a group of users.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameEveryone

Permissions for all users.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Constants 1385
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Discussion
You should use these images to reflect user and group permission or sharing information. The appearance
of images can change between releases. If you use an image for its intended purpose (and not because of
how it looks), your code should look correct from release to release.

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameEveryone would correspond to an image named “NSEveryone” in Interface Builder.

System Entity Images
Images representing Finder items. To access this image, pass the specified constant to the imageNamed: (page
1330) method.

NSString *const NSImageNameBonjour;
NSString *const NSImageNameDotMac;
NSString *const NSImageNameComputer;
NSString *const NSImageNameFolderBurnable;
NSString *const NSImageNameFolderSmart;
NSString *const NSImageNameNetwork;

Constants
NSImageNameBonjour

A Bonjour icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameDotMac

A Dot Mac icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameComputer

A computer icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameFolderBurnable

A burnable folder icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

1386 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSImageNameFolderSmart

A smart folder icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameNetwork

A network icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Discussion
You should use these images to reflect specific elements of the Mac OS X environment. For example, you
might use the burnable folder icon if your software allows the user to organize content for burning onto an
optical disk. The appearance of images can change between releases. If you use an image for its intended
purpose (and not because of how it looks), your code should look correct from release to release.

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameNetwork would correspond to an image named “NSNetwork” in Interface Builder.

Declared In
NSImage.h

Toolbar Named Images
Images that you can use in application toolbars. To access this image, pass the specified constant to the
imageNamed: (page 1330) method.

NSString *const NSImageNameUserAccounts;
NSString *const NSImageNamePreferencesGeneral;
NSString *const NSImageNameAdvanced;
NSString *const NSImageNameInfo;
NSString *const NSImageNameFontPanel;
NSString *const NSImageNameColorPanel;

Constants
NSImageNameUserAccounts

User account toolbar icon. Use in a preferences window only.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Constants 1387
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSImageNamePreferencesGeneral

General preferences toolbar icon. Use in a preferences window only.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameAdvanced

Advanced preferences toolbar icon. Use in a preferences window only.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameInfo

An information toolbar icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameFontPanel

A font panel toolbar icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameColorPanel

A color panel toolbar icon.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameFolder

A folder image.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameTrashEmpty

An image of the empty trash can.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameTrashFull

An image of the full trash can.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameHomeTemplate

Home image suitable for a template.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

1388 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSImageNameBookmarksTemplate

Bookmarks image suitable for a template.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameCaution

Caution Image.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameStatusAvailable

Small green indicator, similar to iChat’s available image.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameStatusPartiallyAvailable

Small yellow indicator, similar to iChat’s idle image.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameStatusUnavailable

Small red indicator, similar to iChat’s unavailable image.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameStatusNone

Small clear indicator.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameApplicationIcon

Generic application icon.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameMenuOnStateTemplate

A check mark. Drawing these outside of menus is discouraged.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameMenuMixedStateTemplate
A horizontal dash. Drawing these outside of menus is discouraged.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

Constants 1389
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSImageNameUserGuest

Shaded user figure.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

NSImageNameMobileMe
MobileMe logo. Note that this is preferred to using the NSImageNameDotMac (page 1386) image,

although that image is not expected to be deprecated.

Available in Mac OS X v10.6 and later.

Declared in NSImage.h.

Discussion
You should use these images as icons for toolbar items. The appearance of images can change between
releases. If you use an image for its intended purpose (and not because of how it looks), your code should
look correct from release to release.

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

Constants that end in the word "Template" name black and clear images that return YES for isTemplate (page
1357). These images can be processed into variants appropriate for different situations. For example, these
images can invert in a selected table view row. See setTemplate: (page 1371): for more comments. These
images are inappropriate for display without further processing, but NSCell and its subclasses will perform
the processing.

Some images also contain the word "Freestanding". This indicates that an image is appropriate for use as a
borderless button, it doesn't need any extra bezel artwork behind it. For example, Safari uses
NSImageNameStopProgressFreestandingTemplate (page 1383) as the stop button in a button on its
toolbar, while it uses NSImageNameStopProgressFreestandingTemplate (page 1383) in the downloads
window where it appears inline with a progress indicator.

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameColorPanel would correspond to an image named “NSColorPanel” in Interface Builder.

Declared In
NSImage.h

View Type Template Images
Images used in segmented controls to switch the current view type. To access this image, pass the specified
constant to the imageNamed: (page 1330) method.

1390 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

NSString *const NSImageNameIconViewTemplate;
NSString *const NSImageNameListViewTemplate;
NSString *const NSImageNameColumnViewTemplate;
NSString *const NSImageNameFlowViewTemplate;

Constants
NSImageNameIconViewTemplate

An icon view mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameListViewTemplate
A list view mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameColumnViewTemplate
A column view mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

NSImageNameFlowViewTemplate
A cover flow view mode template image.

Available in Mac OS X v10.5 and later.

Declared in NSImage.h.

Discussion
Images with the word “Template” in their title identify shapes that are not intended as standalone images.
You would typically use these icons as the custom image for a button, or you might apply them to a cell in
a control. For example, you might use the NSImageNameIconViewTemplate image to indicate an item is
not modifiable. Template images should use black and clear colors only and it is fine to include varying levels
of alpha.

You should use these images in conjunction with the buttons (usually part of a segmented control) that
change the current viewing mode. The appearance of images can change between releases. If you use an
image for its intended purpose (and not because of how it looks), your code should look correct from release
to release.

The size and aspect ratio of system images may change from release to release. In some situations, you should
explicitly resize images as appropriate for your use. If you use these images in conjunction with an
NSButtonCell object, however, you can use the setImageScaling: method of the cell to control scaling
instead. Similarly, for an NSSegmentedCell object, you can use the setImageScaling:forSegment:
method to control scaling.

The string value for each constant is equal to the constant name without the “ImageName” portion. You
might need this information to locate images by name in Interface Builder. For example, the constant
NSImageNameFlowViewTemplatewould correspond to an image named “NSFlowViewTemplate” in Interface
Builder.

Declared In
NSImage.h

Constants 1391
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

1392 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 61

NSImage Class Reference

Inherits from NSCell : NSObject

Conforms to NSCoding
NSCopying
NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSImageCell.h

Companion guides Image Views
Matrix Programming Guide
Table View Programming Guide

Related sample code AnimatedTableView
Cropped Image
STUCAuthoringDeviceCocoaSample

Overview

An NSImageCell object displays a single image (encapsulated in an NSImage object) in a frame. This class
provides methods for choosing the frame and for aligning and scaling the image to fit the frame.

The object value of an NSImageCell object must be an NSImage object, so if you use the
setObjectValue: (page 592) method of NSCell, be sure to supply an NSImage object as an argument.
Because an NSImage object does not need to be converted for display, do not use the NSCell methods
relating to formatters.

An NSImageCell object is usually associated with some kind of control object. For example, an NSMatrix
or an NSTableView.

Designated Initializers

When subclassing NSImageCell you must implement all of the designated initializers. Those methods are:
init, initWithCoder:, initTextCell: (page 564), and initImageCell: (page 563).

Overview 1393
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 62

NSImageCell Class Reference

Tasks

Aligning and Scaling the Image

– imageAlignment (page 1394)
Returns the alignment of the receiver’s image relative to its frame.

– setImageAlignment: (page 1395)
Sets the alignment of the image in its frame.

– imageScaling (page 1395)
Returns the scaling mode used to fit the receiver's image into the frame.

– setImageScaling: (page 1396)
Sets the scaling mode used to fit the receiver's image into the frame.

Choosing the Frame

– imageFrameStyle (page 1394)
Returns the style of the frame that borders the image.

– setImageFrameStyle: (page 1396)
Sets the style of the frame that borders the image.

Instance Methods

imageAlignment
Returns the alignment of the receiver’s image relative to its frame.

- (NSImageAlignment)imageAlignment

Return Value
One of the image alignment constants. For a list of possible values, see NSImageAlignment (page 1396). The
default value is NSImageAlignCenter.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImageAlignment: (page 1395)

Declared In
NSImageCell.h

imageFrameStyle
Returns the style of the frame that borders the image.

1394 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 62

NSImageCell Class Reference

- (NSImageFrameStyle)imageFrameStyle

Return Value
One of the frame style constants. For a list of frame styles, see NSImageFrameStyle (page 1398). The default
value is NSImageFrameNone.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImageFrameStyle: (page 1396)

Declared In
NSImageCell.h

imageScaling
Returns the scaling mode used to fit the receiver's image into the frame.

- (NSImageScaling)imageScaling

Return Value
One of the image scaling constants. For a list of possible values, see NSImageScaling (page 617). The default
value is NSImageScaleProportionallyDown (page 617).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImageScaling: (page 1396)

Declared In
NSImageCell.h

setImageAlignment:
Sets the alignment of the image in its frame.

- (void)setImageAlignment:(NSImageAlignment)alignment

Parameters
alignment

One of the image alignment constants. For a list of possible values, see NSImageAlignment (page
1396).

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageAlignment (page 1394)

Declared In
NSImageCell.h

Instance Methods 1395
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 62

NSImageCell Class Reference

setImageFrameStyle:
Sets the style of the frame that borders the image.

- (void)setImageFrameStyle:(NSImageFrameStyle)frameStyle

Parameters
frameStyle

One of the frame style constants. For a list of frame styles, see NSImageFrameStyle (page 1398).

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageFrameStyle (page 1394)

Declared In
NSImageCell.h

setImageScaling:
Sets the scaling mode used to fit the receiver's image into the frame.

- (void)setImageScaling:(NSImageScaling)scaling

Parameters
scaling

One of the image scaling constants. For a list of possible values, see NSImageScaling (page 617).

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageScaling (page 1395)

Declared In
NSImageCell.h

Constants

NSImageAlignment
These constants allow you to specify the location of the image in the frame and are used by
imageAlignment (page 1394) and setImageAlignment: (page 1395).

1396 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 62

NSImageCell Class Reference

enum {
 NSImageAlignCenter = 0,
 NSImageAlignTop,
 NSImageAlignTopLeft,
 NSImageAlignTopRight,
 NSImageAlignLeft,
 NSImageAlignBottom,
 NSImageAlignBottomLeft,
 NSImageAlignBottomRight,
 NSImageAlignRight
};
typedef NSUInteger NSImageAlignment;

Constants
NSImageAlignCenter

Center the image in the cell.

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

NSImageAlignTop
Position the image along the top edge of the cell.

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

NSImageAlignTopLeft
Align the image with the top and left edges of the cell.

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

NSImageAlignTopRight
Align the image with the top and right edges of the cell.

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

NSImageAlignLeft
Align the image with the left edge of the cell.

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

NSImageAlignBottom
Align the image with the bottom edge of the cell.

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

NSImageAlignBottomLeft
Align the image with the bottom and left edges of the cell.

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

NSImageAlignBottomRight
Align the image with the bottom and right edges of the cell.

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

Constants 1397
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 62

NSImageCell Class Reference

NSImageAlignRight
Position the image along the right edge of the cell.

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

Declared In
NSImageCell.h

NSImageFrameStyle
These constants allow you to specify the kind of frame bordering the image and are used by
imageFrameStyle (page 1394) and setImageFrameStyle: (page 1396). (Deprecated. These constants are
obsolete, and are not compliant with the Apple Human Interface Guidelines.)

enum {
 NSImageFrameNone = 0,
 NSImageFramePhoto,
 NSImageFrameGrayBezel,
 NSImageFrameGroove,
 NSImageFrameButton
};
typedef NSUInteger NSImageFrameStyle;

Constants
NSImageFrameNone

An invisible frame

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

NSImageFramePhoto
A thin black outline and a dropped shadow

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

NSImageFrameGrayBezel
A gray, concave bezel that makes the image look sunken

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

NSImageFrameGroove
A thin groove that looks etched around the image

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

NSImageFrameButton
A convex bezel that makes the image stand out in relief, like a button

Available in Mac OS X v10.0 and later.

Declared in NSImageCell.h.

Declared In
NSImageCell.h

1398 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 62

NSImageCell Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSImageRep.h

Companion guide Cocoa Drawing Guide

Related sample code LayerBackedOpenGLView
NSOpenGL Fullscreen
Reducer

Overview

The NSImageRep class is a semiabstract superclass (“semi” because it has some instance variables and
implementation of its own). Each of its subclasses knows how to draw an image from a particular kind of
source data. While an NSImageRep subclass can be used directly, it is typically through an NSImage object.
An NSImage object manages a group of image representations, choosing the best one for the current output
device.

Tasks

Creating an NSImageRep

+ imageRepsWithContentsOfFile: (page 1405)
Creates and returns an array of image representation objects initialized using the contents of the
specified file.

+ imageRepsWithPasteboard: (page 1407)
Creates and returns an array of image representation objects initialized using the contents of the
pasteboard.

Overview 1399
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

+ imageRepsWithContentsOfURL: (page 1406)
Creates and returns an array of image representation objects initialized using the contents of the
specified URL.

+ imageRepWithContentsOfFile: (page 1408)
Creates and returns an image representation object using the contents of the specified file.

+ imageRepWithPasteboard: (page 1409)
Creates and returns an image representation object using the contents of the specified pasteboard.

+ imageRepWithContentsOfURL: (page 1409)
Creates and returns an image representation object using the data at the specified URL

Determining the Supported Image Types

+ canInitWithData: (page 1402)
Returns a Boolean value indicating whether the receiver can initialize itself from the specified data.

+ canInitWithPasteboard: (page 1403)
Returns a Boolean value indicating whether the receiver can initialize itself from the data on the
specified pasteboard.

+ imageTypes (page 1410)
Returns an array of UTI strings identifying the image types supported by the receiver, either directly
or through a user-installed filter service.

+ imageUnfilteredTypes (page 1412)
Returns an array of UTI strings identifying the image types supported directly by the receiver.

+ imageFileTypes (page 1403)
Returns the file types supported by NSImageRep or one of its subclasses.

+ imagePasteboardTypes (page 1404)
Returns the pasteboard types supported by NSImageRep or one of its subclasses.

+ imageUnfilteredFileTypes (page 1410)
Returns the list of file types supported directly by the receiver.

+ imageUnfilteredPasteboardTypes (page 1411)
Returns the list of pasteboard types supported directly by the receiver.

Setting the Size of the Image

– setSize: (page 1423)
Sets the size of the image representation to the specified value.

– size (page 1424)
Returns the size of the image representation.

Specifying Information About the Representation

– bitsPerSample (page 1414)
Returns the number of bits per sample in the receiver.

1400 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

– colorSpaceName (page 1415)
Returns the name of the receiver's color space.

– hasAlpha (page 1418)
Returns a Boolean value indicating whether the receiver has an alpha channel.

– isOpaque (page 1419)
Returns a Boolean value indicating whether the receiver is opaque.

– pixelsHigh (page 1419)
Returns the height of the image, measured in pixels.

– pixelsWide (page 1420)
Returns the width of the image, measured in pixels.

– setAlpha: (page 1420)
Informs the receiver that its image data has an alpha component.

– setBitsPerSample: (page 1421)
Informs the receiver that its image data has the specified number of bits for each component of a
pixel.

– setColorSpaceName: (page 1421)
Informs the receiver of the color space used by the image data.

– setOpaque: (page 1422)
Sets whether the receiver's image is opaque.

– setPixelsHigh: (page 1422)
Informs the receiver of the image data height.

– setPixelsWide: (page 1423)
Informs the receiver of the image data width.

Getting a CGImage

– CGImageForProposedRect:context:hints: (page 1414)
Returns a CGImage capturing the drawing of the receiver.

Drawing the Image

– draw (page 1415)
Implemented by subclasses to draw the image in the current coordinate system.

– drawAtPoint: (page 1416)
Draws the receiver's image data at the specified point in the current coordinate system.

– drawInRect: (page 1417)
Draws the image, scaling it (as needed) to fit the specified rectangle.

– drawInRect:fromRect:operation:fraction:respectFlipped:hints: (page 1417)
Draws all or part of the image in the specified rectangle in the current coordinate system.

Tasks 1401
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Managing NSImageRep Subclasses

+ imageRepClassForType: (page 1405)
Returns the NSImageRep subclass that handles image data for the specified UTI.

+ imageRepClassForData: (page 1404)
Returns the NSImageRep subclass that handles the specified type of data.

+ imageRepClassForFileType: (page 1404)
Returns the NSImageRep subclass that handles data with the specified type.

+ imageRepClassForPasteboardType: (page 1405)
Returns the NSImageRep subclass that handles data with the specified pasteboard type.

+ registeredImageRepClasses (page 1412)
Returns an array containing the registered NSImageRep classes.

+ registerImageRepClass: (page 1413)
Adds the specified class to the registry of available NSImageRep subclasses.

+ unregisterImageRepClass: (page 1413)
Removes the specified NSImageRep subclass from the registry of available image representations.

Class Methods

canInitWithData:
Returns a Boolean value indicating whether the receiver can initialize itself from the specified data.

+ (BOOL)canInitWithData:(NSData *)data

Parameters
data

The image data.

Return Value
YES if the receiver understands the format of the specified data and can use it to initialize itself; otherwise,
NO.

Discussion
This method should be overridden by subclasses. Note that this method does not need to do a comprehensive
check of the image data; it should return NO only if it knows it cannot initialize itself from the data.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ canInitWithPasteboard: (page 1403)

Declared In
NSImageRep.h

1402 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

canInitWithPasteboard:
Returns a Boolean value indicating whether the receiver can initialize itself from the data on the specified
pasteboard.

+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

The pasteboard containing the image data.

Return Value
YES if the receiver understands the format of the specified data and can use it to initialize itself; otherwise,
NO.

Discussion
This method invokes the imageUnfilteredPasteboardTypes (page 1411) class method and checks the list
of types returned by that method against the data types in pasteboard. If it finds a match, it returns YES.
When creating a subclass of NSImageRep that accepts image data from a non-default pasteboard type,
override the imageUnfilteredPasteboardTypes (page 1411) method to assure this method returns the
correct response.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ canInitWithData: (page 1402)

Declared In
NSImageRep.h

imageFileTypes
Returns the file types supported by NSImageRep or one of its subclasses.

+ (NSArray *)imageFileTypes

Return Value
An array of NSString objects, each of which contains a filename extension or HFS file type of a supported
format.

Discussion
The list includes both those types returned by the imageUnfilteredFileTypes (page 1410) class method
plus those that can be converted to a supported type by a user-installed filter service. The returned file types
can include encoded HFS file types as well as filename extensions.

Don’t override this method when subclassing NSImageRep—it always returns a valid list for any subclass of
NSImageRep that correctly overrides the imageUnfilteredFileTypes (page 1410) method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImageRep.h

Class Methods 1403
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

imagePasteboardTypes
Returns the pasteboard types supported by NSImageRep or one of its subclasses.

+ (NSArray *)imagePasteboardTypes

Return Value
An array of NSString objects, each of which contains a supported pasteboard format.

Discussion
The list includes both those types returned by the imageUnfilteredPasteboardTypes (page 1411) class
method plus those that can be converted to a supported type by a user-installed filter service. Don’t override
this method when subclassing NSImageRep—it always returns a valid list for any subclass of NSImageRep
that correctly overrides the imageUnfilteredPasteboardTypes (page 1411) method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImageRep.h

imageRepClassForData:
Returns the NSImageRep subclass that handles the specified type of data.

+ (Class)imageRepClassForData:(NSData *)data

Parameters
data

The image data.

Return Value
A Class object for the image representation that can handle the data, or nil if no image representation
could handle the data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImageRep.h

imageRepClassForFileType:
Returns the NSImageRep subclass that handles data with the specified type.

+ (Class)imageRepClassForFileType:(NSString *)type

Parameters
type

A string containing the filename extension or an encoded HFS type.

Return Value
A Class object for the image representation that can handle the type of data, or nil if no image
representation could handle the type.

1404 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImageRep.h

imageRepClassForPasteboardType:
Returns the NSImageRep subclass that handles data with the specified pasteboard type.

+ (Class)imageRepClassForPasteboardType:(NSString *)type

Parameters
type

The pasteboard type.

Return Value
A Class object for the image representation that can handle the specified pasteboard type, or nil if no
image representation could handle the type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImageRep.h

imageRepClassForType:
Returns the NSImageRep subclass that handles image data for the specified UTI.

+ (Class)imageRepClassForType:(NSString *)type

Parameters
type

The UTI string identifying the desired image type. Some sample image-related UTI strings include
"public.image”, "public.jpeg”, and "public.tiff”. For a list of supported types, see
UTCoreTypes.h.

Return Value
A Class object for the image representation that can handle the UTI, or nil if no image representation
could handle the data.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSImageRep.h

imageRepsWithContentsOfFile:
Creates and returns an array of image representation objects initialized using the contents of the specified
file.

Class Methods 1405
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

+ (NSArray *)imageRepsWithContentsOfFile:(NSString *)filename

Parameters
filename

A full or relative pathname specifying the file to open. This string should include the filename extension.

Return Value
An array of image representation objects. The array contains one object for each image in the specified file.

Discussion
If sent to the NSImageRep class object, this method returns an array of objects (all newly allocated instances
of a subclass of NSImageRep, chosen through the use of imageRepClassForFileType: (page 1404)) that
have been initialized with the contents of the file. If sent to a subclass of NSImageRep that recognizes the
file type, this method returns an array of objects (all instances of that subclass) that have been initialized
with the contents of the file.

This method returns nil in any of the following cases:

 ■ The message is sent to the NSImageRep class object and there are no subclasses in the NSImageRep
class registry that handle the data in the file.

 ■ The message is sent to a subclass of NSImageRep and that subclass cannot handle the data in the file.

 ■ The NSImageRep subclass is unable to initialize itself with the contents of filename.

The NSImageRep subclass is initialized by creating an NSData object based on the contents of the file and
passing it to the imageRepsWithData: method of the subclass. By default, the files handled include those
with the extensions “tiff”, “gif”, “jpg”, “pict”, “pdf”, and “eps”.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imageFileTypes (page 1403)

Declared In
NSImageRep.h

imageRepsWithContentsOfURL:
Creates and returns an array of image representation objects initialized using the contents of the specified
URL.

+ (NSArray *)imageRepsWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The URL pointing to the image data.

Return Value
An array of image representation objects. The array contains one object for each image in the data at the
specified URL.

1406 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Discussion
If sent to the NSImageRep class object, this method returns an array of objects (all newly allocated instances
of a subclass of NSImageRep) that have been initialized with the contents of the specified URL. If sent to a
subclass of NSImageRep that recognizes the data at the specified URL, it returns an array of objects (all
instances of that subclass) that have been initialized with the contents of that URL.

This method returns nil in any of the following cases:

 ■ The message is sent to the NSImageRep class object and there are no subclasses in the NSImageRep
class registry that handle data in the specified URL.

 ■ The message is sent to a subclass of NSImageRep and that subclass cannot handle data in the specified
URL.

 ■ The NSImageRep subclass is unable to initialize itself with the contents of the specified URL.

The NSImageRep subclass is initialized by creating an NSData object based on the contents of the specified
URL and passing it to the imageRepsWithData: method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImageRep.h

imageRepsWithPasteboard:
Creates and returns an array of image representation objects initialized using the contents of the pasteboard.

+ (NSArray *)imageRepsWithPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

The pasteboard containing the image data.

Return Value
An array of image representation objects. The array contains one object for each image in the specified
pasteboard.

Discussion
If sent to the NSImageRep class object, this method returns an array of objects (all newly-allocated instances
of a subclass of NSImageRep) that have been initialized with the data in the specified pasteboard. If sent to
a subclass of NSImageRep that recognizes the pasteboard data, it returns an array of objects (all instances
of that subclass) initialized with the pasteboard data.

This method returns nil in any of the following cases:

 ■ The message is sent to the NSImageRep class object and there are no subclasses in the NSImageRep
class registry that handle the pasteboard data.

 ■ The message is sent to a subclass of NSImageRep and that subclass cannot handle the pasteboard data.

 ■ The NSImageRep subclass is unable to initialize itself with the contents the pasteboard.

Class Methods 1407
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

The NSImageRep subclass is initialized by creating an NSData object based on the data in pasteboard and
passing it to the imageRepsWithData: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imagePasteboardTypes (page 1404)

Declared In
NSImageRep.h

imageRepWithContentsOfFile:
Creates and returns an image representation object using the contents of the specified file.

+ (id)imageRepWithContentsOfFile:(NSString *)filename

Parameters
filename

A full or relative pathname specifying the file to open. This string should include the filename extension.

Return Value
An initialized instance of an NSImageRep subclass, or nil if the image data could not be read.

Discussion
If sent to the NSImageRep class object, this method returns a newly allocated instance of a subclass of
NSImageRep (chosen through the use of imageRepClassForFileType: (page 1404)) initialized with the
contents of the specified file. If sent to a subclass of NSImageRep that recognizes the type of data in the file,
it returns an instance of that subclass initialized with the contents of the file.

This method returns nil in any of the following cases:

 ■ The message is sent to the NSImageRep class object and there are no subclasses in the NSImageRep
class registry that handle the type of data in the specified file.

 ■ The message is sent to a subclass of NSImageRep and that subclass cannot handle the type of data in
the specified file.

 ■ The NSImageRep subclass is unable to initialize itself with the contents of the specified file.

The NSImageRep subclass is initialized by creating an NSData object based on the contents of the file and
passing it to the imageRepWithData:method. By default, the files handled include those with the extensions
“tiff”, “gif”, “jpg”, “pict”, “pdf”, and “eps”.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imageFileTypes (page 1403)

Related Sample Code
PDFView

1408 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Declared In
NSImageRep.h

imageRepWithContentsOfURL:
Creates and returns an image representation object using the data at the specified URL

+ (id)imageRepWithContentsOfURL:(NSURL *)aURL

Parameters
aURL

The URL pointing to the image data.

Return Value
An initialized instance of an NSImageRep subclass, or nil if the image data could not be read.

Discussion
If sent to the NSImageRep class object, this method returns a newly allocated instance of a subclass of
NSImageRep initialized with the contents of the specified URL. If sent to a subclass of NSImageRep that
recognizes the data contained in the URL, it returns an instance of that subclass initialized with the data in
the URL.

This method returns nil in any of the following cases:

 ■ The message is sent to the NSImageRep class object and there are no subclasses in the NSImageRep
class registry that handle the data contained in the specified URL.

 ■ The message is sent to a subclass of NSImageRep and that subclass cannot handle the data contained
in the specified URL.

 ■ The NSImageRep subclass is unable to initialize itself with the contents of the specified URL.

The NSImageRep subclass is initialized by creating an NSData object based on the contents of the file, then
passing it to the imageRepWithData: method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImageRep.h

imageRepWithPasteboard:
Creates and returns an image representation object using the contents of the specified pasteboard.

+ (id)imageRepWithPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

The pasteboard containing the image data.

Return Value
An initialized instance of an NSImageRep subclass, or nil if the image data could not be read.

Class Methods 1409
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Discussion
If sent to the NSImageRep class object, this method returns a newly allocated instance of a subclass of
NSImageRep initialized with the data in the specified pasteboard. If sent to a subclass of NSImageRep that
recognizes the data on the pasteboard, it returns an instance of that subclass initialized with that data.

This method returns nil in any of the following cases:

 ■ The message is sent to the NSImageRep class object and there are no subclasses in the NSImageRep
class registry that handle data of the type contained in the specified pasteboard.

 ■ The message is sent to a subclass of NSImageRep and that subclass cannot handle data of the type
contained in the specified pasteboard.

 ■ The NSImageRep subclass is unable to initialize itself with the contents of the pasteboard.

The NSImageRep subclass is initialized by creating an NSData object based on the data the specified
pasteboard and passing it to the imageRepWithData: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imagePasteboardTypes (page 1404)

Declared In
NSImageRep.h

imageTypes
Returns an array of UTI strings identifying the image types supported by the receiver, either directly or through
a user-installed filter service.

+ (NSArray *)imageTypes

Return Value
An array of NSString objects, each of which contains a UTI identifying a supported image type. Some sample
image-related UTI strings include "public.image”, "public.jpeg”, and "public.tiff”. For a list of
supported types, see UTCoreTypes.h.

Discussion
The returned list includes UTIs all file types supported by this image representation object plus those that
can be opened by this image representation after being converted by a user-installed filter service. You can
use the returned UTI strings with any method that supports UTIs.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSImageRep.h

imageUnfilteredFileTypes
Returns the list of file types supported directly by the receiver.

1410 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

+ (NSArray *)imageUnfilteredFileTypes

Return Value
An array of NSString objects. This array is empty by default. Subclasses must override to return the list of
file formats they support.

Discussion
The returned file types can include encoded HFS file types as well as filename extensions. When creating a
subclass of NSImageRep, override this method to return a list of strings representing the supported file types.
For example, the NSBitmapImageRep class implements code similar to the following for this method:

+ (NSArray *)imageUnfilteredFileTypes {
 static NSArray *types = nil;

 if (!types) types = [[NSArray alloc]
 initWithObjects:@"tiff", @"gif", @"jpg", @"bmp", nil];
 return types;
}

If your subclass supports the types supported by its superclass, you must explicitly get the array of types
from the superclass and put them in the array returned by this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imageFileTypes (page 1403)
+ imageUnfilteredFileTypes (page 1333) (NSImage)

Declared In
NSImageRep.h

imageUnfilteredPasteboardTypes
Returns the list of pasteboard types supported directly by the receiver.

+ (NSArray *)imageUnfilteredPasteboardTypes

Return Value
An array of NSString objects. This array is empty by default. Subclasses must override to return the list of
pasteboard formats they support.

Discussion
When creating a subclass of NSImageRep, override this method to return a list representing the supported
pasteboard types. For example, the NSBitmapImageRep class implements code similar to the following for
this method:

+ (NSArray *)imageUnfilteredPasteboardTypes {
 static NSArray *types = nil;

 if (!types) types = [[NSArray alloc] initWithObjects:NSTIFFPboardType,
nil];
 return types;
}

Class Methods 1411
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

If your subclass supports the types supported by its superclass, you must explicitly get the list of types from
the superclass and add them to the array returned by this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imagePasteboardTypes (page 1404)
+ imageUnfilteredPasteboardTypes (page 1333) (NSImage)

Declared In
NSImageRep.h

imageUnfilteredTypes
Returns an array of UTI strings identifying the image types supported directly by the receiver.

+ (NSArray *)imageUnfilteredTypes

Return Value
An array of NSString objects, each of which contains a UTI identifying a supported image type. Some sample
image-related UTI strings include "public.image”, "public.jpeg”, and "public.tiff”. For a list of
supported types, see UTCoreTypes.h.

Discussion
The returned list includes UTI strings only for those file types that are supported directly by the receiver. It
does not include types that are supported through user-installed filter services. You can use the returned
UTI strings with any method that supports UTIs.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSImageRep.h

registeredImageRepClasses
Returns an array containing the registered NSImageRep classes.

+ (NSArray *)registeredImageRepClasses

Return Value
An array of Class objects identifying the registered NSImageRep subclasses.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImageRep.h

1412 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

registerImageRepClass:
Adds the specified class to the registry of available NSImageRep subclasses.

+ (void)registerImageRepClass:(Class)imageRepClass

Parameters
imageRepClass

The Class object for an NSImageRep subclass.

Discussion
This method posts anNSImageRepRegistryDidChangeNotification (page 1425), along with the receiving
object, to the default notification center.

A good place to add image representation classes to the registry is in the load class method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ unregisterImageRepClass: (page 1413)
load (NSObject)

Declared In
NSImageRep.h

unregisterImageRepClass:
Removes the specified NSImageRep subclass from the registry of available image representations.

+ (void)unregisterImageRepClass:(Class)imageRepClass

Parameters
imageRepClass

The Class object for an NSImageRep subclass.

Discussion
This method posts theNSImageRepRegistryDidChangeNotification (page 1425), along with the receiving
object, to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ registerImageRepClass: (page 1413)

Declared In
NSImageRep.h

Class Methods 1413
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Instance Methods

bitsPerSample
Returns the number of bits per sample in the receiver.

- (NSInteger)bitsPerSample

Return Value
The number of bits used to specify each component of data in a single pixel (for example, a value of 8 for an
RGBA image means that each pixel is comprised of four 8-bit values). May also return
NSImageRepMatchesDevice (page 1425).

Discussion
If the receiver is a planar image, this method returns the number of bits per sample per plane.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBitsPerSample: (page 1421)
– bitsPerPixel (page 348) (NSBitmapImageRep)
– samplesPerPixel (page 364) (NSBitmapImageRep)
– isPlanar (page 363) (NSBitmapImageRep)

Related Sample Code
Quartz EB

Declared In
NSImageRep.h

CGImageForProposedRect:context:hints:
Returns a CGImage capturing the drawing of the receiver.

- (CGImageRef)CGImageForProposedRect:(NSRect *)proposedDestRect
context:(NSGraphicsContext *)context hints:(NSDictionary *)hints

Parameters
proposedDestRect

On input, the proposed destination rectangle for drawing the image. If NULL, it defaults to the smallest
pixel-integral rectangle containing {{0,0}, [self size]}. The proposedDestRect is in user space in the
reference context.

On output the proposedDestRect may have been altered. This is because a CGImage is necessarily
pixel-integral, while an NSImage is not. In order to produce a CGImage for rect (0.5, 0.5, 4.0,
4.0) without distortion or double-antialiasing, we may have to produce a 5x5 CGImage, and also
inflate the proposedDestRect. Drawing the CGImage in the out-value proposedDestRect is the
same as drawing the NSImage in the in-value of proposed rect.

context
A graphics context., Can be NULL.

1414 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

hints
An optional dictionary of hints that provide more context for selecting or generating the image. See
Image_Hint_Dictionary_Keys (page 1375) for a summary of the possible key-value pairs.

Return Value
A CGImageRef. This may be an existing CGImage if one is available. If not, a new CGImage is created.

Discussion
An NSImage is potentially resolution independent, and may have representations that allow it to draw well
in many contexts. A CGImage is more like a single pixel-based representation. This method produces a
snapshot of how the NSImage would draw if it was asked to draw in the proposed rectangle in the graphics
context.

All input parameters are optional. They provide hints for how to choose among existing CGImages, or how
to create one if there isn't already a CGImage available. The parameters are only hints.

This method is intended as an override point for image rep subclasses that naturally have a CGImage available.
For example, NSBitmapImageRep overrides it to return the CGImage that naturally backs the rep. You don't
need to override the method except possibly for performance, though. The NSImageRep-level implementation
will produce a CGImage by making a buffer and calling [self draw]. That's likely to be the best possible
implementation for reps that aren't naturally CGImage backed. The draw (page 1415) remains the only method
of NSImageRep that a subclasser really needs to override.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSImageRep.h

colorSpaceName
Returns the name of the receiver's color space.

- (NSString *)colorSpaceName

Return Value
The colorspace name, or NSCalibratedRGBColorSpace if no name has been assigned.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setColorSpaceName: (page 1421)

Declared In
NSImageRep.h

draw
Implemented by subclasses to draw the image in the current coordinate system.

- (BOOL)draw

Instance Methods 1415
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Return Value
YES if the image was successfully drawn; otherwise, NO if there was a problem. The default version of this
method simply returns YES.

Discussion
Subclass override this method to draw the image using the image data. By the time this method is called,
the graphics state is already configured for you to draw the image at location (0.0, 0.0) in the current coordinate
system.

The standard Application Kit subclasses all draw the image using the NSCompositeCopy composite operation
defined in the “Constants” (page 1375) section of NSImage. Using the copy operator, the image data overwrites
the destination without any blending effects. Transparent (alpha) regions in the source image appear black.
To use other composite operations, you must place the representation into an NSImage object and use its
drawAtPoint:fromRect:operation:fraction: (page 1346) or
drawInRect:fromRect:operation:fraction: (page 1347) methods.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLUT

Declared In
NSImageRep.h

drawAtPoint:
Draws the receiver's image data at the specified point in the current coordinate system.

- (BOOL)drawAtPoint:(NSPoint)aPoint

Parameters
aPoint

The point in the current coordinate system at which to draw the image.

Return Value
YES if the image was successfully drawn; otherwise, NO. If the size of the image has not yet been set, this
method returns NO immediately

Discussion
This method sets the origin of the current coordinate system to the specified point and then invokes the
receiver’s drawmethod to draw the image at that point. Upon completion, it restores the current coordinates
to their original setting. If aPoint is (0.0, 0.0), this method simply invokes the draw (page 1415) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSize: (page 1423)
– drawInRect: (page 1417)
– drawInRect:fromRect:operation:fraction:respectFlipped:hints: (page 1417)

Declared In
NSImageRep.h

1416 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

drawInRect:
Draws the image, scaling it (as needed) to fit the specified rectangle.

- (BOOL)drawInRect:(NSRect)rect

Parameters
rect

The rectangle in the current coordinate system in which to draw the image.

Return Value
YES if the image was successfully drawn; otherwise, NO. If the size of the image has not yet been set, this
method returns NO immediately

Discussion
This method sets the origin of the current coordinate system to the origin of the specified rectangle before
invoking the receiver's draw (page 1415) method. If the rectangle size is different from the image's native size,
this method adjusts the coordinate transform, causing the image to be scaled appropriately. After the draw
method returns, the coordinate system changes are undone, restoring the original graphics state.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSize: (page 1423)
– drawAtPoint: (page 1416)
– drawInRect:fromRect:operation:fraction:respectFlipped:hints: (page 1417)

Related Sample Code
PDF Annotation Editor
PDFView
Sketch-112

Declared In
NSImageRep.h

drawInRect:fromRect:operation:fraction:respectFlipped:hints:
Draws all or part of the image in the specified rectangle in the current coordinate system.

- (BOOL)drawInRect:(NSRect)dstSpacePortionRect fromRect:(NSRect)srcSpacePortionRect
operation:(NSCompositingOperation)op fraction:(CGFloat)requestedAlpha
respectFlipped:(BOOL)respectContextIsFlipped hints:(NSDictionary *)hints

Parameters
dstSpacePortionRect

The rectangle in which to draw the image, specified in the current coordinate system.

srcSpacePortionRect
The source rectangle specifying the portion of the image you want to draw. The coordinates of this
rectangle must be specified using the image's own coordinate system. If you pass in NSZeroRect,
the entire image is drawn.

Instance Methods 1417
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

op
The compositing operation to use when drawing the image. See theNSCompositingOperation (page
1375) constants.

requestedAlpha
The opacity of the image, specified as a value from 0.0 to 1.0. Specifying a value of 0.0 draws the
image as fully transparent while a value of 1.0 draws the image as fully opaque. Values greater than
1.0 are interpreted as 1.0.

respectContextIsFlipped
YES if the flipped context of the receiver should be respected, otherwise NO.

hints
An optional dictionary of hints that provide more context for selecting or generating the image. See
Image_Hint_Dictionary_Keys (page 1375) for a summary of the possible key-value pairs.

Return Value
YES if the image was successfully drawn; otherwise, NO.

Discussion
If the srcSpacePortionRect and dstSpacePortionRect rectangles have different sizes, the source
portion of the image is scaled to fit the specified destination rectangle.

Availability
Available in Mac OS X v10.6 and later.

See Also
– draw (page 1415)
– drawAtPoint: (page 1416)
– drawInRect: (page 1417)

Declared In
NSImageRep.h

hasAlpha
Returns a Boolean value indicating whether the receiver has an alpha channel.

- (BOOL)hasAlpha

Return Value
YES if the receiver has a known alpha channel; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlpha: (page 1420)

Related Sample Code
LayerBackedOpenGLView
NSOpenGL Fullscreen

Declared In
NSImageRep.h

1418 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

isOpaque
Returns a Boolean value indicating whether the receiver is opaque.

- (BOOL)isOpaque

Return Value
YES if the receiver is opaque; otherwise, NO.

Discussion
Use this method to test whether an image representation completely covers the area within the rectangle
returned by the size (page 1424) method.

The returned value does not indicate whether the image has an alpha channel or if there is partial or complete
transparency when drawing the image rep. Use the hasAlpha (page 1418) method to determine if the image
has an alpha channel.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOpaque: (page 1422)

Declared In
NSImageRep.h

pixelsHigh
Returns the height of the image, measured in pixels.

- (NSInteger)pixelsHigh

Return Value
The height of the image, measured in the units of the device coordinate space. This value is usually derived
from the image data itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPixelsHigh: (page 1422)
– pixelsWide (page 1420)
– size (page 1424)
NSImageRepMatchesDevice (page 1425)

Related Sample Code
Cocoa OpenGL
GLUT
OpenCL_OceanWave
Quartz EB
Reducer

Instance Methods 1419
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Declared In
NSImageRep.h

pixelsWide
Returns the width of the image, measured in pixels.

- (NSInteger)pixelsWide

Return Value
The width of the image, measured in the units of the device coordinate space. This value is usually derived
from the image data itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPixelsWide: (page 1423)
– pixelsHigh (page 1419)
– size (page 1424)
NSImageRepMatchesDevice (page 1425)

Related Sample Code
Cocoa OpenGL
GLUT
OpenCL_OceanWave
Quartz EB
Reducer

Declared In
NSImageRep.h

setAlpha:
Informs the receiver that its image data has an alpha component.

- (void)setAlpha:(BOOL)flag

Parameters
flag

YES if you want the receiver to have an alpha component; otherwise NO.

Discussion
Subclasses should call this method when loading image data to notify the parent class whether that data
contains an alpha component. Passing in a value of YES does not add an alpha channel to the image data
itself; it merely records the fact that the data has an alpha channel.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasAlpha (page 1418)

1420 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Declared In
NSImageRep.h

setBitsPerSample:
Informs the receiver that its image data has the specified number of bits for each component of a pixel.

- (void)setBitsPerSample:(NSInteger)anInt

Parameters
anInt

The number of bits used by each component of a pixel, or NSImageRepMatchesDevice (page 1425).

Discussion
Subclasses should call this method when loading image data to notify the parent class of how many bits
each sample uses. Specifying a value that differs from the actual image data does not change the bit depth
of the image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bitsPerSample (page 1414)

Declared In
NSImageRep.h

setColorSpaceName:
Informs the receiver of the color space used by the image data.

- (void)setColorSpaceName:(NSString *)string

Parameters
string

The name of the color space used by the image data.

Discussion
By default, an NSImageRep object’s color space name is NSCalibratedRGBColorSpace. Color space names
are defined as part of the NSColor class, in NSGraphics.h. The following are valid color space names:

NSCalibratedWhiteColorSpace

NSCalibratedBlackColorSpace

NSCalibratedRGBColorSpace

NSDeviceWhiteColorSpace

NSDeviceBlackColorSpace

NSDeviceRGBColorSpace

NSDeviceCMYKColorSpace

NSNamedColorSpace

NSCustomColorSpace

Instance Methods 1421
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– colorSpaceName (page 1415)

Declared In
NSImageRep.h

setOpaque:
Sets whether the receiver's image is opaque.

- (void)setOpaque:(BOOL)flag

Parameters
flag

YES if the image should be treated as fully opaque; otherwise, NO to indicate the image may include
some transparent regions.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isOpaque (page 1419)

Declared In
NSImageRep.h

setPixelsHigh:
Informs the receiver of the image data height.

- (void)setPixelsHigh:(NSInteger)anInt

Parameters
anInt

The height of the image, measured in pixels.

Discussion
Subclasses should call this method when loading image data to notify the parent class of the image height.
You cannot use this method to change the actual number of pixels in the image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pixelsHigh (page 1419)
– setPixelsWide: (page 1423)
– setSize: (page 1423)
NSImageRepMatchesDevice (page 1425)

1422 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Declared In
NSImageRep.h

setPixelsWide:
Informs the receiver of the image data width.

- (void)setPixelsWide:(NSInteger)anInt

Parameters
anInt

The width of the image, measured in pixels.

Discussion
Subclasses should call this method when loading image data to notify the parent class of the image width.
You cannot use this method to change the actual number of pixels in the image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pixelsWide (page 1420)
– setPixelsHigh: (page 1422)
– setSize: (page 1423)
NSImageRepMatchesDevice (page 1425)

Declared In
NSImageRep.h

setSize:
Sets the size of the image representation to the specified value.

- (void)setSize:(NSSize)aSize

Parameters
aSize

The new size of the image representation, measured in points in the user coordinate space.

Discussion
This method determines the size of the image when it’s rendered. It is not necessarily the same as the width
and height of the image in pixels as specified by the image data, nor must it be equal to the size set for the
NSImage object that wraps this image representation. You must set the image size before you can render
it.

The size of an image representation combined with the physical dimensions of the image data determine
the resolution of the image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– size (page 1424)

Instance Methods 1423
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

– draw (page 1415)
– setPixelsHigh: (page 1422)
– setPixelsWide: (page 1423)

Related Sample Code
SimpleImageFilter

Declared In
NSImageRep.h

size
Returns the size of the image representation.

- (NSSize)size

Return Value
The size of the image representation, measured in points in the user coordinate space.

Discussion
This size is the size of the image representation when it’s rendered. It is not necessarily the same as the width
and height of the image in pixels as specified by the image data, nor must it be equal to the size set for the
NSImage object that wraps this image representation.

The size of an image representation combined with the physical dimensions of the image data determine
the resolution of the image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSize: (page 1423)
– pixelsHigh (page 1419)
– pixelsWide (page 1420)

Related Sample Code
NURBSSurfaceVertexProg
StillMotion
SurfaceVertexProgram
Vertex Optimization
VertexPerformanceDemo

Declared In
NSImageRep.h

1424 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Constants

Display Device Matching
The following constant is used by NSImageRep to denote an attribute whose value changes to match the
display device.

enum {
 NSImageRepMatchesDevice
};

Constants
NSImageRepMatchesDevice

Indicates that the value of certain attributes, such as the number of colors or bits per sample, will
change to match the display device.

This value can be passed in (or received back) as the value of bitsPerSample (page 1414),
pixelsWide (page 1420), and pixelsHigh (page 1419).

Available in Mac OS X v10.0 and later.

Declared in NSImageRep.h.

Deprecated Notification Name
The following constant maps to the new notification and is for legacy code only.

#define NSImageRepRegistryChangedNotification NSImageRepRegistryDidChangeNotification

Constants
NSImageRepRegistryChangedNotification

An older name for the NSImageRepRegistryDidChangeNotification (page 1425) notification. Do
not use.

Available in Mac OS X v10.0 and later.

Declared in NSImageRep.h.

Notifications

NSImageRepRegistryDidChangeNotification
Posted whenever the NSImageRep class registry changes.

The notification object is the image class that is registered or unregistered. This notification does not contain
a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImageRep.h

Constants 1425
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

1426 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 63

NSImageRep Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSImageView.h

Companion guide Image Views

Related sample code From A View to A Movie
GLUT
ImageClient
MyPhoto
PDF Calendar

Overview

An NSImageView object displays a single image from an NSImage object in a frame and can optionally allow
a user to drag an image to it.

Tasks

Choosing the Image

– image (page 1429)
Returns the NSImage object displayed by the receiver.

– setImage: (page 1432)
Sets the image of the receiver.

Overview 1427
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 64

NSImageView Class Reference

Choosing the Frame

– imageFrameStyle (page 1430)
Returns the style of frame that appears around the image.

– setImageFrameStyle: (page 1434)
Sets the kind of frame that borders the image.

Aligning and Scaling the Image

– imageAlignment (page 1430)
Returns the position of the cell’s image in the frame.

– setImageAlignment: (page 1433)
Sets the position of the image in the frame.

– imageScaling (page 1431)
Returns the way the cell’s image alters to fit the frame.

– setImageScaling: (page 1434)
Sets the way the image alters to fit the frame.

Responding to User Events

– isEditable (page 1431)
Returns a Boolean value indicating whether the user can drag a new image into the frame.

– setEditable: (page 1432)
Sets whether the user can drag a new image into the frame.

Animating Image Playback

– animates (page 1429)
Returns a Boolean value indicating whether the receiver automatically plays animated images.

– setAnimates: (page 1432)
Sets whether the receiver automatically plays an animated image that is assigned to it.

Pasteboard Support

– setAllowsCutCopyPaste: (page 1431)
Sets whether the receiver allows the user to cut, copy and paste the image contents.

– allowsCutCopyPaste (page 1429)
Returns a Boolean value indicating whether the receiver allows the user to cut, copy and paste of the
image contents.

1428 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 64

NSImageView Class Reference

Instance Methods

allowsCutCopyPaste
Returns a Boolean value indicating whether the receiver allows the user to cut, copy and paste of the image
contents.

- (BOOL)allowsCutCopyPaste

Return Value
YES if the user can cut, copy, and paste the image contents; otherwise, NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAllowsCutCopyPaste: (page 1431)

Declared In
NSImageView.h

animates
Returns a Boolean value indicating whether the receiver automatically plays animated images.

- (BOOL)animates

Return Value
YES if the receiver automatically plays animated images; otherwise, NO. The default value is YES for
NSImageView objects you create programmatically. For NSImageView objects loaded from a nib file, the
control takes the value set in Interface Builder.

Discussion
The timing and looping characteristics of the animation are taken from the image data. If this method returns
NO, the receiver displays the first frame of the animation only.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAnimates: (page 1432)

Declared In
NSImageView.h

image
Returns the NSImage object displayed by the receiver.

- (NSImage *)image

Instance Methods 1429
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 64

NSImageView Class Reference

Return Value
The NSImage object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImage: (page 1432)

Related Sample Code
CoreImageGLTextureFBO
Cropped Image
DockTile
PDF Calendar
Reducer

Declared In
NSImageView.h

imageAlignment
Returns the position of the cell’s image in the frame.

- (NSImageAlignment)imageAlignment

Return Value
The image alignment. For a list of possible alignments, see setImageAlignment: (page 1433). The default
value is NSImageAlignCenter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSImageView.h

imageFrameStyle
Returns the style of frame that appears around the image.

- (NSImageFrameStyle)imageFrameStyle

Return Value
The current image style. For a list of frame styles, see setImageFrameStyle: (page 1434). The default value
is NSImageFrameNone.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Transformed Image

Declared In
NSImageView.h

1430 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 64

NSImageView Class Reference

imageScaling
Returns the way the cell’s image alters to fit the frame.

- (NSImageScaling)imageScaling

Return Value
The scaling option. For a list of possible values, see setImageScaling: (page 1434). The default value is
NSScaleProportionally.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaSlides

Declared In
NSImageView.h

isEditable
Returns a Boolean value indicating whether the user can drag a new image into the frame.

- (BOOL)isEditable

Return Value
YES if the user can drag an image into the receiver's frame; otherwise, NO. The default value is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEditable: (page 1432)

Declared In
NSImageView.h

setAllowsCutCopyPaste:
Sets whether the receiver allows the user to cut, copy and paste the image contents.

- (void)setAllowsCutCopyPaste:(BOOL)allow

Parameters
allow

YES if the user can cut, copy, and paste the image contents; otherwise, NO to prevent the use of
pasteboard operations.

Availability
Available in Mac OS X v10.4 and later.

See Also
– allowsCutCopyPaste (page 1429)

Instance Methods 1431
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 64

NSImageView Class Reference

Declared In
NSImageView.h

setAnimates:
Sets whether the receiver automatically plays an animated image that is assigned to it.

- (void)setAnimates:(BOOL)flag

Parameters
flag

YES if the receiver should automatically plays animated images; otherwise, NO.

Discussion
The timing and looping characteristics of the animation are taken from the image data. If you specify NO, the
receiver displays the first frame of the animation only.

Availability
Available in Mac OS X v10.3 and later.

See Also
– animates (page 1429)

Declared In
NSImageView.h

setEditable:
Sets whether the user can drag a new image into the frame.

- (void)setEditable:(BOOL)flag

Parameters
flag

YES if the user can drag an image into the receiver's frame; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEditable (page 1431)

Related Sample Code
FunHouse
GLUT

Declared In
NSImageView.h

setImage:
Sets the image of the receiver.

1432 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 64

NSImageView Class Reference

- (void)setImage:(NSImage *)image

Parameters
image

The image to display in the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– image (page 1429)

Related Sample Code
DockTile
FunHouse
GLUT
ImageClient
QTMetadataEditor

Declared In
NSImageView.h

setImageAlignment:
Sets the position of the image in the frame.

- (void)setImageAlignment:(NSImageAlignment)alignment

Parameters
alignment

The possible values for this parameter are:

 ■ NSImageAlignLeft

 ■ NSImageAlignRight

 ■ NSImageAlignCenter

 ■ NSImageAlignTop

 ■ NSImageAlignBottom

 ■ NSImageAlignTopLeft

 ■ NSImageAlignTopRight

 ■ NSImageAlignBottomLeft

 ■ NSImageAlignBottomRight

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageAlignment (page 1430)

Instance Methods 1433
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 64

NSImageView Class Reference

Related Sample Code
GLUT

Declared In
NSImageView.h

setImageFrameStyle:
Sets the kind of frame that borders the image.

- (void)setImageFrameStyle:(NSImageFrameStyle)frameStyle

Parameters
frameStyle

The possible values for this parameter are as follows:

 ■ NSImageFrameNone—an invisible frame

 ■ NSImageFramePhoto—a thin black outline and a dropped shadow

 ■ NSImageFrameGrayBezel—a gray, concave bezel that makes the image look sunken

 ■ NSImageFrameGroove—a thin groove that looks etched around the image

 ■ NSImageFrameButton—a convex bezel that makes the image stand out in relief, like a button

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageFrameStyle (page 1430)

Related Sample Code
FunHouse
Transformed Image

Declared In
NSImageView.h

setImageScaling:
Sets the way the image alters to fit the frame.

- (void)setImageScaling:(NSImageScaling)scaling

1434 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 64

NSImageView Class Reference

Parameters
scaling

The possible values for this parameter are:

 ■ NSScaleProportionally. If the image is too large, it shrinks to fit inside the frame. The
proportions of the image are preserved. The image is never scaled up to fit a larger frame.

 ■ NSScaleToFit. The image shrinks or expands, and its proportions distort, until it exactly fits the
frame.

 ■ NSScaleNone. The size and proportions of the image don’t change. If the frame is too small to
display the whole image, the edges of the image are trimmed off.

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageScaling (page 1431)

Related Sample Code
FunHouse

Declared In
NSImageView.h

Instance Methods 1435
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 64

NSImageView Class Reference

1436 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 64

NSImageView Class Reference

Inherits from NSObject

Conforms to NSGlyphStorage
NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSLayoutManager.h

Companion guides Text System Overview
Text Layout Programming Guide

Related sample code Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112
TextSizingExample

Overview

An NSLayoutManager object coordinates the layout and display of characters held in an NSTextStorage
object. It maps Unicode character codes to glyphs, sets the glyphs in a series of NSTextContainer objects,
and displays them in a series of NSTextView objects. In addition to its core function of laying out text, an
NSLayoutManager object coordinates its NSTextView objects, provides services to those text views to
support NSRulerView instances for editing paragraph styles, and handles the layout and display of text
attributes not inherent in glyphs (such as underline or strikethrough). You can create a subclass of
NSLayoutManager to handle additional text attributes, whether inherent or not.

Text Antialiasing

NSLayoutManagerprovides the threshold for text antialiasing. It looks at theAppleAntiAliasingThreshold
default value. If the font size is smaller than or equal to this threshold size, the text is rendered aliased by
NSLayoutManager. You can change the threshold value from the Appearance pane of System Preferences.

Overview 1437
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Thread Safety of NSLayoutManager

Generally speaking, a given layout manager (and associated objects) should not be used in more than one
block, operation, or thread at a time. Most layout managers are used on the main thread, since it is the main
thread on which their text views are displayed, and since background layout occurs on the main thread. If it
is intended that a layout manager should be used on a background thread, first make sure that text views
associated with that layout manager (if any) are not displayed while the layout manager is being used on
the background thread, and, second, turn off background layout for that layout manager while it is being
used on the background thread.

Noncontiguous Layout

Noncontiguous layout is an optional layout manager behavior new in Mac OS X v10.5. Previously, both glyph
generation and layout were always performed, in order, from the beginning to the end of the document.
When noncontiguous layout is turned on, however, the layout manager gains the option of performing glyph
generation or layout for one portion of the document without having done so for previous sections. This can
provide significant performance improvements for large documents.

Noncontiguous layout is not turned on automatically because direct clients of NSLayoutManager typically
have relied on the previous behavior—for example, by forcing layout for a given glyph range, and then
assuming that previous glyphs would therefore be laid out. Clients who use NSLayoutManager only
indirectly—for example, those who use NSTextView without directly calling the underlying layout
manager—can usually turn on noncontiguous layout without difficulty. Clients using NSLayoutManager
directly need to examine their usage before turning on noncontiguous layout.

To turn on noncontiguous layout, use setAllowsNonContiguousLayout: (page 1498). In addition, see the
other methods in “Managing Noncontiguous Layout” (page 1447), many of which enable you to ensure that
glyph generation and layout are performed for specified portions of the text. The behavior of a number of
other layout manager methods is affected by the state of noncontiguous layout, as noted in the discussion
sections of those method descriptions.

Adopted Protocols

NSCoding
encodeWithCoder:

initWithCoder:

NSGlyphStorage
– attributedString (page 3688)
– insertGlyphs:length:forStartingGlyphAtIndex:characterIndex: (page 3688)
– layoutOptions (page 3689)
– setIntAttribute:value:forGlyphAtIndex: (page 3689)

1438 Adopted Protocols
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Tasks

Initializing

– init (page 1478)
Initializes the receiver, a newly created NSLayoutManager object.

Setting the Text Storage

– setTextStorage: (page 1509)
Sets the receiver’s NSTextStorage object.

– textStorage (page 1520)
Returns the receiver’s text storage object.

– attributedString (page 1451)
Returns the text storage object from which the NSGlyphGenerator object procures characters for
glyph generation.

– replaceTextStorage: (page 1496)
Replaces the NSTextStorage object for the group of text-system objects containing the receiver
with the given text storage object.

Setting Text Containers

– textContainers (page 1520)
Returns the receiver’s text containers.

– addTextContainer: (page 1449)
Appends the given text container to the series of text containers where the receiver arranges text.

– insertTextContainer:atIndex: (page 1480)
Inserts the given text container into the series of text containers at the given index.

– removeTextContainerAtIndex: (page 1495)
Removes the text container at the given index and invalidates the layout as needed.

Setting the Glyph Generator

– setGlyphGenerator: (page 1502)
Sets the glyph generator used by this layout manager.

– glyphGenerator (page 1472)
Returns the glyph generator used by this layout manager.

Tasks 1439
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Invalidating Glyphs and Layout

– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 1482)
Invalidates the cached glyphs for the characters in the given character range, adjusts the character
indices of all the subsequent glyphs by the change in length, and invalidates the new character range.

– invalidateGlyphsOnLayoutInvalidationForGlyphRange: (page 1483)
Specifies explicitly when portions of the glyph stream depend on layout.

– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 1483)
Invalidates the layout information for the glyphs mapped to the given range of characters.

– invalidateLayoutForCharacterRange:actualCharacterRange: (page 1483)
Invalidates the layout information for the glyphs mapped to the given range of characters.

– invalidateDisplayForCharacterRange: (page 1481)
Invalidates display for the given character range.

– invalidateDisplayForGlyphRange: (page 1482)
Marks the glyphs in the given glyph range as needing display, as well as the appropriate regions of
the NSTextView objects that display those glyphs (using the NSView method
setNeedsDisplayInRect: (page 3225)).

– textContainerChangedGeometry: (page 1518)
Invalidates the layout information, and possibly glyphs, for the given text container and all subsequent
NSTextContainer objects.

– textContainerChangedTextView: (page 1518)
Updates information needed to manage NSTextView objects in the given text container.

– textStorage:edited:range:changeInLength:invalidatedRange: (page 1521)
Invalidates glyph and layout information for a portion of the text in the given text storage object.

Enabling Background Layout

– setBackgroundLayoutEnabled: (page 1499)
Specifies whether the receiver generates glyphs and lays them out when the application’s run loop
is idle.

– backgroundLayoutEnabled (page 1451)
Indicates whether the receiver generates glyphs and lays out text when the application’s run loop is
idle.

Accessing Glyphs

– insertGlyph:atGlyphIndex:characterIndex: (page 1479)
Inserts a single glyph into the glyph stream at the given index and maps it to the character at the
given character index.

– insertGlyphs:length:forStartingGlyphAtIndex:characterIndex: (page 1479)
Inserts the given glyphs into the glyph cache at the given index and maps them to characters beginning
at the given character index.

– isValidGlyphIndex: (page 1484)
Indicates whether the specified index refers to a valid glyph, otherwise NO.

1440 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

– glyphAtIndex: (page 1471)
Returns the glyph at glyphIndex.

– glyphAtIndex:isValidIndex: (page 1472)
If the given index is valid, returns the glyph at that location and optionally returns a flag indicating
whether the requested index is in range.

– replaceGlyphAtIndex:withGlyph: (page 1495)
Replaces the glyph at the given index with a new glyph.

– getGlyphs:range: (page 1468)
Fills the passed-in buffer with a sequence of glyphs

– getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: (page 1469)
Returns the glyphs and information needed to perform layout for the given glyph range.

– getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:bidiLevels: (page
1469)

Returns the glyphs and information needed to perform layout for the given glyph range.

– deleteGlyphsInRange: (page 1457)
Deletes the glyphs in the given range from the receiver’s glyph store.

– numberOfGlyphs (page 1491)
Returns the number of glyphs in the receiver.

Mapping Characters to Glyphs

– setCharacterIndex:forGlyphAtIndex: (page 1500)
Sets the index of the character corresponding to the glyph at the given glyph index.

– characterIndexForGlyphAtIndex: (page 1453)
Returns the index in the text storage for the first character associated with the given glyph.

– glyphIndexForCharacterAtIndex: (page 1473)
Returns the index of the first glyph associated with the character at the specified index.

– characterRangeForGlyphRange:actualGlyphRange: (page 1455)
Returns the range of characters that generated the glyphs in the given glyph range.

– glyphRangeForCharacterRange:actualCharacterRange: (page 1476)
Returns the range of glyphs that are generated from the characters in the given character range.

Setting Glyph Attributes

– intAttribute:forGlyphAtIndex: (page 1481)
Returns the value of the attribute identified by the given attribute tag for the glyph at the given index.

– setIntAttribute:value:forGlyphAtIndex: (page 1503)
Sets a custom attribute value for a given glyph.

– setAttachmentSize:forGlyphRange: (page 1498)
Sets the size at which the given glyph (assumed to be an attachment) is asked to draw in the given
glyph range.

– attachmentSizeForGlyphAtIndex: (page 1450)
For a glyph corresponding to an attachment, returns the size for the attachment cell to occupy.

Tasks 1441
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

– setDefaultAttachmentScaling: (page 1500)
Sets the default scaling behavior to the given scaling if an attachment image is too large to fit in a
text container.

– defaultAttachmentScaling (page 1456)
Returns the default behavior desired if an attachment image is too large to fit in a text container.

– showAttachmentCell:inRect:characterIndex: (page 1512)
Draws an attachment cell.

Handling Layout for Text Containers

– setTextContainer:forGlyphRange: (page 1509)
Sets text container where the glyphs in the given range are laid out.

– glyphRangeForTextContainer: (page 1477)
Returns the range of glyphs laid out within the given text container.

– textContainerForGlyphAtIndex:effectiveRange: (page 1519)
Returns the container in which the given glyph is laid out and (optionally) by reference the whole
range of glyphs that are in that container.

– textContainerForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page 1519)
Returns the container in which the given glyph is laid out and (optionally) by reference the whole
range of glyphs that are in that container.

– usedRectForTextContainer: (page 1524)
Returns the bounding rectangle for the glyphs laid out in the given text container.

– characterIndexForPoint:inTextContainer:fractionOfDistanceBetweenInsertionPoints: (page
1454)

Returns the index of the character falling under the given point, expressed in the given container's
coordinate system.

Handling Line Fragment Rectangles

– setLineFragmentRect:forGlyphRange:usedRect: (page 1505)
Associates the given line fragment bounds with the given range of glyphs.

– lineFragmentRectForGlyphAtIndex:effectiveRange: (page 1487)
Returns the rectangle for the line fragment in which the given glyph is laid out and (optionally), by
reference, the whole range of glyphs that are in that fragment.

– lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page 1487)
Returns the line fragment rectangle containing the glyph at the given glyph index.

– lineFragmentUsedRectForGlyphAtIndex:effectiveRange: (page 1488)
Returns the usage rectangle for the line fragment in which the given glyph is laid and (optionally) by
reference the whole range of glyphs that are in that fragment.

– lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page
1489)

Returns the usage rectangle for the line fragment in which the given glyph is laid and (optionally) by
reference the whole range of glyphs that are in that fragment.

– setExtraLineFragmentRect:usedRect:textContainer: (page 1502)
Sets the bounds and container for the extra line fragment.

1442 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

– extraLineFragmentRect (page 1464)
Returns the rectangle defining the extra line fragment for the insertion point at the end of a text
(either in an empty text or after a final paragraph separator).

– extraLineFragmentUsedRect (page 1465)
Returns the rectangle enclosing the insertion point drawn in the extra line fragment rectangle.

– extraLineFragmentTextContainer (page 1465)
Returns the text container that contains the extra line fragment rectangle.

– setDrawsOutsideLineFragment:forGlyphAtIndex: (page 1501)
Specifies whether the given glyph exceeds the bounds of the line fragment where it’s laid out.

– drawsOutsideLineFragmentForGlyphAtIndex: (page 1459)
Indicates whether the glyph draws outside of its line fragment rectangle.

Laying Out Glyphs

– setLocation:forStartOfGlyphRange: (page 1506)
Sets the location for the first glyph of the given range.

– setLocations:startingGlyphIndexes:count:forGlyphRange: (page 1506)
Sets locations for many glyph ranges at once.

– locationForGlyphAtIndex: (page 1490)
Returns the location for the given glyph within its line fragment.

– rangeOfNominallySpacedGlyphsContainingIndex: (page 1491)
Returns the range for the glyphs around the given glyph that can be displayed using only their
advancements from the font, without pairwise kerning or other adjustments to spacing.

– getLineFragmentInsertionPointsForCharacterAtIndex:alternatePositions:inDisplayOrder:positions:characterIndexes: (page
1470)

Returns insertion points in bulk for a given line fragment.

– rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:rectCount: (page
1492)

Returns an array of rectangles and, by reference, the number of such rectangles, that define the region
in the given container enclosing the given character range.

– rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: (page
1493)

Returns an array of rectangles and, by reference, the number of such rectangles, that define the region
in the given container enclosing the given glyph range.

– boundingRectForGlyphRange:inTextContainer: (page 1452)
Returns a single bounding rectangle (in container coordinates) enclosing all glyphs and other marks
drawn in the given text container for the given glyph range, including glyphs that draw outside their
line fragment rectangles and text attributes such as underlining.

– glyphRangeForBoundingRect:inTextContainer: (page 1475)
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within the given
rectangle in the given text container.

– glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer: (page 1475)
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within the given
rectangle in the given text container.

Tasks 1443
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

– glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: (page 1474)
Returns the index of the glyph falling under the given point, expressed in the given container's
coordinate system.

– fractionOfDistanceThroughGlyphForPoint:inTextContainer: (page 1468)
This method is a primitive for
glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: (page 1474).
You should always call the main method, not the primitives.

– glyphIndexForPoint:inTextContainer: (page 1473)
This method is a primitive for
glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: (page 1474).
You should always call the main method, not the primitives.

Handling Layout for Text Blocks

– setLayoutRect:forTextBlock:glyphRange: (page 1504)
Sets the layout rectangle enclosing the given text block containing the given glyph range.

– layoutRectForTextBlock:glyphRange: (page 1486)
Returns the layout rectangle within which the given text block containing the given glyph range is
to be laid out.

– setBoundsRect:forTextBlock:glyphRange: (page 1499)
Sets the bounding rectangle enclosing a given text block containing the given glyph range.

– boundsRectForTextBlock:glyphRange: (page 1453)
Returns the bounding rectangle enclosing the given text block containing the given glyph range.

– layoutRectForTextBlock:atIndex:effectiveRange: (page 1486)
Returns the layout rectangle within which the given text block containing the glyph at the given
index is to be laid out.

– boundsRectForTextBlock:atIndex:effectiveRange: (page 1452)
Returns the bounding rectangle within which the given text block containing the glyph at the given
index is to be laid out.

Displaying Special Glyphs

– setNotShownAttribute:forGlyphAtIndex: (page 1507)
Sets the glyph at the given index to be one that isn’t shown.

– notShownAttributeForGlyphAtIndex: (page 1490)
Indicates whether the glyph at the given index is one that isn’t shown.

– setShowsInvisibleCharacters: (page 1508)
Specifies whether to substitute visible glyphs for whitespace and other typically invisible characters
in layout.

– showsInvisibleCharacters (page 1513)
Indicates whether the receiver substitutes visible glyphs for whitespace and other typically invisible
characters in layout.

– setShowsControlCharacters: (page 1507)
Specifies whether to substitute visible glyphs for control characters in layout.

1444 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

– showsControlCharacters (page 1513)
Indicates whether the receiver substitutes visible glyphs for control characters.

– layoutOptions (page 1485)
Returns the layout manager’s current layout options.

Controlling Hyphenation

– setHyphenationFactor: (page 1503)
Sets the threshold controlling when hyphenation is done.

– hyphenationFactor (page 1478)
Returns the current hyphenation threshold.

Finding Characters and Glyphs Not Laid Out

– getFirstUnlaidCharacterIndex:glyphIndex: (page 1468)
Returns the indexes for the first character and glyph that have invalid layout information.

– firstUnlaidCharacterIndex (page 1467)
Returns the index for the first character in the layout manager that has not been laid out.

– firstUnlaidGlyphIndex (page 1467)
Returns the index for the first glyph in the layout manager that has not been laid out.

Using Screen Fonts

– setUsesScreenFonts: (page 1511)
Controls using screen fonts to calculate layout and display text.

– usesScreenFonts (page 1525)
Indicates whether the receiver uses screen fonts to calculate layout and display text.

– substituteFontForFont: (page 1514)
Returns a screen font suitable for use in place of the given font, if one is available.

Handling Rulers

– rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled: (page 1496)
Returns the the accessory view that the text system uses for its ruler.

– rulerMarkersForTextView:paragraphStyle:ruler: (page 1497)
Returns an array of text ruler objects for the current selection.

Managing the Responder Chain

– layoutManagerOwnsFirstResponderInWindow: (page 1485)
Indicates whether the first responder in the given window is a text view associated with the receiver.

Tasks 1445
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

– firstTextView (page 1467)
Returns the first text view in the receiver’s series of text views.

– textViewForBeginningOfSelection (page 1522)
Returns the text view containing the first glyph in the selection.

Drawing

– drawBackgroundForGlyphRange:atPoint: (page 1458)
Draws background marks for the given glyph range, which must lie completely within a single text
container.

– drawGlyphsForGlyphRange:atPoint: (page 1459)
Draws the glyphs in the given glyph range, which must lie completely within a single text container.

– drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:lineFragmentGlyphRange:containerOrigin: (page
1461)

Draws underlining for the glyphs in a given range.

– underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:containerOrigin: (page
1523)

Calculates subranges to be underlined for the glyphs in a given range and draws the underlining as
appropriate.

– showPackedGlyphs:length:glyphRange:atPoint:font:color:printingAdjustment: (page
1512)

Draws a range of glyphs.

– drawStrikethroughForGlyphRange:strikethroughType:baselineOffset:lineFragmentRect:lineFragmentGlyphRange:containerOrigin: (page
1460)

Draws a strikethrough for the glyphs in a given range.

– strikethroughGlyphRange:strikethroughType:lineFragmentRect:lineFragmentGlyphRange:containerOrigin: (page
1514)

Calculates and draws strikethrough for the glyphs in the given range.

– fillBackgroundRectArray:count:forCharacterRange:color: (page 1466)
Fills background rectangles with a color.

Accessing the Delegate

– setDelegate: (page 1501)
Sets the receiver’s delegate.

– delegate (page 1457)
Returns the receiver’s delegate.

Accessing the Typesetter

– setTypesetter: (page 1510)
Sets the current typesetter.

– typesetter (page 1522)
Returns the receiver’s typesetter.

1446 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Managing Typesetter Compatibility

– setTypesetterBehavior: (page 1510)
Sets the default typesetter behavior.

– typesetterBehavior (page 1522)
Returns the current typesetter behavior.

– defaultLineHeightForFont: (page 1456)
Returns the default line height for a line of text drawn using a given font.

– defaultBaselineOffsetForFont: (page 1456)
Returns the default baseline offset specified by the layout manager's typesetter behavior for the given
font.

Managing Temporary Attribute Support

– addTemporaryAttributes:forCharacterRange: (page 1449)
Appends one or more temporary attributes to the attributes dictionary of the specified character
range.

– addTemporaryAttribute:value:forCharacterRange: (page 1448)
Adds a temporary attribute with the given name and value to the characters in the specified range.

– setTemporaryAttributes:forCharacterRange: (page 1508)
Sets one or more temporary attributes for the specified character range.

– removeTemporaryAttribute:forCharacterRange: (page 1494)
Removes a temporary attribute from the list of attributes for the specified character range.

– temporaryAttribute:atCharacterIndex:effectiveRange: (page 1515)
Returns the value for the temporary attribute with a given name of the character at a given index,
and by reference the range over which the attribute applies.

– temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange: (page 1516)
Returns the value for the temporary attribute with a given name of the character at a given index,
and by reference the maximum range over which the attribute applies.

– temporaryAttributesAtCharacterIndex:effectiveRange: (page 1517)
Returns the dictionary of temporary attributes for the character range specified in
effectiveCharRange at character index charIndex.

– temporaryAttributesAtCharacterIndex:longestEffectiveRange:inRange: (page 1517)
Returns the temporary attributes for the character at a given index, and by reference the maximum
range over which the attributes apply.

Managing Noncontiguous Layout

– setAllowsNonContiguousLayout: (page 1498)
Enables or disables noncontiguous layout.

– allowsNonContiguousLayout (page 1450)
Indicates whether noncontiguous layout is enabled or disabled.

– hasNonContiguousLayout (page 1477)
Indicates whether the layout manager currently has any areas of noncontiguous layout.

Tasks 1447
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

– ensureGlyphsForCharacterRange: (page 1462)
Forces the receiver to generate glyphs for the specified character range, if it has not already done so.

– ensureGlyphsForGlyphRange: (page 1462)
Forces the receiver to generate glyphs for the specified glyph range, if it has not already done so.

– ensureLayoutForCharacterRange: (page 1463)
Forces the receiver to perform layout for the specified character range, if it has not already done so.

– ensureLayoutForGlyphRange: (page 1463)
Forces the receiver to perform layout for the specified glyph range, if it has not already done so.

– ensureLayoutForTextContainer: (page 1464)
Forces the receiver to perform layout for the specified text container, if it has not already done so.

– ensureLayoutForBoundingRect:inTextContainer: (page 1463)
Forces the receiver to perform layout for the specified area in the specified text container, if it has
not already done so.

Accessing the Font Leading

– usesFontLeading (page 1524)
Indicates whether the receiver uses the leading provided in the font.

– setUsesFontLeading: (page 1511)
Specifies whether or not the receiver uses the leading provided in the font.

Instance Methods

addTemporaryAttribute:value:forCharacterRange:
Adds a temporary attribute with the given name and value to the characters in the specified range.

- (void)addTemporaryAttribute:(NSString *)attrName value:(id)value
forCharacterRange:(NSRange)charRange

Parameters
attrName

The name of a temporary attribute.

value
The temporary attribute value associated with attrName.

charRange
The range of characters to which the specified attribute-value pair applies.

Discussion
Raises an NSInvalidArgumentException if attrName or value is nil.

Availability
Available in Mac OS X v10.5 and later.

See Also
– addTemporaryAttributes:forCharacterRange: (page 1449)

1448 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

– setTemporaryAttributes:forCharacterRange: (page 1508)
– removeTemporaryAttribute:forCharacterRange: (page 1494)
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 1517)

Declared In
NSLayoutManager.h

addTemporaryAttributes:forCharacterRange:
Appends one or more temporary attributes to the attributes dictionary of the specified character range.

- (void)addTemporaryAttributes:(NSDictionary *)attrs
forCharacterRange:(NSRange)charRange

Parameters
attrs

Attributes dictionary containing the temporary attributes to add.

charRange
The range of characters to which the specified attributes apply.

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView
uses them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes recognized are those that do not affect layout (colors, underlines, and so on).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTemporaryAttributes:forCharacterRange: (page 1508)
– removeTemporaryAttribute:forCharacterRange: (page 1494)
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 1517)

Related Sample Code
LayoutManagerDemo

Declared In
NSLayoutManager.h

addTextContainer:
Appends the given text container to the series of text containers where the receiver arranges text.

- (void)addTextContainer:(NSTextContainer *)aTextContainer

Parameters
aTextContainer

The text container to append.

Discussion
Invalidates glyphs and layout as needed, but doesn’t perform glyph generation or layout.

Instance Methods 1449
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertTextContainer:atIndex: (page 1480)
– removeTextContainerAtIndex: (page 1495)
– textContainers (page 1520)
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 1482)
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 1483)

Related Sample Code
QuickLookSketch
Sketch+Accessibility
Sketch-112
TextLayoutDemo
TextViewConfig

Declared In
NSLayoutManager.h

allowsNonContiguousLayout
Indicates whether noncontiguous layout is enabled or disabled.

- (BOOL)allowsNonContiguousLayout

Return Value
YES if noncontiguous layout is enabled; otherwise, NO.

Discussion
For more information about noncontiguous layout, see “Noncontiguous Layout” (page 1438).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAllowsNonContiguousLayout: (page 1498)
– hasNonContiguousLayout (page 1477)

Declared In
NSLayoutManager.h

attachmentSizeForGlyphAtIndex:
For a glyph corresponding to an attachment, returns the size for the attachment cell to occupy.

- (NSSize)attachmentSizeForGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

The index of the attachment glyph.

1450 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Return Value
The size for the attachment cell to occupy. Returns {-1.0, -1.0} if there is no attachment laid for the
specified glyph.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttachmentSize:forGlyphRange: (page 1498)
– defaultAttachmentScaling (page 1456)

Declared In
NSLayoutManager.h

attributedString
Returns the text storage object from which the NSGlyphGenerator object procures characters for glyph
generation.

- (NSAttributedString *)attributedString

Return Value
The receiver’s text storage object.

Discussion
This method is part of the NSGlyphStorage protocol, for use by the glyph generator. For NSLayoutManager
the attributed string is equivalent to the text storage.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

backgroundLayoutEnabled
Indicates whether the receiver generates glyphs and lays out text when the application’s run loop is idle.

- (BOOL)backgroundLayoutEnabled

Return Value
YES if the receiver generates glyphs and lays out text when the application’s run loop is idle, NO if it performs
glyph generation and layout only when necessary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundLayoutEnabled: (page 1499)

Declared In
NSLayoutManager.h

Instance Methods 1451
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

boundingRectForGlyphRange:inTextContainer:
Returns a single bounding rectangle (in container coordinates) enclosing all glyphs and other marks drawn
in the given text container for the given glyph range, including glyphs that draw outside their line fragment
rectangles and text attributes such as underlining.

- (NSRect)boundingRectForGlyphRange:(NSRange)glyphRange
inTextContainer:(NSTextContainer *)container

Parameters
glyphRange

The range of glyphs for which to return the bounding rectangle.

container
The text container in which the glyphs are laid out.

Return Value
The bounding rectangle enclosing the given range of glyphs.

Discussion
The range is intersected with the container's range before computing the bounding rectangle. This method
can be used to translate glyph ranges into display rectangles for invalidation and redrawing when a range
of glyphs changes. Bounding rectangles are always in container coordinates.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphRangeForBoundingRect:inTextContainer: (page 1475)
– glyphRangeForTextContainer: (page 1477)
– drawsOutsideLineFragmentForGlyphAtIndex: (page 1459)

Related Sample Code
LayoutManagerDemo

Declared In
NSLayoutManager.h

boundsRectForTextBlock:atIndex:effectiveRange:
Returns the bounding rectangle within which the given text block containing the glyph at the given index
is to be laid out.

- (NSRect)boundsRectForTextBlock:(NSTextBlock *)block atIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange

Parameters
block

The text block whose bounding rectangle is returned.

glyphIndex
Index of the glyph.

1452 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the text block.

Return Value
The bounding rectangle of the text block, or NSZeroRect if no rectangle has been set for the specified block
since the last invalidation.

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBoundsRect:forTextBlock:glyphRange: (page 1499)

Declared In
NSLayoutManager.h

boundsRectForTextBlock:glyphRange:
Returns the bounding rectangle enclosing the given text block containing the given glyph range.

- (NSRect)boundsRectForTextBlock:(NSTextBlock *)block glyphRange:(NSRange)glyphRange

Parameters
block

The text block whose bounds rectangle is returned.

glyphRange
The range of glyphs in the text block.

Return Value
The bounding rectangle, or NSZeroRect if no rectangle has been set for the specified block since the last
invalidation

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBoundsRect:forTextBlock:glyphRange: (page 1499)

Declared In
NSLayoutManager.h

characterIndexForGlyphAtIndex:
Returns the index in the text storage for the first character associated with the given glyph.

- (NSUInteger)characterIndexForGlyphAtIndex:(NSUInteger)glyphIndex

Instance Methods 1453
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Parameters
glyphIndex

The index of the glyph for which to return the associated character.

Return Value
The index of the first character associated with the glyph at the specified index.

Discussion
If noncontiguous layout is not enabled, this method causes generation of all glyphs up to and including
glyphIndex. This method accepts an index beyond the last glyph, returning an index extrapolated from
the last actual glyph index.

In many cases it’s better to use the range-mapping methods,
characterRangeForGlyphRange:actualGlyphRange: (page 1455) and
glyphRangeForCharacterRange:actualCharacterRange: (page 1476), which provide more comprehensive
information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphIndexForCharacterAtIndex: (page 1473)

Related Sample Code
LayoutManagerDemo

Declared In
NSLayoutManager.h

characterIndexForPoint:inTextContainer:fractionOfDistanceBetweenInsertionPoints:
Returns the index of the character falling under the given point, expressed in the given container's coordinate
system.

- (NSUInteger)characterIndexForPoint:(NSPoint)point inTextContainer:(NSTextContainer
 *)container fractionOfDistanceBetweenInsertionPoints:(CGFloat *)partialFraction

Parameters
point

The point to test.

container
The text container within which the point is tested.

partialFraction
A fraction of the distance from the insertion point, logically before the given character to the next
one.

Return Value
The index of the character falling under point.

Discussion
Analogous to glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: (page
1474), but expressed in character index terms. The method returns the index of the character falling under
point, expressed in coordinate system of container; if no character is under the point, the nearest character
is returned, where nearest is defined according to the requirements of selection by mouse. However, this is

1454 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

not simply equivalent to taking the result of the corresponding glyph index method and converting it to a
character index, because in some cases a single glyph represents more than one selectable character, for
example an fi ligature glyph. In that case, there is an insertion point within the glyph, and this method returns
one character or the other, depending on whether the specified point lies to the left or the right of that
insertion point.

In general, this method returns only character indexes for which there is an insertion point. The
partialFraction is a fraction of the distance from the insertion point, logically before the given character
to the next one, which may be either to the right or to the left depending on directionality.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSLayoutManager.h

characterRangeForGlyphRange:actualGlyphRange:
Returns the range of characters that generated the glyphs in the given glyph range.

- (NSRange)characterRangeForGlyphRange:(NSRange)glyphRange
actualGlyphRange:(NSRangePointer)actualGlyphRange

Parameters
glyphRange

The glyph range for which to return the character range.

actualGlyphRange
If not NULL, on output, points to the full range of glyphs generated by the character range returned.
This range may be identical or slightly larger than the requested glyph range. For example, if the text
storage contains the character “Ö” and the glyph cache contains the two atomic glyphs “O” and “¨”,
and if glyphRange encloses only the first or second glyph, then actualGlyphRange is set to enclose
both glyphs.

Return Value
The range of characters that generated the glyphs in glyphRange.

Discussion
If the length of glyphRange is 0, the resulting character range is a zero-length range just after the character(s)
corresponding to the preceding glyph, and actualGlyphRange is also zero-length. If glyphRange extends
beyond the text length, the method truncates the result to the number of characters in the text.

If noncontiguous layout is not enabled, this method forces the generation of glyphs for all characters up to
and including the end of the returned range.

Availability
Available in Mac OS X v10.0 and later.

See Also
– characterIndexForGlyphAtIndex: (page 1453)
– glyphRangeForCharacterRange:actualCharacterRange: (page 1476)

Related Sample Code
LayoutManagerDemo
TipWrapper

Instance Methods 1455
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

defaultAttachmentScaling
Returns the default behavior desired if an attachment image is too large to fit in a text container.

- (NSImageScaling)defaultAttachmentScaling

Discussion
Attachment cells control their own size and drawing, so this setting is only advisory to them, but Application
Kit–supplied attachment cells respect it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDefaultAttachmentScaling: (page 1500)

Declared In
NSLayoutManager.h

defaultBaselineOffsetForFont:
Returns the default baseline offset specified by the layout manager's typesetter behavior for the given font.

- (CGFloat)defaultBaselineOffsetForFont:(NSFont *)theFont

Parameters
theFont

The font for which to return the default baseline offset.

Return Value
The default baseline offset for a line of text drawn using theFont.

Discussion
The value returned may vary according to the layout manager’s typesetter behavior.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setTypesetterBehavior: (page 1510)
– defaultLineHeightForFont: (page 1456)

Declared In
NSLayoutManager.h

defaultLineHeightForFont:
Returns the default line height for a line of text drawn using a given font.

1456 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

- (CGFloat)defaultLineHeightForFont:(NSFont *)theFont

Parameters
theFont

The font for which to determine the default line height.

Return Value
The default line height for a line of text drawn using theFont.

Discussion
The value returned may vary according to the layout manager’s typesetter behavior.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setTypesetterBehavior: (page 1510)
– defaultBaselineOffsetForFont: (page 1456)

Declared In
NSLayoutManager.h

delegate
Returns the receiver’s delegate.

- (id < NSLayoutManagerDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 1501)

Declared In
NSLayoutManager.h

deleteGlyphsInRange:
Deletes the glyphs in the given range from the receiver’s glyph store.

- (void)deleteGlyphsInRange:(NSRange)glyphRange

Parameters
glyphRange

The range of glyphs to delete.

Instance Methods 1457
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Discussion
This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. This method should be invoked only during glyph generation and typesetting, in
almost all cases only by the glyph generator or typesetter. For example, a custom glyph generator or typesetter
might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertGlyph:atGlyphIndex:characterIndex: (page 1479)

Declared In
NSLayoutManager.h

drawBackgroundForGlyphRange:atPoint:
Draws background marks for the given glyph range, which must lie completely within a single text container.

- (void)drawBackgroundForGlyphRange:(NSRange)glyphsToShow atPoint:(NSPoint)origin

Parameters
glyphsToShow

The range of glyphs for which the background is drawn.

origin
The position of the text container in the coordinate system of the currently focused view.

Discussion
This method is called by NSTextView for drawing. You can override it to perform additional drawing, or to
replace text drawing entirely, but not to change layout. You can call this method directly, but focus must
already be locked on the destination view or image.

Background marks are such things as selection highlighting, text background color, and any background for
marked text, along with block decoration such as table backgrounds and borders.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawGlyphsForGlyphRange:atPoint: (page 1459)
– glyphRangeForTextContainer: (page 1477)
– fillBackgroundRectArray:count:forCharacterRange:color: (page 1466)
– textContainerOrigin (page 2956) (NSTextView)

Related Sample Code
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSLayoutManager.h

1458 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

drawGlyphsForGlyphRange:atPoint:
Draws the glyphs in the given glyph range, which must lie completely within a single text container.

- (void)drawGlyphsForGlyphRange:(NSRange)glyphsToShow atPoint:(NSPoint)origin

Parameters
glyphsToShow

The range of glyphs that are drawn.

origin
The position of the text container in the coordinate system of the currently focused view.

Discussion
This method is called by NSTextView for drawing. You can override it to perform additional drawing, or to
replace text drawing entirely, but not to change layout. You can call this method directly, but focus must
already be locked on the destination view or image. This method expects the coordinate system of the view
to be flipped.

This method draws the actual glyphs, including attachments, as well as any underlines or strikethoughs.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawBackgroundForGlyphRange:atPoint: (page 1458)
– glyphRangeForTextContainer: (page 1477)
– textContainerOrigin (page 2956) (NSTextView)

Related Sample Code
CircleView
DockTile
QuickLookSketch
Sketch-112
SpeedometerView

Declared In
NSLayoutManager.h

drawsOutsideLineFragmentForGlyphAtIndex:
Indicates whether the glyph draws outside of its line fragment rectangle.

- (BOOL)drawsOutsideLineFragmentForGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

Index of the glyph.

Return Value
YES if the glyph at glyphIndex exceeds the bounds of the line fragment where it’s laid out, NO otherwise.

Instance Methods 1459
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Discussion
Exceeding bounds can happen when text is set at a fixed line height. For example, if the user specifies a fixed
line height of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment.

Glyphs that draw outside their line fragment rectangles aren’t considered when calculating enclosing
rectangles with the
rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:
rectCount: (page 1492) and
rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: (page 1493)
methods. They are, however, considered by boundingRectForGlyphRange:inTextContainer: (page
1452).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

drawStrikethroughForGlyphRange:strikethroughType:baselineOffset:
lineFragmentRect:lineFragmentGlyphRange:containerOrigin:
Draws a strikethrough for the glyphs in a given range.

- (void)drawStrikethroughForGlyphRange:(NSRange)glyphRange
strikethroughType:(NSInteger)strikethroughVal
baselineOffset:(CGFloat)baselineOffset lineFragmentRect:(NSRect)lineRect
lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin:(NSPoint)containerOrigin

Parameters
glyphRange

The range of glyphs for which to draw a strikethrough. The range must belong to a single line fragment
rectangle (as returned by lineFragmentRectForGlyphAtIndex:effectiveRange: (page 1487)).

strikethroughVal
The style of strikethrough to draw. This value is a mask derived from the value for
NSUnderlineStyleAttributeName (page 272)—for example, (NSUnderlinePatternDash |
NSUnderlineStyleThick). Subclasses can define custom strikethrough styles.

baselineOffset
Indicates how far above the text baseline the underline should be drawn.

lineRect
The line fragment rectangle containing the glyphs to draw strikethrough for.

lineGlyphRange
The range of all glyphs within lineRect.

containerOrigin
The origin of the line fragment rectangle’s NSTextContainer in its NSTextView.

1460 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Discussion
This method is invoked automatically by
strikethroughGlyphRange:strikethroughType:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin: (page 1514); you should rarely need to invoke it directly.
This method’s strikethroughVal parameter does not take account of any setting
forNSUnderlineByWordMask (page 276) because that's taken care of by
underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:
containerOrigin: (page 1523).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSLayoutManager.h

drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin:
Draws underlining for the glyphs in a given range.

- (void)drawUnderlineForGlyphRange:(NSRange)glyphRange
underlineType:(NSInteger)underlineVal baselineOffset:(CGFloat)baselineOffset
lineFragmentRect:(NSRect)lineRect lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin:(NSPoint)containerOrigin

Parameters
glyphRange

A range of glyphs, which must belong to a single line fragment rectangle (as returned by
lineFragmentRectForGlyphAtIndex:effectiveRange: (page 1487)).

underlineVal
The style of underlining to draw. This value is a mask derived from the value for
NSUnderlineStyleAttributeName (page 272)—for example, (NSUnderlinePatternDash |
NSUnderlineStyleThick). Subclasses can define custom underlining styles.

baselineOffset
Specifies the distance from the bottom of the bounding box of the specified glyphs in the specified
range to their baseline.

lineRect
The line fragment rectangle containing the glyphs to draw underlining for.

lineGlyphRange
The range of all glyphs within lineRect.

containerOrigin
The origin of the lineRectNSTextContainer in its NSTextView.

Discussion
This method is invoked automatically by
underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:
containerOrigin: (page 1523); you should rarely need to invoke it directly. This method’s underlineVal
parameter does not take account of any setting forNSUnderlineByWordMask (page 276) because that's
taken care of by
underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:
containerOrigin: (page 1523).

Instance Methods 1461
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainerForGlyphAtIndex:effectiveRange: (page 1519)
– textContainerOrigin (page 2956) (NSTextView)

Declared In
NSLayoutManager.h

ensureGlyphsForCharacterRange:
Forces the receiver to generate glyphs for the specified character range, if it has not already done so.

- (void)ensureGlyphsForCharacterRange:(NSRange)charRange

Parameters
charRange

The character range for which glyphs are generated.

Discussion
The layout manager reserves the right to perform glyph generation for larger ranges. If noncontiguous layout
is disabled, then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

ensureGlyphsForGlyphRange:
Forces the receiver to generate glyphs for the specified glyph range, if it has not already done so.

- (void)ensureGlyphsForGlyphRange:(NSRange)glyphRange

Parameters
glyphRange

The glyph range for which glyphs are generated.

Discussion
The layout manager reserves the right to perform glyph generation for larger ranges. If noncontiguous layout
is disabled, then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

1462 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

ensureLayoutForBoundingRect:inTextContainer:
Forces the receiver to perform layout for the specified area in the specified text container, if it has not already
done so.

- (void)ensureLayoutForBoundingRect:(NSRect)bounds inTextContainer:(NSTextContainer
 *)container

Parameters
bounds

The area for which layout is performed.

container
The text container containing the area for which layout is performed.

Discussion
The layout manager reserves the right to perform layout for larger ranges. If noncontiguous layout is disabled,
then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

ensureLayoutForCharacterRange:
Forces the receiver to perform layout for the specified character range, if it has not already done so.

- (void)ensureLayoutForCharacterRange:(NSRange)charRange

Parameters
charRange

The character range for which layout is performed.

Discussion
The layout manager reserves the right to perform layout for larger ranges. If noncontiguous layout is disabled,
then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

ensureLayoutForGlyphRange:
Forces the receiver to perform layout for the specified glyph range, if it has not already done so.

- (void)ensureLayoutForGlyphRange:(NSRange)glyphRange

Parameters
glyphRange

The glyph range for which layout is performed.

Instance Methods 1463
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Discussion
The layout manager reserves the right to perform layout for larger ranges. If noncontiguous layout is disabled,
then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

ensureLayoutForTextContainer:
Forces the receiver to perform layout for the specified text container, if it has not already done so.

- (void)ensureLayoutForTextContainer:(NSTextContainer *)container

Parameters
container

The text container for which layout is performed.

Discussion
The layout manager reserves the right to perform layout for larger ranges. If noncontiguous layout is disabled,
then the affected range is always effectively extended to start at the beginning of the text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

extraLineFragmentRect
Returns the rectangle defining the extra line fragment for the insertion point at the end of a text (either in
an empty text or after a final paragraph separator).

- (NSRect)extraLineFragmentRect

Return Value
The rectangle defining the extra line fragment for the insertion point.

Discussion
The rectangle is defined in the coordinate system of its NSTextContainer. Returns NSZeroRect if there is
no such rectangle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– extraLineFragmentUsedRect (page 1465)
– extraLineFragmentTextContainer (page 1465)
– setExtraLineFragmentRect:usedRect:textContainer: (page 1502)

1464 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

extraLineFragmentTextContainer
Returns the text container that contains the extra line fragment rectangle.

- (NSTextContainer *)extraLineFragmentTextContainer

Return Value
The text container that contains the extra line fragment rectangle, or nil if there is no extra line fragment
rectangle.

Discussion
This rectangle is used to display the insertion point at the end of a text (either in an empty text or after a
final paragraph separator).

Availability
Available in Mac OS X v10.0 and later.

See Also
– extraLineFragmentRect (page 1464)
– extraLineFragmentUsedRect (page 1465)
– setExtraLineFragmentRect:usedRect:textContainer: (page 1502)

Declared In
NSLayoutManager.h

extraLineFragmentUsedRect
Returns the rectangle enclosing the insertion point drawn in the extra line fragment rectangle.

- (NSRect)extraLineFragmentUsedRect

Return Value
The rectangle enclosing the insertion point.

Discussion
The rectangle is defined in the coordinate system of its NSTextContainer. Returns NSZeroRect if there is
no extra line fragment rectangle.

The extra line fragment used rectangle is twice as wide (or tall) as the text container’s line fragment padding,
with the insertion point itself in the middle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– extraLineFragmentRect (page 1464)
– extraLineFragmentTextContainer (page 1465)
– setExtraLineFragmentRect:usedRect:textContainer: (page 1502)

Instance Methods 1465
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

fillBackgroundRectArray:count:forCharacterRange:color:
Fills background rectangles with a color.

- (void)fillBackgroundRectArray:(NSRectArray)rectArray count:(NSUInteger)rectCount
forCharacterRange:(NSRange)charRange color:(NSColor *)color

Parameters
rectArray

The array of rectangles to fill.

rectCount
The number of rectangles in rectArray.

charRange
The range of characters whose background rectangles are filled.

color
The fill color.

Discussion
This is the primitive method used by drawBackgroundForGlyphRange:atPoint: (page 1458), providing a
finer-grained override point for actually filling rectangles with a particular background color for a background
color attribute, a selected or marked range highlight, a block decoration, or any other rectangle fill needed
by that method. As with
showPackedGlyphs:length:glyphRange:atPoint:font:color:printingAdjustment: (page 1512),
the charRange and color parameters are passed in merely for informational purposes; the color is already
set in the graphics state. If for any reason you modify it, you must restore it before returning from this method.

This method operates in terms of character ranges, because the relevant attributes are expressed on characters,
and they don't always lie on glyph boundaries—for example, when one character of an “fi” ligature is
highlighted.

You should never call this method, but you might override it. The default implementation simply fills the
rectangles in the specified array. The graphics operation used for this fill is controlled by a link check; for
compatibility reasons, it is NSCompositeCopy (page 1376) for applications linked prior to Mac OS X v10.6 and
NSCompositeSourceOver (page 1376) for applications linked on Mac OS X v10.6 or later. Applications can
control the operation used, or modify the drawing, by overriding this method in an NSLayoutManager
subclass.

Availability
Available in Mac OS X v10.6 and later.

See Also
– drawBackgroundForGlyphRange:atPoint: (page 1458)

Declared In
NSLayoutManager.h

1466 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

firstTextView
Returns the first text view in the receiver’s series of text views.

- (NSTextView *)firstTextView

Return Value
The receiver’s first text view.

Discussion
This NSTextView object is the recipient of various NSText and NSTextView notifications.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility

Declared In
NSLayoutManager.h

firstUnlaidCharacterIndex
Returns the index for the first character in the layout manager that has not been laid out.

- (NSUInteger)firstUnlaidCharacterIndex

Return Value
The character index.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

firstUnlaidGlyphIndex
Returns the index for the first glyph in the layout manager that has not been laid out.

- (NSUInteger)firstUnlaidGlyphIndex

Return Value
The glyph index.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

Instance Methods 1467
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

fractionOfDistanceThroughGlyphForPoint:inTextContainer:
This method is a primitive for
glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: (page 1474). You should
always call the main method, not the primitives.

- (CGFloat)fractionOfDistanceThroughGlyphForPoint:(NSPoint)point
inTextContainer:(NSTextContainer *)container

Discussion
Overriding should be done for the primitive methods. Existing subclasses that do not do this overriding will
not have their implementations available to Java developers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphIndexForPoint:inTextContainer: (page 1473)

Declared In
NSLayoutManager.h

getFirstUnlaidCharacterIndex:glyphIndex:
Returns the indexes for the first character and glyph that have invalid layout information.

- (void)getFirstUnlaidCharacterIndex:(NSUInteger *)charIndex glyphIndex:(NSUInteger
 *)glyphIndex

Parameters
charIndex

On return, if not NULL, the index of the first character that has invalid layout information

glyphIndex
On return, if not NULL, the index of the first glyph that has invalid layout information.

Discussion
Either parameter may be NULL, in which case the receiver simply ignores it.

As part of its implementation, this method calls firstUnlaidCharacterIndex (page 1467) and
firstUnlaidGlyphIndex (page 1467). To change this method’s behavior, override those two methods
instead of this one.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

getGlyphs:range:
Fills the passed-in buffer with a sequence of glyphs

- (NSUInteger)getGlyphs:(NSGlyph *)glyphArray range:(NSRange)glyphRange

1468 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Parameters
glyphArray

On output, the displayable glyphs from glyphRange, null-terminated. Does not include in the result
any NSNullGlyph or other glyphs that are not shown. The memory passed in should be large enough
for at least glyphRange.length+1 elements.

glyphRange
The range of glyphs from which to return the displayable glyphs.

Return Value
The actual number of glyphs filled into the array is returned (not counting the null-termination).

Discussion
Raises an NSRangeException if the range specified exceeds the bounds of the actual glyph range for the
receiver. Performs glyph generation if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphAtIndex: (page 1471)
– glyphAtIndex:isValidIndex: (page 1472)
– notShownAttributeForGlyphAtIndex: (page 1490)

Declared In
NSLayoutManager.h

getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
Returns the glyphs and information needed to perform layout for the given glyph range.

- (NSUInteger)getGlyphsInRange:(NSRange)glyphRange glyphs:(NSGlyph *)glyphBuffer
characterIndexes:(NSUInteger *)charIndexBuffer
glyphInscriptions:(NSGlyphInscription *)inscribeBuffer elasticBits:(BOOL
*)elasticBuffer

Discussion
This is a convenience method for
getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
bidiLevels: (page 1469) that does not return a bidiLevelBuffer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
bidiLevels:
Returns the glyphs and information needed to perform layout for the given glyph range.

Instance Methods 1469
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

- (NSUInteger)getGlyphsInRange:(NSRange)glyphRange glyphs:(NSGlyph *)glyphBuffer
characterIndexes:(NSUInteger *)charIndexBuffer
glyphInscriptions:(NSGlyphInscription *)inscribeBuffer elasticBits:(BOOL
*)elasticBuffer bidiLevels:(unsigned char *)bidiLevelBuffer

Parameters
glyphRange

The range of glyphs to lay out.

glyphBuffer
On output, the sequence of glyphs needed to lay out the given glyph range.

charIndexBuffer
On output, the indexes of the original characters corresponding to the given glyph range. Note that
a glyph at index 1 is not necessarily mapped to the character at index 1, since a glyph may be for a
ligature or accent.

inscribeBuffer
On output, the inscription attributes for each glyph, which are used to lay out characters that are
combined together. The possible values are described in “Constants” (page 1525).

elasticBuffer
On output, values indicating whether a glyph is elastic for each glyph. An elastic glyph can be made
longer at the end of a line or when needed for justification.

bidiLevelBuffer
On output, the direction of each glyph for bidirectional text. The values range from 0 to 61 as defined
by Unicode Standard Annex #9. An even value means the glyph goes left-to-right, and an odd value
means the glyph goes right-to-left.

Return Value
The number of glyphs returned in glyphBuffer.

Discussion
This method and
getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: (page 1469) are
intended primarily to enable the typesetter to obtain in bulk the glyphs and other information that it needs
to perform layout. These methods return all glyphs in the range, including NSNullGlyph and not-shown
glyphs. They do not null-terminate the results. Each pointer passed in should either be NULL, or else point
to sufficient memory to hold glyphRange.length elements.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSLayoutManager.h

getLineFragmentInsertionPointsForCharacterAtIndex:alternatePositions:
inDisplayOrder:positions:characterIndexes:
Returns insertion points in bulk for a given line fragment.

- (NSUInteger)getLineFragmentInsertionPointsForCharacterAtIndex:(NSUInteger)charIndex
alternatePositions:(BOOL)aFlag inDisplayOrder:(BOOL)dFlag positions:(CGFloat
 *)positions characterIndexes:(NSUInteger *)charIndexes

1470 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Parameters
charIndex

The character index of one character within the line fragment.

aFlag
If YES, returns alternate, rather than primary, insertion points.

dFlag
If YES, returns insertion points in display, rather than logical, order.

positions
On output, the positions of the insertion points, in the order specified.

charIndexes
On output, the indexes of the characters corresponding to the returned insertion points.

Return Value
The number of insertion points returned.

Discussion
The method allows clients to obtain all insertion points for a line fragment in one call. Each pointer passed
in should either be NULL or else point to sufficient memory to hold as many elements as there are insertion
points in the line fragment (which cannot be more than the number of characters + 1). The returned positions
indicate a transverse offset relative to the line fragment rectangle's origin. Internal caching is used to ensure
that repeated calls to this method for the same line fragment (possibly with differing values for other
arguments) are not significantly more expensive than a single call.

Availability
Available in Mac OS X v10.5 and later.

See Also
– rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:rectCount: (page
1492)
– rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: (page
1493)

Declared In
NSLayoutManager.h

glyphAtIndex:
Returns the glyph at glyphIndex.

- (NSGlyph)glyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

The index of a glyph in the receiver. This value must not exceed the bounds of the receiver’s glyph
array.

Return Value
The glyph at glyphIndex.

Discussion
Raises an NSRangeException if glyphIndex is out of bounds.

Instance Methods 1471
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Performs glyph generation if needed. To avoid an exception with glyphAtIndex: you must first check the
glyph index against the number of glyphs, which requires generating all glyphs. Another method,
glyphAtIndex:isValidIndex: (page 1472), generates glyphs only up to the one requested, so using it can
be more efficient.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getGlyphs:range: (page 1468)

Declared In
NSLayoutManager.h

glyphAtIndex:isValidIndex:
If the given index is valid, returns the glyph at that location and optionally returns a flag indicating whether
the requested index is in range.

- (NSGlyph)glyphAtIndex:(NSUInteger)glyphIndex isValidIndex:(BOOL *)isValidIndex

Parameters
glyphIndex

The index of the glyph to be returned.

isValidIndex
If not NULL, on output, YES if the requested index is in range; otherwise NO.

Return Value
The glyph at the requested index, or NSNullGlyph if the requested index is out of the range {0,
numberOfGlyphs (page 1491)}.

Discussion
If noncontiguous layout is not enabled, this method causes generation of all glyphs up to and including
glyphIndex.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getGlyphs:range: (page 1468)
– glyphAtIndex: (page 1471)

Declared In
NSLayoutManager.h

glyphGenerator
Returns the glyph generator used by this layout manager.

- (NSGlyphGenerator *)glyphGenerator

Return Value
The glyph generator.

1472 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setGlyphGenerator: (page 1502)

Declared In
NSLayoutManager.h

glyphIndexForCharacterAtIndex:
Returns the index of the first glyph associated with the character at the specified index.

- (NSUInteger)glyphIndexForCharacterAtIndex:(NSUInteger)charIndex

Parameters
charIndex

The index of the character for which to return the associated glyph.

Return Value
The index of the first glyph associated with the character at the specified index.

Discussion
If noncontiguous layout is not enabled, this method causes generation of all glyphs up to and including
those associated with the specified character. This method accepts an index beyond the last character,
returning an index extrapolated from the last actual character index.

In many cases it’s better to use the range-mapping methods,
characterRangeForGlyphRange:actualGlyphRange: (page 1455) and
glyphRangeForCharacterRange:actualCharacterRange: (page 1476), which provide more comprehensive
information.

Availability
Available in Mac OS X v10.5 and later.

See Also
– characterIndexForGlyphAtIndex: (page 1453)

Declared In
NSLayoutManager.h

glyphIndexForPoint:inTextContainer:
This method is a primitive for
glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph: (page 1474). You should
always call the main method, not the primitives.

- (NSUInteger)glyphIndexForPoint:(NSPoint)point inTextContainer:(NSTextContainer
*)container

Discussion
Overriding should be done for the primitive methods. Existing subclasses that do not do this overriding will
not have their implementations available to Java developers.

Instance Methods 1473
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– fractionOfDistanceThroughGlyphForPoint:inTextContainer: (page 1468)

Related Sample Code
LayoutManagerDemo

Declared In
NSLayoutManager.h

glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph:
Returns the index of the glyph falling under the given point, expressed in the given container's coordinate
system.

- (NSUInteger)glyphIndexForPoint:(NSPoint)point inTextContainer:(NSTextContainer
*)container fractionOfDistanceThroughGlyph:(CGFloat *)partialFraction

Parameters
point

The point for which to return the glyph, in coordinates of container.

container
The container in which the returned glyph is laid out.

partialFraction
If not NULL, on output, the fraction of the distance between the location of the glyph returned and
the location of the next glyph.

Return Value
The index of the glyph falling under the given point, expressed in the given container's coordinate system.

Discussion
If no glyph is under point, the nearest glyph is returned, where nearest is defined according to the
requirements of selection by mouse. Clients who wish to determine whether the the point actually lies within
the bounds of the glyph returned should follow this with a call to
boundingRectForGlyphRange:inTextContainer: (page 1452) and test whether the point falls in the
rectangle returned by that method. If partialFraction is non-NULL, it returns by reference the fraction
of the distance between the location of the glyph returned and the location of the next glyph.

For purposes such as dragging out a selection or placing the insertion point, a partial percentage less than
or equal to 0.5 indicates that point should be considered as falling before the glyph index returned; a partial
percentage greater than 0.5 indicates that it should be considered as falling after the glyph index returned.
If the nearest glyph doesn’t lie under point at all (for example, if point is beyond the beginning or end of
a line), this ratio is 0 or 1.

If the glyph stream contains the glyphs “A” and “b”, with the width of “A” being 13 points, and the user clicks
at a location 8 points into “A”, partialFraction is 8/13, or 0.615. In this case, the point given should be
considered as falling between “A” and “b” for purposes such as dragging out a selection or placing the
insertion point.

Performs glyph generation and layout if needed.

1474 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

As part of its implementation, this method calls
fractionOfDistanceThroughGlyphForPoint:inTextContainer: (page 1468) and
glyphIndexForPoint:inTextContainer: (page 1473). To change this method’s behavior, override those
two methods instead of this one.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

glyphRangeForBoundingRect:inTextContainer:
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within the given rectangle
in the given text container.

- (NSRange)glyphRangeForBoundingRect:(NSRect)bounds inTextContainer:(NSTextContainer
 *)container

Parameters
bounds

The bounding rectangle for which to return glyphs.

container
The text container in which the glyphs are laid out.

Return Value
The range of glyphs that would need to be displayed in order to draw all glyphs that fall (even partially)
within the given bounding rectangle. The range returned can include glyphs that don’t fall inside or intersect
bounds, although the first and last glyphs in the range always do. At most this method returns the glyph
range for the whole container.

Discussion
This method is used to determine which glyphs need to be displayed within a given rectangle.

Performs glyph generation and layout if needed. Bounding rectangles are always in container coordinates.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer: (page 1475)

Declared In
NSLayoutManager.h

glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer:
Returns the smallest contiguous range for glyphs that are laid out wholly or partially within the given rectangle
in the given text container.

- (NSRange)glyphRangeForBoundingRectWithoutAdditionalLayout:(NSRect)bounds
inTextContainer:(NSTextContainer *)container

Instance Methods 1475
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Parameters
bounds

The bounding rectangle for which to return glyphs.

container
The text container in which the glyphs are laid out.

Return Value
The range of glyphs that would need to be displayed in order to draw all glyphs that fall (even partially)
within the given bounding rectangle. The range returned can include glyphs that don’t fall inside or intersect
bounds, although the first and last glyphs in the range always do. At most this method returns the glyph
range for the whole container.

Discussion
Unlike glyphRangeForBoundingRect:inTextContainer: (page 1475), this variant of the method doesn’t
perform glyph generation or layout. Its results, though faster, can be incorrect. This method is primarily for
use by NSTextView; you should rarely need to use it yourself.

Bounding rectangles are always in container coordinates.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphRangeForBoundingRect:inTextContainer: (page 1475)

Declared In
NSLayoutManager.h

glyphRangeForCharacterRange:actualCharacterRange:
Returns the range of glyphs that are generated from the characters in the given character range.

- (NSRange)glyphRangeForCharacterRange:(NSRange)charRange
actualCharacterRange:(NSRangePointer)actualCharRange

Parameters
charRange

The character range for which to return the generated glyph range.

actualCharRange
If not NULL, on output, points to the actual range of characters that fully define the glyph range
returned. This range may be identical to or slightly larger than the requested character range. For
example, if the text storage contains the characters "O" and "¨“, and the glyph store contains the
single precomposed glyph "¨Ö”, and if charRange encloses only the first or second character, then
actualCharRange is set to enclose both characters.

Return Value
The range of glyphs generated by charRange.

Discussion
If the length of charRange is 0, the resulting glyph range is a zero-length range just after the glyph(s)
corresponding to the preceding character, and actualCharRange will also be zero-length. If charRange
extends beyond the text length, the method truncates the result to the number of glyphs in the text.

1476 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

If noncontiguous layout is not enabled, this method forces the generation of glyphs for all characters up to
and including the end of the specified range.

Availability
Available in Mac OS X v10.0 and later.

See Also
– characterIndexForGlyphAtIndex: (page 1453)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TipWrapper

Declared In
NSLayoutManager.h

glyphRangeForTextContainer:
Returns the range of glyphs laid out within the given text container.

- (NSRange)glyphRangeForTextContainer:(NSTextContainer *)aTextContainer

Discussion
This is a less efficient method than the similar textContainerForGlyphAtIndex:effectiveRange: (page
1519).

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainerForGlyphAtIndex:effectiveRange: (page 1519)

Related Sample Code
CircleView
Sketch+Accessibility
Sketch-112
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSLayoutManager.h

hasNonContiguousLayout
Indicates whether the layout manager currently has any areas of noncontiguous layout.

- (BOOL)hasNonContiguousLayout

Return Value
YES if noncontiguous layout exists; otherwise, NO.

Instance Methods 1477
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Discussion
There may be times at which there is no noncontiguous layout, such as when layout is complete; this method
enables the layout manager to report that to clients.

For more information about noncontiguous layout, see “Noncontiguous Layout” (page 1438).

Availability
Available in Mac OS X v10.5 and later.

See Also
– allowsNonContiguousLayout (page 1450)
– setAllowsNonContiguousLayout: (page 1498)

Declared In
NSLayoutManager.h

hyphenationFactor
Returns the current hyphenation threshold.

- (float)hyphenationFactor

Return Value
The hyphenation factor ranging from 0.0 to 1.0. By default, the value is 0.0, meaning hyphenation is off. A
value of 1.0 causes hyphenation to be attempted always.

Discussion
Whenever (width of the real contents of the line) / (the line fragment width) is less than hyphenationFactor,
hyphenation is attempted when laying out the line. Hyphenation slows down text layout and increases
memory usage, so it should be used sparingly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHyphenationFactor: (page 1503)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSLayoutManager.h

init
Initializes the receiver, a newly created NSLayoutManager object.

- (id)init

Discussion
This method is the designated initializer for the NSLayoutManager class. Returns an initialized object.

1478 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– addLayoutManager: (page 2837) (NSTextStorage)
– addTextContainer: (page 1449)

Declared In
NSLayoutManager.h

insertGlyph:atGlyphIndex:characterIndex:
Inserts a single glyph into the glyph stream at the given index and maps it to the character at the given
character index.

- (void)insertGlyph:(NSGlyph)glyph atGlyphIndex:(NSUInteger)glyphIndex
characterIndex:(NSUInteger)charIndex

Parameters
glyph

The glyph to insert.

glyphIndex
The index at which to insert the glyph.

charIndex
The index of the character to which the glyph is mapped.

Discussion
If the glyph is mapped to several characters, charIndex should indicate the first character it’s mapped to.

This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. This method should be invoked only during glyph generation and typesetting, in
almost all cases only by the glyph generator or typesetter. For example, a custom glyph generator or typesetter
might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deleteGlyphsInRange: (page 1457)
– replaceGlyphAtIndex:withGlyph: (page 1495)

Declared In
NSLayoutManager.h

insertGlyphs:length:forStartingGlyphAtIndex:characterIndex:
Inserts the given glyphs into the glyph cache at the given index and maps them to characters beginning at
the given character index.

- (void)insertGlyphs:(const NSGlyph *)glyphs length:(NSUInteger)length
forStartingGlyphAtIndex:(NSUInteger)glyphIndex
characterIndex:(NSUInteger)charIndex

Instance Methods 1479
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Parameters
glyphs

The glyphs to insert.

glyphIndex
The index in the glyph cache to begin inserting glyphs.

length
The number of glyphs to insert.

charIndex
Index of first character to be mapped.

Discussion
This method is part of the NSGlyphStorage protocol, for use by the glyph generator. It enables bulk insertion
of glyphs into the glyph cache.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

insertTextContainer:atIndex:
Inserts the given text container into the series of text containers at the given index.

- (void)insertTextContainer:(NSTextContainer *)aTextContainer
atIndex:(NSUInteger)index

Parameters
aTextContainer

The text container to insert.

index
The index in the series of text containers at which to insert aTextContainer.

Discussion
This method invalidates layout for all subsequentNSTextContainer objects, and invalidates glyph information
as needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTextContainer: (page 1449)
– removeTextContainerAtIndex: (page 1495)
– textContainers (page 1520)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSLayoutManager.h

1480 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

intAttribute:forGlyphAtIndex:
Returns the value of the attribute identified by the given attribute tag for the glyph at the given index.

- (NSInteger)intAttribute:(NSInteger)attributeTag
forGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
attributeTag

The attribute whose value is returned.

glyphIndex
Index of the glyph whose attribute value is returned.

Return Value
The value of the attribute identified by attributeTag and glyphIndex.

Discussion
Subclasses that define their own custom attributes must override this method to access their own storage
for the attribute values. Nonnegative tags are reserved by Apple; you can define your own attributes with
negative tags and set values using setIntAttribute:value:forGlyphAtIndex: (page 1503).

If noncontiguous layout is not enabled, this method causes generation of all glyphs up to and including
glyphIndex. This method is primarily for the use of the glyph generator and typesetter.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIntAttribute:value:forGlyphAtIndex: (page 1503)

Declared In
NSLayoutManager.h

invalidateDisplayForCharacterRange:
Invalidates display for the given character range.

- (void)invalidateDisplayForCharacterRange:(NSRange)charRange

Parameters
charRange

The character range for which display is invalidated.

Discussion
Parts of the range that are not laid out are remembered and redisplayed later when the layout is available.
Does not actually cause layout.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

Instance Methods 1481
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

invalidateDisplayForGlyphRange:
Marks the glyphs in the given glyph range as needing display, as well as the appropriate regions of the
NSTextView objects that display those glyphs (using the NSViewmethod setNeedsDisplayInRect: (page
3225)).

- (void)invalidateDisplayForGlyphRange:(NSRange)glyphRange

Parameters
glyphRange

The range of glyphs to invalidate.

Discussion
You should rarely need to invoke this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:
Invalidates the cached glyphs for the characters in the given character range, adjusts the character indices
of all the subsequent glyphs by the change in length, and invalidates the new character range.

- (void)invalidateGlyphsForCharacterRange:(NSRange)charRange
changeInLength:(NSInteger)lengthChange
actualCharacterRange:(NSRangePointer)actualCharRange

Parameters
charRange

The range of characters for which to invalidate glyphs.

lengthChange
The number of characters added or removed.

actualCharRange
If not NULL, on output, the actual range invalidated after any necessary expansion. This range can be
larger than the range of characters given due to the effect of context on glyphs and layout.

Discussion
This method only invalidates glyph information and performs no glyph generation or layout. Because
invalidating glyphs also invalidates layout, after invoking this method you should also invoke
invalidateLayoutForCharacterRange:actualCharacterRange: (page 1483), passing charRange as
the first argument.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

1482 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

invalidateGlyphsOnLayoutInvalidationForGlyphRange:
Specifies explicitly when portions of the glyph stream depend on layout.

- (void)invalidateGlyphsOnLayoutInvalidationForGlyphRange:(NSRange)glyphRange

Parameters
glyphRange

The range of glyphs to invalidate.

Discussion
This method is for the use of the typesetter, to allow it to specify explicitly when portions of the glyph stream
depend on layout, for example, because they have had hyphens inserted. Therefore, the glyphs are invalidated
the next time their layout is invalidated, so that they will be regenerated before being laid out again.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

invalidateLayoutForCharacterRange:actualCharacterRange:
Invalidates the layout information for the glyphs mapped to the given range of characters.

- (void)invalidateLayoutForCharacterRange:(NSRange)charRange
actualCharacterRange:(NSRangePointer)actualCharRange

Parameters
charRange

The range of characters to invalidate.

actualCharRange
If not NULL, on output, the actual range invalidated after any necessary expansion.

Discussion
This method has the same effect as
invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 1483) with flag set
to NO.

This method only invalidates information; it performs no glyph generation or layout. You should rarely need
to invoke this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 1482)

Declared In
NSLayoutManager.h

invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:
Invalidates the layout information for the glyphs mapped to the given range of characters.

Instance Methods 1483
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

- (void)invalidateLayoutForCharacterRange:(NSRange)charRange isSoft:(BOOL)flag
actualCharacterRange:(NSRangePointer)actualCharRange

Parameters
charRange

The character range for which glyphs are invalidated.

flag
If YES, invalidates internal caches in the layout manager; if NO, invalidates layout. See the discussion
section.

actualCharRange
If not NULL, on output, the range of characters mapped to the glyphs whose layout information is
invalidated. This range can be larger than the range of characters given due to the effect of context
on glyphs and layout.

Discussion
This method only invalidates information; it performs no glyph generation or layout. You should rarely need
to invoke this method.

For code that needs to work on both Mac OS X v10.5 and previous releases, the following procedures should
be used. For Mac OS X v10.4 and before, invalidation should consist of

1. Calling this method with the flag set to YES, for the range that has actually become invalid.

2. Calling this method with the flag set to NO, for the range (if any) that follows that range, usually extending
to the end of the text, that might need to be moved due to relayout of the invalidated range.

As of Mac OS X v10.5, the semantics of the flag parameter are slightly different. Soft layout holes are obsolete
in Mac OS X v10.5 and later, so the flag is no longer necessary. If the method is called with flag set to NO,
then it has the effect of invalidating layout. If it's called with the flag set to YES, then it does not actually
invalidate layout; it invalidates a number of internal caches, but otherwise has no effect, and in general is
unnecessary.

This method is superseded by invalidateLayoutForCharacterRange:actualCharacterRange: (page
1483) and will be deprecated in a future release.

Availability
Available in Mac OS X v10.0 and later.

See Also
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 1482)

Declared In
NSLayoutManager.h

isValidGlyphIndex:
Indicates whether the specified index refers to a valid glyph, otherwise NO.

- (BOOL)isValidGlyphIndex:(NSUInteger)glyphIndex

1484 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Parameters
glyphIndex

The index of a glyph in the receiver.

Return Value
YES if the specified glyphIndex refers to a valid glyph, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

layoutManagerOwnsFirstResponderInWindow:
Indicates whether the first responder in the given window is a text view associated with the receiver.

- (BOOL)layoutManagerOwnsFirstResponderInWindow:(NSWindow *)window

Parameters
window

The window whose first responder is tested.

Return Value
YES if the first responder in window is a text view associated with the receiver; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

layoutOptions
Returns the layout manager’s current layout options.

- (NSUInteger)layoutOptions

Return Value
A bit mask representing the current layout options as defined in Layout Options (page 3689) in
NSGlyphStorage Protocol Reference.

Discussion
This method is part of the NSGlyphStorage protocol, for use by the glyph generator. It enables the glyph
generator to ask which options the layout manager requests.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

Instance Methods 1485
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

layoutRectForTextBlock:atIndex:effectiveRange:
Returns the layout rectangle within which the given text block containing the glyph at the given index is to
be laid out.

- (NSRect)layoutRectForTextBlock:(NSTextBlock *)block atIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange

Parameters
block

The text block whose layout rectangle is returned.

glyphIndex
Index of the glyph.

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the text block.

Return Value
The layout rectangle of the text block, or NSZeroRect if no rectangle has been set for the specified block
since the last invalidation.

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLayoutRect:forTextBlock:glyphRange: (page 1504)

Declared In
NSLayoutManager.h

layoutRectForTextBlock:glyphRange:
Returns the layout rectangle within which the given text block containing the given glyph range is to be laid
out.

- (NSRect)layoutRectForTextBlock:(NSTextBlock *)block glyphRange:(NSRange)glyphRange

Return Value
The layout rectangle, or NSZeroRect if no rectangle has been set for the specified block since the last
invalidation.

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLayoutRect:forTextBlock:glyphRange: (page 1504)

1486 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

lineFragmentRectForGlyphAtIndex:effectiveRange:
Returns the rectangle for the line fragment in which the given glyph is laid out and (optionally), by reference,
the whole range of glyphs that are in that fragment.

- (NSRect)lineFragmentRectForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange

Parameters
glyphIndex

The glyph for which to return the line fragment rectangle.

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the line fragment.

Return Value
The line fragment in which the given glyph is laid out.

Discussion
This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, for all of the text up to and including that line fragment.

Line fragment rectangles are always in container coordinates.

Overriding this method is not recommended. If the the line fragment rectangle needs to be modified, that
should be done at the typesetter level or by calling
setLineFragmentRect:forGlyphRange:usedRect: (page 1505).

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange: (page 1488)
– setLineFragmentRect:forGlyphRange:usedRect: (page 1505)

Related Sample Code
CircleView

Declared In
NSLayoutManager.h

lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
Returns the line fragment rectangle containing the glyph at the given glyph index.

- (NSRect)lineFragmentRectForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange
withoutAdditionalLayout:(BOOL)flag

Instance Methods 1487
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Parameters
glyphIndex

The glyph for which to return the line fragment rectangle.

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the line fragment.

flag
If YES, glyph generation and layout are not performed, so this option should not be used unless layout
is known to be complete for the range in question, or unless noncontiguous layout is enabled; if NO,
both are performed as needed.

Return Value
The line fragment in which the given glyph is laid out.

Discussion
This method is primarily for use from within NSTypesetter, after layout is complete for the range in question,
but before the layout manager's call to NSTypesetter has returned. In that case glyph and layout holes
have not yet been recalculated, so the layout manager does not yet know that layout is complete for that
range, and this variant must be used.

Overriding this method is not recommended. If the the line fragment rectangle needs to be modified, that
should be done at the typesetter level or by calling
setLineFragmentRect:forGlyphRange:usedRect: (page 1505).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLineFragmentRect:forGlyphRange:usedRect: (page 1505)
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page
1489)

Declared In
NSLayoutManager.h

lineFragmentUsedRectForGlyphAtIndex:effectiveRange:
Returns the usage rectangle for the line fragment in which the given glyph is laid and (optionally) by reference
the whole range of glyphs that are in that fragment.

- (NSRect)lineFragmentUsedRectForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange

Parameters
glyphIndex

The glyph for which to return the line fragment used rectangle.

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the line fragment.

Return Value
The used rectangle for the line fragment in which the given glyph is laid out.

1488 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Discussion
This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment.

Line fragment used rectangles are always in container coordinates.

Overriding this method is not recommended. If the the line fragment used rectangle needs to be modified,
that should be done at the typesetter level or by calling
setLineFragmentRect:forGlyphRange:usedRect: (page 1505).

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineFragmentRectForGlyphAtIndex:effectiveRange: (page 1487)
– setLineFragmentRect:forGlyphRange:usedRect: (page 1505)

Declared In
NSLayoutManager.h

lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
Returns the usage rectangle for the line fragment in which the given glyph is laid and (optionally) by reference
the whole range of glyphs that are in that fragment.

- (NSRect)lineFragmentUsedRectForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange
withoutAdditionalLayout:(BOOL)flag

Parameters
glyphIndex

The glyph for which to return the line fragment used rectangle.

effectiveGlyphRange
If not NULL, on output, the range for all glyphs in the line fragment.

flag
If YES, glyph generation and layout are not performed, so this option should not be used unless layout
is known to be complete for the range in question, or unless noncontiguous layout is enabled; if NO,
both are performed as needed.

Return Value
The used rectangle for the line fragment in which the given glyph is laid out.

Discussion
This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment.

Line fragment used rectangles are always in container coordinates.

Overriding this method is not recommended. If the the line fragment used rectangle needs to be modified,
that should be done at the typesetter level or by calling
setLineFragmentRect:forGlyphRange:usedRect: (page 1505).

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1489
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

See Also
– setLineFragmentRect:forGlyphRange:usedRect: (page 1505)
– lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page 1487)

Declared In
NSLayoutManager.h

locationForGlyphAtIndex:
Returns the location for the given glyph within its line fragment.

- (NSPoint)locationForGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

The glyph whose location is returned.

Return Value
The location of the given glyph.

Discussion
If the given glyph does not have an explicit location set for it (for example, if it is part of (but not first in) a
sequence of nominally spaced characters), the location is calculated by glyph advancements from the location
of the most recent preceding glyph with a location set.

Glyph locations are relative to their line fragment rectangle's origin. The line fragment rectangle in turn is
defined in the coordinate system of the text container where it resides.

This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineFragmentRectForGlyphAtIndex:effectiveRange: (page 1487)
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange: (page 1488)

Related Sample Code
CircleView

Declared In
NSLayoutManager.h

notShownAttributeForGlyphAtIndex:
Indicates whether the glyph at the given index is one that isn’t shown.

- (BOOL)notShownAttributeForGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

Index of the glyph.

1490 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Return Value
YES if the glyph at glyphIndex is not shown; otherwise NO.

Discussion
Some glyphs are not shown. For example, a tab, newline, or attachment glyph is not shown; it just affects
the layout of following glyphs or locates the attachment graphic. Space characters, however, typically are
shown as glyphs with a displacement, although they leave no visible marks.

This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment.

Raises an NSRangeException if glyphIndex is out of bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setNotShownAttribute:forGlyphAtIndex: (page 1507)

Declared In
NSLayoutManager.h

numberOfGlyphs
Returns the number of glyphs in the receiver.

- (NSUInteger)numberOfGlyphs

Return Value
The number of glyphs.

Discussion
If noncontiguous layout is not enabled, this method forces generation of glyphs for all characters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

rangeOfNominallySpacedGlyphsContainingIndex:
Returns the range for the glyphs around the given glyph that can be displayed using only their advancements
from the font, without pairwise kerning or other adjustments to spacing.

- (NSRange)rangeOfNominallySpacedGlyphsContainingIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

Index of the glyph to test.

Return Value
The range of nominally spaced glyphs.

Instance Methods 1491
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Discussion
The range returned begins with the first glyph, counting back from glyphIndex, that has a location set, and
it continues up to, but does not include, the next glyph that has a location set.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:
rectCount:
Returns an array of rectangles and, by reference, the number of such rectangles, that define the region in
the given container enclosing the given character range.

- (NSRectArray)rectArrayForCharacterRange:(NSRange)charRange
withinSelectedCharacterRange:(NSRange)selCharRange
inTextContainer:(NSTextContainer *)container rectCount:(NSUInteger *)rectCount

Parameters
charRange

The character range for which to return rectangles.

selCharRange
Selected characters within charRange, which can affect the size of the rectangles; it must be equal
to or contain charRange. If the caller is interested in this more from an enclosing point of view rather
than a selection point of view, pass {NSNotFound, 0} as the selected range.

container
The text container in which the text is laid out.

rectCount
The number of rectangles returned.

Return Value
The array of rectangles enclosing the given range.

Discussion
These rectangles can be used to draw the text background or highlight for the given range of characters. If
a selected range is given in selCharRange, the rectangles returned are correct for drawing the selection.
Selection rectangles are generally more complicated than enclosing rectangles and supplying a selected
range is the clue this method uses to determine whether to go to the trouble of doing this special work.

This method will do the minimum amount of work required to answer the question. The resulting array is
owned by the layout manager and will be reused when this method,
rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount: (page 1493),
or boundingRectForGlyphRange:inTextContainer: (page 1452) is called. One of these methods may
be called indirectly. If you aren't going to use the rectangles right away, you should copy them to another
location. These rectangles are always in container coordinates.

The number of rectangles returned isn’t necessarily the number of lines enclosing the specified range.
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate
enclosing rectangle for each fragment.

1492 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use
boundingRectForGlyphRange:inTextContainer: (page 1452) to determine the area that contains all
drawing performed for a range of glyphs.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphRangeForTextContainer: (page 1477)
– characterRangeForGlyphRange:actualGlyphRange: (page 1455)
– drawsOutsideLineFragmentForGlyphAtIndex: (page 1459)

Declared In
NSLayoutManager.h

rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount:
Returns an array of rectangles and, by reference, the number of such rectangles, that define the region in
the given container enclosing the given glyph range.

- (NSRectArray)rectArrayForGlyphRange:(NSRange)glyphRange
withinSelectedGlyphRange:(NSRange)selGlyphRange inTextContainer:(NSTextContainer
 *)container rectCount:(NSUInteger *)rectCount

Parameters
glyphRange

The glyph range for which to return rectangles.

selGlyphRange
Selected glyphs within glyphRange, which can affect the size of the rectangles; it must be equal to
or contain glyphRange. If the caller is interested in this more from an enclosing point of view rather
than a selection point of view, pass {NSNotFound, 0} as the selected range.

container
The text container in which the text is laid out.

rectCount
The number of rectangles returned.

Return Value
The array of rectangles enclosing the given range.

Discussion
These rectangles can be used to draw the text background or highlight for the given range of characters. If
a selected range is given in selGlyphRange, the rectangles returned are correct for drawing the selection.
Selection rectangles are generally more complicated than enclosing rectangles and supplying a selected
range is the clue this method uses to determine whether to go to the trouble of doing this special work.

The number of rectangles returned isn’t necessarily the number of lines enclosing the specified range.
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate
enclosing rectangle for each fragment.

Instance Methods 1493
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

This method will do the minimum amount of work required to answer the question. The resulting array is
owned by the layout manager and will be reused when this method,
rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:
rectCount: (page 1492), orboundingRectForGlyphRange:inTextContainer: (page 1452) is called. One
of these methods may be called indirectly. If you aren't going to use the rectangles right away, you should
copy them to another location. These rectangles are always in container coordinates.

The purpose of this method is to calculate line rectangles for drawing the text background and highlighting.
These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use
boundingRectForGlyphRange:inTextContainer: (page 1452) to determine the area that contains all
drawing performed for a range of glyphs.

Performs glyph generation and layout if needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– glyphRangeForTextContainer: (page 1477)
– glyphRangeForCharacterRange:actualCharacterRange: (page 1476)
– drawsOutsideLineFragmentForGlyphAtIndex: (page 1459)

Declared In
NSLayoutManager.h

removeTemporaryAttribute:forCharacterRange:
Removes a temporary attribute from the list of attributes for the specified character range.

- (void)removeTemporaryAttribute:(NSString *)attrName
forCharacterRange:(NSRange)charRange

Parameters
attrName

The name of a temporary attribute.

charRange
The range of characters from which to remove the specified temporary attribute.

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView
uses them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes recognized are those that do not affect layout (colors, underlines, and so on).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTemporaryAttributes:forCharacterRange: (page 1508)
– addTemporaryAttributes:forCharacterRange: (page 1449)
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 1517)

Related Sample Code
LayoutManagerDemo

1494 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

removeTextContainerAtIndex:
Removes the text container at the given index and invalidates the layout as needed.

- (void)removeTextContainerAtIndex:(NSUInteger)index

Parameters
index

The index of the text container to remove.

Discussion
This method invalidates glyph information as needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTextContainer: (page 1449)
– insertTextContainer:atIndex: (page 1480)
– textContainers (page 1520)
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 1482)
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 1483)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSLayoutManager.h

replaceGlyphAtIndex:withGlyph:
Replaces the glyph at the given index with a new glyph.

- (void)replaceGlyphAtIndex:(NSUInteger)glyphIndex withGlyph:(NSGlyph)newGlyph

Parameters
glyphIndex

Index of the glyph to replace.

newGlyph
The new glyph.

Discussion
Doesn’t alter the glyph-to-character mapping or invalidate layout information. The character index of the
glyph is assumed to remain the same (although it can, of course, be set explicitly if needed).

This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. This method should be invoked only during glyph generation and typesetting, in
almost all cases only by the glyph generator or typesetter. For example, a custom glyph generator or typesetter
might invoke it.

Instance Methods 1495
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCharacterIndex:forGlyphAtIndex: (page 1500)
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange: (page 1482)
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 1483)

Declared In
NSLayoutManager.h

replaceTextStorage:
Replaces the NSTextStorage object for the group of text-system objects containing the receiver with the
given text storage object.

- (void)replaceTextStorage:(NSTextStorage *)newTextStorage

Parameters
newTextStorage

The text storage object to set.

Discussion
All NSLayoutManager objects sharing the original NSTextStorage object then share the new one. This
method makes all the adjustments necessary to keep these relationships intact, unlike
setTextStorage: (page 1509).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
TextLayoutDemo

Declared In
NSLayoutManager.h

rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:
Returns the the accessory view that the text system uses for its ruler.

- (NSView *)rulerAccessoryViewForTextView:(NSTextView *)view
paragraphStyle:(NSParagraphStyle *)style ruler:(NSRulerView *)ruler
enabled:(BOOL)isEnabled

Parameters
view

The text view using the layout manager.

style
Sets the state of the controls in the accessory view; must not be nil.

ruler
The ruler view whose accessory view is returned.

1496 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

isEnabled
If YES, the accessory view is enabled and accepts mouse and keyboard events; if NO it’s disabled.

Return Value
The accessory view containing tab wells, text alignment buttons, and so on.

Discussion
If you have turned off automatic ruler updating through the use of setUsesRuler: (page 2948) so that you
can do more complex things, but you still want to display the appropriate accessory view, you can use this
method.

This method is invoked automatically by the NSTextView object using the layout manager. You should rarely
need to invoke it, but you can override it to customize ruler support. If you do use this method directly, note
that it neither installs the ruler accessory view nor sets the markers for the NSRulerView object. You must
install the accessory view into the ruler using the NSRulerViewmethod setAccessoryView: (page 2258).
To set the markers, use rulerMarkersForTextView:paragraphStyle:ruler: (page 1497) to get the
markers needed, and then send setMarkers: (page 2259) to the ruler.

Availability
Available in Mac OS X v10.0 and later.

See Also
– horizontalRulerView (page 2350) (NSScrollView)

Declared In
NSLayoutManager.h

rulerMarkersForTextView:paragraphStyle:ruler:
Returns an array of text ruler objects for the current selection.

- (NSArray *)rulerMarkersForTextView:(NSTextView *)view
paragraphStyle:(NSParagraphStyle *)style ruler:(NSRulerView *)ruler

Parameters
view

The text view using the layout manager.

style
Sets the state of the controls in the accessory view; must not be nil.

ruler
The ruler view whose ruler markers are returned.

Return Value
An array of NSRulerMarker objects representing such things as left and right margins, first-line indent, and
tab stops.

Discussion
If you have turned off automatic ruler updating through the use of setUsesRuler: (page 2948) so that you
can do more complex things, but you still want to display the appropriate accessory view, you can use this
method.

This method is invoked automatically by the NSTextView object using the layout manager. You should rarely
need to invoke it, but you can override it to add new kinds of markers or otherwise customize ruler support.

Instance Methods 1497
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

You can set the returned ruler markers with the NSRulerView method setMarkers: (page 2259).

Availability
Available in Mac OS X v10.0 and later.

See Also
– rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled: (page 1496)

Declared In
NSLayoutManager.h

setAllowsNonContiguousLayout:
Enables or disables noncontiguous layout.

- (void)setAllowsNonContiguousLayout:(BOOL)flag

Parameters
flag

If YES, noncontiguous layout is enabled; if NO, noncontiguous layout is disabled.

Discussion
Passing YES in flag allows but does not require the layout manager to use noncontiguous layout, and the
layout manager may in fact not do so, depending on its configuration.

For more information about noncontiguous layout, see “Noncontiguous Layout” (page 1438).

Availability
Available in Mac OS X v10.5 and later.

See Also
– allowsNonContiguousLayout (page 1450)
– hasNonContiguousLayout (page 1477)

Declared In
NSLayoutManager.h

setAttachmentSize:forGlyphRange:
Sets the size at which the given glyph (assumed to be an attachment) is asked to draw in the given glyph
range.

- (void)setAttachmentSize:(NSSize)attachmentSize forGlyphRange:(NSRange)glyphRange

Parameters
attachmentSize

The glyph size to set.

glyphRange
The attachment glyph’s position in the glyph stream.

Discussion
For a glyph corresponding to an attachment, this method should be called to set the size for the attachment
cell to occupy. The glyph's value should be NSControlGlyph.

1498 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attachmentSizeForGlyphAtIndex: (page 1450)
– setDefaultAttachmentScaling: (page 1500)

Declared In
NSLayoutManager.h

setBackgroundLayoutEnabled:
Specifies whether the receiver generates glyphs and lays them out when the application’s run loop is idle.

- (void)setBackgroundLayoutEnabled:(BOOL)flag

Parameters
flag

If YES, background layout is enabled; if NO, the receiver performs glyph generation and layout only
when necessary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundLayoutEnabled (page 1451)

Declared In
NSLayoutManager.h

setBoundsRect:forTextBlock:glyphRange:
Sets the bounding rectangle enclosing a given text block containing the given glyph range.

- (void)setBoundsRect:(NSRect)rect forTextBlock:(NSTextBlock *)block
glyphRange:(NSRange)glyphRange

Parameters
rect

The bounding rectangle to set.

block
The text block whose bounding rectangle is set.

glyphRange
The range of glyphs in the text block.

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

Instance Methods 1499
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– boundingRectForGlyphRange:inTextContainer: (page 1452)
– boundsRectForTextBlock:atIndex:effectiveRange: (page 1452)
– boundsRectForTextBlock:glyphRange: (page 1453)

Declared In
NSLayoutManager.h

setCharacterIndex:forGlyphAtIndex:
Sets the index of the character corresponding to the glyph at the given glyph index.

- (void)setCharacterIndex:(NSUInteger)charIndex
forGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
charIndex

The index to set.

glyphIndex
The glyph corresponding to the character whose index is set. The glyph must already be present.

Discussion
This method is for use by the glyph-generation mechanism and doesn’t perform any invalidation or generation
of the glyphs or layout. This method should be invoked only during glyph generation and typesetting, in
almost all cases only by the glyph generator or typesetter. For example, a custom glyph generator or typesetter
might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– characterIndexForGlyphAtIndex: (page 1453)
– characterRangeForGlyphRange:actualGlyphRange: (page 1455)
– glyphRangeForCharacterRange:actualCharacterRange: (page 1476)

Declared In
NSLayoutManager.h

setDefaultAttachmentScaling:
Sets the default scaling behavior to the given scaling if an attachment image is too large to fit in a text
container.

- (void)setDefaultAttachmentScaling:(NSImageScaling)scaling

Parameters
scaling

The scaling behavior to set. See NSImageScaling (page 617) for possible values. The default is
NSScaleNone (page 622), meaning that images clip rather than scaling.

1500 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Discussion
Attachment cells control their own size and drawing, so this setting is only advisory to them, but Application
Kit–supplied attachment cells respect it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– defaultAttachmentScaling (page 1456)

Declared In
NSLayoutManager.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSLayoutManagerDelegate >)anObject

Parameters
anObject

The delegate for the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 1457)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSLayoutManager.h

setDrawsOutsideLineFragment:forGlyphAtIndex:
Specifies whether the given glyph exceeds the bounds of the line fragment where it’s laid out.

- (void)setDrawsOutsideLineFragment:(BOOL)flag forGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
flag

If YES, sets the given glyph to draw outside its line fragment; if NO, the glyph does not draw outside.

glyphIndex
Index of the glyph to set.

Discussion
This can happen when text is set at a fixed line height. For example, if the user specifies a fixed line height
of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles. This information
is important for determining whether additional lines need to be redrawn as a result of changes to any given
line fragment.

Instance Methods 1501
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsOutsideLineFragmentForGlyphAtIndex: (page 1459)

Declared In
NSLayoutManager.h

setExtraLineFragmentRect:usedRect:textContainer:
Sets the bounds and container for the extra line fragment.

- (void)setExtraLineFragmentRect:(NSRect)aRect usedRect:(NSRect)usedRect
textContainer:(NSTextContainer *)aTextContainer

Parameters
aRect

The rectangle to set.

usedRect
Indicates where the insertion point is drawn.

aTextContainer
The text container where the rectangle is to be laid out.

Discussion
The extra line fragment is used when the text backing ends with a hard line break or when the text backing
is totally empty, to define the extra line which needs to be displayed at the end of the text. If the text backing
is not empty and does not end with a hard line break, this should be set to NSZeroRect and nil.

Line fragment rectangles and line fragment used rectangles are always in container coordinates.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– extraLineFragmentRect (page 1464)
– extraLineFragmentUsedRect (page 1465)
– textContainers (page 1520)

Declared In
NSLayoutManager.h

setGlyphGenerator:
Sets the glyph generator used by this layout manager.

1502 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

- (void)setGlyphGenerator:(NSGlyphGenerator *)glyphGenerator

Parameters
glyphGenerator

The new glyph generator to set.

Discussion
Setting the glyph generator invalidates all glyphs and layout in the layout manager.

Availability
Available in Mac OS X v10.4 and later.

See Also
– glyphGenerator (page 1472)

Declared In
NSLayoutManager.h

setHyphenationFactor:
Sets the threshold controlling when hyphenation is done.

- (void)setHyphenationFactor:(float)factor

Parameters
factor

The hyphenation factor, ranging from 0.0 to 1.0. By default, the value is 0.0, meaning hyphenation is
off. A factor of 1.0 causes hyphenation to be attempted always.

Discussion
Whenever (width of the real contents of the line) / (the line fragment width) is below factor, hyphenation
is attempted when laying out the line. Hyphenation slows down text layout and increases memory usage,
so it should be used sparingly.

May be overridden on a per-paragraph basis by the NSParagraphStylemethod hyphenationFactor (page
1873).

Availability
Available in Mac OS X v10.0 and later.

See Also
– hyphenationFactor (page 1478)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSLayoutManager.h

setIntAttribute:value:forGlyphAtIndex:
Sets a custom attribute value for a given glyph.

Instance Methods 1503
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

- (void)setIntAttribute:(NSInteger)attributeTag value:(NSInteger)val
forGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
attributeTag

The custom attribute.

val
The new attribute value.

glyphIndex
Index of the glyph whose attribute is set.

Discussion
Custom attributes are glyph attributes such as NSGlyphInscription or attributes defined by subclasses.
Nonnegative tags are reserved by Apple; you can define your own attributes with negative tags and set
values using this method.

This method is part of the NSGlyphStorage protocol, for use by the glyph generator to set attributes. It is
not usually necessary for anyone but the glyph generator (and perhaps the typesetter) to call it. It is provided
as a public method so subclasses can extend it to accept other glyph attributes. To add new glyph attributes
to the text system you must do two things. First, you need to arrange for the glyph generator or typesetter
to generate and interpret it. Second, you need to subclass NSLayoutManager to provide someplace to store
the new attribute, overriding this method and intAttribute:forGlyphAtIndex: (page 1481) to recognize
the new attribute tags and respond to them, while passing any other attributes to the superclass
implementation. The NSLayoutManager implementation understands the glyph attributes which it is
prepared to store, as enumerated in “Glyph Attributes” (page 1525).

Availability
Available in Mac OS X v10.0 and later.

See Also
– intAttribute:forGlyphAtIndex: (page 1481)

Declared In
NSLayoutManager.h

setLayoutRect:forTextBlock:glyphRange:
Sets the layout rectangle enclosing the given text block containing the given glyph range.

- (void)setLayoutRect:(NSRect)rect forTextBlock:(NSTextBlock *)block
glyphRange:(NSRange)glyphRange

Parameters
rect

The layout rectangle to set.

block
The text block whose layout rectangle is set.

glyphRange
The range of glyphs in the text block.

Discussion
This method causes glyph generation but not layout. Block layout rectangles and bounds rectangles are
always in container coordinates.

1504 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– layoutRectForTextBlock:atIndex:effectiveRange: (page 1486)
– layoutRectForTextBlock:glyphRange: (page 1486)

Declared In
NSLayoutManager.h

setLineFragmentRect:forGlyphRange:usedRect:
Associates the given line fragment bounds with the given range of glyphs.

- (void)setLineFragmentRect:(NSRect)fragmentRect forGlyphRange:(NSRange)glyphRange
usedRect:(NSRect)usedRect

Parameters
fragmentRect

The rectangle of the line fragment.

glyphRange
The range of glyphs to be associated with fragmentRect.

usedRect
The portion of fragmentRect that actually contains glyphs or other marks that are drawn (including
the text container’s line fragment padding. Must be equal to or contained within fragmentRect.

Discussion
The typesetter must specify the text container first with setTextContainer:forGlyphRange: (page 1509),
and it sets the exact positions of the glyphs afterwards with setLocation:forStartOfGlyphRange: (page
1506).

In the course of layout, all glyphs should end up being included in a range passed to this method, but only
glyphs that start a new line fragment should be at the start of such ranges.

Line fragment rectangles and line fragment used rectangles are always in container coordinates.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page 1487)
– lineFragmentRectForGlyphAtIndex:effectiveRange: (page 1487)
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout: (page
1489)
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange: (page 1488)

Declared In
NSLayoutManager.h

Instance Methods 1505
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

setLocation:forStartOfGlyphRange:
Sets the location for the first glyph of the given range.

- (void)setLocation:(NSPoint)aPoint forStartOfGlyphRange:(NSRange)glyphRange

Parameters
aPoint

The location to which the first glyph is set, relative to the origin of the glyph’s line fragment origin.

glyphRange
The glyphs whose location is set.

Discussion
Setting the location for a glyph range implies that its first glyph is not nominally spaced with respect to the
previous glyph. In the course of layout, all glyphs should end up being included in a range passed to this
method, but only glyphs that start a new nominal range should be at the start of such ranges. The first glyph
in a line fragment should always start a new nominal range. Glyph locations are given relative to their line
fragment rectangle's origin.

Before setting the location for a glyph range, you must specify the text container with
setTextContainer:forGlyphRange: (page 1509) and the line fragment rectangle with
setLineFragmentRect:forGlyphRange:usedRect: (page 1505).

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rangeOfNominallySpacedGlyphsContainingIndex: (page 1491)

Declared In
NSLayoutManager.h

setLocations:startingGlyphIndexes:count:forGlyphRange:
Sets locations for many glyph ranges at once.

- (void)setLocations:(NSPointArray)locations startingGlyphIndexes:(NSUInteger
*)glyphIndexes count:(NSUInteger)count forGlyphRange:(NSRange)glyphRange

Parameters
locations

The locations to which the first glyph in each range is set, relative to the origin of the glyph’s line
fragment origin.

glyphIndexes
Indexes in glyphRange of the glyphs whose locations are set.

count
The number of glyphs whose locations are set.

glyphRange
The entire glyph range containing all the glyphs whose locations are set.

1506 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Discussion
This method enables the typesetter to set locations for glyph ranges in bulk. All of the specified glyph indexes
should lie within the specified glyph range. The first of them should be equal to glyphRange.location,
and the remainder should increase monotonically. Each location is set as the location for the range beginning
at the corresponding glyph index, and continuing until the subsequent glyph index, or until the end of the
glyph range for the last location. Thus this method is equivalent to calling
setLocation:forStartOfGlyphRange: (page 1506) for a set of ranges covering all of the glyphs in
glyphRange.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSLayoutManager.h

setNotShownAttribute:forGlyphAtIndex:
Sets the glyph at the given index to be one that isn’t shown.

- (void)setNotShownAttribute:(BOOL)flag forGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
flag

If YES, the glyph is not shown; if NO, it is shown.

glyphIndex
Index of the glyph whose attribute is set.

Discussion
The typesetter decides which glyphs are not shown and sets this attribute in the layout manager to ensure
that those glyphs are not displayed. For example, a tab or newline character doesn’t leave any marks; it just
indicates where following glyphs are laid out.

Raises an NSRangeException if glyphIndex is out of bounds.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– notShownAttributeForGlyphAtIndex: (page 1490)

Declared In
NSLayoutManager.h

setShowsControlCharacters:
Specifies whether to substitute visible glyphs for control characters in layout.

Instance Methods 1507
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

- (void)setShowsControlCharacters:(BOOL)flag

Parameters
flag

If YES, the receiver substitutes visible glyphs for control characters if the font and script support it; if
NO, it doesn’t. The default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShowsInvisibleCharacters: (page 1508)
– showsControlCharacters (page 1513)

Declared In
NSLayoutManager.h

setShowsInvisibleCharacters:
Specifies whether to substitute visible glyphs for whitespace and other typically invisible characters in layout.

- (void)setShowsInvisibleCharacters:(BOOL)flag

Parameters
flag

If YES, the receiver substitutes visible glyphs for invisible characters if the font and script support it;
if NO, it doesn’t. The default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShowsControlCharacters: (page 1507)
– showsInvisibleCharacters (page 1513)

Declared In
NSLayoutManager.h

setTemporaryAttributes:forCharacterRange:
Sets one or more temporary attributes for the specified character range.

- (void)setTemporaryAttributes:(NSDictionary *)attrs
forCharacterRange:(NSRange)charRange

Parameters
attrs

Attributes dictionary containing the temporary attributes to set.

charRange
The range of characters to which the specified attributes apply.

1508 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView
uses them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes recognized are those that do not affect layout (colors, underlines, and so on).

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTemporaryAttributes:forCharacterRange: (page 1449)
– removeTemporaryAttribute:forCharacterRange: (page 1494)
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 1517)

Declared In
NSLayoutManager.h

setTextContainer:forGlyphRange:
Sets text container where the glyphs in the given range are laid out.

- (void)setTextContainer:(NSTextContainer *)aTextContainer
forGlyphRange:(NSRange)glyphRange

Parameters
aTextContainer

The text container to set.

glyphRange
The range of glyphs to lay out.

Discussion
The layout within the container is specified with the
setLineFragmentRect:forGlyphRange:usedRect: (page 1505) and
setLocation:forStartOfGlyphRange: (page 1506) methods.

This method is used by the layout mechanism and should be invoked only during typesetting, in almost all
cases only by the typesetter. For example, a custom typesetter might invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainerForGlyphAtIndex:effectiveRange: (page 1519)

Declared In
NSLayoutManager.h

setTextStorage:
Sets the receiver’s NSTextStorage object.

- (void)setTextStorage:(NSTextStorage *)textStorage

Instance Methods 1509
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Parameters
textStorage

The text storage object to set.

Discussion
This method is invoked automatically when you add an NSLayoutManager to an NSTextStorage object;
you should never need to invoke it directly, but you might want to override it. If you want to replace the
NSTextStorage object for an established group of text-system objects containing the receiver, use
replaceTextStorage: (page 1496).

Availability
Available in Mac OS X v10.0 and later.

See Also
– addLayoutManager: (page 2837) (NSTextStorage)

Declared In
NSLayoutManager.h

setTypesetter:
Sets the current typesetter.

- (void)setTypesetter:(NSTypesetter *)typesetter

Parameters
typesetter

The typesetter for the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– typesetter (page 1522)

Declared In
NSLayoutManager.h

setTypesetterBehavior:
Sets the default typesetter behavior.

- (void)setTypesetterBehavior:(NSTypesetterBehavior)theBehavior

Parameters
theBehavior

An NSTypesetterBehavior (page 1527) constant that specifies the behavior for the receiver.

Discussion
The typesetter behavior affects glyph spacing and line height.

If the application was linked on a system prior to Mac OS X v10.2, NSLayoutManager uses
NSTypesetterOriginalBehavior by default.

1510 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
– typesetterBehavior (page 1522)

Declared In
NSLayoutManager.h

setUsesFontLeading:
Specifies whether or not the receiver uses the leading provided in the font.

- (void)setUsesFontLeading:(BOOL)flag

Parameters
flag

If YES, the receiver uses the font’s leading; if NO, it does not.

Discussion
By default, a layout manager uses leading as specified by the font. However, this is not appropriate for most
user-interface text, for which a fixed leading is usually specified by user-interface layout guidelines. This
method enables the use of the font's leading to be turned off.

Availability
Available in Mac OS X v10.5 and later.

See Also
– usesFontLeading (page 1524)
– setLineSpacing: (page 1722) (NSMutableParagraphStyle)

Declared In
NSLayoutManager.h

setUsesScreenFonts:
Controls using screen fonts to calculate layout and display text.

- (void)setUsesScreenFonts:(BOOL)flag

Parameters
flag

If YES, the receiver uses screen fonts; if NO, it doesn’t.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesScreenFonts (page 1525)
– substituteFontForFont: (page 1514)

Related Sample Code
CircleView

Instance Methods 1511
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

TextLayoutDemo

Declared In
NSLayoutManager.h

showAttachmentCell:inRect:characterIndex:
Draws an attachment cell.

- (void)showAttachmentCell:(NSCell *)cell inRect:(NSRect)rect
characterIndex:(NSUInteger)attachmentIndex

Parameters
cell

The attachment cell to draw.

rect
The rectangle within which to draw cell.

attachmentIndex
The location of the attachment cell.

Discussion
The attachmentIndex parameter is provided for cells that alter their appearance based on their location.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

showPackedGlyphs:length:glyphRange:atPoint:font:color:printingAdjustment:
Draws a range of glyphs.

- (void)showPackedGlyphs:(char *)glyphs length:(NSUInteger)glyphLen
glyphRange:(NSRange)glyphRange atPoint:(NSPoint)point font:(NSFont *)font
color:(NSColor *)color printingAdjustment:(NSSize)printingAdjustment

Parameters
glyphs

The glyphs to draw; may contain embedded NULL bytes.

glyphLen
The number of bytes pointed at by glyphs; this is twice the number of glyphs contained.

glyphRange
The range of glyphs to draw.

point
The point at which to draw the glyphs.

font
The font of the glyphs to draw.

color
Color of the glyphs to draw.

1512 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

printingAdjustment
NSZeroSizewhen drawing to the screen, but when printing may contain values by which the nominal
spacing between the characters should be adjusted.

Discussion
The glyphRange, point, font, and color parameters are passed in merely for information purposes. They
are already set in the graphics state. If for any reason you modify the set color or font, you must restore it
before returning from this method.

You should never call this method, but you might override it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

showsControlCharacters
Indicates whether the receiver substitutes visible glyphs for control characters.

- (BOOL)showsControlCharacters

Return Value
YES if the receiver substitutes visible glyphs for control characters if the font and script support it; NO if it
doesn’t.

Availability
Available in Mac OS X v10.0 and later.

See Also
– showsInvisibleCharacters (page 1513)
– setShowsControlCharacters: (page 1507)

Declared In
NSLayoutManager.h

showsInvisibleCharacters
Indicates whether the receiver substitutes visible glyphs for whitespace and other typically invisible characters
in layout.

- (BOOL)showsInvisibleCharacters

Return Value
YES if the receiver substitutes visible glyphs for invisible characters if the font and script support it; otherwise
NO. The default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– showsControlCharacters (page 1513)

Instance Methods 1513
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

– setShowsInvisibleCharacters: (page 1508)

Declared In
NSLayoutManager.h

strikethroughGlyphRange:strikethroughType:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin:
Calculates and draws strikethrough for the glyphs in the given range.

- (void)strikethroughGlyphRange:(NSRange)glyphRange
strikethroughType:(NSInteger)strikethroughVal lineFragmentRect:(NSRect)lineRect
lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin:(NSPoint)containerOrigin

Parameters
glyphRange

The range of glyphs for which to draw a strikethrough. The range must belong to a single line fragment
rectangle (as returned by lineFragmentRectForGlyphAtIndex:effectiveRange: (page 1487)).

strikethroughVal
The style of underlining to draw. This value is a mask derived from the value for
NSUnderlineStyleAttributeName (page 272)—for example, (NSUnderlinePatternDash |
NSUnderlineStyleThick | NSUnderlineByWordMask). Subclasses can define custom underlining
styles.

lineRect
The line fragment rectangle containing the glyphs to draw strikethrough for.

lineGlyphRange
The range of all glyphs within lineRect.

containerOrigin
The origin of the line fragment rectangle’s NSTextContainer in its NSTextView.

Discussion
This method determines which glyphs actually need to have a strikethrough drawn based on
strikethroughVal. After determining which glyphs to draw strikethrough on, this method invokes
drawStrikethroughForGlyphRange:strikethroughType:baselineOffset:
lineFragmentRect:lineFragmentGlyphRange:containerOrigin: (page 1460) for each contiguous
range of glyphs that requires it.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSLayoutManager.h

substituteFontForFont:
Returns a screen font suitable for use in place of the given font, if one is available.

- (NSFont *)substituteFontForFont:(NSFont *)originalFont

1514 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Parameters
originalFont

The font to replace.

Return Value
A screen font suitable for use in place of originalFont, or simply originalFont if a screen font can’t be
used or isn’t available.

Discussion
A screen font can be substituted if the receiver is set to use screen fonts and if no NSTextView associated
with the receiver is scaled or rotated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesScreenFonts (page 1525)

Declared In
NSLayoutManager.h

temporaryAttribute:atCharacterIndex:effectiveRange:
Returns the value for the temporary attribute with a given name of the character at a given index, and by
reference the range over which the attribute applies.

- (id)temporaryAttribute:(NSString *)attrName atCharacterIndex:(NSUInteger)location
effectiveRange:(NSRangePointer)range

Parameters
attrName

The name of a temporary attribute.

location
The index for which to return attributes. This value must not exceed the bounds of the receiver.

range
If non-NULL:

 ■ If the named attribute exists at location, on output, contains the range over which the named
attribute’s value applies.

 ■ If the named attribute does not exist at location, on output, contains the range over which the
attribute does not exist.

The range isn’t necessarily the maximum range covered by attrName, and its extent is
implementation-dependent. If you need the maximum range, use
temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange: (page 1516). If
you don't need this value, pass NULL.

Return Value
The value for the temporary attribute named attrName of the character at index location, or nil if there
is no such attribute.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 1515
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

See Also
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 1517)
– temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange: (page 1516)

Declared In
NSLayoutManager.h

temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange:
Returns the value for the temporary attribute with a given name of the character at a given index, and by
reference the maximum range over which the attribute applies.

- (id)temporaryAttribute:(NSString *)attrName atCharacterIndex:(NSUInteger)location
longestEffectiveRange:(NSRangePointer)range inRange:(NSRange)rangeLimit

Parameters
attrName

The name of a temporary attribute.

location
The index for which to return attributes. This value must not exceed the bounds of the receiver.

range
If non-NULL:

 ■ If the named attribute exists at location, on output, contains the maximum range over which
the named attribute’s value applies, clipped to rangeLimit.

 ■ If the named attribute does not exist at location, on output, contains the maximum range over
which the attribute does not exist.

If you don't need this value, pass NULL.

rangeLimit
The range over which to search for continuous presence of attrName. This value must not exceed
the bounds of the receiver.

Return Value
The value for the attribute named attrName of the character at location, or nil if there is no such attribute.

Discussion
If you don’t need the longest effective range, it’s far more efficient to use the
temporaryAttribute:atCharacterIndex:effectiveRange: (page 1515) method to retrieve the attribute
value.

Availability
Available in Mac OS X v10.5 and later.

See Also
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 1517)
– temporaryAttribute:atCharacterIndex:effectiveRange: (page 1515)

Declared In
NSLayoutManager.h

1516 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

temporaryAttributesAtCharacterIndex:effectiveRange:
Returns the dictionary of temporary attributes for the character range specified in effectiveCharRange
at character index charIndex.

- (NSDictionary *)temporaryAttributesAtCharacterIndex:(NSUInteger)charIndex
effectiveRange:(NSRangePointer)effectiveCharRange

Return Value
The dictionary of temporary attributes for the character range specified in effectiveCharRange at character
index charIndex.

Discussion
Temporary attributes are used only for onscreen drawing and are not persistent in any way. NSTextView
uses them to color misspelled words when continuous spell checking is enabled. Currently the only temporary
attributes recognized are those that do not affect layout (colors, underlines, and so on).

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTemporaryAttributes:forCharacterRange: (page 1449)
– removeTemporaryAttribute:forCharacterRange: (page 1494)
– setTemporaryAttributes:forCharacterRange: (page 1508)

Declared In
NSLayoutManager.h

temporaryAttributesAtCharacterIndex:longestEffectiveRange:inRange:
Returns the temporary attributes for the character at a given index, and by reference the maximum range
over which the attributes apply.

- (NSDictionary *)temporaryAttributesAtCharacterIndex:(NSUInteger)location
longestEffectiveRange:(NSRangePointer)range inRange:(NSRange)rangeLimit

Parameters
location

The index for which to return attributes. This value must not exceed the bounds of the receiver.

range
If not NULL, on output, contains the maximum range over which the attributes and values are the
same as those at location, clipped to rangeLimit.

rangeLimit
The range over which to search for continuous presence of the attributes at location. This value
must not exceed the bounds of the receiver.

Return Value
The attributes for the character at location.

Discussion
If you don’t need the longest effective range, it’s far more efficient to use the
temporaryAttributesAtCharacterIndex:effectiveRange: (page 1517) method to retrieve the attribute
value.

Instance Methods 1517
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– temporaryAttributesAtCharacterIndex:effectiveRange: (page 1517)
– temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange: (page 1516)

Declared In
NSLayoutManager.h

textContainerChangedGeometry:
Invalidates the layout information, and possibly glyphs, for the given text container and all subsequent
NSTextContainer objects.

- (void)textContainerChangedGeometry:(NSTextContainer *)aTextContainer

Parameters
aTextContainer

The text container whose layout is invalidated.

Discussion
This method is invoked automatically by other components of the text system; you should rarely need to
invoke it directly. Subclasses of NSTextContainer, however, must invoke this method any time their size
of shape changes (a text container that dynamically adjusts its shape to wrap text around placed graphics,
for example, must do so when a graphic is added, moved, or removed).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

textContainerChangedTextView:
Updates information needed to manage NSTextView objects in the given text container.

- (void)textContainerChangedTextView:(NSTextContainer *)aTextContainer

Parameters
aTextContainer

The text container whose text view has changed.

Discussion
This method is called by a text container, whenever its text view changes, to keep notifications synchronized.
You should rarely need to invoke it directly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

1518 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

textContainerForGlyphAtIndex:effectiveRange:
Returns the container in which the given glyph is laid out and (optionally) by reference the whole range of
glyphs that are in that container.

- (NSTextContainer *)textContainerForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange

Parameters
glyphIndex

Index of a glyph in the returned container.

effectiveGlyphRange
If not NULL, on output, points to the whole range of glyphs that are in the returned container.

Return Value
The text container in which the glyph at glyphIndex is laid out.

Discussion
This method causes glyph generation and layout for the line fragment containing the specified glyph, or if
noncontiguous layout is not enabled, up to and including that line fragment. If noncontiguous layout is not
enabled and effectiveGlyphRange is not NULL, this method additionally causes glyph generation and
layout for the entire text container containing the specified glyph.

Overriding this method is not recommended. Any changes to the returned glyph range should be done at
the typesetter level.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextContainer:forGlyphRange: (page 1509)

Declared In
NSLayoutManager.h

textContainerForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
Returns the container in which the given glyph is laid out and (optionally) by reference the whole range of
glyphs that are in that container.

- (NSTextContainer *)textContainerForGlyphAtIndex:(NSUInteger)glyphIndex
effectiveRange:(NSRangePointer)effectiveGlyphRange
withoutAdditionalLayout:(BOOL)flag

Parameters
glyphIndex

Index of a glyph in the returned container.

effectiveGlyphRange
If not NULL, on output, points to the whole range of glyphs that are in the returned container.

flag
If YES, glyph generation and layout are not performed, so this option should not be used unless layout
is known to be complete for the range in question, or unless noncontiguous layout is enabled; if NO,
both are performed as needed.

Instance Methods 1519
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Return Value
The text container in which the glyph at glyphIndex is laid out.

Discussion
This method is primarily for use from within NSTypesetter, after layout is complete for the range in question,
but before the layout manager's call to NSTypesetter has returned. In that case glyph and layout holes
have not yet been recalculated, so the layout manager does not yet know that layout is complete for that
range, and this variant must be used.

Overriding this method is not recommended. Any changes to the returned glyph range should be done at
the typesetter level.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTextContainer:forGlyphRange: (page 1509)

Declared In
NSLayoutManager.h

textContainers
Returns the receiver’s text containers.

- (NSArray *)textContainers

Return Value
The receiver’s text containers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTextContainer: (page 1449)
– insertTextContainer:atIndex: (page 1480)
– removeTextContainerAtIndex: (page 1495)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSLayoutManager.h

textStorage
Returns the receiver’s text storage object.

- (NSTextStorage *)textStorage

1520 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Return Value
The receiver’s text storage.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextStorage: (page 1509)
– replaceTextStorage: (page 1496)

Declared In
NSLayoutManager.h

textStorage:edited:range:changeInLength:invalidatedRange:
Invalidates glyph and layout information for a portion of the text in the given text storage object.

- (void)textStorage:(NSTextStorage *)aTextStorage edited:(NSUInteger)mask
range:(NSRange)newCharRange changeInLength:(NSInteger)delta
invalidatedRange:(NSRange)invalidatedCharRange

Parameters
aTextStorage

The text storage whose information is invalidated.

mask
Specifies the nature of the changes. Its value is made by combining with the C bitwise OR operator
the constants described in “Change notifications” in NSTextStorage
(NSTextStorageEditedAttributes (page 2848) and NSTextStorageEditedCharacters (page
2848)).

newCharRange
Indicates the extent of characters resulting from the edits.

delta
If the NSTextStorageEditedCharacters bit of mask is set, gives the number of characters added
to or removed from the original range (otherwise its value is irrelevant).

invalidatedCharRange
Represents the range of characters affected after attributes have been fixed. Is either equal to
newCharRange or larger. For example, deleting a paragraph separator character invalidates the layout
information for all characters in the paragraphs that precede and follow the separator.

Discussion
This message is sent from the NSTextStorageobject’s processEditing (page 2844) method to indicate that
its characters or attributes have changed. This method invalidates glyphs and layout for the affected characters.

For example, after replacing “The” with “Several” to produce the string “Several files couldn’t be saved”,
newCharRange is {0, 7} and delta is 4. The receiver uses this information to update its character-to-glyph
mapping and to update the selection range based on the change.

The textStorage:edited:range:changeInLength:invalidatedRange:messages are sent in a series
to each NSLayoutManager object associated with the text storage object, so the layout managers receiving
them shouldn’t edit aTextStoragewhile this method is executing. If one of them does, the newCharRange,
delta, and invalidatedCharRange arguments are incorrect for all following layout managers that receive
the message.

Instance Methods 1521
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange: (page 1483)

Declared In
NSLayoutManager.h

textViewForBeginningOfSelection
Returns the text view containing the first glyph in the selection.

- (NSTextView *)textViewForBeginningOfSelection

Return Value
The text view containing the first glyph in the selection, or nil if there’s no selection or there isn’t enough
layout information to determine the text view.

Discussion
This method does not cause layout if the beginning of the selected range is not yet laid out.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

typesetter
Returns the receiver’s typesetter.

- (NSTypesetter *)typesetter

Return Value
The receiver’s typesetter.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTypesetter: (page 1510)

Declared In
NSLayoutManager.h

typesetterBehavior
Returns the current typesetter behavior.

- (NSTypesetterBehavior)typesetterBehavior

1522 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Return Value
The current typesetter behavior value.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setTypesetterBehavior: (page 1510)

Declared In
NSLayoutManager.h

underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:
containerOrigin:
Calculates subranges to be underlined for the glyphs in a given range and draws the underlining as appropriate.

- (void)underlineGlyphRange:(NSRange)glyphRange underlineType:(NSInteger)underlineVal
lineFragmentRect:(NSRect)lineRect lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin:(NSPoint)containerOrigin

Parameters
glyphRange

A range of glyphs, which must belong to a single line fragment rectangle (as returned by
lineFragmentRectForGlyphAtIndex:effectiveRange: (page 1487)).

underlineVal
The style of underlining to draw. This value is a mask derived from the value for
NSUnderlineStyleAttributeName (page 272)—for example, (NSUnderlinePatternDash |
NSUnderlineStyleThick | NSUnderlineByWordMask). Subclasses can define custom underlining
styles.

lineRect
The line fragment rectangle containing the glyphs to draw underlining for.

lineGlyphRange
The range of all glyphs within that line fragment rectangle.

containerOrigin
The origin of the line fragment rectangle’s NSTextContainer in its NSTextView.

Discussion
This method determines which glyphs actually need to be underlined based on underlineVal. With
NSUnderlineStyleSingle, for example, leading and trailing whitespace isn’t underlined, but whitespace
between visible glyphs is. A potential word-underline style would omit underlining on any whitespace. After
determining which glyphs to draw underlining on, this method invokes
drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin: (page 1461) for each contiguous range of glyphs that
requires it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainerForGlyphAtIndex:effectiveRange: (page 1519)
– textContainerOrigin (page 2956) (NSTextView)

Instance Methods 1523
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Declared In
NSLayoutManager.h

usedRectForTextContainer:
Returns the bounding rectangle for the glyphs laid out in the given text container.

- (NSRect)usedRectForTextContainer:(NSTextContainer *)aTextContainer

Discussion
Returns the text container's currently used area, which determines the size that the view would need to be
in order to display all the glyphs that are currently laid out in the container. This causes neither glyph
generation nor layout.

Used rectangles are always in container coordinates.

Availability
Available in Mac OS X v10.0 and later.

See Also
– containerSize (page 2781) (NSTextContainer)

Related Sample Code
CircleView
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSLayoutManager.h

usesFontLeading
Indicates whether the receiver uses the leading provided in the font.

- (BOOL)usesFontLeading

Return Value
YES if the receiver uses the font’s leading; otherwise, NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setUsesFontLeading: (page 1511)

Declared In
NSLayoutManager.h

1524 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

usesScreenFonts
Indicates whether the receiver uses screen fonts to calculate layout and display text.

- (BOOL)usesScreenFonts

Return Value
YES if the receiver calculates layout and displays text using screen fonts when possible; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setUsesScreenFonts: (page 1511)
– substituteFontForFont: (page 1514)

Declared In
NSLayoutManager.h

Constants

Glyph Attributes
These glyph attribute constants are used only inside the glyph generation machinery, but they must be
shared between components.

enum {
 NSGlyphAttributeSoft = 0,
 NSGlyphAttributeElastic = 1,
 NSGlyphAttributeBidiLevel = 2,
 NSGlyphAttributeInscribe = 5
};

Constants
NSGlyphAttributeSoft

The glyph is soft.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

NSGlyphAttributeElastic
The glyph is elastic.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

NSGlyphAttributeBidiLevel
The bidirectional level (direction) of the glyph.

Available in Mac OS X v10.2 and later.

Declared in NSLayoutManager.h.

Constants 1525
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

NSGlyphAttributeInscribe
Glyph inscription attribute. See [NSGlyphInscription] for possible values.NSGlyphInscription (page
1526)

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

Declared In
NSLayoutManager.h

NSGlyphInscription
These constants specify how a glyph is laid out relative to the previous glyph. The glyph inscription constants
are possible values for the glyph attribute NSGlyphAttributeInscribe. Glyph inscriptions are set during
glyph generation.

typedef enum {
 NSGlyphInscribeBase = 0,
 NSGlyphInscribeBelow = 1,
 NSGlyphInscribeAbove = 2,
 NSGlyphInscribeOverstrike = 3,
 NSGlyphInscribeOverBelow = 4
} NSGlyphInscription;

Constants
NSGlyphInscribeBase

A base glyph; a character that the font can represent with a single glyph.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

NSGlyphInscribeBelow
Glyph is rendered below the previous glyph.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

NSGlyphInscribeAbove
Glyph is rendered above the previous glyph.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

NSGlyphInscribeOverstrike
Glyph is rendered on top of the previous glyph.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

NSGlyphInscribeOverBelow
Glyph is rendered on top and below the previous glyph.

Available in Mac OS X v10.0 and later.

Declared in NSLayoutManager.h.

Discussion
The only constants that the text system currently uses are NSGlyphInscribeBase (for most glyphs) and
NSGlyphInscribeOverstrike (for nonbase glyphs). Nonbase glyphs occur when diacritical marks are
applied to a base character, and the font does not have a single glyph to represent the combination. For

1526 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

example, if a font did not contain a single glyph for ü, but did contain separate glyphs for u and ¨, then it
could be rendered with a base glyph u followed by a nonbase glyph ¨. In that case the nonbase glyph would
have the value NSGlyphInscribeOverstrike for the inscribe attribute.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSLayoutManager.h

NSTypesetterBehavior
These constants define the behavior of NSLayoutManager and NSTypesetter when laying out lines. They
are used by setTypesetterBehavior: (page 1510) and typesetterBehavior (page 1522) to control the
compatibility level of the typesetter.

typedef enum {
 NSTypesetterLatestBehavior = -1,
 NSTypesetterOriginalBehavior = 0,
 NSTypesetterBehavior_10_2_WithCompatibility = 1,
 NSTypesetterBehavior_10_2 = 2,
 NSTypesetterBehavior_10_3 = 3,
 NSTypesetterBehavior_10_4 = 4
} NSTypesetterBehavior;

Constants
NSTypesetterLatestBehavior

The most current typesetter behavior in the current system version. For Mac OS X v10.2, this behavior
is identical to NSTypesetterBehavior_10_2. If you use this behavior setting, you cannot necessarily
rely on line width and height metrics remaining the same across different versions of Mac OS X.

Available in Mac OS X v10.2 and later.

Declared in NSLayoutManager.h.

NSTypesetterOriginalBehavior
The original typesetter behavior, as shipped with Mac OS X v10.1 and earlier.

Available in Mac OS X v10.2 and later.

Declared in NSLayoutManager.h.

NSTypesetterBehavior_10_2_WithCompatibility
Typesetting same as NSTypesetterBehavior_10_2 but using line widths and height metric
calculations that are the same as with NSTypesetterOriginalBehavior.

Available in Mac OS X v10.2 and later.

Declared in NSLayoutManager.h.

NSTypesetterBehavior_10_2
The typesetter behavior introduced in Mac OS X version 10.2. This typesetter behavior provides
enhanced line and character spacing accuracy and supports more languages than the original typesetter
behavior.

Available in Mac OS X v10.2 and later.

Declared in NSLayoutManager.h.

Constants 1527
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

NSTypesetterBehavior_10_3
The typesetter behavior introduced in Mac OS X version 10.3.

Available in Mac OS X v10.3 and later.

Declared in NSLayoutManager.h.

NSTypesetterBehavior_10_4
The typesetter behavior introduced in Mac OS X version 10.4.

Available in Mac OS X v10.4 and later.

Declared in NSLayoutManager.h.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSLayoutManager.h

1528 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 65

NSLayoutManager Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSLevelIndicator.h

Availability Available in Mac OS X v10.4 and later.

Related sample code ButtonMadness
From A View to A Movie
QTRecorder

Overview

NSLevelIndicator is a subclass of NSControl that displays a value on a linear scale.

Level indicators provide a visual representation of a level or amount of something, using discrete values.
While similar to NSSlider, it provides a more customized visual feedback to the user. Level indicators do not
have a “knob” indicating the current setting or allowing the user to adjust settings. The supported indicator
styles include:

 ■ A capacity style level indicator. The continuous mode for this style is often used to indicate conditions
such as how much data is on hard disk. The discrete mode is similar to audio level indicators in audio
playback applications. You can specify both a warning value and a critical value that provides additional
visual feedback to the user.

 ■ A ranking style level indicator. This is similar to the star ranking displays provided in iTunes and iPhoto.
You can also specify your own ranking image.

 ■ A relevancy style level indicator. This style is used to display the relevancy of a search result, for example
in Mail.

NSLevelIndicator uses an NSLevelIndicatorCell to implement much of the control’s functionality.
NSLevelIndicator provides cover methods for most of NSLevelIndicatorCell’s methods, which invoke the
corresponding cell method.

Overview 1529
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLevelIndicator Class Reference

Tasks

Configuring the Range of Values

– setMinValue: (page 1533)
Sets the minimum value the receiver can represent to minValue.

– minValue (page 1531)
Returns the receiver’s minimum value.

– setMaxValue: (page 1533)
Sets the maximum value the receiver can represent to maxValue.

– maxValue (page 1531)
Returns the receiver’s maximum value.

– setWarningValue: (page 1535)
Sets the receiver’s warning value to warningValue.

– warningValue (page 1536)
Returns the receiver’s warning value.

– setCriticalValue: (page 1532)
Sets the receiver’s critical value to criticalValue.

– criticalValue (page 1531)
Returns the receiver’s critical value.

Managing Tick Marks

– setTickMarkPosition: (page 1534)
Sets where tick marks appear relative to the receiver.

– tickMarkPosition (page 1535)
Returns how the receiver’s tick marks are aligned with it.

– setNumberOfTickMarks: (page 1534)
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum
and maximum values) to count.

– numberOfTickMarks (page 1532)
Returns the number of tick marks associated with the receiver.

– setNumberOfMajorTickMarks: (page 1533)
Sets the number of major tick marks displayed by the receiver.

– numberOfMajorTickMarks (page 1531)
Returns the number of major tick marks associated with the receiver.

– tickMarkValueAtIndex: (page 1535)
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has
an index of 0).

– rectOfTickMarkAtIndex: (page 1532)
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark
is at index 0).

1530 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLevelIndicator Class Reference

Instance Methods

criticalValue
Returns the receiver’s critical value.

- (double)criticalValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCriticalValue: (page 1532)

Declared In
NSLevelIndicator.h

maxValue
Returns the receiver’s maximum value.

- (double)maxValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMaxValue: (page 1533)

Declared In
NSLevelIndicator.h

minValue
Returns the receiver’s minimum value.

- (double)minValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMinValue: (page 1533)

Declared In
NSLevelIndicator.h

numberOfMajorTickMarks
Returns the number of major tick marks associated with the receiver.

Instance Methods 1531
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLevelIndicator Class Reference

- (NSInteger)numberOfMajorTickMarks

Availability
Available in Mac OS X v10.4 and later.

See Also
– setNumberOfMajorTickMarks: (page 1533)

Declared In
NSLevelIndicator.h

numberOfTickMarks
Returns the number of tick marks associated with the receiver.

- (NSInteger)numberOfTickMarks

Discussion
The tick marks assigned to the minimum and maximum values are included.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setNumberOfTickMarks: (page 1534)

Declared In
NSLevelIndicator.h

rectOfTickMarkAtIndex:
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark is at
index 0).

- (NSRect)rectOfTickMarkAtIndex:(NSInteger)index

Discussion
If no tick mark is associated with index, the method raises a NSRangeException.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSLevelIndicator.h

setCriticalValue:
Sets the receiver’s critical value to criticalValue.

- (void)setCriticalValue:(double)criticalValue

1532 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLevelIndicator Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– criticalValue (page 1531)

Declared In
NSLevelIndicator.h

setMaxValue:
Sets the maximum value the receiver can represent to maxValue.

- (void)setMaxValue:(double)maxValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– maxValue (page 1531)

Declared In
NSLevelIndicator.h

setMinValue:
Sets the minimum value the receiver can represent to minValue.

- (void)setMinValue:(double)minValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– minValue (page 1531)

Declared In
NSLevelIndicator.h

setNumberOfMajorTickMarks:
Sets the number of major tick marks displayed by the receiver.

- (void)setNumberOfMajorTickMarks:(NSInteger)count

Discussion
The count must be less than or equal to the number of tick marks returned by numberOfTickMarks (page
1532). For example, if the number of tick marks is 11 and you specify 3 major tick marks, the resulting level
indicator will display 3 major tickmarks alternating with 8 minor tick marks, as in the example shown in Figure
66-1.

Instance Methods 1533
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLevelIndicator Class Reference

Figure 66-1 Major and minor tick marks in a level indicator

0 256 MB 512 MB

Disk Space:

Availability
Available in Mac OS X v10.4 and later.

See Also
– numberOfMajorTickMarks (page 1531)

Declared In
NSLevelIndicator.h

setNumberOfTickMarks:
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum and
maximum values) to count.

- (void)setNumberOfTickMarks:(NSInteger)count

Discussion
By default, this value is 0, and no tick marks appear. The number of tick marks assigned to a slider, along
with the slider’s minimum and maximum values, determines the values associated with the tick marks.

Availability
Available in Mac OS X v10.4 and later.

See Also
– numberOfTickMarks (page 1532)

Declared In
NSLevelIndicator.h

setTickMarkPosition:
Sets where tick marks appear relative to the receiver.

- (void)setTickMarkPosition:(NSTickMarkPosition)position

Discussion
This method has no effect if no tick marks have been assigned (that is, numberOfTickMarks (page 1532)
returns 0).

Availability
Available in Mac OS X v10.4 and later.

See Also
– tickMarkPosition (page 1535)

1534 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLevelIndicator Class Reference

Declared In
NSLevelIndicator.h

setWarningValue:
Sets the receiver’s warning value to warningValue.

- (void)setWarningValue:(double)warningValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– warningValue (page 1536)

Declared In
NSLevelIndicator.h

tickMarkPosition
Returns how the receiver’s tick marks are aligned with it.

- (NSTickMarkPosition)tickMarkPosition

Discussion
The default alignments are NSTickMarkBelow and NSTickMarkLeft.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTickMarkPosition: (page 1534)

Declared In
NSLevelIndicator.h

tickMarkValueAtIndex:
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has an index
of 0).

- (double)tickMarkValueAtIndex:(NSInteger)index

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSLevelIndicator.h

Instance Methods 1535
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLevelIndicator Class Reference

warningValue
Returns the receiver’s warning value.

- (double)warningValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– setWarningValue: (page 1535)

Declared In
NSLevelIndicator.h

1536 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 66

NSLevelIndicator Class Reference

Inherits from NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSLevelIndicatorCell.h

Availability Available in Mac OS X v10.4 and later.

Overview

NSLevelIndicatorCell is a subclass of NSActionCell that provides several level indicator display styles
including: capacity, ranking and relevancy. The capacity style provides both continuous and discrete modes.

Tasks

Initializing NSLevelIndicatorCell Objects

– initWithLevelIndicatorStyle: (page 1539)
Initializes the receiver with the style specified by levelIndicatorStyle.

Configuring the Range of Values

– setMinValue: (page 1542)
Sets the minimum value the receiver can represent to minValue.

– minValue (page 1540)
Returns the receiver’s minimum value.

– setMaxValue: (page 1542)
Sets the maximum value the receiver can represent to maxValue.

– maxValue (page 1540)
Returns the receiver’s maximum value.

– setLevelIndicatorStyle: (page 1542)
Sets the style of the receiver to levelIndicatorStyle.

Overview 1537
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 67

NSLevelIndicatorCell Class Reference

– levelIndicatorStyle (page 1539)
Returns the level indicator style of the receiver.

– setWarningValue: (page 1544)
Sets the receiver’s warning value to warningValue.

– warningValue (page 1545)
Returns the receiver’s warning value.

– setCriticalValue: (page 1541)
Sets the receiver’s critical value to criticalValue.

– criticalValue (page 1539)
Returns the receiver’s critical value.

Managing Tick Marks

– setTickMarkPosition: (page 1543)
Sets where tick marks appear relative to the receiver.

– tickMarkPosition (page 1544)
Returns how the receiver’s tick marks are aligned with it.

– setNumberOfTickMarks: (page 1543)
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum
and maximum values) to numberOfTickMarks.

– numberOfTickMarks (page 1540)
Returns the number of tick marks associated with the receiver.

– setNumberOfMajorTickMarks: (page 1543)
Sets the number of major tick marks displayed by the receiver.

– numberOfMajorTickMarks (page 1540)
Returns the number of major tick marks associated with the receiver.

– tickMarkValueAtIndex: (page 1544)
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has
an index of 0).

– rectOfTickMarkAtIndex: (page 1541)
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark
is at index 0).

Setting the Level-Indicator Image

– setImage: (page 1541)
Sets the image displayed by the receiver for the NSRatingLevelIndicatorStyle to image.

1538 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 67

NSLevelIndicatorCell Class Reference

Instance Methods

criticalValue
Returns the receiver’s critical value.

- (double)criticalValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCriticalValue: (page 1541)

Declared In
NSLevelIndicatorCell.h

initWithLevelIndicatorStyle:
Initializes the receiver with the style specified by levelIndicatorStyle.

- (id)initWithLevelIndicatorStyle:(NSLevelIndicatorStyle)levelIndicatorStyle

Discussion
The default value and minimum value are 0.0. The default maximum value is dependent on
levelIndicatorStyle. For continuous styles, the default maximum value is 100.0. For discrete styles the
default maximum value is 5.0.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSLevelIndicatorCell.h

levelIndicatorStyle
Returns the level indicator style of the receiver.

- (NSLevelIndicatorStyle)levelIndicatorStyle

Discussion
Possible return values are described in “Constants” (page 1545).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLevelIndicatorStyle: (page 1542)

Declared In
NSLevelIndicatorCell.h

Instance Methods 1539
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 67

NSLevelIndicatorCell Class Reference

maxValue
Returns the receiver’s maximum value.

- (double)maxValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLevelIndicatorStyle: (page 1542)

Declared In
NSLevelIndicatorCell.h

minValue
Returns the receiver’s minimum value.

- (double)minValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– setMinValue: (page 1542)

Declared In
NSLevelIndicatorCell.h

numberOfMajorTickMarks
Returns the number of major tick marks associated with the receiver.

- (NSInteger)numberOfMajorTickMarks

Availability
Available in Mac OS X v10.4 and later.

See Also
– setNumberOfMajorTickMarks: (page 1543)

Declared In
NSLevelIndicatorCell.h

numberOfTickMarks
Returns the number of tick marks associated with the receiver.

- (NSInteger)numberOfTickMarks

Discussion
The tick marks assigned to the minimum and maximum values are included.

1540 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 67

NSLevelIndicatorCell Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setNumberOfTickMarks: (page 1543)

Declared In
NSLevelIndicatorCell.h

rectOfTickMarkAtIndex:
Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark is at
index 0).

- (NSRect)rectOfTickMarkAtIndex:(NSInteger)index

Discussion
If no tick mark is associated with index, the method raises a NSRangeException.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSLevelIndicatorCell.h

setCriticalValue:
Sets the receiver’s critical value to criticalValue.

- (void)setCriticalValue:(double)criticalValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– criticalValue (page 1539)

Declared In
NSLevelIndicatorCell.h

setImage:
Sets the image displayed by the receiver for the NSRatingLevelIndicatorStyle to image.

- (void)setImage:(NSImage *)image

Discussion
The image is lightened to indicate a highlighted selection and dots are drawn for empty spots. The image is
not stretched and no space is added between images. Setting image to nil causes the default star image
to be used.

Instance Methods 1541
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 67

NSLevelIndicatorCell Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSLevelIndicatorCell.h

setLevelIndicatorStyle:
Sets the style of the receiver to levelIndicatorStyle.

- (void)setLevelIndicatorStyle:(NSLevelIndicatorStyle)levelIndicatorStyle

Discussion
The available values of levelIndicatorStyle are described in “Constants” (page 1545).

Availability
Available in Mac OS X v10.4 and later.

See Also
– levelIndicatorStyle (page 1539)

Related Sample Code
ButtonMadness

Declared In
NSLevelIndicatorCell.h

setMaxValue:
Sets the maximum value the receiver can represent to maxValue.

- (void)setMaxValue:(double)maxValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– levelIndicatorStyle (page 1539)

Declared In
NSLevelIndicatorCell.h

setMinValue:
Sets the minimum value the receiver can represent to minValue.

- (void)setMinValue:(double)minValue

Availability
Available in Mac OS X v10.4 and later.

1542 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 67

NSLevelIndicatorCell Class Reference

See Also
– minValue (page 1540)

Declared In
NSLevelIndicatorCell.h

setNumberOfMajorTickMarks:
Sets the number of major tick marks displayed by the receiver.

- (void)setNumberOfMajorTickMarks:(NSInteger)count

Discussion
The count must be less than or equal to the number of tick marks.

Availability
Available in Mac OS X v10.4 and later.

See Also
– numberOfMajorTickMarks (page 1540)

Declared In
NSLevelIndicatorCell.h

setNumberOfTickMarks:
Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum and
maximum values) to numberOfTickMarks.

- (void)setNumberOfTickMarks:(NSInteger)count

Discussion
By default, this value is 0, and no tick marks appear. The number of tick marks assigned to a slider, along
with the slider’s minimum and maximum values, determines the values associated with the tick marks.

Availability
Available in Mac OS X v10.4 and later.

See Also
– numberOfTickMarks (page 1540)

Declared In
NSLevelIndicatorCell.h

setTickMarkPosition:
Sets where tick marks appear relative to the receiver.

- (void)setTickMarkPosition:(NSTickMarkPosition)position

Instance Methods 1543
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 67

NSLevelIndicatorCell Class Reference

Discussion
This method has no effect if no tick marks have been assigned (that is, numberOfTickMarks (page 1540)
returns 0).

Availability
Available in Mac OS X v10.4 and later.

See Also
– tickMarkPosition (page 1544)

Declared In
NSLevelIndicatorCell.h

setWarningValue:
Sets the receiver’s warning value to warningValue.

- (void)setWarningValue:(double)warningValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– warningValue (page 1545)

Declared In
NSLevelIndicatorCell.h

tickMarkPosition
Returns how the receiver’s tick marks are aligned with it.

- (NSTickMarkPosition)tickMarkPosition

Discussion
The default alignments are NSTickMarkBelow and NSTickMarkLeft.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTickMarkPosition: (page 1543)

Declared In
NSLevelIndicatorCell.h

tickMarkValueAtIndex:
Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has an index
of 0).

- (double)tickMarkValueAtIndex:(NSInteger)index

1544 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 67

NSLevelIndicatorCell Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSLevelIndicatorCell.h

warningValue
Returns the receiver’s warning value.

- (double)warningValue

Availability
Available in Mac OS X v10.4 and later.

See Also
– setWarningValue: (page 1544)

Declared In
NSLevelIndicatorCell.h

Constants

NSLevelIndicatorStyle
The following constants specify the level indicator’s style and are used by
initWithLevelIndicatorStyle: (page 1539), levelIndicatorStyle (page 1539), and
setLevelIndicatorStyle: (page 1542).

enum {
 NSRelevancyLevelIndicatorStyle,
 NSContinuousCapacityLevelIndicatorStyle,
 NSDiscreteCapacityLevelIndicatorStyle,
 NSRatingLevelIndicatorStyle
};
typedef NSUInteger NSLevelIndicatorStyle;

Constants
NSRelevancyLevelIndicatorStyle

A style similar to the rank column displayed when searching in Mail.app.

Available in Mac OS X v10.4 and later.

Declared in NSLevelIndicatorCell.h.

NSRatingLevelIndicatorStyle
A style similar to the star ranking displays provided in iTunes and iPhoto.

Available in Mac OS X v10.4 and later.

Declared in NSLevelIndicatorCell.h.

Constants 1545
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 67

NSLevelIndicatorCell Class Reference

NSDiscreteCapacityLevelIndicatorStyle
A style similar to audio level indicators in iTunes.

Available in Mac OS X v10.4 and later.

Declared in NSLevelIndicatorCell.h.

NSContinuousCapacityLevelIndicatorStyle
A style that is often used to indicate conditions such as how much data is on a hard disk.

Available in Mac OS X v10.4 and later.

Declared in NSLevelIndicatorCell.h.

1546 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 67

NSLevelIndicatorCell Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSMatrix.h

Companion guide Matrix Programming Guide

Related sample code ButtonMadness
DatePicker
EnhancedDataBurn
Quartz Composer WWDC 2005 TextEdit
Sketch-112

Overview

NSMatrix is a class used for creating groups of NSCell objects that work together in various ways.

The cells in an NSMatrix object are numbered by row and column, each starting with 0; for example, the
top left NSCell would be at (0, 0), and the NSCell that’s second down and third across would be at (1, 2).
The NSMatrix class has the notion of a single selected cell, which is the cell that was most recently clicked
or that was so designated by a selectCellAtRow:column: (page 1578) or selectCellWithTag: (page
1579) message. The selected cell is the cell chosen for action messages except for performClick: (page 573)
(NSCell), which is assigned to the key cell. (The key cell is generally identical to the selected cell, but can be
given click focus while leaving the selected cell unchanged.) If the user has selected multiple cells, the selected
cell is the one lowest and furthest to the right in the matrix of cells.

Overview 1547
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Tasks

Initializing an NSMatrix Object

– initWithFrame: (page 1565)
Initializes a newly allocated matrix with the specified frame.

– initWithFrame:mode:cellClass:numberOfRows:numberOfColumns: (page 1566)
Initializes and returns a newly allocated matrix of the specified size using cells of the given class.

– initWithFrame:mode:prototype:numberOfRows:numberOfColumns: (page 1566)
Initializes and returns a newly allocated matrix of the specified size using the given cell as a prototype.

Configuring the Matrix Object

– setMode: (page 1589)
Sets the selection mode of the receiver.

– mode (page 1572)
Returns the selection mode of the matrix.

– setAllowsEmptySelection: (page 1583)
Sets whether a radio-mode matrix allows an empty selection.

– allowsEmptySelection (page 1556)
Returns a Boolean value indicating whether a radio-mode matrix supports an empty selection.

– setSelectionByRect: (page 1590)
Sets whether the user can select a rectangle of cells in the receiver by dragging the cursor.

– isSelectionByRect (page 1570)
Returns a Boolean value indicating whether the user can drag the cursor to select a rectangle of cells
in the matrix.

Managing the Cell Class

– setCellClass: (page 1585)
Configures the receiver to use instances of the specified class when creating new cells.

– cellClass (page 1558)
Returns the class that the matrix uses to create new cells.

– setPrototype: (page 1589)
Sets the prototype cell that’s copied whenever the matrix creates a new cell.

– prototype (page 1574)
Returns the prototype cell that’s copied when a new cell is created.,

Laying Out the Cells of the Matrix

– addColumn (page 1554)
Adds a new column of cells to the right of the last column.

1548 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

– addColumnWithCells: (page 1554)
Adds a new column of cells to the right of the last column, using the given cells.

– addRow (page 1555)
Adds a new row of cells below the last row.

– addRowWithCells: (page 1556)
Adds a new row of cells below the last row, using the specified cells.

– cellFrameAtRow:column: (page 1559)
Returns the frame rectangle of the cell that would be drawn at the specified location.

– cellSize (page 1559)
Returns the size of each cell in the matrix.

– getNumberOfRows:columns: (page 1563)
Obtains the number of rows and columns in the receiver.

– insertColumn: (page 1567)
Inserts a new column of cells at the specified location. .

– insertColumn:withCells: (page 1568)
Inserts a new column of cells before the specified column, using the given cells.

– insertRow: (page 1568)
Inserts a new row of cells before the specified row.

– insertRow:withCells: (page 1569)
Inserts a new row of cells before the specified row, using the given cells.

– intercellSpacing (page 1569)
Returns the spacing between cells in the matrix.

– makeCellAtRow:column: (page 1571)
Creates a new cell at the location specified by the given row and column in the receiver.

– numberOfColumns (page 1573)
Returns the number of columns in the receiver.

– numberOfRows (page 1573)
Returns the number of rows in the receiver.

– putCell:atRow:column: (page 1575)
Replaces the cell at the specified row and column with the new cell.

– removeColumn: (page 1575)
Removes the specified column at from the receiver.

– removeRow: (page 1576)
Removes the specified row from the receiver.

– renewRows:columns: (page 1576)
Changes the number of rows and columns in the receiver.

– setCellSize: (page 1586)
Sets the width and height of each of the cells in the matrix.

– setIntercellSpacing: (page 1588)
Sets the spacing between cells in the matrix.

– sortUsingFunction:context: (page 1594)
Sorts the receiver’s cells in ascending order as defined by the specified comparison function.

– sortUsingSelector: (page 1594)
Sorts the receiver’s cells in ascending order as defined by the comparison method.

Tasks 1549
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Finding Matrix Coordinates

– getRow:column:forPoint: (page 1564)
Indicates whether the specified point lies within one of the cells of the matrix and returns the location
of the cell within which the point lies.

– getRow:column:ofCell: (page 1564)
Searches the receiver for the specified cell and returns the row and column of the cell

Managing Attributes of Individual Cells

– setState:atRow:column: (page 1591)
Sets the state of the cell at specified location.

– setToolTip:forCell: (page 1593)
Sets the tooltip for the cell.

– toolTipForCell: (page 1598)
Returns the tooltip for the specified cell.

Selecting and Deselecting Cells

– selectCellAtRow:column: (page 1578)
Selects the cell at the specified row and column within the receiver.

– selectCellWithTag: (page 1579)
Selects the last cell with the given tag.

– selectAll: (page 1578)
Selects and highlights all cells in the receiver.

– setKeyCell: (page 1589)
Sets the cell that will be clicked when the user presses the Space bar.

– keyCell (page 1571)
Returns the cell that will be clicked when the user presses the Space bar.

– setSelectionFrom:to:anchor:highlight: (page 1591)
Programmatically selects a range of cells.

– deselectAllCells (page 1561)
Deselects all cells in the receiver and, if necessary, redisplays the receiver.

– deselectSelectedCell (page 1561)
Deselects the selected cell or cells.

Finding Cells

– selectedCell (page 1579)
Returns the most recently selected cell.

– selectedCells (page 1580)
Returns the receiver's selected and highlighted cells.

1550 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

– selectedColumn (page 1580)
Returns the column of the selected cell.

– selectedRow (page 1580)
Returns the row of the selected cell.

– cellAtRow:column: (page 1557)
Returns the cell at the specified row and column.

– cellWithTag: (page 1560)
Searches the receiver and returns the last cell matching the specified tag.

– cells (page 1559)
Returns the cells of the matrix.

Modifying Graphics Attributes

– backgroundColor (page 1557)
Returns the background color of the matrix.

– cellBackgroundColor (page 1558)
Returns the background color of the matrix's cells.

– drawsBackground (page 1563)
Returns a Boolean value indicating whether the matrix draws its background.

– drawsCellBackground (page 1563)
Returns whether the matrix draws the background within each of its cells.

– setBackgroundColor: (page 1584)
Sets the background color for the receiver and redraws the receiver.

– setCellBackgroundColor: (page 1585)
Sets the background color for the cells in the receiver

– setDrawsBackground: (page 1587)
Sets whether the receiver draws its background.

– setDrawsCellBackground: (page 1588)
Sets whether the receiver draws the background within each of its cells.

Editing Text in Cells

– selectText: (page 1581)
Selects text in the currently selected cell or in the key cell.

– selectTextAtRow:column: (page 1581)
Selects the text in the cell at the specified location and returns the cell.

– textShouldBeginEditing: (page 1597)
Requests permission to begin editing text.

– textDidBeginEditing: (page 1595)
Invoked when there’s a change in the text after the receiver gains first responder status.

– textDidChange: (page 1596)
Invoked when a key-down event or paste operation occurs that changes the receiver’s contents.

Tasks 1551
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

– textShouldEndEditing: (page 1597)
Requests permission to end editing.

– textDidEndEditing: (page 1596)
Invoked when text editing ends.

Setting Tab Key Behavior

– setTabKeyTraversesCells: (page 1592)
Sets whether pressing the Tab key advances the key cell to the next selectable cell.

– tabKeyTraversesCells (page 1595)
Returns a Boolean value indicating whether pressing the Tab key advances the key cell to the next
selectable cell.

Managing the Delegate

– delegate (page 1560)
Returns the delegate for messages from the field editor.

– setDelegate: (page 1586)
Sets the delegate for messages from the field editor.

Resizing the Matrix and Its Cells

– setAutosizesCells: (page 1584)
Sets whether the cell sizes change when the receiver is resized.

– autosizesCells (page 1556)
Returns a Boolean value indicating whether the matrix automatically resizes it cells.

– setValidateSize: (page 1593)
Specifies whether the receiver's size information is validated.

– sizeToCells (page 1593)
Changes the width and the height of the receiver’s frame so it exactly contains the cells.

Scrolling Cells in the Matrix

– setAutoscroll: (page 1584)
Sets whether the receiver is automatically scrolled.

– isAutoscroll (page 1570)
Returns a Boolean value indicating whether the receiver is automatically scrolled.

– setScrollable: (page 1590)
Specifies whether the cells in the matrix are scrollable.

– scrollCellToVisibleAtRow:column: (page 1577)
Scrolls the receiver so the specified cell is visible.

1552 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Displaying and Highlighting Cells

– drawCellAtRow:column: (page 1562)
Displays the cell at the specified row and column.

– highlightCell:atRow:column: (page 1565)
Highlights or unhighlights the cell at the specified row and column location.

Managing and Sending Action Messages

– sendAction (page 1582)
If the selected cell has both an action and a target, sends its action to its target.

– sendAction:to:forAllCells: (page 1582)
Iterates through the cells in the receiver, sending the specified selector to an object for each cell.

– setDoubleAction: (page 1587)
Sets the action sent to the target of the receiver when the user double-clicks a cell.

– doubleAction (page 1562)
Returns the matrix's double-click action method.

– sendDoubleAction (page 1583)
Sends the double-click action message to the target of the receiver.

Handling Event and Action Messages

– acceptsFirstMouse: (page 1553)
Returns a Boolean value indicating whether the receiver accepts the first mouse.

– mouseDown: (page 1572)
Responds to a mouse-down event.

– mouseDownFlags (page 1573)
Returns the flags in effect at the mouse-down event that started the current tracking session.

– performKeyEquivalent: (page 1574)
Looks for a cell that has the given key equivalent and, if found, makes that cell respond as if clicked.

Managing the Cursor

– resetCursorRects (page 1577)
Resets cursor rectangles so the cursor becomes an I-beam over text cells.

Instance Methods

acceptsFirstMouse:
Returns a Boolean value indicating whether the receiver accepts the first mouse.

Instance Methods 1553
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

- (BOOL)acceptsFirstMouse:(NSEvent *)theEvent

Parameters
theEvent

This parameter is ignored.

Return Value
NO if the selection mode of the receiver is NSListModeMatrix, YES if the receiver is in any other selection
mode. The receiver does not accept first mouse in NSListModeMatrix to prevent the loss of multiple
selections.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mode (page 1572)

Declared In
NSMatrix.h

addColumn
Adds a new column of cells to the right of the last column.

- (void)addColumn

Discussion
This method raises an NSRangeException if there are 0 rows or 0 columns. This method creates new cells
as needed with makeCellAtRow:column: (page 1571). Use renewRows:columns: (page 1576) to add new
cells to an empty matrix.

If the number of rows or columns in the receiver has been changed with renewRows:columns: (page 1576),
new cells are created only if they are needed. This fact allows you to grow and shrink an NSMatrix without
repeatedly creating and freeing the cells.

This method redraws the receiver. Your code may need to send sizeToCells (page 1593) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellClass (page 1558)
– insertColumn: (page 1567)
– prototype (page 1574)
– addRow (page 1555)

Declared In
NSMatrix.h

addColumnWithCells:
Adds a new column of cells to the right of the last column, using the given cells.

1554 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

- (void)addColumnWithCells:(NSArray *)newCells

Parameters
newCells

An array of objects to use when filling the new column starting with the object at index 0. Each object
in should be an instance of NSCell or one of its subclasses (usually NSActionCell). The array should
have a sufficient number of cells to fill the entire column. Extra cells are ignored, unless the matrix is
empty. In that case, a matrix is created with one column and enough rows for all the elements of
newCells.

Discussion
This method redraws the receiver. Your code may need to send sizeToCells (page 1593) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertColumn:withCells: (page 1568)
– addRowWithCells: (page 1556)

Declared In
NSMatrix.h

addRow
Adds a new row of cells below the last row.

- (void)addRow

Discussion
New cells are created as needed with makeCellAtRow:column: (page 1571). This method raises an
NSRangeException if there are 0 rows or 0 columns. Use renewRows:columns: (page 1576) to add new
cells to an empty matrix.

If the number of rows or columns in the receiver has been changed with renewRows:columns: (page 1576),
then new cells are created only if they are needed. This fact allows you to grow and shrink an NSMatrix
without repeatedly creating and freeing the cells.

This method redraws the receiver. Your code may need to send sizeToCells (page 1593) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellClass (page 1558)
– insertRow: (page 1568)
– prototype (page 1574)
– addColumn (page 1554)

Declared In
NSMatrix.h

Instance Methods 1555
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

addRowWithCells:
Adds a new row of cells below the last row, using the specified cells.

- (void)addRowWithCells:(NSArray *)newCells

Parameters
newCells

An array of objects to use to fill the new row, starting with the object at index 0. Each object should
be an instance of NSCell or one of its subclasses (usually NSActionCell). The array should contain
a sufficient number of cells to fill the entire row. Extra cells are ignored, unless the matrix is empty.
In that case, a matrix is created with one row and enough columns for all the elements of newCells.

Discussion
This method redraws the receiver. Your code may need to send sizeToCells (page 1593) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertRow:withCells: (page 1569)
– addColumnWithCells: (page 1554)

Declared In
NSMatrix.h

allowsEmptySelection
Returns a Boolean value indicating whether a radio-mode matrix supports an empty selection.

- (BOOL)allowsEmptySelection

Return Value
YES if it is possible to have no cells selected in a radio-mode matrix; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mode (page 1572)
– setAllowsEmptySelection: (page 1583)

Declared In
NSMatrix.h

autosizesCells
Returns a Boolean value indicating whether the matrix automatically resizes it cells.

- (BOOL)autosizesCells

1556 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Return Value
YES if cells are resized proportionally to the receiver when its size changes (and intercell spacing is kept
constant). NO if the cell size and intercell spacing remain constant.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutosizesCells: (page 1584)

Declared In
NSMatrix.h

backgroundColor
Returns the background color of the matrix.

- (NSColor *)backgroundColor

Return Value
The color used to draw the background of the receiver (the space between the cells).

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellBackgroundColor (page 1558)
– drawsBackground (page 1563)
– setBackgroundColor: (page 1584)

Declared In
NSMatrix.h

cellAtRow:column:
Returns the cell at the specified row and column.

- (id)cellAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The number of the row containing the cell to return.

column
The number of the column containing the cell to return.

Return Value
The NSCell object at the specified row and column location specified, or nil if either row or column is
outside the bounds of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1557
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

See Also
– getRow:column:ofCell: (page 1564)

Related Sample Code
NewsReader
Quartz Composer WWDC 2005 TextEdit

Declared In
NSMatrix.h

cellBackgroundColor
Returns the background color of the matrix's cells.

- (NSColor *)cellBackgroundColor

Return Value
The color used to fill the background of the receiver's cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 1557)
– drawsCellBackground (page 1563)
– setCellBackgroundColor: (page 1585)

Declared In
NSMatrix.h

cellClass
Returns the class that the matrix uses to create new cells.

- (Class)cellClass

Return Value
The subclass of NSCell that the receiver uses when creating new (empty) cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– prototype (page 1574)
– makeCellAtRow:column: (page 1571)
– setCellClass: (page 1585)

Declared In
NSMatrix.h

1558 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

cellFrameAtRow:column:
Returns the frame rectangle of the cell that would be drawn at the specified location.

- (NSRect)cellFrameAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row of the cell.

column
The column of the cell.

Return Value
The frame rectangle of the cell (whether or not the specified cell actually exists).

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellSize (page 1559)

Declared In
NSMatrix.h

cells
Returns the cells of the matrix.

- (NSArray *)cells

Return Value
An array containing the cells of the receiver.

Discussion
The cells in the array are row-ordered; that is, the first row of cells appears first in the array, followed by the
second row, and so forth.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellAtRow:column: (page 1557)

Related Sample Code
SourceView

Declared In
NSMatrix.h

cellSize
Returns the size of each cell in the matrix.

- (NSSize)cellSize

Instance Methods 1559
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Return Value
The width and height of each cell in the receiver (all cells in an NSMatrix are the same size).

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellFrameAtRow:column: (page 1559)
– intercellSpacing (page 1569)
– setCellSize: (page 1586)

Declared In
NSMatrix.h

cellWithTag:
Searches the receiver and returns the last cell matching the specified tag.

- (id)cellWithTag:(NSInteger)anInt

Parameters
anInt

The tag of the cell to return.

Return Value
The last (when viewing the matrix as a row-ordered array) NSCell object that has a tag matching anInt, or
nil if no such cell exists

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectCellWithTag: (page 1579)
– setTag: (page 69) (NSActionCell)

Related Sample Code
EnhancedDataBurn

Declared In
NSMatrix.h

delegate
Returns the delegate for messages from the field editor.

- (id < NSMatrixDelegate >)delegate

Return Value
The delegate.

Availability
Available in Mac OS X v10.0 and later.

1560 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

See Also
– textShouldBeginEditing: (page 1597)
– textShouldEndEditing: (page 1597)
– setDelegate: (page 1586)

Declared In
NSMatrix.h

deselectAllCells
Deselects all cells in the receiver and, if necessary, redisplays the receiver.

- (void)deselectAllCells

Discussion
If the selection mode is NSRadioModeMatrix and empty selection is not allowed, this method does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 1556)
– mode (page 1572)
– selectAll: (page 1578)

Declared In
NSMatrix.h

deselectSelectedCell
Deselects the selected cell or cells.

- (void)deselectSelectedCell

Discussion
If the selection mode is NSRadioModeMatrix and empty selection is not allowed, or if nothing is currently
selected, this method does nothing. This method doesn’t redisplay the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 1556)
– mode (page 1572)
– selectCellAtRow:column: (page 1578)

Declared In
NSMatrix.h

Instance Methods 1561
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

doubleAction
Returns the matrix's double-click action method.

- (SEL)doubleAction

Return Value
The action method sent by the receiver to its target when the user double-clicks an entry or NULL if there’s
no double-click action.

Discussion
The double-click action of an NSMatrix is sent after the appropriate single-click action (for the NSCell
clicked or for the NSMatrix if the NSCell doesn’t have its own action). If there is no double-click action and
the NSMatrix doesn’t ignore multiple clicks, the single-click action is sent twice.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 814) (NSControl)
– target (page 844) (NSControl)
– ignoresMultiClick (page 820) (NSControl)
– sendDoubleAction (page 1583)
– setDoubleAction: (page 1587)

Declared In
NSMatrix.h

drawCellAtRow:column:
Displays the cell at the specified row and column.

- (void)drawCellAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row containing the cell to draw.

column
The column containing the cell to draw.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawCell: (page 818) (NSControl)
– drawCellInside: (page 818) (NSControl)

Declared In
NSMatrix.h

1562 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

drawsBackground
Returns a Boolean value indicating whether the matrix draws its background.

- (BOOL)drawsBackground

Return Value
YES if the receiver draws its background (the space between the cells); otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 1557)
– drawsCellBackground (page 1563)
– setDrawsBackground: (page 1587)

Declared In
NSMatrix.h

drawsCellBackground
Returns whether the matrix draws the background within each of its cells.

- (BOOL)drawsCellBackground

Return Value
YES if the receiver draws the cell background; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellBackgroundColor (page 1558)
– drawsBackground (page 1563)
– setDrawsCellBackground: (page 1588)

Declared In
NSMatrix.h

getNumberOfRows:columns:
Obtains the number of rows and columns in the receiver.

- (void)getNumberOfRows:(NSInteger *)rowCount columns:(NSInteger *)columnCount

Parameters
rowCount

On return, the number of rows in the matrix.

columnCount
On return, the number of columns in the matrix.

Instance Methods 1563
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfColumns (page 1573)
– numberOfRows (page 1573)

Declared In
NSMatrix.h

getRow:column:forPoint:
Indicates whether the specified point lies within one of the cells of the matrix and returns the location of the
cell within which the point lies.

- (BOOL)getRow:(NSInteger *)row column:(NSInteger *)column forPoint:(NSPoint)aPoint

Parameters
row

On return, the row of the cell containing the specified point.

column
On return, the column of the cell containing the specified point.

aPoint
The point to locate; this point should be in the coordinate system of the receiver.

Return Value
YES if the point lies within one of the cells in the receiver; NO if the point falls outside the bounds of the
receiver or lies within an intercell spacing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getRow:column:ofCell: (page 1564)

Declared In
NSMatrix.h

getRow:column:ofCell:
Searches the receiver for the specified cell and returns the row and column of the cell

- (BOOL)getRow:(NSInteger *)row column:(NSInteger *)column ofCell:(NSCell *)aCell

Parameters
row

On return, the row in which the cell is located.

column
On return, the column in which the cell is located.

aCell
The cell to locate within the matrix.

1564 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Return Value
YES if the cell is one of the cells in the receiver, NO otherwise.

Discussion
.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getRow:column:forPoint: (page 1564)

Declared In
NSMatrix.h

highlightCell:atRow:column:
Highlights or unhighlights the cell at the specified row and column location.

- (void)highlightCell:(BOOL)flag atRow:(NSInteger)row column:(NSInteger)column

Parameters
flag

YES to highlight the cell; NO to unhighlight the cell.

row
The row containing the cell.

column
The column containing the cell.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

initWithFrame:
Initializes a newly allocated matrix with the specified frame.

- (id)initWithFrame:(NSRect)frameRect

Parameters
frameRect

The frame with which to initialize the matrix.

Return Value
The NSMatrix, initialized with default parameters. The new NSMatrix contains no rows or columns. The
default mode is NSRadioModeMatrix. The default cell class is NSActionCell.

Discussion
.

Instance Methods 1565
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:
Initializes and returns a newly allocated matrix of the specified size using cells of the given class.

- (id)initWithFrame:(NSRect)frameRect mode:(NSMatrixMode)aMode
cellClass:(Class)classId numberOfRows:(NSInteger)numRows
numberOfColumns:(NSInteger)numColumns

Parameters
frameRect

The matrix's frame.

aMode
The tracking mode for the matrix; this can be one of the modes described in NSMatrixMode (page
1598).

classId
The class to use for any cells that the matrix creates and uses. This can be obtained by sending a
class message to the desired subclass of NSCell.

numRows
The number of rows in the matrix.

numColumns
The number of columns in the matrix.

Return Value
The initialized instance of NSMatrix.

Discussion
This method is the designated initializer for matrices that add cells by creating instances of an NSCell
subclass.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

initWithFrame:mode:prototype:numberOfRows:numberOfColumns:
Initializes and returns a newly allocated matrix of the specified size using the given cell as a prototype.

- (id)initWithFrame:(NSRect)frameRect mode:(NSMatrixMode)aMode prototype:(NSCell
*)aCell numberOfRows:(NSInteger)numRows numberOfColumns:(NSInteger)numColumns

Parameters
frameRect

The matrix's frame.

1566 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

aMode
The tracking mode for the matrix; this can be one of the modes described in NSMatrixMode (page
1598).

aCell
An instance of a subclass of NSCell, which the new matrix copies when it creates new cells.

numRows
The number of rows in the matrix.

numColumns
The number of columns in the matrix.

Discussion
This method is the designated initializer for matrices that add cells by copying an instance of an NSCell
subclass.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ButtonMadness

Declared In
NSMatrix.h

insertColumn:
Inserts a new column of cells at the specified location. .

- (void)insertColumn:(NSInteger)column

Parameters
column

The number of the column before which the new column is inserted. If column is greater than the
number of columns in the receiver, enough columns are created to expand the receiver to be column
columns wide.

Discussion
New cells are created if needed with makeCellAtRow:column: (page 1571). This method redraws the receiver.
Your code may need to send sizeToCells (page 1593) after sending this method to resize the receiver to fit
the newly added cells.

If the number of rows or columns in the receiver has been changed with renewRows:columns: (page 1576),
new cells are created only if they’re needed. This fact allows you to grow and shrink an NSMatrix without
repeatedly creating and freeing the cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addColumn (page 1554)
– insertRow: (page 1568)

Declared In
NSMatrix.h

Instance Methods 1567
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

insertColumn:withCells:
Inserts a new column of cells before the specified column, using the given cells.

- (void)insertColumn:(NSInteger)column withCells:(NSArray *)newCells

Parameters
column

The column at which to insert the new cells.

newCells
An array of objects to use to fill the new column, starting with the object at index 0. Each object
should be an instance of NSCell or one of its subclasses (usually NSActionCell).

Discussion
If column is greater than the number of columns in the receiver, enough columns are created to expand the
receiver to be column columns wide. newCells should either be empty or contain a sufficient number of
cells to fill each new column. If newCells is nil or an array with no elements, the call is equivalent to calling
insertColumn: (page 1567). Extra cells are ignored, unless the matrix is empty. In that case, a matrix is created
with one column and enough rows for all the elements of newCells.

This method redraws the receiver. Your code may need to send sizeToCells (page 1593) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addColumnWithCells: (page 1554)
– insertRow:withCells: (page 1569)

Declared In
NSMatrix.h

insertRow:
Inserts a new row of cells before the specified row.

- (void)insertRow:(NSInteger)row

Parameters
row

The location at which to insert the new row. If this is greater than the number of rows in the receiver,
enough rows are created to expand the receiver to be row rows high.

Discussion
New cells are created if needed with makeCellAtRow:column: (page 1571). This method redraws the receiver.
Your code may need to send sizeToCells (page 1593) after sending this method to resize the receiver to fit
the newly added cells.

If the number of rows or columns in the receiver has been changed with renewRows:columns: (page 1576),
then new cells are created only if they’re needed. This fact allows you to grow and shrink an NSMatrix
without repeatedly creating and freeing the cells.

1568 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– addRow (page 1555)
– insertColumn: (page 1567)

Declared In
NSMatrix.h

insertRow:withCells:
Inserts a new row of cells before the specified row, using the given cells.

- (void)insertRow:(NSInteger)row withCells:(NSArray *)newCells

Parameters
row

The location at which to insert the new row.

newCells
An array of objects to use when filling the new row, starting with the object at index 0. Each object
in newCells should be an instance of NSCell or one of its subclasses (usually NSActionCell).

Discussion
If row is greater than the number of rows in the receiver, enough rows are created to expand the receiver
to be row rows high. newCells should either be empty or contain a sufficient number of cells to fill each
new row. If newCells is nil or an array with no elements, the call is equivalent to calling insertRow: (page
1568). Extra cells are ignored, unless the matrix is empty. In that case, a matrix is created with one row and
enough columns for all the elements of newCells.

This method redraws the receiver. Your code may need to send sizeToCells (page 1593) after sending this
method to resize the receiver to fit the newly added cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addRowWithCells: (page 1556)
– insertColumn:withCells: (page 1568)

Declared In
NSMatrix.h

intercellSpacing
Returns the spacing between cells in the matrix.

- (NSSize)intercellSpacing

Return Value
The vertical and horizontal spacing between cells in the receiver.

Instance Methods 1569
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellSize (page 1559)
– setIntercellSpacing: (page 1588)

Declared In
NSMatrix.h

isAutoscroll
Returns a Boolean value indicating whether the receiver is automatically scrolled.

- (BOOL)isAutoscroll

Return Value
YES if the receiver will be automatically scrolled whenever the cursor is dragged outside the receiver after a
mouse-down event within its bounds; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollCellToVisibleAtRow:column: (page 1577)
– setScrollable: (page 1590)

Declared In
NSMatrix.h

isSelectionByRect
Returns a Boolean value indicating whether the user can drag the cursor to select a rectangle of cells in the
matrix.

- (BOOL)isSelectionByRect

Return Value
YES if the user can select a rectangle of cells in the receiver by dragging the cursor, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectionFrom:to:anchor:highlight: (page 1591)

Declared In
NSMatrix.h

1570 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

keyCell
Returns the cell that will be clicked when the user presses the Space bar.

- (id)keyCell

Return Value
The cell that will be clicked when the user presses the Space bar.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tabKeyTraversesCells (page 1595)
– setKeyCell: (page 1589)

Declared In
NSMatrix.h

makeCellAtRow:column:
Creates a new cell at the location specified by the given row and column in the receiver.

- (NSCell *)makeCellAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row in which to create the new cell.

column
The column in which to create the new cell.

Return Value
The newly created cell.

Discussion
If the receiver has a prototype cell, it’s copied to create the new cell. If not, and if the receiver has a cell class
set, it allocates and initializes (with init) an instance of that class. If the receiver hasn’t had either a prototype
cell or a cell class set, makeCellAtRow:column: creates an NSActionCell.

Your code should never invoke this method directly; it’s used by addRow (page 1555) and other methods when
a cell must be created. It may be overridden to provide more specific initialization of cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addColumn (page 1554)
– addRow (page 1555)
– insertColumn: (page 1567)
– insertRow: (page 1568)
– setCellClass: (page 1585)
– setPrototype: (page 1589)

Instance Methods 1571
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Declared In
NSMatrix.h

mode
Returns the selection mode of the matrix.

- (NSMatrixMode)mode

Return Value
The selection mode of the receiver. Possible return values are defined in NSMatrixMode (page 1598).

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFrame:mode:cellClass:numberOfRows:numberOfColumns: (page 1566)
– initWithFrame:mode:prototype:numberOfRows:numberOfColumns: (page 1566)
– setMode: (page 1589)

Declared In
NSMatrix.h

mouseDown:
Responds to a mouse-down event.

- (void)mouseDown:(NSEvent *)theEvent

Parameters
theEvent

The mouse-down event.

Discussion
A mouse-down event in a text cell initiates editing mode. A double click in any cell type except a text cell
sends the double-click action of the receiver (if there is one) in addition to the single-click action.

Your code should never invoke this method, but you may override it to implement different mouse tracking
than NSMatrix does. The response of the receiver depends on its selection mode, as explained in the class
description.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendAction (page 1582)
– sendDoubleAction (page 1583)

Declared In
NSMatrix.h

1572 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

mouseDownFlags
Returns the flags in effect at the mouse-down event that started the current tracking session.

- (NSInteger)mouseDownFlags

Return Value
The flags in effect when the mouse-down event is generated.

Discussion
TheNSMatrixmouseDown: (page 1572) method obtains these flags by sending amodifierFlags (page 1082)
message to the event passed into mouseDown: (page 1572). Use this method if you want to access these flags.
This method is valid only during tracking; it isn’t useful if the target of the receiver initiates another tracking
loop as part of its action method (as a cell that pops up a pop-up list does, for example).

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendActionOn: (page 827) (NSCell)

Declared In
NSMatrix.h

numberOfColumns
Returns the number of columns in the receiver.

- (NSInteger)numberOfColumns

Return Value
The number of columns in the matrix.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getNumberOfRows:columns: (page 1563)

Declared In
NSMatrix.h

numberOfRows
Returns the number of rows in the receiver.

- (NSInteger)numberOfRows

Return Value
The number of rows in the receiver.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1573
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

See Also
– getNumberOfRows:columns: (page 1563)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSMatrix.h

performKeyEquivalent:
Looks for a cell that has the given key equivalent and, if found, makes that cell respond as if clicked.

- (BOOL)performKeyEquivalent:(NSEvent *)theEvent

Parameters
theEvent

The event containing the character for which to find a key equivalent.

Return Value
YES if a cell in the receiver responds to the key equivalent in theEvent, NO if no cell responds.

Discussion
If there’s a cell in the receiver that has a key equivalent equal to the character in
[theEventcharactersIgnoringModifiers (page 1074)] (taking into account any key modifier flags) and
that cell is enabled, that cell is made to react as if the user had clicked it: by highlighting, changing its state
as appropriate, sending its action if it has one, and then unhighlighting.

Your code should never send this message—it is sent when the receiver or one of its superviews is the first
responder and the user presses a key. You may want to override this method to change the way key equivalents
are performed or displayed or to disable them in your subclass.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

prototype
Returns the prototype cell that’s copied when a new cell is created.,

- (id)prototype

Return Value
The cell that the matrix copies whenever it creates a new cell, or nil if there is none.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFrame:mode:prototype:numberOfRows:numberOfColumns: (page 1566)
– makeCellAtRow:column: (page 1571)

1574 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

– setPrototype: (page 1589)

Declared In
NSMatrix.h

putCell:atRow:column:
Replaces the cell at the specified row and column with the new cell.

- (void)putCell:(NSCell *)newCell atRow:(NSInteger)row column:(NSInteger)column

Parameters
newCell

The cell to insert into the matrix.

row
The row in which to place the new cell.

column
The column in which to place the new cell.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

removeColumn:
Removes the specified column at from the receiver.

- (void)removeColumn:(NSInteger)column

Parameters
column

The column to remove.

Discussion
The column's cells are autoreleased. This method redraws the receiver. Your code should normally send
sizeToCells (page 1593) after invoking this method to resize the receiver so it fits the reduced cell count.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeRow: (page 1576)
– addColumn (page 1554)
– insertColumn: (page 1567)

Declared In
NSMatrix.h

Instance Methods 1575
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

removeRow:
Removes the specified row from the receiver.

- (void)removeRow:(NSInteger)row

Parameters
row

The row to remove.

Discussion
The row's cells are autoreleased. This method redraws the receiver. Your code should normally send
sizeToCells (page 1593) after invoking this method to resize the receiver so it fits the reduced cell count.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeColumn: (page 1575)
– addRow (page 1555)
– insertRow: (page 1568)

Declared In
NSMatrix.h

renewRows:columns:
Changes the number of rows and columns in the receiver.

- (void)renewRows:(NSInteger)newRows columns:(NSInteger)newCols

Parameters
newRows

The new number of rows in the matrix.

newCols
The new number of columns in the matrix.

Discussion
This method uses the same cells as before, creating new cells only if the new size is larger; it never frees cells.
It doesn’t redisplay the receiver. Your code should normally send sizeToCells (page 1593) after invoking
this method to resize the receiver so it fits the changed cell arrangement. This method deselects all cells in
the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addColumn (page 1554)
– addRow (page 1555)
– removeColumn: (page 1575)
– removeRow: (page 1576)

Related Sample Code
NewsReader

1576 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Declared In
NSMatrix.h

resetCursorRects
Resets cursor rectangles so the cursor becomes an I-beam over text cells.

- (void)resetCursorRects

Discussion
This method resets the cursor rectangles by sending resetCursorRect:inView: (page 574) to each cell
in the receiver. Any cell that has a cursor rectangle to set up should then send
addCursorRect:cursor: (page 3139) back to the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– resetCursorRect:inView: (page 574) (NSCell)
– addCursorRect:cursor: (page 3139) (NSView)

Declared In
NSMatrix.h

scrollCellToVisibleAtRow:column:
Scrolls the receiver so the specified cell is visible.

- (void)scrollCellToVisibleAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row of the cell to make visible.

column
The column of the cell to make visible.

Discussion
This method scrolls if the receiver is in a scrolling view and row and column represent a valid cell within the
receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollRectToVisible: (page 3210) (NSView)

Declared In
NSMatrix.h

Instance Methods 1577
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

selectAll:
Selects and highlights all cells in the receiver.

- (void)selectAll:(id)sender

Parameters
sender

This argument is ignored.

Discussion
Editable text cells and disabled cells are not selected. The receiver is redisplayed.

If the selection mode is not NSListModeMatrix (page 1599), this method does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectCell: (page 825) (NSControl)

Declared In
NSMatrix.h

selectCellAtRow:column:
Selects the cell at the specified row and column within the receiver.

- (void)selectCellAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row of the cell to select.

column
The column of the cell to select.

Discussion
If the specified cell is an editable text cell, its text is selected. If either row or column is –1, then the current
selection is cleared (unless the receiver is an NSRadioModeMatrix and doesn’t allow empty selection). This
method redraws the affected cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 1556)
– mode (page 1572)
– selectCell: (page 825) (NSControl)

Related Sample Code
PDFKitLinker2
Sketch+Accessibility
Sketch-112

1578 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Declared In
NSMatrix.h

selectCellWithTag:
Selects the last cell with the given tag.

- (BOOL)selectCellWithTag:(NSInteger)anInt

Parameters
anInt

The tag of the cell to select.

Return Value
YES if the receiver contains a cell whose tag matches anInt, or NO if no such cell exists

Discussion
If the matrix has at least one cell whose tag is equal to anInt, the last cell (when viewing the matrix as a
row-ordered array) is selected. If the specified cell is an editable text cell, its text is selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellWithTag: (page 1560)
– selectCell: (page 825) (NSControl)

Related Sample Code
Quartz 2D Shadings
TipWrapper

Declared In
NSMatrix.h

selectedCell
Returns the most recently selected cell.

- (id)selectedCell

Return Value
The most recently selected cell or nil if no cell is selected. If more than one cell is selected, this method
returns the cell that is lowest and farthest to the right in the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

Instance Methods 1579
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

selectedCells
Returns the receiver's selected and highlighted cells.

- (NSArray *)selectedCells

Return Value
An array containing all of the receiver’s highlighted cells plus its selected cell.

Discussion
See the class description for a discussion of the selected cell.

As an alternative to using setSelectionFrom:to:anchor:highlight: (page 1591) for programmatically
making discontiguous selections of cells in a matrix, you could first set the single selected cell and then set
subsequent cells to be highlighted; afterwards you can call selectedCells (page 1580) to obtain the selection
of cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHighlighted: (page 588) (NSCell)
– selectedCell (page 1579)

Declared In
NSMatrix.h

selectedColumn
Returns the column of the selected cell.

- (NSInteger)selectedColumn

Return Value
The column number of the selected cell or –1 if no cells are selected. If cells in multiple columns are selected,
this method returns the number of the last (rightmost) column containing a selected cell.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer Live DV

Declared In
NSMatrix.h

selectedRow
Returns the row of the selected cell.

- (NSInteger)selectedRow

1580 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Return Value
the row number of the selected cell, or –1 if no cells are selected. If cells in multiple rows are selected, this
method returns the number of the last row containing a selected cell.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Sketch+Accessibility
Sketch-112

Declared In
NSMatrix.h

selectText:
Selects text in the currently selected cell or in the key cell.

- (void)selectText:(id)sender

Discussion
If the currently selected cell is editable and enabled, its text is selected. Otherwise, the key cell is selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyCell (page 1571)
– selectText: (page 2801) (NSTextField)

Declared In
NSMatrix.h

selectTextAtRow:column:
Selects the text in the cell at the specified location and returns the cell.

- (id)selectTextAtRow:(NSInteger)row column:(NSInteger)column

Parameters
row

The row containing the text to select.

column
The column containing the text to select.

Return Value
If it is both editable and selectable, the cell at the specified row and column. If the cell at the specified location,
is either not editable or not selectable, this method does nothing and returns nil. If row and column indicate
a cell that is outside the receiver, this method does nothing and returns the receiver.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1581
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

See Also
– selectText: (page 1581)

Declared In
NSMatrix.h

sendAction
If the selected cell has both an action and a target, sends its action to its target.

- (BOOL)sendAction

Return Value
YES if an action was successfully sent to a target. If the selected cell is disabled, this method does nothing
and returns NO.

Discussion
If the cell has an action but no target, its action is sent to the target of the receiver. If the cell doesn’t have
an action, or if there is no selected cell, the receiver sends its own action to its target.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendDoubleAction (page 1583)
– action (page 544) (NSCell)
– target (page 608) (NSCell)

Declared In
NSMatrix.h

sendAction:to:forAllCells:
Iterates through the cells in the receiver, sending the specified selector to an object for each cell.

- (void)sendAction:(SEL)aSelector to:(id)anObject forAllCells:(BOOL)flag

Parameters
aSelector

The selector to send to the object for each cell. This must represent a method that takes a single
argument: the id of the current cell in the iteration. aSelector’s return value must be a BOOL. If
aSelector returns NO for any cell, sendAction:to:forAllCells: terminates immediately, without
sending the message for the remaining cells. If it returns YES, sendAction:to:forAllCells:
proceeds to the next cell.

anObject
The object that is sent the selector for each cell in the matrix.

flag
YES if the method should iterate through all cells in the matrix; NO if it should iterate through just the
selected cells in the matrix.

1582 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Discussion
Iteration begins with the cell in the upper-left corner of the receiver, proceeding through the appropriate
entries in the first row, then on to the next.

This method is not invoked to send action messages to target objects in response to mouse-down events in
the receiver. Instead, you can invoke it if you want to have multiple cells in an NSMatrix interact with an
object. For example, you could use it to verify the titles in a list of items or to enable a series of radio buttons
based on their purpose in relation to anObject.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

sendDoubleAction
Sends the double-click action message to the target of the receiver.

- (void)sendDoubleAction

Discussion
If the receiver doesn't have a double-click action, the double-click action message of the selected cell (as
returned by selectedCell (page 1579)) is sent to the selected cell’s target. Finally, if the selected cell also
has no action, then the single-click action of the receiver is sent to the target of the receiver.

If the selected cell is disabled, this method does nothing.

Your code shouldn’t invoke this method; it’s sent in response to a double-click event in the NSMatrix.
Override it if you need to change the search order for an action to send.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendAction (page 1582)
– ignoresMultiClick (page 820) (NSControl)

Declared In
NSMatrix.h

setAllowsEmptySelection:
Sets whether a radio-mode matrix allows an empty selection.

- (void)setAllowsEmptySelection:(BOOL)flag

Parameters
flag

YES to make the receiver allow one or zero cells to be selected. NO if the receiver should allow one
and only one cell (not zero cells) to be selected. This setting has effect only in the NSRadioModeMatrix
selection mode.

Instance Methods 1583
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 1556)

Declared In
NSMatrix.h

setAutoscroll:
Sets whether the receiver is automatically scrolled.

- (void)setAutoscroll:(BOOL)flag

Parameters
flag

YES to indicate that the receiver, if it is in a scrolling view, should be automatically scrolled whenever
the cursor is dragged outside the receiver after a mouse-down event within the bounds of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

setAutosizesCells:
Sets whether the cell sizes change when the receiver is resized.

- (void)setAutosizesCells:(BOOL)flag

Parameters
flag

YES to specify that, whenever the receiver is resized, the sizes of the cells change in proportion,
keeping the intercell space constant; further, this method verifies that the cell sizes and intercell
spacing add up to the exact size of the receiver, adjusting the size of the cells and updating the
receiver if they don’t. If flag is NO, then the intercell spacing and cell size remain constant.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autosizesCells (page 1556)

Declared In
NSMatrix.h

setBackgroundColor:
Sets the background color for the receiver and redraws the receiver.

1584 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

- (void)setBackgroundColor:(NSColor *)aColor

Parameters
aColor

The background color used to fill the space between cells or the space behind any non-opaque cells.
The default background color is the color returned by the NSColor method controlColor (page
678).

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsBackground (page 1563)
– setCellBackgroundColor: (page 1585)
– backgroundColor (page 1557)

Declared In
NSMatrix.h

setCellBackgroundColor:
Sets the background color for the cells in the receiver

- (void)setCellBackgroundColor:(NSColor *)aColor

Parameters
aColor

The background color used to fill the space behind non-opaque cells. The default cell background
color is the color returned by the NSColor method controlColor (page 678)

Discussion
.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsCellBackground (page 1563)
– setBackgroundColor: (page 1584)
– cellBackgroundColor (page 1558)

Declared In
NSMatrix.h

setCellClass:
Configures the receiver to use instances of the specified class when creating new cells.

- (void)setCellClass:(Class)aClass

Instance Methods 1585
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Parameters
aClass

The class to use when creating new cells. This should be the id of a subclass of NSCell, which can
be obtained by sending the class message to either the NSCell subclass object or to an instance
of that subclass. The default cell class is that set with the class method setCellClass: (page 813),
or NSActionCell if no other default cell class has been specified.

Discussion
You need to use this method only with matrices initialized with initWithFrame: (page 1565), because the
other initializers allow you to specify an instance-specific cell class or cell prototype.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addColumn (page 1554)
– addRow (page 1555)
– insertColumn: (page 1567)
– insertRow: (page 1568)
– makeCellAtRow:column: (page 1571)
– setPrototype: (page 1589)
– cellClass (page 1558)

Declared In
NSMatrix.h

setCellSize:
Sets the width and height of each of the cells in the matrix.

- (void)setCellSize:(NSSize)aSize

Parameters
aSize

The new width and height of cells in the receiver.

Discussion
This method may change the size of the receiver. It does not redraw the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– calcSize (page 816) (NSControl)
– cellSize (page 1559)

Declared In
NSMatrix.h

setDelegate:
Sets the delegate for messages from the field editor.

1586 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

- (void)setDelegate:(id < NSMatrixDelegate >)anObject

Parameters
anObject

The delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textShouldBeginEditing: (page 1597)
– textShouldEndEditing: (page 1597)
– delegate (page 1560)

Declared In
NSMatrix.h

setDoubleAction:
Sets the action sent to the target of the receiver when the user double-clicks a cell.

- (void)setDoubleAction:(SEL)aSelector

Parameters
aSelector

The selector to make the double-click action of the receiver.

Discussion
A double-click action is always sent after the appropriate single-click action, which is the cell’s single-click
action, if it has one, or the receiver single-click action, otherwise. If aSelector is a non-NULL selector, this
method also sets the ignoresMultiClick flag to NO; otherwise, it leaves the flag unchanged.

If an NSMatrix has no double-click action set, then by default a double click is treated as a single click.

For the method to have any effect, the receiver’s action and target must be set to the class in which the
selector is declared. See Action Messages for additional information on action messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sendDoubleAction (page 1583)
– setAction: (page 828) (NSControl)
– setTarget: (page 838) (NSControl)
– doubleAction (page 1562)

Declared In
NSMatrix.h

setDrawsBackground:
Sets whether the receiver draws its background.

Instance Methods 1587
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

- (void)setDrawsBackground:(BOOL)flag

Parameters
flag

YES if the receiver should draw its background (the space between the cells); NO if it should not.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 1557)
– setDrawsCellBackground: (page 1588)
– drawsBackground (page 1563)

Declared In
NSMatrix.h

setDrawsCellBackground:
Sets whether the receiver draws the background within each of its cells.

- (void)setDrawsCellBackground:(BOOL)flag

Parameters
flag

YES if the receiver should draw the background in its cells; NO if it should not.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cellBackgroundColor (page 1558)
– setDrawsBackground: (page 1587)
– drawsCellBackground (page 1563)

Declared In
NSMatrix.h

setIntercellSpacing:
Sets the spacing between cells in the matrix.

- (void)setIntercellSpacing:(NSSize)aSize

Parameters
aSize

The vertical and horizontal spacing to use between cells in the receiver. By default, both values are
1.0 in the receiver’s coordinate system.

Availability
Available in Mac OS X v10.0 and later.

1588 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

See Also
– cellSize (page 1559)
– intercellSpacing (page 1569)

Declared In
NSMatrix.h

setKeyCell:
Sets the cell that will be clicked when the user presses the Space bar.

- (void)setKeyCell:(NSCell *)aCell

Parameters
aCell

The cell to set as the key cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTabKeyTraversesCells: (page 1592)
– keyCell (page 1571)

Declared In
NSMatrix.h

setMode:
Sets the selection mode of the receiver.

- (void)setMode:(NSMatrixMode)aMode

Parameters
aMode

The selection mode of the matrix. Possible values are listed in NSMatrixMode (page 1598).

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFrame:mode:cellClass:numberOfRows:numberOfColumns: (page 1566)
– initWithFrame:mode:prototype:numberOfRows:numberOfColumns: (page 1566)
– mode (page 1572)

Declared In
NSMatrix.h

setPrototype:
Sets the prototype cell that’s copied whenever the matrix creates a new cell.

Instance Methods 1589
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

- (void)setPrototype:(NSCell *)aCell

Parameters
aCell

The cell to copy when creating new cells.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFrame:mode:prototype:numberOfRows:numberOfColumns: (page 1566)
– makeCellAtRow:column: (page 1571)
– prototype (page 1574)

Declared In
NSMatrix.h

setScrollable:
Specifies whether the cells in the matrix are scrollable.

- (void)setScrollable:(BOOL)flag

Parameters
flag

YES to make all the cells in the receiver scrollable, so the text they contain scrolls to remain in view
if the user types past the edge of the cell. If flag is NO, all cells are made nonscrolling. The prototype
cell, if there is one, is also set accordingly

Availability
Available in Mac OS X v10.0 and later.

See Also
– prototype (page 1574)
– setScrollable: (page 594) (NSCell)

Declared In
NSMatrix.h

setSelectionByRect:
Sets whether the user can select a rectangle of cells in the receiver by dragging the cursor.

- (void)setSelectionByRect:(BOOL)flag

Parameters
flag

YES if the matrix should allow the user to select a rectangle of cells by dragging. NO if selection in the
matrix should be on a row-by-row basis. The default is YES.

Availability
Available in Mac OS X v10.0 and later.

1590 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

See Also
– setSelectionFrom:to:anchor:highlight: (page 1591)

Declared In
NSMatrix.h

setSelectionFrom:to:anchor:highlight:
Programmatically selects a range of cells.

- (void)setSelectionFrom:(NSInteger)startPos to:(NSInteger)endPos
anchor:(NSInteger)anchorPos highlight:(BOOL)lit

Parameters
startPos

The position of the cell that marks where the user would have pressed the mouse button.

endPos
The position of the cell that marks where the user would have released the mouse button.

anchorPos
The position of the cell to treat as the last cell the user would have selected. To simulate Shift-dragging
(continuous selection) anchorPos should be the endPos used in the last method call. To simulate
Command-dragging (discontinuous selection), anchorPos should be the same as this method call’s
startPos.

lit
YES if cells selected by this method should be highlighted.

Discussion
startPos, endPos, and anchorPos are cell positions, counting from 0 at the upper left cell of the receiver,
in row order. For example, the third cell in the top row would be number 2.

To simulate dragging without a modifier key, deselecting anything that was selected before, call
deselectAllCells (page 1561) before calling this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isSelectionByRect (page 1570)
– selectedCells (page 1580)

Declared In
NSMatrix.h

setState:atRow:column:
Sets the state of the cell at specified location.

- (void)setState:(NSInteger)value atRow:(NSInteger)row column:(NSInteger)column

Instance Methods 1591
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Parameters
value

The value to assign to the cell.

row
The row in which the cell is located.

column
The column in which the cell is located.

Discussion
For radio-mode matrices, if value is nonzero the specified cell is selected before its state is set to value. If
value is 0 and the receiver is a radio-mode matrix, the currently selected cell is deselected (providing that
empty selection is allowed).

This method redraws the affected cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 1556)
– setState: (page 596) (NSCell)
– selectCellAtRow:column: (page 1578)

Declared In
NSMatrix.h

setTabKeyTraversesCells:
Sets whether pressing the Tab key advances the key cell to the next selectable cell.

- (void)setTabKeyTraversesCells:(BOOL)flag

Parameters
flag

YES if pressing the Tab key should advance the key cell to the next selectable cell in the receiver. If
this is NO or if there aren't any selectable cells after the current one, the next view in the window
becomes key when the user presses the Tab key.

Discussion
Pressing Shift-Tab causes the key cell to advance in the opposite direction (if flag is NO, or if there aren’t
any selectable cells before the current one, the previous view in the window becomes key).

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectKeyViewFollowingView: (page 3364) (NSWindow)
– selectNextKeyView: (page 3364) (NSWindow)
– setKeyCell: (page 1589)
– tabKeyTraversesCells (page 1595)

Declared In
NSMatrix.h

1592 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

setToolTip:forCell:
Sets the tooltip for the cell.

- (void)setToolTip:(NSString *)toolTipString forCell:(NSCell *)cell

Parameters
toolTipString

The string to use as the cell's tooltip (or help tag).

cell
The cell to which to assign the tooltip.

Availability
Available in Mac OS X v10.0 and later.

See Also
– toolTipForCell: (page 1598)

Declared In
NSMatrix.h

setValidateSize:
Specifies whether the receiver's size information is validated.

- (void)setValidateSize:(BOOL)flag

Parameters
flag

YES to assume that the size information in the receiver is correct. If flag is NO, the NSControlmethod
calcSize (page 816) will be invoked before any further drawing is done.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

sizeToCells
Changes the width and the height of the receiver’s frame so it exactly contains the cells.

- (void)sizeToCells

Discussion
This method does not redraw the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameSize: (page 3221) (NSView)
– sizeToFit (page 839) (NSControl)

Instance Methods 1593
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Declared In
NSMatrix.h

sortUsingFunction:context:
Sorts the receiver’s cells in ascending order as defined by the specified comparison function.

- (void)sortUsingFunction:(NSInteger (*)(id, id, void *))comparator context:(void
 *)context

Parameters
comparator

The function to use when comparing cells. The comparison function is used to compare two elements
at a time and should return NSOrderedAscending if the first element is smaller than the second,
NSOrderedDescending if the first element is larger than the second, and NSOrderedSame if the
elements are equal.

context
Context passed to the comparison function as its third argument, each time its called. This allows the
comparison to be based on some outside parameter, such as whether character sorting is case-sensitive
or case-insensitive.

Availability
Available in Mac OS X v10.0 and later.

See Also
sortUsingFunction:context: (NSMutableArray)

Declared In
NSMatrix.h

sortUsingSelector:
Sorts the receiver’s cells in ascending order as defined by the comparison method.

- (void)sortUsingSelector:(SEL)comparator

Parameters
comparator

The comparison method.

Discussion
The comparator message is sent to each object in the matrix and has as its single argument another object
in the array. The comparison method is used to compare two elements at a time and should return
NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending if the receiver
is larger than the argument, and NSOrderedSame if they are equal.

Availability
Available in Mac OS X v10.0 and later.

See Also
sortUsingSelector: (NSMutableArray)

1594 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Declared In
NSMatrix.h

tabKeyTraversesCells
Returns a Boolean value indicating whether pressing the Tab key advances the key cell to the next selectable
cell.

- (BOOL)tabKeyTraversesCells

Return Value
YES if pressing the Tab key advances the key cell to the next selectable cell in the receiver; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyCell (page 1571)
– setTabKeyTraversesCells: (page 1592)

Declared In
NSMatrix.h

textDidBeginEditing:
Invoked when there’s a change in the text after the receiver gains first responder status.

- (void)textDidBeginEditing:(NSNotification *)notification

Parameters
notification

The NSControlTextDidBeginEditingNotification (page 847) notification.

Discussion
This method’s default behavior is to post an NSControlTextDidBeginEditingNotification (page 847)
along with the receiving object to the default notification center. The posted notification’s user info contains
the contents of notification’s user info dictionary, plus an additional key-value pair. The additional key is
“NSFieldEditor”; the value for this key is the text object that began editing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textDidChange: (page 1596)
– textDidEndEditing: (page 1596)
– textShouldEndEditing: (page 1597)

Declared In
NSMatrix.h

Instance Methods 1595
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

textDidChange:
Invoked when a key-down event or paste operation occurs that changes the receiver’s contents.

- (void)textDidChange:(NSNotification *)notification

Parameters
notification

The NSControlTextDidChangeNotification (page 848) notification.

Discussion
This method’s default behavior is to pass this message on to the selected cell (if the selected cell responds
to textDidChange:) and then to post an NSControlTextDidChangeNotification (page 848) along with
the receiving object to the default notification center. The posted notification’s user info contains the contents
of notification’s user info dictionary, plus an additional key-value pair. The additional key is “NSFieldEditor”;
the value for this key is the text object that changed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textDidBeginEditing: (page 1595)
– textDidEndEditing: (page 1596)

Declared In
NSMatrix.h

textDidEndEditing:
Invoked when text editing ends.

- (void)textDidEndEditing:(NSNotification *)notification

Parameters
notification

The NSControlTextDidEndEditingNotification (page 848) notification.

Discussion
This method’s default behavior is to post an NSControlTextDidEndEditingNotification (page 848)
along with the receiving object to the default notification center. The posted notification’s user info contains
the contents of notification’s user info dictionary, plus an additional key-value pair. The additional key is
“NSFieldEditor”; the value for this key is the text object that began editing. After posting the notification,
textDidEndEditing: sends an endEditing: (page 555) message to the selected cell, draws and makes
the selected cell key, and then takes the appropriate action based on which key was used to end editing
(Return, Tab, or Back-Tab).

Availability
Available in Mac OS X v10.0 and later.

See Also
– textDidBeginEditing: (page 1595)
– textDidChange: (page 1596)
– textShouldEndEditing: (page 1597)

1596 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Declared In
NSMatrix.h

textShouldBeginEditing:
Requests permission to begin editing text.

- (BOOL)textShouldBeginEditing:(NSText *)textObject

Parameters
textObject

The text object requesting permission to begin editing.

Return Value
YES if the text object should proceed to make changes. If the delegate returns NO, the text object abandons
the editing operation.

The default behavior of this method is to return the value obtained from
control:textShouldBeginEditing:, unless the delegate doesn’t respond to that method, in which case
it returns YES, thereby allowing text editing to proceed.

Discussion
This method is invoked to let the NSTextField respond to impending changes to its text. This method’s
default behavior is to send control:textShouldBeginEditing: to the receiver’s delegate (passing the
receiver and textObject as parameters).

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 1560)

Declared In
NSMatrix.h

textShouldEndEditing:
Requests permission to end editing.

- (BOOL)textShouldEndEditing:(NSText *)textObject

Parameters
textObject

The text object requesting permission to end editing.

Return Value
YES if the text object should proceed to finish editing and resign first responder status. If the delegate returns
NO, the text object selects all of its text and remains the first responder.

The textShouldEndEditing: method returns NO if the text field contains invalid contents; otherwise it
returns the value passed back from control:textShouldEndEditing:.

Instance Methods 1597
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Discussion
This method is invoked to let the NSTextField respond to impending loss of first-responder status. This
method’s default behavior checks the text field for validity; providing that the field contents are deemed
valid, and providing that the delegate responds, control:textShouldEndEditing: is sent to the receiver’s
delegate (passing the receiver and textObject as parameters).

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 1560)

Declared In
NSMatrix.h

toolTipForCell:
Returns the tooltip for the specified cell.

- (NSString *)toolTipForCell:(NSCell *)cell

Parameters
cell

The cell for which to return the tooltip.

Return Value
The string used as the cell's tooltip.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setToolTip:forCell: (page 1593)

Declared In
NSMatrix.h

Constants

NSMatrixMode
These constants determine how NSCell objects behave when an NSMatrix object is tracking the mouse.

1598 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

typedef enum _NSMatrixMode {
 NSRadioModeMatrix = 0,
 NSHighlightModeMatrix = 1,
 NSListModeMatrix = 2,
 NSTrackModeMatrix = 3
} NSMatrixMode;

Constants
NSTrackModeMatrix

The NSCell objects are asked to track the mouse with
trackMouse:inRect:ofView:untilMouseUp: (page 610) whenever the cursor is inside their
bounds. No highlighting is performed.

Available in Mac OS X v10.0 and later.

Declared in NSMatrix.h.

NSHighlightModeMatrix
An NSCell is highlighted before it’s asked to track the mouse, then unhighlighted when it’s done
tracking.

Available in Mac OS X v10.0 and later.

Declared in NSMatrix.h.

NSRadioModeMatrix
Selects no more than one NSCell at a time.

Any time an NSCell is selected, the previously selected NSCell is unselected.

Available in Mac OS X v10.0 and later.

Declared in NSMatrix.h.

NSListModeMatrix
NSCell objects are highlighted, but don’t track the mouse.

Available in Mac OS X v10.0 and later.

Declared in NSMatrix.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMatrix.h

Constants 1599
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

1600 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 68

NSMatrix Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSMenu.h

Companion guide Application Menu and Pop-up List Programming Topics

Related sample code GLUT
MenuItemView
MenuMadness
PDFKitLinker2
QTAudioContextInsert

Overview

The NSMenu class defines an object that manages an application’s menus.

Tasks

Managing the Menu Bar

+ menuBarVisible (page 1606)
Returns a Boolean value that indicates whether the menu bar is visible.

+ setMenuBarVisible: (page 1608)
Sets whether the menu bar is visible and selectable by the user.

– menuBarHeight (page 1622)
Returns the menu bar height for the current application’s main menu.

Overview 1601
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Creating an NSMenu Object

– initWithTitle: (page 1617)
Initializes and returns a menu having the specified title and with autoenabling of menu items turned
on.

Adding and Removing Menu Items

– insertItem:atIndex: (page 1618)
Inserts a menu item into the receiver at a specific location.

– insertItemWithTitle:action:keyEquivalent:atIndex: (page 1618)
Creates and adds a menu item at a specified location in the receiver.

– addItem: (page 1609)
Adds a menu item to the end of the receiver.

– addItemWithTitle:action:keyEquivalent: (page 1610)
Creates a new menu item and adds it to the end of the receiver.

– removeItem: (page 1627)
Removes a menu item from the receiver.

– removeItemAtIndex: (page 1628)
Removes the menu item at a specified location in the receiver.

– itemChanged: (page 1621)
Invoked when a menu item is modified visually (for example, its title changes).

– removeAllItems (page 1627)
Removes all the menu items in the receiver.

Finding Menu Items

– itemWithTag: (page 1621)
Returns the first menu item in the receiver with the specified tag.

– itemWithTitle: (page 1622)
Returns the first menu item in the receiver with a specified title.

– itemAtIndex: (page 1620)
Returns the menu item at a specific location of the receiver.

– numberOfItems (page 1624)
Returns the number of menu items in the receiver, including separator items.

– itemArray (page 1620)
Returns an array containing the receiver’s menu items.

Finding Indices of Menu Items

– indexOfItem: (page 1614)
Returns the index identifying the location of a specified menu item in the receiver.

1602 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

– indexOfItemWithTitle: (page 1616)
Returns the index of the first menu item in the receiver that has a specified title.

– indexOfItemWithTag: (page 1615)
Returns the index of the first menu item in the receiver identified by a tag.

– indexOfItemWithTarget:andAction: (page 1616)
Returns the index of the first menu item in the receiver that has a specified action and target.

– indexOfItemWithRepresentedObject: (page 1615)
Returns the index of the first menu item in the receiver that has a given represented object.

– indexOfItemWithSubmenu: (page 1615)
Returns the index of the menu item in the receiver with the given submenu.

Managing Submenus

– setSubmenu:forItem: (page 1632)
Assigns a menu to be a submenu of the receiver controlled by a given menu item.

– submenuAction: (page 1634)
The action method assigned to menu items that open submenus.

– attachedMenu (page 1611)
Returns the menu currently attached to the receiver.

– isAttached (page 1619)
Returns a Boolean value that indicates whether the receiver is currently attached to another menu.

– locationForSubmenu: (page 1622)
Returns the location in screen coordinates where the given submenu is displayed when opened as a
submenu of the receiver.

– supermenu (page 1634)
Returns the receiver’s supermenu.

– setSupermenu: (page 1632)
Sets the receiver’s supermenu.

– isTornOff (page 1619)
Returns a Boolean value that indicates whether the receiver is offscreen or attached to another menu
(or if it’s the main menu).

Enabling and Disabling Menu Items

– autoenablesItems (page 1611)
Returns a Boolean value that indicates whether the receiver automatically enables and disables its
menu items.

– setAutoenablesItems: (page 1629)
Controls whether the receiver automatically enables and disables its menu items based on delegates
implementing the NSMenuValidation informal protocol.

– update (page 1635)
Enables or disables the receiver’s menu items based on the NSMenuValidation informal protocol
and sizes the menu to fit its current menu items if necessary.

Tasks 1603
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Getting and Setting the Menu Font

– font (page 1613)
Returns the font used to display the menu and its submenus.

– setFont: (page 1630)
Sets the font used to display the menu and its submenus.

Handling Keyboard Equivalents

– performKeyEquivalent: (page 1625)
Performs the action for the menu item that corresponds to the given key equivalent.

Simulating Mouse Clicks

– performActionForItemAtIndex: (page 1624)
Causes the application to send the action message of a specified menu item to its target.

Managing the Title

– setTitle: (page 1633)
Sets the receiver’s title.

– title (page 1635)
Returns the receiver’s title.

Configuring Menu Size

– minimumWidth (page 1624)
Returns the minimum width of the menu.

– setMinimumWidth: (page 1631)
Set the minimum width of the menu.

– size (page 1633)
Returns the size of the menu.

– sizeToFit (page 1634)
Resizes the receiver to exactly fit its items.

Getting Menu Properties

– propertiesToUpdate (page 1626)
Returns the available properties for the menu.

1604 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Managing Menu Change Notifications

– menuChangedMessagesEnabled (page 1623)
Returns a Boolean value that indicates whether messages are sent to the application’s windows upon
each change to the receiver.

– setMenuChangedMessagesEnabled: (page 1630)
Controls whether the receiver sends messages to the application’s windows upon each menu change.

Displaying Contextual Menus

– allowsContextMenuPlugIns (page 1611)
Returns whether the popup menu allows appending of contextual menu plugin items.

– setAllowsContextMenuPlugIns: (page 1628)
Sets whether the popup menu allows appending of contextual menu plugin items.

Displaying Context-Sensitive Help

+ popUpContextMenu:withEvent:forView: (page 1607)
Displays a contextual menu over a view for an event.

+ popUpContextMenu:withEvent:forView:withFont: (page 1608)
Displays a contextual menu over a view for an event using a specified font.

– helpRequested: (page 1613)
Overridden by subclasses to implement specialized context-sensitive help behavior.

– popUpMenuPositioningItem:atLocation:inView: (page 1625)
Pops up the menu at the specified location.

Managing Display of the State Column

– setShowsStateColumn: (page 1631)
Sets whether the receiver displays the state column.

– showsStateColumn (page 1633)
Returns a Boolean value that indicates whether the receiver displays the state column.

Controlling Allocation Zones

+ menuZone (page 1607)
Returns the zone from which NSMenu objects should be allocated.

+ setMenuZone: (page 1609) Deprecated in Mac OS X v10.2
Sets the zone from which NSMenu objects should be allocated

Tasks 1605
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Handling Highlighting

– highlightedItem (page 1614)
Returns the highlighted item in the receiver.

Managing the Delegate

– setDelegate: (page 1629)
Sets the receiver’s delegate.

– delegate (page 1613)
Returns the receiver’s delegate.

Handling Tracking

– cancelTracking (page 1612)
Dismisses the menu and ends all menu tracking.

– cancelTrackingWithoutAnimation (page 1612)
Dismisses the menu and ends all menu tracking without displaying the associated animation.

Deprecated Methods

– contextMenuRepresentation (page 1612) Deprecated in Mac OS X v10.2
Deprecated. (Deprecated. Mac OS X does not use menu representations to draw menus.)

– menuRepresentation (page 1623) Deprecated in Mac OS X v10.2
Deprecated. (Deprecated. Mac OS X does not use menu representations to draw menus.)

– setContextMenuRepresentation: (page 1629) Deprecated in Mac OS X v10.2
Deprecated. (Deprecated. Mac OS X does not use menu representations to draw menus.)

– setMenuRepresentation: (page 1631) Deprecated in Mac OS X v10.2
Deprecated. (Deprecated. Mac OS X does not use menu representations to draw menus.)

– setTearOffMenuRepresentation: (page 1632) Deprecated in Mac OS X v10.2
Deprecated. (Deprecated. Mac OS X does not use menu representations to draw menus.)

– tearOffMenuRepresentation (page 1635) Deprecated in Mac OS X v10.2
Deprecated. (Deprecated. Mac OS X does not use menu representations to draw menus.)

Class Methods

menuBarVisible
Returns a Boolean value that indicates whether the menu bar is visible.

+ (BOOL)menuBarVisible

1606 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Return Value
YES if the menu bar is visible, otherwise NO.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ setMenuBarVisible: (page 1608)

Declared In
NSMenu.h

menuZone
Returns the zone from which NSMenu objects should be allocated.

+ (NSZone *)menuZone

Return Value
The zone from which NSMenu objects should be allocated.

Discussion
The zone is created if necessary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DesktopImage
GLUT
MenuItemView
MenuMadness
ObjectPath

Declared In
NSMenu.h

popUpContextMenu:withEvent:forView:
Displays a contextual menu over a view for an event.

+ (void)popUpContextMenu:(NSMenu *)menu withEvent:(NSEvent *)event forView:(NSView
 *)view

Parameters
menu

The menu object to use for the contextual menu.

event
An NSEvent object representing the event.

view
The view object over which to display the contextual menu.

Class Methods 1607
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ popUpContextMenu:withEvent:forView:withFont: (page 1608)

Related Sample Code
GLUT

Declared In
NSMenu.h

popUpContextMenu:withEvent:forView:withFont:
Displays a contextual menu over a view for an event using a specified font.

+ (void)popUpContextMenu:(NSMenu *)menu withEvent:(NSEvent *)event forView:(NSView
 *)view withFont:(NSFont *)font

Parameters
menu

The menu object to use for the contextual menu.

event
An NSEvent object representing the event.

view
The view object over which to display the contextual menu.

font
An NSFont object representing the font for the contextual menu. If you pass in nil for the font, the
method uses the default font for menu.

Discussion
Specifying a font using the font parameter is discouraged. Instead set the menu’s font using the
setFont: (page 1630) method and pass nil for the font parameter.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ popUpContextMenu:withEvent:forView: (page 1607)
– popUpMenuPositioningItem:atLocation:inView: (page 1625)

Declared In
NSMenu.h

setMenuBarVisible:
Sets whether the menu bar is visible and selectable by the user.

+ (void)setMenuBarVisible:(BOOL)visible

1608 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Parameters
visible

YES if menu bar is to be visible, otherwise NO.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ menuBarVisible (page 1606)

Declared In
NSMenu.h

setMenuZone:
Sets the zone from which NSMenu objects should be allocated (Deprecated in Mac OS X v10.2.)

+ (void)setMenuZone:(NSZone *)zone

Parameters
zone

The memory zone to set.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSMenu.h

Instance Methods

addItem:
Adds a menu item to the end of the receiver.

- (void)addItem:(NSMenuItem *)newItem

Parameters
newItem

The menu item (an object conforming to the NSMenuItem protocol) to add to the menu.

Discussion
This method invokes insertItem:atIndex: (page 1618). Thus, the receiver does not accept the menu item
if it already belongs to another menu. After adding the menu item, the receiver updates itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItemWithTitle:action:keyEquivalent: (page 1610)

Instance Methods 1609
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

– removeItem: (page 1627)
– removeItemAtIndex: (page 1628)

Related Sample Code
MenuItemView
MenuMadness
PDFKitLinker2
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
NSMenu.h

addItemWithTitle:action:keyEquivalent:
Creates a new menu item and adds it to the end of the receiver.

- (NSMenuItem *)addItemWithTitle:(NSString *)aString action:(SEL)aSelector
keyEquivalent:(NSString *)keyEquiv

Parameters
aString

A string to be made the title of the menu item.

aSelector
The action-message selector to assign to the menu item.

keyEquiv
A string identifying the key to use as a key equivalent for the menu item. If you do not want the menu
item to have a key equivalent, keyEquiv should be an empty string (@"") and not nil.

Return Value
The created menu item (an object conforming to the NSMenuItem protocol) or nil if the object couldn't be
created.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItem: (page 1609)
– removeItem: (page 1627)
– removeItemAtIndex: (page 1628)

Related Sample Code
ClockControl
UIElementInspector

Declared In
NSMenu.h

1610 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

allowsContextMenuPlugIns
Returns whether the popup menu allows appending of contextual menu plugin items.

- (BOOL)allowsContextMenuPlugIns

Return Value
YES if the popup menu allows appending of contextual menu plugin items, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setAllowsContextMenuPlugIns: (page 1628)

Declared In
NSMenu.h

attachedMenu
Returns the menu currently attached to the receiver. (Deprecated in Mac OS X v10.2.)

- (NSMenu *)attachedMenu

Return Value
The menu currently attached to the receiver or nil if there’s no such object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

See Also
– isAttached (page 1619)

Declared In
NSMenu.h

autoenablesItems
Returns a Boolean value that indicates whether the receiver automatically enables and disables its menu
items.

- (BOOL)autoenablesItems

Return Value
YES if the receiver automatically enables and disables its menu items (based on the NSMenuValidation
informal protocol), otherwise NO.

Discussion
By default, NSMenu objects autoenable their menu items. See the protocol specification for more information.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1611
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

See Also
– setAutoenablesItems: (page 1629)

Declared In
NSMenu.h

cancelTracking
Dismisses the menu and ends all menu tracking.

- (void)cancelTracking

Availability
Available in Mac OS X v10.5 and later.

See Also
– cancelTrackingWithoutAnimation (page 1612)

Related Sample Code
MenuItemView

Declared In
NSMenu.h

cancelTrackingWithoutAnimation
Dismisses the menu and ends all menu tracking without displaying the associated animation.

- (void)cancelTrackingWithoutAnimation

Availability
Available in Mac OS X v10.6 and later.

See Also
– cancelTracking (page 1612)

Declared In
NSMenu.h

contextMenuRepresentation
Deprecated. (Deprecated in Mac OS X v10.2. Mac OS X does not use menu representations to draw menus.)

- (id)contextMenuRepresentation

Return Value
nil.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

1612 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Declared In
NSMenu.h

delegate
Returns the receiver’s delegate.

- (id < NSMenuDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setDelegate: (page 1629)

Declared In
NSMenu.h

font
Returns the font used to display the menu and its submenus.

- (NSFont *)font

Return Value
The font object used for displaying the menu.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setFont: (page 1630)

Declared In
NSMenu.h

helpRequested:
Overridden by subclasses to implement specialized context-sensitive help behavior.

- (void)helpRequested:(NSEvent *)event

Parameters
event

An NSEvent object representing the event associated with the help request.

Discussion
Subclasses in their implementation of this method should cause the Help Manager (NSHelpManager) to
display the help associated with the receiver. Never invoke this method directly.

Instance Methods 1613
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Special Considerations

On Mac OS X v10.6 and later this method has no effect. This method may be deprecated in a future release.

Availability
Available in Mac OS X v10.0 and later.

See Also
showContextHelpForObject:locationHint: (page 1320) (NSHelpManager)

Declared In
NSMenu.h

highlightedItem
Returns the highlighted item in the receiver.

- (NSMenuItem *)highlightedItem

Return Value
Returns the highlighted item in the receiver, or nil if no item in the menu is highlighted.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMenu.h

indexOfItem:
Returns the index identifying the location of a specified menu item in the receiver.

- (NSInteger)indexOfItem:(NSMenuItem *)anObject

Parameters
anObject

A menu item—that is an object conforming to the NSMenuItem protocol.

Return Value
The integer index of the menu item or, if no such menu item is in the menu, –1.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertItem:atIndex: (page 1618)
– itemAtIndex: (page 1620)

Declared In
NSMenu.h

1614 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

indexOfItemWithRepresentedObject:
Returns the index of the first menu item in the receiver that has a given represented object.

- (NSInteger)indexOfItemWithRepresentedObject:(id)anObject

Parameters
anObject

A represented object of the receiver.

Return Value
The integer index of the menu item or, if no such menu item is in the menu, –1.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItemWithTag: (page 1615)
– indexOfItemWithTitle: (page 1616)
– insertItem:atIndex: (page 1618)
– itemAtIndex: (page 1620)

Declared In
NSMenu.h

indexOfItemWithSubmenu:
Returns the index of the menu item in the receiver with the given submenu.

- (NSInteger)indexOfItemWithSubmenu:(NSMenu *)anObject

Parameters
anObject

A menu object that is a menu item of the receiver (that is, a submenu).

Return Value
The integer index of the menu item or, if no such menu item is in the menu, –1.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertItem:atIndex: (page 1618)
– itemAtIndex: (page 1620)

Declared In
NSMenu.h

indexOfItemWithTag:
Returns the index of the first menu item in the receiver identified by a tag.

- (NSInteger)indexOfItemWithTag:(NSInteger)aTag

Instance Methods 1615
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Parameters
aTag

An integer tag associated with the menu item of the receiver.

Return Value
The integer index of the menu item or, if no such menu item is in the menu, –1.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemWithTag: (page 1621)
– insertItem:atIndex: (page 1618)
– itemAtIndex: (page 1620)

Declared In
NSMenu.h

indexOfItemWithTarget:andAction:
Returns the index of the first menu item in the receiver that has a specified action and target.

- (NSInteger)indexOfItemWithTarget:(id)anObject andAction:(SEL)actionSelector

Parameters
anObject

An object that is set as the target of a menu item of the receiver.

actionSelector
A selector identifying an action method. If actionSelector is NULL, the first menu item in the
receiver that has target anObject is returned

Return Value
The integer index of the menu item or, if no such menu item is in the menu, –1.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItemWithTag: (page 1615)
– indexOfItemWithTitle: (page 1616)
– indexOfItemWithRepresentedObject: (page 1615)
– insertItem:atIndex: (page 1618)
– itemAtIndex: (page 1620)

Declared In
NSMenu.h

indexOfItemWithTitle:
Returns the index of the first menu item in the receiver that has a specified title.

- (NSInteger)indexOfItemWithTitle:(NSString *)aTitle

1616 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Parameters
aTitle

The title of a menu item in the receiver.

Return Value
The integer index of the menu item or, if no such menu item is in the menu, –1.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemWithTitle: (page 1622)
– insertItem:atIndex: (page 1618)
– itemAtIndex: (page 1620)

Declared In
NSMenu.h

initWithTitle:
Initializes and returns a menu having the specified title and with autoenabling of menu items turned on.

- (id)initWithTitle:(NSString *)aTitle

Parameters
aTitle

The title to assign to the receiver.

Return Value
The initialized NSMenu object or nil if the object could not be initialized.

Special Considerations

This method is the designated initializer for the class.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutoenablesItems: (page 1629)

Related Sample Code
DesktopImage
GLUT
MenuItemView
MenuMadness
SearchField

Declared In
NSMenu.h

Instance Methods 1617
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

insertItem:atIndex:
Inserts a menu item into the receiver at a specific location.

- (void)insertItem:(NSMenuItem *)newItem atIndex:(NSInteger)index

Parameters
newItem

An object conforming to the NSMenuItem protocol that represents a menu item.

index
An integer index identifying the location of the menu item in the menu.

Discussion
This method posts anNSMenuDidAddItemNotification (page 1637), allowing interested observers to update
as appropriate. This method is a primitive method. All item-addition methods end up calling this method,
so this is where you should implement custom behavior on adding new items to a menu in a custom subclass.
If the menu item already exists in another menu, it is not inserted and the method raises an exception of
type NSInternalInconsistencyException.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItem: (page 1609)
– itemAtIndex: (page 1620)
– removeItem: (page 1627)

Related Sample Code
ButtonMadness
SearchField

Declared In
NSMenu.h

insertItemWithTitle:action:keyEquivalent:atIndex:
Creates and adds a menu item at a specified location in the receiver.

- (NSMenuItem *)insertItemWithTitle:(NSString *)aString action:(SEL)aSelector
keyEquivalent:(NSString *)keyEquiv atIndex:(NSInteger)index

Parameters
aString

A string to be made the title of the menu item.

aSelector
The action-message selector to assign to the menu item.

keyEquiv
A string identifying the key to use as a key equivalent for the menu item. If you do not want the menu
item to have a key equivalent, keyEquiv should be an empty string (@"") and not nil.

index
An integer index identifying the location of the menu item in the menu.

1618 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Return Value
The new menu item (an object conforming to the NSMenuItem protocol) or nil if the item could not be
created

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ButtonMadness

Declared In
NSMenu.h

isAttached
Returns a Boolean value that indicates whether the receiver is currently attached to another menu. (Deprecated
in Mac OS X v10.2.)

- (BOOL)isAttached

Return Value
YES if the receiver is currently attached to another menu, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

See Also
– attachedMenu (page 1611)

Declared In
NSMenu.h

isTornOff
Returns a Boolean value that indicates whether the receiver is offscreen or attached to another menu (or if
it’s the main menu).

- (BOOL)isTornOff

Return Value
NO if the receiver is offscreen or attached to another menu (or if it’s the main menu), otherwise YES.

Special Considerations

On Mac OS X v10.6 and later this method has no effect.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenu.h

Instance Methods 1619
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

itemArray
Returns an array containing the receiver’s menu items.

- (NSArray *)itemArray

Return Value
An array containing the receiver’s menu items.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemWithTag: (page 1621)
– itemWithTitle: (page 1622)
– itemAtIndex: (page 1620)
– numberOfItems (page 1624)

Related Sample Code
EnhancedAudioBurn
WhackedTV

Declared In
NSMenu.h

itemAtIndex:
Returns the menu item at a specific location of the receiver.

- (NSMenuItem *)itemAtIndex:(NSInteger)index

Parameters
index

An integer index locating a menu item in a menu.

Return Value
The found menu item (an object conforming to the NSMenuItem protocol) or nil if the object couldn't be
found.

Discussion
This method raises an exception if index is out of bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItem: (page 1614)
– itemWithTag: (page 1621)
– itemWithTitle: (page 1622)
– itemArray (page 1620)

Related Sample Code
DeskPictAppDockMenu
DragNDropOutlineView

1620 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

MenuItemView
OutputBins2PDE
QTCoreVideo101

Declared In
NSMenu.h

itemChanged:
Invoked when a menu item is modified visually (for example, its title changes).

- (void)itemChanged:(NSMenuItem *)anObject

Parameters
anObject

The menu item that has visually changed.

Discussion
This method is not called for changes involving the menu item's action, target, represented object, or tag.
Posts an NSMenuDidChangeItemNotification (page 1637).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenu.h

itemWithTag:
Returns the first menu item in the receiver with the specified tag.

- (NSMenuItem *)itemWithTag:(NSInteger)aTag

Parameters
aTag

A numeric tag associated with a menu item.

Return Value
The found menu item (an object conforming to the NSMenuItem protocol) or nil if the object couldn't be
found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItemWithTag: (page 1615)
– itemWithTitle: (page 1622)
– itemAtIndex: (page 1620)
– itemArray (page 1620)

Declared In
NSMenu.h

Instance Methods 1621
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

itemWithTitle:
Returns the first menu item in the receiver with a specified title.

- (NSMenuItem *)itemWithTitle:(NSString *)aString

Parameters
aString

The title of a menu item.

Return Value
The found menu item (an object conforming to the NSMenuItem protocol) or nil if the object couldn't be
found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItemWithTitle: (page 1616)
– itemWithTag: (page 1621)
– itemAtIndex: (page 1620)
– itemArray (page 1620)

Declared In
NSMenu.h

locationForSubmenu:
Returns the location in screen coordinates where the given submenu is displayed when opened as a submenu
of the receiver. (Deprecated in Mac OS X v10.2.)

- (NSPoint)locationForSubmenu:(NSMenu *)aSubmenu

Parameters
aSubmenu

A menu object that is a submenu of the receiver.

Return Value
An NSPoint structure describing the location or (0.0, 0.0) if the submenu does not exist in the receiver.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSMenu.h

menuBarHeight
Returns the menu bar height for the current application’s main menu.

- (CGFloat)menuBarHeight

1622 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Return Value
The receiver's main menu bar height or 0.0 if the receiver is some other menu.

Discussion
This method supersedes the menuBarHeight (page 1688) class method of the NSMenuView class.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSMenu.h

menuChangedMessagesEnabled
Returns a Boolean value that indicates whether messages are sent to the application’s windows upon each
change to the receiver.

- (BOOL)menuChangedMessagesEnabled

Return Value
YES if messages are sent to the application’s windows upon each change to the receiver, otherwise NO.

Special Considerations

On Mac OS X v10.6 and later this method has no effect. This method may be deprecated in a future release.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMenuChangedMessagesEnabled: (page 1630)

Declared In
NSMenu.h

menuRepresentation
Deprecated. (Deprecated in Mac OS X v10.2. Mac OS X does not use menu representations to draw menus.)

- (id)menuRepresentation

Return Value
nil.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSMenu.h

Instance Methods 1623
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

minimumWidth
Returns the minimum width of the menu.

- (CGFloat)minimumWidth

Return Value
The minimum width of the menu in screen coordinates.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSMenu.h

numberOfItems
Returns the number of menu items in the receiver, including separator items.

- (NSInteger)numberOfItems

Return Value
The number of menu items in the receiver, including separator items.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemArray (page 1620)

Related Sample Code
DeskPictAppDockMenu
QTCoreVideo101

Declared In
NSMenu.h

performActionForItemAtIndex:
Causes the application to send the action message of a specified menu item to its target.

- (void)performActionForItemAtIndex:(NSInteger)index

Parameters
index

The integer index of a menu item.

Discussion
If a target is not specified, the message is sent to the first responder. As a side effect, this method posts
NSMenuWillSendActionNotification (page 1639) and NSMenuDidSendActionNotification (page
1638).

1624 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

In Mac OS X v10.6 and later the performActionForItemAtIndex: no longer triggers menu validation.
This is because validation is typically done during menu tracking or key equivalent matching, so the subsequent
performActionForItemAtIndex: validation was redundant. To trigger validation explicitly, use invoke
the update (page 1635) method.

In Mac OS X v10.6 performActionForItemAtIndex:, when called, now triggers highlighting in the menu
bar. It also sends out appropriate accessibility notifications indicating the item was selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– performKeyEquivalent: (page 1625)

Declared In
NSMenu.h

performKeyEquivalent:
Performs the action for the menu item that corresponds to the given key equivalent.

- (BOOL)performKeyEquivalent:(NSEvent *)theEvent

Parameters
theEvent

An NSEvent object that represents a key-equivalent event.

Return Value
YES if theEvent is a key equivalent that the receiver handled, NO if it is not a key equivalent that it should
handle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– performActionForItemAtIndex: (page 1624)
menuHasKeyEquivalent:forEvent:target:action: (page 3726) (NSMenuDelegate)

Declared In
NSMenu.h

popUpMenuPositioningItem:atLocation:inView:
Pops up the menu at the specified location.

- (BOOL)popUpMenuPositioningItem:(NSMenuItem *)item atLocation:(NSPoint)location
inView:(NSView *)view

Parameters
item

The menu item to be positioned at the specified location in the view.

Instance Methods 1625
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

location
The location in the view coordinate system to display the menu item.

view
The view to display the menu item over.

Return Value
YES if menu tracking ended because an item was selected, and NO if menu tracking was cancelled for any
reason.

Discussion
Pops up the receiver as a popup menu. The top left corner of the specified item (if specified, item must be
present in the receiver) is positioned at the specified location in the specified view, interpreted in the view's
own coordinate system.

If item is nil, the menu is positioned such that the top left of the menu content frame is at the given location.

If view is nil, the location is interpreted in the screen coordinate system. This allows you to pop up a menu
disconnected from any window.

Availability
Available in Mac OS X v10.6 and later.

See Also
+ popUpContextMenu:withEvent:forView: (page 1607)
+ popUpContextMenu:withEvent:forView:withFont: (page 1608)

Declared In
NSMenu.h

propertiesToUpdate
Returns the available properties for the menu.

- (NSMenuProperties)propertiesToUpdate

Return Value
A bitwise-C OR of the values in the “NSMenuProperties” (page 1636) that are applicable to this menu.

Discussion
The propertiesToUpdate method may be called on the menu from specific callbacks to determine which
properties the have been defined, and whether or not they are relevant to the changes you need to make.
It is intended to allow more efficient updating of the menu in certain circumstances.

For example, if NSMenuPropertyItemImage (page 1636) is not set, your delegate does not need to update
the images of the menu items, because the images are not needed (for example, during key equivalent
matching). If the NSMenuPropertyItemImage (page 1636) bit is 0, you can avoid updating the menu's images,
which may improve performance if computing the images is expensive.

You only have to update a property if it may have changed since you last set it, even if the corresponding
bit is 1. For example, if the title of a menu item never changes, you only have to set it once.

You may call this from the menu delegate methods menuNeedsUpdate: (page 3727), or the menu validation
methods -validateMenuItem: (page 989) or validateUserInterfaceItem: (page 3923). Calling this at
other times will raise an exception.

1626 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

If a menu property does not have a corresponding bit, you should ensure it is always set properly after the
callback returns.

Calling this is optional; it is always acceptable to fully update all properties of the menu.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSMenu.h

removeAllItems
Removes all the menu items in the receiver.

- (void)removeAllItems

Discussion
This method is more efficient than removing menu items individually.

Unlike the other remove methods, this method does not post NSMenuDidChangeItemNotification (page
1637) notifications.

Availability
Available in Mac OS X v10.6 and later.

See Also
– removeItem: (page 1627)
– removeItemAtIndex: (page 1628)

Declared In
NSMenu.h

removeItem:
Removes a menu item from the receiver.

- (void)removeItem:(NSMenuItem *)anItem

Parameters
anItem

The menu item to remove.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItem: (page 1609)
– addItemWithTitle:action:keyEquivalent: (page 1610)
– removeItemAtIndex: (page 1628)

Declared In
NSMenu.h

Instance Methods 1627
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

removeItemAtIndex:
Removes the menu item at a specified location in the receiver.

- (void)removeItemAtIndex:(NSInteger)index

Parameters
index

An integer index identifying the menu item.

Discussion
After it removes the menu item, this method posts an NSMenuDidRemoveItemNotification (page 1638).

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItem: (page 1609)
– addItemWithTitle:action:keyEquivalent: (page 1610)
– removeItem: (page 1627)

Related Sample Code
ButtonMadness
DeskPictAppDockMenu
ObjectPath
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
NSMenu.h

setAllowsContextMenuPlugIns:
Sets whether the popup menu allows appending of contextual menu plugin items.

- (void)setAllowsContextMenuPlugIns:(BOOL)allows

Parameters
allows

YES if the popup menu should allow context menu plugin items to be appending, otherwise NO.

Discussion
Contextual menu plugins are system-wide services provided by other applications. For example, a contextual
menu plugin might provide an “Open URL...” service. By enabling context menu plugins your application’s
contextual menu will display the appropriate items for the currently selected data type.

See Services Implementation Guide for more information on contextual menu plugins.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSMenu.h

1628 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

setAutoenablesItems:
Controls whether the receiver automatically enables and disables its menu items based on delegates
implementing the NSMenuValidation informal protocol.

- (void)setAutoenablesItems:(BOOL)flag

Parameters
flag

If flag is YES, menu items are automatically enabled and disabled. If flag is NO, menu items are not
automatically enabled or disabled.

Discussion
See the NSMenuValidation protocol specification for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autoenablesItems (page 1611)

Related Sample Code
GLUT
SearchField

Declared In
NSMenu.h

setContextMenuRepresentation:
Deprecated. (Deprecated in Mac OS X v10.2. Mac OS X does not use menu representations to draw menus.)

- (void)setContextMenuRepresentation:(id)menuRep

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSMenu.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSMenuDelegate >)anObject

Parameters
anObject

The object to set as delegate.

Discussion
You can use the delegate to populate a menu just before it is going to be drawn and to check for key
equivalents without creating a menu item.

Instance Methods 1629
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– delegate (page 1613)

Declared In
NSMenu.h

setFont:
Sets the font used to display the menu and its submenus.

- (void)setFont:(NSFont *)font

Parameters
font

The font object to use.

Discussion
This font will be used to display the menu and any submenus that have not had their font set explicitly.

Availability
Available in Mac OS X v10.6 and later.

See Also
– font (page 1613)

Declared In
NSMenu.h

setMenuChangedMessagesEnabled:
Controls whether the receiver sends messages to the application’s windows upon each menu change.

- (void)setMenuChangedMessagesEnabled:(BOOL)flag

Parameters
flag

YES if the receiver should send a message at each menu change, NO otherwise.

Discussion
To avoid the “flickering” effect of many successive menu changes, invoke this method with flag set to NO,
make changes to the menu, and invoke the method again with flag set to YES. This approach has the effect
of batching changes and applying them all at once.

Special Considerations

On Mac OS X v10.6 and later this method has no effect. This method may be deprecated in a future release.

Availability
Available in Mac OS X v10.0 and later.

See Also
– menuChangedMessagesEnabled (page 1623)

1630 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Declared In
NSMenu.h

setMenuRepresentation:
Deprecated. (Deprecated in Mac OS X v10.2. Mac OS X does not use menu representations to draw menus.)

- (void)setMenuRepresentation:(id)menuRep

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSMenu.h

setMinimumWidth:
Set the minimum width of the menu.

- (void)setMinimumWidth:(CGFloat)width

Parameters
width

The minimum width of the menu in screen coordinates.

Discussion
The menu will not draw smaller than its minimum width, but may draw larger if it needs more space. The
default value is 0.

Availability
Available in Mac OS X v10.6 and later.

See Also
– minimumWidth (page 1624)

Declared In
NSMenu.h

setShowsStateColumn:
Sets whether the receiver displays the state column.

- (void)setShowsStateColumn:(BOOL)showsState

Parameters
showsState

YES to display the state column, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 1631
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

See Also
– showsStateColumn (page 1633)

Declared In
NSMenu.h

setSubmenu:forItem:
Assigns a menu to be a submenu of the receiver controlled by a given menu item.

- (void)setSubmenu:(NSMenu *)aMenu forItem:(NSMenuItem *)anItem

Parameters
aMenu

A menu object that is to be a submenu of the receiver.

anItem
A menu item (that is, an object conforming to the NSMenuItem protocol) that controls aMenu. The
method sets the action of anItem to submenuAction: (page 1634).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenu.h

setSupermenu:
Sets the receiver’s supermenu.

- (void)setSupermenu:(NSMenu *)supermenu

Parameters
supermenu

A menu object to set as the supermenu of the receiver.

Discussion
You should never invoke this method directly; it is public so subclassers can add behavior to the default
implementation. Subclassers should call the superclass’s method as part of their implementation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– supermenu (page 1634)

Declared In
NSMenu.h

setTearOffMenuRepresentation:
Deprecated. (Deprecated in Mac OS X v10.2. Mac OS X does not use menu representations to draw menus.)

1632 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

- (void)setTearOffMenuRepresentation:(id)menuRep

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSMenu.h

setTitle:
Sets the receiver’s title.

- (void)setTitle:(NSString *)aString

Parameters
aString

A string to assign as the new title of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 1635)

Declared In
NSMenu.h

showsStateColumn
Returns a Boolean value that indicates whether the receiver displays the state column.

- (BOOL)showsStateColumn

Return Value
YES if the receiver displays the state column, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setShowsStateColumn: (page 1631)

Declared In
NSMenu.h

size
Returns the size of the menu.

- (NSSize)size

Instance Methods 1633
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Return Value
The size of the menu in screen coordinates.

Discussion
The menu may draw at a smaller size when shown, depending on its positioning and display configuration.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSMenu.h

sizeToFit
Resizes the receiver to exactly fit its items. (Deprecated in Mac OS X v10.2.)

- (void)sizeToFit

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSMenu.h

submenuAction:
The action method assigned to menu items that open submenus.

- (void)submenuAction:(id)sender

Discussion
You may override this method to implement different behavior. Never invoke this method directly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenu.h

supermenu
Returns the receiver’s supermenu.

- (NSMenu *)supermenu

Return Value
The receiver’s supermenu or nil if it has none.

Availability
Available in Mac OS X v10.0 and later.

1634 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

See Also
– setSupermenu: (page 1632)

Declared In
NSMenu.h

tearOffMenuRepresentation
Deprecated. (Deprecated in Mac OS X v10.2. Mac OS X does not use menu representations to draw menus.)

- (id)tearOffMenuRepresentation

Return Value
nil.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSMenu.h

title
Returns the receiver’s title.

- (NSString *)title

Return Value
The receiver’s title.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 1633)

Related Sample Code
ToolbarSample

Declared In
NSMenu.h

update
Enables or disables the receiver’s menu items based on the NSMenuValidation informal protocol and sizes
the menu to fit its current menu items if necessary.

- (void)update

Discussion
See the NSMenuValidation protocol specification for more information.

Instance Methods 1635
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenu.h

Constants

NSMenuProperties
These constants are used as a bitmask for specifying a set of menu or menu item properties, used in the
propertiesToUpdate (page 1626).

enum {
 NSMenuPropertyItemTitle = 1 << 0,
 NSMenuPropertyItemAttributedTitle = 1 << 1
 NSMenuPropertyItemKeyEquivalent = 1 << 2,
 NSMenuPropertyItemImage = 1 << 3,
 NSMenuPropertyItemEnabled = 1 << 4,
 NSMenuPropertyItemAccessibilityDescription = 1 << 5
};
typedef NSUInteger NSMenuProperties;

Constants
NSMenuPropertyItemTitle

The menu item’s title.

Available in Mac OS X v10.6 and later.

Declared in NSMenu.h.

NSMenuPropertyItemAttributedTitle
The menu item’s attributed string title.

Available in Mac OS X v10.6 and later.

Declared in NSMenu.h.

NSMenuPropertyItemKeyEquivalent
The menu item’s key equivalent.

Available in Mac OS X v10.6 and later.

Declared in NSMenu.h.

NSMenuPropertyItemImage
The menu image.

Available in Mac OS X v10.6 and later.

Declared in NSMenu.h.

NSMenuPropertyItemEnabled
Whether the menu item is enabled or disabled.

Available in Mac OS X v10.6 and later.

Declared in NSMenu.h.

1636 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

NSMenuPropertyItemAccessibilityDescription
The menu item’s accessibility description.

Available in Mac OS X v10.6 and later.

Declared in NSMenu.h.

Notifications

NSMenuDidAddItemNotification
Posted after a menu item is added to the menu. The notification object is the instance of NSMenu that just
added the new menu item. The userInfo dictionary contains the following information:

ValueKey

An NSNumber object containing the integer index of
the menu item that was added.

@"NSMenuItemIndex"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenu.h

NSMenuDidChangeItemNotification
Posted after a menu item in the menu changes appearance. Changes include enabling/disabling, changes
in state, and changes to title. The notification object is the instance of NSMenu with the menu item that
changed. The userInfo dictionary contains the following information:

ValueKey

An NSNumber object containing the integer index of
the menu item that changed.

@"NSMenuItemIndex"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenu.h

NSMenuDidBeginTrackingNotification
Posted when menu tracking begins. The notification object is the main menu bar ([NSApp mainMenu]) or
the root menu of a popup button. This notification does not contain a userInfo dictionary.

Notifications 1637
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Note: This notification is available in versions 10.3 and 10.4 of Mac OS X, however it is not publicly declared
so you must declare the name constant as an extern, for example:

extern NSString *NSMenuDidBeginTrackingNotification;

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMenu.h

NSMenuDidEndTrackingNotification
Posted when menu tracking ends, even if no action is sent. The notification object is the main menu bar
([NSApp mainMenu]) or the root menu of a popup button. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSMenu.h

NSMenuDidRemoveItemNotification
Posted after a menu item is removed from the menu. The notification object is the instance of NSMenu that
just removed the menu item. The userInfo dictionary contains the following information:

ValueKey

An NSNumber object containing the integer index of
the menu item that was removed. Note that this
index may no longer be valid and in any event no
longer points to the menu item that was removed.

@"NSMenuItemIndex"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenu.h

NSMenuDidSendActionNotification
Posted just after the application dispatches a menu item’s action method to the menu item’s target. The
notification object is the instance of NSMenu containing the chosen menu item. The userInfo dictionary
contains the following information:

ValueKey

The menu item that was chosen.@"MenuItem"

1638 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenu.h

NSMenuWillSendActionNotification
Posted just before the application dispatches a menu item’s action method to the menu item’s target. The
notification object is the instance of NSMenu containing the chosen menu item. The userInfo dictionary
contains the following information:

ValueKey

The menu item that was chosen.@"MenuItem"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenu.h

Notifications 1639
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

1640 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 69

NSMenu Class Reference

Inherits from NSObject

Conforms to NSValidatedUserInterfaceItem
NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSMenuItem.h

Companion guide Application Menu and Pop-up List Programming Topics

Related sample code MenuMadness
PDFKitLinker2
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit
SearchField

Overview

The NSMenuItem class defines objects that are used as command items in menus. Additionally, the
NSMenuItem class also includes some private functionality needed to maintain binary compatibility with
other components of Cocoa. Because of this fact, you cannot replace the NSMenuItem class with a different
class. You may, however, subclass NSMenuItem if necessary.

Prior to Mac OS X v10.5, NSMenuItem conformed to the following protocols: NSCopying (see NSCopying
Protocol Reference), NSCoding (see NSCoding Protocol Reference), and NSValidatedUserInterfaceItem
(see NSValidatedUserInterfaceItem Protocol Reference).

Tasks

Creating a Menu Item

– initWithTitle:action:keyEquivalent: (page 1649)
Returns an initialized instance of an NSMenuItem.

Overview 1641
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Enabling a Menu Item

– setEnabled: (page 1658)
Sets whether the receiver is enabled

– isEnabled (page 1650)
Returns a Boolean value that indicates whether the receiver is enabled.

Managing Hidden Status

– setHidden: (page 1659)
Sets whether the receiver is hidden.

– isHidden (page 1650)
Returns a Boolean value that indicates whether the receiver is hidden.

– isHiddenOrHasHiddenAncestor (page 1651)
Returns a Boolean value that indicates whether the receiver or any of its superitems is hidden.

Managing the Target and Action

– setTarget: (page 1666)
Sets the receiver’s target.

– target (page 1670)
Returns the receiver’s target.

– setAction: (page 1656)
Sets the receiver’s action-method selector.

– action (page 1647)
Returns the receiver’s action-method selector.

Managing the Title

– setTitle: (page 1667)
Sets the receiver’s title.

– title (page 1671)
Returns the receiver’s title.

– setAttributedTitle: (page 1657)
Specifies a custom string for a menu item.

– attributedTitle (page 1648)
Returns the custom title string for a menu item.

Managing the Tag

– setTag: (page 1666)
Sets the receiver’s tag.

1642 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

– tag (page 1670)
Returns the receiver’s tag.

Managing the State

– setState: (page 1665)
Sets the state of the receiver.

– state (page 1669)
Returns the state of the receiver.

Managing the Image

– setImage: (page 1659)
Sets the receiver’s image.

– image (page 1648)
Returns the image displayed by the receiver.

– setOnStateImage: (page 1663)
Sets the image of the receiver that indicates an “on” state.

– onStateImage (page 1655)
Returns the image used to depict the receiver’s “on” state.

– setOffStateImage: (page 1663)
Sets the image of the receiver that indicates an “off” state.

– offStateImage (page 1654)
Returns the image used to depict the receiver’s “off” state.

– setMixedStateImage: (page 1662)
Sets the image of the receiver that indicates a “mixed” state, that is, a state neither “on” nor “off.”

– mixedStateImage (page 1653)
Returns the image used to depict a “mixed state.”

Managing Submenus

– setSubmenu: (page 1665)
Sets the submenu of the receiver.

– submenu (page 1669)
Returns the submenu associated with the receiving menu item.

– hasSubmenu (page 1648)
Returns a Boolean value that indicates whether the receiver has a submenu.

– parentItem (page 1655)
Returns the menu item whose submenu contains the receiver.

Tasks 1643
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Getting a Separator Item

+ separatorItem (page 1646)
Returns a menu item that is used to separate logical groups of menu commands.

– isSeparatorItem (page 1651)
Returns a Boolean value that indicates whether the receiver is a separator item.

Managing the Owning Menu

– setMenu: (page 1661)
Sets the receiver’s menu.

– menu (page 1653)
Returns the menu to which the receiver belongs.

Managing Key Equivalents

– setKeyEquivalent: (page 1660)
Sets the receiver’s unmodified key equivalent.

– keyEquivalent (page 1652)
Returns the receiver’s unmodified keyboard equivalent.

– setKeyEquivalentModifierMask: (page 1661)
Sets the receiver’s keyboard equivalent modifiers.

– keyEquivalentModifierMask (page 1652)
Returns the receiver’s keyboard equivalent modifier mask.

Managing Mnemonics

– setTitleWithMnemonic: (page 1667)
Deprecated. Sets the title of a menu item with a character denoting an access key.

– mnemonic (page 1653) Deprecated in Mac OS X v10.6
Deprecated. Returns the character in the menu item title that appears underlined for use as a
mnemonic.

– mnemonicLocation (page 1654) Deprecated in Mac OS X v10.6
Deprecated. Returns the position of the underlined character in the menu item title used as a
mnemonic.

– setMnemonicLocation: (page 1662) Deprecated in Mac OS X v10.6
Deprecated. Sets the character of the menu item title at location that is to be underlined.

Managing User Key Equivalents

+ setUsesUserKeyEquivalents: (page 1646)
Sets whether menu items conform to user preferences for key equivalents.

1644 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

+ usesUserKeyEquivalents (page 1647)
Returns a Boolean value that indicates whether menu items conform to user preferences for key
equivalents.

– userKeyEquivalent (page 1671)
Returns the user-assigned key equivalent for the receiver.

Managing Alternates

– setAlternate: (page 1656)
Marks the receiver as an alternate to the previous menu item.

– isAlternate (page 1650)
Returns a Boolean value that indicates whether the receiver is an alternate to the previous menu item.

Managing Indentation Levels

– setIndentationLevel: (page 1660)
Sets the menu item indentation level for the receiver.

– indentationLevel (page 1649)
Returns the menu item indentation level for the receiver.

Managing Tool Tips

– setToolTip: (page 1668)
Sets a help tag for a menu item.

– toolTip (page 1671)
Returns the help tag for a menu item.

Representing an Object

– setRepresentedObject: (page 1664)
Sets the object represented by the receiver.

– representedObject (page 1655)
Returns the object that the receiving menu item represents.

Managing the View

– setView: (page 1668)
Sets the content view for the receiver.

– view (page 1672)
Returns the view for the receiver.

Tasks 1645
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Getting Highlighted Status

– isHighlighted (page 1651)
Returns a Boolean value that indicates whether the receiver should be drawn highlighted.

Class Methods

separatorItem
Returns a menu item that is used to separate logical groups of menu commands.

+ (NSMenuItem *)separatorItem

Return Value
A menu item that is used to separate logical groups of menu commands.

Discussion
This menu item is disabled. The default separator item is blank space.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isSeparatorItem (page 1651)
– setEnabled: (page 1658)

Related Sample Code
DesktopImage
MenuMadness
QTAudioContextInsert
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit

Declared In
NSMenuItem.h

setUsesUserKeyEquivalents:
Sets whether menu items conform to user preferences for key equivalents.

+ (void)setUsesUserKeyEquivalents:(BOOL)flag

Parameters
flag

If YES, menu items conform to user preferences for key equivalents; otherwise, the key equivalents
originally assigned to the menu items are used.

Availability
Available in Mac OS X v10.0 and later.

1646 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

See Also
+ usesUserKeyEquivalents (page 1647)
– userKeyEquivalent (page 1671)

Declared In
NSMenuItem.h

usesUserKeyEquivalents
Returns a Boolean value that indicates whether menu items conform to user preferences for key equivalents.

+ (BOOL)usesUserKeyEquivalents

Return Value
YES if menu items conform to user preferences for key equivalents, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setUsesUserKeyEquivalents: (page 1646)
– userKeyEquivalent (page 1671)

Declared In
NSMenuItem.h

Instance Methods

action
Returns the receiver’s action-method selector.

- (SEL)action

Return Value
The receiver’s action-method selector.

Availability
Available in Mac OS X v10.0 and later.

See Also
– target (page 1670)
– setAction: (page 1656)

Related Sample Code
EnhancedAudioBurn
QTKitPlayer
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility
Sketch-112

Instance Methods 1647
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Declared In
NSMenuItem.h

attributedTitle
Returns the custom title string for a menu item.

- (NSAttributedString *)attributedTitle

Return Value
The custom title string for a menu item.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAttributedTitle: (page 1657)
– title (page 1671)

Declared In
NSMenuItem.h

hasSubmenu
Returns a Boolean value that indicates whether the receiver has a submenu.

- (BOOL)hasSubmenu

Return Value
YES if the receiver has a submenu, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSubmenu:forItem: (page 1632) (NSMenu)

Declared In
NSMenuItem.h

image
Returns the image displayed by the receiver.

- (NSImage *)image

Return Value
The image displayed by the receiver, or nil if it displays no image.

Availability
Available in Mac OS X v10.0 and later.

1648 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

See Also
– setImage: (page 1659)

Declared In
NSMenuItem.h

indentationLevel
Returns the menu item indentation level for the receiver.

- (NSInteger)indentationLevel

Discussion
The return value is from 0 to 15. The default indentation level is 0.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setIndentationLevel: (page 1660)

Declared In
NSMenuItem.h

initWithTitle:action:keyEquivalent:
Returns an initialized instance of an NSMenuItem.

- (id)initWithTitle:(NSString *)itemName
action:(SEL)anAction
keyEquivalent:(NSString *)charCode

Parameters
itemName

The title of the menu item. This value must not be nil (if there is no title, specify an empty NSString).

anAction
The action selector to be associated with the menu item. This value must be a valid selector or NULL.

charCode
A string representing a keyboard key to be used as the key equivalent. This value must not be nil
(if there is no key equivalent, specify an empty NSString).

Return Value
An instance of NSMenuItem, or nil if the object couldn't be created.

Discussion
For instances of the NSMenuItem class, the default initial state is NSOffState, the default on-state image
is a check mark, and the default mixed-state image is a dash.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DesktopImage

Instance Methods 1649
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

MenuItemView
MenuMadness
PDFKitLinker2
SearchField

Declared In
NSMenuItem.h

isAlternate
Returns a Boolean value that indicates whether the receiver is an alternate to the previous menu item.

- (BOOL)isAlternate

Return Value
YES if the receiver is an alternate to the previous menu item, otherwise NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAlternate: (page 1656)

Declared In
NSMenuItem.h

isEnabled
Returns a Boolean value that indicates whether the receiver is enabled.

- (BOOL)isEnabled

Return Value
YES if the receiver is enabled, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEnabled: (page 1658)

Related Sample Code
QTAudioContextInsert

Declared In
NSMenuItem.h

isHidden
Returns a Boolean value that indicates whether the receiver is hidden.

1650 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

- (BOOL)isHidden

Return Value
YES if the receiver is hidden, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setHidden: (page 1659)
– isHiddenOrHasHiddenAncestor (page 1651)

Declared In
NSMenuItem.h

isHiddenOrHasHiddenAncestor
Returns a Boolean value that indicates whether the receiver or any of its superitems is hidden.

- (BOOL)isHiddenOrHasHiddenAncestor

Return Value
YES if the receiver or any of its superitems is hidden, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setHidden: (page 1659)
– isHidden (page 1650)

Declared In
NSMenuItem.h

isHighlighted
Returns a Boolean value that indicates whether the receiver should be drawn highlighted.

- (BOOL)isHighlighted

Return Value
YES if the receiver should be drawn highlighted, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMenuItem.h

isSeparatorItem
Returns a Boolean value that indicates whether the receiver is a separator item.

Instance Methods 1651
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

- (BOOL)isSeparatorItem

Return Value
YES if the receiver is a separator item (that is, a menu item used to visually segregate related menu items),
otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenuItem.h

keyEquivalent
Returns the receiver’s unmodified keyboard equivalent.

- (NSString *)keyEquivalent

Return Value
The receiver’s unmodified keyboard equivalent, or the empty string if one hasn’t been defined.

Discussion
Use keyEquivalentModifierMask (page 1652) to determine the modifier mask for the key equivalent.

Availability
Available in Mac OS X v10.0 and later.

See Also
– userKeyEquivalent (page 1671)
– mnemonic (page 1653)
– setKeyEquivalent: (page 1660)

Declared In
NSMenuItem.h

keyEquivalentModifierMask
Returns the receiver’s keyboard equivalent modifier mask.

- (NSUInteger)keyEquivalentModifierMask

Availability
Available in Mac OS X v10.0 and later.

See Also
– setKeyEquivalentModifierMask: (page 1661)

Declared In
NSMenuItem.h

1652 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

menu
Returns the menu to which the receiver belongs.

- (NSMenu *)menu

Return Value
The menu to which the receiver belongs, or nil if no menu has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMenu: (page 1661)

Related Sample Code
WhackedTV

Declared In
NSMenuItem.h

mixedStateImage
Returns the image used to depict a “mixed state.”

- (NSImage *)mixedStateImage

Return Value
The image used to depict a “mixed state.”

Discussion
A mixed state is useful for indicating a mix of “off” and “on” attribute values in a group of selected objects,
such as a selection of text containing boldface and plain (non-boldface) words. By default this is a horizontal
line.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMixedStateImage: (page 1662)

Declared In
NSMenuItem.h

mnemonic
Deprecated. Returns the character in the menu item title that appears underlined for use as a mnemonic.
(Deprecated in Mac OS X v10.6.)

- (NSString *)mnemonic

Discussion
If there is no mnemonic character, returns an empty string.

Instance Methods 1653
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setTitleWithMnemonic: (page 1667)

Declared In
NSMenuItem.h

mnemonicLocation
Deprecated. Returns the position of the underlined character in the menu item title used as a mnemonic.
(Deprecated in Mac OS X v10.6.)

- (NSUInteger)mnemonicLocation

Discussion
The position is the zero-based index of that character in the title string. If the receiver has no mnemonic
character, returns NSNotFound.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setMnemonicLocation: (page 1662)

Declared In
NSMenuItem.h

offStateImage
Returns the image used to depict the receiver’s “off” state.

- (NSImage *)offStateImage

Return Value
The image used to depict the receiver’s “off” state, or nil if the image has not been set.

Discussion
By default there is no off-state image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOffStateImage: (page 1663)

Declared In
NSMenuItem.h

1654 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

onStateImage
Returns the image used to depict the receiver’s “on” state.

- (NSImage *)onStateImage

Return Value
The image used to depict the receiver’s “on” state, or nil if the image has not been set.

Discussion
By default this image is a check mark.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOnStateImage: (page 1663)

Declared In
NSMenuItem.h

parentItem
Returns the menu item whose submenu contains the receiver.

- (NSMenuItem *)parentItem

Return Value
The parent menu item, or nil if the receiver does not have a parent item.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSMenuItem.h

representedObject
Returns the object that the receiving menu item represents.

- (id)representedObject

Discussion
For example, you might have a menu list the names of views that are swapped into the same panel. The
represented objects would be the appropriate NSView objects. The user would then be able to switch back
and forth between the different views that are displayed by selecting the various menu items.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tag (page 1670)
– setRepresentedObject: (page 1664)

Instance Methods 1655
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Related Sample Code
DesktopImage
OutputBins2PDE
QTAudioContextInsert
QTAudioExtractionPanel
UIElementInspector

Declared In
NSMenuItem.h

setAction:
Sets the receiver’s action-method selector.

- (void)setAction:(SEL)aSelector

Parameters
aSelector

A selector identifying the action method.

Discussion
See Action Messages for additional information on action messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTarget: (page 1666)
– action (page 1647)

Related Sample Code
MenuMadness
NumberInput_IMKit_Sample
Quartz Composer WWDC 2005 TextEdit
UIElementInspector

Declared In
NSMenuItem.h

setAlternate:
Marks the receiver as an alternate to the previous menu item.

- (void)setAlternate:(BOOL)isAlternate

Parameters
isAlternate

YES if the receiver is an alternate to the previous menu item, NO otherwise.

1656 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Discussion
If the receiver has the same key equivalent as the previous item, but has different key equivalent modifiers,
the items are folded into a single visible item and the appropriate item shows while tracking the menu,
depending on what modifier key (if any) is pressed. The menu items may also have no key equivalent as long
as the key equivalent modifiers are different.

Consider the following example: menuItem1 and menuItem2 are menu items in the same menu, with
menuItem1 above menuItem2:

[menuItem1 setTitle:@"One"];
[menuItem1 setKeyEquivalent:@"t"];

[menuItem2 setTitle:@"Two"];
[menuItem2 setKeyEquivalent:@"T"];
[menuItem2 setAlternate:YES];

When the menu is displayed, it shows only menuItem1 (with title “One”) instead of two menu items. If the
user presses the Shift key while the menu is displayed, menuItem2 (with title “Two”) replaces “One”.

If there are two or more items with no key equivalent but different modifiers, then the only way to get access
to the alternate items is with the mouse. In the following example,“Two” is shown only if the user presses
the Alternate key.

[menuItem1 setKeyEquivalent:@""];
[menuItem1 setTitle:@"One"];

[menuItem2 setKeyEquivalent:@""];
[menuItem2 setKeyEquivalentModifierMask:NSAlternateKeyMask];
[menuItem2 setTitle:@"Two"];

If you mark items as alternates but their key equivalents don’t match, they might be displayed as separate
items. Marking the first item as an alternate has no effect.

The isAlternate value is archived.

Availability
Available in Mac OS X v10.3 and later.

See Also
– isAlternate (page 1650)

Declared In
NSMenuItem.h

setAttributedTitle:
Specifies a custom string for a menu item.

- (void)setAttributedTitle:(NSAttributedString *)string

Parameters
string

An attributed string to use as the receiver's title.

Instance Methods 1657
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Discussion
You can use this method to add styled text and embedded images to menu item strings. If you do not set a
text color for the attributed string, it is black when not selected, white when selected, and gray when disabled.
Colored text remains unchanged when selected.

When you call this method to set the menu title to an attributed string, the setTitle: (page 1667) method
is also called to set the menu title with a plain string. If you clear the attributed title, the plain title remains
unchanged. To clear the attributed title, set the attributed string to either nil or an empty attributed string
([attrStr length] == 0).

The attributed string is not archived in the old nib format.

Availability
Available in Mac OS X v10.3 and later.

See Also
– attributedTitle (page 1648)
– setTitle: (page 1667)

Declared In
NSMenuItem.h

setEnabled:
Sets whether the receiver is enabled

- (void)setEnabled:(BOOL)flag

Parameters
flag

YES if the receiver is to be enabled, otherwise NO.

Discussion
This method has no effect unless the menu in which the item will be added or is already a part of has been
sent setAutoenablesItems:NO. If a menu item is disabled, its keyboard equivalent is also disabled. See
the NSMenuValidation informal protocol specification for cautions regarding this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEnabled (page 1650)

Related Sample Code
DeskPictAppDockMenu
DragNDropOutlineView
MenuItemView
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit

Declared In
NSMenuItem.h

1658 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

setHidden:
Sets whether the receiver is hidden.

- (void)setHidden:(BOOL)hidden

Parameters
hidden

YES if the receiver is to be hidden, otherwise NO.

Discussion
Hidden menu items (or items with a hidden superitem) do not appear in a menu and do not participate in
command key matching.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isHidden (page 1650)
– isHiddenOrHasHiddenAncestor (page 1651)

Declared In
NSMenuItem.h

setImage:
Sets the receiver’s image.

- (void)setImage:(NSImage *)menuImage

Parameters
menuImage

An NSImage object representing an image to be displayed in the menu item. If menuImage is nil,
the current image (if any) is removed.

Discussion
The menu item's image is not affected by changes in its state.

Availability
Available in Mac OS X v10.0 and later.

See Also
– image (page 1648)

Related Sample Code
ButtonMadness
DesktopImage
MenuItemView
MenuMadness
SourceView

Declared In
NSMenuItem.h

Instance Methods 1659
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

setIndentationLevel:
Sets the menu item indentation level for the receiver.

- (void)setIndentationLevel:(NSInteger)indentationLevel

Parameters
indentationLevel

The value for indentationLevel may be from 0 to 15. If indentationLevel is greater than 15,
the value is pinned to the maximum. If indentationLevel is less than 0, an exception is raised. The
default indentation level is 0.

Discussion
The indentationLevel value is archived.

Availability
Available in Mac OS X v10.3 and later.

See Also
– indentationLevel (page 1649)

Declared In
NSMenuItem.h

setKeyEquivalent:
Sets the receiver’s unmodified key equivalent.

- (void)setKeyEquivalent:(NSString *)aString

Parameters
aString

A string containing a character code representing a keyboard key. If you want to remove the key
equivalent from a menu item, pass an empty string (@"") for aString (never pass nil).

Discussion
This method considers the case of the letter passed to determine if it has a Shift modifier added. That is,
[item setKeyEquivalent:@"w"] sets the key equivalent to Command-w, while [item
setKeyEquivalent:@"W"] is Command-Shift-w. You use setKeyEquivalentModifierMask: (page 1661)
to set the appropriate mask for the modifier keys for the key equivalent.

If you want to specify the Backspace key as the key equivalent for a menu item, use a single character string
with NSBackspaceCharacter (page 2752) (defined in NSText.h as 0x08) and for the Forward Delete key,
use NSDeleteCharacter (page 2752) (defined in NSText.h as 0x7F). Note that these are not the same
characters you get from an NSEvent key-down event when pressing those keys.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMnemonicLocation: (page 1662)
– keyEquivalent (page 1652)

Related Sample Code
CocoaDVDPlayer

1660 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Declared In
NSMenuItem.h

setKeyEquivalentModifierMask:
Sets the receiver’s keyboard equivalent modifiers.

- (void)setKeyEquivalentModifierMask:(NSUInteger)mask

Parameters
mask

The key masks indicate modifiers such as the Shift or Option keys. mask is an integer bit field containing
any of these modifier key masks, combined using the C bitwise OR operator:

NSShiftKeyMask

NSAlternateKeyMask

NSCommandKeyMask

NSControlKeyMask

Discussion
In general, you are strongly encouraged to always set NSCommandKeyMask in mask, although there may be
some conventions where this is not required. For example, in an application that plays media, the Play
command may be mapped to just “ ” (space), without the command key. You can do this with the following
code:

[menuItem setKeyEquivalent:@" "];
[menuItem setKeyEquivalentModifierMask:0];

NSShiftKeyMask is a valid modifier for any key equivalent in mask. This allows you to specify key-equivalents
such as Command-Shift-1 that are consistent across all keyboards. However, with a few exceptions (such as
the German “ß” character), a lowercase character with NSShiftKeyMask is interpreted the same as the
uppercase character without that mask. For example, Command-Shift-c and Command-C are considered to
be identical key equivalents.

See the NSEvent class specification for more information about modifier mask values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyEquivalentModifierMask (page 1652)

Related Sample Code
MenuMadness

Declared In
NSMenuItem.h

setMenu:
Sets the receiver’s menu.

- (void)setMenu:(NSMenu *)aMenu

Instance Methods 1661
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Parameters
aMenu

The menu object that "owns" the receiver.

Discussion
This method is invoked by the owning NSMenu object when the receiver is added or removed. You shouldn’t
have to invoke this method in your own code, although it can be overridden to provide specialized behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– menu (page 1653)

Declared In
NSMenuItem.h

setMixedStateImage:
Sets the image of the receiver that indicates a “mixed” state, that is, a state neither “on” nor “off.”

- (void)setMixedStateImage:(NSImage *)itemImage

Parameters
itemImage

The NSImage object to use for the "mixed" state of the menu item. If itemImage is nil, any current
mixed-state image is removed.

Discussion
Changing state images is currently unsupported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mixedStateImage (page 1653)
– setOffStateImage: (page 1663)
– setOnStateImage: (page 1663)
– setState: (page 1665)

Related Sample Code
MenuItemView

Declared In
NSMenuItem.h

setMnemonicLocation:
Deprecated. Sets the character of the menu item title at location that is to be underlined. (Deprecated in Mac
OS X v10.6.)

- (void)setMnemonicLocation:(NSUInteger)location

1662 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Parameters
location

An integer index into the character array of the title. location must be from 0 to 254.

Discussion
This character identifies the access key by which users can access the menu item.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– mnemonicLocation (page 1654)

Declared In
NSMenuItem.h

setOffStateImage:
Sets the image of the receiver that indicates an “off” state.

- (void)setOffStateImage:(NSImage *)itemImage

Parameters
itemImage

The NSImage object to use for the "off" state of the menu item. If itemImage is nil, any current
off-state image is removed.

Discussion
Changing state images is currently unsupported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– offStateImage (page 1654)
– setMixedStateImage: (page 1662)
– setOffStateImage: (page 1663)
– setState: (page 1665)

Declared In
NSMenuItem.h

setOnStateImage:
Sets the image of the receiver that indicates an “on” state.

- (void)setOnStateImage:(NSImage *)itemImage

Parameters
itemImage

The NSImage object to use for the "on" state of the menu item. If itemImage is nil, any current
on-state image is removed.

Instance Methods 1663
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Discussion
Changing state images is currently unsupported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– onStateImage (page 1655)
– setMixedStateImage: (page 1662)
– setOffStateImage: (page 1663)
– setState: (page 1665)

Related Sample Code
MenuItemView
MenuMadness

Declared In
NSMenuItem.h

setRepresentedObject:
Sets the object represented by the receiver.

- (void)setRepresentedObject:(id)anObject

Parameters
anObject

The object to be represented by the receiver.

Discussion
By setting a represented object for a menu item, you make an association between the menu item and that
object. The represented object functions as a more specific form of tag that allows you to associate any
object, not just an arbitrary integer, with the items in a menu.

For example, an NSView object might be associated with a menu item—when the user chooses the menu
item, the represented object is fetched and displayed in a panel. Several menu items might control the display
of multiple views in the same panel.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTag: (page 1666)
– representedObject (page 1655)

Related Sample Code
DeskPictAppDockMenu
DesktopImage
QTAudioContextInsert
QTAudioExtractionPanel
UIElementInspector

1664 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Declared In
NSMenuItem.h

setState:
Sets the state of the receiver.

- (void)setState:(NSInteger)itemState

Parameters
itemState

An integer constant representing a state; it should be one of NSOffState, NSOnState, or
NSMixedState.

Discussion
The image associated with the new state is displayed to the left of the menu item.

Availability
Available in Mac OS X v10.0 and later.

See Also
– state (page 1669)
– setMixedStateImage: (page 1662)
– setOffStateImage: (page 1663)
– setOnStateImage: (page 1663)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer
Sketch-112

Declared In
NSMenuItem.h

setSubmenu:
Sets the submenu of the receiver.

- (void)setSubmenu:(NSMenu *)aSubmenu

Parameters
aSubmenu

The menu object to set as submenu.

Discussion
The default implementation of the NSMenuItem class raises an exception if aSubmenu already has a supermenu.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1665
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

See Also
– submenu (page 1669)
– hasSubmenu (page 1648)

Related Sample Code
MenuItemView
MenuMadness
PDFKitLinker2
ToolbarSample
UIElementInspector

Declared In
NSMenuItem.h

setTag:
Sets the receiver’s tag.

- (void)setTag:(NSInteger)anInt

Parameters
anInt

An integer tag to associate with the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRepresentedObject: (page 1664)
– tag (page 1670)

Related Sample Code
MenuMadness
QTAudioContextInsert
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit
SearchField

Declared In
NSMenuItem.h

setTarget:
Sets the receiver’s target.

- (void)setTarget:(id)anObject

Parameters
anObject

An object to be the target of action messages sent by the receiver.

1666 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAction: (page 1656)
– target (page 1670)

Related Sample Code
MenuItemView
MenuMadness
PDFKitLinker2
Quartz Composer WWDC 2005 TextEdit
ScannerBrowser

Declared In
NSMenuItem.h

setTitle:
Sets the receiver’s title.

- (void)setTitle:(NSString *)aString

Parameters
aString

The new title of the menu item. If you do not want a title, use an empty string (@""), not nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 1671)
– setAttributedTitle: (page 1657)

Related Sample Code
CocoaDVDPlayer
ColorMatching
FunHouse
QTAudioExtractionPanel
Sketch+Accessibility

Declared In
NSMenuItem.h

setTitleWithMnemonic:
Deprecated. Sets the title of a menu item with a character denoting an access key.

- (void)setTitleWithMnemonic:(NSString *)aString

Instance Methods 1667
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Discussion
Use an ampersand character to mark the character (the one following the ampersand) to be designated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mnemonic (page 1653)
– setMnemonicLocation: (page 1662)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSMenuItem.h

setToolTip:
Sets a help tag for a menu item.

- (void)setToolTip:(NSString *)toolTip

Parameters
toolTip

A short string that describes the menu item.

Discussion
You can invoke this method for any menu item, including items in the main menu bar. This string is not
archived in the old nib format.

Availability
Available in Mac OS X v10.3 and later.

See Also
– toolTip (page 1671)

Declared In
NSMenuItem.h

setView:
Sets the content view for the receiver.

- (void)setView:(NSView *)view

Parameters
view

The content view for the receiver.

Discussion
A menu item with a view does not draw its title, state, font, or other standard drawing attributes, and assigns
drawing responsibility entirely to the view. Keyboard equivalents and type-select continue to use the key
equivalent and title as normal. For more details, see Application Menu and Pop-up List Programming Topics.

1668 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– view (page 1672)

Related Sample Code
MenuItemView

Declared In
NSMenuItem.h

state
Returns the state of the receiver.

- (NSInteger)state

Return Value
The state of the receiver—one of NSOffState (the default), NSOnState, or NSMixedState.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setState: (page 1665)

Declared In
NSMenuItem.h

submenu
Returns the submenu associated with the receiving menu item.

- (NSMenu *)submenu

Return Value
The submenu associated with the receiving menu item, or nil if no submenu is associated with it.

Discussion
If the receiver responds YES to hasSubmenu (page 1648), the submenu is returned.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasSubmenu (page 1648)
– setSubmenu: (page 1665)

Related Sample Code
EnhancedAudioBurn

Instance Methods 1669
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Declared In
NSMenuItem.h

tag
Returns the receiver’s tag.

- (NSInteger)tag

Return Value
The receiver’s tag.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representedObject (page 1655)
– setTag: (page 1666)

Related Sample Code
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit
ThreadsExporter
ThreadsImporter
ThreadsImportMovie

Declared In
NSMenuItem.h

target
Returns the receiver’s target.

- (id)target

Return Value
The receiver’s target.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 1647)
– setTarget: (page 1666)

Related Sample Code
DeskPictAppDockMenu
EnhancedDataBurn

Declared In
NSMenuItem.h

1670 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

title
Returns the receiver’s title.

- (NSString *)title

Return Value
The receiver’s title.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 1667)

Related Sample Code
EnhancedAudioBurn
WhackedTV

Declared In
NSMenuItem.h

toolTip
Returns the help tag for a menu item.

- (NSString *)toolTip

Availability
Available in Mac OS X v10.3 and later.

See Also
– setToolTip: (page 1668)

Declared In
NSMenuItem.h

userKeyEquivalent
Returns the user-assigned key equivalent for the receiver.

- (NSString *)userKeyEquivalent

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyEquivalent (page 1652)

Declared In
NSMenuItem.h

Instance Methods 1671
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

view
Returns the view for the receiver.

- (NSView *)view

Return Value
The view for the receiver.

Discussion
By default, a menu item has a nil view.

See setView: (page 1668) for more details.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setView: (page 1668)

Declared In
NSMenuItem.h

1672 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 70

NSMenuItem Class Reference

Inherits from NSButtonCell : NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSMenuItemCell.h

Companion guide Application Menu and Pop-up List Programming Topics

Overview

NSMenuItemCell is a class that handles the measurement and display of a single menu item in its
encompassing frame. Instances of NSMenuItemCell work in conjunction with an NSMenuView object to
control the overall appearance of the menu.

Note: NSMenuItemCell is no longer used to draw menus. Using it will not affect the appearance of your
menus.

Tasks

Configuring Menu-Item Attributes

– menuItem (page 1679)
Returns the NSMenuItem object associated with the receiver.

– setMenuItem: (page 1681)
Sets the NSMenuItem object associated withthe receive.

– menuView (page 1680)
Returns the menu view associated with the receiver.

– setMenuView: (page 1681)
Sets the menu view for the receiver.

Overview 1673
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

Calculating the Size of a Menu Item

– calcSize (page 1675)
Calculates the minimum required width and height of the receiver’s menu item.

– needsSizing (page 1680)
Returns YES if the size of the menu item needs to be calculated; otherwise returns NO.

– setNeedsSizing: (page 1682)
Sets a flag that indicates whether or not the menu item must be resized.

– imageWidth (page 1678)
Returns the width of the image associated with a menu item.

– titleWidth (page 1684)
Returns the width of the menu item text.

– keyEquivalentWidth (page 1679)
Returns the width of the key equivalent associated with the menu item.

– stateImageWidth (page 1683)
Returns the width of the image used to indicate the state of the menu item.

Getting the Menu Item’s Drawing Rectangle

– keyEquivalentRectForBounds: (page 1679)
Returns the rectangle into which the menu item’s key equivalent should be drawn.

– stateImageRectForBounds: (page 1682)
Returns the rectangle into which the menu item’s state image should be drawn.

– titleRectForBounds: (page 1683)
Returns the rectangle into which the menu item’s title should be drawn.

Drawing the Menu Item

– drawBorderAndBackgroundWithFrame:inView: (page 1675)
Draws the borders and background associated with the receiver’s menu item (if any).

– drawImageWithFrame:inView: (page 1676)
Draws the image associated with the menu item.

– drawKeyEquivalentWithFrame:inView: (page 1676)
Draws the key equivalent associated with the menu item.

– drawSeparatorItemWithFrame:inView: (page 1677)
Draws a menu item separator.

– drawStateImageWithFrame:inView: (page 1677)
Draws the state image associated with the menu item.

– drawTitleWithFrame:inView: (page 1678)
Draws the title associated with the menu item.

– needsDisplay (page 1680)
Returns YES if the menu item needs to be displayed; otherwise returns NO.

1674 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

– setNeedsDisplay: (page 1681)
Sets whether the menu item needs to be drawn.

Assigning a Tag

– tag (page 1683)
Returns the integer tag of the selected menu item, or 0 if no item is selected.

Instance Methods

calcSize
Calculates the minimum required width and height of the receiver’s menu item.

- (void)calcSize

Discussion
The calculated values are cached for future use. This method also calculates the sizes of individual components
of the cell’s menu item and caches those values.

This method is invoked automatically when necessary. You should not need to invoke it directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– needsSizing (page 1680)

Declared In
NSMenuItemCell.h

drawBorderAndBackgroundWithFrame:inView:
Draws the borders and background associated with the receiver’s menu item (if any).

- (void)drawBorderAndBackgroundWithFrame:(NSRect)cellFrame inView:(NSView
*)controlView

Parameters
cellFrame

A rectangle defining the receiver's frame area.

controlView
The view object that contains this cell (usually an NSControl object).

Discussion
This method invokes the NSCell method imageRectForBounds: (page 563), passing it cellFrame, to
calculate the rectangle in which to draw the image. The cell invokes this method before invoking the methods
to draw the other menu item components.

Instance Methods 1675
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawWithFrame:inView: (page 554) (NSCell)

Declared In
NSMenuItemCell.h

drawImageWithFrame:inView:
Draws the image associated with the menu item.

- (void)drawImageWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Parameters
cellFrame

A rectangle defining the receiver's frame area.

controlView
The view object that contains this cell (usually an NSControl object).

Discussion
This method invokes the NSCell method imageRectForBounds: (page 563), passing it cellFrame, to
calculate the rectangle in which to draw the image. This method is invoked by the cell’s drawWithFrame:
method. You should not need to invoke it directly. Subclasses may override this method to control the
drawing of the image.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenuItemCell.h

drawKeyEquivalentWithFrame:inView:
Draws the key equivalent associated with the menu item.

- (void)drawKeyEquivalentWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Parameters
cellFrame

A rectangle defining the receiver's frame area.

controlView
The view object that contains this cell (usually an NSControl object).

Discussion
This method invokes keyEquivalentRectForBounds: (page 1679), passing it cellFrame, to calculate the
rectangle in which to draw the key equivalent. This method is invoked by the cell’s drawWithFrame:method.
You should not need to invoke it directly. Subclasses may override this method to control the drawing of
the key equivalent.

Availability
Available in Mac OS X v10.0 and later.

1676 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

Declared In
NSMenuItemCell.h

drawSeparatorItemWithFrame:inView:
Draws a menu item separator.

- (void)drawSeparatorItemWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Parameters
cellFrame

A rectangle defining the receiver's frame area.

controlView
The view object that contains this cell (usually an NSControl object).

Discussion
This method uses the cellFrame parameter to calculate the rectangle in which to draw the menu item
separator. This method uses the controlView to determine whether the separator item should be drawn
normally or flipped.

You should not need to invoke this method directly. Subclasses may override this method to control the
drawing of the separator.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawKeyEquivalentWithFrame:inView: (page 1676)
– drawTitleWithFrame:inView: (page 1678)
– isFlipped (page 3181) (NSView)

Declared In
NSMenuItemCell.h

drawStateImageWithFrame:inView:
Draws the state image associated with the menu item.

- (void)drawStateImageWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Parameters
cellFrame

A rectangle defining the receiver's frame area.

controlView
The view object that contains this cell (usually an NSControl object).

Discussion
This method invokes stateImageRectForBounds: (page 1682), passing it cellFrame, to calculate the
rectangle in which to draw the state image. This method is invoked by the cell’s drawWithFrame: method.
You should not need to invoke it directly. Subclasses may override this method to control the drawing of
the state image.

Instance Methods 1677
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenuItemCell.h

drawTitleWithFrame:inView:
Draws the title associated with the menu item.

- (void)drawTitleWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Parameters
cellFrame

A rectangle defining the receiver's frame area.

controlView
The view object that contains this cell (usually an NSControl object).

Discussion
This method invokes titleRectForBounds: (page 1683), passing it cellFrame, to calculate the rectangle
in which to draw the title. The controlView parameter specifies the view that contains this cell.This method
is invoked by the cell’s drawWithFrame: method. You should not need to invoke it directly. Subclasses may
override this method to control the drawing of the title.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSMenuItemCell.h

imageWidth
Returns the width of the image associated with a menu item.

- (CGFloat)imageWidth

Discussion
You can associate an image with a menu item using the NSMenuItem setImage: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– stateImageWidth (page 1683)
– calcSize (page 1675)
– needsSizing (page 1680)

Declared In
NSMenuItemCell.h

1678 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

keyEquivalentRectForBounds:
Returns the rectangle into which the menu item’s key equivalent should be drawn.

- (NSRect)keyEquivalentRectForBounds:(NSRect)cellFrame

Parameters
cellFrame

A rectangle that defines the bounds of the receiver.

Return Value
The returned rectangle is based on cellFrame but encompasses only the area to be occupied by the key
equivalent.

Availability
Available in Mac OS X v10.0 and later.

See Also
– keyEquivalent (NSMenuItem)
– stateImageRectForBounds: (page 1682)
– titleRectForBounds: (page 1683)
– keyEquivalentRectForBounds: (page 1679)

Declared In
NSMenuItemCell.h

keyEquivalentWidth
Returns the width of the key equivalent associated with the menu item.

- (CGFloat)keyEquivalentWidth

Discussion
You can associate a key equivalent with a menu item using the NSMenuItem method setKeyEquivalent:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– calcSize (page 1675)
– needsSizing (page 1680)

Declared In
NSMenuItemCell.h

menuItem
Returns the NSMenuItem object associated with the receiver.

- (NSMenuItem *)menuItem

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1679
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

See Also
– setMenuItem: (page 1681)

Declared In
NSMenuItemCell.h

menuView
Returns the menu view associated with the receiver.

- (NSMenuView *)menuView

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setMenuView: (page 1681)

Declared In
NSMenuItemCell.h

needsDisplay
Returns YES if the menu item needs to be displayed; otherwise returns NO.

- (BOOL)needsDisplay

Availability
Available in Mac OS X v10.0 and later.

See Also
– setNeedsDisplay: (page 1681)

Declared In
NSMenuItemCell.h

needsSizing
Returns YES if the size of the menu item needs to be calculated; otherwise returns NO.

- (BOOL)needsSizing

Availability
Available in Mac OS X v10.0 and later.

See Also
– setNeedsSizing: (page 1682)
– calcSize (page 1675)

1680 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

Declared In
NSMenuItemCell.h

setMenuItem:
Sets the NSMenuItem object associated withthe receive.

- (void)setMenuItem:(NSMenuItem *)item

Parameters
item

The NSMenuItem object to set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– menuItem (page 1679)

Declared In
NSMenuItemCell.h

setMenuView:
Sets the menu view for the receiver.

- (void)setMenuView:(NSMenuView *)menuView

Parameters
menuView

The NSMenuView object to associate with the receiver.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– menuView (page 1680)

Declared In
NSMenuItemCell.h

setNeedsDisplay:
Sets whether the menu item needs to be drawn.

- (void)setNeedsDisplay:(BOOL)flag

Parameters
flag

YES if the menu item needs to be drawn, NO otherwise.

Instance Methods 1681
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– needsDisplay (page 1680)

Declared In
NSMenuItemCell.h

setNeedsSizing:
Sets a flag that indicates whether or not the menu item must be resized.

- (void)setNeedsSizing:(BOOL)flag

Parameters
flag

If flag is YES, the next attempt to obtain any size-related information from this menu item cell invokes
the calcSize (page 1675) method to recalculate the information. If flag is NO, the next attempt to
obtain size-related information returns the currently cached values.

Discussion
Subclasses that drastically change the way a menu item is drawn may need to invoke this method to recalculate
the menu item information. Other parts of your application should not need to invoke this method directly.
The cell invokes this method as necessary when the content of its menu item changes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– needsSizing (page 1680)

Declared In
NSMenuItemCell.h

stateImageRectForBounds:
Returns the rectangle into which the menu item’s state image should be drawn.

- (NSRect)stateImageRectForBounds:(NSRect)cellFrame

Parameters
cellFrame

A rectangle that defines the bounds of the receiver.

Return Value
The returned rectangle is based on cellFrame but encompasses only the area to be occupied by the menu
item’s state image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– stateImageRectForBounds: (page 1682)

1682 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

– titleRectForBounds: (page 1683)
– keyEquivalentRectForBounds: (page 1679)

Declared In
NSMenuItemCell.h

stateImageWidth
Returns the width of the image used to indicate the state of the menu item.

- (CGFloat)stateImageWidth

Discussion
If the menu item has multiple images associated with it (to indicate any of the available states: on, off, or
mixed), this method returns the width of the largest image. You can set the state images for a menu item
using the NSMenuItemmethods setOnStateImage:, setOffStateImage:, and setMixedStateImage:.

To change the state of the cell’s menu item, use the NSMenuItem method setState:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– calcSize (page 1675)
– needsSizing (page 1680)
– setState: (NSMenuItem)

Declared In
NSMenuItemCell.h

tag
Returns the integer tag of the selected menu item, or 0 if no item is selected.

- (NSInteger)tag

Discussion
Setting the tag value of an NSMenuItemCell object with setTag: (page 69) does nothing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTag: (page 69) (NSActionCell)

Declared In
NSMenuItemCell.h

titleRectForBounds:
Returns the rectangle into which the menu item’s title should be drawn.

Instance Methods 1683
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

- (NSRect)titleRectForBounds:(NSRect)cellFrame

Parameters
cellFrame

A rectangle that defines the bounds of the receiver.

Return Value
The returned rectangle is based on cellFrame but encompasses only the area to be occupied by the text
of the title.

Availability
Available in Mac OS X v10.0 and later.

See Also
– stateImageRectForBounds: (page 1682)
– titleRectForBounds: (page 1683)
– keyEquivalentRectForBounds: (page 1679)

Declared In
NSMenuItemCell.h

titleWidth
Returns the width of the menu item text.

- (CGFloat)titleWidth

Discussion
To set the menu item text, use NSMenuItem’s setTitle: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– calcSize (page 1675)
– needsSizing (page 1680)

Declared In
NSMenuItemCell.h

1684 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 71

NSMenuItemCell Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared in AppKit/NSMenuView.h

Companion guide Application Menu and Pop-up List Programming Topics

Overview

The NSMenuView class handles the display of menus on the user’s screen. A menu view displays its menu
either horizontally or vertically and allows the user to interact with the items of that menu, either to navigate
through hierarchical menus or to select a particular item.

Note: NSMenuView is deprecated and is no longer used to draw menus. Calling its methods will not affect
the appearance of your menus. Instead, use NSView customizations on an NSMenuItem.

Tasks

Initializing a Menu View

– initAsTearOff (page 1692)
Deprecated. Tear-off menus are not supported in Mac OS X.

– initWithFrame: (page 1693)
Initialized a newly allocated menu view with a specified frame rectangle.

Overview 1685
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

Managing Menu View Attributes

+ menuBarHeight (page 1688)
Returns the height of the menu bar.

– setMenu: (page 1700)
Sets the menu to be displayed in the receiver

– menu (page 1697)
Returns the menu object associated with this menu view.

– setHorizontal: (page 1700)
Sets the orientation of the menu.

– isHorizontal (page 1694)
Returns YES if the menu is displayed horizontally; such as for a menu bar, otherwise returns NO.

– setFont: (page 1699)
Sets the default font to use when drawing the menu text.

– font (page 1690)
Returns the default font used to draw the menu text.

– setHighlightedItemIndex: (page 1699)
Highlights the menu item at a specific location.

– highlightedItemIndex (page 1690)
Returns the index of the currently highlighted menu item, or –1 if no menu item in the menu is
highlighted.

– setMenuItemCell:forItemAtIndex: (page 1701)
Replaces the menu item cell at a specific location.

– menuItemCellForItemAtIndex: (page 1697)
Returns the menu item cell at the specified location.

– attachedMenuView (page 1689)
Returns the receiver’s attached menu view.

– isTornOff (page 1694)
Deprecated. Tear-off menus are not supported in Mac OS X.

– horizontalEdgePadding (page 1691)
Returns the amount of horizontal space used for padding menu item components.

– setHorizontalEdgePadding: (page 1700)
Sets the horizontal padding for menu item components.

– attachedMenu (page 1688) Deprecated in Mac OS X v10.2
Returns the menu object associated with this object’s attached menu view.

– isAttached (page 1693) Deprecated in Mac OS X v10.2
Returns YES if this menu is currently attached to its parent menu, NO otherwise.

Responding to Notifications

– itemChanged: (page 1695)
Marks the menu view as needing to be resized so changes in size resulting from a change in the menu
will be tracked.

1686 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

– itemAdded: (page 1694)
Creates a new menu item cell for the newly created item and marks the menu view as needing to be
resized.

– itemRemoved: (page 1695)
Removes the removed item’s menu item cell and marks the menu view as needing to be resized.

Working With Submenus

– detachSubmenu (page 1690)
Detaches the window associated with the currently visible submenu and removes any menu item
highlights.

– attachSubmenuForItemAtIndex: (page 1689)
Attaches the submenu associated with the menu item at index.

Calculating Menu Geometry

– update (page 1704)
Asks the associated menu object to update itself.

– setNeedsSizing: (page 1702)
Sets a flag that indicates whether the layout is invalid and needs resizing.

– needsSizing (page 1698)
Returns YES if the menu view needs to be resized due to changes in the menu object, NO otherwise.

– sizeToFit (page 1703)
Used internally by the menu view to cache information about the menu item geometry.

– stateImageOffset (page 1703)
Returns the offset to the space reserved for state images of this menu.

– stateImageWidth (page 1703)
Returns the maximum width of the state images used by this menu.

– imageAndTitleOffset (page 1691)
Returns the offset to the starting point of a menu item’s image and title section.

– imageAndTitleWidth (page 1691)
Returns the maximum width of a menu item’s image and title section.

– keyEquivalentOffset (page 1696)
Returns the beginning position of the menu’s key equivalent text.

– keyEquivalentWidth (page 1696)
Returns the width of the menu’s key equivalent text.

– innerRect (page 1693)
Returns the drawing rectangle for the menu contents.

– rectOfItemAtIndex: (page 1698)
Returns the drawing rectangle of the specified menu item.

– indexOfItemAtPoint: (page 1692)
Returns the index of the menu item underneath the specified or –1 if no menu item is underneath
that point.

Tasks 1687
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

– setNeedsDisplayForItemAtIndex: (page 1701)
Adds the region occupied by the menu item at a specific location to the menu view’s invalid region.

– setWindowFrameForAttachingToRect:onScreen:preferredEdge:popUpSelectedItem: (page
1702)

Causes the menu view to resize its window so its frame is the appropriate size to attach to a specified
rectangle within the screen.

– locationForSubmenu: (page 1696) Deprecated in Mac OS X v10.2
Returns the origin of the submenu view’s window.

Handling Events

– performActionWithHighlightingForItemAtIndex: (page 1698)
Uses the associated menu object to perform the action associated with the specified item when a
key equivalent is pressed.

– trackWithEvent: (page 1704)
Handles events sent to this menu view.

Class Methods

menuBarHeight
Returns the height of the menu bar.

+ (CGFloat)menuBarHeight

Discussion
This method is superseded in Mac OS X v10.4 by the NSMenu menuBarHeight (page 1622) instance method.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
NSMenuView.h

Instance Methods

attachedMenu
Returns the menu object associated with this object’s attached menu view.

- (NSMenu *)attachedMenu

Discussion
The attached menu view is the one associated with the currently visible submenu, if any.

1688 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– attachedMenuView (page 1689)
– isAttached (page 1693)

Declared In
NSMenuView.h

attachedMenuView
Returns the receiver’s attached menu view.

- (NSMenuView *)attachedMenuView

Discussion
The attached menu view is the one associated with the currently visible submenu, if any.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– attachedMenu (page 1688)
– detachSubmenu (page 1690)
– isAttached (page 1693)

Declared In
NSMenuView.h

attachSubmenuForItemAtIndex:
Attaches the submenu associated with the menu item at index.

- (void)attachSubmenuForItemAtIndex:(NSInteger)index

Discussion
This method prepares the submenu for display by positioning its window and ordering it to the front.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setWindowFrameForAttachingToRect:onScreen:preferredEdge:popUpSelectedItem: (page
1702)
– orderFront: (page 3351) (NSWindow)

Declared In
NSMenuView.h

Instance Methods 1689
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

detachSubmenu
Detaches the window associated with the currently visible submenu and removes any menu item highlights.

- (void)detachSubmenu

Discussion
If the submenu itself displays further submenus, this method detaches the windows associated with those
submenus as well.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– attachSubmenuForItemAtIndex: (page 1689)
– setHighlightedItemIndex: (page 1699)
– orderOut: (page 3352) (NSWindow)

Declared In
NSMenuView.h

font
Returns the default font used to draw the menu text.

- (NSFont *)font

Discussion
New items use this font by default, although the item’s menu item cell can use a different font.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setFont: (page 1699)

Declared In
NSMenuView.h

highlightedItemIndex
Returns the index of the currently highlighted menu item, or –1 if no menu item in the menu is highlighted.

- (NSInteger)highlightedItemIndex

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setHighlightedItemIndex: (page 1699)

1690 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

Declared In
NSMenuView.h

horizontalEdgePadding
Returns the amount of horizontal space used for padding menu item components.

- (CGFloat)horizontalEdgePadding

Discussion
The edge padding is added to the sides of each menu item component. This space is used to provide a visual
separation between components of the menu item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setHorizontalEdgePadding: (page 1700)

Declared In
NSMenuView.h

imageAndTitleOffset
Returns the offset to the starting point of a menu item’s image and title section.

- (CGFloat)imageAndTitleOffset

Discussion
The image and title section of a menu item displays an image, a title, or possibly both as a way to identify
the purpose of the menu item. The value returned by this method is used for all menu items of the menu.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 1703) to update
the menu view information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– imageAndTitleWidth (page 1691)
– stateImageOffset (page 1703)
– keyEquivalentOffset (page 1696)

Declared In
NSMenuView.h

imageAndTitleWidth
Returns the maximum width of a menu item’s image and title section.

Instance Methods 1691
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

- (CGFloat)imageAndTitleWidth

Discussion
The image and title section of a menu item displays an image, a title, or possibly both as a way to identify
the purpose of the menu item. The value returned by this method is used for all menu items of the menu.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 1703) to update
the menu view information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– imageAndTitleOffset (page 1691)
– stateImageWidth (page 1703)
– keyEquivalentWidth (page 1696)

Declared In
NSMenuView.h

indexOfItemAtPoint:
Returns the index of the menu item underneath the specified or –1 if no menu item is underneath that point.

- (NSInteger)indexOfItemAtPoint:(NSPoint)point

Discussion
This method considers the menu borders as part of the item when calculating whether point is in the menu
item rectangle. This method invokes the rectOfItemAtIndex: (page 1698) method to obtain the basic
rectangle for each menu item but may adjust that rectangle before testing.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– rectOfItemAtIndex: (page 1698)

Declared In
NSMenuView.h

initAsTearOff
Deprecated. Tear-off menus are not supported in Mac OS X.

- (id)initAsTearOff

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1692 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

Declared In
NSMenuView.h

initWithFrame:
Initialized a newly allocated menu view with a specified frame rectangle.

- (id)initWithFrame:(NSRect)frame

Discussion
This method is the designated initialization method for NSMenuView.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
NSMenuView.h

innerRect
Returns the drawing rectangle for the menu contents.

- (NSRect)innerRect

Discussion
This rectangle is different (typically smaller) from the view bounds in that it does not include the space used
to draw the menu borders.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– bounds (page 3150) (NSView)

Declared In
NSMenuView.h

isAttached
Returns YES if this menu is currently attached to its parent menu, NO otherwise.

- (BOOL)isAttached

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– attachedMenu (page 1688)

Instance Methods 1693
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

– attachedMenuView (page 1689)

Declared In
NSMenuView.h

isHorizontal
Returns YES if the menu is displayed horizontally; such as for a menu bar, otherwise returns NO.

- (BOOL)isHorizontal

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setHorizontal: (page 1700)

Declared In
NSMenuView.h

isTornOff
Deprecated. Tear-off menus are not supported in Mac OS X.

- (BOOL)isTornOff

Discussion
Returns YES if this menu view’s window is disassociated from its parent menu.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
NSMenuView.h

itemAdded:
Creates a new menu item cell for the newly created item and marks the menu view as needing to be resized.

- (void)itemAdded:(NSNotification *)notification

Discussion
This method is registered with the menu view’s associated NSMenu object for notifications of the type
NSMenuDidAddItemNotification (page 1637). The notification parameter contains the notification
data.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1694 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

See Also
– setNeedsSizing: (page 1702)

Declared In
NSMenuView.h

itemChanged:
Marks the menu view as needing to be resized so changes in size resulting from a change in the menu will
be tracked.

- (void)itemChanged:(NSNotification *)notification

Discussion
This method is registered with the menu view’s associated NSMenu object for notifications of the type
NSMenuDidChangeItemNotification (page 1637). The notificationparameter contains the notification
data.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setNeedsSizing: (page 1702)

Declared In
NSMenuView.h

itemRemoved:
Removes the removed item’s menu item cell and marks the menu view as needing to be resized.

- (void)itemRemoved:(NSNotification *)notification

Discussion
This method is registered with the menu view’s associated NSMenu object for notifications of the type
NSMenuDidRemoveItemNotification (page 1638). The notificationparameter contains the notification
data.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setNeedsSizing: (page 1702)

Declared In
NSMenuView.h

Instance Methods 1695
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

keyEquivalentOffset
Returns the beginning position of the menu’s key equivalent text.

- (CGFloat)keyEquivalentOffset

Discussion
If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 1703) to update
the menu view information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– keyEquivalentWidth (page 1696)
– stateImageOffset (page 1703)
– imageAndTitleOffset (page 1691)

Declared In
NSMenuView.h

keyEquivalentWidth
Returns the width of the menu’s key equivalent text.

- (CGFloat)keyEquivalentWidth

Discussion
If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 1703) to update
the menu view information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– keyEquivalentOffset (page 1696)
– stateImageWidth (page 1703)
– imageAndTitleWidth (page 1691)

Declared In
NSMenuView.h

locationForSubmenu:
Returns the origin of the submenu view’s window.

- (NSPoint)locationForSubmenu:(NSMenu *)aSubmenu

1696 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

Discussion
The aSubmenu parameter specifies the submenu being positioned and must belong to a menu item of this
menu view. This method positions the submenu adjacent to its menu item as well as possible given the type
of menu and the space constraints of the user’s screen.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 1703) to update
the menu view information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setWindowFrameForAttachingToRect:onScreen:preferredEdge:popUpSelectedItem: (page
1702)
– sizeToFit (page 1703)

Declared In
NSMenuView.h

menu
Returns the menu object associated with this menu view.

- (NSMenu *)menu

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setMenu: (page 1700)

Declared In
NSMenuView.h

menuItemCellForItemAtIndex:
Returns the menu item cell at the specified location.

- (NSMenuItemCell *)menuItemCellForItemAtIndex:(NSInteger)index

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setMenuItemCell:forItemAtIndex: (page 1701)
– sizeToFit (page 1703)

Declared In
NSMenuView.h

Instance Methods 1697
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

needsSizing
Returns YES if the menu view needs to be resized due to changes in the menu object, NO otherwise.

- (BOOL)needsSizing

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setNeedsSizing: (page 1702)

Declared In
NSMenuView.h

performActionWithHighlightingForItemAtIndex:
Uses the associated menu object to perform the action associated with the specified item when a key
equivalent is pressed.

- (void)performActionWithHighlightingForItemAtIndex:(NSInteger)index

Discussion
Because the menu item at index might not currently be visible, this method provides visual feedback by
highlighting the nearest visible parent menu item before performing the action. After the action has been
sent, this method removes the highlighting for the menu item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– performActionForItemAtIndex: (page 1624) (NSMenu)

Declared In
NSMenuView.h

rectOfItemAtIndex:
Returns the drawing rectangle of the specified menu item.

- (NSRect)rectOfItemAtIndex:(NSInteger)index

Discussion
The drawing rectangle may not be the same width or height as the actual menu and in fact is typically smaller
to account for borders drawn by the menu view.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 1703) to update
the menu view information.

Availability
Available in Mac OS X v10.0 and later.

1698 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

Not available to 64-bit applications.

See Also
– innerRect (page 1693)
– needsSizing (page 1698)
– sizeToFit (page 1703)

Declared In
NSMenuView.h

setFont:
Sets the default font to use when drawing the menu text.

- (void)setFont:(NSFont *)font

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– font (page 1690)

Declared In
NSMenuView.h

setHighlightedItemIndex:
Highlights the menu item at a specific location.

- (void)setHighlightedItemIndex:(NSInteger)index

Discussion
Specify –1 for index to remove all highlighting from the menu.

The rectangle of the menu item is marked as invalid and is redrawn the next time the event loop comes
around. If another menu item was previously highlighted, that menu item is redrawn without highlights
when the event loop comes around again.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setNeedsDisplayForItemAtIndex: (page 1701)
– highlightedItemIndex (page 1690)

Declared In
NSMenuView.h

Instance Methods 1699
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

setHorizontal:
Sets the orientation of the menu.

- (void)setHorizontal:(BOOL)flag

Discussion
If flag is YES, the menu’s items are displayed horizontally; otherwise the menu’s items are displayed vertically.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– isHorizontal (page 1694)

Declared In
NSMenuView.h

setHorizontalEdgePadding:
Sets the horizontal padding for menu item components.

- (void)setHorizontalEdgePadding:(CGFloat)pad

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– horizontalEdgePadding (page 1691)

Declared In
NSMenuView.h

setMenu:
Sets the menu to be displayed in the receiver

- (void)setMenu:(NSMenu *)menu

Discussion
This method invokes the setNeedsSizing: (page 1702) method to force the menu view’s layout to be
recalculated before drawing.

This method adds the menu view to the new NSMenu object’s list of observers. The notifications this method
establishes notify this menu view when menu items in the NSMenu object are added, removed, or changed.
This method removes the menu view from its previous NSMenu object’s list of observers.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1700 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

See Also
– setNeedsSizing: (page 1702)
– itemAdded: (page 1694)
– itemRemoved: (page 1695)
– itemChanged: (page 1695)

Declared In
NSMenuView.h

setMenuItemCell:forItemAtIndex:
Replaces the menu item cell at a specific location.

- (void)setMenuItemCell:(NSMenuItemCell *)cell forItemAtIndex:(NSInteger)index

Discussion
This method does not change the contents of the menu itself; it changes only the cell used to display the
menu item at index. The old cell is released, and both the new cell and the menu view are marked as needing
resizing.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– menuItemCellForItemAtIndex: (page 1697)
– setNeedsSizing: (page 1702)

Declared In
NSMenuView.h

setNeedsDisplayForItemAtIndex:
Adds the region occupied by the menu item at a specific location to the menu view’s invalid region.

- (void)setNeedsDisplayForItemAtIndex:(NSInteger)index

Discussion
The region to be redrawn includes the space occupied by the menu borders. This invalid region is redrawn
the next time the event loop comes around.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– rectOfItemAtIndex: (page 1698)
– setNeedsDisplayInRect: (page 3225) (NSView)

Declared In
NSMenuView.h

Instance Methods 1701
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

setNeedsSizing:
Sets a flag that indicates whether the layout is invalid and needs resizing.

- (void)setNeedsSizing:(BOOL)flag

Discussion
If flag is YES, the menu contents have changed or the menu appearance has changed. This method is used
internally; you should not need to invoke it directly unless you are implementing a subclass that can cause
the layout to become invalid.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– sizeToFit (page 1703)

Declared In
NSMenuView.h

setWindowFrameForAttachingToRect:onScreen:preferredEdge:popUpSelectedItem:
Causes the menu view to resize its window so its frame is the appropriate size to attach to a specified rectangle
within the screen.

- (void)setWindowFrameForAttachingToRect:(NSRect)screenRect onScreen:(NSScreen
*)screen preferredEdge:(NSRectEdge)edge
popUpSelectedItem:(NSInteger)selectedItemIndex

Discussion
If selectedItemIndex contains a value other than –1, this method attempts to position the menu such
that the item at selectedItemIndex appears on top of screenRect.

The selectedItemIndex parameter specifies the amount by which the selected item’s rectangle overlaps
screenRect.

If the preferred edge, edge, cannot be honored, because there is not enough room, the opposite edge is
used. If the rectangle does not completely fit either edge, this method uses the edge where there is more
room.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 1703) to update
the menu view information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– sizeToFit (page 1703)

Declared In
NSMenuView.h

1702 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

sizeToFit
Used internally by the menu view to cache information about the menu item geometry.

- (void)sizeToFit

Discussion
This cache is updated as necessary when menu items are added, removed, or changed.

The geometry of each menu item is determined by asking its corresponding menu item cell. The menu item
cell is obtained from the menuItemCellForItemAtIndex: (page 1697) method.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– setNeedsSizing: (page 1702)
– menuItemCellForItemAtIndex: (page 1697)

Declared In
NSMenuView.h

stateImageOffset
Returns the offset to the space reserved for state images of this menu.

- (CGFloat)stateImageOffset

Discussion
The offset is used for all menu items of the menu.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 1703) to update
the menu view information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– horizontalEdgePadding (page 1691)
– setHorizontalEdgePadding: (page 1700)
– sizeToFit (page 1703)

Declared In
NSMenuView.h

stateImageWidth
Returns the maximum width of the state images used by this menu.

- (CGFloat)stateImageWidth

Instance Methods 1703
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

Discussion
The width is used for all menu items of the menu.

If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 1703) to update
the menu view information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– sizeToFit (page 1703)

Declared In
NSMenuView.h

trackWithEvent:
Handles events sent to this menu view.

- (BOOL)trackWithEvent:(NSEvent *)event

Discussion
If event is a mouse event, this method tracks the cursor position in the menu and displays the menus as
appropriate. This method also handles mouse clicks that result in the selection of a menu item, in which case
the menu item’s action is performed.

You should not need to use this method directly.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
NSMenuView.h

update
Asks the associated menu object to update itself.

- (void)update

Discussion
If any changes have been made to the menu’s contents, this method invokes sizeToFit (page 1703) to update
the menu view’s layout.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
– sizeToFit (page 1703)
– setNeedsSizing: (page 1702)

1704 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

– update (page 1635) (NSMenu)

Declared In
NSMenuView.h

Instance Methods 1705
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

1706 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 72

NSMenuView Class Reference

Inherits from NSAttributedString : NSObject

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSAttributedString.h
AppKit/NSTextAttachment.h

Companion guide Attributed String Programming Guide

Overview

Additions to the NSMutableAttributedString class primarily involve setting graphical attributes, such as font,
super- or subscripting, and alignment, and making these attributes consistent after changes.

Tasks

Changing Attributes

– applyFontTraits:range: (page 1708)
Applies the font attributes specified by mask to the characters in aRange.

– setAlignment:range: (page 1712)
Sets the alignment characteristic of the paragraph style attribute for the characters in aRange to
alignment.

– setBaseWritingDirection:range: (page 1712)
Sets the base writing direction for the characters in range to writingDirection.

– subscriptRange: (page 1713)
Decrements the value of the superscript attribute for characters in aRange by 1.

– superscriptRange: (page 1713)
Increments the value of the superscript attribute for characters in aRange by 1.

– unscriptRange: (page 1714)
Removes the superscript attribute from the characters in aRange.

Updating Attachment Contents

– updateAttachmentsFromPath: (page 1714)
Updates all attachments based on files contained in the RTFD file package at path.

Overview 1707
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMutableAttributedString Additions
Reference

Fixing Attributes After Changes

– fixAttributesInRange: (page 1709)
Invokes the other fix... methods, allowing you to clean up an attributed string with a single
message.

– fixAttachmentAttributeInRange: (page 1709)
Cleans up attachment attributes in aRange, removing all attachment attributes assigned to characters
other than NSAttachmentCharacter.

– fixFontAttributeInRange: (page 1709)
Fixes the font attribute in aRange, assigning default fonts to characters with illegal fonts for their
scripts and otherwise correcting font attribute assignments.

– fixParagraphStyleAttributeInRange: (page 1710)
Fixes the paragraph style attributes in aRange, assigning the first paragraph style attribute value in
each paragraph to all characters of the paragraph.

Reading Content

– readFromData:options:documentAttributes: (page 1710)
Sets the contents of the receiver from the stream at data.

– readFromData:options:documentAttributes:error: (page 1711)
Sets the contents of the receiver from the stream at data.

– readFromURL:options:documentAttributes: (page 1711)
Sets the contents of receiver from the file at url.

– readFromURL:options:documentAttributes:error: (page 1712)
Sets the contents of receiver from the file at url.

Instance Methods

applyFontTraits:range:
Applies the font attributes specified by mask to the characters in aRange.

- (void)applyFontTraits:(NSFontTraitMask)mask range:(NSRange)aRange

Discussion
See the NSFontManager class specification for a description of the font traits available. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlignment:range: (page 1712)

Declared In
NSAttributedString.h

1708 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMutableAttributedString Additions Reference

fixAttachmentAttributeInRange:
Cleans up attachment attributes in aRange, removing all attachment attributes assigned to characters other
than NSAttachmentCharacter.

- (void)fixAttachmentAttributeInRange:(NSRange)aRange

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fixFontAttributeInRange: (page 1709)
– fixParagraphStyleAttributeInRange: (page 1710)
– fixAttributesInRange: (page 1709)

Declared In
NSAttributedString.h

fixAttributesInRange:
Invokes the other fix... methods, allowing you to clean up an attributed string with a single message.

- (void)fixAttributesInRange:(NSRange)aRange

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fixAttachmentAttributeInRange: (page 1709)
– fixFontAttributeInRange: (page 1709)
– fixParagraphStyleAttributeInRange: (page 1710)

Declared In
NSAttributedString.h

fixFontAttributeInRange:
Fixes the font attribute in aRange, assigning default fonts to characters with illegal fonts for their scripts and
otherwise correcting font attribute assignments.

- (void)fixFontAttributeInRange:(NSRange)aRange

Discussion
For example, Kanji characters assigned a Latin font are reassigned an appropriate Kanji font. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Instance Methods 1709
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMutableAttributedString Additions Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– fixParagraphStyleAttributeInRange: (page 1710)
– fixAttachmentAttributeInRange: (page 1709)
– fixAttributesInRange: (page 1709)

Declared In
NSAttributedString.h

fixParagraphStyleAttributeInRange:
Fixes the paragraph style attributes in aRange, assigning the first paragraph style attribute value in each
paragraph to all characters of the paragraph.

- (void)fixParagraphStyleAttributeInRange:(NSRange)aRange

Discussion
This method extends the range as needed to cover the last paragraph partially contained. A paragraph is
delimited by any of these characters, the longest possible sequence being preferred to any shorter:

U+000D (\r or CR)
U+000A (\n or LF)
U+2028 (Unicode line separator)
U+2029 (Unicode paragraph separator) \r\n, in that order (also known as CRLF)

Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fixFontAttributeInRange: (page 1709)
– fixAttachmentAttributeInRange: (page 1709)
– fixAttributesInRange: (page 1709)

Declared In
NSAttributedString.h

readFromData:options:documentAttributes:
Sets the contents of the receiver from the stream at data.

- (BOOL)readFromData:(NSData *)data options:(NSDictionary *)options
documentAttributes:(NSDictionary **)dict

Discussion
options can contain one of the values described in the “Constants” (page 271) section of NSAttributedString
Application Kit Additions Reference ("Option keys for importing documents").

1710 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMutableAttributedString Additions Reference

On return, the documentAttributes dictionary (if provided) contains the various keys described in the
“Constants” (page 271) section of NSAttributedString Application Kit Additions Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAttributedString.h

readFromData:options:documentAttributes:error:
Sets the contents of the receiver from the stream at data.

- (BOOL)readFromData:(NSData *)data options:(NSDictionary *)opts
documentAttributes:(NSDictionary **)dict error:(NSError **)error

Discussion
opts can contain one of the values described in the “Constants” (page 271) section of NSAttributedString
Application Kit Additions Reference ("Option keys for importing documents").

On return, the documentAttributes dictionary (if provided) contains the various keys described in the
“Constants” (page 271) section of NSAttributedString Application Kit Additions Reference. If unsuccessful, returns
NO , after setting error to point to an NSError object that encapsulates the reason why the attributed
string object could not be created.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSAttributedString.h

readFromURL:options:documentAttributes:
Sets the contents of receiver from the file at url.

- (BOOL)readFromURL:(NSURL *)url options:(NSDictionary *)options
documentAttributes:(NSDictionary **)documentAttributes

Discussion
Filter services can be used to convert the contents of the URL into a format recognized by Cocoa. options
can contain one of the values described in the “Constants” (page 271) section of NSAttributedString Application
Kit Additions Reference ("Option keys for importing documents").

On return, the documentAttributes dictionary (if provided) contains the various keys described in the
“Constants” (page 271) section of NSAttributedString Application Kit Additions Reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

Instance Methods 1711
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMutableAttributedString Additions Reference

readFromURL:options:documentAttributes:error:
Sets the contents of receiver from the file at url.

- (BOOL)readFromURL:(NSURL *)url options:(NSDictionary *)opts
documentAttributes:(NSDictionary **)dict error:(NSError **)error

Discussion
Filter services can be used to convert the contents of the URL into a format recognized by Cocoa. opts can
contain one of the values described in the “Constants” (page 271) section of NSAttributedString Application
Kit Additions Reference ("Option keys for importing documents").

On return, the dict dictionary (if provided) contains the various keys described in the “Constants” (page 271)
section of NSAttributedString Application Kit Additions Reference. If unsuccessful, returns NO , after setting
error to point to an NSError object that encapsulates the reason why the attributed string object could
not be created.

For RTF formatted files, the contents of the file are appended to the previous string instead of replacing the
previous string. Therefore, when using this method with existing content it's best to clear the content away
explicitly.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSAttributedString.h

setAlignment:range:
Sets the alignment characteristic of the paragraph style attribute for the characters in aRange to alignment.

- (void)setAlignment:(NSTextAlignment)alignment range:(NSRange)aRange

Discussion
When attribute fixing takes place, this change will affect only paragraphs whose first character was included
in aRange. Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– applyFontTraits:range: (page 1708)
– fixParagraphStyleAttributeInRange: (page 1710)

Declared In
NSAttributedString.h

setBaseWritingDirection:range:
Sets the base writing direction for the characters in range to writingDirection.

1712 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMutableAttributedString Additions Reference

- (void)setBaseWritingDirection:(NSWritingDirection)writingDirection
range:(NSRange)range

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSAttributedString.h

subscriptRange:
Decrements the value of the superscript attribute for characters in aRange by 1.

- (void)subscriptRange:(NSRange)aRange

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– superscriptRange: (page 1713)
– unscriptRange: (page 1714)

Related Sample Code
CoreRecipes

Declared In
NSAttributedString.h

superscriptRange:
Increments the value of the superscript attribute for characters in aRange by 1.

- (void)superscriptRange:(NSRange)aRange

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– subscriptRange: (page 1713)
– unscriptRange: (page 1714)

Related Sample Code
CoreRecipes

Declared In
NSAttributedString.h

Instance Methods 1713
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMutableAttributedString Additions Reference

unscriptRange:
Removes the superscript attribute from the characters in aRange.

- (void)unscriptRange:(NSRange)aRange

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
– subscriptRange: (page 1713)
– superscriptRange: (page 1713)

Declared In
NSAttributedString.h

updateAttachmentsFromPath:
Updates all attachments based on files contained in the RTFD file package at path.

- (void)updateAttachmentsFromPath:(NSString *)path

Availability
Available in Mac OS X v10.0 and later.

See Also
– updateFromPath: (page 1137) (NSFileWrapper)

Declared In
NSTextAttachment.h

1714 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 73

NSMutableAttributedString Additions Reference

Inherits from NSParagraphStyle : NSObject

Conforms to NSCoding (NSParagraphStyle)
NSCopying (NSParagraphStyle)
NSMutableCopying (NSParagraphStyle)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSParagraphStyle.h

Companion guide Rulers and Paragraph Styles

Related sample code FilterDemo
IBFragmentView
ImageBrowserViewAppearance
ImageKitDemo
Quartz Composer WWDC 2005 TextEdit

Overview

NSMutableParagraphStyle adds methods to its superclass, NSParagraphStyle, for changing the values of the
subattributes in a paragraph style attribute. See the NSParagraphStyle and NSAttributedString specifications
for more information.

Important: A paragraph style object should not be mutated after adding it to an attributed string; doing so
can cause your program to crash.

Tasks

Setting Tab Stops

– setTabStops: (page 1724)
Replaces the tab stops in the receiver with tabStops.

Overview 1715
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

– addTabStop: (page 1717)
Adds tabStop to the receiver.

– removeTabStop: (page 1717)
Removes the first text tab whose location and type are equal to those of tabStop.

Setting Other Style Information

– setParagraphStyle: (page 1724)
Replaces the subattributes of the receiver with those in aStyle.

– setAlignment: (page 1718)
Sets the alignment of the receiver to alignment.

– setFirstLineHeadIndent: (page 1719)
Sets the distance in points from the leading margin of a text container to the beginning of the
paragraph’s first line to aFloat.

– setHeadIndent: (page 1720)
Sets the distance in points from the leading margin of a text container to the beginning of lines other
than the first to aFloat.

– setTailIndent: (page 1725)
Sets the distance in points from the margin of a text container to the end of lines to aFloat.

– setLineBreakMode: (page 1721)
Sets the mode used to break lines in a layout container to mode.

– setMaximumLineHeight: (page 1722)
Sets the maximum height that any line in the paragraph style will occupy, regardless of the font size
or size of any attached graphic, to aFloat.

– setMinimumLineHeight: (page 1723)
Sets the minimum height that any line in the paragraph style will occupy, regardless of the font size
or size of any attached graphic, to aFloat.

– setLineSpacing: (page 1722)
Sets the space in points added between lines within the paragraph to aFloat.

– setParagraphSpacing: (page 1723)
Sets the space added at the end of the paragraph to separate it from the following paragraph to
aFloat.

– setBaseWritingDirection: (page 1718)
Sets the base writing direction for the receiver.

– setLineHeightMultiple: (page 1722)
Sets the line height multiple for the receiver.

– setParagraphSpacingBefore: (page 1724)
Sets the distance between the paragraph’s top and the beginning of its text content

– setDefaultTabInterval: (page 1719)
Sets the default tab interval for the receiver.

1716 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

Setting Text Blocks and Lists

– setTextBlocks: (page 1725)
Sets the text blocks containing the paragraph, nested from outermost to innermost to array.

– setTextLists: (page 1726)

Controlling Hyphenation and Truncation

– setHyphenationFactor: (page 1720)
Specifies the threshold for hyphenation.

– setTighteningFactorForTruncation: (page 1726)
Specifies the threshold for using tightening as an alternative to truncation.

Setting HTML Header Level

– setHeaderLevel: (page 1720)
Specifies whether the paragraph is to be treated as a header for purposes of HTML generation.

Instance Methods

addTabStop:
Adds tabStop to the receiver.

- (void)addTabStop:(NSTextTab *)tabStop

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeTabStop: (page 1717)
– setTabStops: (page 1724)
– tabStops (page 1876) (NSParagraphStyle)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSParagraphStyle.h

removeTabStop:
Removes the first text tab whose location and type are equal to those of tabStop.

Instance Methods 1717
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

- (void)removeTabStop:(NSTextTab *)tabStop

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTabStop: (page 1717)
– setTabStops: (page 1724)
– tabStops (page 1876) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

setAlignment:
Sets the alignment of the receiver to alignment.

- (void)setAlignment:(NSTextAlignment)alignment

Discussion
alignment may be one of:

NSLeftTextAlignment

NSRightTextAlignment

NSCenterTextAlignment

NSJustifiedTextAlignment

NSNaturalTextAlignment

Availability
Available in Mac OS X v10.0 and later.

See Also
– alignment (page 1870) (NSParagraphStyle)

Related Sample Code
FilterDemo
IBFragmentView
ImageBrowserViewAppearance
ImageKitDemo
iSpend

Declared In
NSParagraphStyle.h

setBaseWritingDirection:
Sets the base writing direction for the receiver.

- (void)setBaseWritingDirection:(NSWritingDirection)writingDirection

1718 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

Discussion
It can be NSWritingDirectionNaturalDirection, NSWritingDirectionLeftToRight, or
NSWritingDirectionRightToLeft. If you specifyNSWritingDirectionNaturalDirection, the receiver
resolves the writing direction to either NSWritingDirectionLeftToRight or
NSWritingDirectionRightToLeft, depending on the direction for the user’s language preference setting.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ defaultWritingDirectionForLanguage: (page 1870) (NSParagraphStyle)
– baseWritingDirection (page 1871) (NSParagraphStyle)

Related Sample Code
PhotoSearch

Declared In
NSParagraphStyle.h

setDefaultTabInterval:
Sets the default tab interval for the receiver.

- (void)setDefaultTabInterval:(CGFloat)aFloat

Discussion
Tabs after the last specified in tabStops (page 1876) are placed at integral multiples of this distance. This
value must be nonnegative.

Availability
Available in Mac OS X v10.3 and later.

See Also
– defaultTabInterval (page 1871) (NSParagraphStyle)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSParagraphStyle.h

setFirstLineHeadIndent:
Sets the distance in points from the leading margin of a text container to the beginning of the paragraph’s
first line to aFloat.

- (void)setFirstLineHeadIndent:(CGFloat)aFloat

Discussion
This value must be nonnegative.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1719
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

See Also
– setHeadIndent: (page 1720)
– setTailIndent: (page 1725)
– firstLineHeadIndent (page 1872) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

setHeaderLevel:
Specifies whether the paragraph is to be treated as a header for purposes of HTML generation.

- (void)setHeaderLevel:(NSInteger)level

Discussion
Should be set to 0 (the default value) if the paragraph is not a header, or from 1 through 6 if the paragraph
is to be treated as a header.

Availability
Available in Mac OS X v10.4 and later.

See Also
– headerLevel (page 1872) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

setHeadIndent:
Sets the distance in points from the leading margin of a text container to the beginning of lines other than
the first to aFloat.

- (void)setHeadIndent:(CGFloat)aFloat

Discussion
This value must be nonnegative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFirstLineHeadIndent: (page 1719)
– setTailIndent: (page 1725)
– headIndent (page 1872) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

setHyphenationFactor:
Specifies the threshold for hyphenation.

1720 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

- (void)setHyphenationFactor:(float)aFactor

Discussion
Valid values lie between 0.0 and 1.0 inclusive. The default value is 0.0. Hyphenation is attempted when the
ratio of the text width (as broken without hyphenation) to the width of the line fragment is less than the
hyphenation factor. When the paragraph’s hyphenation factor is 0.0, the layout manager’s hyphenation factor
is used instead. When both are 0.0, hyphenation is disabled.

Availability
Available in Mac OS X v10.4 and later.

See Also
– hyphenationFactor (page 1873) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

setLineBreakMode:
Sets the mode used to break lines in a layout container to mode.

- (void)setLineBreakMode:(NSLineBreakMode)mode

Discussion
The mode parameter may be one of:

NSLineBreakByWordWrapping

NSLineBreakByCharWrapping

NSLineBreakByClipping

NSLineBreakByTruncatingHead

NSLineBreakByTruncatingTail

NSLineBreakByTruncatingMiddle

See the description of lineBreakMode (page 1873) in the NSParagraphStyle class specification for descriptions
of these values.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa Tips and Tricks
IBFragmentView
ImageBrowserViewAppearance
ImageKitDemo
PDFKitLinker2

Declared In
NSParagraphStyle.h

Instance Methods 1721
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

setLineHeightMultiple:
Sets the line height multiple for the receiver.

- (void)setLineHeightMultiple:(CGFloat)aFloat

Discussion
The natural line height of the receiver is multiplied by this factor before being constrained by minimum and
maximum line height. This value must be nonnegative.

Availability
Available in Mac OS X v10.3 and later.

See Also
– lineHeightMultiple (page 1873) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

setLineSpacing:
Sets the space in points added between lines within the paragraph to aFloat.

- (void)setLineSpacing:(CGFloat)aFloat

Discussion
This value must be nonnegative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaximumLineHeight: (page 1722)
– setMinimumLineHeight: (page 1723)
– setParagraphSpacing: (page 1723)
– lineSpacing (page 1874) (NSParagraphStyle)

Related Sample Code
TipWrapper

Declared In
NSParagraphStyle.h

setMaximumLineHeight:
Sets the maximum height that any line in the paragraph style will occupy, regardless of the font size or size
of any attached graphic, to aFloat.

- (void)setMaximumLineHeight:(CGFloat)aFloat

Discussion
Glyphs and graphics exceeding this height will overlap neighboring lines; however, a maximum height of 0
implies no line height limit. This value must be nonnegative.

1722 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

Although this limit applies to the line itself, line spacing adds extra space between adjacent lines.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMinimumLineHeight: (page 1723)
– setLineSpacing: (page 1722)
– maximumLineHeight (page 1874) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

setMinimumLineHeight:
Sets the minimum height that any line in the paragraph style will occupy, regardless of the font size or size
of any attached graphic, to aFloat.

- (void)setMinimumLineHeight:(CGFloat)aFloat

Discussion
This value must be nonnegative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaximumLineHeight: (page 1722)
– setLineSpacing: (page 1722)
– minimumLineHeight (page 1875) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

setParagraphSpacing:
Sets the space added at the end of the paragraph to separate it from the following paragraph to aFloat.

- (void)setParagraphSpacing:(CGFloat)aFloat

Discussion
This value must be nonnegative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLineSpacing: (page 1722)
– setParagraphSpacingBefore: (page 1724)
– paragraphSpacing (page 1875) (NSParagraphStyle)

Instance Methods 1723
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

Declared In
NSParagraphStyle.h

setParagraphSpacingBefore:
Sets the distance between the paragraph’s top and the beginning of its text content

- (void)setParagraphSpacingBefore:(CGFloat)aFloat

Discussion
. This value must be nonnegative.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setParagraphSpacing: (page 1723)
– paragraphSpacingBefore (page 1876) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

setParagraphStyle:
Replaces the subattributes of the receiver with those in aStyle.

- (void)setParagraphStyle:(NSParagraphStyle *)aStyle

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FilterDemo

Declared In
NSParagraphStyle.h

setTabStops:
Replaces the tab stops in the receiver with tabStops.

- (void)setTabStops:(NSArray *)tabStops

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTabStop: (page 1717)
– removeTabStop: (page 1717)
– tabStops (page 1876) (NSParagraphStyle)

1724 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSParagraphStyle.h

setTailIndent:
Sets the distance in points from the margin of a text container to the end of lines to aFloat.

- (void)setTailIndent:(CGFloat)aFloat

Discussion
If positive, this is the distance from the leading margin (for example, the left margin in left-to-right text). That
is, it’s the absolute line width. If 0 or negative, it’s the distance from the trailing margin—the value is added
to the line width.

For example, to create a paragraph style that fits exactly in a 2-inch wide container, set its head indent to
0.0 and its tail indent to 0.0. To create a paragraph style with quarter-inch margins, set its head indent to
0.25 and its tail indent to –0.25.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHeadIndent: (page 1720)
– setFirstLineHeadIndent: (page 1719)
– tailIndent (page 1877) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

setTextBlocks:
Sets the text blocks containing the paragraph, nested from outermost to innermost to array.

- (void)setTextBlocks:(NSArray *)array

Availability
Available in Mac OS X v10.4 and later.

See Also
– textBlocks (page 1877) (NSParagraphStyle)

Related Sample Code
iSpend

Declared In
NSParagraphStyle.h

Instance Methods 1725
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

setTextLists:
- (void)setTextLists:(NSArray *)array

Discussion
Sets the text lists containing the paragraph, nested from outermost to innermost, to array.

Availability
Available in Mac OS X v10.4 and later.

See Also
– textLists (page 1877) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

setTighteningFactorForTruncation:
Specifies the threshold for using tightening as an alternative to truncation.

- (void)setTighteningFactorForTruncation:(float)aFactor

Discussion
When the line break mode specifies truncation, the text system attempts to tighten intercharacter spacing
as an alternative to truncation, provided that the ratio of the text width to the line fragment width does not
exceed 1.0 + the value returned by tighteningFactorForTruncation (page 1878). Otherwise the text is
truncated at a location determined by the line break mode. The default value is 0.05. This method accepts
positive and negative values. Values less than or equal to 0.0 result in not tightening.

Availability
Available in Mac OS X v10.4 and later.

See Also
– tighteningFactorForTruncation (page 1878) (NSParagraphStyle)

Declared In
NSParagraphStyle.h

1726 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 74

NSMutableParagraphStyle Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSNib.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Resource Programming Guide

Related sample code Aperture Edit Plugin - Borders & Titles
Aperture Image Resizer
Cocoa Tips and Tricks
CoreRecipes
Departments and Employees

Overview

Instances of the NSNib class serve as object wrappers, or containers, for Interface Builder nib files. An NSNib
object keeps the contents of a nib file resident in memory, ready for unarchiving and instantiation.

When you create an NSNib object using the contents of a nib file, the object loads the contents of the
referenced nib bundle—the object graph as well as any images and sounds—into memory; but it does not
yet unarchive it. To unarchive all of the nib data and thus truly instantiate the nib you must call one of the
instantiate... methods of NSNib.

During the instantiation process, each object in the archive is unarchived and then initialized using the
method befitting its type. View classes are initialized using their initWithFrame: method. Custom objects
are initialized using their init method. In the case of Cocoa views (and custom views that have options on
an associated Interface Builder palette) the initialization process also reads in any values set by the user in
Interface Builder.

Once all objects have been instantiated and initialized from the archive, the nib loading code attempts to
reestablish the connections between each object’s outlets and the corresponding target objects. If your
custom objects have outlets, the NSNib object attempts to reestablish any connections you created in
Interface Builder. It starts by trying to establish the connections using your object’s own methods first. For
each outlet that needs a connection, the NSNib object looks for a method of the form setOutletName: in
your object. If that method exists, the nib object calls it, passing the target object as a parameter. If you did

Overview 1727
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 75

NSNib Class Reference

not define a setter method with that exact name, the NSNib object searches the object for an instance
variable (of type IBOutlet id) with the corresponding outlet name and tries to set its value directly. If an
instance variable with the correct name cannot be found, initialization of that connection does not occur.

After all objects have been initialized and their connections reestablished, each object receives an
awakeFromNib message. You can override this method in your custom objects to perform any additional
initialization.

Subclassing Notes

You can subclass NSNib if you want to extend or specialize nib-loading behavior. For example, you could
create a custom NSNib subclass that performs some post-processing on the top-level objects returned from
the instantiateNib... methods. If you want to modify how nib instantiations are performed, it is
recommended that you override the primitive method instantiateNibWithExternalNameTable: (page
1730). Note that the instance variables of NSNib are private and thus are not available to subclasses. Any
override ofinitWithContentsOfURL: (page 1729) orinitWithNibNamed:bundle: (page 1729) should first
invoke the superclass implementation.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

Tasks

Initializing a Nib

– initWithContentsOfURL: (page 1729)
Returns an NSNib object initialized to the nib file at the specified URL.

– initWithNibNamed:bundle: (page 1729)
Returns an NSNib object initialized to the nib file in the specified bundle.

Instantiating a Nib

– instantiateNibWithOwner:topLevelObjects: (page 1730)
Unarchives and instantiates the in-memory contents of the receiver's nib file, creating a distinct object
tree and set of top level objects.

– instantiateNibWithExternalNameTable: (page 1730)
Unarchives and instantiates the in-memory contents of the receiver's nib file, creating a distinct object
tree and top level objects.

1728 Adopted Protocols
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 75

NSNib Class Reference

Instance Methods

initWithContentsOfURL:
Returns an NSNib object initialized to the nib file at the specified URL.

- (id)initWithContentsOfURL:(NSURL *)nibFileURL

Parameters
nibFileURL

The location of the nib file.

Return Value
The initialized NSNib object or nil if there were errors during initialization or the nib file could not be located.

Discussion
When you instantiate the nib objects later, the NSNib object looks for an appropriate bundle from which to
search for any additional resources referenced by the nib. Because you do not specify a bundle directory
when calling this method, the receiver uses the bundle associated with the class of the nib file’s owner. If
the nib file does not have an owner, the receiver uses the application’s main bundle instead.

Availability
Available in Mac OS X v10.3 and later.

See Also
NSURL class (Foundation)

Declared In
NSNib.h

initWithNibNamed:bundle:
Returns an NSNib object initialized to the nib file in the specified bundle.

- (id)initWithNibNamed:(NSString *)nibName bundle:(NSBundle *)bundle

Parameters
nibName

The name of the nib file, without any leading path information. Inclusion of the .nib extension on
the nib file name is optional.

bundle
The bundle in which to search for the nib file. If you specify nil, this method looks for the nib file in
the main bundle.

Return Value
The initialized NSNib object or nil if there were errors during initialization or the nib file could not be located.

Discussion
The NSNib object looks for the nib file in the bundle's language-specific project directories first, followed by
the Resources directory.

Instance Methods 1729
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 75

NSNib Class Reference

After the nib file has been loaded, the NSNib object uses the bundle’s resource map to locate additional
resources referenced by the nib. If you specified nil for the bundle parameter, the NSNib object looks for
those resources in the bundle associated with the class of the nib file’s owner instead. If the nib file does not
have an owner, the NSNib object looks for additional resources in the application’s main bundle.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Aperture Image Resizer
Cocoa Tips and Tricks
CoreRecipes
Departments and Employees

Declared In
NSNib.h

instantiateNibWithExternalNameTable:
Unarchives and instantiates the in-memory contents of the receiver's nib file, creating a distinct object tree
and top level objects.

- (BOOL)instantiateNibWithExternalNameTable:(NSDictionary *)externalNameTable

Parameters
externalNameTable

A dictionary containing entries for the nib file's owner and top-level objects. See the discussion for
more information.

Return Value
YES if the nib file's contents were instantiated successfully; otherwise, NO.

Discussion
This is the primitive method for performing instantiations of a nib file. You may use this method to instantiate
a nib file multiple times. Each instantiation of the nib must have a distinct owner object that is responsible
for the resulting object tree.

If the nib file requires an owner, the externalNameTable parameter must contain the object representing
the nib file’s owner (associated with the NSNibOwner key). The parameter may optionally include an
NSMutableArray object to be populated with the top-level objects nib file (associated with the
NSNibTopLevelObjects key).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSNib.h

instantiateNibWithOwner:topLevelObjects:
Unarchives and instantiates the in-memory contents of the receiver's nib file, creating a distinct object tree
and set of top level objects.

1730 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 75

NSNib Class Reference

- (BOOL)instantiateNibWithOwner:(id)owner topLevelObjects:(NSArray **)topLevelObjects

Parameters
owner

The object to use as the owner of the nib file. If the nib file has an owner, you must specify a valid
object for this parameter.

topLevelObjects
On input, a variable capable of holding an NSArray object. On output, this variable contains an
autoreleased NSArray object containing the top-level objects from the nib file. You may specify nil
for this parameter if you are not interested in the top-level objects.

Return Value
YES if the nib file's contents were instantiated successfully; otherwise, NO.

Discussion
You may use this method to instantiate a nib file multiple times. This is a convenience method that composes
the name-table dictionary and invokes theinstantiateNibWithExternalNameTable: (page 1730) method,
passing it the name table.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Cocoa Tips and Tricks
CoreRecipes
Departments and Employees

Declared In
NSNib.h

Constants

Nib Loading Keys
The NSNib class uses the following constants which are used as keys in the dictionary passed to
instantiateNibWithExternalNameTable: (page 1730).

NSString *NSNibOwner;
NSString *NSNibTopLevelObjects;

Constants
NSNibOwner

The external object that is responsible for the instantiated nib.

This key is required.

Available in Mac OS X v10.3 and later.

Declared in NSNib.h.

Constants 1731
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 75

NSNib Class Reference

NSNibTopLevelObjects
An NSMutableArray object that, if present, is populated with the top-level objects of the newly
instantiated nib.

Because you must allocate this array, you are responsible for its disposal. This key is optional.

Available in Mac OS X v10.3 and later.

Declared in NSNib.h.

Declared In
NSNib.h

1732 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 75

NSNib Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSNibConnector.h

Companion guide Resource Programming Guide

Overview

This class represents a basic connection in Interface Builder. You should not use this class directly. If you need
to work with nib connections, you would use a subclass like NSNibControlConnector or
NSNibOutletConnector instead. If you want to create your own type of connectors, you can also define
your own custom subclasses.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

Tasks

Working with the Source

– source (page 1736)
Returns the connector’s source.

– setSource: (page 1736)
Sets the connector’s source to the specified object.

Overview 1733
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 76

NSNibConnector Class Reference

Working with the Destination

– destination (page 1734)
Returns the connector’s destination.

– setDestination: (page 1736)
Sets the connector’s destination to destination.

Working with the Connection

– establishConnection (page 1734)
Establishes a connection between the source and destination object.

– replaceObject:withObject: (page 1735)
Changes the connection’s source or destination object to the specified object.

– label (page 1735)
Returns the label associated with the connection.

– setLabel: (page 1736)
Sets the label for the connection.

Instance Methods

destination
Returns the connector’s destination.

- (id)destination

Return Value
The object that is the destination of the connection.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNibConnector.h

establishConnection
Establishes a connection between the source and destination object.

- (void)establishConnection

Discussion
The default implementation of this method does nothing. Subclasses must override it to establish a connection
between the source and destination objects. The current label provides the description of how the two
objects are connected and can be interpreted differently by different subclasses. This method is called for
each connection whenever an application opens a nib file.

1734 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 76

NSNibConnector Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– label (page 1735)
– source (page 1736)
– destination (page 1734)

Declared In
NSNibConnector.h

label
Returns the label associated with the connection.

- (NSString *)label

Return Value
A string containing information about the type of connection. This value can be interpreted differently by
different subclasses. For example, the NSNibControlConnector interprets this string as the selector to call
as an action method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNibConnector.h

replaceObject:withObject:
Changes the connection’s source or destination object to the specified object.

- (void)replaceObject:(id)oldObject withObject:(id)newObject

Parameters
oldObject

The object you want to replace. This object can be either the current source object or the current
destination object.

newObject
The replacement object.

Discussion
If the object in oldObject is not used for either the source or destination of this connection, this method
does nothing.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNibConnector.h

Instance Methods 1735
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 76

NSNibConnector Class Reference

setDestination:
Sets the connector’s destination to destination.

- (void)setDestination:(id)destination

Parameters
destination

The object that is the destination of the connection.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNibConnector.h

setLabel:
Sets the label for the connection.

- (void)setLabel:(NSString *)label

Parameters
label

A string containing information about the type of connection. This value can be interpreted differently
by different subclasses. For example, the NSNibControlConnector interprets this string as the
selector to call as an action method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNibConnector.h

setSource:
Sets the connector’s source to the specified object.

- (void)setSource:(id)source

Parameters
source

The object that is the source of the connection.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNibConnector.h

source
Returns the connector’s source.

1736 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 76

NSNibConnector Class Reference

- (id)source

Return Value
The object that is the source of the connection.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNibConnector.h

Instance Methods 1737
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 76

NSNibConnector Class Reference

1738 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 76

NSNibConnector Class Reference

Inherits from NSNibConnector : NSObject

Conforms to NSCoding (NSNibConnector)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSNibControlConnector.h

Companion guide Resource Programming Guide

Overview

This class manages an action connection in Interface Builder. Generally, its source is a user interface item,
such as a button or menu item; its destination is an object that responds to an action method; and its label
is the name of the action method, with a colon at the end.

Tasks

Establishing a Connection

– establishConnection (page 1739)
Establishes an action connection.

Instance Methods

establishConnection
Establishes an action connection.

- (void)establishConnection

Overview 1739
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 77

NSNibControlConnector Class Reference

Discussion
This method establishes a connection between the source of an action and its destination. The label associated
with the connection object contains the selector name to perform when the action occurs.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSource: (page 1736) (NSNibConnector)
– setDestination: (page 1736) (NSNibConnector)
– setLabel: (page 1736) (NSNibConnector)

Declared In
NSNibControlConnector.h

1740 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 77

NSNibControlConnector Class Reference

Inherits from NSNibConnector : NSObject

Conforms to NSCoding (NSNibConnector)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSNibOutletConnector.h

Companion guide Resource Programming Guide

Overview

This class manages an outlet connection in Interface Builder. The label is of the form "value". If the source
contains a method of the form setValue:, then that method is called with the destination as the argument.
Otherwise, if the label is the name of an instance variable in the source, then that instance variable is set to
the destination.

Tasks

Establishing a Connection

– establishConnection (page 1741)
Establishes an outlet connection.

Instance Methods

establishConnection
Establishes an outlet connection.

- (void)establishConnection

Overview 1741
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 78

NSNibOutletConnector Class Reference

Discussion
If the label is a method name of the form setValue: (where Value can be anything), that method is called
on the source object. The parameter passed to that method is the destination object.

If the label contains the name of an outlet, this method sets the value of the outlet to the destination object.
The outlet must specify an instance variable in the source object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSource: (page 1736) (NSNibConnector)
– setDestination: (page 1736) (NSNibConnector)
– setLabel: (page 1736) (NSNibConnector)

Declared In
NSNibOutletConnector.h

1742 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 78

NSNibOutletConnector Class Reference

Inherits from NSController : NSObject

Conforms to NSCoding (NSController)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSObjectController.h

Availability Available in Mac OS X v10.3 and later.

Companion guides Cocoa Bindings Programming Topics
Predicate Programming Guide
Core Data Programming Guide

Related sample code CIRAWFilterSample
CoreRecipes
DispatchFractal
GridCalendar
Simple Bindings Adoption

Overview

NSObjectController is a Cocoa bindings-compatible controller class. Properties of the content object of
an instance of this class can be bound to user interface elements to access and modify their values.

By default, the content of an NSObjectController instance is an NSMutableDictionary object. This
allows a single NSObjectController instance to be used to manage many different properties referenced
by key value paths. The default content object class can be changed by calling setObjectClass: (page
1758), which subclassers must override.

Tasks

Initializing an Object Controller

– initWithContent: (page 1751)
Initializes and returns an NSObjectController object with the given content.

Overview 1743
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

Managing Content

– setContent: (page 1756)
Sets the receiver’s content object.

– content (page 1748)
Returns the receiver’s content object.

– setAutomaticallyPreparesContent: (page 1756)
Sets whether the receiver automatically creates and inserts new content objects automatically when
loading from a nib file.

– automaticallyPreparesContent (page 1747)
Returns a Boolean value that indicates whether the receiver automatically prepares its content when
it is loaded from a nib.

– prepareContent (page 1753)
Typically overridden by subclasses that require additional control over the creation of new objects.

Setting the Content Class

– setObjectClass: (page 1758)
Sets the object class to use when creating new objects.

– objectClass (page 1753)
Returns the class used when creating new non-Core Data objects.

Managing Objects

– newObject (page 1752)
Creates and returns a new object of the appropriate class.

– addObject: (page 1746)
Sets the receiver’s content object.

– removeObject: (page 1754)
Removes a given object from the receiver’s content.

– add: (page 1746)
Creates a new object and sets it as the receiver’s content object.

– canAdd (page 1747)
Returns a Boolean value that indicates whether an object can be added to the receiver using
add: (page 1746).

– remove: (page 1754)
Removes the receiver’s content object.

– canRemove (page 1748)
Returns a Boolean value that indicates whether an object can be removed from the receiver.

Managing Editing

– setEditable: (page 1756)
Sets whether the receiver allows adding and removing objects.

1744 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

– isEditable (page 1751)
Returns a Boolean value that indicates whether the receiver allows adding and removing objects.

Core Data Support

– entityName (page 1749)
Returns the entity name used by the receiver to create new objects.

– setEntityName: (page 1757)
Sets the entity name used by the receiver to create new objects.

– fetch: (page 1749)
Causes the receiver to fetch the data objects specified by the entity name and fetch predicate.

– setUsesLazyFetching: (page 1759)
Sets whether the receiver uses lazy fetching.

– usesLazyFetching (page 1759)
Returns a Boolean indicating whether the receiver uses lazy fetching.

– defaultFetchRequest (page 1749)
Returns the default fetch request used by the receiver.

– fetchPredicate (page 1750)
Returns the receiver’s fetch predicate.

– setFetchPredicate: (page 1757)
Sets the receiver’s fetch predicate.

– managedObjectContext (page 1751)
Returns the receiver’s managed object context.

– setManagedObjectContext: (page 1758)
Sets the receiver’s managed object context.

– fetchWithRequest:merge:error: (page 1750)
Subclasses should override this method to customize a fetch request, for example to specify fetch
limits.

Obtaining Selections

– selectedObjects (page 1755)
Returns an array of all objects to be affected by editing.

– selection (page 1755)
Returns a proxy object representing the receiver’s selection.

Validating User Interface Items

– validateUserInterfaceItem: (page 1759)
Returns whether the receiver can handle the action method for a user interface item.

Tasks 1745
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

Instance Methods

add:
Creates a new object and sets it as the receiver’s content object.

- (void)add:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Creates a new object of the appropriate entity (specified by entityName (page 1749)) or class (specified by
objectClass (page 1753))—see newObject (page 1752)—and sets it as the receiver’s content object using
addObject: (page 1746).

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Availability
Available in Mac OS X v10.3 and later.

See Also
– canAdd (page 1747)
– remove: (page 1754)

Declared In
NSObjectController.h

addObject:
Sets the receiver’s content object.

- (void)addObject:(id)object

Parameters
object

The content object for the receiver.

Discussion
If the receiver's content is bound to another object or controller through a relationship key, the relationship
of the “master” object is changed.

Availability
Available in Mac OS X v10.3 and later.

See Also
– removeObject: (page 1754)

1746 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

Related Sample Code
Departments and Employees

Declared In
NSObjectController.h

automaticallyPreparesContent
Returns a Boolean value that indicates whether the receiver automatically prepares its content when it is
loaded from a nib.

- (BOOL)automaticallyPreparesContent

Return Value
YES if the receiver automatically prepares its content when loaded from a nib, otherwise NO.

Discussion
See setAutomaticallyPreparesContent: (page 1756) for a full explanation of "automatically prepares
content."

The default is NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAutomaticallyPreparesContent: (page 1756)
– prepareContent (page 1753)

Declared In
NSObjectController.h

canAdd
Returns a Boolean value that indicates whether an object can be added to the receiver using add: (page
1746).

- (BOOL)canAdd

Return Value
YES if an object can be added to the receiver using add: (page 1746), otherwise NO.

Discussion
Bindings can use this method to control the enabling of user interface objects.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– canRemove (page 1748)
– add: (page 1746)

Instance Methods 1747
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

Declared In
NSObjectController.h

canRemove
Returns a Boolean value that indicates whether an object can be removed from the receiver.

- (BOOL)canRemove

Return Value
YES if an object can be removed from the receiver using remove: (page 1754), otherwise NO.

Discussion
Bindings can use this method to control the enabling of user interface objects.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– canAdd (page 1747)
– remove: (page 1754)

Declared In
NSObjectController.h

content
Returns the receiver’s content object.

- (id)content

Return Value
The receiver’s content object.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setContent: (page 1756)

Related Sample Code
Aperture Edit Plugin - Borders & Titles

Declared In
NSObjectController.h

1748 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

defaultFetchRequest
Returns the default fetch request used by the receiver.

- (NSFetchRequest *)defaultFetchRequest

Return Value
The default NSFetchResult used by the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setUsesLazyFetching: (page 1759)
– usesLazyFetching (page 1759)

Declared In
NSObjectController.h

entityName
Returns the entity name used by the receiver to create new objects.

- (NSString *)entityName

Return Value
The entity name used by the receiver to create new objects.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setEntityName: (page 1757)

Declared In
NSObjectController.h

fetch:
Causes the receiver to fetch the data objects specified by the entity name and fetch predicate.

- (void)fetch:(id)sender

Parameters
sender

Typically the object that invoked this method.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1749
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

See Also
– setFetchPredicate: (page 1757)
– fetchPredicate (page 1750)

Declared In
NSObjectController.h

fetchPredicate
Returns the receiver’s fetch predicate.

- (NSPredicate *)fetchPredicate

Return Value
The receiver’s fetch predicate.

Availability
Available in Mac OS X v10.4 and later.

See Also
– fetch: (page 1749)
– setFetchPredicate: (page 1757)

Declared In
NSObjectController.h

fetchWithRequest:merge:error:
Subclasses should override this method to customize a fetch request, for example to specify fetch limits.

- (BOOL)fetchWithRequest:(NSFetchRequest *)fetchRequest merge:(BOOL)merge
error:(NSError **)error

Parameters
fetchRequest

The fetch request to use for the fetch. Pass nil to use the default fetch request.

merge
If YES, the receiver merges the existing content with the fetch result, otherwise the receiver replaces
the entire content with the fetch result.

error
If an error occurs, upon return contains an NSError object that describes the problem.

Return Value
YES if the fetch completed successfully, otherwise NO.

Discussion
This method performs a number of actions that you cannot reproduce. To customize this method, you should
therefore create your own fetch request and then invoke super’s implementation with the new fetch request.

Availability
Available in Mac OS X v10.4 and later.

1750 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

See Also
– fetch: (page 1749)

Declared In
NSObjectController.h

initWithContent:
Initializes and returns an NSObjectController object with the given content.

- (id)initWithContent:(id)content

Parameters
content

The content for the receiver.

Return Value
The initialized object controller, with its content object set to content.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSObjectController.h

isEditable
Returns a Boolean value that indicates whether the receiver allows adding and removing objects.

- (BOOL)isEditable

Return Value
YES if the receiver allows adding and removing objects, otherwise NO.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setEditable: (page 1756)

Declared In
NSObjectController.h

managedObjectContext
Returns the receiver’s managed object context.

- (NSManagedObjectContext *)managedObjectContext

Instance Methods 1751
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

Return Value
The receiver’s managed object context.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setManagedObjectContext: (page 1758)

Related Sample Code
Departments and Employees

Declared In
NSObjectController.h

newObject
Creates and returns a new object of the appropriate class.

- (id)newObject

Return Value
A new object of the appropriate class. The returned object is implicitly retained, the sender is responsible
for releasing it (with either release or autorelease).

If an entity name is set (see setEntityName: (page 1757)), the object created is an instance of the class specified
for that entity (and the object is inserted into the receiver's managed object context). Otherwise the object
created is an instance of the class returned by objectClass (page 1753).

Discussion
This method is called when adding and inserting objects if automaticallyPreparesContent (page 1747)
is YES.

The default implementation assumes the class returned by objectClass (page 1753) has a standard init
method without arguments. If the object class being controlled is NSManagedObject (or a subclass thereof)
its designated initializer (initWithEntity:insertIntoManagedObjectContext:) is called instead, using
the entity and managed object context specified for the receiver.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setObjectClass: (page 1758)
– objectClass (page 1753)
– setEntityName: (page 1757)
– entityName (page 1749)

Related Sample Code
DemoMonkey
Departments and Employees
With and Without Bindings

1752 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

Declared In
NSObjectController.h

objectClass
Returns the class used when creating new non-Core Data objects.

- (Class)objectClass

Return Value
The object class used when creating new non-Core Data objects (that is, if no entity has been set)—see
newObject (page 1752).

Discussion
If an entity has been set, then the class returned by this method does not automatically reflect the class for
the entity.

The default class is NSMutableDictionary.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setObjectClass: (page 1758)
– entityName (page 1749)
– managedObjectContext (page 1751)

Declared In
NSObjectController.h

prepareContent
Typically overridden by subclasses that require additional control over the creation of new objects.

- (void)prepareContent

Discussion
Subclasses that implement this method are responsible for creating the new content object and setting it
as the receiver’s content object. This method is only called if automaticallyPreparesContent (page 1747)
has been set to YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
– automaticallyPreparesContent (page 1747)
– setAutomaticallyPreparesContent: (page 1756)

Related Sample Code
QTMetadataEditor

Instance Methods 1753
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

Declared In
NSObjectController.h

remove:
Removes the receiver’s content object.

- (void)remove:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Removes the receiver’s content object using removeObject: (page 1754).

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Availability
Available in Mac OS X v10.3 and later.

See Also
– canRemove (page 1748)
– add: (page 1746)

Declared In
NSObjectController.h

removeObject:
Removes a given object from the receiver’s content.

- (void)removeObject:(id)object

Parameters
object

The object to remove from the receiver.

Discussion
If object is the receiver’s content object, the receiver’s content is set to nil. If the receiver's content is
bound to another object or controller through a relationship key, the relationship of the ‘master’ object is
cleared.

Availability
Available in Mac OS X v10.3 and later.

See Also
– addObject: (page 1746)

Declared In
NSObjectController.h

1754 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

selectedObjects
Returns an array of all objects to be affected by editing.

- (NSArray *)selectedObjects

Return Value
An array of all objects to be affected by editing. If the receiver supports a selection mechanism, the array
contains key value coding compliant proxies of the selected objects; otherwise proxies for all content objects
are returned. If the receiver is a concrete instance of NSObjectController, returns an array containing the
receiver’s content object.

Discussion
You should avoid registering for key-value observing changes for key paths that pass through this method,
(for example, selectedObjects.firstName). Using the proxy returned by the selection (page 1755)
method is better for performance.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selection (page 1755)

Declared In
NSObjectController.h

selection
Returns a proxy object representing the receiver’s selection.

- (id)selection

Return Value
A proxy object representing the receiver’s selection. This object is fully key-value coding compliant, but note
that it is a proxy and so does not provide the full range of functionality that might be available in the source
object.

Discussion
If a value requested from the selection proxy using key-value coding returns multiple objects, the controller
has no selection, or the proxy is not key-value coding compliant for the requested key, the appropriate marker
(NSMultipleValuesMarker,NSNoSelectionMarkerorNSNotApplicableMarker) is returned. Otherwise,
the value of the key is returned.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectedObjects (page 1755)

Declared In
NSObjectController.h

Instance Methods 1755
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

setAutomaticallyPreparesContent:
Sets whether the receiver automatically creates and inserts new content objects automatically when loading
from a nib file.

- (void)setAutomaticallyPreparesContent:(BOOL)flag

Parameters
flag

A flag that specifies whether the receiver automatically prepares its content.

Discussion
If flag is YES and the receiver is not using a managed object context, prepareContent (page 1753) is used
to create the content object. If flag is YES and a managed object context is set, the initial content is fetched
from the managed object context using the current fetch predicate. The default is NO.

Setting flag to YES is the same as checking the “Automatically Prepares Content” option in the Interface
Builder controller inspector.

Availability
Available in Mac OS X v10.3 and later.

See Also
– automaticallyPreparesContent (page 1747)
– prepareContent (page 1753)

Declared In
NSObjectController.h

setContent:
Sets the receiver’s content object.

- (void)setContent:(id)content

Parameters
content

The content object for the receiver.

Availability
Available in Mac OS X v10.3 and later.

See Also
– content (page 1748)

Declared In
NSObjectController.h

setEditable:
Sets whether the receiver allows adding and removing objects.

- (void)setEditable:(BOOL)flag

1756 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

Parameters
flag

YES if the the receiver should allow adding and removing objects, otherwise NO.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
– isEditable (page 1751)

Declared In
NSObjectController.h

setEntityName:
Sets the entity name used by the receiver to create new objects.

- (void)setEntityName:(NSString *)entityName

Parameters
entityName

The entity name used by the receiver to create new objects.

Availability
Available in Mac OS X v10.4 and later.

See Also
– entityName (page 1749)

Declared In
NSObjectController.h

setFetchPredicate:
Sets the receiver’s fetch predicate.

- (void)setFetchPredicate:(NSPredicate *)predicate

Parameters
predicate

The fetch predicate for the receiver.

Discussion
The receiver uses predicate when fetching its content, for example in fetch: (page 1749). If you need to
customize the fetching behavior further, you can override fetchWithRequest:merge:error: (page 1750).

Availability
Available in Mac OS X v10.4 and later.

See Also
– fetch: (page 1749)

Instance Methods 1757
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

– fetchPredicate (page 1750)
– fetchWithRequest:merge:error: (page 1750)

Declared In
NSObjectController.h

setManagedObjectContext:
Sets the receiver’s managed object context.

- (void)setManagedObjectContext:(NSManagedObjectContext *)managedObjectContext

Parameters
managedObjectContext

The managed object context for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– managedObjectContext (page 1751)

Declared In
NSObjectController.h

setObjectClass:
Sets the object class to use when creating new objects.

- (void)setObjectClass:(Class)objectClass

Parameters
objectClass

The object class to use when creating new objects.

Discussion
NSObjectController's default implementation assumes that instances of objectClass are initialized
using a standard init method that takes no arguments.

If an entity name has been set (see setEntityName: (page 1757)), this method has no effect.

Availability
Available in Mac OS X v10.3 and later.

See Also
– objectClass (page 1753)
– setEntityName: (page 1757)
– managedObjectContext (page 1751)

Declared In
NSObjectController.h

1758 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

setUsesLazyFetching:
Sets whether the receiver uses lazy fetching.

- (void)setUsesLazyFetching:(BOOL)enabled

Parameters
enabled

Boolean value that indicates whether the receiver uses lazy fetching.

Discussion
When enabled the controller uses a number of techniques that typically make managing large data sets more
efficient. As with all optimizations, you should use suitable performance analysis tools (such as Instruments)
to determine the best solution.

Note: Setting setUsesLazyFetching: to YES will cause an exception if the receiving controller is not
bound to a managed object context.

Availability
Available in Mac OS X v10.5 and later.

See Also
– defaultFetchRequest (page 1749)
– usesLazyFetching (page 1759)

Declared In
NSObjectController.h

usesLazyFetching
Returns a Boolean indicating whether the receiver uses lazy fetching.

- (BOOL)usesLazyFetching

Return Value
YES if the receiver uses lazy fetching, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– defaultFetchRequest (page 1749)
– setUsesLazyFetching: (page 1759)

Declared In
NSObjectController.h

validateUserInterfaceItem:
Returns whether the receiver can handle the action method for a user interface item.

- (BOOL)validateUserInterfaceItem:(id < NSValidatedUserInterfaceItem >)item

Instance Methods 1759
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

Parameters
item

The user interface item to validate. You can send item the action (page 3925) and tag (page 3926)
messages.

Return Value
YES if the receiver can handle the action method; NO if it cannot.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSObjectController.h

1760 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 79

NSObjectController Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSOpenGL.h

Companion guide Cocoa Drawing Guide

Related sample code GLUT
LiveVideoMixer2
OpenGLCaptureToMovie
Quartz Composer Live DV
Quartz Composer Texture

Overview

All OpenGL calls are rendered into an OpenGL graphics context, which in Cocoa is represented by the
NSOpenGLContext class. The context is created using an NSOpenGLPixelFormatobject that specifies the
context’s buffer types and other attributes. A context can be full-screen, offscreen, or associated with an
NSView object. A context draws into its drawable object, which is the frame buffer that is the target of
OpenGL drawing operations.

Every NSOpenGLContext object wraps a low-level, platform-specific Core OpenGL (CGL) context. Your
application can retrieve the CGL context by calling the CGLContextObj (page 1764) method. For more
information on the underling CGL context, see CGL Reference.

Tasks

Context Creation

– initWithFormat:shareContext: (page 1768)
Returns an NSOpenGLContext object initialized with the specified pixel format information.

– initWithCGLContextObj: (page 1768)
Initializes and returns a NSOpenGLContext object using an existing CGL context.

Overview 1761
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

Managing the Current Context

+ clearCurrentContext (page 1763)
Sets the current context to nil.

+ currentContext (page 1764)
Returns the current OpenGL graphics context.

– makeCurrentContext (page 1769)
Sets the receiver as the current OpenGL context object.

Drawable Object Management

– setView: (page 1775)
Sets the receiver’s viewport to the specified NSView object.

– view (page 1776)
Returns the receiver’s view.

– setFullScreen (page 1772)
Sets the receiver to full-screen mode.

– setOffScreen:width:height:rowbytes: (page 1772)
Instructs the receiver to render into an offscreen buffer with the specified attributes.

– clearDrawable (page 1765)
Disassociates the receiver from its viewport.

– update (page 1776)
Updates the receiver's drawable object.

Flushing the Drawing Buffer

– flushBuffer (page 1767)
Copies the back buffer to the front buffer of the receiver.

Copying Attributes

– copyAttributesFromContext:withMask: (page 1765)
Copies selected groups of state variables to the receiver.

Context Parameter Handling

– setValues:forParameter: (page 1775)
Sets the value of the specified parameter.

– getValues:forParameter: (page 1767)
Returns the value of the requested parameter.

1762 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

Working with Virtual Screens

– setCurrentVirtualScreen: (page 1771)
Sets the current virtual screen for the receiver.

– currentVirtualScreen (page 1766)
Returns the current virtual screen for the receiver.

Creating Textures

– createTexture:fromView:internalFormat: (page 1766)
Creates a new texture from the contents of the specified view.

Getting the CGL Context Object

– CGLContextObj (page 1764)
Returns the low-level, platform-specific Core OpenGL (CGL) context object represented by the receiver.

Working with Pixel Buffers

– setPixelBuffer:cubeMapFace:mipMapLevel:currentVirtualScreen: (page 1773)
Attaches the specified pixel buffer to the receiver.

– pixelBuffer (page 1770)
Returns the pixel-buffer object attached to the receiver.

– pixelBufferCubeMapFace (page 1770)
Returns the cube map face of the pixel buffer attached to the receiver.

– pixelBufferMipMapLevel (page 1771)
Returns the mipmap level of the pixel buffer attached to the receiver.

– setTextureImageToPixelBuffer:colorBuffer: (page 1774)
Attaches the image data in the specified pixel buffer to the texture object currently bound by the
receiver.

Class Methods

clearCurrentContext
Sets the current context to nil.

+ (void)clearCurrentContext

Discussion
Until you issue a subsequent call to the makeCurrentContext (page 1769) method, OpenGL calls do nothing.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 1763
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

See Also
+ currentContext (page 1764)

Related Sample Code
GLUT
NSOpenGL Fullscreen
OpenGLScreenSnapshot

Declared In
NSOpenGL.h

currentContext
Returns the current OpenGL graphics context.

+ (NSOpenGLContext *)currentContext

Return Value
The current OpenGL graphics context, or nil if no such object has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ clearCurrentContext (page 1763)
+ currentContext (page 1764)
– makeCurrentContext (page 1769)

Related Sample Code
VBL

Declared In
NSOpenGL.h

Instance Methods

CGLContextObj
Returns the low-level, platform-specific Core OpenGL (CGL) context object represented by the receiver.

- (void *)CGLContextObj

Return Value
A pointer to the CGLContextObj data type represented by the receiver.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Denoise

1764 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

DispatchFractal
OpenGLCaptureToMovie
Quartz Composer Live DV
Quartz Composer Texture

Declared In
NSOpenGL.h

clearDrawable
Disassociates the receiver from its viewport.

- (void)clearDrawable

Discussion
This method disassociates the receiver from any associated NSView object. If the receiver is in full-screen or
offscreen mode, it exits that mode.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFullScreen (page 1772)
– setOffScreen:width:height:rowbytes: (page 1772)
– setView: (page 1775)
– view (page 1776)

Related Sample Code
GLUT
NSOpenGL Fullscreen

Declared In
NSOpenGL.h

copyAttributesFromContext:withMask:
Copies selected groups of state variables to the receiver.

- (void)copyAttributesFromContext:(NSOpenGLContext *)context
withMask:(GLbitfield)mask

Parameters
context

The OpenGL graphics context containing the desired state variables.

mask
A bitfield containing a bitwise OR of the same symbolic names that are passed to the OpenGL call
glPushAttrib. The single symbolic constant GL_ALL_ATTRIB_BITS can be used to copy the
maximum possible portion of the rendering state.

Instance Methods 1765
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

Discussion
Not all values for OpenGL states can be copied. For example, the pixel pack and unpack state, render mode
state, and select and feedback state are not copied. The state that can be copied is exactly the state that is
manipulated by the OpenGL call glPushAttrib.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

createTexture:fromView:internalFormat:
Creates a new texture from the contents of the specified view.

- (void)createTexture:(GLenum)target fromView:(NSView *)view
internalFormat:(GLenum)format

Parameters
target

The identifier for the new texture.

view
The view to use to generate the texture. This parameter must be either an NSOpenGLView object or
some other kind of NSView object that’s associated with an NSOpenGLContext object.

format
The format for the texture, interpreted as a GLenum data type.

Discussion
The new texture is assigned the identifier in the target parameter and is associated with the receiver's
context.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
GLUT

Declared In
NSOpenGL.h

currentVirtualScreen
Returns the current virtual screen for the receiver.

- (GLint)currentVirtualScreen

Return Value
The virtual screen number, which is a value between 0 and the number of virtual screens minus one.

Availability
Available in Mac OS X v10.2 and later.

1766 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

See Also
– setCurrentVirtualScreen: (page 1771)

Related Sample Code
Cocoa OpenGL
Quartz Composer Offline Rendering
Quartz Composer Texture

Declared In
NSOpenGL.h

flushBuffer
Copies the back buffer to the front buffer of the receiver.

- (void)flushBuffer

Discussion
If the receiver is not a double-buffered context, this call does nothing.

If the NSOpenGLPixelFormat object used to create the context had a NO backing store attribute
(NSOpenGLPFABackingStore), the buffers may be exchanged rather than copied. This is often the case in
full-screen mode.

According to the swap interval context attribute (see NSOpenGLCPSwapInterval (page 1777)), the copy may
take place during the vertical retrace of the monitor, rather than immediately after flushBuffer is called.
An implicit glFlush is done by flushBuffer before it returns. For optimal performance, an application
should not call glFlush immediately before calling flushBuffer. Subsequent OpenGL commands can be
issued immediately after calling flushBuffer, but are not executed until the buffer copy is completed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getValues:forParameter: (page 1767)
– initWithFormat:shareContext: (page 1768)
– setValues:forParameter: (page 1775)

Related Sample Code
Cocoa OpenGL
DispatchLife
NSOpenGL Fullscreen
NURBSSurfaceVertexProg
SurfaceVertexProgram

Declared In
NSOpenGL.h

getValues:forParameter:
Returns the value of the requested parameter.

Instance Methods 1767
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

- (void)getValues:(GLint *)vals forParameter:(NSOpenGLContextParameter)param

Parameters
vals

On input, a pointer to a variable with enough space for one or more long integers. On output, the
variable contains the value (or values) for the given parameter.

param
The parameter you want to get. For a list of parameters, see the table in
NSOpenGLContextParameter (page 1777).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setValues:forParameter: (page 1775)

Declared In
NSOpenGL.h

initWithCGLContextObj:
Initializes and returns a NSOpenGLContext object using an existing CGL context.

- (id)initWithCGLContextObj:(void *)context

Parameters
context

The CGL context to wrap inside the NSOpenGLContext object.

Return Value
An initialized context.

Discussion
If your application already has a CGL context, you can wrap a NSOpenGLContext object around it using this
method. This method retains the CGL context by calling CGLRetainContext.

Only one NSOpenGLContext object can wrap a specific context.

Your application should not call CGLDestroyContext to dispose of the CGL context. Instead, your application
should call CGLReleaseContext to decrement its reference count.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOpenGL.h

initWithFormat:shareContext:
Returns an NSOpenGLContext object initialized with the specified pixel format information.

- (id)initWithFormat:(NSOpenGLPixelFormat *)format shareContext:(NSOpenGLContext
*)share

1768 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

Parameters
format

The pixel format to request for the OpenGL graphics context. Following successful initialization, the
value you pass in for this parameter is no longer needed and can be deallocated.

share
Another OpenGL graphics context whose texture namespace and display lists you want to share with
the receiver. If you do not want to share those features with another graphics context, you may pass
nil for this parameter.

Return Value
An NSOpenGLContext object initialized with the specified parameters, or nil if the object could not be
created.

Discussion
If the parameters contain invalid information, the receiver releases itself and this method returns nil. This
may happen if one of the following situations occurs:

 ■ The format parameter is nil or contains an invalid pixel format.

 ■ The share parameter is not nil and contains an invalid context.

 ■ The share parameter contains a context with a pixel format that is incompatible with the one in format.

Pixel formats are incompatible if they use different renderers; this can happen if, for example, one format
required an accumulation buffer that could only be provided by the software renderer, and the other format
did not.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CubePuzzle
DispatchLife
LiveVideoMixer2
Quartz Composer QCTV
Quartz Composer Texture

Declared In
NSOpenGL.h

makeCurrentContext
Sets the receiver as the current OpenGL context object.

- (void)makeCurrentContext

Discussion
Subsequent OpenGL calls are rendered into the context defined by the receiver.

Instance Methods 1769
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

Note: A context is current on a per-thread basis. Multiple threads must serialize calls into the same context
object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ clearCurrentContext (page 1763)
+ currentContext (page 1764)

Related Sample Code
GLUT
LiveVideoMixer2
NURBSSurfaceVertexProg
OpenGL Filter Basics Cocoa
SurfaceVertexProgram

Declared In
NSOpenGL.h

pixelBuffer
Returns the pixel-buffer object attached to the receiver.

- (NSOpenGLPixelBuffer *)pixelBuffer

Return Value
The pixel buffer object.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setPixelBuffer:cubeMapFace:mipMapLevel:currentVirtualScreen: (page 1773)

Declared In
NSOpenGL.h

pixelBufferCubeMapFace
Returns the cube map face of the pixel buffer attached to the receiver.

- (GLenum)pixelBufferCubeMapFace

Return Value
For pixel buffers with a texture target of GL_CUBE_MAP, this value is zero or one of the following values:

 ■ GL_TEXTURE_CUBE_MAP_POSITIVE_X

 ■ GL_TEXTURE_CUBE_MAP_POSITIVE_Y

 ■ GL_TEXTURE_CUBE_MAP_POSITIVE_Z

1770 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

 ■ GL_TEXTURE_CUBE_MAP_NEGATIVE_X

 ■ GL_TEXTURE_CUBE_MAP_NEGATIVE_Y

 ■ GL_TEXTURE_CUBE_MAP_NEGATIVE_Z

Availability
Available in Mac OS X v10.3 and later.

See Also
– setPixelBuffer:cubeMapFace:mipMapLevel:currentVirtualScreen: (page 1773)

Declared In
NSOpenGL.h

pixelBufferMipMapLevel
Returns the mipmap level of the pixel buffer attached to the receiver.

- (GLint)pixelBufferMipMapLevel

Return Value
The desired mipmap level for rendering. This value should be less than or equal to the maximum texture
mipmap level of pixelBuffer (accessible through an NSOpenGLPixelBuffer object’s
textureMaxMipMapLevel (page 1789) method).

Availability
Available in Mac OS X v10.3 and later.

See Also
– setPixelBuffer:cubeMapFace:mipMapLevel:currentVirtualScreen: (page 1773)

Declared In
NSOpenGL.h

setCurrentVirtualScreen:
Sets the current virtual screen for the receiver.

- (void)setCurrentVirtualScreen:(GLint)screen

Parameters
screen

The virtual screen number, which is a value between 0 and the number of virtual screens minus one.

Availability
Available in Mac OS X v10.2 and later.

See Also
– currentVirtualScreen (page 1766)

Declared In
NSOpenGL.h

Instance Methods 1771
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

setFullScreen
Sets the receiver to full-screen mode.

- (void)setFullScreen

Discussion
In full-screen mode, the receiver renders onto the entire screen. The receiver’s viewport is set to the full size
of the screen. Call the clearDrawable (page 1765) method to exit full-screen mode.

The NSOpenGLPFAFullScreen attribute must have been specified in the receiver’s NSOpenGLPixelFormat.
Some OpenGL renderers, like the software renderer, do not support full-screen mode. The following code
determines if a full-screen pixel format is possible on a given system:

NSOpenGLPixelFormatAttribute attrs[] =
{
 NSOpenGLPFAFullScreen,
 nil
};

NSOpenGLPixelFormat* pixFmt = [[NSOpenGLPixelFormat alloc]
initWithAttributes:attrs];

/* Check if initWithAttributes succeeded. */
if(pixFmt == nil) {
 /* initWithAttributes failed. There is no full-screen renderer. */
}

Note: It is recommended that an application use Core Graphics’s Direct Display API to capture the display
before entering full-screen mode and release it after exiting. A captured display prevents contention from
other applications and system services. In addition, applications are not notified of display changes, preventing
them from repositioning their windows and the Finder from repositioning desktop icons.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DispatchLife
GLUT
NSOpenGL Fullscreen
VBL

Declared In
NSOpenGL.h

setOffScreen:width:height:rowbytes:
Instructs the receiver to render into an offscreen buffer with the specified attributes.

- (void)setOffScreen:(void *)baseaddr width:(GLsizei)width height:(GLsizei)height
rowbytes:(GLint)rowbytes

1772 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

Parameters
baseaddr

The base address of the buffer in memory. This buffer must contain at least rowbytes * height
bytes.

width
The width of the memory buffer, measured in pixels.

height
The height of the memory buffer, measured in pixels.

rowbytes
The number of bytes in a single row of the buffer. This value must be greater than or equal to the
value in width times the number of bytes per pixel.

Discussion
The receiver’s viewport is set to the full size of the offscreen area. Call the clearDrawable (page 1765) method
to exit offscreen mode.

The NSOpenGLPFAOffScreen attribute must have been specified in the receiver’s pixel format object.

Note: To obtain behavior similar to offscreen mode on renderers that do not support accelerated offscreen
contexts, attach the context to a hidden window and use glReadPixels.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

setPixelBuffer:cubeMapFace:mipMapLevel:currentVirtualScreen:
Attaches the specified pixel buffer to the receiver.

- (void)setPixelBuffer:(NSOpenGLPixelBuffer *)pixelBuffer cubeMapFace:(GLenum)face
mipMapLevel:(GLint)level currentVirtualScreen:(GLint)screen

Parameters
pixelBuffer

The pixel buffer to attach.

face
For pixel buffers with a texture target of GL_CUBE_MAP, this parameter should be zero or one of the
following values:

 ■ GL_TEXTURE_CUBE_MAP_POSITIVE_X

 ■ GL_TEXTURE_CUBE_MAP_POSITIVE_Y

 ■ GL_TEXTURE_CUBE_MAP_POSITIVE_Z

 ■ GL_TEXTURE_CUBE_MAP_NEGATIVE_X

 ■ GL_TEXTURE_CUBE_MAP_NEGATIVE_Y

 ■ GL_TEXTURE_CUBE_MAP_NEGATIVE_Z

Instance Methods 1773
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

level
The desired mipmap level for rendering. This value must be less than or equal to the maximum texture
mipmap level of pixelBuffer (accessible through an NSOpenGLPixelBuffer object’s
textureMaxMipMapLevel (page 1789) method).

screen
The virtual screen of the receiver (if applicable) should be set to the same value as the current virtual
screen you are using for rendering onscreen

Discussion
The NSOpenGLPixelBuffer object gives the receiver access to accelerated offscreen rendering in the pixel
buffer, which is primarily used for textures.

Availability
Available in Mac OS X v10.3 and later.

See Also
– pixelBufferCubeMapFace (page 1770)
– pixelBufferMipMapLevel (page 1771)
– setCurrentVirtualScreen: (page 1771)
– initWithTextureTarget:textureInternalFormat:textureMaxMipMapLevel:pixelsWide:pixelsHigh: (page
1787) (NSOpenGLPixelBuffer)

Related Sample Code
Quartz Composer Offline Rendering
Quartz Composer Texture

Declared In
NSOpenGL.h

setTextureImageToPixelBuffer:colorBuffer:
Attaches the image data in the specified pixel buffer to the texture object currently bound by the receiver.

- (void)setTextureImageToPixelBuffer:(NSOpenGLPixelBuffer *)pixelBuffer
colorBuffer:(GLenum)source

Parameters
pixelBuffer

The pixel buffer to attach.

source
An OpenGL constant indicating which of the pixel buffer's color buffers to use. Potential values for
this parameter include GL_FRONT, GL_BACK, and GL_AUX0.

Discussion
This method corresponds to the Core OpenGL method CGLTexImagePBuffer.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Quartz Composer Texture

1774 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

Declared In
NSOpenGL.h

setValues:forParameter:
Sets the value of the specified parameter.

- (void)setValues:(const GLint *)vals forParameter:(NSOpenGLContextParameter)param

Parameters
vals

The new value (or values) for the parameter.

param
The parameter you want to modify. For a list of parameters, see NSOpenGLContextParameter (page
1777).

Availability
Available in Mac OS X v10.0 and later.

See Also
– getValues:forParameter: (page 1767)

Related Sample Code
Cocoa OpenGL
CoreImageGLTextureFBO
GLFullScreen
LiveVideoMixer
LiveVideoMixer2

Declared In
NSOpenGL.h

setView:
Sets the receiver’s viewport to the specified NSView object.

- (void)setView:(NSView *)view

Parameters
view

The view to use for drawing. The full size of the view is used for the viewport.

Availability
Available in Mac OS X v10.0 and later.

See Also
– clearDrawable (page 1765)
– view (page 1776)

Related Sample Code
GLUT
LiveVideoMixer

Instance Methods 1775
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

LiveVideoMixer2
LiveVideoMixer3

Declared In
NSOpenGL.h

update
Updates the receiver's drawable object.

- (void)update

Discussion
Call this method whenever the receiver’s drawable object changes size or location. A multithreaded application
must synchronize all threads that access the same drawable object and call update for each thread’s context
serially.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DispatchLife
Quartz Composer Live DV
VideoViewer

Declared In
NSOpenGL.h

view
Returns the receiver’s view.

- (NSView *)view

Return Value
The view, or nil if the receiver has no drawable object, is in full-screen mode, or is in offscreen mode.

Availability
Available in Mac OS X v10.0 and later.

See Also
– clearDrawable (page 1765)
– setFullScreen (page 1772)
– setOffScreen:width:height:rowbytes: (page 1772)
– setView: (page 1775)

Declared In
NSOpenGL.h

1776 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

Constants

NSOpenGLContextParameter
The following attribute names are used by setValues:forParameter: (page 1775) and
getValues:forParameter: (page 1767):

typedef enum {
 NSOpenGLCPSwapRectangle = 200,
 NSOpenGLCPSwapRectangleEnable = 201,
 NSOpenGLCPRasterizationEnable = 221,
 NSOpenGLCPSwapInterval = 222,
 NSOpenGLCPSurfaceOrder = 235,
 NSOpenGLCPSurfaceOpacity = 236,
 NSOpenGLCPStateValidation = 301
} NSOpenGLContextParameter;

Constants
NSOpenGLCPSwapRectangle

Sets or gets the swap rectangle.

The swap rectangle is represented as an array of four longs: {x, y, width, height}.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLCPSwapRectangleEnable
Enables or disables the swap rectangle in the context’s drawable object.

If enabled, the area that is affected by the flushBuffer (page 1767) method is restricted to a rectangle
specified by the values of NSOpenGLCPSwapRectangle. However, the portion of the drawable object
that lies outside of the swap rectangle may still be flushed to the screen by a visibility change or other
user interface action.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLCPRasterizationEnable
If disabled, all rasterization of 2D and 3D primitives is disabled.

This state is useful for debugging and to characterize the performance of an OpenGL driver without
actually rendering.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLCPSwapInterval
Sets or gets the swap interval.

The swap interval is represented as one long. If the swap interval is set to 0 (the default), the
flushBuffer (page 1767) method executes as soon as possible, without regard to the vertical refresh
rate of the monitor. If the swap interval is set to 1, the buffers are swapped only during the vertical
retrace of the monitor.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

Constants 1777
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

NSOpenGLCPSurfaceOrder
Get or set the surface order.

If the surface order is set to 1 (the default), the order is above the window (default). If the value is –1,
the order is below the window.

Available in Mac OS X v10.2 and later.

Declared in NSOpenGL.h.

NSOpenGLCPSurfaceOpacity
Set or get the surface opacity.

If the opacity is set to 1 (the default), the surface is opaque. If the value is 0, the surface is non-opaque.

Available in Mac OS X v10.2 and later.

Declared in NSOpenGL.h.

NSOpenGLCPStateValidation
If enabled, OpenGL inspects the context state each time the update (page 1776) method is called to
ensure that it is in an appropriate state for switching between renderers.

Normally, the state is inspected only when it is actually necessary to switch renderers. This is useful
when using a single monitor system to test that an application performs correctly on a multiple-monitor
system.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

1778 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 80

NSOpenGLContext Class Reference

Inherits from CAOpenGLLayer : CALayer : NSObject

Conforms to NSCoding (CALayer)
CAMediaTiming (CALayer)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSOpenGLLayer.h

Companion guide Core Animation Programming Guide

Overview

NSOpenGLLayer is a subclass of CAOpenGLLayer that is suitable for rendering OpenGL into layers. Unlike
CAOpenGLLayer, NSOpenGLLayer uses distinctly Application Kit types.

Tasks

Drawing the Content

– canDrawInOpenGLContext:pixelFormat:forLayerTime:displayTime: (page 1781)
Invoked to ask the layer whether it can (or should) draw.

– drawInOpenGLContext:pixelFormat:forLayerTime:displayTime: (page 1782)
Draws the OpenGL content for the specified time.

Managing the Pixel Format

 openGLPixelFormat (page 1780) property
Provides access to the layer's associated NSOpenGLPixelFormat.

– openGLPixelFormatForDisplayMask: (page 1782)
Returns the OpenGL pixel format suitable for the specified displays.

Overview 1779
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 81

NSOpenGLLayer Class Reference

Managing the Rendering Context

 openGLContext (page 1780) property
The layer’s NSOpenGLContext.

– openGLContextForPixelFormat: (page 1782)
Returns the OpenGL context to use for the requested pixel format.

Accessing the Associated View

 view (page 1781) property
Returns the view associated with the layer.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

openGLContext
The layer’s NSOpenGLContext.

@property(retain) NSOpenGLContext *openGLContext

Discussion
Provides access to the layer's associated NSOpenGLContext. Subclasses shouldn't invoke
setOpenGLContext:, but can override it if desired to intercept assignment of the layer's context.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOpenGLLayer.h

openGLPixelFormat
Provides access to the layer's associated NSOpenGLPixelFormat.

@property(retain) NSOpenGLPixelFormat *openGLPixelFormat

Discussion
Subclasses shouldn't invoke setOpenGLPixelFormat:, but can override it if desired to intercept assignment
of the layer's pixel format.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOpenGLLayer.h

1780 Properties
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 81

NSOpenGLLayer Class Reference

view
Returns the view associated with the layer.

@property(assign) NSView *view

Discussion
Subclasses shouldn't invoke setView:, but can override it if desired to intercept the layer's association to, or
dissociation from, a view.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOpenGLLayer.h

Instance Methods

canDrawInOpenGLContext:pixelFormat:forLayerTime:displayTime:
Invoked to ask the layer whether it can (or should) draw.

- (BOOL)canDrawInOpenGLContext:(NSOpenGLContext *)context
pixelFormat:(NSOpenGLPixelFormat *)pixelFormat
forLayerTime:(CFTimeInterval)timeInterval displayTime:(const CVTimeStamp
*)timeStamp

Parameters
context

The NSOpenGLContext in to which the OpenGL content would be drawn.

pixelFormat
The pixel format used when the context was created.

timeInterval
The current layer time.

timeStamp
The display timestamp associated with timeInterval. Can be null.

Return Value
YES if the receiver should render OpenGL content, NO otherwise.

Discussion
This method is called before attempting to render the frame for the layer time specified by timeInterval.
If the method returns NO, the frame is skipped. The default implementation always returns YES.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOpenGLLayer.h

Instance Methods 1781
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 81

NSOpenGLLayer Class Reference

drawInOpenGLContext:pixelFormat:forLayerTime:displayTime:
Draws the OpenGL content for the specified time.

- (void)drawInOpenGLContext:(NSOpenGLContext *)context
pixelFormat:(NSOpenGLPixelFormat *)pixelFormat
forLayerTime:(CFTimeInterval)timeInterval displayTime:(const CVTimeStamp
*)timeStamp

Parameters
context

The NSOpenGLContext in to which the OpenGL content would be drawn.

pixelFormat
The pixel format used when the context was created.

timeInterval
The current layer time.

timeStamp
The display timestamp associated with timeInterval. Can be null.

Discussion
This method is called when a new frame needs to be generated for the layer time specified by timeInterval.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOpenGLLayer.h

openGLContextForPixelFormat:
Returns the OpenGL context to use for the requested pixel format.

- (NSOpenGLContext *)openGLContextForPixelFormat:(NSOpenGLPixelFormat *)pixelFormat

Parameters
pixelFormat

The pixel format.

Return Value
An autoreleased NSOpenGLContext.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOpenGLLayer.h

openGLPixelFormatForDisplayMask:
Returns the OpenGL pixel format suitable for the specified displays.

- (NSOpenGLPixelFormat *)openGLPixelFormatForDisplayMask:(uint32_t)mask

1782 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 81

NSOpenGLLayer Class Reference

Parameters
mask

A mask specifying the displays the returned NSOpenGLPixelFormat must be suitable for.

Return Value
An autoreleased NSOpenGLPixelFormat object suitable for the displays.

Discussion
You must include an NSOpenGLPFAScreenMask specification in the pixel format attribute list that's used to
instantiate the NSOpenGLPixelFormat.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOpenGLLayer.h

Instance Methods 1783
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 81

NSOpenGLLayer Class Reference

1784 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 81

NSOpenGLLayer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSOpenGL.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Drawing Guide

Related sample code Quartz Composer Offline Rendering
Quartz Composer Texture

Overview

The NSOpenGLPixelBuffer class gives Cocoa OpenGL implementations access to accelerated offscreen
rendering. With this offscreen rendering you could, for instance, draw into the pixel buffer, then use the
contents as a texture map elsewhere. Typically you initialize an NSOpenGLPixelBuffer object using the
initWithTextureTarget:textureInternalFormat:textureMaxMipMapLevel:pixelsWide:
pixelsHigh: (page 1787) method and attach the resulting object to an OpenGL context with the
setPixelBuffer:cubeMapFace:mipMapLevel:currentVirtualScreen: (page 1773) method of
NSOpenGLContext.

Every NSOpenGLPixelBuffer object wraps a low-level, platform-specific Core OpenGL (CGL) pixel buffer
object. Your application can retrieve the CGL pixel buffer by calling the CGLPBufferObj (page 1786) method.
For more information on the underling CGL pixel buffer, see CGL Reference.

Tasks

Initializing an OpenGL Pixel Buffer

– initWithTextureTarget:textureInternalFormat:textureMaxMipMapLevel:pixelsWide:pixelsHigh: (page
1787)

Returns an NSOpenGLPixelBuffer object initialized with the specified parameters.

Overview 1785
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 82

NSOpenGLPixelBuffer Class Reference

– initWithCGLPBufferObj: (page 1786)
Initializes and returns an NSOpenGLPixelBuffer object that encapsulates an existing CGL pixel
buffer object.

Obtaining Information About an OpenGL Pixel Buffer

– CGLPBufferObj (page 1786)
Returns the underlying CGLPBufferObj object associated with the NSOpenGLPixelBuffer object.

– pixelsHigh (page 1788)
Returns the height of the receiver’s texture (in pixels).

– pixelsWide (page 1788)
Returns the width of the receiver’s texture (in pixels).

– textureInternalFormat (page 1789)
Returns the internal format of the receiver’s texture.

– textureMaxMipMapLevel (page 1789)
Returns the maximum mipmap level of the receiver’s texture.

– textureTarget (page 1789)
Returns the texture target of the receiver.

Instance Methods

CGLPBufferObj
Returns the underlying CGLPBufferObj object associated with the NSOpenGLPixelBuffer object.

- (void *)CGLPBufferObj

Return Value
The CGL pixel buffer object that encapsulates the actual pixel buffer.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOpenGL.h

initWithCGLPBufferObj:
Initializes and returns an NSOpenGLPixelBuffer object that encapsulates an existing CGL pixel buffer
object.

- (id)initWithCGLPBufferObj:(void *)pbuffer

Parameters
pbuffer

The CGL pixel buffer object to wrap.

1786 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 82

NSOpenGLPixelBuffer Class Reference

Return Value
An initialized NSOpenGLPixelBuffer object.

Discussion
If your application already has a CGL pixel buffer object, you can wrap it inside an NSOpenGLPixelBuffer
object by using this initializer. This method retains the CGL pixel buffer object by calling the
CGLRetainPBuffer function.

Your application should not call CGLDestroyPBuffer to dispose of the CGL pixel buffer object. Instead,
your application should call CGLReleasePBuffer to decrement its reference count.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOpenGL.h

initWithTextureTarget:textureInternalFormat:textureMaxMipMapLevel:pixelsWide:
pixelsHigh:
Returns an NSOpenGLPixelBuffer object initialized with the specified parameters.

- (id)initWithTextureTarget:(GLenum)target textureInternalFormat:(GLenum)format
textureMaxMipMapLevel:(GLint)maxLevel pixelsWide:(GLsizei)pixelsWide
pixelsHigh:(GLsizei)pixelsHigh

Parameters
target

The texture object. This value should be one of the following:
GL_TEXTURE_2D,GL_TEXTURE_CUBE_MAP, or GL_TEXTURE_RECTANGLE_EXT.

format
The base internal format of the texture. This value should be GL_RGB, GL_RGBA, or
GL_DEPTH_COMPONENT.

maxLevel
The desired maximum mipmap level of the structure, starting with zero.

pixelsWide
The width of the texture (in pixels) in the pixel buffer.

pixelsHigh
The height of the texture (in pixels) in the pixel buffer.

Return Value
An initialized NSOpenGLPixelBuffer object or nil if the initialization failed. Initialization can fail if there
is inconsistency among the parameter values. See the OpenGL documentation for glTexImage2D for more
information.

Discussion
The value you pass to the target parameter defines several other constraints that are then applied to the
remaining parameters. The list below gives the values you can pass to target and the additional constraints.

 ■ GL_TEXTURE_2D

 ■ GL_TEXTURE_CUBE_MAP - the values in pixelsWide and pixelsHigh must be equal.

Instance Methods 1787
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 82

NSOpenGLPixelBuffer Class Reference

 ■ GL_TEXTURE_RECTANGLE_EXT - maxLevel must be zero.

Normally, when using the GL_TEXTURE_2D and GL_TEXTURE_CUBE_MAP targets, you must specify width
and height values that are powers of two. When the ARB_texture_non_power_of_two extension is present,
however, some types of hardware can support values that are not powers of two. You should check for the
presence of this extension before specifying non power-of-two values.

If the texture map cannot be created, you can use the glGetError function to get the error code.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Quartz Composer Offline Rendering
Quartz Composer Texture

Declared In
NSOpenGL.h

pixelsHigh
Returns the height of the receiver’s texture (in pixels).

- (GLsizei)pixelsHigh

Return Value
The height of the texture (in pixels).

Availability
Available in Mac OS X v10.3 and later.

See Also
– pixelsWide (page 1788)

Related Sample Code
Quartz Composer Offline Rendering
Quartz Composer Texture

Declared In
NSOpenGL.h

pixelsWide
Returns the width of the receiver’s texture (in pixels).

- (GLsizei)pixelsWide

Return Value
The width of the texture (in pixels).

Availability
Available in Mac OS X v10.3 and later.

1788 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 82

NSOpenGLPixelBuffer Class Reference

See Also
– pixelsHigh (page 1788)

Related Sample Code
Quartz Composer Offline Rendering
Quartz Composer Texture

Declared In
NSOpenGL.h

textureInternalFormat
Returns the internal format of the receiver’s texture.

- (GLenum)textureInternalFormat

Return Value
The texture format, which can be one of the following values: GL_RGB, GL_RGBA, or GL_DEPTH_COMPONENT.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSOpenGL.h

textureMaxMipMapLevel
Returns the maximum mipmap level of the receiver’s texture.

- (GLint)textureMaxMipMapLevel

Return Value
The maximum mipmap level.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSOpenGL.h

textureTarget
Returns the texture target of the receiver.

- (GLenum)textureTarget

Return Value
The texture target, which can be one of the following values: GL_TEXTURE_2D, GL_TEXTURE_CUBE_MAP, or
GL_TEXTURE_RECTANGLE_EXT.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 1789
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 82

NSOpenGLPixelBuffer Class Reference

Declared In
NSOpenGL.h

1790 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 82

NSOpenGLPixelBuffer Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSOpenGL.h

Companion guide Cocoa Drawing Guide

Related sample code Denoise
From A View to A Movie
From A View to A Picture
GLUT
QTCoreVideo201

Overview

To render with OpenGL into an NSOpenGLContext, you must specify the context’s pixel format. An
NSOpenGLPixelFormat object specifies the types of buffers and other attributes of the NSOpenGLContext.
This class is similar to the AGLPixelFormat type, which is used in Carbon OpenGL applications.

Every NSOpenGLPixelFormat object wraps a low-level, platform-specific Core OpenGL (CGL) pixel format
object. Your application can retrieve the CGL pixel format object by calling the CGLPixelFormatObj (page
1792) method. For more information on the underling CGL pixel format object, see CGL Reference.

Tasks

Creating an NSOpenGLPixelFormat Object

– initWithCGLPixelFormatObj: (page 1795)
Returns an NSOpenGLPixelFormatobject initialized with using an existing CGL pixel format object.

– initWithData: (page 1796)
Returns an NSOpenGLPixelFormat object initialized with specified pixel format attribute data.
(Deprecated. Use initWithAttributes: (page 1793) instead.)

Overview 1791
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

– initWithAttributes: (page 1793)
Returns an NSOpenGLPixelFormat object initialized with specified pixel format attributes.

Managing the Pixel Format

– CGLPixelFormatObj (page 1792)
Returns the low-level, platform-specific Core OpenGL (CGL) pixel format object represented by the
receiver.

– getValues:forAttribute:forVirtualScreen: (page 1793)
Gets the value for the specified pixel format attribute.

– numberOfVirtualScreens (page 1796)
Returns the number of virtual screens associated with the receiver.

Managing Attributes

– attributes (page 1792)
Retrieves the attribute data for the pixel format object. (Deprecated.)

– setAttributes: (page 1797)
Sets the attribute data for the pixel format object. (Deprecated.)

Instance Methods

attributes
Retrieves the attribute data for the pixel format object. (Deprecated.)

- (NSData *)attributes

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

CGLPixelFormatObj
Returns the low-level, platform-specific Core OpenGL (CGL) pixel format object represented by the receiver.

- (void *)CGLPixelFormatObj

Return Value
A pointer to the underlying CGLPixelFormatObj object.

Availability
Available in Mac OS X v10.3 and later.

1792 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

Related Sample Code
CIRAWFilterSample
Denoise
DispatchFractal
WebKitCIPlugIn
WhackedTV

Declared In
NSOpenGL.h

getValues:forAttribute:forVirtualScreen:
Gets the value for the specified pixel format attribute.

- (void)getValues:(GLint *)vals forAttribute:(NSOpenGLPixelFormatAttribute)attrib
forVirtualScreen:(GLint)screen

Parameters
vals

On input, a pointer to a long variable. On output, the variable contains the value of the requested
attribute.

attrib
The requested attribute. For a list of attribute constants, see the table in “Constants” (page 1797).

screen
The screen from which you want to retrieve the attribute. This parameter must be a value between
0 and the number of virtual screens (numberOfVirtualScreens (page 1796)) minus 1.

Discussion
Because the value for an attribute may be different on each virtual screen, the virtual screen must be specified
along with the attribute.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithAttributes: (page 1793)

Related Sample Code
CIVideoDemoGL
Cocoa OpenGL
GLUT
LiveVideoMixer3
NSOpenGL Fullscreen

Declared In
NSOpenGL.h

initWithAttributes:
Returns an NSOpenGLPixelFormat object initialized with specified pixel format attributes.

Instance Methods 1793
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

- (id)initWithAttributes:(const NSOpenGLPixelFormatAttribute *)attribs

Parameters
attribs

A 0-terminated array containing Boolean and integer attribute constants. The presence of a Boolean
attribute implies a value of YES while its absence implies a value of NO. Integer constants must be
followed by the desired value. For a listing of attribute constants, see the table in “Constants” (page
1797).

Return Value
An initialized NSOpenGLPixelFormat object whose attributes match the desired attributes as close as
possible, or nil if an object with the desired attributes could not be initialized.

Discussion
On return, the Boolean attributes of the receiver match the values specified in attribs, and the integer
attributes are as close to the specified values as can be provided by the system. However, if no matching
pixel format exists, the receiver releases itself and nil is returned. You may deallocate the receiver following
its use in the successful initialization of an NSOpenGLContext.

The existence of a Boolean attribute constant in attribs implies a YES value. The Boolean attribute constants
are:

NSOpenGLPFAAllRenderers

NSOpenGLPFADoubleBuffer

NSOpenGLPFAStereo

NSOpenGLPFAMinimumPolicy

NSOpenGLPFAMaximumPolicy

NSOpenGLPFAOffScreen

NSOpenGLPFAFullScreen

NSOpenGLPFASingleRenderer

NSOpenGLPFANoRecovery

NSOpenGLPFAAccelerated

NSOpenGLPFAClosestPolicy

NSOpenGLPFARobust

NSOpenGLPFABackingStore

NSOpenGLPFAWindow

NSOpenGLPFAMultiScreen

NSOpenGLPFACompliant

NSOpenGLPFAPixelBuffer

The integer constants must be followed by a value. These constants are:

NSOpenGLPFAAuxBuffers

NSOpenGLPFAColorSize

NSOpenGLPFAAlphaSize

NSOpenGLPFADepthSize

NSOpenGLPFAStencilSize

NSOpenGLPFAAccumSize

NSOpenGLPFARendererID

NSOpenGLPFAScreenMask

1794 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

This code fragment creates a double-buffered pixel format with a 32-bit depth buffer:

NSOpenGLPixelFormatAttribute attrs[] =
{
 NSOpenGLPFADoubleBuffer,
 NSOpenGLPFADepthSize, 32,
 0
};

NSOpenGLPixelFormat* pixFmt = [[NSOpenGLPixelFormat alloc]
initWithAttributes:attrs];

/* Check if initWithAttributes succeeded. */
if(pixFmt == nil) {
 /* initWithAttributes failed. Try to alloc/init with a different list of
attributes. */
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– getValues:forAttribute:forVirtualScreen: (page 1793)

Related Sample Code
CoreImageGLTextureFBO
DispatchLife
From A View to A Movie
From A View to A Picture
SurfaceVertexProgram

Declared In
NSOpenGL.h

initWithCGLPixelFormatObj:
Returns an NSOpenGLPixelFormatobject initialized with using an existing CGL pixel format object.

- (id)initWithCGLPixelFormatObj:(void *)format

Parameters
format

An existing CGL pixel format object.

Return Value
An intialized NSOpenGLPixelFormat object that wraps the CGL pixel format object.

Discussion
If your application already has a low-level CGL pixel format object, you can create an NSOpenGLPixelFormat
object to wrap it by calling this initializer. The NSOpenGLPixelFormat object retains the CGL pixel format
object by calling the CGLRetainPixelFormat function.

Your application should not call CGLDestroyPixelFormat to dispose of the CGL pixel format object. Instead,
your application should call CGLReleasePixelFormat to decrement its reference count.

Instance Methods 1795
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOpenGL.h

initWithData:
Returns an NSOpenGLPixelFormat object initialized with specified pixel format attribute data. (Deprecated.
Use initWithAttributes: (page 1793) instead.)

- (id)initWithData:(NSData *)attribs

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

numberOfVirtualScreens
Returns the number of virtual screens associated with the receiver.

- (GLint)numberOfVirtualScreens

Return Value
The number of virtual screens.

Discussion
When the attributes are set, OpenGL searches for drivers matching the requested attributes. Each matching
driver drives a set of displays. For example, a graphics card in a portable computer might drive the internal
screen and an external display. This portable computer would have one virtual screen. A desktop computer
might have two different graphics cards, each driving one or more displays. The pairing of an OpenGL driver
with its set of associated displays corresponds to one virtual screen. In the above examples, the portable
computer would have one virtual screen, while the desktop computer would have two. Another desktop
computer with a video card driving two displays at once would have one virtual screen.

For more information on virtual screens, consult OpenGL Programming Guide for Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getValues:forAttribute:forVirtualScreen: (page 1793)

Related Sample Code
CIVideoDemoGL
DispatchFractal
LiveVideoMixer
LiveVideoMixer2
LiveVideoMixer3

1796 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

Declared In
NSOpenGL.h

setAttributes:
Sets the attribute data for the pixel format object. (Deprecated.)

- (void)setAttributes:(NSData *)attribs

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

Constants

NSOpenGLPixelFormatAttribute
The following attribute names are used by initWithAttributes: (page 1793) and
getValues:forAttribute:forVirtualScreen: (page 1793):

Constants 1797
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

enum {
 NSOpenGLPFAAllRenderers = 1,
 NSOpenGLPFADoubleBuffer = 5,
 NSOpenGLPFAStereo = 6,
 NSOpenGLPFAAuxBuffers = 7,
 NSOpenGLPFAColorSize = 8,
 NSOpenGLPFAAlphaSize = 11,
 NSOpenGLPFADepthSize = 12,
 NSOpenGLPFAStencilSize = 13,
 NSOpenGLPFAAccumSize = 14,
 NSOpenGLPFAMinimumPolicy = 51,
 NSOpenGLPFAMaximumPolicy = 52,
 NSOpenGLPFAOffScreen = 53,
 NSOpenGLPFAFullScreen = 54,
 NSOpenGLPFASampleBuffers = 55,
 NSOpenGLPFASamples = 56,
 NSOpenGLPFAAuxDepthStencil = 57,
 NSOpenGLPFAColorFloat = 58,
 NSOpenGLPFAMultisample = 59,
 NSOpenGLPFASupersample = 60,
 NSOpenGLPFASampleAlpha = 61,
 NSOpenGLPFARendererID = 70,
 NSOpenGLPFASingleRenderer = 71,
 NSOpenGLPFANoRecovery = 72,
 NSOpenGLPFAAccelerated = 73,
 NSOpenGLPFAClosestPolicy = 74,
 NSOpenGLPFARobust = 75,
 NSOpenGLPFABackingStore = 76,
 NSOpenGLPFAMPSafe = 78,
 NSOpenGLPFAWindow = 80,
 NSOpenGLPFAMultiScreen = 81,
 NSOpenGLPFACompliant = 83,
 NSOpenGLPFAScreenMask = 84,
 NSOpenGLPFAPixelBuffer = 90,
 NSOpenGLPFARemotePixelBuffer = 91,
 NSOpenGLPFAAllowOfflineRenderers = 96,
 NSOpenGLPFAAcceleratedCompute = 97,
 NSOpenGLPFAVirtualScreenCount = 128
};
typedef uint32_t NSOpenGLPixelFormatAttribute;

Constants
NSOpenGLPFAAllRenderers

A Boolean attribute. If present, this attribute indicates that the pixel format selection is open to all
available renderers, including debug and special-purpose renderers that are not OpenGL compliant.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFADoubleBuffer
A Boolean attribute. If present, this attribute indicates that only double-buffered pixel formats are
considered. Otherwise, only single-buffered pixel formats are considered.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

1798 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

NSOpenGLPFAStereo
A Boolean attribute. If present, this attribute indicates that only stereo pixel formats are considered.
Otherwise, only monoscopic pixel formats are considered.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAAuxBuffers
Value is a nonnegative integer that indicates the desired number of auxiliary buffers. Pixel formats
with the smallest number of auxiliary buffers that meets or exceeds the specified number are preferred.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAColorSize
Value is a nonnegative buffer size specification. A color buffer that most closely matches the specified
size is preferred. If unspecified, OpenGL chooses a color size that matches the screen.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAAlphaSize
Value is a nonnegative buffer size specification. An alpha buffer that most closely matches the specified
size is preferred.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFADepthSize
Value is a nonnegative depth buffer size specification. A depth buffer that most closely matches the
specified size is preferred.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAStencilSize
Value is a nonnegative integer that indicates the desired number of stencil bitplanes. The smallest
stencil buffer of at least the specified size is preferred.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAAccumSize
Value is a nonnegative buffer size specification. An accumulation buffer that most closely matches
the specified size is preferred.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAMinimumPolicy
A Boolean attribute. If present, this attribute indicates that the pixel format choosing policy is altered
for the color, depth, and accumulation buffers such that only buffers of size greater than or equal to
the desired size are considered.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

Constants 1799
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

NSOpenGLPFAMaximumPolicy
A Boolean attribute. If present, this attribute indicates that the pixel format choosing policy is altered
for the color, depth, and accumulation buffers such that, if a nonzero buffer size is requested, the
largest available buffer is preferred.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAOffScreen
A Boolean attribute. If present, this attribute indicates that only renderers that are capable of rendering
to an offscreen memory area and have buffer depth exactly equal to the desired buffer depth are
considered. The NSOpenGLPFAClosestPolicy attribute is implied.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAFullScreen
A Boolean attribute. If present, this attribute indicates that only renderers that are capable of rendering
to a full-screen drawable are considered. The NSOpenGLPFASingleRenderer attribute is implied.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFASampleBuffers
Value is a nonnegative number indicating the number of multisample buffers.

Available in Mac OS X v10.2 and later.

Declared in NSOpenGL.h.

NSOpenGLPFASamples
Value is a nonnegative indicating the number of samples per multisample buffer.

Available in Mac OS X v10.2 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAAuxDepthStencil
Each auxiliary buffer has its own depth stencil.

Available in Mac OS X v10.2 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAColorFloat
A Boolean attribute. If present, this attribute indicates that only renderers that are capable using
buffers storing floating point pixels are considered. This should be accompanied by a
NSOpenGLPFAColorSize of 64 (for half float pixel components) or 128 (for full float pixel components).
Note, not all hardware supports floating point color buffers thus the returned pixel format could be
NULL.

Available in Mac OS X v10.4 and later.

Declared in NSOpenGL.h.

1800 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

NSOpenGLPFAMultisample
A Boolean attribute. If present and used with NSOpenGLPFASampleBuffers and
NSOpenGLPFASamples, this attribute hints to OpenGL to prefer multi-sampling. Multi-sampling will
sample textures at the back buffer dimensions vice the multi-sample buffer dimensions and use that
single sample for all fragments with coverage on the back buffer location. This means less total texture
samples than with super-sampling (by a factor of the number of samples requested) and will likely
be faster though less accurate (texture sample wise) than super-sampling. If the underlying video
card does not have enough VRAM to support this feature, this hint does nothing.

The NSOpenGLPFASampleBuffers and NSOpenGLPFASamples attributes must be configured to
request anti-aliasing as follows:

NSOpenGLPFAMultisample,
NSOpenGLPFASampleBuffers, (NSOpenGLPixelFormatAttribute)1
NSOpenGLPFASamples, (NSOpenGLPixelFormatAttribute)4,

If after adding these options, multisamping still does not work, try removing the
NSOpenGLPFAPixelBuffer attribute (if present). Some graphics cards may not support this option
in specific versions of Mac OS X. If removing the attribute still does not enable multisampling, try
adding the NSOpenGLPFANoRecovery attribute.

Available in Mac OS X v10.4 and later.

Declared in NSOpenGL.h.

NSOpenGLPFASupersample
A Boolean attribute. If present and used with NSOpenGLPFASampleBuffers and
NSOpenGLPFASamples, this attribute hints to OpenGL to prefer super-sampling. Super-sampling will
process fragments with a texture sample per fragment and would likely be slower than multi-sampling.
If the pixel format is not requesting anti-aliasing, this hint does nothing.

Available in Mac OS X v10.4 and later.

Declared in NSOpenGL.h.

NSOpenGLPFASampleAlpha
A Boolean attribute. If present and used with NSOpenGLPFASampleBuffers and
NSOpenGLPFASampleBuffers, this attribute hints to OpenGL to update multi-sample alpha values
to ensure the most accurate rendering. If pixel format is not requesting anti-aliasing then this hint
does nothing.

Available in Mac OS X v10.4 and later.

Declared in NSOpenGL.h.

NSOpenGLPFARendererID
Value is a nonnegative renderer ID number. OpenGL renderers that match the specified ID are preferred.
Constants to select specific renderers are provided in the CGLRenderers.h header of the OpenGL
framework. Of note is kCGLRendererGenericID which selects the Apple software renderer. The
other constants select renderers for specific hardware vendors.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFASingleRenderer
A Boolean attribute. If present, this attribute indicates that a single rendering engine is chosen. On
systems with multiple screens, this disables OpenGL’s ability to drive different monitors through
different graphics accelerator cards with a single context. This attribute is not generally useful.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

Constants 1801
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

NSOpenGLPFANoRecovery
A Boolean attribute. If present, this attribute indicates that OpenGL’s failure recovery mechanisms
are disabled. Normally, if an accelerated renderer fails due to lack of resources, OpenGL automatically
switches to another renderer. This attribute disables these features so that rendering is always
performed by the chosen renderer. This attribute is not generally useful.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAAccelerated
A Boolean attribute. If present, this attribute indicates that only hardware-accelerated renderers are
considered. If not present, accelerated renderers are still preferred.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAClosestPolicy
A Boolean attribute. If present, this attribute indicates that the pixel format choosing policy is altered
for the color buffer such that the buffer closest to the requested size is preferred, regardless of the
actual color buffer depth of the supported graphics device.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFARobust
A Boolean attribute. If present, this attribute indicates that only renderers that do not have any failure
modes associated with a lack of video card resources are considered. This attribute is not generally
useful.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFABackingStore
A Boolean attribute. If present, this attribute indicates that OpenGL only considers renderers that
have a back color buffer the full size of the drawable (regardless of window visibility) and that guarantee
the back buffer contents to be valid after a call to NSOpenGLContext object’s flushBuffer (page
1767).

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAMPSafe
A Boolean attribute. If present, this attribute indicates that the renderer is multi-processor safe.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAWindow
A Boolean attribute. If present, this attribute indicates that only renderers that are capable of rendering
to a window are considered. This attribute is implied if neither NSOpenGLPFAFullScreen nor
NSOpenGLPFAOffScreen is specified.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

1802 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

NSOpenGLPFAMultiScreen
A Boolean attribute. If present, this attribute indicates that only renderers capable of driving multiple
screens are considered. This attribute is not generally useful.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFACompliant
A Boolean attribute. If present, this attribute indicates that pixel format selection is only open to
OpenGL-compliant renderers. This attribute is implied unless NSOpenGLPFAAllRenderers is specified.
This attribute is not useful in the attribute array.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAScreenMask
Value is a bit mask of supported physical screens. All screens specified in the bit mask are guaranteed
to be supported by the pixel format. Screens not specified in the bit mask may still be supported. The
bit mask is managed by the CoreGraphics’s DirectDisplay, available in the CGDirectDisplay.h
header of the ApplicationServices umbrella framework. A CGDirectDisplayID must be converted
to an OpenGL display mask using the function CGDisplayIDToOpenGLDisplayMask. This attribute
is not generally useful.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAPixelBuffer
A Boolean attribute. If present, this attribute indicates that rendering to a pixel buffer is enabled.

Available in Mac OS X v10.3 and later.

Declared in NSOpenGL.h.

NSOpenGLPFARemotePixelBuffer
A Boolean attribute. If present, this attribute indicates that rendering to a pixel buffer on an offline
renderer is enabled.

Available in Mac OS X v10.6 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAAllowOfflineRenderers
A Boolean attribute. If present, this attribute indicates that offline renderers may be used.

Available in Mac OS X v10.5 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAAcceleratedCompute
If present, this attribute indicates that only renderers that can execute OpenCL programs should be
used.

Available in Mac OS X v10.6 and later.

Declared in NSOpenGL.h.

NSOpenGLPFAVirtualScreenCount
The number of virtual screens in this format.

Available in Mac OS X v10.2 and later.

Declared in NSOpenGL.h.

Availability
Available in Mac OS X v10.0 and later.

Constants 1803
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

Declared In
NSOpenGL.h

1804 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 83

NSOpenGLPixelFormat Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSOpenGLView.h

Companion guide Cocoa Drawing Guide

Related sample code CIColorTracking
From A View to A Movie
From A View to A Picture
LiveVideoMixer2
LiveVideoMixer3

Overview

An NSOpenGLView object maintains an NSOpenGLPixelFormat and NSOpenGLContext object into which
OpenGL calls can be rendered. The view provides methods for accessing and managing the
NSOpenGLPixelFormat and NSOpenGLContext objects, as well as notifications of visible region changes.

An NSOpenGLView object cannot have subviews. You can, however, divide a single NSOpenGLView into
multiple rendering areas using the glViewport function.

When creating an NSOpenGLView object in Interface Builder, you use the inspector window to specify the
pixel format attributes you want for the view. Only those attributes listed in the Interface Builder inspector
are set when the view is instantiated.

Overview 1805
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 84

NSOpenGLView Class Reference

Note: In versions of the Xcode Tools that shipped prior to Mac OS X v10.4, the Interface Builder inspector
does not list any pixel format attributes for NSOpenGLView.

Tasks

Initializing an NSOpenGLView

– initWithFrame:pixelFormat: (page 1808)
Returns an NSOpenGLView object initialized with the specified frame rectangle and pixel format.

Managing the NSOpenGLPixelFormat

+ defaultPixelFormat (page 1807)
Returns a default NSOpenGLPixelFormat object.

– pixelFormat (page 1809)
Returns the NSOpenGLPixelFormat object associated with the receiver.

– setPixelFormat: (page 1811)
Sets the receiver’s NSOpenGLPixelFormat object to the specified object.

Managing the NSOpenGLContext

– prepareOpenGL (page 1809)
Used by subclasses to initialize OpenGL state.

– clearGLContext (page 1807)
Releases the NSOpenGLContext object associated with the view.

– openGLContext (page 1808)
Returns the NSOpenGLContext object associated with the receiver.

– setOpenGLContext: (page 1810)
Sets the NSOpenGLContext object associated with the receiver.

Managing the Visible Region

– reshape (page 1810)
Called by Cocoa when the view's visible rectangle or bounds change.

– update (page 1811)
Called by Cocoa when the view’s window moves or when the view itself moves or is resized.

1806 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 84

NSOpenGLView Class Reference

Class Methods

defaultPixelFormat
Returns a default NSOpenGLPixelFormat object.

+ (NSOpenGLPixelFormat *)defaultPixelFormat

Return Value
A pixel format object with no attributes set.

Discussion
Typically used with the initializer initWithFrame:pixelFormat: (page 1808), this object has no attributes
set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pixelFormat (page 1809)
– setPixelFormat: (page 1811)

Related Sample Code
FunHouse
LiveVideoMixer
LiveVideoMixer2
LiveVideoMixer3
WhackedTV

Declared In
NSOpenGLView.h

Instance Methods

clearGLContext
Releases the NSOpenGLContext object associated with the view.

- (void)clearGLContext

Discussion
If necessary, this method calls the clearDrawable (page 1765) method of the context object before releasing
it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– openGLContext (page 1808)

Class Methods 1807
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 84

NSOpenGLView Class Reference

– setOpenGLContext: (page 1810)

Declared In
NSOpenGLView.h

initWithFrame:pixelFormat:
Returns an NSOpenGLView object initialized with the specified frame rectangle and pixel format.

- (id)initWithFrame:(NSRect)frameRect pixelFormat:(NSOpenGLPixelFormat *)format

Parameters
frameRect

The frame rectangle for the view, specified in the coordinate system of its parent view.

format
The pixel format to use when creating the view's NSOpenGLContext object.

Return Value
An initialized NSOpenGLView object, or nil if the object could not be initialized.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultPixelFormat (page 1807)

Related Sample Code
Cocoa OpenGL
GLSLShowpiece
LiveVideoMixer2
OpenCL NBody Simulation Example
VBL

Declared In
NSOpenGLView.h

openGLContext
Returns the NSOpenGLContext object associated with the receiver.

- (NSOpenGLContext *)openGLContext

Return Value
The OpenGL context object of the receiver.

Discussion
If the receiver has no associated context object, a new NSOpenGLContext object is created and returned.
The new object is initialized with the receiver’s pixel format information.

Availability
Available in Mac OS X v10.0 and later.

1808 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 84

NSOpenGLView Class Reference

See Also
– clearGLContext (page 1807)
– setOpenGLContext: (page 1810)
– pixelFormat (page 1809)

Related Sample Code
Cocoa OpenGL
LiveVideoMixer
LiveVideoMixer2
NURBSSurfaceVertexProg
SurfaceVertexProgram

Declared In
NSOpenGLView.h

pixelFormat
Returns the NSOpenGLPixelFormat object associated with the receiver.

- (NSOpenGLPixelFormat *)pixelFormat

Return Value
The receiver's pixel format object.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultPixelFormat (page 1807)
– initWithFrame:pixelFormat: (page 1808)
– setPixelFormat: (page 1811)

Related Sample Code
CIColorTracking
Cocoa OpenGL
CoreImageGLTextureFBO
DispatchFractal
Draw Pixels

Declared In
NSOpenGLView.h

prepareOpenGL
Used by subclasses to initialize OpenGL state.

- (void)prepareOpenGL

Discussion
This method is called only once after the OpenGL context is made the current context. Subclasses that
implement this method can use it to configure the Open GL state in preparation for drawing.

Instance Methods 1809
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 84

NSOpenGLView Class Reference

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CoreImageGLTextureFBO
OpenCL NBody Simulation Example
QTCoreImage101
QTCoreVideo103
WhackedTV

Declared In
NSOpenGLView.h

reshape
Called by Cocoa when the view's visible rectangle or bounds change.

- (void)reshape

Discussion
Cocoa typically calls this method during scrolling and resize operations but may call it in other situations
when the view's rectangles change. The default implementation does nothing. You can override this method
if you need to adjust the viewport and display frustum.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DispatchLife
iChatTheater
NSOpenGL Fullscreen
VertexPerformanceDemo
VertexPerformanceTest

Declared In
NSOpenGLView.h

setOpenGLContext:
Sets the NSOpenGLContext object associated with the receiver.

- (void)setOpenGLContext:(NSOpenGLContext *)context

Parameters
context

The OpenGL context object to associate with the receiver.

Discussion
This method releases the current OpenGL context, if one already exists. You must also call the setView: (page
1775) method of the context object to synchronize the context with the view.

1810 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 84

NSOpenGLView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– clearGLContext (page 1807)
– openGLContext (page 1808)

Related Sample Code
LiveVideoMixer
LiveVideoMixer2
LiveVideoMixer3

Declared In
NSOpenGLView.h

setPixelFormat:
Sets the receiver’s NSOpenGLPixelFormat object to the specified object.

- (void)setPixelFormat:(NSOpenGLPixelFormat *)pixelFormat

Parameters
pixelFormat

The new pixel format object for the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultPixelFormat (page 1807)
– pixelFormat (page 1809)

Declared In
NSOpenGLView.h

update
Called by Cocoa when the view’s window moves or when the view itself moves or is resized.

- (void)update

Discussion
The default implementation simply calls the update (page 1776) method of NSOpenGLContext. You can
override this method to perform additional update operations on the context or if you need to add locks for
multithreaded access to multiple contexts.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DispatchLife
LiveVideoMixer

Instance Methods 1811
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 84

NSOpenGLView Class Reference

LiveVideoMixer2
LiveVideoMixer3
OpenGL Filter Basics Cocoa

Declared In
NSOpenGLView.h

1812 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 84

NSOpenGLView Class Reference

Inherits from NSSavePanel : NSPanel : NSWindow : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSWindow)
NSAnimatablePropertyContainer (NSWindow)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSOpenPanel.h

Companion guides Application File Management
Sheet Programming Topics

Related sample code ExtractMovieAudioToAIFF
FunHouse
ImageKitDemo
LSMSmartCategorizer
QTExtractAndConvertToAIFF

Overview

The NSOpenPanel class provides the Open panel for the Cocoa user interface. Applications use the Open
panel as a convenient way to query the user for the name of a file to open.

Tasks

Creating Panels

+ openPanel (page 1815)
Creates and returns a NSOpenPanel (page 1813) object.

Overview 1813
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

Configuring Panels

– canChooseFiles (page 1818)
Returns whether the panel allows the user to choose files to open.

– setCanChooseFiles: (page 1822)
Sets whether the user can select files in the panel’s browser.

– canChooseDirectories (page 1818)
Returns whether the panel allows the user to choose directories to open.

– setCanChooseDirectories: (page 1822)
Sets whether the user can select directories in the panel’s browser.

– resolvesAliases (page 1819)
Returns whether the panel resolves aliases.

– setResolvesAliases: (page 1823)
Sets whether the panel resolves aliases.

– allowsMultipleSelection (page 1815)
Returns whether the panel’s browser allows the user to open multiple files (and directories) at a time.

– setAllowsMultipleSelection: (page 1821)
Sets whether the user can select multiple files (and directories) at one time for opening.

Running Panels

– beginForDirectory:file:types:modelessDelegate:didEndSelector:contextInfo: (page
1816) Deprecated in Mac OS X v10.6

Presents a modeless Open panel. (Deprecated. Use beginWithCompletionHandler: (page 2288)
instead. You can set absoluteDirectoryPath using setDirectoryURL: (page 2300), and you can
set fileTypes using setAllowedFileTypes: (page 2297).)

– beginSheetForDirectory:file:types:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page
1817) Deprecated in Mac OS X v10.6

Presents an Open panel as a sheet with the directory specified by absoluteDirectoryPath and
optionally the file specified by filename selected. (Deprecated. Use
beginSheetModalForWindow:completionHandler: (page 2288) instead. You can set
absoluteDirectoryPath using setDirectoryURL: (page 2300), and you can set fileTypes using
setAllowedFileTypes: (page 2297).)

– runModalForDirectory:file:types: (page 1820) Deprecated in Mac OS X v10.6
Displays the panel and begins a modal event loop that is terminated when the user clicks either OK
or Cancel. (Deprecated. Use runModal (page 2295) instead. You can set path using
setDirectoryURL: (page 2300), and you can set fileTypes using setAllowedFileTypes: (page
2297).)

– runModalForTypes: (page 1821) Deprecated in Mac OS X v10.6
Displays the panel and begins a modal event loop that is terminated when the user clicks either OK
or Cancel. (Deprecated. Use runModal (page 2295) instead. You can set fileTypes using
setAllowedFileTypes: (page 2297).)

1814 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

Accessing User Selection

– URLs (page 1823)
Returns an array containing the absolute paths of the selected files and directories as URLs.

– filenames (page 1819) Deprecated in Mac OS X v10.6
Returns an array containing the absolute paths (as NSString objects) of the selected files and directories.
(Deprecated. Use URLs (page 1823) instead.)

Class Methods

openPanel
Creates and returns a NSOpenPanel (page 1813) object.

+ (NSOpenPanel *)openPanel

Return Value
The initialized Open panel.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FunHouse
ImageKitDemo
LSMSmartCategorizer
QTKitPlayer
Quartz Composer WWDC 2005 TextEdit

Declared In
NSOpenPanel.h

Instance Methods

allowsMultipleSelection
Returns whether the panel’s browser allows the user to open multiple files (and directories) at a time.

- (BOOL)allowsMultipleSelection

Return Value
YES if the panel’s browser allows multiple selection; otherwise, NO.

Discussion
If multiple files or directories are allowed, then the filename (page 2291) method—inherited from
NSSavePanel—returns a non-nil value only if one and only one file is selected. By contrast, NSOpenPanel’s
URLs (page 1823) method always returns the URLs of the selected files, even if only one file is selected.

Class Methods 1815
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– URL (page 2307) (NSSavePanel)
– URLs (page 1823)
– setAllowsMultipleSelection: (page 1821)

Declared In
NSOpenPanel.h

beginForDirectory:file:types:modelessDelegate:didEndSelector:contextInfo:
Presents a modeless Open panel. (Deprecated in Mac OS X v10.6. Use beginWithCompletionHandler: (page
2288) instead. You can set absoluteDirectoryPath using setDirectoryURL: (page 2300), and you can set
fileTypes using setAllowedFileTypes: (page 2297).)

- (void)beginForDirectory:(NSString *)absoluteDirectoryPath file:(NSString *)filename
types:(NSArray *)fileTypes modelessDelegate:(id)modelessDelegate
didEndSelector:(SEL)didEndSelector contextInfo:(void *)contextInfo

Parameters
absoluteDirectoryPath

The directory whose files the panel displays. When nil, the directory is the same directory used in
the previous invocation of the panel; this is probably the best choice for most situations.

filename
Specifies a particular file in absoluteDirectoryPath that is selected when the Open panel is
presented to the user. When nil, no file is initially selected.

fileTypes
An array of file extensions and/or HFS file types. Specifies the files the panel allows the user to select.
nil makes all files in absoluteDirectoryPath selectable by the user. An array of types passed in
here will override one set using setAllowedFileTypes: (page 2297).

modelessDelegate
This is not the same as a delegate assigned to the panel. This delegate is temporary and the relationship
only lasts until the panel is dismissed.

didEndSelector
The message sent to modelessDelegate after the panel’s session has ended, but before dismissing
the Open panel. didEndSelector may dismiss the Open panel itself; otherwise, it will be dismissed
on return from the method. The corresponding method should have the following signature:

- (void)openPanelDidEnd:(NSOpenPanel *)panel returnCode:(int)returnCode
contextInfo:(void *)contextInfo

The value passed as returnCode will be either NSCancelButton or NSOKButton.

contextInfo
Any context information passed to modelessDelegate in the didEndSelector message.

Discussion
Similar to
beginSheetForDirectory:file:types:modalForWindow:modalDelegate:didEndSelector:
contextInfo: (page 1817), but allows for modeless operation of the panel.

1816 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.6.

See Also
– beginWithCompletionHandler: (page 2288)

Declared In
NSOpenPanel.h

beginSheetForDirectory:file:types:modalForWindow:modalDelegate:didEndSelector:
contextInfo:
Presents an Open panel as a sheet with the directory specified by absoluteDirectoryPath and optionally
the file specified by filename selected. (Deprecated in Mac OS X v10.6. Use
beginSheetModalForWindow:completionHandler: (page 2288) instead. You can set
absoluteDirectoryPath using setDirectoryURL: (page 2300), and you can set fileTypes using
setAllowedFileTypes: (page 2297).)

- (void)beginSheetForDirectory:(NSString *)absoluteDirectoryPath file:(NSString
*)filename types:(NSArray *)fileTypes modalForWindow:(NSWindow *)docWindow
modalDelegate:(id)modalDelegate didEndSelector:(SEL)didEndSelector
contextInfo:(void *)contextInfo

Parameters
absoluteDirectoryPath

The directory whose files the panel displays. When nil, the directory is the same directory used in
the previous invocation of the panel; this is probably the best choice for most situations.

filename
Specifies a particular file in absoluteDirectoryPath that is selected when the Open panel is
presented to the user. When nil, no file is initially selected.

fileTypes
An array of file extensions and/or HFS file types. Specifies the files the panel allows the user to select.
nil makes all files in absoluteDirectoryPath selectable by the user. An array of types passed in
here will override one set using setAllowedFileTypes: (page 2297).

docWindow
The window to open the sheet on.

modalDelegate
This is not the same as a delegate assigned to the panel. This delegate is temporary and the relationship
only lasts until the panel is dismissed..

didEndSelector
The message sent to modalDelegate after the modal session has ended, but before dismissing the
Open panel. didEndSelector may dismiss the Open panel itself; otherwise, it will be dismissed on
return from the method. The corresponding method should have the following signature:

- (void)openPanelDidEnd:(NSOpenPanel *)panel returnCode:(int)returnCode
contextInfo:(void *)contextInfo

The value passed as returnCode will be either NSCancelButton or NSOKButton.

Instance Methods 1817
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

contextInfo
Any context information passed to modalDelegate in the didEndSelector message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– beginSheetModalForWindow:completionHandler: (page 2288)

Related Sample Code
DemoAssistant
IKImageViewDemo
QTExtractAndConvertToMovieFile
SillyFrequencyLevels
XMLBrowser

Declared In
NSOpenPanel.h

canChooseDirectories
Returns whether the panel allows the user to choose directories to open.

- (BOOL)canChooseDirectories

Return Value
YES if the panel allows the user to choose directories; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCanChooseDirectories: (page 1822)

Declared In
NSOpenPanel.h

canChooseFiles
Returns whether the panel allows the user to choose files to open.

- (BOOL)canChooseFiles

Return Value
YES if the panel allows the user to choose files; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCanChooseFiles: (page 1822)

1818 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

Declared In
NSOpenPanel.h

filenames
Returns an array containing the absolute paths (as NSString objects) of the selected files and directories.
(Deprecated in Mac OS X v10.6. Use URLs (page 1823) instead.)

- (NSArray *)filenames

Return Value
The array of filenames.

Discussion
If multiple selections aren’t allowed, the array contains a single name. The filenames method is preferable
over NSSavePanel’s filename (page 2291) to get the name or names of files and directories that the user has
selected.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– URLs (page 1823)

Related Sample Code
FunHouse
ImageKitDemo
LSMSmartCategorizer
ThreadsImporter
ThreadsImportMovie

Declared In
NSOpenPanel.h

resolvesAliases
Returns whether the panel resolves aliases.

- (BOOL)resolvesAliases

Return Value
YES if the panel resolves aliases; otherwise, NO.

Discussion
If YES, the effect is that dropping an alias on the panel or asking for filenames or URLs returns the resolved
aliases. The default is YES.

Availability
Available in Mac OS X v10.1 and later.

Instance Methods 1819
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

See Also
– setResolvesAliases: (page 1823)

Declared In
NSOpenPanel.h

runModalForDirectory:file:types:
Displays the panel and begins a modal event loop that is terminated when the user clicks either OK or Cancel.
(Deprecated in Mac OS X v10.6. Use runModal (page 2295) instead. You can set path using
setDirectoryURL: (page 2300), and you can set fileTypes using setAllowedFileTypes: (page 2297).)

- (NSInteger)runModalForDirectory:(NSString *)absoluteDirectoryPath file:(NSString
 *)filename types:(NSArray *)fileTypes

Parameters
absoluteDirectoryPath

The directory whose files the panel displays. When nil, the directory is the same directory used in
the previous invocation of the panel; this is probably the best choice for most situations.

filename
Specifies a particular file in absoluteDirectoryPath that is selected when the Open panel is
presented to the user. When nil, no file is initially selected.

fileTypes
An array of file extensions and/or HFS file types. Specifies the files the panel allows the user to select.
nil makes all files in absoluteDirectoryPath selectable by the user. An array of types passed in
here will override one set using setAllowedFileTypes: (page 2297).

Return Value
The button clicked to dismiss the dialog: NSOKButton for the OK button and NSCancelButton for the
Cancel button.

Discussion
You can control whether directories and files appear in the browser with the
setCanChooseDirectories: (page 1822) and setCanChooseFiles: (page 1822) methods.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– runModal (page 2295)

Related Sample Code
CocoaVideoFrameToGWorld
LiveVideoMixer
LiveVideoMixer2
QTGraphicsImport
SBSetFinderComment

Declared In
NSOpenPanel.h

1820 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

runModalForTypes:
Displays the panel and begins a modal event loop that is terminated when the user clicks either OK or Cancel.
(Deprecated in Mac OS X v10.6. Use runModal (page 2295) instead. You can set fileTypes using
setAllowedFileTypes: (page 2297).)

- (NSInteger)runModalForTypes:(NSArray *)fileTypes

Parameters
fileTypes

An array of file extensions and/or HFS file types. Specifies the files the panel allows the user to select.
nil makes all files selectable by the user. An array of types passed in here will override one set using
setAllowedFileTypes: (page 2297).

Return Value
The button used to dismiss the dialog: NSOKButton for the OK button and NSCancelButton for the Cancel
button.

Discussion
This convenience method sends runModalForDirectory:nil file:nil types:fileTypes to the
panel. See runModalForDirectory:file:types: (page 1820) for additional details.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– runModal (page 2295)

Related Sample Code
FunHouse
ImageKitDemo
SBSendEmail
ThreadsExportMovie
ThreadsImportMovie

Declared In
NSOpenPanel.h

setAllowsMultipleSelection:
Sets whether the user can select multiple files (and directories) at one time for opening.

- (void)setAllowsMultipleSelection:(BOOL)flag

Parameters
flag

If YES, the panel’s browser allows multiple selection; if NO, it does not.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsMultipleSelection (page 1815)

Instance Methods 1821
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

Related Sample Code
AudioBurn
ContentBurn
FunHouse
ObjectPath
Quartz Composer WWDC 2005 TextEdit

Declared In
NSOpenPanel.h

setCanChooseDirectories:
Sets whether the user can select directories in the panel’s browser.

- (void)setCanChooseDirectories:(BOOL)flag

Parameters
flag

If YES, the panel allows the user to choose directories; if NO, it does not.

Discussion
When a directory is selected, the OK button is enabled only if flag is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– canChooseDirectories (page 1818)

Related Sample Code
ContentBurn
ImageKitDemo
LSMSmartCategorizer
MovieAssembler
ObjectPath

Declared In
NSOpenPanel.h

setCanChooseFiles:
Sets whether the user can select files in the panel’s browser.

- (void)setCanChooseFiles:(BOOL)flag

Parameters
flag

If YES, the panel allows the user to choose files; if NO, it does not.

Availability
Available in Mac OS X v10.0 and later.

1822 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

See Also
– canChooseFiles (page 1818)

Related Sample Code
ContentBurn
ImageKitDemo
LSMSmartCategorizer
MovieAssembler
ObjectPath

Declared In
NSOpenPanel.h

setResolvesAliases:
Sets whether the panel resolves aliases.

- (void)setResolvesAliases:(BOOL)resolvesAliases

Parameters
resolvesAliases

If YES, the panel resolves aliases; if NO, it does not.

Discussion
If YES, the effect is that dropping an alias on the panel or asking for filenames or URLs returns the resolved
aliases. Set this value to NO to allow selection of aliases without resolving.

Availability
Available in Mac OS X v10.1 and later.

See Also
– resolvesAliases (page 1819)

Related Sample Code
CIFilterGeneratorTest
CIVideoDemoGL
DesktopImage
ObjectPath
Quartz 2D Transformer

Declared In
NSOpenPanel.h

URLs
Returns an array containing the absolute paths of the selected files and directories as URLs.

- (NSArray *)URLs

Return Value
The array of URLs.

Instance Methods 1823
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

Discussion
If multiple selections aren’t allowed, the array contains a single name.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaSpeechSynthesisExample
IKImageViewDemo
QTKitFrameStepper
QTMetadataEditor
SBSetFinderComment

Declared In
NSOpenPanel.h

1824 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 85

NSOpenPanel Class Reference

Inherits from NSTableView : NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSTableView)
NSTextViewDelegate (NSTableView)
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSOutlineView.h

Companion guides Outline View Programming Topics
Drag and Drop Programming Topics for Cocoa

Related sample code ColorSyncDevices-Cocoa
DragNDropOutlineView
EnhancedDataBurn
QTKitMovieShuffler
SGDevices

Overview

NSOutlineView is a subclass of NSTableView that uses a row-and-column format to display hierarchical
data that can be expanded and collapsed, such as directories and files in a file system. A user can expand
and collapse rows, edit values, and resize and rearrange columns.

Like a table view, an outline view does not store its own data, instead it retrieves data values as needed from
a data source to which it has a weak reference (see Communicating With Objects). See the
NSOutlineViewDataSource protocol, which declares the methods that an NSOutlineView object uses
to access the contents of its data source object.

An outline view has the following features:

 ■ A user can expand and collapse rows.

 ■ Each item in the outline view must be unique. In order for the collapsed state to remain consistent
between reloads the item's pointer must remain the same.

 ■ The view gets data from a data source (see the NSOutlineViewDataSource protocol).

 ■ The view retrieves only the data that needs to be displayed.

Overview 1825
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Important: It is possible that your datasource methods for populating the outline view may be called before
awakeFromNib (page 3731) is called if the datasource is specified in Interface Builder. You should defend
against this by having the datasource’s outlineView:numberOfChildrenOfItem: (page 3746) method
return 0 for the number of children when the datasource has not yet been configured. In awakeFromNib (page
3731), when the datasource is initialized you should always call reloadData (page 2645) (inherited from the
superclass NSTableView) on the resulting outline view.

Delegation

The NSOutlineView provides a number of customization features through delegation. The majority of the
delegate methods are declared in the NSOutlineViewDelegate Protocol. However, due to an error in
the transition, some methods are still an informal protocol and appear in this document as delegate methods.
All these methods are NSNotificationCenter oriented and are the following methods:

 ■ outlineViewColumnDidMove: (page 1844)

 ■ outlineViewColumnDidResize: (page 1844)

 ■ outlineViewItemDidCollapse: (page 1844)

 ■ outlineViewItemDidExpand: (page 1845)

 ■ outlineViewItemWillCollapse: (page 1845)

 ■ outlineViewItemWillExpand: (page 1845)

 ■ outlineViewSelectionDidChange: (page 1846)

 ■ outlineViewSelectionIsChanging: (page 1846)

Tasks

Setting the Data Source

– setDataSource: (page 1841)
Sets the receiver’s data source to a given object.

– dataSource (page 1832)
Returns the object that provides the data displayed by the receiver.

Working with Expandability

– isExpandable: (page 1835)
Returns a Boolean value that indicates whether a given item is expandable.

– isItemExpanded: (page 1835)
Returns a Boolean value that indicates whether a given item is expanded.

1826 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

– outlineViewItemWillExpand: (page 1845) delegate method
Invoked when notification is posted—that is, whenever the user is about to expand an item in
the outline view.

– outlineViewItemDidExpand: (page 1845) delegate method
Invoked when notification is posted—that is, whenever the user expands an item in the outline
view.

– outlineViewItemWillCollapse: (page 1845) delegate method
Invoked when notification is posted—that is, whenever the user is about to collapse an item in
the outline view.

– outlineViewItemDidCollapse: (page 1844) delegate method
Invoked when notification is posted—that is, whenever the user collapses an item in the outline
view.

Monitoring Selection Changes

– outlineViewSelectionIsChanging: (page 1846) delegate method
Invoked when notification is posted—that is, whenever the outline view’s selection changes.

– outlineViewSelectionDidChange: (page 1846) delegate method
Invoked when notification is posted—that is, immediately after the outline view’s selection has
changed.

Expanding and Collapsing the Outline

– expandItem: (page 1832)
Expands a given item.

– expandItem:expandChildren: (page 1833)
Expands a specified item and, optionally, its children.

– collapseItem: (page 1830)
Collapses a given item.

– collapseItem:collapseChildren: (page 1831)
Collapses a given item and, optionally, its children.

Redisplaying Information

– reloadItem: (page 1838)
Reloads and redisplays the data for item.

– reloadItem:reloadChildren: (page 1838)
Reloads a given item and, optionally, its children.

Converting Between Items and Rows

– itemAtRow: (page 1835)
Returns the item associated with a given row.

Tasks 1827
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

– rowForItem: (page 1839)
Returns the row associated with a given item.

Working with the Outline Column

– setOutlineTableColumn: (page 1843)
Sets the table column in which hierarchical data is displayed.

– outlineTableColumn (page 1837)
Returns the table column in which hierarchical data is displayed.

– autoresizesOutlineColumn (page 1829)
Returns a Boolean value that indicates whether the receiver automatically resizes its outline column
when the user expands or collapses items.

– setAutoresizesOutlineColumn: (page 1839)
Sets whether the receiver automatically resizes its outline column when the user expands or collapses
an item.

– outlineViewColumnDidMove: (page 1844) delegate method
Invoked when notification is posted—that is, whenever the user moves a column in the outline
view.

– outlineViewColumnDidResize: (page 1844) delegate method
Invoked when notification is posted—that is, whenever the user resizes a column in the outline
view.

Working with Indentation

– levelForItem: (page 1836)
Returns the indentation level for a given item.

– levelForRow: (page 1836)
Returns the indentation level for a given row.

– setIndentationPerLevel: (page 1842)
Sets the per-level indentation.

– indentationPerLevel (page 1834)
Returns the current indentation per level.

– setIndentationMarkerFollowsCell: (page 1842)
Sets whether the indentation marker symbol displayed in the outline column should be indented
along with the cell contents, or always displayed left-justified in the column.

– indentationMarkerFollowsCell (page 1834)
Returns a Boolean value that indicates whether the indentation marker symbol displayed in the outline
column should be indented along with the cell contents, or always displayed left-justified in the
column.

1828 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Working with Persistence

– autosaveExpandedItems (page 1830)
Returns a Boolean value that indicates whether the expanded items in the receiver are automatically
saved.

– setAutosaveExpandedItems: (page 1840)
Sets whether the expanded items in the receiver are automatically saved.

Supporting Drag and Drop

– setDropItem:dropChildIndex: (page 1841)
Used to “retarget” a proposed drop.

– shouldCollapseAutoExpandedItemsForDeposited: (page 1843)
Returns a Boolean value that indicates whether auto-expanded items should return to their original
collapsed state.

Getting the Parent for an Item

– parentForItem: (page 1837)
Returns the parent for a given item.

Getting the Frame for a Cell

– frameOfOutlineCellAtRow: (page 1833)
Returns the frame of the outline cell for a given row.

Getting and Setting the Delegate

– delegate (page 1832)
Returns the receiver’s delegate.

– setDelegate: (page 1841)
Sets the receiver’s delegate.

Instance Methods

autoresizesOutlineColumn
Returns a Boolean value that indicates whether the receiver automatically resizes its outline column when
the user expands or collapses items.

- (BOOL)autoresizesOutlineColumn

Instance Methods 1829
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Return Value
YES if the outline column is automatically resized, otherwise NO.

Discussion
The outline column contains the cells with the expansion symbols and is generally the first column. The
default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutoresizesOutlineColumn: (page 1839)

Declared In
NSOutlineView.h

autosaveExpandedItems
Returns a Boolean value that indicates whether the expanded items in the receiver are automatically saved.

- (BOOL)autosaveExpandedItems

Return Value
YES if when an item is expanded, the outline view displays the previous expanded state of its contained
items, otherwise NO.

Discussion
The outline view information is saved separately for each user and for each application that user uses. Note
that if autosaveName (page 2622) returns nil, this setting is ignored, and outline information isn’t saved.

Special Considerations

Starting in Mac OS X version 10.5, the value for autosaveExpandedItems is saved out in the nib file. The
default value is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autosaveName (page 2622) (NSTableView)
– autosaveTableColumns (page 2623) (NSTableView)
– setAutosaveExpandedItems: (page 1840)

Declared In
NSOutlineView.h

collapseItem:
Collapses a given item.

- (void)collapseItem:(id)item

1830 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Parameters
item

An item in the receiver.

Discussion
If item is not expanded or not expandable, does nothing

If collapsing takes place, posts item collapse notification.

Availability
Available in Mac OS X v10.0 and later.

See Also
– expandItem: (page 1832)

Related Sample Code
DragNDropOutlineView

Declared In
NSOutlineView.h

collapseItem:collapseChildren:
Collapses a given item and, optionally, its children.

- (void)collapseItem:(id)item collapseChildren:(BOOL)collapseChildren

Parameters
item

An item in the receiver.

Starting in Mac OS X version 10.5, passing 'nil' will collapse each item under the root in the outline
view.

collapseChildren
If YES, recursively collapses item and its children. If NO, collapses item only (identical to
collapseItem: (page 1830)).

Discussion
For example, this method is invoked with the collapseChildren parameter set to YES when a user
Option-clicks the disclosure triangle for an item in the outline view (to collapse the item and all its contained
items).

For each item collapsed, posts an item collapsed notification.

Availability
Available in Mac OS X v10.0 and later.

See Also
– collapseItem: (page 1830)
– expandItem:expandChildren: (page 1833)

Declared In
NSOutlineView.h

Instance Methods 1831
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

dataSource
Returns the object that provides the data displayed by the receiver.

- (id < NSOutlineViewDataSource >)dataSource

Return Value
The object that provides the data displayed by the receiver.

Discussion
See Writing an Outline View Data Source and the NSOutlineViewDataSource Protocol Reference (page 3741)
informal protocol specification for more information.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setDataSource: (page 1841)

Declared In
NSOutlineView.h

delegate
Returns the receiver’s delegate.

- (id < NSOutlineViewDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setDelegate: (page 1841)

Declared In
NSOutlineView.h

expandItem:
Expands a given item.

- (void)expandItem:(id)item

Parameters
item

An item in the receiver.

Discussion
If item is not expandable or is already expanded, does nothing.

If expanding takes place, posts an item expanded notification.

1832 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– collapseItem: (page 1830)

Related Sample Code
DragNDropOutlineView

Declared In
NSOutlineView.h

expandItem:expandChildren:
Expands a specified item and, optionally, its children.

- (void)expandItem:(id)item expandChildren:(BOOL)expandChildren

Parameters
item

An item in the receiver.

Starting in Mac OS X version 10.5, passing 'nil' will expand each item under the root in the outline
view.

expandChildren
If YES, recursively expands item and its children. If NO, expands item only (identical to
expandItem: (page 1832)).

Discussion
For example, this method is invoked with the expandChildrenparameter set to YESwhen a user Option-clicks
the disclosure triangle for an item in the outline view (to expand the item and all its contained items).

For each item expanded, posts an item expanded notification.

Availability
Available in Mac OS X v10.0 and later.

See Also
– collapseItem:collapseChildren: (page 1831)
– expandItem: (page 1832)

Declared In
NSOutlineView.h

frameOfOutlineCellAtRow:
Returns the frame of the outline cell for a given row.

- (NSRect)frameOfOutlineCellAtRow:(NSInteger)row

Parameters
row

The index of the row for which to return the frame.

Instance Methods 1833
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Return Value
The frame of the outline cell for the row at index row, considering the current indentation and the value
returned by indentationMarkerFollowsCell (page 1834). If the row at index row is not an expandable
row, returns NSZeroRect.

Discussion
You can override this method in a subclass to return a custom frame for the outline button cell. If your override
returns an empty rect, no outline cell is drawn for that row. You might do that, for example, so that the
disclosure triangle will not be shown for a row that should never be expanded.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOutlineView.h

indentationMarkerFollowsCell
Returns a Boolean value that indicates whether the indentation marker symbol displayed in the outline
column should be indented along with the cell contents, or always displayed left-justified in the column.

- (BOOL)indentationMarkerFollowsCell

Return Value
YES if the indentation marker is indented along with the cell contents, otherwise NO.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIndentationMarkerFollowsCell: (page 1842)

Declared In
NSOutlineView.h

indentationPerLevel
Returns the current indentation per level.

- (CGFloat)indentationPerLevel

Return Value
The current indentation per level, in points.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIndentationPerLevel: (page 1842)

1834 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Declared In
NSOutlineView.h

isExpandable:
Returns a Boolean value that indicates whether a given item is expandable.

- (BOOL)isExpandable:(id)item

Parameters
item

An item in the receiver.

Return Value
YES if item is expandable—that is, item can contain other items, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– expandItem: (page 1832)
– isItemExpanded: (page 1835)

Declared In
NSOutlineView.h

isItemExpanded:
Returns a Boolean value that indicates whether a given item is expanded.

- (BOOL)isItemExpanded:(id)item

Parameters
item

An item in the receiver.

Return Value
YES if item is expanded, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– expandItem: (page 1832)
– isExpandable: (page 1835)

Declared In
NSOutlineView.h

itemAtRow:
Returns the item associated with a given row.

Instance Methods 1835
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

- (id)itemAtRow:(NSInteger)row

Parameters
row

The index of a row in the receiver.

Return Value
The item associated with row.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rowForItem: (page 1839)

Related Sample Code
DragNDropOutlineView
PhotoSearch
SourceView

Declared In
NSOutlineView.h

levelForItem:
Returns the indentation level for a given item.

- (NSInteger)levelForItem:(id)item

Parameters
item

An item in the receiver.

Return Value
The indentation level for item. If item is nil (which is the root item), returns –1.

Discussion
The levels are zero-based—that is, the first level of displayed items is level 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indentationPerLevel (page 1834)
– levelForRow: (page 1836)

Declared In
NSOutlineView.h

levelForRow:
Returns the indentation level for a given row.

1836 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

- (NSInteger)levelForRow:(NSInteger)row

Parameters
row

The index of a row in the receiver.

Return Value
The indentation level for row. For an invalid row, returns –1.

Discussion
The levels are zero-based—that is, the first level of displayed items is level 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indentationPerLevel (page 1834)
– levelForItem: (page 1836)

Declared In
NSOutlineView.h

outlineTableColumn
Returns the table column in which hierarchical data is displayed.

- (NSTableColumn *)outlineTableColumn

Return Value
The table column in which hierarchical data is displayed.

Discussion
Each level of hierarchical data is indented by the amount specified by indentationPerLevel (page 1834)
(the default is 16.0), and decorated with the indentation marker (disclosure triangle) on rows that are
expandable.

Special Considerations

Starting in Mac OS X version 10.5, outline table column data is saved in encodeWithCoder: and restored
in initWithCoder:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOutlineTableColumn: (page 1843)

Declared In
NSOutlineView.h

parentForItem:
Returns the parent for a given item.

Instance Methods 1837
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

- (id)parentForItem:(id)item

Parameters
item

The item for which to return the parent.

Return Value
The parent for item, or nil if the parent is the root.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSOutlineView.h

reloadItem:
Reloads and redisplays the data for item.

- (void)reloadItem:(id)item

Parameters
item

The item to reload and display

Discussion
This method may cause the outline view to change its selection unexpectedly.

Special Considerations

In Mac OS X v 10.6 and earlier, this method will not invoke the outlineViewSelectionDidChange: (page
1846) delegate method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– reloadItem:reloadChildren: (page 1838)

Related Sample Code
NewsReader

Declared In
NSOutlineView.h

reloadItem:reloadChildren:
Reloads a given item and, optionally, its children.

- (void)reloadItem:(id)item reloadChildren:(BOOL)reloadChildren

1838 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Parameters
item

An item in the receiver.

Starting in Mac OS X version 10.5, passing 'nil' will reload everything under the root in the outline
view.

reloadChildren
If YES, recursively reloads item and its children. If NO, reloads item only (identical to
reloadItem: (page 1838)).

It is not necessary, or efficient, to reload children if the item is not expanded.

Availability
Available in Mac OS X v10.0 and later.

See Also
– reloadItem: (page 1838)

Related Sample Code
PhotoSearch

Declared In
NSOutlineView.h

rowForItem:
Returns the row associated with a given item.

- (NSInteger)rowForItem:(id)item

Parameters
item

An item in the receiver.

Return Value
The row associated with item, or –1 if item is nil or cannot be found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemAtRow: (page 1835)

Related Sample Code
DragNDropOutlineView

Declared In
NSOutlineView.h

setAutoresizesOutlineColumn:
Sets whether the receiver automatically resizes its outline column when the user expands or collapses an
item.

Instance Methods 1839
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

- (void)setAutoresizesOutlineColumn:(BOOL)resize

Parameters
resize

YES if the outline column is automatically resized, otherwise NO.

Discussion
The outline column contains the cells with the expansion symbols and is generally the first column. The
default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autoresizesOutlineColumn (page 1829)

Declared In
NSOutlineView.h

setAutosaveExpandedItems:
Sets whether the expanded items in the receiver are automatically saved.

- (void)setAutosaveExpandedItems:(BOOL)flag

Discussion
If flag is different from the current value, this method also reads in the saved information and sets the
outline view’s options to match. YES indicates that when an item is expanded, the outline view displays the
previous expanded state of its contained items.

The outline information is saved separately for each user and for each application that user uses.

If autosaveName (page 2622) returns nil or if you haven’t implemented the data source methods
outlineView:itemForPersistentObject: and outlineView:persistentObjectForItem:, this
setting is ignored, and expanded item information isn’t saved.

Note that you can have separate settings for autosaveExpandedItems (page 1830) and
autosaveTableColumns (page 2623), so you could, for example, save expanded item information, but not
table column positions.

Special Considerations

Starting in Mac OS X version 10.5, the value for autosaveExpandedItems is saved out in the nib file. The
default value is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autosaveExpandedItems (page 1830)
– setAutosaveTableColumns: (page 2658) (NSTableView)

Declared In
NSOutlineView.h

1840 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

setDataSource:
Sets the receiver’s data source to a given object.

- (void)setDataSource:(id < NSOutlineViewDataSource >)anObject

Parameters
anObject

The data source for the receiver. The object must implement the appropriate methods of the
NSOutlineViewDataSource Protocol Reference (page 3741) informal protocol.

Discussion
The receiver maintains a weak reference to the data source (see Communicating With Objects). After setting
the data source, this method invokes tile (page 2673).

This method raises an NSInternalInconsistencyException if anObject doesn’t respond to all of
outlineView:child:ofItem:, outlineView:isItemExpandable:,
outlineView:numberOfChildrenOfItem:, andoutlineView:objectValueForTableColumn:byItem:.

Availability
Available in Mac OS X v10.6 and later.

See Also
– dataSource (page 1832)

Declared In
NSOutlineView.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSOutlineViewDelegate >)anObject

Parameters
anObject

The delegate for the receiver. The delegate must conform to theNSOutlineViewDelegate Protocol
protocol.

Availability
Available in Mac OS X v10.6 and later.

See Also
– delegate (page 1832)

Declared In
NSOutlineView.h

setDropItem:dropChildIndex:
Used to “retarget” a proposed drop.

- (void)setDropItem:(id)item dropChildIndex:(NSInteger)index

Instance Methods 1841
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Parameters
item

The target item.

index
The drop index.

Discussion
For example, to specify a drop on someOutlineItem, you specify item as someOutlineItem and index
as NSOutlineViewDropOnItemIndex. To specify a drop between child 2 and 3 of someOutlineItem, you
specify item as someOutlineItem and index as 3 (children are a zero-based index). To specify a drop on
an item that can’t be expanded someOutlineItem, you specify item as someOutlineItem and index as
NSOutlineViewDropOnItemIndex.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DragNDropOutlineView

Declared In
NSOutlineView.h

setIndentationMarkerFollowsCell:
Sets whether the indentation marker symbol displayed in the outline column should be indented along with
the cell contents, or always displayed left-justified in the column.

- (void)setIndentationMarkerFollowsCell:(BOOL)drawInCell

Discussion
The default is YES, the indentation marker is indented along with the cell contents.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indentationMarkerFollowsCell (page 1834)

Declared In
NSOutlineView.h

setIndentationPerLevel:
Sets the per-level indentation.

- (void)setIndentationPerLevel:(CGFloat)newIndentLevel

Parameters
newIndentLevel

The indentation per level, in points.

Availability
Available in Mac OS X v10.0 and later.

1842 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

See Also
– indentationPerLevel (page 1834)

Declared In
NSOutlineView.h

setOutlineTableColumn:
Sets the table column in which hierarchical data is displayed.

- (void)setOutlineTableColumn:(NSTableColumn *)outlineTableColumn

Parameters
outlineTableColumn

The table column in which hierarchical data is displayed.

Special Considerations

Starting in Mac OS X version 10.5, outline table column data is saved in encodeWithCoder: and restored
in initWithCoder:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– outlineTableColumn (page 1837)

Declared In
NSOutlineView.h

shouldCollapseAutoExpandedItemsForDeposited:
Returns a Boolean value that indicates whether auto-expanded items should return to their original collapsed
state.

- (BOOL)shouldCollapseAutoExpandedItemsForDeposited:(BOOL)deposited

Return Value
YES if auto expanded items should return to their original collapsed state, otherwise NO.

Discussion
Override this method to provide custom behavior. deposited tells whether or not the drop terminated due
to a successful drop.

This method is called in a variety of situations. For example, it is sent shortly after
outlineView:acceptDrop:item:childIndex: is processed and also if the drag exits the outline view
(exiting the view is treated the same as a failed drop).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

Instance Methods 1843
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Delegate Methods

outlineViewColumnDidMove:
Invoked when notification is posted—that is, whenever the user moves a column in the outline view.

- (void)outlineViewColumnDidMove:(NSNotification *)notification

Discussion
This method is invoked as a result of posting an NSOutlineViewColumnDidMoveNotification (page
1847).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

outlineViewColumnDidResize:
Invoked when notification is posted—that is, whenever the user resizes a column in the outline view.

- (void)outlineViewColumnDidResize:(NSNotification *)notification

Discussion
This method is invoked as a result of posting an NSOutlineViewColumnDidResizeNotification (page
1847).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

outlineViewItemDidCollapse:
Invoked when notification is posted—that is, whenever the user collapses an item in the outline view.

- (void)outlineViewItemDidCollapse:(NSNotification *)notification

Discussion
This method is invoked as a result of posting an NSOutlineViewItemDidCollapseNotification (page
1847).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

1844 Delegate Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

outlineViewItemDidExpand:
Invoked when notification is posted—that is, whenever the user expands an item in the outline view.

- (void)outlineViewItemDidExpand:(NSNotification *)notification

Discussion
This method is invoked as a result of posting an NSOutlineViewItemDidExpandNotification (page
1848).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

outlineViewItemWillCollapse:
Invoked when notification is posted—that is, whenever the user is about to collapse an item in the
outline view.

- (void)outlineViewItemWillCollapse:(NSNotification *)notification

Discussion
This method is invoked as a result of posting an NSOutlineViewItemWillCollapseNotification (page
1848).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

outlineViewItemWillExpand:
Invoked when notification is posted—that is, whenever the user is about to expand an item in the outline
view.

- (void)outlineViewItemWillExpand:(NSNotification *)notification

Discussion
This method is invoked as a result of posting an NSOutlineViewItemWillExpandNotification (page
1848).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

Delegate Methods 1845
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

outlineViewSelectionDidChange:
Invoked when notification is posted—that is, immediately after the outline view’s selection has changed.

- (void)outlineViewSelectionDidChange:(NSNotification *)notification

Discussion
This method is invoked as a result of posting anNSOutlineViewSelectionDidChangeNotification (page
1849).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

outlineViewSelectionIsChanging:
Invoked when notification is posted—that is, whenever the outline view’s selection changes.

- (void)outlineViewSelectionIsChanging:(NSNotification *)notification

Discussion
This method is invoked as a result of posting an
NSOutlineViewSelectionIsChangingNotification (page 1849).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

Constants

Drop on Item Index
This constant defines an index that allows you to drop an item directly on a target.

enum {
 NSOutlineViewDropOnItemIndex = -1
};

Constants
NSOutlineViewDropOnItemIndex

May be used as a valid child index of a drop target item.

In this case, the drop will happen directly on the target item.

Available in Mac OS X v10.0 and later.

Declared in NSOutlineView.h.

Declared In
NSOutlineView.h

1846 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Notifications

NSOutlineViewColumnDidMoveNotification
Posted whenever a column is moved by user action in an NSOutlineView object.

The notification object is the NSOutlineView object in which a column moved. The userInfo dictionary
contains the following information:

ValueKey

An NSNumber object containing the integer value of
the column’s original index

@"NSOldColumn"

An NSNumber object containing the integer value of
the column’s present index

@"NSNewColumn"

Availability
Available in Mac OS X v10.0 and later.

See Also
– moveColumn:toColumn: (page 2640) (NSTableView)

Declared In
NSOutlineView.h

NSOutlineViewColumnDidResizeNotification
Posted whenever a column is resized in an NSOutlineView object.

The notification object is the NSOutlineView object in which a column was resized. The userInfo dictionary
contains the following information:

ValueKey

The column that was resized.@"NSTableColumn"

An NSNumber object containing the column’s original
width

@"NSOldWidth"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

NSOutlineViewItemDidCollapseNotification
Posted whenever an item is collapsed in an NSOutlineView object.

Notifications 1847
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

The notification object is the NSOutlineView object in which an item was collapsed. A collapsed item’s
children lose their status as being selected. The userInfo dictionary contains the following information:

ValueKey

The item that was collapsed (an id)@"NSObject"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

NSOutlineViewItemDidExpandNotification
Posted whenever an item is expanded in an NSOutlineView object.

The notification object is the NSOutlineView object in which an item was expanded. The userInfodictionary
contains the following information:

ValueKey

The item that was expanded (an id)@"NSObject"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

NSOutlineViewItemWillCollapseNotification
Posted before an item is collapsed (after the user clicks the arrow but before the item is collapsed).

The notification object is the NSOutlineView object that contains the item about to be collapsed. A collapsed
item’s children will lose their status as being selected. The userInfo dictionary contains the following
information:

ValueKey

The item about to be collapsed (an id)@"NSObject"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

NSOutlineViewItemWillExpandNotification
Posted before an item is expanded (after the user clicks the arrow but before the item is collapsed).

1848 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

The notification object is the outline view that contains an item about to be expanded. The userInfo
dictionary contains the following information:

ValueKey

The item that is to be expanded (an id)@"NSObject"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

NSOutlineViewSelectionDidChangeNotification
Posted after the outline view's selection changes.

The notification object is the outline view whose selection changed. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

NSOutlineViewSelectionIsChangingNotification
Posted as the outline view’s selection changes (while the mouse button is still down).

The notification object is the outline view whose selection is changing. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOutlineView.h

Notifications 1849
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

1850 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 86

NSOutlineView Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSPageLayout.h

Companion guide Printing Programming Topics for Cocoa

Related sample code From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite
GLUT
Quartz Composer WWDC 2005 TextEdit

Overview

NSPageLayout is a panel that queries the user for information such as paper type and orientation. It is
normally displayed in response to the user selecting the Page Setup menu item. You obtain an instance with
the pageLayout (page 1853) class method. The pane can then be run as a sheet using
beginSheetWithPrintInfo:modalForWindow:delegate:didEndSelector:contextInfo: (page
1854) or modally using runModal (page 1856) or runModalWithPrintInfo: (page 1857).

Tasks

Creating an NSPageLayout Instance

+ pageLayout (page 1853)
Returns a newly created NSPageLayout object.

Overview 1851
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 87

NSPageLayout Class Reference

Running a Page Setup Dialog

– beginSheetWithPrintInfo:modalForWindow:delegate:didEndSelector:contextInfo: (page
1854)

Presents a page setup sheet for the given NSPrintInfo object, document-modal relative to the
given window.

– runModal (page 1856)
Displays the receiver and begins the modal loop using the shared NSPrintInfo object.

– runModalWithPrintInfo: (page 1857)
Displays the receiver and begins the modal loop using the given NSPrintInfo object.

Customizing the Page Setup Dialog

– addAccessoryController: (page 1854)
Adds the given controller of an accessory view to be presented in the page setup panel.

– removeAccessoryController: (page 1856)
Removes the given controller of an accessory view.

– accessoryControllers (page 1853)
Returns an array of accessory view controllers belonging to the receiver.

Accessing the NSPrintInfo Object

– printInfo (page 1855)
Returns the NSPrintInfo object used when the receiver is run.

Deprecated Methods

– accessoryView (page 1853)
Returns the receiver’s accessory view (used to customize the receiver). (Deprecated. Deprecated in
Mac OS X v10.5. Use accessoryControllers (page 1853) instead.)

– setAccessoryView: (page 1857)
Adds a view object to the receiver. (Deprecated. Deprecated in Mac OS X v10.5. Use
addAccessoryController: (page 1854) instead.)

– readPrintInfo (page 1855) Deprecated in Mac OS X v10.5
Sets the receiver’s values to those stored in the NSPrintInfo object used when the receiver is run.
(Deprecated. Deprecated in Mac OS X v10.5. This method should not be invoked directly, so there is
no replacement.)

– writePrintInfo (page 1858) Deprecated in Mac OS X v10.5
Writes the receiver’s values to the NSPrintInfo object used when the receiver is run. (Deprecated.
Deprecated in Mac OS X v10.5. This method should not be invoked directly, so there is no replacement.)

1852 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 87

NSPageLayout Class Reference

Class Methods

pageLayout
Returns a newly created NSPageLayout object.

+ (NSPageLayout *)pageLayout

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite
GLUT
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPageLayout.h

Instance Methods

accessoryControllers
Returns an array of accessory view controllers belonging to the receiver.

- (NSArray *)accessoryControllers

Return Value
The NSViewController instances representing the accessory view controllers belonging to the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– addAccessoryController: (page 1854)
– removeAccessoryController: (page 1856)

Declared In
NSPageLayout.h

accessoryView
Returns the receiver’s accessory view (used to customize the receiver). (Deprecated in Mac OS X v10.5.
Deprecated in Mac OS X v10.5. Use accessoryControllers (page 1853) instead.)

- (NSView *)accessoryView

Class Methods 1853
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 87

NSPageLayout Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– setAccessoryView: (page 1857)

Declared In
NSPageLayout.h

addAccessoryController:
Adds the given controller of an accessory view to be presented in the page setup panel.

- (void)addAccessoryController:(NSViewController *)accessoryController

Parameters
accessoryController

The controller to add.

Availability
Available in Mac OS X v10.5 and later.

See Also
– removeAccessoryController: (page 1856)
– accessoryControllers (page 1853)

Declared In
NSPageLayout.h

beginSheetWithPrintInfo:modalForWindow:delegate:didEndSelector:contextInfo:
Presents a page setup sheet for the given NSPrintInfo object, document-modal relative to the given
window.

- (void)beginSheetWithPrintInfo:(NSPrintInfo *)printInfo modalForWindow:(NSWindow
 *)docWindow delegate:(id)delegate didEndSelector:(SEL)didEndSelector
contextInfo:(void *)contextInfo

Parameters
printInfo

The NSPrintInfo object to use.

docWindow
The window to which the sheet is attached.

delegate
The delegate to which didEndSelector is sent. Can be nil.

didEndSelector
The selector sent to the delegate. Can be nil.

contextInfo
Context information object passed with didEndSelector.

1854 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 87

NSPageLayout Class Reference

Discussion
The didEndSelector argument must have the same signature as:

- (void)pageLayoutDidEnd:(NSPageLayout *)pageLayout returnCode:(int)returnCode
 contextInfo: (void *)contextInfo;

The value passed as returnCode is either NSCancelButton or NSOKButton.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite
GLUT
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPageLayout.h

printInfo
Returns the NSPrintInfo object used when the receiver is run.

- (NSPrintInfo *)printInfo

Discussion
The NSPrintInfo object is set using the
beginSheetWithPrintInfo:modalForWindow:delegate:didEndSelector:contextInfo: (page
1854) or runModalWithPrintInfo: (page 1857) method. The shared NSPrintInfo object is used if the receiver
is run using runModal (page 1856).

Availability
Available in Mac OS X v10.0 and later.

See Also
– readPrintInfo (page 1855)
– writePrintInfo (page 1858)

Declared In
NSPageLayout.h

readPrintInfo
Sets the receiver’s values to those stored in the NSPrintInfo object used when the receiver is run.
(Deprecated in Mac OS X v10.5. Deprecated in Mac OS X v10.5. This method should not be invoked directly,
so there is no replacement.)

- (void)readPrintInfo

Instance Methods 1855
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 87

NSPageLayout Class Reference

Discussion
Do not invoke this method directly; it is invoked automatically before the receiver is displayed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– printInfo (page 1855)
– writePrintInfo (page 1858)
– runModal (page 1856)
– runModalWithPrintInfo: (page 1857)

Declared In
NSPageLayout.h

removeAccessoryController:
Removes the given controller of an accessory view.

- (void)removeAccessoryController:(NSViewController *)accessoryController

Parameters
accessoryController

The controller to remove.

Availability
Available in Mac OS X v10.5 and later.

See Also
– addAccessoryController: (page 1854)
– accessoryControllers (page 1853)

Declared In
NSPageLayout.h

runModal
Displays the receiver and begins the modal loop using the shared NSPrintInfo object.

- (NSInteger)runModal

Return Value
NSCancelButton if the user clicks the Cancel button; otherwise, NSOKButton.

Discussion
The receiver’s values are recorded in the shared NSPrintInfo object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runModalWithPrintInfo: (page 1857)

1856 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 87

NSPageLayout Class Reference

Declared In
NSPageLayout.h

runModalWithPrintInfo:
Displays the receiver and begins the modal loop using the given NSPrintInfo object.

- (NSInteger)runModalWithPrintInfo:(NSPrintInfo *)printInfo

Parameters
printInfo

The NSPrintInfo object to use.

Return Value
NSCancelButton if the user clicks the Cancel button; otherwise, NSOKButton.

Discussion
The receiver’s values are recorded in printInfo.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runModal (page 1856)

Declared In
NSPageLayout.h

setAccessoryView:
Adds a view object to the receiver. (Deprecated in Mac OS X v10.5. Deprecated in Mac OS X v10.5. Use
addAccessoryController: (page 1854) instead.)

- (void)setAccessoryView:(NSView *)aView

Discussion
Invoke this method to add a custom view containing your controls. aView is added to the receiver’s Settings
popup menu with your application’s name as its menu item. The receiver is automatically resized to
accommodate aView. This method can be invoked repeatedly to change the accessory view depending on
the situation. If aView is nil, then the receiver’s current accessory view, if any, is removed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– accessoryView (page 1853)

Declared In
NSPageLayout.h

Instance Methods 1857
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 87

NSPageLayout Class Reference

writePrintInfo
Writes the receiver’s values to the NSPrintInfo object used when the receiver is run. (Deprecated in Mac
OS X v10.5. Deprecated in Mac OS X v10.5. This method should not be invoked directly, so there is no
replacement.)

- (void)writePrintInfo

Discussion
Do not invoke this method directly; it is invoked automatically when the receiver is dismissed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– printInfo (page 1855)
– readPrintInfo (page 1855)
– runModal (page 1856)
– runModalWithPrintInfo: (page 1857)

Declared In
NSPageLayout.h

1858 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 87

NSPageLayout Class Reference

Inherits from NSWindow : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSWindow)
NSAnimatablePropertyContainer (NSWindow)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSPanel.h

Companion guide Window Programming Guide

Related sample code From A View to A Movie
PDF Annotation Editor
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit
Sketch-112

Overview

The NSPanel class implements a special kind of window (known as a panel), typically performing an auxiliary
function.

For details about how panels work (especially to find out how their behavior differs from window behavior),
see How Panels Work.

Tasks

Configuring Panels

– isFloatingPanel (page 1860)
Indicates whether the receiver is a floating panel.

– setFloatingPanel: (page 1861)
Controls whether the receiver floats above normal windows.

Overview 1859
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 88

NSPanel Class Reference

– becomesKeyOnlyIfNeeded (page 1860)
Indicates whether the receiver becomes the key window only when needed.

– setBecomesKeyOnlyIfNeeded: (page 1861)
Specifies whether the receiver becomes the key window only when needed.

– worksWhenModal (page 1862)
Indicates whether the receiver receives keyboard and mouse events even when some other window
is being run modally.

– setWorksWhenModal: (page 1862)
Specifies whether the receiver receives keyboard and mouse events even when some other window
is being run modally.

Instance Methods

becomesKeyOnlyIfNeeded
Indicates whether the receiver becomes the key window only when needed.

- (BOOL)becomesKeyOnlyIfNeeded

Return Value
YES when the panel becomes the key window only when needed, NO otherwise.

Discussion
By default, this attribute is set to NO, indicating that the panel becomes key as other windows do.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBecomesKeyOnlyIfNeeded: (page 1861)
– needsPanelToBecomeKey (page 3191) (NSView)

Declared In
NSPanel.h

isFloatingPanel
Indicates whether the receiver is a floating panel.

- (BOOL)isFloatingPanel

Return Value
YES when the receiver is a floating panel, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFloatingPanel: (page 1861)

1860 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 88

NSPanel Class Reference

– level (page 3343) (NSWindow)

Declared In
NSPanel.h

setBecomesKeyOnlyIfNeeded:
Specifies whether the receiver becomes the key window only when needed.

- (void)setBecomesKeyOnlyIfNeeded:(BOOL)becomesKeyOnlyIfNeeded

Parameters
becomesKeyOnlyIfNeeded

YES makes the panel become the key window only when keyboard input is required. NO makes the
panel become key when it’s clicked.

Discussion
This behavior is not set by default. You should consider setting it only if most user interface elements in the
panel aren’t text fields, and if the choices that can be made by entering text can also be made in another
way (such as by clicking an item in a list).

If the receiver is a non-activating panel, then it becomes key only if the hit view returns YES from
needsPanelToBecomeKey (page 3191). This way, a non-activating panel can control whether it takes keyboard
focus.

Availability
Available in Mac OS X v10.0 and later.

See Also
– becomesKeyOnlyIfNeeded (page 1860)
– needsPanelToBecomeKey (page 3191) (NSView)

Declared In
NSPanel.h

setFloatingPanel:
Controls whether the receiver floats above normal windows.

- (void)setFloatingPanel:(BOOL)floatingPanel

Parameters
floatingPanel

YES to make the receiver a floating panel (NSFloatingWindowLevel). NO to make the receiver
behave like a normal window (NSNormalWindowLevel).

Discussion
By default, panels do not float above other windows. It’s appropriate for an panel to float above other windows
only if all of the following conditions are true:

 ■ It’s small enough not to obscure whatever is behind it.

 ■ It’s oriented more to the mouse than to the keyboard—that is, if it doesn’t become the key window or
becomes so only when needed.

Instance Methods 1861
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 88

NSPanel Class Reference

 ■ It needs to remain visible while the user works in the application’s normal windows—for example, if the
user must frequently move the cursor back and forth between a normal window and the panel (such as
a tool palette), or if the panel gives information relevant to the user’s actions in a normal window.

 ■ It hides when the application is deactivated (the default behavior for panels).

Availability
Available in Mac OS X v10.0 and later.

See Also
– isFloatingPanel (page 1860)
– setLevel: (page 3387) (NSWindow)

Related Sample Code
From A View to A Movie
ImageBrowser
ImageKitDemo

Declared In
NSPanel.h

setWorksWhenModal:
Specifies whether the receiver receives keyboard and mouse events even when some other window is being
run modally.

- (void)setWorksWhenModal:(BOOL)worksWhenModal

Parameters
worksWhenModal

YES to make the panel receive events even during a modal loop or session. NO to prevent the panel
from receiving events while a modal loop or session is running.

Discussion
See “How Modal Windows Work” for more information on modal windows and panels.

Availability
Available in Mac OS X v10.0 and later.

See Also
– worksWhenModal (page 1862)
– runModalForWindow: (page 163) (NSApplication)
– runModalSession: (page 164) (NSApplication)

Declared In
NSPanel.h

worksWhenModal
Indicates whether the receiver receives keyboard and mouse events even when some other window is being
run modally.

1862 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 88

NSPanel Class Reference

- (BOOL)worksWhenModal

Return Value
YES when the receiver receives keyboard and mouse events even when some other window is being run
modally, NO otherwise.

Discussion
By default, this attribute is set to NO, indicating a panel’s ineligibility for events during a modal loop or session.
See “How Modal Windows Work” for more information on modal windows and panels.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWorksWhenModal: (page 1862)
– runModalForWindow: (page 163) (NSApplication)
– runModalSession: (page 164) (NSApplication)

Declared In
NSPanel.h

Constants

Alert Panel Return Values
These constants define values returned by the NSRunAlertPanel (page 3998) function and by the
NSApplication method runModalSession: (page 164) when the modal session is run with an NSPanel
provided by the NSGetAlertPanel (page 3983) function.

enum {
 NSAlertDefaultReturn = 1,
 NSAlertAlternateReturn = 0,
 NSAlertOtherReturn = -1,
 NSAlertErrorReturn = -2
};

Constants
NSAlertDefaultReturn

The user pressed the default button.

Available in Mac OS X v10.0 and later.

Declared in NSPanel.h.

NSAlertAlternateReturn
The user pressed the alternate button.

Available in Mac OS X v10.0 and later.

Declared in NSPanel.h.

NSAlertOtherReturn
The user pressed a second alternate button.

Available in Mac OS X v10.0 and later.

Declared in NSPanel.h.

Constants 1863
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 88

NSPanel Class Reference

NSAlertErrorReturn
The alert cannot identify the reason it was closed; it may have been closed by an external source or
by a button other than those listed above.

Available in Mac OS X v10.0 and later.

Declared in NSPanel.h.

Declared In
NSPanel.h

Modal Panel Return Values
These constants define the possible return values for such methods as the runModal... methods of the
NSOpenPanel class, which tell which button (OK or Cancel) the user has clicked on an open panel.

enum {
 NSOKButton = 1,
 NSCancelButton = 0
};

Constants
NSCancelButton

The Cancel button

Available in Mac OS X v10.0 and later.

Declared in NSPanel.h.

NSOKButton
The OK button

Available in Mac OS X v10.0 and later.

Declared in NSPanel.h.

Declared In
NSPanel.h

Style Masks
The NSPanel class defines the following constants for panel styles:

enum {
 NSUtilityWindowMask = 1 << 4,
 NSDocModalWindowMask = 1 << 6,
 NSNonactivatingPanelMask = 1 << 7
 NSHUDWindowMask = 1 << 13
};

Constants
NSDocModalWindowMask

The panel is created as a modal sheet.

Available in Mac OS X v10.0 and later.

Declared in NSPanel.h.

1864 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 88

NSPanel Class Reference

NSUtilityWindowMask
The panel is created as a floating window.

Available in Mac OS X v10.0 and later.

Declared in NSPanel.h.

NSNonactivatingPanelMask
The panel can receive keyboard input without activating the owning application.

Valid only for an instance of NSPanel or its subclasses; not valid for a window.

Available in Mac OS X v10.2 and later.

Declared in NSPanel.h.

NSHUDWindowMask
The panel is created as a transparent panel (sometimes called a “heads-up display”).

Valid only for an instance of NSPanel or its subclasses; not valid for a window.

Using the C bitwise OR operator, NSHUDWindowMask can be combined with other style masks (some
of which are documented in Window_Style_Masks (page 3411)) with the following results:

NSBorderlessWindowMask

Borderless window with transparent panel transparency and window level.

NSTitledWindowMask | NSUtilityWindowMask

Titled window with transparent panel transparency and window level. This combination can
be additionally combined with any of the following:

NSClosableWindowMask

Titled window with transparent panel close box, transparency, and window level.

NSResizableWindowMask

Titled window with transparent panel resize corner, transparency, and window level.

NSNonactivatingPanelMask

No effect on appearance, but owning application is not necessarily active when this window
is the key window.

The following constants cannot be combined with NSHUDWindowMask:
NSMiniaturizableWindowMask,NSTexturedBackgroundWindowMask,NSDocModalWindowMask,
and NSUnifiedTitleAndToolbarWindowMask.

Available in Mac OS X v10.5 and later.

Declared in NSPanel.h.

Declared In
NSPanel.h

Constants 1865
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 88

NSPanel Class Reference

1866 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 88

NSPanel Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSParagraphStyle.h

Companion guide Rulers and Paragraph Styles

Related sample code Cocoa Tips and Tricks
FilterDemo
iSpend
Quartz Composer WWDC 2005 TextEdit
TipWrapper

Overview

NSParagraphStyle and its subclass NSMutableParagraphStyle encapsulate the paragraph or ruler
attributes used by the NSAttributedString classes. Instances of these classes are often referred to as
paragraph style objects or, when no confusion will result, paragraph styles.

The mutable subclass of NSParagraphStyle is NSMutableParagraphStyle.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

NSCopying
– copyWithZone:

NSMutableCopying

Overview 1867
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

– mutableCopyWithZone:

Tasks

Creating an NSParagraphStyle

+ defaultParagraphStyle (page 1869)
Returns the default paragraph style.

Accessing Style Information

– alignment (page 1870)
Returns the text alignment of the receiver.

– firstLineHeadIndent (page 1872)
Returns the indentation of the first line of the receiver.

– headIndent (page 1872)
Returns the indentation of the receiver’s lines other than the first.

– tailIndent (page 1877)
Returns the trailing indentation of the receiver.

– tabStops (page 1876)
Returns the receiver’s tab stops.

– defaultTabInterval (page 1871)
Returns the document-wide default tab interval.

– lineHeightMultiple (page 1873)
Returns the line height multiple.

– maximumLineHeight (page 1874)
Returns the receiver’s maximum line height.

– minimumLineHeight (page 1875)
Returns the receiver’s minimum height.

– lineSpacing (page 1874)
Returns the space between lines in the receiver (commonly known as leading).

– paragraphSpacing (page 1875)
Returns the space after the end of the paragraph.

– paragraphSpacingBefore (page 1876)
Returns the distance between the paragraph’s top and the beginning of its text content.

Getting Text Block and List Information

– textBlocks (page 1877)
Returns an array specifying the text blocks containing the paragraph.

1868 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

– textLists (page 1877)
Returns an array specifying the text lists containing the paragraph.

Getting Line Breaking Information

– lineBreakMode (page 1873)
Returns the mode that should be used to break lines in the receiver.

– hyphenationFactor (page 1873)
Returns the paragraph’s threshold for hyphenation.

– tighteningFactorForTruncation (page 1878)
Returns the threshold for using tightening as an alternative to truncation.

Getting HTML Header Level

– headerLevel (page 1872)
Specifies whether the paragraph is to be treated as a header for purposes of HTML generation.

Writing Direction

+ defaultWritingDirectionForLanguage: (page 1870)
Returns the default writing direction for the specified language.

– baseWritingDirection (page 1871)
Returns the base writing direction for the receiver.

Class Methods

defaultParagraphStyle
Returns the default paragraph style.

+ (NSParagraphStyle *)defaultParagraphStyle

Discussion
The default paragraph style has the following default values:

Default ValueSubattribute

NSNaturalTextAlignmentAlignment

12 left-aligned tabs, spaced by 28.0 pointsTab stops

NSLineBreakByWordWrappingLine break mode

0.0All others

Class Methods 1869
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

See individual method descriptions for explanations of each subattribute.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa Tips and Tricks
FilterDemo
iSpend
PDFKitLinker2
Quartz Composer WWDC 2005 TextEdit

Declared In
NSParagraphStyle.h

defaultWritingDirectionForLanguage:
Returns the default writing direction for the specified language.

+ (NSWritingDirection)defaultWritingDirectionForLanguage:(NSString *)languageName

Parameters
languageName

The language specified in ISO language region format. Can be nil to return a default writing direction
derived from the user’s defaults database.

Return Value
The default writing direction.

Availability
Available in Mac OS X v10.2 and later.

See Also
– baseWritingDirection (page 1871)
– setBaseWritingDirection: (page 1718) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

Instance Methods

alignment
Returns the text alignment of the receiver.

- (NSTextAlignment)alignment

Return Value
The text alignment.

1870 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

Discussion
Natural text alignment is realized as left or right alignment depending on the line sweep direction of the first
script contained in the paragraph.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAlignment: (page 1718) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

baseWritingDirection
Returns the base writing direction for the receiver.

- (NSWritingDirection)baseWritingDirection

Return Value
The base writing direction for the receiver.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ defaultWritingDirectionForLanguage: (page 1870)
– setBaseWritingDirection: (page 1718) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

defaultTabInterval
Returns the document-wide default tab interval.

- (CGFloat)defaultTabInterval

Return Value
The default tab interval in points. Tabs after the last specified in tabStops (page 1876) are placed at integer
multiples of this distance (if positive). Default return value is 0.0.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setDefaultTabInterval: (page 1719) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

Instance Methods 1871
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

firstLineHeadIndent
Returns the indentation of the first line of the receiver.

- (CGFloat)firstLineHeadIndent

Return Value
The distance in points from the leading margin of a text container to the beginning of the paragraph’s first
line. This value is always nonnegative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– headIndent (page 1872)
– tailIndent (page 1877)
– setFirstLineHeadIndent: (page 1719) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

headerLevel
Specifies whether the paragraph is to be treated as a header for purposes of HTML generation.

- (NSInteger)headerLevel

Return Value
Returns 0 (the default value), if the paragraph is not a header, or from 1 through 6 if the paragraph is to be
treated as a header.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setHeaderLevel: (page 1720) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

headIndent
Returns the indentation of the receiver’s lines other than the first.

- (CGFloat)headIndent

Return Value
The distance in points from the leading margin of a text container to the beginning of lines other than the
first. This value is always nonnegative.

Availability
Available in Mac OS X v10.0 and later.

1872 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

See Also
– firstLineHeadIndent (page 1872)
– tailIndent (page 1877)
– setHeadIndent: (page 1720) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

hyphenationFactor
Returns the paragraph’s threshold for hyphenation.

- (float)hyphenationFactor

Return Value
A value between 0.0 and 1.0 inclusive. The default value is 0.0.

Discussion
Hyphenation is attempted when the ratio of the text width (as broken without hyphenation) to the width of
the line fragment is less than the hyphenation factor. When the paragraph’s hyphenation factor is 0.0, the
layout manager’s hyphenation factor is used instead. When both are 0.0, hyphenation is disabled.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setHyphenationFactor: (page 1720) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

lineBreakMode
Returns the mode that should be used to break lines in the receiver.

- (NSLineBreakMode)lineBreakMode

Return Value
The line break mode to be used laying out the paragraph’s text.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLineBreakMode: (page 1721) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

lineHeightMultiple
Returns the line height multiple.

Instance Methods 1873
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

- (CGFloat)lineHeightMultiple

Return Value
The line height multiple. The natural line height of the receiver is multiplied by this factor (if positive) before
being constrained by minimum and maximum line height. Default return value is 0.0.

Availability
Available in Mac OS X v10.3 and later.

See Also
– maximumLineHeight (page 1874)
– minimumLineHeight (page 1875)
– setLineHeightMultiple: (page 1722) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

lineSpacing
Returns the space between lines in the receiver (commonly known as leading).

- (CGFloat)lineSpacing

Return Value
The space in points added between lines within the paragraph. This value is always nonnegative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– maximumLineHeight (page 1874)
– minimumLineHeight (page 1875)
– paragraphSpacing (page 1875)
– setLineSpacing: (page 1722) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

maximumLineHeight
Returns the receiver’s maximum line height.

- (CGFloat)maximumLineHeight

Return Value
The maximum height in points that any line in the receiver will occupy, regardless of the font size or size of
any attached graphic. This value is always nonnegative. The default value is 0.

Discussion
Glyphs and graphics exceeding this height will overlap neighboring lines; however, a maximum height of 0
implies no line height limit. Although this limit applies to the line itself, line spacing adds extra space between
adjacent lines.

1874 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– minimumLineHeight (page 1875)
– lineSpacing (page 1874)
– lineHeightMultiple (page 1873)
– setMaximumLineHeight: (page 1722) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

minimumLineHeight
Returns the receiver’s minimum height.

- (CGFloat)minimumLineHeight

Return Value
The minimum height in points that any line in the receiver will occupy, regardless of the font size or size of
any attached graphic. This value is always nonnegative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– maximumLineHeight (page 1874)
– lineSpacing (page 1874)
– lineHeightMultiple (page 1873)
– setMinimumLineHeight: (page 1723) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

paragraphSpacing
Returns the space after the end of the paragraph.

- (CGFloat)paragraphSpacing

Return Value
The space in points added at the end of the paragraph to separate it from the following paragraph. This
value is always nonnegative.

Discussion
This value is determined by adding the previous paragraph’s paragraphSpacing and the current paragraph’s
paragraphSpacingBefore (page 1876).

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 1875
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

See Also
– lineSpacing (page 1874)
– paragraphSpacingBefore (page 1876)
– setParagraphSpacing: (page 1723) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

paragraphSpacingBefore
Returns the distance between the paragraph’s top and the beginning of its text content.

- (CGFloat)paragraphSpacingBefore

Return Value
The distance in points between the paragraph’s top and the beginning of its text content. Default return
value is 0.0.

Availability
Available in Mac OS X v10.3 and later.

See Also
– paragraphSpacing (page 1875)
– setParagraphSpacingBefore: (page 1724) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

tabStops
Returns the receiver’s tab stops.

- (NSArray *)tabStops

Return Value
The NSTextTab objects, sorted by location, that define the tab stops for the paragraph style.

Availability
Available in Mac OS X v10.0 and later.

See Also
– location (page 2851) (NSTextTab)
– setTabStops: (page 1724) (NSMutableParagraphStyle)
– addTabStop: (page 1717) (NSMutableParagraphStyle)
– removeTabStop: (page 1717) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

1876 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

tailIndent
Returns the trailing indentation of the receiver.

- (CGFloat)tailIndent

Return Value
The distance in points from the margin of a text container to the end of lines.

Discussion
If positive, this value is the distance from the leading margin (for example, the left margin in left-to-right
text). If 0 or negative, it’s the distance from the trailing margin.

For example, a paragraph style designed to fit exactly in a 2-inch wide container has a head indent of 0.0
and a tail indent of 0.0. One designed to fit with a quarter-inch margin has a head indent of 0.25 and a tail
indent of –0.25.

Availability
Available in Mac OS X v10.0 and later.

See Also
– headIndent (page 1872)
– firstLineHeadIndent (page 1872)
– setTailIndent: (page 1725) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

textBlocks
Returns an array specifying the text blocks containing the paragraph.

- (NSArray *)textBlocks

Return Value
An array of the NSTextTableBlock objects containing the paragraph, nested from outermost to innermost.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTextBlocks: (page 1725) (NSMutableParagraphStyle)

Related Sample Code
iSpend

Declared In
NSParagraphStyle.h

textLists
Returns an array specifying the text lists containing the paragraph.

Instance Methods 1877
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

- (NSArray *)textLists

Return Value
An array of the NSTextList objects containing the paragraph, nested from outermost to innermost.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTextLists: (page 1726) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

tighteningFactorForTruncation
Returns the threshold for using tightening as an alternative to truncation.

- (float)tighteningFactorForTruncation

Return Value
The tightening threshold value. The default value is 0.05.

Discussion
When the line break mode specifies truncation, the text system attempts to tighten intercharacter spacing
as an alternative to truncation, provided that the ratio of the text width to the line fragment width does not
exceed 1.0 + the tightening factor returned by this method. Otherwise the text is truncated at a location
determined by the line break mode.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTighteningFactorForTruncation: (page 1726) (NSMutableParagraphStyle)

Declared In
NSParagraphStyle.h

Constants

NSLineBreakMode
These constants specify what happens when a line is too long for its container.

1878 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

enum {
 NSLineBreakByWordWrapping = 0,
 NSLineBreakByCharWrapping,
 NSLineBreakByClipping,
 NSLineBreakByTruncatingHead,
 NSLineBreakByTruncatingTail,
 NSLineBreakByTruncatingMiddle
};
typedef NSUInteger NSLineBreakMode

Constants
NSLineBreakByWordWrapping

Wrapping occurs at word boundaries, unless the word itself doesn’t fit on a single line.

Available in Mac OS X v10.0 and later.

Declared in NSParagraphStyle.h.

NSLineBreakByCharWrapping
Wrapping occurs before the first character that doesn’t fit.

Available in Mac OS X v10.0 and later.

Declared in NSParagraphStyle.h.

NSLineBreakByClipping
Lines are simply not drawn past the edge of the text container.

Available in Mac OS X v10.0 and later.

Declared in NSParagraphStyle.h.

NSLineBreakByTruncatingHead
Each line is displayed so that the end fits in the container and the missing text is indicated by some
kind of ellipsis glyph.

Available in Mac OS X v10.0 and later.

Declared in NSParagraphStyle.h.

NSLineBreakByTruncatingTail
Each line is displayed so that the beginning fits in the container and the missing text is indicated by
some kind of ellipsis glyph.

Available in Mac OS X v10.0 and later.

Declared in NSParagraphStyle.h.

NSLineBreakByTruncatingMiddle
Each line is displayed so that the beginning and end fit in the container and the missing text is
indicated by some kind of ellipsis glyph in the middle.

Available in Mac OS X v10.0 and later.

Declared in NSParagraphStyle.h.

Constants 1879
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

1880 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 89

NSParagraphStyle Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSPasteboard.h

Companion guides Pasteboard Programming Guide
Drag and Drop Programming Topics for Cocoa
Services Implementation Guide

Related sample code DemoAssistant
DemoMonkey
iSpend
Quartz Composer WWDC 2005 TextEdit
Sketch-112

Overview

NSPasteboard objects transfer data to and from the pasteboard server. The server is shared by all running
applications. It contains data that the user has cut or copied, as well as other data that one application wants
to transfer to another. NSPasteboard objects are an application’s sole interface to the server and to all
pasteboard operations.

An NSPasteboard object is also used to transfer data between applications and service providers listed in
each application’s Services menu. The drag pasteboard (NSDragPboard) is used to transfer data that is being
dragged by the user.

Important: This reference and the Pasteboard Programming Guide describe the API and behavior for
Mac OS X v10.6 and later. To learn about the behavior on Mac OS X v10.5 and earlier, see “Pasteboard
Programming Topics for Cocoa” in the Legacy Reference Library.

On Mac OS X v10.6 and later, a pasteboard can contain multiple items. You can directly write or read any
object that implements the NSPasteboardWriting Protocol Reference or NSPasteboardReading
Protocol Reference protocol respectively. This allows you to write and read common items such as URLs,
colors, images, strings, attributed strings, and sounds without an intermediary object. Your custom classes
can also implement these protocols for use with the pasteboard.

Overview 1881
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

The writing methods available on Mac OS X v10.5 and earlier all operate on what is conceptually the first
item on the pasteboard. They accept UTIs and pboard type strings. In a future release they may take only
UTIs. On Mac OS X v10.6 and later, the writing methods such as setData:forType: (page 1898) still provide
a convenient means of writing to the first pasteboard item, without having to create the first pasteboard
item. For example, instead of

[pboard clearContents];
NSPasteboardItem *item = [[[NSPasteboardItem alloc] init] autorelease];
[item setData:data forType:type];
[pboard writeObjects:[NSArray arrayWithObject:item]];

you can write:

[pboard clearContents];
[pboard setData:data forType:type];

In addition to being more compact, this is also a little more efficient—it avoids the need to create a separate
pasteboard item and array.

Tasks

Creating and Releasing a Pasteboard

+ generalPasteboard (page 1884)
Returns the general NSPasteboard object.

+ pasteboardByFilteringData:ofType: (page 1885)
Creates and returns a new pasteboard with a unique name that supplies the specified data in as many
types as possible given the available filter services.

+ pasteboardByFilteringFile: (page 1885)
Creates and returns a new pasteboard with a unique name that supplies the specified file data in as
many types as possible given the available filter services.

+ pasteboardByFilteringTypesInPasteboard: (page 1886)
Creates and returns a new pasteboard with a unique name that supplies the specified pasteboard
data in as many types as possible given the available filter services.

+ pasteboardWithName: (page 1886)
Returns the pasteboard with the specified name.

+ pasteboardWithUniqueName (page 1887)
Creates and returns a new pasteboard with a name that is guaranteed to be unique with respect to
other pasteboards on the computer.

– releaseGlobally (page 1898)
Releases the receiver’s resources in the pasteboard server.

Writing Data

– clearContents (page 1891)
Clears the existing contents of the pasteboard

1882 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

– writeObjects: (page 1903)
Writes an array of objects to the receiver.

– setData:forType: (page 1898)
Sets the given data as the representation for the specified type for the first item on the receiver.

– setPropertyList:forType: (page 1899)
Sets the given property list as the representation for the specified type for the first item on the receiver.

– setString:forType: (page 1900)
Sets the given string as the representation for the specified type for the first item on the receiver.

Reading Data

– readObjectsForClasses:options: (page 1897)
Reads from the receiver objects that best match the specified array of classes.

– pasteboardItems (page 1895)
Returns all the items held by the receiver.

– indexOfPasteboardItem: (page 1894)
Returns the index of the specified pasteboard item.

– dataForType: (page 1892)
Returns the data for the specified type from the first item in the receiver that contains the type.

– propertyListForType: (page 1895)
Returns the property list for the specified type from the first item in the receiver that contains the
type.

– stringForType: (page 1901)
Returns a concatenation of the strings for the specified type from all the items in the receiver that
contain the type.

Validating Contents

– availableTypeFromArray: (page 1889)
Scans the specified types for a type that the receiver supports.

– canReadItemWithDataConformingToTypes: (page 1890)
Returns a Boolean value that indicates whether the receiver contains any items that conform to the
specified UTIs.

– canReadObjectForClasses:options: (page 1890)
Returns a Boolean value that indicates whether the receiver contains any items that can be represented
as an instance of any class in a given array.

– types (page 1901)
Returns an array of the receiver’s supported data types.

+ typesFilterableTo: (page 1887)
Returns the data types that can be converted to the specified type using the available filter services.

Tasks 1883
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Getting Information About a Pasteboard

– name (page 1894)
Returns the receiver’s name.

– changeCount (page 1891)
Returns the receiver’s change count.

Writing Data (Mac OS X v10.5 and Earlier)
These methods all operate on what is conceptually the first item on the pasteboard. They accept UTIs and
pboard type strings. In a future release they may take only UTIs.

– declareTypes:owner: (page 1893)
Prepares the receiver for a change in its contents by declaring the new types of data it will contain
and a new owner.

– addTypes:owner: (page 1888)
Adds promises for the specified types to the first pasteboard item.

– writeFileContents: (page 1902)
Writes the contents of the specified file to the pasteboard.

– writeFileWrapper: (page 1902)
Writes the serialized contents of the specified file wrapper to the pasteboard.

Reading Data (Mac OS X v10.5 and Earlier)
These methods all operate on what is conceptually the first item on the pasteboard. They accept UTIs and
pboard type strings. In a future release they may take only UTIs.

– readFileContentsType:toFile: (page 1896)
Reads data representing a file’s contents from the receiver and writes it to the specified file.

– readFileWrapper (page 1896)
Reads data representing a file’s contents from the receiver and returns it as a file wrapper.

Class Methods

generalPasteboard
Returns the general NSPasteboard object.

+ (NSPasteboard *)generalPasteboard

Return Value
The general pasteboard.

Discussion
Invokes pasteboardWithName: (page 1886) to obtain the pasteboard.

1884 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DemoMonkey
PDFKitLinker2
RGB Image
Sketch+Accessibility
Sketch-112

Declared In
NSPasteboard.h

pasteboardByFilteringData:ofType:
Creates and returns a new pasteboard with a unique name that supplies the specified data in as many types
as possible given the available filter services.

+ (NSPasteboard *)pasteboardByFilteringData:(NSData *)data ofType:(NSString *)type

Parameters
data

The data to be placed on the pasteboard.

type
The type of data in the data parameter.

Return Value
The new pasteboard object.

Discussion
The returned pasteboard also declares data of the supplied type.

No filter service is invoked until the data is actually requested, so invoking this method is reasonably
inexpensive.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

pasteboardByFilteringFile:
Creates and returns a new pasteboard with a unique name that supplies the specified file data in as many
types as possible given the available filter services.

+ (NSPasteboard *)pasteboardByFilteringFile:(NSString *)filename

Parameters
filename

The filename to put on the pasteboard.

Class Methods 1885
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Return Value
The new pasteboard object.

Discussion
No filter service is invoked until the data is actually requested, so invoking this method is reasonably
inexpensive.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

pasteboardByFilteringTypesInPasteboard:
Creates and returns a new pasteboard with a unique name that supplies the specified pasteboard data in as
many types as possible given the available filter services.

+ (NSPasteboard *)pasteboardByFilteringTypesInPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

The original pasteboard object.

Return Value
The new pasteboard object. This method returns the object in the pasteboard parameter if the pasteboard
was returned by one of the pasteboardByFiltering...methods. This prevents a pasteboard from being
expanded multiple times.

Discussion
This process can be thought of as expanding the pasteboard, because the new pasteboard generally contains
more representations of the data than pasteboard.

This method only returns the original types and the types that can be created as a result of a single filter; the
pasteboard does not have defined types that are the result of translation by multiple filters.

No filter service is invoked until the data is actually requested, so invoking this method is reasonably
inexpensive.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

pasteboardWithName:
Returns the pasteboard with the specified name.

+ (NSPasteboard *)pasteboardWithName:(NSString *)name

1886 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Parameters
name

The name of the pasteboard. The names of standard pasteboards are given in “Pasteboard
Names” (page 1903).

Return Value
The pasteboard associated with the given name, or a new NSPasteboard object if the application does not
yet have a pasteboard object for the specified name.

Discussion
Other names can be assigned to create private pasteboards for other purposes.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ClipboardViewer
CocoaDragAndDrop
FunHouse
PDFKitLinker2
ZipBrowser

Declared In
NSPasteboard.h

pasteboardWithUniqueName
Creates and returns a new pasteboard with a name that is guaranteed to be unique with respect to other
pasteboards on the computer.

+ (NSPasteboard *)pasteboardWithUniqueName

Return Value
The new pasteboard object.

Discussion
This method is useful for applications that implement their own interprocess communication using
pasteboards.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
PhotoSearch

Declared In
NSPasteboard.h

typesFilterableTo:
Returns the data types that can be converted to the specified type using the available filter services.

+ (NSArray *)typesFilterableTo:(NSString *)type

Class Methods 1887
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Parameters
type

The target data type.

Return Value
An array of NSString objects containing the types that can be converted to the target data type.

Discussion
The array also contains the original type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

Instance Methods

addTypes:owner:
Adds promises for the specified types to the first pasteboard item.

- (NSInteger)addTypes:(NSArray *)newTypes owner:(id)newOwner

Parameters
newTypes

An array of NSString objects, each of which specifies a type of data that can be provided to the
pasteboard.

newOwner
The object that provides the data for the specified types.

If the data for those types is provided immediately, the owner can be nil. If the data for the added
types will be provided lazily when requested from the pasteboard, an owner object must be provided
that implements the -pasteboard:provideDataForType: method of the NSPasteboardOwner
informal protocol.

Return Value
The new change count, or 0 if there was an error adding the types.

Discussion
This method adds promises for the specified types to the first pasteboard item.

You use this methods to declare additional types of data for the first pasteboard item in the receiver. You
can also use it to replace existing types added by a previous declareTypes:owner: (page 1893) or
addTypes:owner: message.

The newTypes parameter specifies the types of data you are promising to the pasteboard. The types should
be ordered according to the preference of the source application, with the most preferred type coming first
(typically, the richest representation). New types are added to the end of the list containing any existing
types, if any.

If you specify a type that has already been declared, this method replaces the owner of that type with the
value in newOwner. In addition, any data already already written to the pasteboard for that type is removed.

1888 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– changeCount (page 1891)

Related Sample Code
CocoaDragAndDrop
DemoMonkey
RGB Image
RGB ValueTransformers

Declared In
NSPasteboard.h

availableTypeFromArray:
Scans the specified types for a type that the receiver supports.

- (NSString *)availableTypeFromArray:(NSArray *)types

Parameters
types

An array of NSString objects specifying the pasteboard types your application supports, in preferred
order.

Return Value
The first pasteboard type in types that is available on the pasteboard, or nil if the receiver does not contain
any of the types in types.

Discussion
You use this method to determine the best representation available on the pasteboard. For example, if your
application supports RTFD, RTF, and string data, then you might invoke the method as follows:

NSArray *supportedTypes =
 [NSArray arrayWithObjects: NSRTFDPboardType, NSRTFPboardType,
NSStringPboardType, nil];
NSString *bestType = [[NSPasteboard generalPasteboard]
 availableTypeFromArray:supportedTypes];

If the pasteboard contains RTF and string data, then bestType would contain NSRTFPboardType. If the
pasteboard contains none of the types in supportedTypes, then bestType would be nil.

You must send a types (page 1901) or availableTypeFromArray:message before reading any data from
an NSPasteboard object. If you need to see if a type in the returned array matches a type string you have
stored locally, use the isEqualToString: method to perform the comparison.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GeekGameBoard
GLUT
MP3 Player

Instance Methods 1889
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Sketch+Accessibility
Sketch-112

Declared In
NSPasteboard.h

canReadItemWithDataConformingToTypes:
Returns a Boolean value that indicates whether the receiver contains any items that conform to the specified
UTIs.

- (BOOL)canReadItemWithDataConformingToTypes:(NSArray *)types

Parameters
types

An array of NSString objects containing UTIs.

Return Value
YES if the receiver contains any items that conform to the UTIs specified in types, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

See Also
– canReadObjectForClasses:options: (page 1890)
– readObjectsForClasses:options: (page 1897)

Declared In
NSPasteboard.h

canReadObjectForClasses:options:
Returns a Boolean value that indicates whether the receiver contains any items that can be represented as
an instance of any class in a given array.

- (BOOL)canReadObjectForClasses:(NSArray *)classArray
options:(NSDictionary *)options

Parameters
classArray

An array of class objects.

Classes in the array must conform to the NSPasteboardReading Protocol Reference protocol.

options
A dictionary that specifies options to refine the search for pasteboard items, for example to restrict
the search to file URLs with particular content types. For valid dictionary keys, see “Pasteboard Reading
Options” (page 1910).

Return Value
YES if the receiver contains any items that can be represented as an instance of a class specified in
classArray, otherwise NO.

1890 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Availability
Available in Mac OS X v10.6 and later.

See Also
– canReadItemWithDataConformingToTypes: (page 1890)
– readObjectsForClasses:options: (page 1897)

Related Sample Code
DemoMonkey

Declared In
NSPasteboard.h

changeCount
Returns the receiver’s change count.

- (NSInteger)changeCount

Return Value
The change count of the receiver.

Discussion
The change count starts at zero when a client creates the receiver and becomes the first owner. The change
count subsequently increments each time the pasteboard ownership changes.

The change count is also returned fromclearContents (page 1891) anddeclareTypes:owner: (page 1893).
You can therefore record the change count at the time that you take ownership of the pasteboard and later
compare it with the value returned from changeCount to determine whether you still have ownership.

Availability
Available in Mac OS X v10.0 and later.

See Also
– clearContents (page 1891)
– declareTypes:owner: (page 1893)

Related Sample Code
GLUT
Sketch+Accessibility
Sketch-112

Declared In
NSPasteboard.h

clearContents
Clears the existing contents of the pasteboard

- (NSInteger)clearContents

Instance Methods 1891
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Return Value
The change count of the receiver.

Discussion
Clears the existing contents of the pasteboard, preparing it for new contents. This is the first step in providing
data on the pasteboard.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
DemoMonkey
IconCollection

Declared In
NSPasteboard.h

dataForType:
Returns the data for the specified type from the first item in the receiver that contains the type.

- (NSData *)dataForType:(NSString *)dataType

Parameters
dataType

The type of data you want to read from the pasteboard. This value should be one of the types returned
by types (page 1901) or availableTypeFromArray: (page 1889).

Return Value
A data object containing the data for the specified type from the first item in the receiver that contains the
type, or nil if the contents of the pasteboard changed since they were last checked.

This method may also return nil if the pasteboard server cannot supply the data in time—for example, if
the pasteboard’s owner is slow in responding to a pasteboard:provideDataForType: message and the
interprocess communication times out.

Discussion
Errors other than a timeout raise a NSPasteboardCommunicationException.

If nil is returned, the application should put up a panel informing the user that it was unable to carry out
the paste operation.

Special Considerations

For standard text data types such as string, RTF, and RTFD, the text data from each item is returned as one
combined result separated by newlines.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setData:forType: (page 1898)

Related Sample Code
iSpend

1892 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

QTMetadataEditor
RGB Image
Sketch+Accessibility
Sketch-112

Declared In
NSPasteboard.h

declareTypes:owner:
Prepares the receiver for a change in its contents by declaring the new types of data it will contain and a
new owner.

- (NSInteger)declareTypes:(NSArray *)newTypes owner:(id)newOwner

Parameters
newTypes

An array of NSString objects that specify the types of data that may be added to the new pasteboard.
The types should be ordered according to the preference of the source application, with the most
preferred type coming first (typically, the richest representation).

newOwner
The object responsible for writing data to the pasteboard, or nil if you provide data for all types
immediately. If you specify a newOwner object, it must support all of the types declared in the
newTypes parameter and must remain valid for as long as the data is promised on the pasteboard.

Return Value
The receiver's new change count.

Discussion
This method is the equivalent of invoking clearContents (page 1891), implicitly writing the first pasteboard
item, and then callingaddTypes:owner: (page 1888) to promise types for the first pasteboard item.

Mac OS X v10.5 and earlier: In Mac OS X v10.5 and earlier, this method is the first step in writing data to
the pasteboard and must precede the messages that actually write the data. A declareTypes:owner:
message essentially changes the contents of the receiver: It invalidates the current contents of the receiver
and increments its change count.

Special Considerations

In general, you should not use this method with writeObjects: (page 1903), since writeObjects: will
always write additional items to the pasteboard, and will not affect items already on the pasteboard, including
the item implicitly created by this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– clearContents (page 1891)
– addTypes:owner: (page 1888)
– changeCount (page 1891)
– pasteboard:provideDataForType: (NSPasteboardOwner Informal Protocol)

Instance Methods 1893
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Related Sample Code
GLUT
PDFKitLinker2
QTMetadataEditor
Sketch-112
With and Without Bindings

Declared In
NSPasteboard.h

indexOfPasteboardItem:
Returns the index of the specified pasteboard item.

- (NSUInteger)indexOfPasteboardItem:(NSPasteboardItem *)pasteboardItem

Parameters
pasteboardItem

A pasteboard item.

Return Value
The index of the specified pasteboard item. If pasteboardItem has not been added to any pasteboard, or
is owned by another pasteboard, returns NSNotFound.

Discussion
An item’s index in the pasteboard is useful for a pasteboard item data provider that has promised data for
multiple items, to be able to easily match the pasteboard item to an array of source data from which to derive
the promised data.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboard.h

name
Returns the receiver’s name.

- (NSString *)name

Return Value
The name of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ pasteboardWithName: (page 1886)

Declared In
NSPasteboard.h

1894 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

pasteboardItems
Returns all the items held by the receiver.

- (NSArray *)pasteboardItems

Return Value
Returns all the items held by the receiver, or nil if there is an error retrieving pasteboard items.

Availability
Available in Mac OS X v10.6 and later.

See Also
– readObjectsForClasses:options: (page 1897)

Declared In
NSPasteboard.h

propertyListForType:
Returns the property list for the specified type from the first item in the receiver that contains the type.

- (id)propertyListForType:(NSString *)dataType

Parameters
dataType

The pasteboard data type containing the property-list data.

Return Value
The property list for the specified type from the first item in the receiver that contains the type. This object
consists of NSArray, NSData, NSDictionary, or NSString objects—or any combination thereof.

Discussion
This method invokes the dataForType: (page 1892) method.

Special Considerations

You must send types (page 1901) or availableTypeFromArray: (page 1889) before invoking
propertyListForType:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPropertyList:forType: (page 1899)

Related Sample Code
DictionaryController
QTMetadataEditor
Sketch+Accessibility
Sketch-112
SourceView

Declared In
NSPasteboard.h

Instance Methods 1895
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

readFileContentsType:toFile:
Reads data representing a file’s contents from the receiver and writes it to the specified file.

- (NSString *)readFileContentsType:(NSString *)type toFile:(NSString *)filename

Parameters
type

The pasteboard data type to read. You should generally specify a value for this parameter. If you
specify nil, the filename extension (in combination with the NSCreateFileContentsPboardType
function) is used to determine the type.

filename
The file to receive the pasteboard data.

Return Value
The name of the file into which the data was actually written.

Discussion
Data of any file contents type should only be read using this method. If data matching the specified type is
not found on the pasteboard, data of type NSFileContentsPboardType is requested.

Mac OS X v10.6 and later: In Mac OS X v10.5 and earlier, the file contents pboard type allowed you to
synthesize a pboard type for a file's contents based on the file's extension. In Mac OS X v10.5 and later, using
the UTI of a file to represent its contents now replaces this functionality.

Special Considerations

You must send an availableTypeFromArray: (page 1889) or types (page 1901) message before invoking
readFileContentsType:toFile:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– writeFileContents: (page 1902)

Declared In
NSPasteboard.h

readFileWrapper
Reads data representing a file’s contents from the receiver and returns it as a file wrapper.

- (NSFileWrapper *)readFileWrapper

Return Value
A file wrapper containing the pasteboard data, or nil if the receiver contained no data of type
NSFileContentsPboardType.

Discussion
In Mac OS X v10.5 and earlier, the file contents pboard type allowed you to synthesize a pboard type for a
file's contents based on the file's extension. In Mac OS X v10.5 and later, using the UTI of a file to represent
its contents now replaces this functionality.

1896 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

readObjectsForClasses:options:
Reads from the receiver objects that best match the specified array of classes.

- (NSArray *)readObjectsForClasses:(NSArray *)classArray
options:(NSDictionary *)options

Parameters
classArray

An array of class objects.

The classes should appear in the array in the order the preferred order of representation. Classes in
the array must conform to the NSPasteboardReading Protocol Reference protocol.

options
A dictionary that specifies options to refine the search for pasteboard items, for example to restrict
the search to file URLs with particular content types. For valid dictionary keys, see “Pasteboard Reading
Options” (page 1910).

Return Value
An array containing the best match (if any) for each of the items on the receiver that can be represented by
a class specified in classArray. Returns nil if there is an error in retrieving the requested items from the
pasteboard, or if no objects of the specified classes can be created.

Discussion
Classes in classArraymust implement the NSPasteboardReading protocol. Cocoa classes that implement
this protocol includeNSImage,NSString,NSURL,NSColor,NSAttributedString, andNSPasteboardItem.
For every item on the pasteboard, each class in the provided array will be queried for the types it can read
using readableTypesForPasteboard: (page 3770). An instance is created of the first class found in the
provided array whose readable types match a conforming type contained in that pasteboard item. Any
instances that could be created from pasteboard item data is returned to the caller. Additional options, such
as restricting the search to file URLs with particular content types, can be specified with an options dictionary.

Only objects of the requested classes are returned. You can always ensure to receive one object per item on
the pasteboard by including the NSPasteboardItem class in the array of classes.

Consider the following example: there are five items on the pasteboard, two contain TIFF data, two contain
RTF data, one contains a private data type. The following table shows what objects you get back in the
returned array for different classes in classArray

Returned objectsClasses in classArray

Two NSImage objects.NSImage

Two NSAttributedString objects.NSAttributedString

Two NSImage objects, and two NSAttributedString
objects.

NSImage, NSAttributedString

Instance Methods 1897
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Returned objectsClasses in classArray

Two NSImage objects, two NSAttributedString objects,
and one NSPasteboardItem object containing the private
data type.

NSImage, NSAttributedString,
NSPasteboardItem

Availability
Available in Mac OS X v10.6 and later.

See Also
– canReadObjectForClasses:options: (page 1890)
– canReadItemWithDataConformingToTypes: (page 1890)
– pasteboardItems (page 1895)

Related Sample Code
DemoMonkey
LightTable

Declared In
NSPasteboard.h

releaseGlobally
Releases the receiver’s resources in the pasteboard server.

- (void)releaseGlobally

Discussion
After this method is invoked, no other application can use the receiver.

Special Considerations

A temporary, privately named pasteboard can be released this way when it is no longer needed, but a standard
pasteboard should never be released globally.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

setData:forType:
Sets the given data as the representation for the specified type for the first item on the receiver.

- (BOOL)setData:(NSData *)data forType:(NSString *)dataType

Parameters
data

The data to write to the pasteboard.

1898 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

dataType
The type of data in the data parameter. The type must have been declared by a previous
declareTypes:owner: (page 1893) message.

Return Value
YES if the data was written successfully, otherwise NO if ownership of the pasteboard has changed. Any other
error raises an NSPasteboardCommunicationException.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataForType: (page 1892)
– setPropertyList:forType: (page 1899)
– setString:forType: (page 1900)

Related Sample Code
CocoaDragAndDrop
GLUT
PDFKitLinker2
Sketch+Accessibility
Sketch-112

Declared In
NSPasteboard.h

setPropertyList:forType:
Sets the given property list as the representation for the specified type for the first item on the receiver.

- (BOOL)setPropertyList:(id)propertyList forType:(NSString *)dataType

Parameters
propertyList

The property list data to write to the pasteboard.

dataType
The type of property-list data in the propertyList parameter. The type must have been declared
by a previous declareTypes:owner: (page 1893) message.

Return Value
YES if the data was written successfully, otherwise NO if ownership of the pasteboard has changed. Any other
error raises an NSPasteboardCommunicationException.

Discussion
This method invokes setData:forType: (page 1898) with a serialized property list parameter.

Availability
Available in Mac OS X v10.0 and later.

See Also
– propertyListForType: (page 1895)
– setString:forType: (page 1900)

Instance Methods 1899
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Related Sample Code
DragNDropOutlineView
FunHouse
iSpend
Quartz Composer WWDC 2005 TextEdit
ZipBrowser

Declared In
NSPasteboard.h

setString:forType:
Sets the given string as the representation for the specified type for the first item on the receiver.

- (BOOL)setString:(NSString *)string forType:(NSString *)dataType

Parameters
string

The string to write to the pasteboard.

dataType
The type of string data. The type must have been declared by a previous declareTypes:owner: (page
1893) message.

Return Value
YES if the data was written successfully, otherwise NO if ownership of the pasteboard has changed. Any other
error raises an NSPasteboardCommunicationException.

Discussion
This method invokes setData:forType: (page 1898) to perform the write.

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringForType: (page 1901)
– setData:forType: (page 1898)
– setPropertyList:forType: (page 1899)

Related Sample Code
DemoAssistant
DragNDropOutlineView
QTMetadataEditor
SpotlightFortunes
With and Without Bindings

Declared In
NSPasteboard.h

1900 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

stringForType:
Returns a concatenation of the strings for the specified type from all the items in the receiver that contain
the type.

- (NSString *)stringForType:(NSString *)dataType

Parameters
dataType

The pasteboard data type to read.

Return Value
A concatenation of the strings for the specified type from all the items in the receiver that contain the type,
or nil if none of the items contain strings of the specified type.

Discussion
This method invokes dataForType: to obtain the string. If the string cannot be obtained, stringForType:
returns nil. See dataForType: (page 1892) for a description of what will cause nil to be returned.

In Mac OS X v10.6 and later, if the receiver contains multiple items that can provide string, RTF, or RTFD data,
the text data from each item is returned as a combined result separated by newlines.

Special Considerations

You must send types (page 1901) or availableTypeFromArray: (page 1889) before invoking
stringForType:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setString:forType: (page 1900)

Related Sample Code
iSpend
SpotlightFortunes

Declared In
NSPasteboard.h

types
Returns an array of the receiver’s supported data types.

- (NSArray *)types

Return Value
An array of NSString objects containing the union of the types of data declared for all the pasteboard items
on the receiver. The returned types are listed in the order they were declared.

Discussion
You must send a types or availableTypeFromArray: (page 1889) message before reading any data from
an NSPasteboard object. If you need to see if a type in the returned array matches a type string you have
stored locally, use the isEqualToString: method to perform the comparison.

Instance Methods 1901
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– declareTypes:owner: (page 1893)
– dataForType: (page 1892)

Related Sample Code
iSpend
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPasteboard.h

writeFileContents:
Writes the contents of the specified file to the pasteboard.

- (BOOL)writeFileContents:(NSString *)filename

Parameters
filename

The name of the file to write to the pasteboard.

Return Value
YES if the data was successfully written, otherwise NO.

Discussion
Writes the contents of the file filename to the receiver and declares the data to be of type
NSFileContentsPboardType and also of a type appropriate for the file’s extension (as returned by the
NSCreateFileContentsPboardType function when passed the files extension), if it has one.

Availability
Available in Mac OS X v10.0 and later.

See Also
– readFileContentsType:toFile: (page 1896)

Declared In
NSPasteboard.h

writeFileWrapper:
Writes the serialized contents of the specified file wrapper to the pasteboard.

- (BOOL)writeFileWrapper:(NSFileWrapper *)wrapper

Parameters
wrapper

The file wrapper to write to the pasteboard.

Return Value
YES if the data was successfully written, otherwise NO.

1902 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Discussion
Writes the serialized contents of the file wrapper wrapper to the receiver and declares the data to be of type
NSFileContentsPboardType and also of a type appropriate for the file’s extension (as returned by the
NSCreateFileContentsPboardType function when passed the files extension), if it has one. If wrapper
does not have a preferred filename, this method raises an exception.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

writeObjects:
Writes an array of objects to the receiver.

- (BOOL)writeObjects:(NSArray *)objects

Parameters
objects

An array of objects that implement the NSPasteboardWriting Protocol Reference protocol
(including instances of NSPasteboardItem).

Return Value
YES if the array was successfully added, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
DemoMonkey
IconCollection

Declared In
NSPasteboard.h

Constants

Pasteboard Names
The NSPasteboard class defines the following named pasteboards.

Constants 1903
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

NSString *NSGeneralPboard;
NSString *NSFontPboard;
NSString *NSRulerPboard;
NSString *NSFindPboard;
NSString *NSDragPboard;

Constants
NSGeneralPboard

The pasteboard that’s used for ordinary cut, copy, and paste operations.

This pasteboard holds the contents of the last selection that’s been cut or copied.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSFontPboard
The pasteboard that holds font and character information and supports Copy Font and Paste Font
commands that may be implemented in a text editor.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSRulerPboard
The pasteboard that holds information about paragraph formats in support of the Copy Ruler and
Paste Ruler commands that may be implemented in a text editor.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSFindPboard
The pasteboard that holds information about the current state of the active application’s find panel.

This information permits users to enter a search string into the find panel, then switch to another
application to conduct another search.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSDragPboard
The pasteboard that stores data to be moved as the result of a drag operation.

For additional information on working with the drag pasteboard, see Drag and Drop Programming
Topics for Cocoa.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

Declared In
AppKit/NSPasteboard.h

Types for Standard Data (Mac OS X 10.6 and later)
The NSPasteboard class uses the following constants to define UTIs for common pasteboard data types.

1904 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

NSString *const NSPasteboardTypeString;
NSString *const NSPasteboardTypePDF;
NSString *const NSPasteboardTypeTIFF;
NSString *const NSPasteboardTypePNG;
NSString *const NSPasteboardTypeRTF;
NSString *const NSPasteboardTypeRTFD;
NSString *const NSPasteboardTypeHTML;
NSString *const NSPasteboardTypeTabularText;
NSString *const NSPasteboardTypeFont;
NSString *const NSPasteboardTypeRuler;
NSString *const NSPasteboardTypeColor;
NSString *const NSPasteboardTypeSound;
NSString *const NSPasteboardTypeMultipleTextSelection;
NSString *const NSPasteboardTypeFindPanelSearchOptions;

Constants
NSPasteboardTypeString

String data.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypePDF
PDF data.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypeTIFF
Tag Image File Format (TIFF) data.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypePNG
PNG image data.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypeRTF
Rich Text Format (RTF) data.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypeRTFD
RTFD formatted file contents.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypeHTML
HTML data.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

Constants 1905
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

NSPasteboardTypeTabularText
An NSString object containing tab-separated fields of text.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypeFont
Font and character information.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypeRuler
Paragraph formatting information.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypeColor
Color data (an NSColor object).

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypeSound
Sound data (an NSSound object).

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypeMultipleTextSelection
Multiple text selection.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardTypeFindPanelSearchOptions
Type for the Find panel metadata property list.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

Types for Standard Data (Mac OS X 10.5 and earlier)
The NSPasteboard class uses the following common pasteboard data types.

1906 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

NSString *NSStringPboardType;
NSString *NSFilenamesPboardType;
NSString *NSPostScriptPboardType;
NSString *NSTIFFPboardType;
NSString *NSRTFPboardType;
NSString *NSTabularTextPboardType;
NSString *NSFontPboardType;
NSString *NSRulerPboardType;
NSString *NSFileContentsPboardType;
NSString *NSColorPboardType;
NSString *NSRTFDPboardType;
NSString *NSHTMLPboardType;
NSString *NSPICTPboardType;
NSString *NSURLPboardType;
NSString *NSPDFPboardType;
NSString *NSVCardPboardType;
NSString *NSFilesPromisePboardType;
NSString *NSMultipleTextSelectionPboardType;

Constants
NSColorPboardType

NSColor data.

On Mac OS X v10.6 and later, use NSPasteboardTypeColor (page 1906) (and you read and write
colors directly to and from the pasteboard).

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSFileContentsPboardType
A representation of a file’s contents.

The file contents pboard type allowed you to synthesize a pboard type for a file's contents based on
the file's extension.

On Mac OS X v10.6 and later, you should use the UTI of a file to represent its contents instead.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSFilenamesPboardType
An array of NSString objects designating one or more filenames.

On Mac OS X v10.6 and later, use writeObjects: (page 1903) to write file URLs to the pasteboard.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSFontPboardType
Font and character information.

On Mac OS X v10.6 and later, use NSPasteboardTypeFont (page 1906) instead.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSHTMLPboardType
HTML (which an NSTextView object can read from, but not write to).

On Mac OS X v10.6 and later, use NSPasteboardTypeHTML (page 1905) instead.

Available in Mac OS X v10.1 and later.

Declared in NSPasteboard.h.

Constants 1907
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

NSPDFPboardType
PDF data.

On Mac OS X v10.6 and later, use NSPasteboardTypePDF (page 1905) instead.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSPICTPboardType
QuickDraw picture data.

The PICT format was formally deprecated in Mac OS X v10.4 along with QuickDraw. You should not
be explicitly providing or looking for PICT data on the pasteboard.

To aid in this deprecation, if PICT is the only image type on the pasteboard, as is sometimes the case
when copying images from 32-bit Carbon applications, a translated image type will be automatically
reported and provided by NSPasteboard. The translated type is added to the types array ahead of
PICT so that the deprecated PICT format is not the preferred format. In addition, when an application
provides image data to NSPasteboard, the Carbon Pasteboard Manager will automatically make a
PICT translation available to 32-bit Carbon applications.

Although NSPICTPboardType, and its UTI equivalent kUTTypePICT, will appear in a pasteboard's
type array retrieved from the existing NSPasteboard API, it may cease to be reported in future
releases.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.6.

Declared in NSPasteboard.h.

NSPostScriptPboardType
Encapsulated PostScript (EPS) code.

On Mac OS X v10.6 and later, use @"com.adobe.encapsulated-postscript" instead.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSRulerPboardType
Paragraph formatting information.

On Mac OS X v10.6 and later, use NSPasteboardTypeRuler (page 1906) instead.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSRTFPboardType
Rich Text Format (RTF) data.

On Mac OS X v10.6 and later, use NSPasteboardTypeRTF (page 1905) instead.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSRTFDPboardType
RTFD formatted file contents.

On Mac OS X v10.6 and later, use NSPasteboardTypeRTFD (page 1905) instead.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

1908 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

NSStringPboardType

NSString data. (Deprecated. On Mac OS X v10.6 and later, use NSPasteboardTypeString (page
1905) instead.)

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSTabularTextPboardType
An NSString object containing tab-separated fields of text.

On Mac OS X v10.6 and later, use NSPasteboardTypeTabularText (page 1906) instead.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSTIFFPboardType
Tag Image File Format (TIFF) data.

On Mac OS X v10.6 and later, use NSPasteboardTypeTIFF (page 1905) instead.

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSURLPboardType
NSURL data for one file or resource.

On Mac OS X v10.6 and later, use writeObjects: (page 1903) to write URLs directly to the pasteboard
instead.

On Mac OS X v10.5 and earlier: to write an URL to a pasteboard you use writeToPasteboard: (page
3112) (NSURL); to get an URL from a pasteboard you use URLFromPasteboard: (page 3111) (NSURL).

Available in Mac OS X v10.0 and later.

Declared in NSPasteboard.h.

NSVCardPboardType
VCard data.

On Mac OS X v10.6 and later, use (NSString *)kUTTypeVCard instead.

Available in Mac OS X v10.2 and later.

Declared in NSPasteboard.h.

NSFilesPromisePboardType
Promised files.

On Mac OS X v10.6 and later, use (NSString *)kPasteboardTypeFileURLPromise instead.

For information on promised files, see Dragging Files in Drag and Drop Programming Topics for Cocoa.

Available in Mac OS X v10.2 and later.

Declared in NSPasteboard.h.

NSInkTextPboardType
Ink text data.

On Mac OS X v10.6 and later, use (NSString *)kUTTypeInkText instead.

For information on ink text objects, see Using Ink Services in Your Application.

Available in Mac OS X v10.4 and later.

Declared in NSPasteboard.h.

Constants 1909
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

NSMultipleTextSelectionPboardType
Multiple text selection.

On Mac OS X v10.6 and later, use NSPasteboardTypeMultipleTextSelection (page 1906) instead.

Available in Mac OS X v10.5 and later.

Declared in NSPasteboard.h.

Discussion
See also NSSoundPboardType (page 2478) (NSSound).

Version Notes
Pboard types will be deprecated in a future release. On Mac OS X 10.6 and later you should replace any use
of pboard types with UTIs, including the constants described in “Types for Standard Data (Mac OS X 10.6 and
later)” (page 1904).

Pasteboard Reading Options
These options can be used for both the readObjectsForClasses:options: (page 1897) and
canReadObjectForClasses:options: (page 1890) methods, unless otherwise specified. The currently
available options allow for customization of how URLS are read from the pasteboard.

NSString *NSPasteboardURLReadingFileURLsOnlyKey;
NSString *NSPasteboardURLReadingContentsConformToTypesKey;

Constants
NSPasteboardURLReadingFileURLsOnlyKey

Option for reading URLs to restrict the results to file URLs only.

The value for this key is an NSNumber object with a boolean value.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardURLReadingContentsConformToTypesKey
Option for reading URLs to restrict the results to URLs with contents that conform to any of the
provided UTI types.

If the content type of a URL cannot be determined, it will not be considered to match. The value for
this key is an array of UTI type strings.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

1910 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 90

NSPasteboard Class Reference

Inherits from NSObject

Conforms to NSPasteboardWriting
NSPasteboardReading
NSObject (NSObject)

Availability Available in Mac OS X v10.6 and later.

Declared in NSPasteboardItem.h

Companion guides Pasteboard Programming Guide
Drag and Drop Programming Topics for Cocoa
Services Implementation Guide

Overview

NSPasteboardItem is a generic class to represent an item on a pasteboard.

There are three main uses for an NSPasteboardItem object:

1. Providing data on the pasteboard.

You can create one or more pasteboard items, set data or data providers for types, and write to them
pasteboard.

2. Customizing data already on the pasteboard.

As a delegate or subclass, you can retrieve the pasteboard items currently on the pasteboard, read the
existing types and data and set new data and data providers for types as needed.

3. Retrieving data from the pasteboard.

You can retrieve pasteboard items from the pasteboard then read the data for types you’re interested
in.

A pasteboard item can be associated with a single pasteboard. When you create an item, it can be written
to any pasteboard. When you pass an item to a pasteboard in writeObjects: (page 1903), that item becomes
bound to the pasteboard it was written to. When you retrieve items from a pasteboard using
pasteboardItems (page 1895) orreadObjectsForClasses:options: (page 1897), the returned items are
associated with the messaged pasteboard. Passing an item that is already associated with a pasteboard into
writeObjects: causes an exception to be raised.

Overview 1911
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 91

NSPasteboardItem Class Reference

Pasteboard items are intended to be used during a single pasteboard interaction, not held onto and used
repeatedly. A pasteboard item is only valid until the owner of the pasteboard changes.

Important: If a pasteboard item is stale because the pasteboard owner has changed, it returns nil or NO
values from its methods.

Tasks

Getting Types

– types (page 1916)
Returns an array of UTI strings of the data types supported by the receiver.

– availableTypeFromArray: (page 1913)
Returns from a given array of types the the first type contained in the pasteboard item, according to
the ordering of types.

Setting the Data Provider

– setDataProvider:forTypes: (page 1914)
Sets the data provider for the specified types.

Setting Values

– setData:forType: (page 1914)
Sets the value for a specified type as an NSData object.

– setString:forType: (page 1915)
Sets the value for a specified type as a string.

– setPropertyList:forType: (page 1915)
Sets the value for a specified type as a property list.

Getting Values

– dataForType: (page 1913)
Returns the value for the specified type as an NSData object.

– stringForType: (page 1916)
Returns the value for the specified type as a string.

– propertyListForType: (page 1913)
Returns the value for the specified type as a property list.

1912 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 91

NSPasteboardItem Class Reference

Instance Methods

availableTypeFromArray:
Returns from a given array of types the the first type contained in the pasteboard item, according to the
ordering of types.

- (NSString *)availableTypeFromArray:(NSArray *)types

Parameters
types

An array of strings representing UTIs, arranged in order of preference (most preferred as the 0th
element in the array).

Return Value
The first (according to the sender's ordering of types) type in types contained in the pasteboard item, or
nil if the receiver does not contain any types given in types.

Discussion
The method checks for UTI conformance of the requested types, preferring an exact match to conformance.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboardItem.h

dataForType:
Returns the value for the specified type as an NSData object.

- (NSData *)dataForType:(NSString *)type

Parameters
type

A UTI type string.

Return Value
The value for the specified type as an NSData object.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboardItem.h

propertyListForType:
Returns the value for the specified type as a property list.

- (id)propertyListForType:(NSString *)type

Instance Methods 1913
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 91

NSPasteboardItem Class Reference

Parameters
type

A UTI type string.

Return Value
The value for the specified type as a property list.

Discussion
For more about property lists, see Property List Programming Guide.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboardItem.h

setData:forType:
Sets the value for a specified type as an NSData object.

- (BOOL)setData:(NSData *)data forType:(NSString *)type

Parameters
data

An NSData object containing the value for the representation specified by type.

type
A UTI type string.

Return Value
YES if the value was set successfully, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboardItem.h

setDataProvider:forTypes:
Sets the data provider for the specified types.

- (BOOL)setDataProvider:(id <NSPasteboardItemDataProvider>)dataProvider
forTypes:(NSArray *)types

Parameters
dataProvider

A pasteboard data provider.

types
An array of strings indicating the UTIs for the data representations dataProvider may provide.

Return Value
YES if the data provider was set successfully, otherwise NO.

1914 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 91

NSPasteboardItem Class Reference

Discussion
This method registers the data provider to be messaged to provide the data for any of the specified types
when requested.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboardItem.h

setPropertyList:forType:
Sets the value for a specified type as a property list.

- (BOOL)setPropertyList:(id)propertyList forType:(NSString *)type

Parameters
propertyList

A property list object containing the value for the representation specified by type.

For about property lists, see Property List Programming Guide.

type
A UTI type string.

Return Value
YES if the value was set successfully, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboardItem.h

setString:forType:
Sets the value for a specified type as a string.

- (BOOL)setString:(NSString *)string forType:(NSString *)type

Parameters
string

A string for the representation specified by type.

type
A UTI type string.

Return Value
YES if the value was set successfully, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboardItem.h

Instance Methods 1915
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 91

NSPasteboardItem Class Reference

stringForType:
Returns the value for the specified type as a string.

- (NSString *)stringForType:(NSString *)type

Parameters
type

A UTI type string.

Return Value
The value for the specified type as a string.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboardItem.h

types
Returns an array of UTI strings of the data types supported by the receiver.

- (NSArray *)types

Return Value
An array of UTI strings of the data types supported by the receiver.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboardItem.h

1916 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 91

NSPasteboardItem Class Reference

Inherits from NSActionCell : NSCell : NSObject

Conforms to NSOpenSavePanelDelegate
NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSPathCell.h

Overview

NSPathCell implements the user interface of an NSPathControl object. It maintains a collection of
NSPathComponentCell objects that represent a particular path to be displayed to the user.

The path shown can be set with the setURL: (page 1929) method. Doing so removes all displayed
NSPathComponentCell objects and automatically fills the control with NSPathComponentCell objects
set to have the appropriate icons, display titles, and NSURL values for the particular path component they
represent. Alternatively, you can fill the control manually by setting the cell array or directly modifying existing
cells.

Both an action and double-click action can be set for the path control. To find out what path component cell
was clicked in the action, you can read the value of clickedPathComponentCell (page 1921). When the
style is set to NSPathStylePopUp (page 1930), the action is still sent, and the
clickedPathComponentCell (page 1921) value for the represented menu item is correctly set. The
clickedPathComponentCell (page 1921) value is valid only when the action is being sent. It is also valid
when the keyboard is used to invoke the action.

Automatic animated expansion of partially hidden NSPathComponentCell objects happens if you correctly
call mouseEntered: (page 2165) and mouseExited: (page 2165) for each NSPathComponentCell in the
NSPathCell object. This is not required if the pathStyle (page 1923) is set to NSPathStylePopUp (page
1930), or if you wish to not have the animation.

NSPathCell supports several path display styles. NSPathStyleStandard (page 1930) has a light blue
background with arrows indicating the path. NSPathStyleNavigationBar (page 1930) has more defined
arrows (chevrons) and looks a little like a segmented button. NSPathStylePopUp (page 1930) looks and works
like an NSPopUpButton object to display the full path, or, if the cell is editable, select a new path.

Overview 1917
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

If the cell’s isEditable (page 567) method returns YES (the default), you can drag and drop into the cell to
change the value. You can constrain what can be dropped using UTIs (Uniform Type Identifiers) with
setAllowedTypes: (page 1925) or the appropriate delegate methods on NSPathControl.

If the cell’s isSelectable (page 569) method returns YES (the default), the cell's contents can automatically
be dragged out. The proper UTI, filename, and URL are placed on the pasteboard. You can further control or
limit this by using the appropriate delegate methods on NSPathControl.

If the cell is editable and has the path style set to NSPathStylePopUp (page 1930), an additional item in the
pop-up menu allows selecting another location. By default, an NSOpenPanel object is configured based on
the allowed types. The NSOpenPanel object can be customized with a delegate method.

Tasks

Displaying Hidden Components

– mouseEntered:withFrame:inView: (page 1922)
Displays the cell component over which the mouse is hovering.

– mouseExited:withFrame:inView: (page 1922)
Hides the cell component over which the mouse is hovering.

Setting the Allowed Types

– allowedTypes (page 1920)
Returns the component types allowed in the path when the cell is editable.

– setAllowedTypes: (page 1925)
Sets the component types allowed in the path when the cell is editable.

Setting the Control Style

– pathStyle (page 1923)
Returns the receiver’s path style.

– setPathStyle: (page 1928)
Sets the receiver’s path style.

– setControlSize: (page 1926)
Sets the receiver’s control size.

Setting the Object Value

– setObjectValue: (page 1927)
Sets the receiver’s object value.

1918 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

Setting Cell Appearance

– placeholderAttributedString (page 1924)
Returns the placeholder attributed string.

– setPlaceholderAttributedString: (page 1928)
Sets the value of the placeholder attributed string.

– setPlaceholderString: (page 1929)
Sets the value of the placeholder string.

– placeholderString (page 1924)
Returns the placeholder string.

– setBackgroundColor: (page 1926)
Sets the receiver’s background color.

– backgroundColor (page 1921)
Returns the current background color of the receiver.

Managing Path Components

+ pathComponentCellClass (page 1920)
Returns the class used to create pathComponentCell objects when automatically filling up the
control.

– rectOfPathComponentCell:withFrame:inView: (page 1925)
Returns the current rectangle being displayed for a given path component cell, with respect to a
given frame in a given view.

– pathComponentCellAtPoint:withFrame:inView: (page 1923)
Returns the cell located at the given point within the given frame of the given view.

– clickedPathComponentCell (page 1921)
Returns the clicked cell.

– pathComponentCells (page 1923)
Returns an array of the NSPathComponentCell objects currently being displayed.

– setPathComponentCells: (page 1927)
Sets the array of NSPathComponentCell objects currently being displayed.

Setting the Double-Click Action

– doubleAction (page 1922)
Returns the receiver’s double-click action method.

– setDoubleAction: (page 1927)
Sets the receiver’s double-click action.

Setting the Path

– URL (page 1929)
Returns the path displayed by the receiver.

Tasks 1919
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

– setURL: (page 1929)
Sets the value of the path displayed by the receiver.

Setting the Delegate

– delegate (page 1921)
Returns the receiver’s delegate.

– setDelegate: (page 1926)
Sets the receiver’s delegate.

Class Methods

pathComponentCellClass
Returns the class used to create pathComponentCell objects when automatically filling up the control.

+ (Class)pathComponentCellClass;

Return Value
The class used to create NSPathComponentCell objects.

Discussion
Subclasses can override this method to return a custom cell class that is automatically used. By default, the
method returns [NSPathComponentCell class], or a specialized subclass thereof.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

Instance Methods

allowedTypes
Returns the component types allowed in the path when the cell is editable.

- (NSArray *)allowedTypes;

Return Value
An array of strings representing either file extensions or UTIs. Can be nil, the default value, allowing all
types, or an empty array, allowing nothing.

Availability
Available in Mac OS X v10.5 and later.

1920 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

Declared In
NSPathCell.h

backgroundColor
Returns the current background color of the receiver.

- (NSColor *)backgroundColor

Return Value
The background color.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

clickedPathComponentCell
Returns the clicked cell.

- (NSPathComponentCell *)clickedPathComponentCell

Return Value
The component cell that was clicked, or nil, if no cell has been clicked.

Discussion
The value returned is generally valid only when the action or double-click action is being sent.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

Instance Methods 1921
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

doubleAction
Returns the receiver’s double-click action method.

- (SEL)doubleAction

Return Value
The action method invoked when the user double-clicks the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

mouseEntered:withFrame:inView:
Displays the cell component over which the mouse is hovering.

- (void)mouseEntered:(NSEvent *)event withFrame:(NSRect)frame inView:(NSView *)view;

Parameters
event

The mouse-entered event.

frame
The frame in which the cell is located.

view
The view in which the cell is located.

Discussion
The NSPathCell object dynamically animates to display the component that the mouse is hovering over
using mouse-entered and mouse-exited events. The control should call these methods to correctly display
the hovered component to the user. The control can acquire rectangles to track using
rectOfPathComponentCell:withFrame:inView: (page 1925).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

mouseExited:withFrame:inView:
Hides the cell component over which the mouse is hovering.

- (void)mouseExited:(NSEvent *)event withFrame:(NSRect)frame inView:(NSView *)view;

Parameters
event

The mouse-exited event.

frame
The frame in which the cell is located.

1922 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

view
The view in which the cell is located.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

pathComponentCellAtPoint:withFrame:inView:
Returns the cell located at the given point within the given frame of the given view.

- (NSPathComponentCell *)pathComponentCellAtPoint:(NSPoint)point
withFrame:(NSRect)frame inView:(NSView *)view;

Parameters
point

The point within the returned cell.

frame
The frame within which the point is located.

view
The view within which the frame is located.

Return Value
The component cell within which the given point is located, or nil if no cell exists at that location.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

pathComponentCells
Returns an array of the NSPathComponentCell objects currently being displayed.

- (NSArray *)pathComponentCells

Return Value
The array of NSPathComponentCell objects.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

pathStyle
Returns the receiver’s path style.

Instance Methods 1923
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

- (NSPathStyle)pathStyle

Return Value
The style of the path.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setPathStyle:

Declared In
NSPathCell.h

placeholderAttributedString
Returns the placeholder attributed string.

- (NSAttributedString *)placeholderAttributedString;

Return Value
The placeholder attributed string.

Discussion
If the NSPathCell object contains no NSPathComponentCell objects, the placeholder attributed string is
drawn in their place, if it is not nil. If the placeholder attributed string is nil, the (non-attributed) placeholder
string is drawn with default attributes, if it is not nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

placeholderString
Returns the placeholder string.

- (NSString *)placeholderString;

Return Value
The placeholder string.

Discussion
If the NSPathCell object contains no NSPathComponentCell objects, the placeholder attributed string is
drawn in their place, if it is not nil. If the placeholder attributed string is nil, the (non-attributed) placeholder
string is drawn with default attributes, if it is not nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

1924 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

rectOfPathComponentCell:withFrame:inView:
Returns the current rectangle being displayed for a given path component cell, with respect to a given frame
in a given view.

- (NSRect)rectOfPathComponentCell:(NSPathComponentCell *)cell withFrame:(NSRect)frame
 inView:(NSView *)view;

Parameters
cell

The path component cell.

frame
The frame of the view in which the cell appears.

view
The view in which the cell appears.

Return Value
The rectangle occupied by the path component cell. NSZeroRect is returned if cell is not found or is not
currently visible.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

setAllowedTypes:
Sets the component types allowed in the path when the cell is editable.

- (void)setAllowedTypes:(NSArray *)allowedTypes;

Parameters
allowedTypes

An array of strings representing either file extensions or UTIs. Can be nil, the default value, allowing
all types.

Discussion
The allowedTypes array can contain file extensions (without the period that begins the extension) or UTIs.
To allow folders, include the public.folder identifier. To allow any type, use nil. If the value of
allowedTypes is an empty array, nothing is allowed. The default value is nil, allowing all types.

If the cell is editable and its type is NSPathStylePopUp, a Choose item is included to enable selection of a
different path by invoking an Open panel. The allowed types are passed to the Open panel to filter out other
types. The allowed types are also used with drag and drop to indicate if a drop is allowed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

Instance Methods 1925
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

setBackgroundColor:
Sets the receiver’s background color.

- (void)setBackgroundColor:(NSColor *)color

Parameters
color

The color to be drawn.

Discussion
By default, the background is set to a light blue color for NSPathStyleStandard, and nil for the other
styles. You can use [NSColor clearColor] to make the background transparent.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

setControlSize:
Sets the receiver’s control size.

- (void)setControlSize:(NSControlSize)size

Parameters
size

The new control size.

Discussion
NSPathCell properly respects the control size for the NSPathStyleStandard (page 1930) and
NSPathStylePopUp (page 1930) styles. When the control size is set, the new size is propagated to subcells.
When the path style is set to NSPathStyleNavigationBar (page 1930), you cannot change the control size,
and it is always set to NSSmallControlSize (page 620). Attempting to change the control size when the
path style is NSPathStyleNavigationBar (page 1930) causes an assertion. Setting the path style to
NSPathStyleNavigationBar (page 1930) forces the control size to be NSSmallControlSize (page 620).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setPathStyle: (page 1928)
– pathStyle (page 1923)

Declared In
NSPathCell.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

1926 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

Parameters
delegate

the object to set as the receiver’s delegate.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

setDoubleAction:
Sets the receiver’s double-click action.

- (void)setDoubleAction:(SEL)action

Parameters
action

The action method to invoke when the receiver is double-clicked.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

setObjectValue:
Sets the receiver’s object value.

- (void)setObjectValue:(id <NSCopying>)obj;

Parameters
obj

The new object value for the cell.

Discussion
If setObjectValue: is called with an NSURL object, setURL: (page 1929) is automatically called. The
objectValue (page 572) method returns the most recently set URL value. The setObjectValue: method
can also take a string value, with the items separated by the path separator (/). Any other value is a
programming error and will cause an assertion.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

setPathComponentCells:
Sets the array of NSPathComponentCell objects currently being displayed.

- (void)setPathComponentCells:(NSArray *)cells

Instance Methods 1927
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

Parameters
cells

An array of NSPathComponentCell objects.

Discussion
Each item in the array must be an instance of NSPathComponentCell or a subclass thereof. You cannot set
this value to nil, but you can set it to an empty array using, for example, [NSArray array].

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

setPathStyle:
Sets the receiver’s path style.

- (void)setPathStyle:(NSPathStyle)style

Parameters
style

The new path style.

Discussion
See setControlSize: (page 1926) for information about path style and control size dependencies.

Availability
Available in Mac OS X v10.5 and later.

See Also
– pathStyle (page 1923)
– setControlSize: (page 1926)

Declared In
NSPathCell.h

setPlaceholderAttributedString:
Sets the value of the placeholder attributed string.

- (void)setPlaceholderAttributedString:(NSAttributedString *)string;

Parameters
string

The string to set for the placeholder attributed string.

Discussion
If the NSPathCell object contains no NSPathComponentCell objects, the placeholder attributed string is
drawn in their place, if it is not nil. If the placeholder attributed string is nil, the (non-attributed) placeholder
string is drawn with default attributes, if it is not nil.

Availability
Available in Mac OS X v10.5 and later.

1928 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

Declared In
NSPathCell.h

setPlaceholderString:
Sets the value of the placeholder string.

- (void)setPlaceholderString:(NSString *)string;

Parameters
string

The string to set for the placeholder.

Discussion
If the NSPathCell object contains no NSPathComponentCell objects, the placeholder attributed string is
drawn in their place, if it is not nil. If the placeholder attributed string is nil, the (non-attributed) placeholder
string is drawn with default attributes, if it is not nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

setURL:
Sets the value of the path displayed by the receiver.

- (void)setURL:(NSURL *)url

Parameters
url

The new path value to display.

Discussion
When setting, an array of NSPathComponentCell objects is automatically set, based on the path in url.
The type of NSPathComponentCell objects created can be controlled by subclassing NSPathCell and
overriding pathComponentCellClass (page 1920).

If url is a file URL (returns YES from isFileURL), the images are automatically filled with file icons, if the
path exists. The URL value itself is stored in the objectValue property of the cell.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

URL
Returns the path displayed by the receiver.

- (NSURL *)URL

Instance Methods 1929
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

Return Value
The path value.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

Constants

NSPathStyle
NSPathStyle constants represent the different visual and behavioral styles an NSPathControl or
NSPathCell object can have.

enum {
 NSPathStyleStandard,
 NSPathStyleNavigationBar,
 NSPathStylePopUp,
};
typedef NSInteger NSPathStyle;

Constants
NSPathStyleStandard

The standard display style and behavior. All path component cells are displayed with an icon image
and component name. If the path can not fully be displayed, the middle parts are truncated as required.

Available in Mac OS X v10.5 and later.

Declared in NSPathCell.h.

NSPathStyleNavigationBar
The navigation bar display style and behavior. Similar to the NSPathStyleStandard with the
navigation bar drawing style. Also known as the breadcrumb style.

Available in Mac OS X v10.5 and later.

Declared in NSPathCell.h.

NSPathStylePopUp
The pop-up display style and behavior. Only the last path component is displayed with an icon image
and component name. The full path is shown when the user clicks on the cell. If the cell is editable,
a Choose item is included to enable selecting a different path.

Available in Mac OS X v10.5 and later.

Declared in NSPathCell.h.

Declared In
NSPathCell.h

1930 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 92

NSPathCell Class Reference

Inherits from NSTextFieldCell : NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSPathComponentCell.h

Related sample code DesktopImage
ObjectPath

Overview

The NSPathComponentCell class displays a component of a path.

An NSPathCell object manages a collection of NSPathComponentCell objects, in conjunction with an
NSPathControl object, to represent a path.

Tasks

Setting the Image

– image (page 1932)
Returns the image displayed for this component cell.

– setImage: (page 1932)
Sets the image displayed for this component cell.

Setting the Path

– URL (page 1933)
Returns the portion of the path from the root through the component represented by the receiver.

Overview 1931
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 93

NSPathComponentCell Class Reference

– setURL: (page 1933)
Sets the value of the portion of the path from the root through the component represented by the
receiver.

Instance Methods

image
Returns the image displayed for this component cell.

- (NSImage *)image;

Return Value
The component cell image.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setImage (page 1932)

Declared In
NSPathComponentCell.h

setImage:
Sets the image displayed for this component cell.

- (void)setImage:(NSImage *)value;

Parameters
value

The image to set for this component cell.

Discussion
Generally, a 16-by-16–point image fits best when the path style is NSPathStyleStandard or
NSPathStylePopUp, and a 14-by-14–point image is best when the path style is
NSPathStyleNavigationBar.

Availability
Available in Mac OS X v10.5 and later.

See Also
– image (page 1932)

Related Sample Code
ObjectPath

Declared In
NSPathComponentCell.h

1932 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 93

NSPathComponentCell Class Reference

setURL:
Sets the value of the portion of the path from the root through the component represented by the receiver.

- (void)setURL:(NSURL *)url

Parameters
url

The new path value to display.

Availability
Available in Mac OS X v10.5 and later.

See Also
– URL (page 1933)

Related Sample Code
ObjectPath

Declared In
NSPathComponentCell.h

URL
Returns the portion of the path from the root through the component represented by the receiver.

- (NSURL *)URL

Return Value
The path value.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setURL: (page 1933)

Related Sample Code
DesktopImage
ObjectPath

Declared In
NSPathComponentCell.h

Instance Methods 1933
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 93

NSPathComponentCell Class Reference

1934 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 93

NSPathComponentCell Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSPathControl.h

Related sample code DesktopImage
ObjectPath
PhotoSearch

Overview

NSPathControl is a subclass of NSControl that represents a file system path or virtual path.

The NSPathControl class uses NSPathCell to implement its user interface. NSPathControl provides
cover methods for most NSPathCell methods—the cover method simply invokes the corresponding cell
method. See also NSPathComponentCell, which represents individual components of the path, and two
associated protocols: NSPathCellDelegate and NSPathControlDelegate.

NSPathControl has three styles represented by the NSPathStyle (page 1930) enumeration constants
NSPathStyleStandard (page 1930),NSPathStyleNavigationBar (page 1930), andNSPathStylePopUp (page
1930). The represented path can be a file system path or any other type of path leading through a sequence
of nodes or components, as defined by the programmer.

NSPathControl automatically supports drag and drop, which can be further customized via delegate
methods. To accept drag and drop, NSPathControl calls registerForDraggedTypes: (page 3201) with
NSFilenamesPboardType (page 1907) and NSURLPboardType (page 1909). When the URL value in the
NSPathControl object changes because of an automatic drag and drop operation or the user selecting a
new path via the open panel, the action is sent. On Mac OS X v10.5 the value returned by
clickedPathComponentCell (page 1937) is nil, on Mac OS X v10.6 and later,
clickedPathComponentCell (page 1937) returns the clicked cell.

Overview 1935
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 94

NSPathControl Class Reference

Tasks

Setting the Control Style

– pathStyle (page 1939)
Returns the receiver’s path style.

– setPathStyle: (page 1942)
Sets the receiver’s path style.

Setting the Background Color

– setBackgroundColor: (page 1940)
Sets the receiver’s background color.

– backgroundColor (page 1937)
Returns the current background color of the receiver.

Managing Path Components

– clickedPathComponentCell (page 1937)
Returns the clicked cell.

– pathComponentCells (page 1939)
Returns an array of the NSPathComponentCell objects currently being displayed.

– setPathComponentCells: (page 1942)
Sets the array of NSPathComponentCell objects currently being displayed.

Setting the Double-Click Action

– doubleAction (page 1938)
Returns the receiver’s double-click action method.

– setDoubleAction: (page 1941)
Sets the receiver’s double-click action.

Setting the Path

– URL (page 1943)
Returns the path value displayed by the receiver.

– setURL: (page 1943)
Sets the path value displayed by the receiver.

1936 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 94

NSPathControl Class Reference

Setting the Delegate

– delegate (page 1938)
Returns the receiver’s delegate.

– setDelegate: (page 1940)
Sets the receiver’s delegate.

Setting the Drag Operation Mask

– setDraggingSourceOperationMask:forLocal: (page 1941)
Configures the default value returned from draggingSourceOperationMaskForLocal: (page
3670).

Setting Popup Menu

– menu (page 1939)
Returns the menu that is used for the path control’s cells.

– setMenu: (page 1941)
Sets the menu used for the path control’s cells.

Instance Methods

backgroundColor
Returns the current background color of the receiver.

- (NSColor *)backgroundColor

Return Value
The background color.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setBackgroundColor: (page 1940)

Declared In
NSPathControl.h

clickedPathComponentCell
Returns the clicked cell.

- (NSPathComponentCell *)clickedPathComponentCell

Instance Methods 1937
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 94

NSPathControl Class Reference

Return Value
The component cell that was clicked.

Discussion
The value returned is generally valid only when the action or double action is being sent.

Note: In Mac OS X 10.5 and earlier the returned value was [nil] if no cell had been clicked. In Mac OS X 10.6,
the folder of the cell that the user selected is returned instead.

Availability
Available in Mac OS X v10.5 and later.

See Also
– pathComponentCells (page 1939)

Related Sample Code
DesktopImage

Declared In
NSPathControl.h

delegate
Returns the receiver’s delegate.

- (id < NSPathControlDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setDelegate: (page 1940)

Declared In
NSPathControl.h

doubleAction
Returns the receiver’s double-click action method.

- (SEL)doubleAction

Return Value
The action method invoked when the user double-clicks the receiver.

Availability
Available in Mac OS X v10.5 and later.

1938 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 94

NSPathControl Class Reference

See Also
– setDoubleAction: (page 1941)

Declared In
NSPathControl.h

menu
Returns the menu that is used for the path control’s cells.

- (NSMenu *)menu

Return Value
An instance of NSMenu.

Discussion
This method overrides the NSView implementation of menu and forwards the message to the
NSPathControlCell.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPathControl.h

pathComponentCells
Returns an array of the NSPathComponentCell objects currently being displayed.

- (NSArray *)pathComponentCells

Return Value
The array of NSPathComponentCell objects.

Availability
Available in Mac OS X v10.5 and later.

See Also
– clickedPathComponentCell (page 1937)
– setPathComponentCells: (page 1942)

Declared In
NSPathControl.h

pathStyle
Returns the receiver’s path style.

- (NSPathStyle)pathStyle

Return Value
The style of the path control.

Instance Methods 1939
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 94

NSPathControl Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– setPathStyle: (page 1942)

Declared In
NSPathControl.h

setBackgroundColor:
Sets the receiver’s background color.

- (void)setBackgroundColor:(NSColor *)color

Parameters
color

The color to draw.

Discussion
By default, the background is set to a light blue color for NSPathStyleStandard and nil for the other
styles. You can use [NSColor clearColor] to make the background transparent.

Availability
Available in Mac OS X v10.5 and later.

See Also
– backgroundColor (page 1937)

Related Sample Code
ObjectPath

Declared In
NSPathControl.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSPathControlDelegate >)delegate

Parameters
delegate

The object to set as the receiver’s delegate.

Availability
Available in Mac OS X v10.5 and later.

See Also
– delegate (page 1938)

Declared In
NSPathControl.h

1940 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 94

NSPathControl Class Reference

setDoubleAction:
Sets the receiver’s double-click action.

- (void)setDoubleAction:(SEL)action

Parameters
action

The action method to invoke when the receiver is double-clicked.

Availability
Available in Mac OS X v10.5 and later.

See Also
– doubleAction (page 1938)

Declared In
NSPathControl.h

setDraggingSourceOperationMask:forLocal:
Configures the default value returned from draggingSourceOperationMaskForLocal: (page 3670).

- (void)setDraggingSourceOperationMask:(NSDragOperation)mask forLocal:(BOOL)isLocal

Parameters
mask

The types of drag operations allowed.

isLocal
If YES, mask applies when the drag destination object is in the same application as the receiver; if NO,
mask applies when the destination object is outside the receiver’s application.

Discussion
By default,draggingSourceOperationMaskForLocal: (page 3670) returnsNSDragOperationEverywhen
isLocal is YES and NSDragOperationNone when isLocal is NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathControl.h

setMenu:
Sets the menu used for the path control’s cells.

- (void)setMenu:(NSMenu *)menu

Parameters
menu

An instance of NSMenu.

Instance Methods 1941
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 94

NSPathControl Class Reference

Discussion
This method overrides the NSView implementation of setMenu: and forwards the message to the
NSPathControlCell.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPathControl.h

setPathComponentCells:
Sets the array of NSPathComponentCell objects currently being displayed.

- (void)setPathComponentCells:(NSArray *)cells

Parameters
cells

An array of NSPathComponentCell objects.

Discussion
Each item in the array must be an instance of NSPathComponentCell or a subclass thereof. You cannot set
this value to nil, but you can set it to an empty array using, for example, [NSArray array].

Availability
Available in Mac OS X v10.5 and later.

See Also
– pathComponentCells (page 1939)

Related Sample Code
ObjectPath

Declared In
NSPathControl.h

setPathStyle:
Sets the receiver’s path style.

- (void)setPathStyle:(NSPathStyle)style

Parameters
style

The new path style.

Availability
Available in Mac OS X v10.5 and later.

See Also
– pathStyle (page 1939)

Related Sample Code
ObjectPath

1942 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 94

NSPathControl Class Reference

Declared In
NSPathControl.h

setURL:
Sets the path value displayed by the receiver.

- (void)setURL:(NSURL *)url

Parameters
url

The new path value to display.

Discussion
When setting, an array of NSPathComponentCell objects is automatically set based on the path in url. If
url is a file URL (returns YES from isFileURL), the images are automatically filled with file icons, if the path
exists. The URL value itself is stored in the objectValue property of the cell.

Availability
Available in Mac OS X v10.5 and later.

See Also
– URL (page 1943)

Related Sample Code
DesktopImage

Declared In
NSPathControl.h

URL
Returns the path value displayed by the receiver.

- (NSURL *)URL

Return Value
The path value.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setURL: (page 1943)

Declared In
NSPathControl.h

Instance Methods 1943
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 94

NSPathControl Class Reference

1944 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 94

NSPathControl Class Reference

Inherits from NSImageRep : NSObject

Conforms to NSCoding (NSImageRep)
NSCopying (NSImageRep)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSPDFImageRep.h

Companion guide Cocoa Drawing Guide

Related sample code PDFView

Overview

An NSPDFImageRep object can render an image from a PDF format data stream.

Tasks

Creating an NSPDFImageRep

– initWithData: (page 1947) Deprecated in Mac OS X v10.6
Returns an NSPDFImageRep object initialized with the specified PDF data.

+ imageRepWithData: (page 1946) Deprecated in Mac OS X v10.6
Creates and returns an NSPDFImageRep object initialized with the specified PDF data.

Getting Image Data

– currentPage (page 1947)
Gets the page currently displayed by the image representation.

– pageCount (page 1947)
Returns the number of pages in the receiver.

Overview 1945
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 95

NSPDFImageRep Class Reference

– setCurrentPage: (page 1948)
Sets the page to display to the specified value.

– PDFRepresentation (page 1948) Deprecated in Mac OS X v10.6
Returns the PDF representation of the receiver's image.

– bounds (page 1946) Deprecated in Mac OS X v10.6
Returns the receiver's bounding rectangle.

Class Methods

imageRepWithData:
Creates and returns an NSPDFImageRep object initialized with the specified PDF data.

+ (id)imageRepWithData:(NSData *)pdfData

Parameters
pdfData

A data object containing the PDF data for the image.

Return Value
An initialized NSPDFImageRep object or nil if the object could not be initialized. Initialization may fail if the
PDF data does not conform to the PDF file format.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithData: (page 1947)
– PDFRepresentation (page 1948)

Declared In
NSPDFImageRep.h

Instance Methods

bounds
Returns the receiver's bounding rectangle.

- (NSRect)bounds

Return Value
The bounding rectangle. This value is equivalent to the crop box specified by the PDF data.

Availability
Available in Mac OS X v10.0 and later.

1946 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 95

NSPDFImageRep Class Reference

Related Sample Code
PDFView

Declared In
NSPDFImageRep.h

currentPage
Gets the page currently displayed by the image representation.

- (NSInteger)currentPage

Return Value
A zero-based index indicating the page being displayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCurrentPage: (page 1948)

Declared In
NSPDFImageRep.h

initWithData:
Returns an NSPDFImageRep object initialized with the specified PDF data.

- (id)initWithData:(NSData *)pdfData

Parameters
pdfData

A data object containing the PDF data for the image.

Return Value
An initialized NSPDFImageRep object or nil if the object could not be initialized. Initialization may fail if the
PDF data does not conform to the PDF file format.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imageRepWithData: (page 1946)
– PDFRepresentation (page 1948)

Declared In
NSPDFImageRep.h

pageCount
Returns the number of pages in the receiver.

Instance Methods 1947
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 95

NSPDFImageRep Class Reference

- (NSInteger)pageCount

Return Value
The number of pages in the PDF data.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
PDFView

Declared In
NSPDFImageRep.h

PDFRepresentation
Returns the PDF representation of the receiver's image.

- (NSData *)PDFRepresentation

Return Value
The PDF data used to create the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPDFImageRep.h

setCurrentPage:
Sets the page to display to the specified value.

- (void)setCurrentPage:(NSInteger)page

Parameters
page

A zero-based index indicating the page you want to display.

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentPage (page 1947)

Related Sample Code
PDFView

Declared In
NSPDFImageRep.h

1948 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 95

NSPDFImageRep Class Reference

Inherits from NSDocument : NSObject

Conforms to NSUserInterfaceValidations (NSDocument)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.4 and later.

Declared in AppKit/NSPersistentDocument.h

Companion guides NSPersistentDocument Core Data Tutorial
Document-Based Applications Overview
Core Data Programming Guide

Related sample code DerivedProperty
File Wrappers with Core Data Documents
LightTable
Reviews
TwoManyControllers

Overview

The NSPersistentDocument class is a subclass of NSDocument that is designed to easily integrate into the
Core Data framework. It provides methods to access a document-wide NSManagedObjectContext object,
and provides default implementations of methods to read and write files using the persistence framework.
In a persistent document, the undo manager functionality is taken over by managed object context.

Standard document behavior is implemented as follows:

 ■ Opening a document invokes
configurePersistentStoreCoordinatorForURL:ofType:modelConfiguration:
storeOptions:error: (page 1952) with the new URL, and adds a store of the default type (XML). Objects
are loaded from the persistent store on demand through the document’s context.

 ■ Saving a new document adds a store of the default type with the chosen URL and invokes save: on the
context. For an existing document, a save just invokes save: on the context.

 ■ Save As for a new document, simply invokes save. For an opened document, migrates the persistent
store to the new URL, and invokes save: on the context.

 ■ Revert resets the document’s managed object context. Objects are subsequently loaded from the
persistent store on demand, as with opening a new document.

Overview 1949
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 96

NSPersistentDocument Class Reference

Note that NSPersistentDocument does not support some standard document behavior, in particular
NSPersistentDocument does not support file wrappers. “Save To…” and Autosave are not directly
supported—Core Data cannot save to a store and maintain the same changed state in the managed object
context, all the while maintaining an unsaved stack as the current document.

By default an NSPersistentDocument instance creates its own ready-to-use persistence stack including
managed object context, persistent object store coordinator and persistent store. There is a one-to-one
mapping between the document and the backing object store.

You can customize the architecture of the persistence stack by overriding the methods
managedObjectModel (page 1954) and
configurePersistentStoreCoordinatorForURL:ofType:modelConfiguration:
storeOptions:error: (page 1952). You might wish to do this, for example, to specify a particular managed
object model.

Tasks

Managing the Persistence Objects

– managedObjectContext (page 1953)
Returns the managed object context for the receiver.

– managedObjectModel (page 1954)
Returns the receiver’s managed object model.

– setManagedObjectContext: (page 1957)
Sets the receiver’s managed object context.

– configurePersistentStoreCoordinatorForURL:ofType:modelConfiguration:storeOptions:error: (page
1952)

Configures the receiver’s persistent store coordinator with the appropriate stores for a given URL.

– persistentStoreTypeForFileType: (page 1955)
Returns the type of persistent store associated with the specified file type.

Undo Support

– hasUndoManager (page 1953)
Returns YES.

– setHasUndoManager: (page 1956)
Overridden to be a no-op.

– setUndoManager: (page 1957)
Overridden to be a no-op.

– isDocumentEdited (page 1953)
Returns a Boolean value that indicates whether the receiver’s managed object context, or editors
registered with the context, have uncommitted changes.

1950 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 96

NSPersistentDocument Class Reference

Document Content Management

– readFromURL:ofType:error: (page 1955)
Sets the contents of the receiver by reading from a file of a given type located by a given URL.

– revertToContentsOfURL:ofType:error: (page 1956)
Overridden to clean up the managed object context and controllers during a revert.

– writeToURL:ofType:forSaveOperation:originalContentsURL:error: (page 1957)
Saves changes in the document’s managed object context and saves the document’s persistent store
to a given URL.

Deprecated

– configurePersistentStoreCoordinatorForURL:ofType:error: (page 1951) Deprecated in Mac OS
X v10.5

Configures the receiver’s persistent store coordinator for a given URL and document type. (Deprecated.
Use configurePersistentStoreCoordinatorForURL:ofType:modelConfiguration:
storeOptions:error: (page 1952) instead.)

Instance Methods

configurePersistentStoreCoordinatorForURL:ofType:error:
Configures the receiver’s persistent store coordinator for a given URL and document type. (Deprecated in
Mac OS X v10.5. UseconfigurePersistentStoreCoordinatorForURL:ofType:modelConfiguration:
storeOptions:error: (page 1952) instead.)

- (BOOL)configurePersistentStoreCoordinatorForURL:(NSURL *)url
ofType:(NSString *)fileType
error:(NSError **)error

Parameters
url

An URL that specifies the location of the document's store.

fileType
The document type.

error
If the method does not complete successfully, upon return contains an NSError object that describes
the problem.

Return Value
YES if the method completes successfully, otherwise NO.

Discussion
This method is invoked automatically when an existing document is opened. You override this method to
customize creation of a persistent store for a given document or store type. You can retrieve the persistent
store coordinator with the following code:

[[self managedObjectContext] persistentStoreCoordinator];

Instance Methods 1951
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 96

NSPersistentDocument Class Reference

Availability
Available in Mac OS X v10.4.
Deprecated in Mac OS X v10.5.

See Also
– persistentStoreTypeForFileType: (page 1955)
– configurePersistentStoreCoordinatorForURL:ofType:modelConfiguration:storeOptions:error: (page
1952)

Declared In
NSPersistentDocument.h

configurePersistentStoreCoordinatorForURL:ofType:modelConfiguration:
storeOptions:error:
Configures the receiver’s persistent store coordinator with the appropriate stores for a given URL.

- (BOOL)configurePersistentStoreCoordinatorForURL:(NSURL *)url
ofType:(NSString *)fileType
modelConfiguration:(NSString *)configuration
storeOptions:(NSDictionary *)storeOptions
error:(NSError **)error

Parameters
url

An URL that specifies the location of the document's store.

fileType
The document type.

configuration
The name of the managed object model configuration to use. (The managed object model is associated
with the persistent store coordinator.) Pass nil if you do not want to specify a configuration.

storeOptions
Options for the store. See “Store Options” in NSPersistentStoreCoordinator for possible values.

error
If the method does not complete successfully, upon return contains an NSError object that describes
the problem.

Return Value
YES if the method completes successfully, otherwise NO.

Discussion
This method is invoked automatically when an existing document is opened. You override this method to
customize creation of a persistent store for a given document or store type. You can retrieve the persistent
store coordinator with the following code:

[[self managedObjectContext] persistentStoreCoordinator];

You can override this method to create the store to save to or load from (invoked from within the other
NSDocument methods to read/write files), which gives developers the ability to load/save from/to different
persistent store types (default type is XML).

1952 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 96

NSPersistentDocument Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPersistentDocument.h

hasUndoManager
Returns YES.

- (BOOL)hasUndoManager

Return Value
YES.

Special Considerations

You should not override this method.

See Also
– managedObjectContext (page 1953)

isDocumentEdited
Returns a Boolean value that indicates whether the receiver’s managed object context, or editors registered
with the context, have uncommitted changes.

- (BOOL)isDocumentEdited

Return Value
YES if the receiver’s managed object context, or editors registered with the context, have uncommitted
changes, otherwise NO.

See Also
– managedObjectContext (page 1953)

managedObjectContext
Returns the managed object context for the receiver.

- (NSManagedObjectContext *)managedObjectContext

Return Value
The managed object context for the receiver.

Discussion
If a managed object context for the receiver does not exist, one is created automatically. You override this
method to customize the creation of the persistence stack.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1953
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 96

NSPersistentDocument Class Reference

See Also
– managedObjectModel (page 1954)

Related Sample Code
Departments and Employees
QTMetadataEditor

Declared In
NSPersistentDocument.h

managedObjectModel
Returns the receiver’s managed object model.

- (id)managedObjectModel

Return Value
The receiver’s managed object model, used to configure the receiver’s persistent store coordinator.

Discussion
By default the Core Data framework creates a merged model from all models in the application bundle
([NSBundle mainBundle]). You can override this method to return a specific model to use to create
persistent stores. A typical implementation might include code similar to the following fragment:

NSBundle *bundle = [NSBundle bundleForClass:[self class]];
NSString *path = [bundle pathForResource:@"MyModel" ofType:@"mom"];
NSURL *url = [NSURL fileURLWithPath:path];
NSManagedObjectModel *model = [[NSManagedObjectModel alloc]
initWithContentsOfURL:url];

Normally you would cache the model as an instance variable. If all your document instances use the same
model, however, you can increase the efficiency of this method by caching a single instance, as illustrated
in the following example.

- (id)managedObjectModel {
 static id sharedModel = nil;
 if (sharedModel == nil) {
 sharedModel = [[super managedObjectModel] retain];
 }
 return sharedModel;
}

Special Considerations

In applications built on Mac OS X v10.4, by default the Core Data framework creates a merged model from
all the models found in the application bundle and the frameworks against which the application is linked.

Availability
Available in Mac OS X v10.4 and later.

See Also
– managedObjectContext (page 1953)

Declared In
NSPersistentDocument.h

1954 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 96

NSPersistentDocument Class Reference

persistentStoreTypeForFileType:
Returns the type of persistent store associated with the specified file type.

- (NSString *)persistentStoreTypeForFileType:(NSString *)fileType

Parameters
fileType

A document file type.

Return Value
The type of persistent store associated with fileType. For possible values, see
NSPersistentStoreCoordinator.

Discussion
You set the persistent store type in the application's property list (see Storing Document Types Information
in a Property List).

Availability
Available in Mac OS X v10.4 and later.

See Also
– configurePersistentStoreCoordinatorForURL:ofType:modelConfiguration:storeOptions:error: (page
1952)

Declared In
NSPersistentDocument.h

readFromURL:ofType:error:
Sets the contents of the receiver by reading from a file of a given type located by a given URL.

- (BOOL)readFromURL:(NSURL *)absoluteURL
ofType:(NSString *)typeName
error:(NSError **)outError

Parameters
absoluteURL

An URL that specifies the location from which to read the document.

typeName
The document type at absoluteURL.

outError
If absoluteURL is not valid, or the store at absoluteURL cannot be read, upon return contains an
NSError object that describes the problem

Return Value
YES if absoluteURL is valid and the file is read correctly, otherwise NO.

Discussion
This method sets the URL for the persistent object store associated with the receiver’s managed object context
to absoluteURL.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 1955
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 96

NSPersistentDocument Class Reference

See Also
– revertToContentsOfURL:ofType:error: (page 1956)
– writeToURL:ofType:forSaveOperation:originalContentsURL:error: (page 1957)
– configurePersistentStoreCoordinatorForURL:ofType:modelConfiguration:storeOptions:error: (page
1952)

Declared In
NSPersistentDocument.h

revertToContentsOfURL:ofType:error:
Overridden to clean up the managed object context and controllers during a revert.

- (BOOL)revertToContentsOfURL:(NSURL *)inAbsoluteURL
ofType:(NSString *)inTypeName
error:(NSError **)outError

Parameters
inAbsoluteURL

An URL object that specifies the location of the file to which to revert.

inTypeName
The type of the document at inAbsoluteURL.

outError
If the method fails to complete correctly, upon return contains an NSError object that describes the
problem.

Return Value
YES if the method completes correctly, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– readFromURL:ofType:error: (page 1955)
– writeToURL:ofType:forSaveOperation:originalContentsURL:error: (page 1957)

Related Sample Code
QTMetadataEditor

Declared In
NSPersistentDocument.h

setHasUndoManager:
Overridden to be a no-op.

- (void)setHasUndoManager:(BOOL)flag

Parameters
flag

This value is ignored.

1956 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 96

NSPersistentDocument Class Reference

Special Considerations

You should not override this method. The persistent document uses the managed object context’s undo
manager.

See Also
– managedObjectContext (page 1953)

setManagedObjectContext:
Sets the receiver’s managed object context.

- (void)setManagedObjectContext:(NSManagedObjectContext *)managedObjectContext

Parameters
managedObjectContext

The managed object context for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– managedObjectContext (page 1953)
– managedObjectModel (page 1954)

Declared In
NSPersistentDocument.h

setUndoManager:
Overridden to be a no-op.

- (void)setUndoManager:(NSUndoManager *)undoManager

Parameters
undoManager

This value is ignored.

Special Considerations

You should not override this method. The persistent document uses the managed object context’s undo
manager.

See Also
– managedObjectContext (page 1953)

writeToURL:ofType:forSaveOperation:originalContentsURL:error:
Saves changes in the document’s managed object context and saves the document’s persistent store to a
given URL.

Instance Methods 1957
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 96

NSPersistentDocument Class Reference

- (BOOL)writeToURL:(NSURL *)absoluteURL
ofType:(NSString *)typeName
forSaveOperation:(NSSaveOperationType)saveOperation
originalContentsURL:(NSURL *)absoluteOriginalContentsURL
error:(NSError **)error

Parameters
absoluteURL

An URL that specifies the new location for the document store. It must not be a relative URL.

typeName
The document type.

saveOperation
The save operation type. See the "Constants" section in NSDocument for possible values.

absoluteOriginalContentsURL
An URL that specifies the location of the original document store.

error
If the save fails to complete correctly, upon return contains an NSError object that describes the
problem.

Return Value
YES if the save completes correctly, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– readFromURL:ofType:error: (page 1955)
– revertToContentsOfURL:ofType:error: (page 1956)
– configurePersistentStoreCoordinatorForURL:ofType:modelConfiguration:storeOptions:error: (page
1952)

Declared In
NSPersistentDocument.h

1958 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 96

NSPersistentDocument Class Reference

Inherits from NSImageRep : NSObject

Conforms to NSCoding (NSImageRep)
NSCopying (NSImageRep)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSPICTImageRep.h

Companion guide Cocoa Drawing Guide

Overview

An NSPICTImageRep object renders an image from a PICT format data stream as described in the Carbon
QuickDraw Manager documentation. This class can render PICT format version 1, version 2, and extended
version 2 pictures.

Warning: There is no guarantee that the image will render exactly the same as it would under QuickDraw
because of the differences between the display medium and QuickDraw. In particular, some transfer
modes and region operations may not be supported.

Tasks

Creating an NSPICTImageRep

+ imageRepWithData: (page 1960)
Creates and returns an NSPICTImageRep object initialized with the specified data.

– initWithData: (page 1961)
Returns an NSPICTImageRep object initialized with the specified data.

Overview 1959
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 97

NSPICTImageRep Class Reference

Getting Image Data

– boundingBox (page 1960)
Returns the rectangle that bounds the receiver.

– PICTRepresentation (page 1961)
Returns the receiver's PICT data.

Class Methods

imageRepWithData:
Creates and returns an NSPICTImageRep object initialized with the specified data.

+ (id)imageRepWithData:(NSData *)pictData

Parameters
pictData

A data object containing the PICT data.

Return Value
An initialized NSPICTImageRep or nil if the object could not be initialized. Initialization may fail if the data
does not conform to the PICT file format.

Availability
Available in Mac OS X v10.0 and later.

See Also
– PICTRepresentation (page 1961)
– initWithData: (page 1961)

Declared In
NSPICTImageRep.h

Instance Methods

boundingBox
Returns the rectangle that bounds the receiver.

- (NSRect)boundingBox

Return Value
The rectangle bounding the receiver. This rectangle is obtained from the the picFrame field in the picture
header. See the Carbon QuickDraw Manager documentation for information on the picture header

Availability
Available in Mac OS X v10.0 and later.

1960 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 97

NSPICTImageRep Class Reference

Declared In
NSPICTImageRep.h

initWithData:
Returns an NSPICTImageRep object initialized with the specified data.

- (id)initWithData:(NSData *)pictData

Parameters
pictData

A data object containing the PICT data.

Return Value
An initialized NSPICTImageRep or nil if the object could not be initialized. Initialization may fail if the data
does not conform to the PICT file format.

Discussion
If the PICT data is obtained directly from a PICT file or document, this method ignores most of the 512-byte
header that occurs before the start of the actual picture data. It may retrieve some relevant meta information
from the header.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ imageRepWithData: (page 1960)
– PICTRepresentation (page 1961)

Declared In
NSPICTImageRep.h

PICTRepresentation
Returns the receiver's PICT data.

- (NSData *)PICTRepresentation

Return Value
A data object containing the PICT data. The returned data does not include the 512-byte header, if it was
present in the original data. If you want to write the returned data to a file, you must precede it with a 512-byte
header (containing all zeros) if you want to conform to the PICT document format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPICTImageRep.h

Instance Methods 1961
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 97

NSPICTImageRep Class Reference

1962 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 97

NSPICTImageRep Class Reference

Inherits from NSButton : NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSButton)
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSPopUpButton.h

Companion guide Application Menu and Pop-up List Programming Topics

Related sample code ColorMatching
FinalCutPro_AppleEvents
MenuMadness
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Class at a Glance

An NSPopUpButton object controls a pop-up menu or a pull-down menu from which a user can select an
item.

Principal Attributes

 ■ An NSMenu

Interface Builder
Use Interface Builder to add a pop-up or pull-down menu to a window or panel.

Commonly Used Methods

selectedItem (page 1979)
Returns the currently selected item.

Class at a Glance 1963
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

indexOfSelectedItem (page 1971)
Returns an integer identifying the currently selected item.

titleOfSelectedItem (page 1985)
Returns a string identifying the currently selected item.

Overview

The NSPopUpButton class defines objects that implement the pop-up and pull-down menus of the graphical
user interface.

An NSPopUpButton object uses an NSPopUpButtonCell object to implement its user interface.

Note that while a menu is tracking, adding, removing, or changing items on the menu is not reflected.

Tasks

Initializing an NSPopUpButton

– initWithFrame:pullsDown: (page 1971)
Returns an NSPopUpButton object initialized to the specified dimensions.

Setting the Type of Menu

– setPullsDown: (page 1983)
Sets whether the receiver behaves as a pull-down or pop-up menu.

– pullsDown (page 1977)
Returns a Boolean value indicating the behavior of the control's menu.

– setAutoenablesItems: (page 1982)
Sets whether the receiver automatically enables and disables its items every time a user event occurs.

– autoenablesItems (page 1968)
Returns whether the receiver automatically enables and disables its items every time a user event
occurs.

Inserting and Deleting Items

– addItemWithTitle: (page 1967)
Adds an item with the specified title to the end of the menu.

– addItemsWithTitles: (page 1967)
Adds multiple items to the end of the menu.

– insertItemWithTitle:atIndex: (page 1972)
Inserts an item at the specified position in the menu.

1964 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

– removeAllItems (page 1977)
Removes all items in the receiver’s item menu.

– removeItemWithTitle: (page 1979)
Removes the item with the specified title from the menu.

– removeItemAtIndex: (page 1978)
Removes the item at the specified index.

Getting the User’s Selection

– selectedItem (page 1979)
Returns the menu item last selected by the user.

– titleOfSelectedItem (page 1985)
Returns the title of the item last selected by the user.

– indexOfSelectedItem (page 1971)
Returns the index of the item last selected by the user.

– objectValue (page 1976)
Returns the index of the selected item.

Setting the Current Selection

– selectItem: (page 1980)
Selects the specified menu item.

– selectItemAtIndex: (page 1980)
Selects the item in the menu at the specified index.

– selectItemWithTag: (page 1980)
Selects the menu item with the specified tag.

– selectItemWithTitle: (page 1981)
Selects the item with the specified title.

– setObjectValue: (page 1983)
Selects the item at a specific index using an object value.

Getting Menu Items

– menu (page 1976)
Returns the pop-up button’s associated menu.

– setMenu: (page 1982)
Sets the pop-up button’s associated menu .

– numberOfItems (page 1976)
Returns the number of items in the menu.

– itemArray (page 1973)
Returns the items in the menu.

– itemAtIndex: (page 1973)
Returns the menu item at the specified index.

Tasks 1965
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

– itemTitleAtIndex: (page 1974)
Returns the title of the item at the specified index.

– itemTitles (page 1974)
Returns the titles of all of the items in the menu.

– itemWithTitle: (page 1975)
Returns the menu item with the specified title.

– lastItem (page 1975)
Returns the last item in the menu.

Getting the Indices of Menu Items

– indexOfItem: (page 1969)
Returns the index of the specified menu item.

– indexOfItemWithTag: (page 1969)
Returns the index of the menu item with the specified tag.

– indexOfItemWithTitle: (page 1970)
Returns the index of the item with the specified title.

– indexOfItemWithRepresentedObject: (page 1969)
Returns the index of the menu item that holds the specified represented object.

– indexOfItemWithTarget:andAction: (page 1970)
Returns the index of the menu item with the specified target and action.

Setting the Cell Edge to Pop out in Restricted Situations

– preferredEdge (page 1977)
Returns the edge of the receiver next to which the pop-up menu is displayed under restrictive screen
conditions.

– setPreferredEdge: (page 1983)
Sets the edge of the receiver next to which the pop-up menu should appear under restrictive screen
conditions.

Setting the Title

– setTitle: (page 1984)
Sets the string displayed in the receiver when the user isn’t pressing the mouse button.

Setting the Image

– setImage: (page 1982)
This method has no effect.

1966 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Setting the State

– synchronizeTitleAndSelectedItem (page 1984)
Ensures that the item being displayed by the receiver agrees with the selected item.

Instance Methods

addItemsWithTitles:
Adds multiple items to the end of the menu.

- (void)addItemsWithTitles:(NSArray *)itemTitles

Parameters
itemTitles

An array of NSString objects containing the titles of the items you want to add. Each string in the
array should be unique. If an item with the same title already exists in the menu, the existing item is
removed and the new one is added.

Discussion
If you want to move an item, it’s better to invoke removeItemWithTitle: (page 1979) explicitly and then
send this method. After adding the items, this method uses the synchronizeTitleAndSelectedItem (page
1984) method to make sure the item being displayed matches the currently selected item.

Since this method searches for duplicate items, it should not be used if you are adding items to an already
populated menu with more than a few hundred items. Add items directly to the receiver's menu instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertItemWithTitle:atIndex: (page 1972)
– removeAllItems (page 1977)
– removeItemWithTitle: (page 1979)

Related Sample Code
AlbumToSlideshow
MovieAssembler
TimelineToTC

Declared In
NSPopUpButton.h

addItemWithTitle:
Adds an item with the specified title to the end of the menu.

- (void)addItemWithTitle:(NSString *)title

Instance Methods 1967
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Parameters
title

The title of the menu-item entry. If an item with the same title already exists in the menu, the existing
item is removed and the new one is added.

Discussion
If you want to move an item, it’s better to invoke removeItemWithTitle: (page 1979) explicitly and then
send this method. After adding the item, this method calls the synchronizeTitleAndSelectedItem (page
1984) method to make sure the item being displayed matches the currently selected item.

Since this method searches for duplicate items, it should not be used if you are adding an item to an already
populated menu with more than a few hundred items. Add items directly to the receiver's menu instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertItemWithTitle:atIndex: (page 1972)
– removeItemWithTitle: (page 1979)
– setTitle: (page 1984)

Related Sample Code
MovieAssembler
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit
UIElementInspector
WhackedTV

Declared In
NSPopUpButton.h

autoenablesItems
Returns whether the receiver automatically enables and disables its items every time a user event occurs.

- (BOOL)autoenablesItems

Return Value
YES if the receiver automatically enables and disables items; otherwise, NO. The default value is YES.

Discussion
For more information on enabling and disabling menu items, see the NSMenuValidation protocol specification.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutoenablesItems: (page 1982)

Declared In
NSPopUpButton.h

1968 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

indexOfItem:
Returns the index of the specified menu item.

- (NSInteger)indexOfItem:(NSMenuItem *)anObject

Parameters
anObject

The menu item whose index you want.

Return Value
The index of the item or -1 if no such item was found.

Discussion
This method invokes the method of the same name of its NSPopUpButtonCell object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPopUpButton.h

indexOfItemWithRepresentedObject:
Returns the index of the menu item that holds the specified represented object.

- (NSInteger)indexOfItemWithRepresentedObject:(id)anObject

Parameters
anObject

The represented object associated with a menu item.

Return Value
The index of the menu item that owns the specified object, or -1 if no such menu item was found.

Discussion
Represented objects bear some direct relation to the title or image of a menu item; for example, an item
entitled “100” might have an NSNumber object encapsulating that value as its represented object. This method
invokes the method of the same name of its NSPopUpButtonCell object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
OutputBinsPDE

Declared In
NSPopUpButton.h

indexOfItemWithTag:
Returns the index of the menu item with the specified tag.

- (NSInteger)indexOfItemWithTag:(NSInteger)tag

Instance Methods 1969
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Parameters
tag

The tag of the menu item you want.

Return Value
The index of the item or -1 if no item with the specified tag was found.

Discussion
This method invokes the method of the same name of its NSPopUpButtonCell object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPopUpButton.h

indexOfItemWithTarget:andAction:
Returns the index of the menu item with the specified target and action.

- (NSInteger)indexOfItemWithTarget:(id)target andAction:(SEL)actionSelector

Parameters
target

The target object associated with the menu item.

actionSelector
The action method associated with the menu item.

Return Value
The index of the menu item, or -1 if no menu item contains the specified target and action.

Discussion
If you specify NULL for the actionSelector parameter, the index of the first menu item with the specified
target is returned. This method invokes the method of the same name of its NSPopUpButtonCell object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPopUpButton.h

indexOfItemWithTitle:
Returns the index of the item with the specified title.

- (NSInteger)indexOfItemWithTitle:(NSString *)title

Parameters
title

The title of the item you want.

Return Value
The index of the item or -1 if no item with the specified title was found.

1970 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AlbumToSlideshow
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
NSPopUpButton.h

indexOfSelectedItem
Returns the index of the item last selected by the user.

- (NSInteger)indexOfSelectedItem

Return Value
The index of the selected item, or -1 if no item is selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedItem (page 1979)
– titleOfSelectedItem (page 1985)

Related Sample Code
AlbumToSlideshow
CAPlayThrough
GLUT
iChatTheater
QTAudioContextInsert

Declared In
NSPopUpButton.h

initWithFrame:pullsDown:
Returns an NSPopUpButton object initialized to the specified dimensions.

- (id)initWithFrame:(NSRect)frameRect pullsDown:(BOOL)flag

Parameters
frameRect

The frame rectangle for the button, specified in the parent view's coordinate system.

flag
YES if you want the receiver to display a pull-down menu; otherwise, NO if you want it to display a
pop-up menu.

Instance Methods 1971
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Return Value
An initialized NSPopUpButton object, or nil if the object could not be initialized.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pullsDown (page 1977)
– setPullsDown: (page 1983)

Related Sample Code
ButtonMadness
MenuItemView
MenuMadness
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility

Declared In
NSPopUpButton.h

insertItemWithTitle:atIndex:
Inserts an item at the specified position in the menu.

- (void)insertItemWithTitle:(NSString *)title atIndex:(NSInteger)index

Parameters
title

The title of the new item. If an item with the same title already exists in the menu, the existing item
is removed and the new one is added

index
The zero-based index at which to insert the item. Specifying 0 inserts the item at the top of the menu.

Discussion
If you want to move an item, it’s better to invoke removeItemWithTitle: (page 1979) explicitly and then
send this method. After adding the item, this method uses the synchronizeTitleAndSelectedItem (page
1984) method to make sure the item displayed matches the currently selected item.

Since this method searches for duplicate items, it should not be used if you are adding an item to an already
populated menu with more than a few hundred items. Add items directly to the receiver's menu instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItemWithTitle: (page 1967)
– addItemsWithTitles: (page 1967)
– indexOfItemWithTitle: (page 1970)
– removeItemWithTitle: (page 1979)

Related Sample Code
CAPlayThrough

1972 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

QTAudioContextInsert
QTAudioExtractionPanel

Declared In
NSPopUpButton.h

itemArray
Returns the items in the menu.

- (NSArray *)itemArray

Return Value
An array of id <NSMenuItem> objects representing the items in the menu.

Discussion
Usually you access the menu’s items and modify the menu using the methods of NSPopUpButton rather
than accessing the array of items directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemAtIndex: (page 1973)
– insertItemWithTitle:atIndex: (page 1972)
– removeItemAtIndex: (page 1978)

Declared In
NSPopUpButton.h

itemAtIndex:
Returns the menu item at the specified index.

- (NSMenuItem *)itemAtIndex:(NSInteger)index

Parameters
index

The index of the item you want.

Return Value
The menu item, or nil if no item exists at the specified index.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemWithTitle: (page 1975)
– lastItem (page 1975)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel

Instance Methods 1973
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Quartz Composer WWDC 2005 TextEdit
SampleScannerApp

Declared In
NSPopUpButton.h

itemTitleAtIndex:
Returns the title of the item at the specified index.

- (NSString *)itemTitleAtIndex:(NSInteger)index

Parameters
index

The index of the item you want.

Return Value
The title of the item, or an empty string if no item exists at the specified index.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemTitles (page 1974)

Declared In
NSPopUpButton.h

itemTitles
Returns the titles of all of the items in the menu.

- (NSArray *)itemTitles

Return Value
An array of NSString objects containing the titles of every item in the menu. The titles appear in the order
in which the items appear in the menu.

Discussion
If the menu contains separator items, the array contains an empty string (@””) for each separator item.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemTitleAtIndex: (page 1974)
– itemWithTitle: (page 1975)
– numberOfItems (page 1976)

Declared In
NSPopUpButton.h

1974 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

itemWithTitle:
Returns the menu item with the specified title.

- (NSMenuItem *)itemWithTitle:(NSString *)title

Parameters
title

The title of the menu item you want.

Return Value
The menu item, or nil if no item with the specified title exists in the menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItemWithTitle: (page 1967)
– selectItemWithTitle: (page 1981)
– itemAtIndex: (page 1973)
– indexOfItemWithTitle: (page 1970)

Declared In
NSPopUpButton.h

lastItem
Returns the last item in the menu.

- (NSMenuItem *)lastItem

Return Value
The last menu item.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemAtIndex: (page 1973)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit
UIElementInspector
WhackedTV

Declared In
NSPopUpButton.h

Instance Methods 1975
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

menu
Returns the pop-up button’s associated menu.

- (NSMenu *)menu

Return Value
The menu for the pop-up button.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
OutputBins2PDE
QTAudioContextInsert
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit
UIElementInspector

Declared In
NSPopUpButton.h

numberOfItems
Returns the number of items in the menu.

- (NSInteger)numberOfItems

Return Value
The number of items in the menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lastItem (page 1975)

Related Sample Code
MovieAssembler
QTAudioContextInsert

Declared In
NSPopUpButton.h

objectValue
Returns the index of the selected item.

- (id)objectValue

Return Value
An object (typically an NSNumber object) that responds to the intValue message and contains the index
of the selected item.

1976 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

See Also
– setObjectValue: (page 1983)

preferredEdge
Returns the edge of the receiver next to which the pop-up menu is displayed under restrictive screen
conditions.

- (NSRectEdge)preferredEdge

Return Value
Possible values include NSMinXEdge, NSMinYEdge, NSMaxXEdge, or NSMaxYEdge. The default value is the
bottom edge, which is NSMaxYEdge for flipped views or NSMinYEdge for unflipped views.

Discussion
For pull-down menus, the default behavior is to display the menu under the receiver. For most pop-up menus,
the NSPopUpButton object attempts to show the selected item directly over the button.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPreferredEdge: (page 1983)

Declared In
NSPopUpButton.h

pullsDown
Returns a Boolean value indicating the behavior of the control's menu.

- (BOOL)pullsDown

Return Value
YES if the menu behaves like a pull-down menu; otherwise, NO if it behaves like a pop-up menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPullsDown: (page 1983)

Declared In
NSPopUpButton.h

removeAllItems
Removes all items in the receiver’s item menu.

- (void)removeAllItems

Instance Methods 1977
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Discussion
After removing the items, this method uses the synchronizeTitleAndSelectedItem (page 1984) method
to refresh the menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfItems (page 1976)
– removeItemAtIndex: (page 1978)
– removeItemWithTitle: (page 1979)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit
UIElementInspector
WhackedTV

Declared In
NSPopUpButton.h

removeItemAtIndex:
Removes the item at the specified index.

- (void)removeItemAtIndex:(NSInteger)index

Parameters
index

The zero-based index indicating which item to remove. Specifying 0 removes the item at the top of
the menu.

Discussion
After removing the item, this method uses the synchronizeTitleAndSelectedItem (page 1984) method
to make sure the title displayed matches the currently selected item.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertItemWithTitle:atIndex: (page 1972)
– removeAllItems (page 1977)
– removeItemWithTitle: (page 1979)

Related Sample Code
CocoaSpeechSynthesisExample
QTAudioContextInsert

Declared In
NSPopUpButton.h

1978 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

removeItemWithTitle:
Removes the item with the specified title from the menu.

- (void)removeItemWithTitle:(NSString *)title

Parameters
title

The title of the item you want to remove. If no menu item exists with the specified title, this method
triggers an assertion.

Discussion
This method removes the first item it finds with the specified name. This method then uses
synchronizeTitleAndSelectedItem (page 1984) to refresh the menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItemWithTitle: (page 1967)
– removeAllItems (page 1977)
– removeItemAtIndex: (page 1978)

Declared In
NSPopUpButton.h

selectedItem
Returns the menu item last selected by the user.

- (NSMenuItem *)selectedItem

Return Value
The menu item that is currently selected, or nil if no item is selected.

Discussion
The last selected menu item is the one that was highlighted when the user released the mouse button. It is
possible for a pull-down menu’s selected item to be its first item.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FinalCutPro_AppleEvents
QTAudioContextInsert
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit
UIElementInspector

Declared In
NSPopUpButton.h

Instance Methods 1979
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

selectItem:
Selects the specified menu item.

- (void)selectItem:(NSMenuItem *)item

Parameters
anObject

The menu item to select, or nil if you want to deselect all menu items.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NewsReader
QTAudioContextInsert
QTAudioExtractionPanel
WhackedTV

Declared In
NSPopUpButton.h

selectItemAtIndex:
Selects the item in the menu at the specified index.

- (void)selectItemAtIndex:(NSInteger)index

Parameters
index

The index of the item you want to select, or -1 you want to deselect all menu items.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfSelectedItem (page 1971)

Related Sample Code
ColorMatching
GLUT
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSPopUpButton.h

selectItemWithTag:
Selects the menu item with the specified tag.

- (BOOL)selectItemWithTag:(NSInteger)tag

1980 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Parameters
tag

The tag of the item you want to select.

Return Value
YES if the item was successfully selected; otherwise, NO.

Discussion
If no item with the specified tag is found, this method returns NO and leaves the menu state unchanged.

You typically assign tags to menu items from Interface Builder, but you can also assign them programmatically
using the setTag: method of NSMenuItem.

Availability
Available in Mac OS X v10.4 and later.

See Also
– indexOfItemWithTag: (page 1969)

Related Sample Code
ScannerBrowser
WhackedTV

Declared In
NSPopUpButton.h

selectItemWithTitle:
Selects the item with the specified title.

- (void)selectItemWithTitle:(NSString *)title

Parameters
title

The title of the item to select. If you specify nil, an empty string, or a string that does not match the
title of a menu item, this method deselects the currently selected item.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItemWithTitle: (page 1970)
– addItemWithTitle: (page 1967)
– setTitle: (page 1984)

Related Sample Code
GLUT

Declared In
NSPopUpButton.h

Instance Methods 1981
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

setAutoenablesItems:
Sets whether the receiver automatically enables and disables its items every time a user event occurs.

- (void)setAutoenablesItems:(BOOL)flag

Parameters
flag

YES if you want the receiver to automatically enable and disable items; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autoenablesItems (page 1968)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
WhackedTV

Declared In
NSPopUpButton.h

setImage:
This method has no effect.

- (void)setImage:(NSImage *)anImage

Parameters
anImage

The image to display.

Discussion
The image displayed in a pop up button cell is taken from the selected menu item (in the case of a pop up
menu) or from the first menu item (in the case of a pull-down menu).

setMenu:
Sets the pop-up button’s associated menu .

- (void)setMenu:(NSMenu *)menu

Parameters
menu

The menu to associate with the pop-up button.

Discussion
If another menu was already associated with the pop-up button, this method releases the old menu. If you
want to explicitly save the old menu, you should retain it before invoking this method.

Availability
Available in Mac OS X v10.0 and later.

1982 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Related Sample Code
ScannerBrowser

Declared In
NSPopUpButton.h

setObjectValue:
Selects the item at a specific index using an object value.

- (void)setObjectValue:(id)object

Parameters
object

An NSNumber object containing the index (an integer) of the item you want to select. Specify the
index -1 to deselect all items. You can also use an object other than an NSNumber object. In that case,
the object must respond to the intValue method and return an appropriate index value.

Discussion

See Also
– objectValue (page 1976)

setPreferredEdge:
Sets the edge of the receiver next to which the pop-up menu should appear under restrictive screen conditions.

- (void)setPreferredEdge:(NSRectEdge)edge

Parameters
edge

The preferred edge. Possible values include NSMinXEdge, NSMinYEdge, NSMaxXEdge, or NSMaxYEdge.

Discussion
For pull-down menus, the default behavior is to display the menu under the receiver. For most pop-up menus,
the NSPopUpButton object attempts to show the selected item directly over the button.

Availability
Available in Mac OS X v10.0 and later.

See Also
– preferredEdge (page 1977)

Declared In
NSPopUpButton.h

setPullsDown:
Sets whether the receiver behaves as a pull-down or pop-up menu.

- (void)setPullsDown:(BOOL)flag

Instance Methods 1983
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Parameters
flag

YES if you want the receiver to operate as a pull-down menu; otherwise, NO if you want it to operate
as a pop-up menu.

Discussion
This method does not change the contents of the menu; it changes only the style of the menu.

When changing the menu type to a pull-down menu, if the menu was a pop-up menu and the cell alters the
state of its selected items, this method sets the state of the currently selected item to NSStateOff before
changing the menu type.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFrame:pullsDown: (page 1971)
– pullsDown (page 1977)

Declared In
NSPopUpButton.h

setTitle:
Sets the string displayed in the receiver when the user isn’t pressing the mouse button.

- (void)setTitle:(NSString *)aString

Parameters
aString

The string to display.

Discussion
If the receiver displays a pop-up menu, this method changes the current item to be the item with the specified
title, adding a new item by that name if one does not already exist. If the receiver displays a pull-down list,
this method sets its title to the specified string.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPopUpButton.h

synchronizeTitleAndSelectedItem
Ensures that the item being displayed by the receiver agrees with the selected item.

- (void)synchronizeTitleAndSelectedItem

Discussion
If there’s no selected item, this method selects the first item in the item menu and sets the receiver’s item
to match. For pull-down menus, this method makes sure that the first item is being displayed (the
NSPopUpButtonCell object must be set to use the selected menu item, which happens by default).

1984 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemArray (page 1973)
– indexOfSelectedItem (page 1971)

Declared In
NSPopUpButton.h

titleOfSelectedItem
Returns the title of the item last selected by the user.

- (NSString *)titleOfSelectedItem

Return Value
The title of the selected menu item, or an empty string if no item is selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfSelectedItem (page 1971)

Related Sample Code
AlbumToSlideshow
FinalCutPro_AppleEvents
GLUT
MovieAssembler
WhackedTV

Declared In
NSPopUpButton.h

Notifications

NSPopUpButtonWillPopUpNotification
Posted when an NSPopUpButton object receives a mouse-down event—that is, when the user is about to
select an item from the menu.

The notification object is the selected NSPopUpButton object. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPopUpButton.h

Notifications 1985
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

1986 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 98

NSPopUpButton Class Reference

Inherits from NSMenuItemCell : NSButtonCell : NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSPopUpButtonCell.h

Companion guide Application Menu and Pop-up List Programming Topics

Related sample code ButtonMadness
MenuItemView
MenuMadness
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit

Overview

The NSPopUpButtonCell class defines the visual appearance of pop-up buttons that display pop-up or
pull-down menus. Pop-up menus present the user with a set of choices, much the way radio buttons do, but
using much less space. Pull-down menus also provide a set of choices but present the information in a slightly
different way, usually to provide a set of commands from which the user can choose.

The NSPopUpButtonCell class implements the user interface for the NSPopUpButton class.

Note that while a menu is tracking, adding, removing, or changing items on the menu is not reflected.

Tasks

Initialization

– initTextCell:pullsDown: (page 1997)
Returns an NSPopUpButtonCell object initialized with the specified title.

Overview 1987
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Getting and Setting Attributes

– setMenu: (page 2009)
Sets the pop-up button’s associated menu.

– menu (page 2001)
Returns the pop-up button’s associated menu.

– setPullsDown: (page 2010)
Sets whether the receiver behaves as a pull-down or pop-up menu.

– pullsDown (page 2003)
Returns a Boolean value indicating the behavior of the control's menu.

– setAutoenablesItems: (page 2008)
Sets whether the receiver automatically enables and disables its items every time a user event occurs.

– autoenablesItems (page 1993)
Returns whether the receiver automatically enables and disables its items every time a user event
occurs.

– setPreferredEdge: (page 2010)
Sets the edge of the receiver next to which the pop-up menu should appear under restrictive screen
conditions.

– preferredEdge (page 2002)
Returns the edge of the receiver next to which the pop-up menu is displayed under restrictive screen
conditions.

– setUsesItemFromMenu: (page 2011)
Sets whether the pop-up button uses an item from the menu for its own title.

– usesItemFromMenu (page 2013)
Returns a Boolean value indicating whether the pop-up button uses an item from the menu for its
own title.

– setAltersStateOfSelectedItem: (page 2007)
Sets whether the receiver links the state of the menu items to the current selection.

– altersStateOfSelectedItem (page 1992)
Returns a Boolean value indicating whether the receiver links the state of the selected menu item to
the current selection.

– setArrowPosition: (page 2008)
Sets the position of the arrow displayed on the receiver.

– arrowPosition (page 1992)
Returns the position of the arrow displayed on the receiver.

Adding and Removing Items

– addItemWithTitle: (page 1991)
Adds an item with the specified title to the end of the menu.

– addItemsWithTitles: (page 1990)
Adds multiple items to the end of the menu.

– insertItemWithTitle:atIndex: (page 1998)
Inserts an item at the specified position in the menu.

1988 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

– removeItemWithTitle: (page 2004)
Removes the item with the specified title from the menu.

– removeItemAtIndex: (page 2004)
Removes the item at the specified index.

– removeAllItems (page 2003)
Removes all items in the receiver’s item menu.

Accessing the Items

– itemArray (page 1999)
Returns the items in the menu.

– numberOfItems (page 2001)
Returns the number of items in the menu.

– indexOfItem: (page 1994)
Returns the index of the specified menu item.

– indexOfItemWithTitle: (page 1996)
Returns the index of the item with the specified title.

– indexOfItemWithTag: (page 1995)
Returns the index of the menu item with the specified tag.

– indexOfItemWithRepresentedObject: (page 1994)
Returns the index of the menu item that holds the specified represented object.

– indexOfItemWithTarget:andAction: (page 1996)
Returns the index of the menu item with the specified target and action.

– itemAtIndex: (page 1999)
Returns the menu item at the specified index.

– itemWithTitle: (page 2000)
Returns the menu item with the specified title.

– lastItem (page 2001)
Returns the last item in the menu.

– objectValue (page 2002)
Returns the index of the selected item.

– setObjectValue: (page 2009) Available in Mac OS X v10.0 through Mac OS X v10.5
Selects the item at a specific index using an object value.

Dealing with Selection

– selectItem: (page 2005)
Selects the specified menu item.

– selectItemAtIndex: (page 2005)
Selects the item in the menu at the specified index.

– selectItemWithTag: (page 2006)
Selects the menu item with the specified tag.

Tasks 1989
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

– selectItemWithTitle: (page 2007)
Selects the item with the specified title.

– setTitle: (page 2011)
Sets the string displayed in the receiver when the user isn’t pressing the mouse button.

– selectedItem (page 2004)
Returns the menu item last selected by the user.

– indexOfSelectedItem (page 1997)
Returns the index of the item last selected by the user.

– synchronizeTitleAndSelectedItem (page 2012)
Synchronizes the the pop-up button’s displayed item with the currently selected menu item.

Title Conveniences

– itemTitleAtIndex: (page 1999)
Returns the title of the item at the specified index.

– itemTitles (page 2000)
Returns the titles of all of the items in the menu.

– titleOfSelectedItem (page 2013)
Returns the title of the item last selected by the user.

Setting the Image

– setImage: (page 2009)
This method has no effect.

Handling Events and Action Messages

– attachPopUpWithFrame:inView: (page 1993)
Sets up the receiver to display a menu.

– dismissPopUp (page 1994)
Dismisses the pop-up button’s menu by ordering its window out.

– performClickWithFrame:inView: (page 2002)
Displays the receiver’s menu and track mouse events in it.

Instance Methods

addItemsWithTitles:
Adds multiple items to the end of the menu.

- (void)addItemsWithTitles:(NSArray *)itemTitles

1990 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Parameters
itemTitles

An array of NSString objects containing the titles of the items you want to add. Each string in the
array should be unique. If an item with the same title already exists in the menu, the existing item is
removed and the new one is added.

Discussion
The new menu items use the pop-up button’s default action and target, but you can change these using the
setAction: and setTarget: methods of the corresponding NSMenuItem object.

If you want to move an item, it’s better to invoke removeItemWithTitle: (page 2004) explicitly and then
send this method. After adding the items, this method uses the synchronizeTitleAndSelectedItem (page
2012) method to make sure the item being displayed matches the currently selected item.

Since this method searches for duplicate items, it should not be used if you are adding items to an already
populated menu with more than a few hundred items. Add items directly to the receiver's menu instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItemWithTitle: (page 1991)
– setAction: (NSMenuItem)
– setTarget: (NSMenuItem)

Declared In
NSPopUpButtonCell.h

addItemWithTitle:
Adds an item with the specified title to the end of the menu.

- (void)addItemWithTitle:(NSString *)title

Parameters
title

The title of the new menu item. If an item with the same title already exists in the menu, the existing
item is removed and the new one is added.

Discussion
The menu item uses the pop-up button’s default action and target, but you can change these using the
setAction: and setTarget: methods of the corresponding NSMenuItem object.

Since this method searches for duplicate items, it should not be used if you are adding an item to an already
populated menu with more than a few hundred items. Add items directly to the button's menu instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addItemsWithTitles: (page 1990)
– setAction: (NSMenuItem)
– setTarget: (NSMenuItem)

Instance Methods 1991
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Declared In
NSPopUpButtonCell.h

altersStateOfSelectedItem
Returns a Boolean value indicating whether the receiver links the state of the selected menu item to the
current selection.

- (BOOL)altersStateOfSelectedItem

Return Value
YES if the selected menu item has its state set to NSOnState automatically; otherwise, NO if the state of
menu items is independent of the current selection.

Discussion
This option is usually used only by pop-up menus. You typically do not alter the state of menu items in a
pull-down menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectItemAtIndex: (page 2005)
– selectItemWithTitle: (page 2007)

Declared In
NSPopUpButtonCell.h

arrowPosition
Returns the position of the arrow displayed on the receiver.

- (NSPopUpArrowPosition)arrowPosition

Return Value
The arrow position.

Discussion
NSPopUpNoArrow means no arrow is displayed. NSPopUpArrowAtCenter means the arrow is vertically
centered, pointing to the right, vertically centered. NSPopUpArrowAtBottom means the arrow is at the
bottom, pointing downward.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setArrowPosition: (page 2008)

Declared In
NSPopUpButtonCell.h

1992 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

attachPopUpWithFrame:inView:
Sets up the receiver to display a menu.

- (void)attachPopUpWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Parameters
cellFrame

The cell's rectangle, specified in points in the coordinate system of the view in the controlView
parameter. The menu is attached to this rectangle.

controlView
The view in which to display the pop-up button's menu.

Discussion
This call sets up the popup button cell to display a menu, which occurs in
performClickWithFrame:inView: (page 2002). This method sets the cell's control view and then highlights
and redraws the cell. It does not show the menu.

This method also posts anNSPopUpButtonCellWillPopUpNotification (page 2014). (TheNSPopUpButton
object sends a corresponding NSPopUpButtonWillPopUpNotification (page 1985).)

You normally do not call this method explicitly. It is called by the Application Kit automatically when the
menu for the pop-up button is to be displayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dismissPopUp (page 1994)

Declared In
NSPopUpButtonCell.h

autoenablesItems
Returns whether the receiver automatically enables and disables its items every time a user event occurs.

- (BOOL)autoenablesItems

Return Value
YES if the receiver automatically enables and disables items; otherwise, NO. The default value is YES.

Discussion
For more information on enabling and disabling menu items, see the NSMenuValidation (page 3729) .

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutoenablesItems: (page 2008)

Declared In
NSPopUpButtonCell.h

Instance Methods 1993
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

dismissPopUp
Dismisses the pop-up button’s menu by ordering its window out.

- (void)dismissPopUp

Discussion
If the pop-up button was not displaying its menu, this method does nothing.

You normally do not call this method explicitly. It is called by the Application Kit automatically to dismiss the
menu for the pop-up button.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attachPopUpWithFrame:inView: (page 1993)
– orderOut: (page 3352) (NSWindow)

Declared In
NSPopUpButtonCell.h

indexOfItem:
Returns the index of the specified menu item.

- (NSInteger)indexOfItem:(NSMenuItem *)item

Parameters
item

The menu item whose index you want.

Return Value
The index of the item or -1 if no such item was found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItemWithRepresentedObject: (page 1994)
– indexOfItemWithTag: (page 1995)
– indexOfItemWithTarget:andAction: (page 1996)
– indexOfItemWithTitle: (page 1996)
– indexOfSelectedItem (page 1997)

Declared In
NSPopUpButtonCell.h

indexOfItemWithRepresentedObject:
Returns the index of the menu item that holds the specified represented object.

- (NSInteger)indexOfItemWithRepresentedObject:(id)obj

1994 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Parameters
obj

The represented object associated with a menu item.

Return Value
The index of the menu item that owns the specified object, or -1 if no such menu item was found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItem: (page 1994)
– indexOfItemWithTag: (page 1995)
– indexOfItemWithTarget:andAction: (page 1996)
– indexOfItemWithTitle: (page 1996)
– indexOfSelectedItem (page 1997)
– representedObject (NSMenuItem)
– setRepresentedObject: (NSMenuItem)

Declared In
NSPopUpButtonCell.h

indexOfItemWithTag:
Returns the index of the menu item with the specified tag.

- (NSInteger)indexOfItemWithTag:(NSInteger)tag

Parameters
tag

The tag of the menu item you want.

Return Value
The index of the item or -1 if no item with the specified tag was found.

Discussion
Tags are values your application assigns to an object to identify it. You can assign tags to menu items using
the setTag: method of NSMenuItem.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItem: (page 1994)
– indexOfItemWithRepresentedObject: (page 1994)
– indexOfItemWithTarget:andAction: (page 1996)
– indexOfItemWithTitle: (page 1996)
– indexOfSelectedItem (page 1997)
– setTag: (NSMenuItem)

Declared In
NSPopUpButtonCell.h

Instance Methods 1995
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

indexOfItemWithTarget:andAction:
Returns the index of the menu item with the specified target and action.

- (NSInteger)indexOfItemWithTarget:(id)target andAction:(SEL)actionSelector

Parameters
target

The target object associated with the menu item.

actionSelector
The action method associated with the menu item.

Return Value
The index of the menu item, or -1 if no menu item contains the specified target and action.

Discussion
If you specify NULL for the actionSelector parameter, the index of the first menu item with the specified
target is returned.

The NSPopUpButtonCell class assigns a default action and target to each menu item, but you can change
these values using the setAction: and setTarget: methods of NSMenuItem.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItem: (page 1994)
– indexOfItemWithRepresentedObject: (page 1994)
– indexOfItemWithTag: (page 1995)
– indexOfItemWithTarget:andAction: (page 1996)
– indexOfItemWithTitle: (page 1996)
– indexOfSelectedItem (page 1997)
– setAction: (NSMenuItem)
– setTarget: (NSMenuItem)

Declared In
NSPopUpButtonCell.h

indexOfItemWithTitle:
Returns the index of the item with the specified title.

- (NSInteger)indexOfItemWithTitle:(NSString *)title

Parameters
title

The title of the item you want. You must not pass nil for this parameter.

Return Value
The index of the item or -1 if no item with the specified title was found.

Availability
Available in Mac OS X v10.0 and later.

1996 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

See Also
– indexOfItem: (page 1994)
– indexOfItemWithRepresentedObject: (page 1994)
– indexOfItemWithTag: (page 1995)
– indexOfItemWithTarget:andAction: (page 1996)
– indexOfItemWithTitle: (page 1996)
– indexOfSelectedItem (page 1997)

Declared In
NSPopUpButtonCell.h

indexOfSelectedItem
Returns the index of the item last selected by the user.

- (NSInteger)indexOfSelectedItem

Return Value
The index of the selected item, or -1 if no item is selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfItem: (page 1994)
– indexOfItemWithRepresentedObject: (page 1994)
– indexOfItemWithTag: (page 1995)
– indexOfItemWithTarget:andAction: (page 1996)
– indexOfItemWithTitle: (page 1996)

Declared In
NSPopUpButtonCell.h

initTextCell:pullsDown:
Returns an NSPopUpButtonCell object initialized with the specified title.

- (id)initTextCell:(NSString *)stringValue pullsDown:(BOOL)pullDown

Parameters
stringValue

The title of the first menu. You may specify an empty string if you do not want to add an initial menu
item.

pullDown
YES if you want the receiver to display a pull-down menu; otherwise, NO if you want it to display a
pop-up menu.

Return Value
An initialized NSPopUpButtonCell object, or nil if the object could not be initialized.

Instance Methods 1997
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Discussion
This menu item is assigned the default pop-up button action that displays the menu. To set the action and
target, use the setAction: and setTarget: methods of the item’s corresponding NSMenuItem object.

This method is the designated initializer of the class.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAction: (NSMenuItem)
– setTarget: (NSMenuItem)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
NSPopUpButtonCell.h

insertItemWithTitle:atIndex:
Inserts an item at the specified position in the menu.

- (void)insertItemWithTitle:(NSString *)title atIndex:(NSInteger)index

Parameters
title

The title of the new item. If an item with the same title already exists in the menu, the existing item
is removed and the new one is added

index
The zero-based index at which to insert the item. Specifying 0 inserts the item at the top of the menu.

Discussion
The value in index must represent a valid position in the array. The menu item at index and all those that
follow it are shifted down one slot to make room for the new menu item.

This method assigns the pop-up button’s default action and target to the new menu item. Use the menu
item’s setAction: and setTarget: methods to assign a new action and target.

Since this method searches for duplicate items, it should not be used if you are adding an item to an already
populated menu with more than a few hundred items. Add items directly to the button's menu instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
insertObject:atIndex: (NSMutableArray)
– setAction: (NSMenuItem)
– setTarget: (NSMenuItem)

Declared In
NSPopUpButtonCell.h

1998 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

itemArray
Returns the items in the menu.

- (NSArray *)itemArray

Return Value
An array of NSMenuItem objects representing the items in the menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemArray (page 1620) (NSMenu)

Declared In
NSPopUpButtonCell.h

itemAtIndex:
Returns the menu item at the specified index.

- (NSMenuItem *)itemAtIndex:(NSInteger)index

Parameters
index

The index of the item you want. The specified index must refer to an existing menu item.

Return Value
The menu item, or nil if no item exists at the specified index.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemTitleAtIndex: (page 1999)
– itemAtIndex: (page 1620) (NSMenu)

Declared In
NSPopUpButtonCell.h

itemTitleAtIndex:
Returns the title of the item at the specified index.

- (NSString *)itemTitleAtIndex:(NSInteger)index

Parameters
index

The index of the item you want.

Return Value
The title of the item, or an empty string if no item exists at the specified index.

Instance Methods 1999
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemAtIndex: (page 1999)

Declared In
NSPopUpButtonCell.h

itemTitles
Returns the titles of all of the items in the menu.

- (NSArray *)itemTitles

Return Value
An array of NSString objects containing the titles of every item in the menu. The titles appear in the order
in which the items appear in the menu.

Discussion
If the menu contains separator items, the array contains an empty string (@””) for each separator item.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemTitleAtIndex: (page 1999)

Declared In
NSPopUpButtonCell.h

itemWithTitle:
Returns the menu item with the specified title.

- (NSMenuItem *)itemWithTitle:(NSString *)title

Parameters
title

The title of the menu item you want.

Return Value
The menu item, or nil if no item with the specified title exists in the menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– itemTitleAtIndex: (page 1999)
– itemAtIndex: (page 1999)

Declared In
NSPopUpButtonCell.h

2000 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

lastItem
Returns the last item in the menu.

- (NSMenuItem *)lastItem

Return Value
The last menu item.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPopUpButtonCell.h

menu
Returns the pop-up button’s associated menu.

- (NSMenu *)menu

Return Value
The menu for the pop-up button.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMenu: (page 2009)

Declared In
NSPopUpButtonCell.h

numberOfItems
Returns the number of items in the menu.

- (NSInteger)numberOfItems

Return Value
The number of items in the menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
count (NSArray)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPopUpButtonCell.h

Instance Methods 2001
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

objectValue
Returns the index of the selected item.

- (id)objectValue

Return Value
An object (typically an NSNumber object) that responds to the intValue message and contains the index
of the selected item.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setObjectValue: (page 2009)

Declared In
NSPopUpButtonCell.h

performClickWithFrame:inView:
Displays the receiver’s menu and track mouse events in it.

- (void)performClickWithFrame:(NSRect)frame inView:(NSView *)controlView

Parameters
frame

The cell's rectangle, specified in points in the coordinate system of the view in the controlView
parameter.

controlView
The view in which to display the pop-up button's menu.

Discussion
You normally do not call this method explicitly. It is called by the Application Kit automatically to handle
events in the pop-up button.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attachPopUpWithFrame:inView: (page 1993)

Declared In
NSPopUpButtonCell.h

preferredEdge
Returns the edge of the receiver next to which the pop-up menu is displayed under restrictive screen
conditions.

- (NSRectEdge)preferredEdge

2002 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Return Value
Possible values include NSMinXEdge, NSMinYEdge, NSMaxXEdge, or NSMaxYEdge. If no preferred edge was
explicitly set, the default value is the bottom edge, which is NSMaxYEdge for flipped views or NSMinYEdge
for unflipped views.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPreferredEdge: (page 2010)

Declared In
NSPopUpButtonCell.h

pullsDown
Returns a Boolean value indicating the behavior of the control's menu.

- (BOOL)pullsDown

Return Value
YES if the menu behaves like a pull-down menu; otherwise, NO if it behaves like a pop-up menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPullsDown: (page 2010)

Declared In
NSPopUpButtonCell.h

removeAllItems
Removes all items in the receiver’s item menu.

- (void)removeAllItems

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeItemAtIndex: (page 2004)
– removeItemWithTitle: (page 2004)
– insertItemWithTitle:atIndex: (page 1998)

Declared In
NSPopUpButtonCell.h

Instance Methods 2003
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

removeItemAtIndex:
Removes the item at the specified index.

- (void)removeItemAtIndex:(NSInteger)index

Parameters
index

The zero-based index indicating which item to remove. Specifying 0 removes the item at the top of
the menu. The index must be valid and non-negative.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeAllItems (page 2003)
– removeItemWithTitle: (page 2004)
– insertItemWithTitle:atIndex: (page 1998)

Declared In
NSPopUpButtonCell.h

removeItemWithTitle:
Removes the item with the specified title from the menu.

- (void)removeItemWithTitle:(NSString *)title

Parameters
title

The title of the item you want to remove. If no menu item exists with the specified title, this method
triggers an assertion.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeAllItems (page 2003)
– removeItemAtIndex: (page 2004)
– insertItemWithTitle:atIndex: (page 1998)

Declared In
NSPopUpButtonCell.h

selectedItem
Returns the menu item last selected by the user.

- (NSMenuItem *)selectedItem

Return Value
The menu item that is currently selected, or nil if no item is selected.

2004 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Discussion
The last selected menu item is the one that was highlighted when the user released the mouse button. It is
possible for a pull-down menu’s selected item to be its first item.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectItem: (page 2005)
– selectItemAtIndex: (page 2005)
– selectItemWithTitle: (page 2007)

Declared In
NSPopUpButtonCell.h

selectItem:
Selects the specified menu item.

- (void)selectItem:(NSMenuItem *)item

Parameters
item

The menu item to select, or nil if you want to deselect all menu items.

Discussion
By default, selecting or deselecting a menu item from a pop-up menu changes its state. Selecting a menu
item from a pull-down menu does not automatically alter the state of the item. Use the
setAltersStateOfSelectedItem: (page 2007) method, passing it a value of NO, to disassociate the current
selection from the state of menu items.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedItem (page 2004)
– selectItemAtIndex: (page 2005)
– selectItemWithTitle: (page 2007)
– setAltersStateOfSelectedItem: (page 2007)
– setState: (NSMenuItem)

Declared In
NSPopUpButtonCell.h

selectItemAtIndex:
Selects the item in the menu at the specified index.

- (void)selectItemAtIndex:(NSInteger)index

Instance Methods 2005
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Parameters
index

The index of the item you want to select, or -1 you want to deselect all menu items.

Discussion
By default, selecting or deselecting a menu item from a pop-up menu changes its state. Selecting a menu
item from a pull-down menu does not automatically alter the state of the item. Use the
setAltersStateOfSelectedItem: (page 2007) method, passing it a value of NO, to disassociate the current
selection from the state of menu items.

Subclassers can override this method to catch all select calls.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedItem (page 2004)
– selectItem: (page 2005)
– selectItemWithTitle: (page 2007)
– setAltersStateOfSelectedItem: (page 2007)
– setState: (NSMenuItem)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPopUpButtonCell.h

selectItemWithTag:
Selects the menu item with the specified tag.

- (BOOL)selectItemWithTag:(NSInteger)tag

Parameters
tag

The tag of the item you want to select.

Return Value
YES if the item was successfully selected; otherwise, NO.

Discussion
If no item with the specified tag is found, this method returns NO and leaves the menu state unchanged.

You typically assign tags to menu items from Interface Builder, but you can also assign them programmatically
using the setTag: method of NSMenuItem.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSPopUpButtonCell.h

2006 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

selectItemWithTitle:
Selects the item with the specified title.

- (void)selectItemWithTitle:(NSString *)title

Parameters
title

The title of the item to select. If you specify nil, an empty string, or a string that does not match the
title of a menu item, this method deselects the currently selected item.

Discussion
By default, selecting or deselecting a menu item changes its state. Use the
setAltersStateOfSelectedItem: (page 2007) method, passing it a value of NO, to disassociate the current
selection from the state of menu items.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedItem (page 2004)
– selectItem: (page 2005)
– selectItemAtIndex: (page 2005)
– setAltersStateOfSelectedItem: (page 2007)
– setState: (NSMenuItem)

Declared In
NSPopUpButtonCell.h

setAltersStateOfSelectedItem:
Sets whether the receiver links the state of the menu items to the current selection.

- (void)setAltersStateOfSelectedItem:(BOOL)flag

Parameters
flag

YES if the selected menu item has its state set to NSOnState automatically; otherwise, NO if the state
of menu items is independent of the current selection.

Discussion
You use this method to control whether the selected menu item is linked to the state of that item. When you
specify NO for the flag parameter, this method sets the state of the currently selected item to NSOffState.

Availability
Available in Mac OS X v10.0 and later.

See Also
– altersStateOfSelectedItem (page 1992)
– selectedItem (page 2004)
– selectItem: (page 2005)
– selectItemAtIndex: (page 2005)
– setState: (NSMenuItem)

Instance Methods 2007
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Declared In
NSPopUpButtonCell.h

setArrowPosition:
Sets the position of the arrow displayed on the receiver.

- (void)setArrowPosition:(NSPopUpArrowPosition)position

Parameters
position

The position of the arrow.

Discussion
If you specify NSPopUpNoArrow, the receiver displays no arrow. NSPopUpArrowAtCenter displays the arrow
centered horizontally within the cell. NSPopUpArrowAtBottom displays the arrow at the edge of the cell.
This method works with setPreferredEdge: to determine the exact location and orientation of the arrow.
For more information, see setPreferredEdge: (page 2010).

This method is ignored unless the receiver is a pull-down list with a beveled border.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arrowPosition (page 1992)

Related Sample Code
Sketch+Accessibility

Declared In
NSPopUpButtonCell.h

setAutoenablesItems:
Sets whether the receiver automatically enables and disables its items every time a user event occurs.

- (void)setAutoenablesItems:(BOOL)flag

Parameters
flag

YES if you want the receiver to automatically enable and disable items; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autoenablesItems (page 1993)

Declared In
NSPopUpButtonCell.h

2008 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

setImage:
This method has no effect.

- (void)setImage:(NSImage *)anImage

Parameters
anImage

The image to display.

Discussion
The image displayed in a pop up button is taken from the selected menu item (in the case of a pop up menu)
or from the first menu item (in the case of a pull-down menu).

setMenu:
Sets the pop-up button’s associated menu.

- (void)setMenu:(NSMenu *)menu

Parameters
menu

The menu to associate with the pop-up button.

Discussion
If another menu was already associated with the pop-up button, this method releases the old menu. If you
want to explicitly save the old menu, you should retain it before invoking this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– menu (page 2001)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
NSPopUpButtonCell.h

setObjectValue:
Selects the item at a specific index using an object value.

- (void)setObjectValue:(id)object

Parameters
object

An NSNumber object containing the index (an integer) of the item you want to select. Specify the
index -1 to deselect all items. You can also use an object other than an NSNumber object. In that case,
the object must respond to the intValue message and return an appropriate index value.

Instance Methods 2009
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– objectValue (page 2002)

Declared In
NSPopUpButtonCell.h

setPreferredEdge:
Sets the edge of the receiver next to which the pop-up menu should appear under restrictive screen conditions.

- (void)setPreferredEdge:(NSRectEdge)edge

Parameters
edge

The preferred edge. Possible values include NSMinXEdge, NSMinYEdge, NSMaxXEdge, or NSMaxYEdge.

Discussion
At display time, if attaching the menu to the preferred edge would cause part of the menu to be obscured,
the pop-up button may use a different edge. If no preferred edge is set, the pop-up button uses the bottom
edge by default.

This method works with setArrowPosition: (page 2008) to determine the exact location of the arrow:

 ■ If the arrow position is NSPopUpArrowAtCenter, the arrow stays in the center of the button and this
method determines which edge the arrow points to. NSMinXEdge points to the left, NSMaxYEdge points
to the top, NSMaxXEdge points to the right, and NSMinYEdge points to the bottom.

 ■ If the arrow position is NSPopUpArrowAtBottom, this method determines which edge the arrow is at.
NSMinXEdge places the arrow at the center of the left side, pointing to the left. NSMinYEdge places the
arrow at bottom right corner, pointing up. NSMaxXEdge places the arrow at the center of the right side,
pointing to the right. NSMaxYEdge places the arrow at the bottom right corner, pointing down.

Availability
Available in Mac OS X v10.0 and later.

See Also
– preferredEdge (page 2002)

Related Sample Code
ButtonMadness

Declared In
NSPopUpButtonCell.h

setPullsDown:
Sets whether the receiver behaves as a pull-down or pop-up menu.

- (void)setPullsDown:(BOOL)flag

2010 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Parameters
flag

YES if you want the receiver to operate as a pull-down menu; otherwise, NO if you want it to operate
as a pop-up menu.

Discussion
This method does not change the contents of the menu; it changes only the style of the menu.

When changing the menu type to a pull-down menu, if the menu was a pop-up menu and the cell alters the
state of its selected items, this method sets the state of the currently selected item to NSOffState before
changing the menu type.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pullsDown (page 2003)
– synchronizeTitleAndSelectedItem (page 2012)

Related Sample Code
ButtonMadness

Declared In
NSPopUpButtonCell.h

setTitle:
Sets the string displayed in the receiver when the user isn’t pressing the mouse button.

- (void)setTitle:(NSString *)aString

Parameters
aString

The string to display.

Discussion
For pull-down menus that get their titles from a menu item, this method simply sets the pop-up button cell’s
menu item to the first item in the menu. For pop-up menus, if a menu item whose title matches aString
exists, this method makes that menu item the current selection; otherwise, it creates a new menu item with
the title aString, adds it to the pop-up menu, and selects it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initTextCell:pullsDown: (page 1997)

Declared In
NSPopUpButtonCell.h

setUsesItemFromMenu:
Sets whether the pop-up button uses an item from the menu for its own title.

Instance Methods 2011
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

- (void)setUsesItemFromMenu:(BOOL)flag

Parameters
flag

YES if the button should use the first menu item as its own title; otherwise, NO. YES is the default
value.

Discussion
For pop-up menus, the pop-up button uses the title of the currently selected menu item; if no menu item is
selected, the pop-up button displays no item and is drawn empty. You can set the title or image of the pop-up
button to something permanent by first calling this method (with a parameter of NO) and then calling
setMenuItem: (page 1681), as shown in the following example:

- (void)awakeFromNib {

 NSString *buttonImagePath = [[NSBundle mainBundle] pathForResource:@"plane"
 ofType:@"png"];
 NSImage *buttonImage = [[NSImage alloc]
initWithContentsOfFile:buttonImagePath];
 NSMenuItem *imageItem = [[NSMenuItem alloc] init];
 [imageItem setImage:buttonImage];
 [imageItem setTitle:@"City"];
 [[myPopUpButton cell] setUsesItemFromMenu:NO];
 [[myPopUpButton cell] setMenuItem:imageItem];
 [buttonImage release];
 [imageItem release];
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesItemFromMenu (page 2013)

Declared In
NSPopUpButtonCell.h

synchronizeTitleAndSelectedItem
Synchronizes the the pop-up button’s displayed item with the currently selected menu item.

- (void)synchronizeTitleAndSelectedItem

Discussion
If no item is currently selected, this method synchronizes the pop-up buttons displayed item with the first
menu item. If the pop-up button cell does not get its displayed item from a menu item, this method does
nothing.

For pull-down menus, this method sets the displayed item to the title first menu item.

If the pop-up button’s menu does not contain any menu items, this method sets the pop-up button’s displayed
item to nil, resulting in nothing being displayed in the control.

Availability
Available in Mac OS X v10.0 and later.

2012 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Declared In
NSPopUpButtonCell.h

titleOfSelectedItem
Returns the title of the item last selected by the user.

- (NSString *)titleOfSelectedItem

Return Value
The title of the selected menu item, or an empty string if no item is selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectItemWithTitle: (page 2007)

Declared In
NSPopUpButtonCell.h

usesItemFromMenu
Returns a Boolean value indicating whether the pop-up button uses an item from the menu for its own title.

- (BOOL)usesItemFromMenu

Return Value
YES if the button uses the first menu item as its own title; otherwise, NO. YES is the default value.

Discussion
If this option is set, pull-down menus use the title of the first menu item, while pop-up menus use the title
of the currently selected menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setUsesItemFromMenu: (page 2011)

Declared In
NSPopUpButtonCell.h

Constants

NSPopUpArrowPosition
These constants are defined for use with the arrowPosition (page 1992) and setArrowPosition: (page
2008) methods.

Constants 2013
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

typedef enum {
 NSPopUpNoArrow = 0,
 NSPopUpArrowAtCenter = 1,
 NSPopUpArrowAtBottom = 2
} NSPopUpArrowPosition;

Constants
NSPopUpNoArrow

Does not display any arrow in the receiver.

Available in Mac OS X v10.0 and later.

Declared in NSPopUpButtonCell.h.

NSPopUpArrowAtCenter
Arrow is centered vertically, pointing toward the preferredEdge (page 2002).

Available in Mac OS X v10.0 and later.

Declared in NSPopUpButtonCell.h.

NSPopUpArrowAtBottom
Arrow is drawn at the edge of the button, pointing toward the preferredEdge (page 2002).

Available in Mac OS X v10.0 and later.

Declared in NSPopUpButtonCell.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPopUpButtonCell.h

Notifications

NSPopUpButtonCellWillPopUpNotification
This notification is posted just before an pop-up menu is attached to its window frame. You can use this
notification to lazily construct your part’s menus, thus preventing unnecessary calculations until they are
needed. The notification object can be either a pop-up button or its enclosed pop-up button cell. This
notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPopUpButtonCell.h

2014 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 99

NSPopUpButtonCell Class Reference

Inherits from NSRuleEditor : NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSPredicateEditor.h

Companion guides Control and Cell Programming Topics for Cocoa
Predicate Programming Guide

Related sample code PhotoSearch
PredicateEditorSample

Overview

NSPredicateEditor is a subclass of NSRuleEditor that is specialized for editing NSPredicate objects.

NSPredicateEditor provides an NSPredicate property—objectValue (page 824) (inherited from
NSControl)—that you can get and set directly, and that you can bind using Cocoa bindings (you typically
configure a predicate editor in Interface Builder). NSPredicateEditor depends on another class,
NSPredicateEditorRowTemplate, that describes the available predicates and how to display them.

Unlike NSRuleEditor, NSPredicateEditor does not depend on its delegate to populate its rows (and
does not call the populating delegate methods). Instead, its rows are populated from its objectValue property
(an instance ofNSPredicate).NSPredicateEditor relies on instancesNSPredicateEditorRowTemplate,
which are responsible for mapping back and forth between the displayed view values and various predicates.

NSPredicateEditor exposes one property, rowTemplates (page 2016), which is an array of
NSPredicateEditorRowTemplate objects.

Overview 2015
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 100

NSPredicateEditor Class Reference

Tasks

Managing Row Templates

– setRowTemplates: (page 2016)
Sets the row templates for the receiver.

– rowTemplates (page 2016)
Returns the row templates for the receiver.

Instance Methods

rowTemplates
Returns the row templates for the receiver.

- (NSArray *)rowTemplates

Return Value
The row templates for the receiver.

Discussion
Until otherwise set, this contains a single compound NSPredicateEditorRowTemplate object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setRowTemplates: (page 2016)

Declared In
NSPredicateEditor.h

setRowTemplates:
Sets the row templates for the receiver.

- (void)setRowTemplates:(NSArray *)rowTemplates

Parameters
rowTemplates

An array of NSPredicateEditorRowTemplate objects.

Availability
Available in Mac OS X v10.5 and later.

See Also
– rowTemplates (page 2016)

2016 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 100

NSPredicateEditor Class Reference

Declared In
NSPredicateEditor.h

Instance Methods 2017
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 100

NSPredicateEditor Class Reference

2018 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 100

NSPredicateEditor Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSPredicateEditorRowTemplate.h

Companion guides Control and Cell Programming Topics for Cocoa
Predicate Programming Guide

Related sample code PhotoSearch
PredicateEditorSample

Overview

NSPredicateEditorRowTemplate describes available predicates and how to display them.

You can create instances of NSPredicateEditorRowTemplate programmatically or in Interface Builder.
By default, a non-compound row template has three views: a popup (or static text field) on the left, a popup
or static text field for operators, and either a popup or other view on the right. You can subclass
NSPredicateEditorRowTemplate to create a row template with different numbers or types of views.

NSPredicateEditorRowTemplate is a concrete class, but it has five primitive methods which are called
by NSPredicateEditor: templateViews (page 2027), matchForPredicate: (page 2025),
setPredicate: (page 2027), displayableSubpredicatesOfPredicate: (page 2022), and
predicateWithSubpredicates: (page 2026).NSPredicateEditorRowTemplate implements all of them,
but you can override them for custom templates. The primitive methods are used by an instance of
NSPredicateEditor as follows.

First, an instance of NSPredicateEditor is created, and some row templates are set on it—either through
a nib file or programmatically. The first thing predicate editor does is ask each of the templates for their
views, using templateViews (page 2027).

After setting up the predicate editor, you typically send it a setObjectValue: (page 836) message to restore
a saved predicate. NSPredicateEditor needs to determine which of its templates should display each
predicate in the predicate tree. It does this by sending each of its row templates a matchForPredicate: (page
2025) message and choosing the one that returns the highest value.

Overview 2019
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPredicateEditorRowTemplate Class
Reference

After finding the best match for a predicate, NSPredicateEditor copies that template to get fresh views,
inserts them into the proper row, and then sets the predicate on the template using setPredicate: (page
2027). Within that method, theNSPredicateEditorRowTemplateobject must set its views' values to represent
that predicate.

NSPredicateEditorRowTemplate next asks the template for the “displayable sub-predicates” of the
predicate by sending a displayableSubpredicatesOfPredicate: (page 2022) message. If a template
represents a predicate in its entirety, or if the predicate has no subpredicates, it can return nil for this.
Otherwise, it should return a list of predicates to be made into sub-rows of that template's row. The whole
process repeats for each sub-predicate.

At this point, the user sees the predicate that was saved. If the user then makes some changes to the views
of the templates, this causes NSPredicateEditor to recompute its predicate by asking each of the templates
to return the predicate represented by the new view values, passing in the subpredicates represented by
the sub-rows (an empty array if there are none, or nil if they aren't supported by that predicate type):

predicateWithSubpredicates: (page 2026)

Tasks

Initializing a Template

– initWithLeftExpressions:rightExpressions:modifier:operators:options: (page 2024)
Initializes and returns a “pop-up-pop-up-pop-up”-style row template.

– initWithLeftExpressions:rightExpressionAttributeType:modifier:operators:options: (page
2023)

Initializes and returns a “pop-up-pop-up-view”-style row template.

– initWithCompoundTypes: (page 2022)
Initializes and returns a row template suitable for displaying compound predicates.

Core Data Integration

+ templatesWithAttributeKeyPaths:inEntityDescription: (page 2021)
Returns an array of predicate templates for the given attribute key paths for a given entity.

Primitive Methods

– matchForPredicate: (page 2025)
Returns a positive number if the receiver can represent a given predicate, and 0 if it cannot.

– templateViews (page 2027)
Returns the views for the receiver.

– setPredicate: (page 2027)
Sets the value of the views according to the given predicate.

– displayableSubpredicatesOfPredicate: (page 2022)
Returns the subpredicates that should be made sub-rows of a given predicate.

2020 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPredicateEditorRowTemplate Class Reference

– predicateWithSubpredicates: (page 2026)
Returns the predicate represented by the receiver’s views' values and the given sub-predicates.

Information About a Row Template

– leftExpressions (page 2024)
Returns the left hand expressions for the receiver.

– rightExpressions (page 2027)
Returns the right hand expressions for the receiver.

– compoundTypes (page 2022)
Returns the compound predicate types for the receiver.

– modifier (page 2025)
Returns the comparison predicate modifier for the receiver.

– operators (page 2025)
Returns the array of operators for the receiver.

– options (page 2026)
Returns the comparison predicate options for the receiver.

– rightExpressionAttributeType (page 2026)
Returns the attribute type of the receiver’s right expression.

Class Methods

templatesWithAttributeKeyPaths:inEntityDescription:
Returns an array of predicate templates for the given attribute key paths for a given entity.

+ (NSArray *)templatesWithAttributeKeyPaths:(NSArray *)keyPaths
inEntityDescription:(NSEntityDescription *)entityDescription

Parameters
keyPaths

An array of attribute key paths originating at entityDescription. The key paths may cross
relationships but must terminate in attributes.

entityDescription
A Core Data entity description.

Return Value
An array of predicate templates for keyPaths originating at entityDescription.

Discussion
This method determines which key paths in the entity description can use the same views (that is, share the
same attribute type). For each of these groups, it instantiates individual templates via
initWithLeftExpressions:rightExpressions:modifier:operators:options: (page 2024).

Availability
Available in Mac OS X v10.5 and later.

Class Methods 2021
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPredicateEditorRowTemplate Class Reference

Declared In
NSPredicateEditorRowTemplate.h

Instance Methods

compoundTypes
Returns the compound predicate types for the receiver.

- (NSArray *)compoundTypes

Return Value
An array of NSNumber objects specifying compound predicate types. See Compound_Predicate_Types for
possible values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

displayableSubpredicatesOfPredicate:
Returns the subpredicates that should be made sub-rows of a given predicate.

- (NSArray *)displayableSubpredicatesOfPredicate:(NSPredicate *)predicate

Parameters
predicate

A predicate object.

Return Value
The subpredicates that should be made sub-rows of predicate. For compound predicates (instances of
NSCompoundPredicate), the array of subpredicates; for other types of predicate, returns nil. If a template
represents a predicate in its entirety, or if the predicate has no subpredicates, returns nil.

Discussion
You can override this method to create custom templates that handle complicated compound predicates.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

initWithCompoundTypes:
Initializes and returns a row template suitable for displaying compound predicates.

- (id)initWithCompoundTypes:(NSArray *)compoundTypes

2022 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPredicateEditorRowTemplate Class Reference

Parameters
compoundTypes

An array of NSNumber objects specifying compound predicate types. See
Compound_Predicate_Types for possible values.

Return Value
A row template initialized for displaying compound predicates of the types specified by compoundTypes.

Discussion
NSPredicateEditor contains such a template by default.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

initWithLeftExpressions:rightExpressionAttributeType:modifier:operators:options:
Initializes and returns a “pop-up-pop-up-view”-style row template.

- (id)initWithLeftExpressions:(NSArray *)leftExpressions
rightExpressionAttributeType:(NSAttributeType)attributeType
modifier:(NSComparisonPredicateModifier)modifier operators:(NSArray *)operators
options:(NSUInteger)options

Parameters
leftExpressions

An array of NSExpression objects that represent the left hand side of a predicate.

attributeType
An attribute type for the right hand side of a predicate. This value dictates the type of view created,
and how the control’s object value is coerced before putting it into a predicate.

modifier
A modifier for the predicate (see NSComparisonPredicateModifier for possible values).

operators
An array of NSNumber objects specifying the operator type (see NSPredicateOperatorType for
possible values).

options
Options for the predicate (see NSComparisonPredicate_Options for possible values).

Return Value
A row template initialized using the given arguments.

Discussion
The type of attributeType dictates the type of view created. For example, NSDateAttributeType will
create an NSDatePicker object, NSInteger64AttributeType will create a short text field, and
NSStringAttributeType will produce a longer text field. You can resize the views as you want.

Predicates do not automatically coerce types for you. For example, comparing a number to a string will raise
an exception. Therefore, the attribute type is also needed to determine how the control's object value must
be coerced before putting it into a predicate.

Instance Methods 2023
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPredicateEditorRowTemplate Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

initWithLeftExpressions:rightExpressions:modifier:operators:options:
Initializes and returns a “pop-up-pop-up-pop-up”-style row template.

- (id)initWithLeftExpressions:(NSArray *)leftExpressions rightExpressions:(NSArray
 *)rightExpressions modifier:(NSComparisonPredicateModifier)modifier
operators:(NSArray *)operators options:(NSUInteger)options

Parameters
leftExpressions

An array of NSExpression objects that represent the left hand side of a predicate.

rightExpressions
An array of NSExpression objects that represent the right hand side of a predicate.

modifier
A modifier for the predicate (see NSComparisonPredicateModifier for possible values).

operators
An array of NSNumber objects specifying the operator type (see NSPredicateOperatorType for
possible values).

options
Options for the predicate (see NSComparisonPredicate_Options for possible values).

Return Value
A row template of the “pop-up-pop-up-pop-up”-form, with the left and right popups representing the left
and right expression arrays leftExpressions and rightExpressions, and the center popup representing the
operators.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

leftExpressions
Returns the left hand expressions for the receiver.

- (NSArray *)leftExpressions

Return Value
The left hand expressions for the receiver

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

2024 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPredicateEditorRowTemplate Class Reference

matchForPredicate:
Returns a positive number if the receiver can represent a given predicate, and 0 if it cannot.

- (double)matchForPredicate:(NSPredicate *)predicate

Return Value
A positive number if the template can represent predicate, and 0 if it cannot.

Discussion
By default, returns values in the range 0 to 1.

The highest match among all the templates determines which template is responsible for displaying the
predicate. You can override this to determine which predicates your custom template handles.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

modifier
Returns the comparison predicate modifier for the receiver.

- (NSComparisonPredicateModifier)modifier

Return Value
The comparison predicate modifier for the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

operators
Returns the array of operators for the receiver.

- (NSArray *)operators

Return Value
The array of operators for the receiver.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

Instance Methods 2025
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPredicateEditorRowTemplate Class Reference

options
Returns the comparison predicate options for the receiver.

- (NSUInteger)options

Return Value
The comparison predicate options for the receiver. See NSComparisonPredicate_Options for possible
values. Returns 0 if this does not apply (for example, for a compound template initialized with
initWithCompoundTypes: (page 2022)).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

predicateWithSubpredicates:
Returns the predicate represented by the receiver’s views' values and the given sub-predicates.

- (NSPredicate *)predicateWithSubpredicates:(NSArray *)subpredicates

Parameters
subpredicates

An array of predicates.

Return Value
The predicate represented by the values of the template's views and the given subpredicates. You can override
this method to return the predicate represented by your custom views.

Discussion
This method is only called if matchForPredicate: (page 2025) returned a positive value for the receiver.

You can override this method to return the predicate represented by a custom view.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

rightExpressionAttributeType
Returns the attribute type of the receiver’s right expression.

- (NSAttributeType)rightExpressionAttributeType

Return Value
The attribute type of the receiver’s right expression.

Availability
Available in Mac OS X v10.5 and later.

2026 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPredicateEditorRowTemplate Class Reference

Declared In
NSPredicateEditorRowTemplate.h

rightExpressions
Returns the right hand expressions for the receiver.

- (NSArray *)rightExpressions

Return Value
The right hand expressions for the receiver

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

setPredicate:
Sets the value of the views according to the given predicate.

- (void)setPredicate:(NSPredicate *)predicate

Parameters
predicate

The predicate value for the receiver.

Discussion
This method is only called if matchForPredicate: (page 2025) returned a positive value for the receiver.

You can override this to set the values of custom views.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

templateViews
Returns the views for the receiver.

- (NSArray *)templateViews

Return Value
The views for the receiver.

Discussion
Instances of NSPopUpButton are treated specially by NSPredicateEditor; their menu items are merged
into a single popup button, and matching menu item titles are combined. In this way, a single tree is built
from the separate templates.

Instance Methods 2027
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPredicateEditorRowTemplate Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPredicateEditorRowTemplate.h

2028 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 101

NSPredicateEditorRowTemplate Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSPrinter.h

Companion guide Printing Programming Topics for Cocoa

Overview

An NSPrinter object describes a printer’s capabilities as defined in its PPD file. An NSPrinter object can
be constructed by specifying either the printer name or the make and model of an available printer. You use
a printer object to get information about printers, not to modify printer attributes or control a printing job.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

NSCopying
– copyWithZone:

Tasks

Creating an NSPrinter

+ printerWithName: (page 2032)
Creates and returns an NSPrinter object initialized with the specified printer name.

Overview 2029
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

+ printerWithType: (page 2033)
Creates and returns an NSPrinter object initialized to the first available printer with the specified
make and model information.

Getting General Printer Information

+ printerNames (page 2031)
Returns the names of all available printers.

+ printerTypes (page 2032)
Returns descriptions of the makes and models of all available printers.

Getting Attributes

– name (page 2038)
Returns the printer’s name.

– type (page 2041)
Returns a description of the printer’s make and model.

Getting Specific Information

– pageSizeForPaper: (page 2038)
Returns the size of the page for the specified paper type.

– languageLevel (page 2037)
Returns the PostScript language level recognized by the printer.

Querying the Tables

– isKey:inTable: (page 2037)
Returns a Boolean value indicating whether the specified key is in the specified table.

– stringForKey:inTable: (page 2040)
Returns the first occurrence of a value associated with specified key.

– stringListForKey:inTable: (page 2041)
Returns an array of strings, one for each occurrence, associated with specified key.

– booleanForKey:inTable: (page 2034)
Returns the Boolean value associated with the specified key.

– floatForKey:inTable: (page 2035)
Returns the floating-point value associated with the specified key.

– intForKey:inTable: (page 2036)
Returns the integer value associated with the specified key.

– rectForKey:inTable: (page 2039)
Returns the rectangle associated with the specified key.

– sizeForKey:inTable: (page 2039)
Returns the size data type associated with the specified key.

2030 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

– statusForTable: (page 2040)
Returns the status of the specified table.

– deviceDescription (page 2034)
Returns a dictionary of keys and values describing the device.

Deprecated Methods

+ printerWithName:domain:includeUnavailable: (page 2032) Deprecated in Mac OS X v10.2
Deprecated.

– acceptsBinary (page 2033) Deprecated in Mac OS X v10.2
Deprecated.

– domain (page 2034) Deprecated in Mac OS X v10.2
Deprecated.

– host (page 2035) Deprecated in Mac OS X v10.2
Deprecated.

– imageRectForPaper: (page 2035) Deprecated in Mac OS X v10.2
Deprecated.

– isColor (page 2036) Deprecated in Mac OS X v10.2
Deprecated.

– isFontAvailable: (page 2036) Deprecated in Mac OS X v10.2
Deprecated.

– isOutputStackInReverseOrder (page 2037) Deprecated in Mac OS X v10.2
Deprecated.

– note (page 2038) Deprecated in Mac OS X v10.2
Deprecated.

Class Methods

printerNames
Returns the names of all available printers.

+ (NSArray *)printerNames

Return Value
An array of NSString objects, each of which contains the name of an available printer.

Discussion
The user constructs the list of available printers using the Print Center application.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ printerTypes (page 2032)

Class Methods 2031
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

– name (page 2038)

Declared In
NSPrinter.h

printerTypes
Returns descriptions of the makes and models of all available printers.

+ (NSArray *)printerTypes

Return Value
An array of NSString objects, each of which contains the make and model information for a supported
printer.

Availability
Available in Mac OS X v10.0 and later.

See Also
– type (page 2041)

Declared In
NSPrinter.h

printerWithName:
Creates and returns an NSPrinter object initialized with the specified printer name.

+ (NSPrinter *)printerWithName:(NSString *)name

Parameters
name

The name of the printer.

Return Value
An initialized NSPrinter object, or nil if the specified printer was not available.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ printerWithType: (page 2033)
+ printerNames (page 2031)
– name (page 2038)

Declared In
NSPrinter.h

printerWithName:domain:includeUnavailable:
Deprecated. (Deprecated in Mac OS X v10.2.)

2032 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

+ (NSPrinter *)printerWithName:(NSString *)name domain:(NSString *)domain
includeUnavailable:(BOOL)includeUnavailable

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSPrinter.h

printerWithType:
Creates and returns an NSPrinter object initialized to the first available printer with the specified make and
model information.

+ (NSPrinter *)printerWithType:(NSString *)type

Parameters
type

A string describing the make and model information. You can get this string using the
printerTypes (page 2032) method.

Return Value
An initialized NSPrinter object, or nil if the specified printer was not available.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ printerWithName: (page 2032)
– type (page 2041)

Declared In
NSPrinter.h

Instance Methods

acceptsBinary
Deprecated. (Deprecated in Mac OS X v10.2.)

- (BOOL)acceptsBinary

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSPrinter.h

Instance Methods 2033
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

booleanForKey:inTable:
Returns the Boolean value associated with the specified key.

- (BOOL)booleanForKey:(NSString *)key inTable:(NSString *)table

Parameters
key

The key whose value you want.

table
The name of a table from the printer's PPD file.

Return Value
The Boolean value associated with the key. Returns NO if the key is not in the table or the receiver lacks a
PPD file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isKey:inTable: (page 2037)
– stringForKey:inTable: (page 2040)

Declared In
NSPrinter.h

deviceDescription
Returns a dictionary of keys and values describing the device.

- (NSDictionary *)deviceDescription

Return Value
A dictionary of the device properties. See NSGraphics.h for possible keys. The only key guaranteed to exist
is NSDeviceIsPrinter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrinter.h

domain
Deprecated. (Deprecated in Mac OS X v10.2.)

- (NSString *)domain

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

2034 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

Declared In
NSPrinter.h

floatForKey:inTable:
Returns the floating-point value associated with the specified key.

- (float)floatForKey:(NSString *)key inTable:(NSString *)table

Parameters
key

The key whose value you want.

table
The name of a table from the printer's PPD file.

Return Value
The floating-point value. Returns 0.0 if the key is not in the table or the receiver lacks a PPD file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isKey:inTable: (page 2037)
– stringForKey:inTable: (page 2040)

Declared In
NSPrinter.h

host
Deprecated. (Deprecated in Mac OS X v10.2.)

- (NSString *)host

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSPrinter.h

imageRectForPaper:
Deprecated. (Deprecated in Mac OS X v10.2.)

- (NSRect)imageRectForPaper:(NSString *)paperName

Discussion
If used, it attempts to determine and return the bounds of the imagable area for a particular paper named
paperName, but the result is not completely reliable.

Instance Methods 2035
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

See Also
– pageSizeForPaper: (page 2038)

Declared In
NSPrinter.h

intForKey:inTable:
Returns the integer value associated with the specified key.

- (int)intForKey:(NSString *)key inTable:(NSString *)table

Parameters
key

The key whose value you want.

table
The name of a table from the printer's PPD file.

Return Value
The integer value. Returns 0 if the key is not in the table or the receiver lacks a PPD file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isKey:inTable: (page 2037)
– stringForKey:inTable: (page 2040)

Declared In
NSPrinter.h

isColor
Deprecated. (Deprecated in Mac OS X v10.2.)

- (BOOL)isColor

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSPrinter.h

isFontAvailable:
Deprecated. (Deprecated in Mac OS X v10.2.)

2036 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

- (BOOL)isFontAvailable:(NSString *)faceName

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSPrinter.h

isKey:inTable:
Returns a Boolean value indicating whether the specified key is in the specified table.

- (BOOL)isKey:(NSString *)key inTable:(NSString *)table

Parameters
key

The key whose value you want.

table
The name of a table from the printer's PPD file.

Return Value
YES if the key is in the table; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrinter.h

isOutputStackInReverseOrder
Deprecated. (Deprecated in Mac OS X v10.2.)

- (BOOL)isOutputStackInReverseOrder

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSPrinter.h

languageLevel
Returns the PostScript language level recognized by the printer.

- (NSInteger)languageLevel

Return Value
The PostScript language level. The value is 0 if the receiver is not a PostScript printer.

Instance Methods 2037
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrinter.h

name
Returns the printer’s name.

- (NSString *)name

Return Value
The printer name.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ printerNames (page 2031)
+ printerWithName: (page 2032)

Declared In
NSPrinter.h

note
Deprecated. (Deprecated in Mac OS X v10.2.)

- (NSString *)note

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSPrinter.h

pageSizeForPaper:
Returns the size of the page for the specified paper type.

- (NSSize)pageSizeForPaper:(NSString *)paperName

Parameters
paperName

Possible values are printer-dependent and are contained in the printer's PPD file. Typical values are
"Letter" and "Legal".

Return Value
The size of the page, measured in points in the user coordinate space. The returned size is zero if the specified
paper name is not recognized or its entry in the PPD file cannot be parsed.

2038 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageRectForPaper: (page 2035)

Declared In
NSPrinter.h

rectForKey:inTable:
Returns the rectangle associated with the specified key.

- (NSRect)rectForKey:(NSString *)key inTable:(NSString *)table

Parameters
key

The key whose value you want.

table
The name of a table from the printer's PPD file.

Return Value
The rectangle value. Returns NSZeroRect if the key is not in the table or the receiver lacks a PPD file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isKey:inTable: (page 2037)
– stringForKey:inTable: (page 2040)

Declared In
NSPrinter.h

sizeForKey:inTable:
Returns the size data type associated with the specified key.

- (NSSize)sizeForKey:(NSString *)key inTable:(NSString *)table

Parameters
key

The key whose value you want.

table
The name of a table from the printer's PPD file.

Return Value
The size value. Returns NSZeroSize if the key is not in the table or the receiver lacks a PPD file.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2039
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

See Also
– isKey:inTable: (page 2037)
– stringForKey:inTable: (page 2040)

Declared In
NSPrinter.h

statusForTable:
Returns the status of the specified table.

- (NSPrinterTableStatus)statusForTable:(NSString *)table

Parameters
table

The name of a table from the printer's PPD file.

Return Value
One of the return values described in “Constants” (page 2042).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrinter.h

stringForKey:inTable:
Returns the first occurrence of a value associated with specified key.

- (NSString *)stringForKey:(NSString *)key inTable:(NSString *)table

Parameters
key

The key whose value you want.

table
The name of a table from the printer's PPD file.

Return Value
The value for the specified key, or nil if the key is not in the table. The returned string may also be empty.

Discussion
If key is a main keyword only, and if that keyword has options in the PPD file, this method returns an empty
string. Use stringListForKey:inTable: (page 2041) to retrieve the values for all occurrences of a main
keyword.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isKey:inTable: (page 2037)
– booleanForKey:inTable: (page 2034)
– floatForKey:inTable: (page 2035)

2040 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

– intForKey:inTable: (page 2036)
– rectForKey:inTable: (page 2039)
– sizeForKey:inTable: (page 2039)

Declared In
NSPrinter.h

stringListForKey:inTable:
Returns an array of strings, one for each occurrence, associated with specified key.

- (NSArray *)stringListForKey:(NSString *)key inTable:(NSString *)table

Parameters
key

The key whose value you want.

table
The name of a table from the printer's PPD file.

Return Value
An array of NSString objects, each containing a value associated with the specified key. Returns nil if the
key is not in the table.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isKey:inTable: (page 2037)
– stringForKey:inTable: (page 2040)

Declared In
NSPrinter.h

type
Returns a description of the printer’s make and model.

- (NSString *)type

Return Value
A description of the printer's make and model.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ printerTypes (page 2032)

Declared In
NSPrinter.h

Instance Methods 2041
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

Constants

NSPrinterTableStatus
These constants describe the state of a printer information table stored by an NSPrinter object.

typedef enum _NSPrinterTableStatus {
 NSPrinterTableOK = 0,
 NSPrinterTableNotFound = 1,
 NSPrinterTableError = 2
} NSPrinterTableStatus;

Constants
NSPrinterTableOK

Printer table was found and is valid.

Available in Mac OS X v10.0 and later.

Declared in NSPrinter.h.

NSPrinterTableNotFound
Printer table was not found.

Available in Mac OS X v10.0 and later.

Declared in NSPrinter.h.

NSPrinterTableError
Printer table is not valid.

Available in Mac OS X v10.0 and later.

Declared in NSPrinter.h.

Discussion
These constants are used by statusForTable: (page 2040)..

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrinter.h

2042 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 102

NSPrinter Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSPrintInfo.h

Companion guide Printing Programming Topics for Cocoa

Related sample code ImageApp
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112

Overview

An NSPrintInfo object stores information that’s used to generate printed output. A shared NSPrintInfo
object is automatically created for an application and is used by default for all printing jobs for that application.

The printing information in an NSPrintInfo object is stored in a dictionary. To access the standard attributes
in the dictionary directly, this class defines a set of keys and provides the dictionary (page 2049) method.
You can also initialize an instance of this class using the initWithDictionary: (page 2050) method.

You can use this dictionary to store custom information associated with a print job. Any non-object values
should be stored as NSNumber or NSValue objects in the dictionary. See NSNumber Class Reference for a list
of types which should be stored as numbers. For other non-object values, use the NSValue class.

Beginning with Mac OS X v10.5, to store custom information that belongs in printing presets you should use
the dictionary returned by the printSettings (page 2056) method.

Overview 2043
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

Tasks

Initializing an NSPrintInfo

– initWithDictionary: (page 2050)
Returns an NSPrintInfo object initialized with the parameters in the specified dictionary.

Managing the Shared NSPrintInfo

+ setSharedPrintInfo: (page 2047)
Sets the shared NSPrintInfo object to the specified object.

+ sharedPrintInfo (page 2048)
Returns the shared NSPrintInfo object.

Managing the Printing Rectangle

– bottomMargin (page 2049)
Returns the height of the bottom margin.

– imageablePageBounds (page 2050)
Returns the imageable area of a sheet of paper specified by the receiver.

– leftMargin (page 2052)
Returns the width of the left margin.

– orientation (page 2053)
Returns the orientation attribute.

– paperName (page 2054)
Returns the name of the currently selected paper size.

– localizedPaperName (page 2053)
Returns the human-readable name of the currently selected paper size, suitable for presentation in
user interfaces.

– paperSize (page 2054)
Returns the size of the paper.

– rightMargin (page 2057)
Returns the width of the right margin.

– setBottomMargin: (page 2058)
Sets the bottom margin to the specified size.

– setLeftMargin: (page 2060)
Sets the left margin to the specified size.

– setOrientation: (page 2060)
Sets the page orientation to the specified value.

– setPaperName: (page 2061)
Sets the paper name to the specified value.

2044 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

– setPaperSize: (page 2061)
Sets the width and height of the paper to the specified size.

– setRightMargin: (page 2062)
Sets the right margin to the specified size.

– setTopMargin: (page 2064)
Sets the top margin to the specified size.

– topMargin (page 2065)
Returns the top margin.

Pagination

– horizontalPagination (page 2050)
Returns the horizontal pagination mode.

– setHorizontalPagination: (page 2059)
Sets the horizontal pagination to the specified mode.

– setVerticalPagination: (page 2065)
Sets the vertical pagination to the specified mode.

– verticalPagination (page 2067)
Returns the vertical pagination mode.

Positioning the Image on the Page

– isHorizontallyCentered (page 2051)
Returns a Boolean value indicating whether the image is centered horizontally.

– isVerticallyCentered (page 2052)
Returns a Boolean value indicating whether the image is centered vertically.

– setHorizontallyCentered: (page 2058)
Sets whether the image is centered horizontally.

– setVerticallyCentered: (page 2064)
Sets whether the image is centered vertically.

Specifying the Printer

– printer (page 2056)
Returns the NSPrinter object to be used for printing.

– setPrinter: (page 2062)
Sets the printer object used for subsequent printing jobs.

Controlling Printing

– jobDisposition (page 2052)
Returns the action specified for the job.

Tasks 2045
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

– setJobDisposition: (page 2059)
Sets the action specified for the job

– setUpPrintOperationDefaultValues (page 2064)
Validates the attributes encapsulated by the receiver.

Accessing the Print Info Dictionary

– dictionary (page 2049)
Returns the receiver’s dictionary that contains the printing attributes.

Print Settings Convenience Methods

– isSelectionOnly (page 2051)
Returns whether only the currently selected contents should be printed.

– scalingFactor (page 2058)
Returns the current scaling factor.

– setScalingFactor: (page 2063)
Sets the print info’s scaling factor.

– setSelectionOnly: (page 2063)
Sets whether only the current selection should be printed.

Accessing Core Printing Information

– printSettings (page 2056)
Returns a mutable dictionary containing the print settings from Core Printing.

– PMPrintSession (page 2055)
Returns a Core Printing object configured with the receiver’s session information.

– PMPageFormat (page 2055)
Returns a Core Printing object configured with the receiver’s page format information.

– PMPrintSettings (page 2056)
Returns a Core Printing object configured with the receiver’s print settings information

– updateFromPMPageFormat (page 2066)
Synchronizes the receiver’s page format information with information from its associated
PMPageFormat object.

– updateFromPMPrintSettings (page 2066)
Synchronizes the receiver’s print settings information with information from its associated
PMPrintSettings object.

Deprecated Methods

+ defaultPrinter (page 2047)
Deprecated.

2046 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

+ setDefaultPrinter: (page 2047) Deprecated in Mac OS X v10.2
Deprecated.

+ sizeForPaperName: (page 2048) Deprecated in Mac OS X v10.2
Deprecated.

Class Methods

defaultPrinter
Deprecated.

+ (NSPrinter *)defaultPrinter

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrintInfo.h

setDefaultPrinter:
Deprecated. (Deprecated in Mac OS X v10.2.)

+ (void)setDefaultPrinter:(NSPrinter *)aPrinter

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSPrintInfo.h

setSharedPrintInfo:
Sets the shared NSPrintInfo object to the specified object.

+ (void)setSharedPrintInfo:(NSPrintInfo *)printInfo

Parameters
printInfo

The new shared printer information. This value must not be nil.

Discussion
The shared NSPrintInfo object defines the settings for the NSPageLayout panel and print operations that
will be used if no NSPrintInfo object is specified for those operations.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 2047
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

See Also
+ sharedPrintInfo (page 2048)

Related Sample Code
From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite
GLUT

Declared In
NSPrintInfo.h

sharedPrintInfo
Returns the shared NSPrintInfo object.

+ (NSPrintInfo *)sharedPrintInfo

Return Value
The shared printer information.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setSharedPrintInfo: (page 2047)

Related Sample Code
From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite
GLUT
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPrintInfo.h

sizeForPaperName:
Deprecated. (Deprecated in Mac OS X v10.2.)

+ (NSSize)sizeForPaperName:(NSString *)name

Discussion
Use the pageSizeForPaper: (page 2038) method of NSPrinter instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
NSPrintInfo.h

2048 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

Instance Methods

bottomMargin
Returns the height of the bottom margin.

- (CGFloat)bottomMargin

Return Value
The bottom margin, measured in points in the user coordinate space.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBottomMargin: (page 2058)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSPrintInfo.h

dictionary
Returns the receiver’s dictionary that contains the printing attributes.

- (NSMutableDictionary *)dictionary

Discussion
The key-value pairs contained in the dictionary are described in “Constants” (page 2067). Modifying the returned
dictionary changes the receiver’s attributes.

This dictionary is key-value observing compliant.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSPrintInfo.h

Instance Methods 2049
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

horizontalPagination
Returns the horizontal pagination mode.

- (NSPrintingPaginationMode)horizontalPagination

Return Value
One of the pagination modes described in “NSPrintingPaginationMode” (page 2070).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setVerticalPagination: (page 2065)
– verticalPagination (page 2067)

Declared In
NSPrintInfo.h

imageablePageBounds
Returns the imageable area of a sheet of paper specified by the receiver.

- (NSRect)imageablePageBounds

Return Value
The imageable area, measured in points in the user coordinate space.

Discussion
This method takes into account the current printer, paper size, and orientation settings, but not scaling
factors. “Imageable area” is the maximum area that can possibly be marked on by the printer hardware, not
the area defined by the current margin settings.

The origin (0, 0) of the returned rectangle is in the lower-left corner of the oriented sheet. The imageable
bounds may extend past the edges of the sheet when, for example, a printer driver specifies it so that
borderless printing can be done reliably.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
ImageApp

Declared In
NSPrintInfo.h

initWithDictionary:
Returns an NSPrintInfo object initialized with the parameters in the specified dictionary.

- (id)initWithDictionary:(NSDictionary *)aDictionary

2050 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

Parameters
aDictionary

The possible key-value pairs contained in aDictionary are described in “Constants” (page 2067).

Return Value
An initialized NSPrintInfo object, or nil if the object could not be created.

Discussion
This method is the designated initializer for this class. Non-object values should be stored in NSValue objects
(or an appropriate subclass like NSNumber) in the dictionary. See NSNumber for a list of types which should
be stored using the NSNumber class; otherwise use NSValue.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dictionary (page 2049)

Declared In
NSPrintInfo.h

isHorizontallyCentered
Returns a Boolean value indicating whether the image is centered horizontally.

- (BOOL)isHorizontallyCentered

Return Value
YES if the image is centered horizontally; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isVerticallyCentered (page 2052)
– setHorizontallyCentered: (page 2058)

Declared In
NSPrintInfo.h

isSelectionOnly
Returns whether only the currently selected contents should be printed.

- (BOOL)isSelectionOnly

Return Value
YES if only the currently selected contents should be printed, otherwise NO.

Discussion
This method is key-value observing compliant.

Availability
Available in Mac OS X v10.6 and later.

Instance Methods 2051
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

See Also
– setSelectionOnly: (page 2063)

Declared In
NSPrintInfo.h

isVerticallyCentered
Returns a Boolean value indicating whether the image is centered vertically.

- (BOOL)isVerticallyCentered

Return Value
YES if the image is centered vertically; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isHorizontallyCentered (page 2051)
– setVerticallyCentered: (page 2064)

Declared In
NSPrintInfo.h

jobDisposition
Returns the action specified for the job.

- (NSString *)jobDisposition

Return Value
One of the following value:

 ■ NSPrintSpoolJob is a normal print job.

 ■ NSPrintPreviewJob sends the print job to the Preview application.

 ■ NSPrintSaveJob saves the print job to a file.

 ■ NSPrintCancelJob aborts the print job.

 ■ NSPrintFaxJob is deprecated.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrintInfo.h

leftMargin
Returns the width of the left margin.

2052 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

- (CGFloat)leftMargin

Return Value
The left margin, measured in points in the user coordinate space.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLeftMargin: (page 2060)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSPrintInfo.h

localizedPaperName
Returns the human-readable name of the currently selected paper size, suitable for presentation in user
interfaces.

- (NSString *)localizedPaperName

Return Value
The name of the paper size.

Discussion
This is typically different from the name returned by paperName (page 2054), which is almost never suitable
for presentation to the user.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSPrintInfo.h

orientation
Returns the orientation attribute.

- (NSPrintingOrientation)orientation

Return Value
One of the following values: NSPortraitOrientation or NSLandscapeOrientation.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2053
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

See Also
– setOrientation: (page 2060)

Declared In
NSPrintInfo.h

paperName
Returns the name of the currently selected paper size.

- (NSString *)paperName

Return Value
The string contains a value such as Letter or Legal. Paper names are implementation specific.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPaperName: (page 2061)
– localizedPaperName (page 2053)

Declared In
NSPrintInfo.h

paperSize
Returns the size of the paper.

- (NSSize)paperSize

Return Value
The size of the paper, measured in points in the user coordinate space.

Discussion
This method is key-value observing compliant.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPaperSize: (page 2061)

Related Sample Code
ImageApp
Quartz Composer WWDC 2005 TextEdit
Quartz2DBasics
Sketch+Accessibility
Sketch-112

Declared In
NSPrintInfo.h

2054 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

PMPageFormat
Returns a Core Printing object configured with the receiver’s page format information.

- (void *)PMPageFormat

Return Value
A pointer to a PMPageFormat object, an opaque data type that stores information such as the paper size,
orientation, and scale of pages in a printing session. You should not call PMRelease to release the returned
object, except to balance calls to PMRetain that your code also issued.

Discussion
The information in the returned PMPageFormat object is consistent with the receiver’s page format information
at the time this method is called. Subsequent changes to the receiving NSPrintInfo object do not result
in changes to the information in the PMPageFormat object.

If you make changes to the data in the PMPageFormat object, you should invoke the
updateFromPMPageFormat method to synchronize those changes with the NSPrintInfo object that
created the object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– updateFromPMPageFormat (page 2066)

Declared In
NSPrintInfo.h

PMPrintSession
Returns a Core Printing object configured with the receiver’s session information.

- (void *)PMPrintSession

Return Value
A pointer to a PMPrintSession object, an opaque type that stores information about a print job. You should
not call PMRelease to release the returned object, except to balance calls to PMRetain that your code also
issued.

Discussion
The information in the returned PMPrintSession object is consistent with the receiver’s session information
at the time this method is called. Subsequent changes to the receiving NSPrintInfo object do not result
in changes to the information in the PMPrintSession object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPrintInfo.h

Instance Methods 2055
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

PMPrintSettings
Returns a Core Printing object configured with the receiver’s print settings information

- (void *)PMPrintSettings

Return Value
A pointer to a PMPrintSettings object, an opaque data type used to store information such as the number
of copies and the range of pages in a printing session. You should not call PMRelease to release the returned
object, except to balance calls to PMRetain that your code also issued.

Discussion
The information in the returned PMPrintSettings object is consistent with the receiver’s print settings at
the time this method is called. Subsequent changes to the receiving NSPrintInfo object do not result in
changes to the information in the PMPrintSettings data type.

If you make changes to the data in the PMPrintSettings object, you should invoke the
updateFromPMPrintSettings method to synchronize those changes with the NSPrintInfo object that
created the object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– updateFromPMPrintSettings (page 2066)

Declared In
NSPrintInfo.h

printer
Returns the NSPrinter object to be used for printing.

- (NSPrinter *)printer

Return Value
The printer object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPrinter: (page 2062)

Declared In
NSPrintInfo.h

printSettings
Returns a mutable dictionary containing the print settings from Core Printing.

- (NSMutableDictionary *)printSettings

2056 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

Return Value
A mutable dictionary containing the printing system’s current settings.

Discussion
You can use this method to get and set values from the system print settings. The keys in the returned
dictionary represent the values returned by the Core Printing function PMPrintSettingsGetValue. They
correspond to the settings currently in the print panel and include everything from custom values set by
your accessory panels to values provided by the printer driver’s print dialog extension.

Adding keys to the dictionary is equivalent to calling the Core Printing function PMPrintSettingsSetValue.
Your new keys are added to the current print settings and are saved with any user preset files generated by
the Mac OS X printing system. Because the print settings are stored in a property list, any values you add to
the dictionary must correspond to scalar types such as strings, numbers, dates, booleans, and data objects
or collection types such as dictionaries and arrays.

Other parts of the printing system use key strings like
com.apple.print.PrintSettings.PMColorSyncProfileID to identify print settings. Cocoa replaces
the periods in such strings with underscores. Thus, the preceding key string would be
com_apple_print_PrintSettings_PMColorSyncProfileID instead. If you use reverse-DNS style key
strings for your custom attributes, you should follow the same convention of using underscore characters
instead of periods.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPrintInfo.h

rightMargin
Returns the width of the right margin.

- (CGFloat)rightMargin

Return Value
The right margin, measured in points in the user coordinate space.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRightMargin: (page 2062)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSPrintInfo.h

Instance Methods 2057
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

scalingFactor
Returns the current scaling factor.

- (CGFloat)scalingFactor

Return Value
The current scaling factor.

Discussion
This method is key-value observing compliant.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setScalingFactor: (page 2063)

Declared In
NSPrintInfo.h

setBottomMargin:
Sets the bottom margin to the specified size.

- (void)setBottomMargin:(CGFloat)margin

Parameters
margin

The new size for the right margin, measured in points in the user coordinate space.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bottomMargin (page 2049)

Related Sample Code
From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite
ImageApp
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPrintInfo.h

setHorizontallyCentered:
Sets whether the image is centered horizontally.

- (void)setHorizontallyCentered:(BOOL)flag

2058 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

Parameters
flag

YES if you want the image to be centered horizontally; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isHorizontallyCentered (page 2051)
– isVerticallyCentered (page 2052)
– setVerticallyCentered: (page 2064)

Declared In
NSPrintInfo.h

setHorizontalPagination:
Sets the horizontal pagination to the specified mode.

- (void)setHorizontalPagination:(NSPrintingPaginationMode)mode

Parameters
mode

One of the pagination modes described in “NSPrintingPaginationMode” (page 2070).

Availability
Available in Mac OS X v10.0 and later.

See Also
– horizontalPagination (page 2050)
– setVerticalPagination: (page 2065)
– verticalPagination (page 2067)

Related Sample Code
From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite
GLUT

Declared In
NSPrintInfo.h

setJobDisposition:
Sets the action specified for the job

- (void)setJobDisposition:(NSString *)disposition

Instance Methods 2059
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

Parameters
disposition

One of the following value:

 ■ NSPrintSpoolJob is a normal print job.

 ■ NSPrintPreviewJob sends the print job to the Preview application.

 ■ NSPrintSaveJob saves the print job to a file.

 ■ NSPrintCancelJob aborts the print job.

 ■ NSPrintFaxJob is deprecated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– jobDisposition (page 2052)

Declared In
NSPrintInfo.h

setLeftMargin:
Sets the left margin to the specified size.

- (void)setLeftMargin:(CGFloat)margin

Parameters
margin

The new size for the left margin, measured in points in the user coordinate space.

Availability
Available in Mac OS X v10.0 and later.

See Also
– leftMargin (page 2052)

Related Sample Code
From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite
ImageApp
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPrintInfo.h

setOrientation:
Sets the page orientation to the specified value.

- (void)setOrientation:(NSPrintingOrientation)orientation

2060 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

Parameters
orientation

This printing orientation. See “NSPrintingOrientation” (page 2071) for possible values..

Discussion
For consistency, this method may change either the paper name or the paper size.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dictionary (page 2049)
– initWithDictionary: (page 2050)
– orientation (page 2053)

Related Sample Code
From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite

Declared In
NSPrintInfo.h

setPaperName:
Sets the paper name to the specified value.

- (void)setPaperName:(NSString *)name

Parameters
name

The name for the paper size. The string contains a value such as Letter or Legal. Paper names are
implementation specific.

Discussion
For consistency, this method may change either the paper size or the page orientation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dictionary (page 2049)
– initWithDictionary: (page 2050)
– paperName (page 2054)

Declared In
NSPrintInfo.h

setPaperSize:
Sets the width and height of the paper to the specified size.

Instance Methods 2061
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

- (void)setPaperSize:(NSSize)aSize

Parameters
aSize

The new size of the paper, measured in points in the user coordinate space.

Discussion
For consistency, this method may change either the paper name or the page orientation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dictionary (page 2049)
– initWithDictionary: (page 2050)
– paperSize (page 2054)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPrintInfo.h

setPrinter:
Sets the printer object used for subsequent printing jobs.

- (void)setPrinter:(NSPrinter *)printer

Parameters
printer

The printer object.

Discussion
This method iterates through the receiver's dictionary. If a feature in the dictionary is not supported by the
new printer (as determined by a query to the PPD file), that feature is removed from the dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– printer (page 2056)

Declared In
NSPrintInfo.h

setRightMargin:
Sets the right margin to the specified size.

- (void)setRightMargin:(CGFloat)margin

2062 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

Parameters
margin

The new size for the right margin, measured in points in the user coordinate space.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rightMargin (page 2057)

Related Sample Code
From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite
ImageApp
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPrintInfo.h

setScalingFactor:
Sets the print info’s scaling factor.

- (void)setScalingFactor:(CGFloat)scalingFactor

Parameters
scalingFactor

The new scaling factor.

Availability
Available in Mac OS X v10.6 and later.

See Also
– scalingFactor (page 2058)

Declared In
NSPrintInfo.h

setSelectionOnly:
Sets whether only the current selection should be printed.

- (void)setSelectionOnly:(BOOL)selectionOnly

Parameters
selectionOnly

YES if only the current selection should be printed, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

Instance Methods 2063
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

See Also
– isSelectionOnly (page 2051)

Declared In
NSPrintInfo.h

setTopMargin:
Sets the top margin to the specified size.

- (void)setTopMargin:(CGFloat)margin

Parameters
margin

The new size for the top margin, measured in points in the user coordinate space.

Availability
Available in Mac OS X v10.0 and later.

See Also
– topMargin (page 2065)

Related Sample Code
From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite
ImageApp
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPrintInfo.h

setUpPrintOperationDefaultValues
Validates the attributes encapsulated by the receiver.

- (void)setUpPrintOperationDefaultValues

Discussion
Invoked when the print operation is about to start. Subclasses may override this method to set default values
for any attributes that are not set.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrintInfo.h

setVerticallyCentered:
Sets whether the image is centered vertically.

2064 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

- (void)setVerticallyCentered:(BOOL)flag

Parameters
flag

YES if you want the image to be centered vertically; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isHorizontallyCentered (page 2051)
– isVerticallyCentered (page 2052)
– setHorizontallyCentered: (page 2058)

Declared In
NSPrintInfo.h

setVerticalPagination:
Sets the vertical pagination to the specified mode.

- (void)setVerticalPagination:(NSPrintingPaginationMode)mode

Parameters
mode

One of the pagination modes described in “NSPrintingPaginationMode” (page 2070).

Availability
Available in Mac OS X v10.0 and later.

See Also
– horizontalPagination (page 2050)
– setHorizontalPagination: (page 2059)
– verticalPagination (page 2067)

Related Sample Code
From A View to A Movie
From A View to A Picture
GLSL Showpiece Lite
GLUT

Declared In
NSPrintInfo.h

topMargin
Returns the top margin.

- (CGFloat)topMargin

Return Value
The top margin, measured in points in the user coordinate space.

Instance Methods 2065
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTopMargin: (page 2064)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSPrintInfo.h

updateFromPMPageFormat
Synchronizes the receiver’s page format information with information from its associated PMPageFormat
object.

- (void)updateFromPMPageFormat

Discussion
You should use this method after making changes to the PMPageFormat object obtained from the receiver.
Each NSPrintInfo object keeps track of the object returned from its PMPageFormat method and obtains
any updated information from the object directly. You only need to synchronize the objects once when you
have made all of the desired changes.

Availability
Available in Mac OS X v10.5 and later.

See Also
– PMPageFormat (page 2055)

Declared In
NSPrintInfo.h

updateFromPMPrintSettings
Synchronizes the receiver’s print settings information with information from its associated PMPrintSettings
object.

- (void)updateFromPMPrintSettings

Discussion
You should use this method after making changes to the PMPrintSettings object obtained from the
receiver. Each NSPrintInfo object keeps track of the object returned from its PMPrintSettings method
and obtains any updated information from the object directly. You only need to synchronize the objects
once when you have made all of the desired changes.

Availability
Available in Mac OS X v10.5 and later.

2066 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

See Also
– PMPrintSettings (page 2056)

Declared In
NSPrintInfo.h

verticalPagination
Returns the vertical pagination mode.

- (NSPrintingPaginationMode)verticalPagination

Return Value
One of the pagination modes described in “Constants” (page 2067).

Availability
Available in Mac OS X v10.0 and later.

See Also
– horizontalPagination (page 2050)
– setHorizontalPagination: (page 2059)

Declared In
NSPrintInfo.h

Constants

Print job attributes
These constants specify dictionary keys to access print job attributes.

Constants 2067
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

NSString *const NSPrintPrinter;
NSString *const NSPrintCopies;
NSString *const NSPrintAllPages;
NSString *const NSPrintFirstPage;
NSString *const NSPrintLastPage;
NSString *const NSPrintMustCollate;
NSString *const NSPrintReversePageOrder;
NSString *const NSPrintJobDisposition;
NSString *const NSPrintSavePath;
NSString *const NSPrintPagesAcross;
NSString *const NSPrintPagesDown;
NSString *const NSPrintTime;
NSString *const NSPrintDetailedErrorReporting;
NSString *const NSPrintFaxNumber;
NSString *const NSPrintPrinterName;
NSString *const NSPrintHeaderAndFooter;
NSString *const NSPrintSelectionOnly;
NSString *const NSPrintJobSavingURL;
NSString *const NSPrintJobSavingFileNameExtensionHidden'

Constants
NSPrintPrinter

An NSPrinter object—the printer to use.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintCopies
An NSNumber object containing an integer—the number of copies to spool.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintAllPages
An NSNumber object containing a Boolean value—if YES, includes all pages in output.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintFirstPage
An NSNumber object containing an integer value that specifies the first page in the print job.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintLastPage
An NSNumber object containing an integer value that specifies the last page in the print job.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintMustCollate
An NSNumber object containing a Boolean value—if YES, collates output.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

2068 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

NSPrintReversePageOrder
An NSNumber object containing a Boolean value—if YES, prints first page last.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintJobDisposition
An NSString object that specifies the job disposition.

NSPrintSpoolJob, NSPrintPreviewJob, NSPrintSaveJob, or NSPrintCancelJob. See
setJobDisposition: (page 2059) for details.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintSavePath
An NSString object that specifies the pathname to which the job file will be saved when the
jobDisposition (page 2052) is NSPrintSaveJob (page 2071)..

Use NSPrintJobSavingURL (page 2070) instead.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintPagesAcross
An NSNumber object that specifies the number of logical pages to be tiled horizontally on a physical
sheet of paper.

Available in Mac OS X v10.4 and later.

Declared in NSPrintInfo.h.

NSPrintPagesDown
An NSNumber object that specifies the number of logical pages to be tiled vertically on a physical
sheet of paper.

Available in Mac OS X v10.4 and later.

Declared in NSPrintInfo.h.

NSPrintTime
An NSDate object that specifies the time at which printing should begin.

Available in Mac OS X v10.4 and later.

Declared in NSPrintInfo.h.

NSPrintDetailedErrorReporting
An NSNumber object containing a Boolean value—if YES, produce detailed reports when an error
occurs.

Available in Mac OS X v10.4 and later.

Declared in NSPrintInfo.h.

NSPrintFaxNumber
An NSString object that specifies a fax number.

Available in Mac OS X v10.4 and later.

Declared in NSPrintInfo.h.

NSPrintPrinterName
An NSString object that specifies the name of a printer.

Available in Mac OS X v10.4 and later.

Declared in NSPrintInfo.h.

Constants 2069
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

NSPrintHeaderAndFooter
An NSNumber object containing a Boolean value—if YES, a standard header and footer are added
outside the margins of each page.

Available in Mac OS X v10.4 and later.

Declared in NSPrintInfo.h.

NSPrintSelectionOnly
An NSNumber object containing a Boolean value—if YES only the current selection is printed.

Available in Mac OS X v10.6 and later.

Declared in NSPrintInfo.h.

NSPrintJobSavingURL
An NSURL containing the location to which the job file will be saved when the jobDisposition (page
2052) is NSPrintSaveJob (page 2071).

Available in Mac OS X v10.6 and later.

Declared in NSPrintInfo.h.

NSPrintJobSavingFileNameExtensionHidden
A boolean NSNumber indicating whether the job’s file name extension should be hidden when the
jobDisposition (page 2052) is NSPrintSaveJob (page 2071). The default is NO.

Available in Mac OS X v10.6 and later.

Declared in NSPrintInfo.h.

NSPrintingPaginationMode
These constants specify the different ways in which an image is divided into pages. They’re used by
horizontalPagination (page 2050),setHorizontalPagination: (page 2059),verticalPagination (page
2067), and setVerticalPagination: (page 2065).

enum {
 NSAutoPagination = 0,
 NSFitPagination = 1,
 NSClipPagination = 2
};
typedef NSUInteger NSPrintingPaginationMode;

Constants
NSAutoPagination

The image is divided into equal-sized rectangles and placed in one column of pages.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSFitPagination
The image is scaled to produce one column or one row of pages.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSClipPagination
The image is clipped to produce one column or row of pages.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

2070 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

NSPrintingOrientation
These constants specify page orientations used by the methods orientation (page 2053) and
setOrientation: (page 2060).

enum {
 NSPortraitOrientation = 0,
 NSLandscapeOrientation = 1
};
typedef NSUInteger NSPrintingOrientation;

Constants
NSPortraitOrientation

Orientation is portrait (page is taller than it is wide).

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSLandscapeOrientation
Orientation is landscape (page is wider than it is tall).

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

Print job dispositions
These constants specify valid values for the print job attribute NSPrintJobDisposition (page 2069). These
constants are used by the jobDisposition (page 2052) and setJobDisposition: (page 2059) methods.

NSString *const NSPrintSpoolJob;
NSString *const NSPrintPreviewJob;
NSString *const NSPrintSaveJob;
NSString *const NSPrintCancelJob;

Constants
NSPrintSpoolJob

Normal print job.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintPreviewJob
Send to Preview application.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintSaveJob
Save to a file.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintCancelJob
Cancel print job.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

Constants 2071
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

Page setup attributes
These constants specify dictionary keys to access page format attributes.

NSString *NSPrintPaperName;
NSString *NSPrintPaperSize;
NSString *NSPrintOrientation;
NSString *NSPrintScalingFactor;

Constants
NSPrintPaperName

An NSString object containing the paper name.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintPaperSize
An NSSize value specifying the height and width of paper in points.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintOrientation
An NSNumber object containing an NSPrintingOrientation.

NSPortraitOrientation or NSLandscapeOrientation

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintScalingFactor
Scale factor percentage before pagination.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

Declared In
NSPrintInfo.h

Pagination attributes
These constants specify dictionary keys to access pagination attributes.

NSString *NSPrintBottomMargin;
NSString *NSPrintHorizontalPagination;
NSString *NSPrintHorizontallyCentered;
NSString *NSPrintLeftMargin;
NSString *NSPrintRightMargin;
NSString *NSPrintTopMargin;
NSString *NSPrintVerticalPagination;
NSString *NSPrintVerticallyCentered;

Constants
NSPrintLeftMargin

NSNumber, containing a floating-point value that specifies the left margin, in points.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

2072 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

NSPrintRightMargin
NSNumber, containing a floating-point value that specifies the right margin, in points.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintTopMargin
NSNumber, containing a floating-point value that specifies the top margin, in points.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintBottomMargin
NSNumber, containing a floating-point value that specifies the bottom margin, in points.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintHorizontallyCentered
NSNumber, containing a Boolean value that is YES if pages are centered horizontally.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintVerticallyCentered
NSNumber, containing a Boolean value that is YES if pages are centered vertically.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintHorizontalPagination
NSNumber, containing a NSPrintingPaginationMode value.

NSAutoPagination, NSFitPagination, or NSClipPagination. See
setHorizontalPagination: (page 2059) for details.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

NSPrintVerticalPagination
NSNumber, containing a NSPrintingPaginationMode value.

NSAutoPagination, NSFitPagination, or NSClipPagination. See
setVerticalPagination: (page 2065) for details.

Available in Mac OS X v10.0 and later.

Declared in NSPrintInfo.h.

Declared In
NSPrintInfo.h

Deprecated Printing Keys
These keys refer to older printing properties that are no longer used. (Deprecated. Use the keys described
in “Print job attributes” (page 2067) instead.)

Constants 2073
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

NSString *NSPrintFormName;
NSString *NSPrintJobFeatures;
NSString *NSPrintManualFeed;
NSString *NSPrintPagesPerSheet;
NSString *NSPrintPaperFeed;
NSString *NSPrintFaxReceiverNames;
NSString *NSPrintFaxReceiverNumbers;
NSString *NSPrintFaxSendTime;
NSString *NSPrintFaxUseCoverSheet;
NSString *NSPrintFaxCoverSheetName;
NSString *NSPrintFaxReturnReceipt;
NSString *NSPrintFaxHighResolution;
NSString *NSPrintFaxTrimPageEnds;
NSString *NSPrintFaxModem;
NSString *NSPrintFaxJob;

Constants
NSPrintFormName

Deprecated. Do not use.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.2.

Declared in NSPrintInfo.h.

NSPrintJobFeatures
Deprecated. Do not use.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.2.

Declared in NSPrintInfo.h.

NSPrintManualFeed
Deprecated. Do not use.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.2.

Declared in NSPrintInfo.h.

NSPrintPagesPerSheet
Deprecated. Do not use.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.2.

Declared in NSPrintInfo.h.

NSPrintPaperFeed
Deprecated. Do not use.

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.2.

Declared in NSPrintInfo.h.

NSPrintFaxReceiverNames
Deprecated. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared in NSPrintInfo.h.

2074 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

NSPrintFaxReceiverNumbers
Deprecated. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared in NSPrintInfo.h.

NSPrintFaxSendTime
Deprecated. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared in NSPrintInfo.h.

NSPrintFaxUseCoverSheet
Deprecated. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared in NSPrintInfo.h.

NSPrintFaxCoverSheetName
Deprecated. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared in NSPrintInfo.h.

NSPrintFaxReturnReceipt
Deprecated. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared in NSPrintInfo.h.

NSPrintFaxHighResolution
Deprecated. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared in NSPrintInfo.h.

NSPrintFaxTrimPageEnds
Deprecated. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared in NSPrintInfo.h.

NSPrintFaxModem
Deprecated. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared in NSPrintInfo.h.

NSPrintFaxJob
Deprecated. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared in NSPrintInfo.h.

Constants 2075
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

2076 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 103

NSPrintInfo Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSPrintOperation.h

Companion guide Printing Programming Topics for Cocoa

Related sample code GLUT
ImageApp
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility
Sketch-112

Overview

An NSPrintOperation object controls operations that generate Encapsulated PostScript (EPS) code, Portable
Document Format (PDF) code, or print jobs. An NSPrintOperation object works in conjunction with two
other objects: an NSPrintInfo object, which specifies how the code should be generated, and an NSView
object, which generates the actual code.

It is important to note that the majority of methods in NSPrintOperation copy the instance of NSPrintInfo
passed into them. Future changes to that print info are not reflected in the print info retained by the current
NSPrintOperation object. All changes should be made to the print info before passing to the methods of
this class. The only method in NSPrintOperation which does not copy the NSPrintInfo instance is
setPrintInfo: (page 2097).

Overview 2077
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Note: You should not subclass NSPrintOperation. Methods that return an NSPrintOperation object
return an instance of a concrete subclass whose implementation is private.

Tasks

Creating an NSPrintOperation

+ EPSOperationWithView:insideRect:toData: (page 2081)
Creates and returns a new NSPrintOperation object ready to control the copying of EPS graphics
from the specified view.

+ EPSOperationWithView:insideRect:toData:printInfo: (page 2082)
Creates and returns a new NSPrintOperation object ready to control the copying of EPS graphics
from the specified view using the specified print settings.

+ EPSOperationWithView:insideRect:toPath:printInfo: (page 2083)
Creates and returns a new NSPrintOperation object ready to control the copying of EPS graphics
from the specified view and write the resulting data to the specified file.

+ PDFOperationWithView:insideRect:toData: (page 2083)
Creates and returns a new NSPrintOperation object ready to control the copying of PDF graphics
from the specified view.

+ PDFOperationWithView:insideRect:toData:printInfo: (page 2084)
Creates and returns a new NSPrintOperation object ready to control the copying of PDF graphics
from the specified view using the specified print settings.

+ PDFOperationWithView:insideRect:toPath:printInfo: (page 2085)
Creates and returns a new NSPrintOperation object ready to control the copying of PDF graphics
from the specified view and write the resulting data to the specified file.

+ printOperationWithView: (page 2085)
Creates and returns an NSPrintOperation object ready to control the printing of the specified view.

+ printOperationWithView:printInfo: (page 2086)
Creates and returns an NSPrintOperation object ready to control the printing of the specified view
using custom print settings.

Setting the Current NSPrintOperation for This Thread

+ currentOperation (page 2081)
Returns the current print operation for this thread.

+ setCurrentOperation: (page 2087)
Sets the current print operation for this thread.

Determining the Type of Operation

– isCopyingOperation (page 2090)
Returns a Boolean value indicating whether the receiver is an EPS or PDF copy operation.

2078 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Modifying the NSPrintInfo Object

– printInfo (page 2092)
Returns the receiver’s NSPrintInfo object.

– setPrintInfo: (page 2097)
Sets the receiver’s NSPrintInfo object.

Getting the NSView Object

– view (page 2101)
Returns the view object that generates the actual data for the print operation.

Running a Print Operation

– runOperation (page 2093)
Runs the print operation on the current thread.

– runOperationModalForWindow:delegate:didRunSelector:contextInfo: (page 2094)
Runs the print operation, calling your custom delegate method upon completion.

– cleanUpOperation (page 2088)
Called at the end of a print operation to remove the receiver as the current operation.

– deliverResult (page 2090)
Delivers the results of the print operation to the intended destination.

Modifying the User Interface

– showsPrintPanel (page 2100)
Returns a Boolean value indicating whether a print panel is displayed during the operation,

– setShowsPrintPanel: (page 2099)
Sets whether the receiver displays a print panel for this operation.

– showsProgressPanel (page 2100)
Returns a Boolean value indicating whether a progress panel is displayed during the operation.

– setShowsProgressPanel: (page 2099)
Sets whether the receiver displays a progress panel for this operation.

– jobTitle (page 2091)
Returns the title of the print job.

– setJobTitle: (page 2096)
Assigns a custom title to the print job.

– printPanel (page 2093)
Returns the NSPrintPanel object used when running the operation.

– setPrintPanel: (page 2097)
Sets the NSPrintPanel object to be used during the operation.

Tasks 2079
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Managing the Drawing Context

– context (page 2089)
Returns the graphics context object used for generating output.

– createContext (page 2089)
Creates the graphics context object used for drawing during the operation.

– destroyContext (page 2090)
Destroys the receiver’s graphics context.

Managing Page Information

– currentPage (page 2089)
Returns the current page number being printed.

– pageRange (page 2092)
Returns the range of pages associated with the print operation.

– pageOrder (page 2092)
Returns the print order for the pages.

– setPageOrder: (page 2097)
Sets the print order for the pages of the operation.

Managing Printing-Related Threads

– canSpawnSeparateThread (page 2088)
Returns a Boolean value indicating whether the receiver is allowed to spawn a separate printing
thread.

– setCanSpawnSeparateThread: (page 2095)
Sets whether the receiver is allowed to spawn a separate printing thread.

Deprecated Methods

– jobStyleHint (page 2091)
Returns the type of content that the print job is printing. (Deprecated. Use the jobStyleHintmethod
of NSPrintPanel instead.)

– setJobStyleHint: (page 2096)
Sets the type of content that the print job is printing. (Deprecated. Use the setJobStyleHint:
method of NSPrintPanel instead.)

– accessoryView (page 2087)
Returns the accessory view used by the receiver’s print panel. (Deprecated. Use the
accessoryControllers method of NSPrintPanel instead.)

– setShowPanels: (page 2098) Deprecated in Mac OS X v10.4 and later
Sets whether the print operation should display a print panel. (Deprecated. Use
setShowsPrintPanel: (page 2099) and setShowsProgressPanel: (page 2099) instead.)

2080 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

– showPanels (page 2100) Deprecated in Mac OS X v10.4 and later
Returns a Boolean value that indicates whether the print panel is to be displayed. (Deprecated. Use
showsPrintPanel (page 2100) and showsProgressPanel (page 2100) instead.)

– setAccessoryView: (page 2095) Deprecated in Mac OS X v10.5
Sets the custom accessory view to be displayed by the receiver's print panel. (Deprecated. Use the
addAccessoryController: method of NSPrintPanel instead.)

Class Methods

currentOperation
Returns the current print operation for this thread.

+ (NSPrintOperation *)currentOperation

Return Value
The print operation object, or nil if there is no current operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setCurrentOperation: (page 2087)

Related Sample Code
Quartz2DBasics

Declared In
NSPrintOperation.h

EPSOperationWithView:insideRect:toData:
Creates and returns a new NSPrintOperation object ready to control the copying of EPS graphics from
the specified view.

+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView insideRect:(NSRect)rect
toData:(NSMutableData *)data

Parameters
aView

The view containing the data to be turned into EPS data.

rect
The portion of the view (specified in points in the view's coordinate space) to be rendered as EPS
data.

data
An empty NSMutableData object. After the job is run, this object contains the EPS data.

Return Value
The new NSPrintOperation object. You must run the operation to generate the EPS data.

Class Methods 2081
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Discussion
The new NSPrintOperation object uses the default NSPrintInfo object. This method raises an
NSPrintOperationExistsException if there is already a print operation in progress; otherwise the
returned object is made the current print operation for this thread.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ EPSOperationWithView:insideRect:toData:printInfo: (page 2082)
+ EPSOperationWithView:insideRect:toPath:printInfo: (page 2083)
– runOperation (page 2093)

Declared In
NSPrintOperation.h

EPSOperationWithView:insideRect:toData:printInfo:
Creates and returns a new NSPrintOperation object ready to control the copying of EPS graphics from
the specified view using the specified print settings.

+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView insideRect:(NSRect)rect
toData:(NSMutableData *)data printInfo:(NSPrintInfo *)aPrintInfo

Parameters
aView

The view containing the data to be turned into EPS data.

rect
The portion of the view (specified in points in the view's coordinate space) to be rendered as EPS
data.

data
An empty NSMutableData object. After the job is run, this object contains the EPS data.

aPrintInfo
The print settings to use when generating the EPS data.

Return Value
The new NSPrintOperation object. You must run the operation to generate the EPS data.

Discussion
This method raises an NSPrintOperationExistsException if there is already a print operation in progress;
otherwise the returned object is made the current print operation for this thread.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ EPSOperationWithView:insideRect:toData: (page 2081)
+ EPSOperationWithView:insideRect:toPath:printInfo: (page 2083)
– runOperation (page 2093)

Declared In
NSPrintOperation.h

2082 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

EPSOperationWithView:insideRect:toPath:printInfo:
Creates and returns a new NSPrintOperation object ready to control the copying of EPS graphics from
the specified view and write the resulting data to the specified file.

+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView insideRect:(NSRect)rect
toPath:(NSString *)path printInfo:(NSPrintInfo *)aPrintInfo

Parameters
aView

The view containing the data to be turned into EPS data.

rect
The portion of the view (specified in points in the view's coordinate space) to be rendered as EPS
data.

path
The path to a file. After the job is run, this file contains the EPS data.

aPrintInfo
The print settings to use when generating the EPS data.

Return Value
The new NSPrintOperation object. You must run the operation to generate the EPS data.

Discussion
This method raises an NSPrintOperationExistsException if there is already a print operation in progress;
otherwise the returned object is made the current print operation for this thread.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ EPSOperationWithView:insideRect:toData: (page 2081)
+ EPSOperationWithView:insideRect:toData:printInfo: (page 2082)
– runOperation (page 2093)

Declared In
NSPrintOperation.h

PDFOperationWithView:insideRect:toData:
Creates and returns a new NSPrintOperation object ready to control the copying of PDF graphics from
the specified view.

+ (NSPrintOperation *)PDFOperationWithView:(NSView *)aView insideRect:(NSRect)rect
toData:(NSMutableData *)data

Parameters
aView

The view containing the data to be turned into PDF data.

rect
The portion of the view (specified in points in the view's coordinate space) to be rendered as PDF
data.

Class Methods 2083
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

data
An empty NSMutableData object. After the job is run, this object contains the PDF data.

Return Value
The new NSPrintOperation object. You must run the operation to generate the PDF data.

Discussion
The new NSPrintOperation object uses the default NSPrintInfo object. This method raises an
NSPrintOperationExistsException if there is already a print operation in progress; otherwise the
returned object is made the current print operation for this thread.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ PDFOperationWithView:insideRect:toData:printInfo: (page 2084)
+ PDFOperationWithView:insideRect:toPath:printInfo: (page 2085)
– runOperation (page 2093)

Declared In
NSPrintOperation.h

PDFOperationWithView:insideRect:toData:printInfo:
Creates and returns a new NSPrintOperation object ready to control the copying of PDF graphics from
the specified view using the specified print settings.

+ (NSPrintOperation *)PDFOperationWithView:(NSView *)aView insideRect:(NSRect)rect
toData:(NSMutableData *)data printInfo:(NSPrintInfo *)aPrintInfo

Parameters
aView

The view containing the data to be turned into PDF data.

rect
The portion of the view (specified in points in the view's coordinate space) to be rendered as PDF
data.

data
An empty NSMutableData object. After the job is run, this object contains the PDF data.

aPrintInfo
The print settings to use when generating the PDF data.

Return Value
The new NSPrintOperation object. You must run the operation to generate the PDF data.

Discussion
This method raises an NSPrintOperationExistsException if there is already a print operation in progress;
otherwise the returned object is made the current print operation for this thread.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ PDFOperationWithView:insideRect:toData: (page 2083)

2084 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

+ PDFOperationWithView:insideRect:toPath:printInfo: (page 2085)
– runOperation (page 2093)

Declared In
NSPrintOperation.h

PDFOperationWithView:insideRect:toPath:printInfo:
Creates and returns a new NSPrintOperation object ready to control the copying of PDF graphics from
the specified view and write the resulting data to the specified file.

+ (NSPrintOperation *)PDFOperationWithView:(NSView *)aView insideRect:(NSRect)rect
toPath:(NSString *)path printInfo:(NSPrintInfo *)aPrintInfo

Parameters
aView

The view containing the data to be turned into PDF data.

rect
The portion of the view (specified in points in the view's coordinate space) to be rendered as PDF
data.

path
The path to a file. After the job is run, this file contains the PDF data.

aPrintInfo
The print settings to use when generating the PDF data.

Return Value
The new NSPrintOperation object. You must run the operation to generate the PDF data.

Discussion
This method raises an NSPrintOperationExistsException if there is already a print operation in progress;
otherwise the returned object is made the current print operation for this thread.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ PDFOperationWithView:insideRect:toData: (page 2083)
+ PDFOperationWithView:insideRect:toData:printInfo: (page 2084)
– runOperation (page 2093)

Declared In
NSPrintOperation.h

printOperationWithView:
Creates and returns an NSPrintOperation object ready to control the printing of the specified view.

+ (NSPrintOperation *)printOperationWithView:(NSView *)aView

Class Methods 2085
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Parameters
aView

The view whose contents you want to print.

Return Value
The new NSPrintOperation object. You must run the operation to print the view.

Discussion
The new NSPrintOperation object uses the settings stored in the shared NSPrintInfo object. This method
raises an NSPrintOperationExistsException if there is already a print operation in progress; otherwise
the returned object is made the current print operation for this thread.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ printOperationWithView:printInfo: (page 2086)
– runOperation (page 2093)

Related Sample Code
FunHouse
GLUT
Quartz2DBasics
SimpleToolbar
ToolbarSample

Declared In
NSPrintOperation.h

printOperationWithView:printInfo:
Creates and returns an NSPrintOperation object ready to control the printing of the specified view using
custom print settings.

+ (NSPrintOperation *)printOperationWithView:(NSView *)aView printInfo:(NSPrintInfo
 *)aPrintInfo

Parameters
aView

The view whose contents you want to print.

aPrintInfo
The print settings to use when printing the view.

Return Value
The new NSPrintOperation object. You must run the operation to print the view.

Discussion
This method raises an NSPrintOperationExistsException if there is already a print operation in progress;
otherwise the returned object is made the current print operation for this thread.

Availability
Available in Mac OS X v10.0 and later.

2086 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

See Also
+ printOperationWithView: (page 2085)
– runOperation (page 2093)

Related Sample Code
From A View to A Movie
ImageApp
QTKitPlayer
Quartz Composer WWDC 2005 TextEdit
Sketch-112

Declared In
NSPrintOperation.h

setCurrentOperation:
Sets the current print operation for this thread.

+ (void)setCurrentOperation:(NSPrintOperation *)operation

Parameters
operation

The print operation to make current. You may specify nil to clear the current print operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ currentOperation (page 2081)

Declared In
NSPrintOperation.h

Instance Methods

accessoryView
Returns the accessory view used by the receiver’s print panel. (Deprecated in Mac OS X v10.5. Use the
accessoryControllers method of NSPrintPanel instead.)

- (NSView *)accessoryView

Return Value
The custom accessory view.

Discussion
You use thesetAccessoryView: (page 2095) method to customize the defaultNSPrintPanelobject without
having to subclass NSPrintPanel or specify your own print panel object.

Instance Methods 2087
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– printPanel (page 2093)
– setPrintPanel: (page 2097)
– setShowPanels: (page 2098)
– showPanels (page 2100)

Declared In
NSPrintOperation.h

canSpawnSeparateThread
Returns a Boolean value indicating whether the receiver is allowed to spawn a separate printing thread.

- (BOOL)canSpawnSeparateThread

Return Value
YES if the receiver is allowed to spawn a separate thread; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCanSpawnSeparateThread: (page 2095)

Declared In
NSPrintOperation.h

cleanUpOperation
Called at the end of a print operation to remove the receiver as the current operation.

- (void)cleanUpOperation

Discussion
You typically do not invoke this method directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runOperation (page 2093)

Declared In
NSPrintOperation.h

2088 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

context
Returns the graphics context object used for generating output.

- (NSGraphicsContext *)context

Return Value
The graphics context object used for drawing during the operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– createContext (page 2089)
– destroyContext (page 2090)

Declared In
NSPrintOperation.h

createContext
Creates the graphics context object used for drawing during the operation.

- (NSGraphicsContext *)createContext

Return Value
The graphics context object used for drawing. This object is created using the settings from the receiver's
NSPrintInfo object.

Discussion
Do not invoke this method directly—it is invoked before any output is generated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– context (page 2089)
– destroyContext (page 2090)

Declared In
NSPrintOperation.h

currentPage
Returns the current page number being printed.

- (NSInteger)currentPage

Return Value
The current page being printed.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2089
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

See Also
– pageOrder (page 2092)
– setPageOrder: (page 2097)

Declared In
NSPrintOperation.h

deliverResult
Delivers the results of the print operation to the intended destination.

- (BOOL)deliverResult

Return Value
YES if the results were successfully delivered; otherwise, NO.

Discussion
This method may be called to deliver the results to the printer spool or preview application. Do not invoke
this method directly—it is invoked automatically when the print operation is done.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runOperation (page 2093)

Declared In
NSPrintOperation.h

destroyContext
Destroys the receiver’s graphics context.

- (void)destroyContext

Discussion
Do not invoke this method directly—it is invoked at the end of a print operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– context (page 2089)
– createContext (page 2089)

Declared In
NSPrintOperation.h

isCopyingOperation
Returns a Boolean value indicating whether the receiver is an EPS or PDF copy operation.

2090 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

- (BOOL)isCopyingOperation

Return Value
YES if the receiver is an EPS or PDF copy operation; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrintOperation.h

jobStyleHint
Returns the type of content that the print job is printing. (Deprecated in Mac OS X v10.5. Use the
jobStyleHint method of NSPrintPanel instead.)

- (NSString *)jobStyleHint

Return Value
The content description, or nil if no job style hint has been set.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

See Also
– setJobStyleHint: (page 2096)

Declared In
NSPrintOperation.h

jobTitle
Returns the title of the print job.

- (NSString *)jobTitle

Return Value
A string containing the print job title. If set, this value overrides the title returned by the printing view.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setJobTitle: (page 2096)
– printJobTitle (page 3198) (NSView)

Declared In
NSPrintOperation.h

Instance Methods 2091
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

pageOrder
Returns the print order for the pages.

- (NSPrintingPageOrder)pageOrder

Return Value
The print order. For a list of possible values, see “Constants” (page 2101).

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentPage (page 2089)

Declared In
NSPrintOperation.h

pageRange
Returns the range of pages associated with the print operation.

- (NSRange)pageRange

Return Value
The range of page numbers. Page numbers are one-based values where the index of page one is 1, the index
of page two is 2, and so on. Depending on the information returned by the printing view, the starting page
number may not be 1. Also, if the number of pages being printed is not known, the page count may be set
to NSIntegerMax.

Availability
Available in Mac OS X v10.5 and later.

See Also
– knowsPageRange: (page 3185) (NSView)

Declared In
NSPrintOperation.h

printInfo
Returns the receiver’s NSPrintInfo object.

- (NSPrintInfo *)printInfo

Return Value
The print settings of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPrintInfo: (page 2097)

2092 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Related Sample Code
Quartz2DBasics
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSPrintOperation.h

printPanel
Returns the NSPrintPanel object used when running the operation.

- (NSPrintPanel *)printPanel

Return Value
The print panel object for the operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– accessoryView (page 2087)
– setAccessoryView: (page 2095)
– setPrintPanel: (page 2097)
– setShowPanels: (page 2098)
– showPanels (page 2100)

Declared In
NSPrintOperation.h

runOperation
Runs the print operation on the current thread.

- (BOOL)runOperation

Return Value
YES if the operation was successful; otherwise, NO.

Discussion
The operation runs to completion in the current thread, blocking the application. A separate thread is not
spawned, even if canSpawnSeparateThread (page 2088) is YES. Use
runOperationModalForWindow:delegate:didRunSelector:contextInfo: (page 2094) to use
document-modal sheets and to allow a separate thread to perform the operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cleanUpOperation (page 2088)
– deliverResult (page 2090)

Instance Methods 2093
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Quartz2DBasics

Declared In
NSPrintOperation.h

runOperationModalForWindow:delegate:didRunSelector:contextInfo:
Runs the print operation, calling your custom delegate method upon completion.

- (void)runOperationModalForWindow:(NSWindow *)docWindow delegate:(id)delegate
didRunSelector:(SEL)didRunSelector contextInfo:(void *)contextInfo

Parameters
docWindow

The document window to receive a print progress sheet.

delegate
The printing delegate object. Messages are sent to this object.

didRunSelector
The delegate method called after the completion of the print operation.

contextInfo
A pointer to any data you want passed to the method in the didRunSelector parameter.

Discussion
The method specified by the didRunSelector parameter must have the following signature:

- (void)printOperationDidRun:(NSPrintOperation *)printOperation
success:(BOOL)success contextInfo:(void *)contextInfo

The value of success is YES if the print operation ran to completion without cancellation or error, and NO
otherwise.

If you sendsetCanSpawnSeparateThread: (page 2095) to anNSPrintOperation object with an argument
of YES, then the delegate specified in a subsequent invocation of
runOperationModalForWindow:delegate:didRunSelector:contextInfo: (page 2094) may be messaged
in that spawned, non-main thread.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLSL Showpiece Lite
GLUT
Quartz Composer WWDC 2005 TextEdit
SimpleToolbar
ToolbarSample

Declared In
NSPrintOperation.h

2094 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

setAccessoryView:
Sets the custom accessory view to be displayed by the receiver's print panel. (Deprecated in Mac OS X v10.5.
Use the addAccessoryController: method of NSPrintPanel instead.)

- (void)setAccessoryView:(NSView *)aView

Parameters
aView

The view to display in the print panel. You can use this view to specify additional print options.

Discussion
You can use this method to avoid subclassing NSPrintPanel or specifying your own print panel object. The
print panel is automatically resized (as needed) to accommodate the accessory view when it is selected.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– accessoryView (page 2087)
– printPanel (page 2093)
– setPrintPanel: (page 2097)
– setShowPanels: (page 2098)
– showPanels (page 2100)

Declared In
NSPrintOperation.h

setCanSpawnSeparateThread:
Sets whether the receiver is allowed to spawn a separate printing thread.

- (void)setCanSpawnSeparateThread:(BOOL)canSpawnSeparateThread

Parameters
canSpawnSeparateThread

YES if the receiver is allowed to spawn a separate thread; otherwise, NO.

Discussion
If canSpawnSeparateThread is YES, an NSThread object is detached when the print panel is dismissed
(or immediately, if the panel is not to be displayed). The new thread performs the print operation, so that
control can return to your application. A thread is detached only if the print operation is run using the
runOperationModalForWindow:delegate:didRunSelector:contextInfo: (page 2094) method. If
canSpawnSeparateThread is NO, the operation runs on the current thread, blocking the application until
the operation completes.

If you sendsetCanSpawnSeparateThread: (page 2095) to anNSPrintOperation object with an argument
of YES, then the delegate specified in a subsequent invocation of
runOperationModalForWindow:delegate:didRunSelector:contextInfo: (page 2094) may be messaged
in that spawned, non-main thread.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2095
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

See Also
– canSpawnSeparateThread (page 2088)

Related Sample Code
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSPrintOperation.h

setJobStyleHint:
Sets the type of content that the print job is printing. (Deprecated in Mac OS X v10.5. Use the
setJobStyleHint: method of NSPrintPanel instead.)

- (void)setJobStyleHint:(NSString *)hint

Parameters
hint

A supported job style hint. Valid values for this parameter are described in the “Constants” (page 2114)
section of the NSPrintPanel class. If this value is nil, the standard interface is used.

Discussion
This controls the set of items that appear in the Presets menu of the simplified Print panel interface presented
by this operation, if it presents one.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

See Also
– jobStyleHint (page 2091)

Declared In
NSPrintOperation.h

setJobTitle:
Assigns a custom title to the print job.

- (void)setJobTitle:(NSString *)jobTitle

Parameters
jobTitle

The print job title. The receiver makes its own copy of the specified string.

Discussion
Assigning a title with this method overrides the job title provided by the printing view’s printJobTitle (page
3198) method. Specifying nil for the jobTitle parameter causes the receiver to once again take its title from
the printing view.

2096 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– jobTitle (page 2091)
– printJobTitle (page 3198) (NSView)

Declared In
NSPrintOperation.h

setPageOrder:
Sets the print order for the pages of the operation.

- (void)setPageOrder:(NSPrintingPageOrder)order

Parameters
order

The print order. For a list of possible values, see “Constants” (page 2101).

Availability
Available in Mac OS X v10.0 and later.

See Also
– currentPage (page 2089)
– pageOrder (page 2092)

Declared In
NSPrintOperation.h

setPrintInfo:
Sets the receiver’s NSPrintInfo object.

- (void)setPrintInfo:(NSPrintInfo *)aPrintInfo

Parameters
aPrintInfo

The new print settings for the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– printInfo (page 2092)

Declared In
NSPrintOperation.h

setPrintPanel:
Sets the NSPrintPanel object to be used during the operation.

Instance Methods 2097
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

- (void)setPrintPanel:(NSPrintPanel *)panel

Parameters
panel

The print panel object to use for the operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– accessoryView (page 2087)
– printPanel (page 2093)
– setAccessoryView: (page 2095)
– setShowPanels: (page 2098)
– showPanels (page 2100)

Declared In
NSPrintOperation.h

setShowPanels:
Sets whether the print operation should display a print panel. (Deprecated in Mac OS X v10.4 and later. Use
setShowsPrintPanel: (page 2099) and setShowsProgressPanel: (page 2099) instead.)

- (void)setShowPanels:(BOOL)flag

Parameters
flag

YES if the print operation should display a print panel; otherwise, NO.

Discussion
This method also affects whether a progress panel is presented while the operation runs. If an EPS or PDF
copy operation is being performed, neither panel is displayed, regardless of the value of flag.

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
– accessoryView (page 2087)
– printPanel (page 2093)
– setAccessoryView: (page 2095)
– setPrintPanel: (page 2097)
– showPanels (page 2100)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer
Quartz Composer WWDC 2005 TextEdit

2098 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Declared In
NSPrintOperation.h

setShowsPrintPanel:
Sets whether the receiver displays a print panel for this operation.

- (void)setShowsPrintPanel:(BOOL)flag

Parameters
flag

YES if you want to display a print panel; otherwise, NO.

Discussion
This method does not affect the display of a progress panel; that operation is controlled by the
setShowsProgressPanel: (page 2099) method.

Operations that generate EPS or PDF data do no display a progress panel, regardless of the value in the flag
parameter.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setShowsProgressPanel: (page 2099)
– showsPrintPanel (page 2100)

Declared In
NSPrintOperation.h

setShowsProgressPanel:
Sets whether the receiver displays a progress panel for this operation.

- (void)setShowsProgressPanel:(BOOL)flag

Parameters
flag

YES if you want to display a progress panel; otherwise, NO.

Discussion
This method does not affect the display of a print panel; that operation is controlled by the
setShowsPrintPanel: (page 2099) method.

Operations that generate EPS or PDF data do no display a progress panel, regardless of the value in the flag
parameter.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setShowsPrintPanel: (page 2099)
– showsProgressPanel (page 2100)

Instance Methods 2099
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Declared In
NSPrintOperation.h

showPanels
Returns a Boolean value that indicates whether the print panel is to be displayed. (Deprecated in Mac OS X
v10.4 and later. Use showsPrintPanel (page 2100) and showsProgressPanel (page 2100) instead.)

- (BOOL)showPanels

Return Value
YES if the print panel is to be displayed; otherwise, NO.

Availability
Deprecated in Mac OS X v10.4 and later.

See Also
– accessoryView (page 2087)
– printPanel (page 2093)
– setAccessoryView: (page 2095)
– setPrintPanel: (page 2097)
– setShowPanels: (page 2098)

Declared In
NSPrintOperation.h

showsPrintPanel
Returns a Boolean value indicating whether a print panel is displayed during the operation,

- (BOOL)showsPrintPanel

Return Value
YES if the operation displays a print panel; otherwise, NO.

Discussion
Operations that generate EPS or PDF data do no display a print panel (instance of NSPrintPanel), regardless
of the value returned by this method.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setShowsPrintPanel: (page 2099)

Declared In
NSPrintOperation.h

showsProgressPanel
Returns a Boolean value indicating whether a progress panel is displayed during the operation.

2100 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

- (BOOL)showsProgressPanel

Return Value
YES if the operation displays a progress panel; otherwise, NO.

Discussion
Operations that generate EPS or PDF data do no display a progress panel, regardless of the value returned
by this method.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setShowsProgressPanel: (page 2099)

Declared In
NSPrintOperation.h

view
Returns the view object that generates the actual data for the print operation.

- (NSView *)view

Return Value
The view object that generates the data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrintOperation.h

Constants

NSPrintingPageOrder
These constants specify the page order.

typedef enum _NSPrintingPageOrder {
 NSDescendingPageOrder = (-1),
 NSSpecialPageOrder = 0,
 NSAscendingPageOrder = 1,
 NSUnknownPageOrder = 2
} NSPrintingPageOrder;

Constants
NSAscendingPageOrder

Ascending (back to front) page order.

Available in Mac OS X v10.0 and later.

Declared in NSPrintOperation.h.

Constants 2101
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

NSDescendingPageOrder
Descending (front to back) page order.

Available in Mac OS X v10.0 and later.

Declared in NSPrintOperation.h.

NSSpecialPageOrder
The spooler does not rearrange pages—they are printed in the order received by the spooler.

Available in Mac OS X v10.0 and later.

Declared in NSPrintOperation.h.

NSUnknownPageOrder
No page order specified.

Available in Mac OS X v10.0 and later.

Declared in NSPrintOperation.h.

Discussion
These constants are used by pageOrder (page 2092) and setPageOrder: (page 2097).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrintOperation.h

Exception Name
This is the name of an exception that can be raised by NSPrintOperation.

NSString *NSPrintOperationExistsException;

Constants
NSPrintOperationExistsException

The name of an exception raised when there is already a print operation in process.

The methods that raise this exception are the EPSOperation... and printOperation....

Available in Mac OS X v10.0 and later.

Declared in NSPrintOperation.h.

Declared In
NSPrintOperation.h

2102 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 104

NSPrintOperation Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSPrintPanel.h

Companion guides Printing Programming Topics for Cocoa
Sheet Programming Topics

Overview

An NSPrintPanel object creates the Print panel used to query the user for information about a print job.
This panel may lets the user select the range of pages to print and the number of copies before executing
the Print command.

Print panels can display a simplified interface when printing certain types of data. For example, the panel
can display a list of print-setting presets, which lets the user enable print settings in groups as opposed to
individually. The setJobStyleHint: (page 2113) method activates the simplified interface and identifies
which presets to display.

Tasks

Creating an NSPrintPanel

+ printPanel (page 2105)
Returns a new NSPrintPanel object.

Customizing the Panel

– options (page 2109)
Returns the current configuration options for the Print panel.

– setOptions: (page 2113)
Sets the configuration options for the Print panel.

Overview 2103
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

– defaultButtonTitle (page 2107)
Returns the title of the Print panel’s default button.

– setDefaultButtonTitle: (page 2112)
Sets the title of the Print panel’s default button.

– helpAnchor (page 2108)
Returns the HTML help anchor associated with the Print panel.

– setHelpAnchor: (page 2113)
Sets the HTML help anchor for the print panel.

– jobStyleHint (page 2109) Deprecated in Mac OS X v10.5
Returns the type of content that the Print panel is representing.

– setJobStyleHint: (page 2113) Deprecated in Mac OS X v10.5
Sets the type of content the Print panel is representing.

Managing Accessory Views

– addAccessoryController: (page 2106)
Adds a custom controller to the Print panel to manage an accessory view.

– removeAccessoryController: (page 2110)
Removes the specified controller and accessory view from the Print panel.

– accessoryControllers (page 2105)
Returns the array of controller objects used to manage the Print panel’s accessory views.

Running the Panel

– beginSheetWithPrintInfo:modalForWindow:delegate:didEndSelector:contextInfo: (page
2107)

Displays a Print panel sheet and runs it modally for the specified window.

– runModal (page 2111)
Displays the receiver's Print panel and begins the modal loop.

– runModalWithPrintInfo: (page 2111)
Displays the receiver’s Print panel and runs the modal loop using the specified printing information.

Communicating with the NSPrintInfo Object

– printInfo (page 2110)
Returns the printing information associated with the running Print panel.

– finalWritePrintInfo (page 2108) Deprecated in Mac OS X v10.5
Writes the receiver's printing attributes to the current NSPrintOperation object.

– updateFromPrintInfo (page 2114) Deprecated in Mac OS X v10.5
Updates the receiver with information from the current NSPrintOperation object.

2104 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

Deprecated Methods

– accessoryView (page 2106)
Returns the accessory view of the receiver. (Deprecated. Use accessoryControllers (page 2105)
instead.)

– setAccessoryView: (page 2112) Deprecated in Mac OS X v10.5
Sets the accessory view for the receiver. (Deprecated. Use addAccessoryController: (page 2106)
instead.)

– pickedAllPages: (page 2109) Available in Mac OS X v10.0 through Mac OS X v10.4
Deprecated. (Deprecated. No alternative. Do not use.)

– pickedButton: (page 2109) Available in Mac OS X v10.0 through Mac OS X v10.4
Deprecated. (Deprecated. No alternative. Do not use.)

– pickedLayoutList: (page 2110) Available in Mac OS X v10.0 through Mac OS X v10.4
Deprecated. (Deprecated. No alternative. Do not use.)

Class Methods

printPanel
Returns a new NSPrintPanel object.

+ (NSPrintPanel *)printPanel

Return Value
The print panel object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrintPanel.h

Instance Methods

accessoryControllers
Returns the array of controller objects used to manage the Print panel’s accessory views.

- (NSArray *)accessoryControllers

Return Value
An array of NSViewController objects, each of which manages an accessory view for the Print panel.

Discussion
This method returns the accessory views that were added using the addAccessoryController: method.

Class Methods 2105
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– addAccessoryController: (page 2106)

Declared In
NSPrintPanel.h

accessoryView
Returns the accessory view of the receiver. (Deprecated in Mac OS X v10.5. Use accessoryControllers (page
2105) instead.)

- (NSView *)accessoryView

Return Value
The accessory view of the receiver, if any.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– setAccessoryView: (page 2112)

Declared In
NSPrintPanel.h

addAccessoryController:
Adds a custom controller to the Print panel to manage an accessory view.

- (void)addAccessoryController:(NSViewController < NSPrintPanelAccessorizing >
*)accessoryController

Parameters
accessoryController

The view controller that manages your custom accessory views.

Discussion
You can invoke this method multiple times to add multiple accessory views to the receiver’s Print panel.

The title for the accessory view is obtained from the title method of the view controller object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– removeAccessoryController: (page 2110)

Declared In
NSPrintPanel.h

2106 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

beginSheetWithPrintInfo:modalForWindow:delegate:didEndSelector:contextInfo:
Displays a Print panel sheet and runs it modally for the specified window.

- (void)beginSheetWithPrintInfo:(NSPrintInfo *)printInfo modalForWindow:(NSWindow
 *)docWindow delegate:(id)modalDelegate didEndSelector:(SEL)didEndSelector
contextInfo:(void *)contextInfo

Parameters
printInfo

The printing information for the current job.

docWindow
The window on which to display the sheet.

modalDelegate
A modal delegate object assigned to handle the closing of the Print panel sheet.

didEndSelector
The selector to call on the modal delegate object when the sheet is dismissed. The signature of this
method is listed in the Discussion section.

contextInfo
A pointer to context data the didEndSelector method needs to process the sheet. This data is
user-defined and may be NULL.

Discussion
When the modal session ends, if modalDelegate and didEndSelector contain non-nil values, the method
specified by didEndSelector is invoked on the object in modalDelegate. The data you specify in
contextInfo is passed as a parameter to the didEndSelector method. The object in modalDelegate is
not the same as a delegate assigned to the panel. Modal delegates for sheets are temporary and the
relationship lasts only until the sheet is dismissed.

The didEndSelector argument must have the following signature:

- (void)printPanelDidEnd:(NSPrintPanel *)printPanel
returnCode:(NSInteger)returnCode contextInfo: (void *)contextInfo;

The value passed as returnCode is either NSCancelButton or NSOKButton. The value NSOKButton is
returned even if the user clicked the Preview button.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPrintPanel.h

defaultButtonTitle
Returns the title of the Print panel’s default button.

- (NSString *)defaultButtonTitle

Return Value
The title of the default button.

Instance Methods 2107
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– setDefaultButtonTitle: (page 2112)

Declared In
NSPrintPanel.h

finalWritePrintInfo
Writes the receiver's printing attributes to the current NSPrintOperation object. (Deprecated in Mac OS
X v10.5.)

- (void)finalWritePrintInfo

Discussion
Do not invoke this method directly—it is invoked automatically when the Print panel is dismissed by the
user clicking the OK button.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– updateFromPrintInfo (page 2114)
+ currentOperation (page 2081) (NSPrintOperation)

Declared In
NSPrintPanel.h

helpAnchor
Returns the HTML help anchor associated with the Print panel.

- (NSString *)helpAnchor

Return Value
The current help anchor.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setHelpAnchor: (page 2113)

Declared In
NSPrintPanel.h

2108 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

jobStyleHint
Returns the type of content that the Print panel is representing.

- (NSString *)jobStyleHint

Return Value
A string containing the job style hint or nil if no hint has been set.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setJobStyleHint: (page 2113)

Declared In
NSPrintPanel.h

options
Returns the current configuration options for the Print panel.

- (NSPrintPanelOptions)options

Return Value
One or more configuration constants added together. To determine if a particular option is set, AND the
return value with the appropriate constants found in “NSPrintPanelOptions” (page 2115).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setOptions: (page 2113)

Declared In
NSPrintPanel.h

pickedAllPages:
Deprecated. (Available in Mac OS X v10.0 through Mac OS X v10.4. No alternative. Do not use.)

- (void)pickedAllPages:(id)sender

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
NSPrintPanel.h

pickedButton:
Deprecated. (Available in Mac OS X v10.0 through Mac OS X v10.4. No alternative. Do not use.)

Instance Methods 2109
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

- (void)pickedButton:(id)sender

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
NSPrintPanel.h

pickedLayoutList:
Deprecated. (Available in Mac OS X v10.0 through Mac OS X v10.4. No alternative. Do not use.)

- (void)pickedLayoutList:(id)sender

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
NSPrintPanel.h

printInfo
Returns the printing information associated with the running Print panel.

- (NSPrintInfo *)printInfo

Return Value
The current printing information. May return nil if the Print panel is not currently running.

Discussion
This method is a convenience method that your delegate can use to get the printing information while the
Print Panel is visible.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPrintPanel.h

removeAccessoryController:
Removes the specified controller and accessory view from the Print panel.

- (void)removeAccessoryController:(NSViewController < NSPrintPanelAccessorizing >
 *)accessoryController

Parameters
accessoryController

The view controller to remove.

Discussion
You use this method to remove any view controllers responsible for displaying accessory views you do not
want to include in the Print panel.

2110 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– addAccessoryController: (page 2106)

Declared In
NSPrintPanel.h

runModal
Displays the receiver's Print panel and begins the modal loop.

- (NSInteger)runModal

Return Value
NSCancelButton if the user clicks the Cancel button; otherwise NSOKButton.

Discussion
This method uses the printing information associated with the current printing operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– printInfo (page 2092) (NSPrintOperation)

Declared In
NSPrintPanel.h

runModalWithPrintInfo:
Displays the receiver’s Print panel and runs the modal loop using the specified printing information.

- (NSInteger)runModalWithPrintInfo:(NSPrintInfo *)printInfo

Parameters
printInfo

The printing information to use while displaying the Print panel.

Return Value
NSCancelButton if the user clicks the Cancel button; otherwise NSOKButton.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPrintPanel.h

Instance Methods 2111
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

setAccessoryView:
Sets the accessory view for the receiver. (Deprecated in Mac OS X v10.5. Use
addAccessoryController: (page 2106) instead.)

- (void)setAccessoryView:(NSView *)aView

Parameters
aView

The view containing the controls and information you want to add to the print panel. Specify nil to
remove the receiver's current accessory view.

Discussion
You can use an accessory view to add printing controls and information to the standard print panel. You set
your accessory view prior to displaying the print panel. Upon display, the print panel adds your application's
name as an item to its pane-selection pull-down menu. When the user selects this item, the print panel
displays your accessory view.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– accessoryView (page 2106)

Declared In
NSPrintPanel.h

setDefaultButtonTitle:
Sets the title of the Print panel’s default button.

- (void)setDefaultButtonTitle:(NSString *)defaultButtonTitle

Parameters
defaultButtonTitle

The string to use for the button title.

Discussion
You can use this method to change the default button title from "Print” to something more appropriate for
your usage of the panel. For example, if you are using the Print panel to save a representation of the document
to a file, you might change the title to “Save”.

Availability
Available in Mac OS X v10.5 and later.

See Also
– defaultButtonTitle (page 2107)

Declared In
NSPrintPanel.h

2112 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

setHelpAnchor:
Sets the HTML help anchor for the print panel.

- (void)setHelpAnchor:(NSString *)helpAnchor

Parameters
helpAnchor

The anchor name in your Apple Help file. This parameter should contain just the name portion of the
HTML anchor element.

Discussion
For information on how to insert anchors into your Apple Help files, see Authoring User Help in Apple Help
Programming Guide.

Availability
Available in Mac OS X v10.5 and later.

See Also
– helpAnchor (page 2108)

Declared In
NSPrintPanel.h

setJobStyleHint:
Sets the type of content the Print panel is representing.

- (void)setJobStyleHint:(NSString *)hint

Parameters
hint

For a list of supported job style hints, see “Job Style Hints” (page 2114). Pass nil to this method to
deactivate the simplified Print panel interface and use the standard interface instead (the equivalent
of Core Printing’s kPMPresetGraphicsTypeGeneral).

Discussion
This method controls the set of items that appear in the Presets menu of the simplified Print panel interface.

Availability
Available in Mac OS X v10.2 and later.

See Also
– jobStyleHint (page 2109)

Declared In
NSPrintPanel.h

setOptions:
Sets the configuration options for the Print panel.

- (void)setOptions:(NSPrintPanelOptions)options

Instance Methods 2113
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

Parameters
options

The configuration options, which you specify by adding together the appropriate constant values
found in “NSPrintPanelOptions” (page 2115).

Availability
Available in Mac OS X v10.5 and later.

See Also
– options (page 2109)

Declared In
NSPrintPanel.h

updateFromPrintInfo
Updates the receiver with information from the current NSPrintOperation object. (Deprecated in Mac OS
X v10.5.)

- (void)updateFromPrintInfo

Discussion
Do not invoke this method directly—it is invoked automatically before the Print panel is displayed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– finalWritePrintInfo (page 2108)
+ currentOperation (page 2081) (NSPrintOperation)

Declared In
NSPrintPanel.h

Constants

Job Style Hints
This constant can be passed to the setJobStyleHint: (page 2113) method to activate the simplified Print
panel interface and specify which presets to display.

2114 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

NSString *const NSPrintPhotoJobStyleHint;
NSString *const NSPrintAllPresetsJobStyleHint;
NSString *const NSPrintNoPresetsJobStyleHint;

Constants
NSPrintPhotoJobStyleHint

Output contains photographic data.

Available in Mac OS X v10.2 and later.

Declared in NSPrintPanel.h.

NSPrintAllPresetsJobStyleHint
Output appropriate to all graphics types. Equivalent to Core Printing’s kPMPresetGraphicsTypeAll.

Available in Mac OS X v10.6 and later.

Declared in NSPrintPanel.h.

NSPrintNoPresetsJobStyleHint
Output excludes all graphics printing. Equivalent to Core Printing’s kPMPresetGraphicsTypeNone.

Available in Mac OS X v10.6 and later.

Declared in NSPrintPanel.h.

Declared In
NSPrintPanel.h

NSPrintPanelOptions
These constants are used to configure the contents of the main Print panel.

enum {
 NSPrintPanelShowsCopies = 0x01,
 NSPrintPanelShowsPageRange = 0x02,
 NSPrintPanelShowsPaperSize = 0x04,
 NSPrintPanelShowsOrientation = 0x08,
 NSPrintPanelShowsScaling = 0x10,
 NSPrintPanelShowsPrintSelection = 1 << 5,
 NSPrintPanelShowsPageSetupAccessory = 0x100,
 NSPrintPanelShowsPreview = 0x20000
};
typedef NSInteger NSPrintPanelOptions;

Constants
NSPrintPanelShowsCopies

The Print panel includes a field for manipulating the number of copies being printed. This field is
separate from any accessory views.

Available in Mac OS X v10.5 and later.

Declared in NSPrintPanel.h.

NSPrintPanelShowsPageRange
The Print panel includes a set of fields for manipulating the range of pages being printed. These fields
are separate from any accessory views.

Available in Mac OS X v10.5 and later.

Declared in NSPrintPanel.h.

Constants 2115
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

NSPrintPanelShowsPaperSize
The Print panel includes a control for manipulating the paper size of the printer. This control is separate
from any accessory views.

Available in Mac OS X v10.5 and later.

Declared in NSPrintPanel.h.

NSPrintPanelShowsOrientation
The Print panel includes a control for manipulating the page orientation. This control is separate from
any accessory views.

Available in Mac OS X v10.5 and later.

Declared in NSPrintPanel.h.

NSPrintPanelShowsScaling
The Print panel includes a control for scaling the printed output. This control is separate from any
accessory views.

Available in Mac OS X v10.5 and later.

Declared in NSPrintPanel.h.

NSPrintPanelShowsPrintSelection
The Print panel includes an additional selection option for paper range. This control is separate from
any accessory views.

Available in Mac OS X v10.6 and later.

Declared in NSPrintPanel.h.

NSPrintPanelShowsPageSetupAccessory
The Print panel includes a separate accessory view for manipulating the paper size, orientation, and
scaling attributes. Page setup fields that are already configured for display on the main portion of the
Print panel appear there and not on this accessory panel.

Available in Mac OS X v10.5 and later.

Declared in NSPrintPanel.h.

NSPrintPanelShowsPreview
The Print panel displays a built-in preview of the document contents. This option is only appropriate
when the Print panel is used in conjunction with an NSPrintOperation object to print a document.

Available in Mac OS X v10.5 and later.

Declared in NSPrintPanel.h.

Declared In
NSPrintPanel.h

2116 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 105

NSPrintPanel Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSProgressIndicator.h

Companion guide Progress Indicators

Related sample code BackgroundExporter
CIVideoDemoGL
MyPhoto
SimpleStickies
URL CacheInfo

Overview

The NSProgressIndicator class lets an application display a progress indicator to show that a lengthy
task is under way. Some progress indicators are indeterminate and do nothing more than spin to show that
the application is busy. Others are determinate and show the percentage of the task that has been completed.

Tasks

Animating the Progress Indicator

– setUsesThreadedAnimation: (page 2128)
Sets a hint as to whether the receiver should implement animation of the progress indicator in a
separate thread.

– startAnimation: (page 2129)
Starts the animation of an indeterminate progress indicator.

– stopAnimation: (page 2129)
Stops the animation of an indeterminate progress indicator.

Overview 2117
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

– usesThreadedAnimation (page 2130)
Returns whether the receiver implements the animation of the progress indicator in a separate thread.

– animate: (page 2119) Deprecated in Mac OS X v10.5 and later
This action method advances the progress animation of an indeterminate progress animator by one
step. (Deprecated. NSProgressIndicator no longer supports incrementing the animation using
this method. Use the startAnimation: (page 2129) and stopAnimation: (page 2129) methods to
perform animation of the progress indicator.)

– animationDelay (page 2120) Deprecated in Mac OS X v10.5 and later
Returns the delay, in seconds, between animation steps for an indeterminate progress indicator.
(Deprecated. Progress indicators no longer allow the animation delay to be set.)

– setAnimationDelay: (page 2123) Deprecated in Mac OS X v10.5 and later
Sets the delay, in seconds, between animation steps for an indeterminate progress indicator.
(Deprecated. Progress indicators no longer allow the animation delay to be set.)

Advancing the Progress Bar

– incrementBy: (page 2121)
Advances the progress bar of a determinate progress indicator by the specified amount.

– setDoubleValue: (page 2125)
Sets the value that indicates the current extent of the receiver.

– doubleValue (page 2121)
Returns a value that indicates the current extent of the progress bar of a determinate progress indicator.

– setMinValue: (page 2127)
Sets the minimum value for the receiver.

– minValue (page 2123)
Returns the minimum value for the progress bar of a determinate progress indicator.

– setMaxValue: (page 2126)
Sets the maximum value for the receiver.

– maxValue (page 2123)
Returns the maximum value for the progress bar of a determinate progress indicator.

Setting the Appearance

– setControlSize: (page 2124)
Sets the size of the receiver.

– controlSize (page 2120)
Returns the size of the receiver.

– setControlTint: (page 2124)
Sets the receiver’s control tint.

– controlTint (page 2120)
Returns the receiver’s control tint.

– setBezeled: (page 2124)
Sets whether the receiver’s frame has a three-dimensional bezel.

2118 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

– isBezeled (page 2121)
Returns a Boolean value indicating whether the receiver's frame has a bezel.

– setIndeterminate: (page 2126)
Sets whether the receiver is indeterminate.

– isIndeterminate (page 2122)
Returns a Boolean value indicating whether the receiver is indeterminate.

– setStyle: (page 2127)
Sets the style of the progress indicator (bar or spinning).

– style (page 2130)
Returns the style of the progress indicator (bar or spinning).

– sizeToFit (page 2128)
This action method resizes the receiver to an appropriate size depending on what style (page 2130)
returns.

– setDisplayedWhenStopped: (page 2125)
Sets whether the receiver hides itself when it isn’t animating.

– isDisplayedWhenStopped (page 2122)
Returns a Boolean value indicating whether the receiver shows itself even when it’s not animating.

Instance Methods

animate:
This action method advances the progress animation of an indeterminate progress animator by one step.
(Deprecated in Mac OS X v10.5 and later. NSProgressIndicator no longer supports incrementing the
animation using this method. Use the startAnimation: (page 2129) and stopAnimation: (page 2129)
methods to perform animation of the progress indicator.)

- (void)animate:(id)sender

Parameters
sender

The object sending the message.

Availability
Deprecated in Mac OS X v10.5 and later.

See Also
– startAnimation: (page 2129)
– stopAnimation: (page 2129)

Related Sample Code
MenuItemView

Declared In
NSProgressIndicator.h

Instance Methods 2119
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

animationDelay
Returns the delay, in seconds, between animation steps for an indeterminate progress indicator. (Deprecated
in Mac OS X v10.5 and later. Progress indicators no longer allow the animation delay to be set.)

- (NSTimeInterval)animationDelay

Return Value
The delay between animation steps. By default, the animation delay is set to 1/12 of a second (5.0/60.0). A
determinate progress indicator does not use the animation delay value.

Availability
Deprecated in Mac OS X v10.5 and later.

Declared In
NSProgressIndicator.h

controlSize
Returns the size of the receiver.

- (NSControlSize)controlSize

Return Value
A constant indicating the size of the control. Valid return values are described in NSCell (page 533).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setControlSize: (page 2124)

Declared In
NSProgressIndicator.h

controlTint
Returns the receiver’s control tint.

- (NSControlTint)controlTint

Return Value
A constant indicating the current control tint. Valid return values are described in NSCell (page 533).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setControlTint: (page 2124)

Declared In
NSProgressIndicator.h

2120 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

doubleValue
Returns a value that indicates the current extent of the progress bar of a determinate progress indicator.

- (double)doubleValue

Return Value
The value representing the current extent of a determinate progress bar. For example, a determinate progress
indicator goes from 0.0 to 100.0 by default. If the progress bar has advanced halfway across the view, the
value returned by doubleValuewould be 50.0. An indeterminate progress indicator does not use this value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– incrementBy: (page 2121)
– setDoubleValue: (page 2125)

Declared In
NSProgressIndicator.h

incrementBy:
Advances the progress bar of a determinate progress indicator by the specified amount.

- (void)incrementBy:(double)delta

Parameters
delta

The amount by which to increment the progress bar. For example, if you want to advance a progress
bar from 0.0 to 100.0 in 20 steps, you would invoke incrementBy: (page 2121) 20 times with a delta
value of 5.0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doubleValue (page 2121)

Declared In
NSProgressIndicator.h

isBezeled
Returns a Boolean value indicating whether the receiver's frame has a bezel.

- (BOOL)isBezeled

Return Value
YES if the receiver’s frame has a three-dimensional bezel; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2121
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

See Also
– setBezeled: (page 2124)

Declared In
NSProgressIndicator.h

isDisplayedWhenStopped
Returns a Boolean value indicating whether the receiver shows itself even when it’s not animating.

- (BOOL)isDisplayedWhenStopped

Return Value
YES if the progress indicator shows itself even when it’s not animating. By default, this returns returns YES
if style (page 2130) is NSProgressIndicatorBarStyle and NO if style (page 2130)
isNSProgressIndicatorSpinningStyle.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setDisplayedWhenStopped: (page 2125)

Declared In
NSProgressIndicator.h

isIndeterminate
Returns a Boolean value indicating whether the receiver is indeterminate.

- (BOOL)isIndeterminate

Return Value
YES if the progress bar is indeterminate; otherwise NO. This applies only if style (page 2130) returns
NSProgressIndicatorBarStyle.

Discussion
If style (page 2130) returns NSProgressIndicatorSpinningStyle, the indicator is always indeterminate,
regardless of what this method returns.

A determinate indicator displays how much of the task has been completed. An indeterminate indicator
shows simply that the application is busy.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIndeterminate: (page 2126)

Declared In
NSProgressIndicator.h

2122 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

maxValue
Returns the maximum value for the progress bar of a determinate progress indicator.

- (double)maxValue

Return Value
The maximum value of the progress indicator. By default, a determinate progress indicator goes from 0.0 to
100.0, so the value returned would be 100.0. An indeterminate progress indicator does not use this value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minValue (page 2123)
– setMaxValue: (page 2126)

Declared In
NSProgressIndicator.h

minValue
Returns the minimum value for the progress bar of a determinate progress indicator.

- (double)minValue

Return Value
The minimum value of the progress indicator. By default, a determinate progress indicator goes from 0.0 to
100.0, so the value returned would be 0.0. An indeterminate progress indicator does not use this value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxValue (page 2123)
– setMinValue: (page 2127)

Declared In
NSProgressIndicator.h

setAnimationDelay:
Sets the delay, in seconds, between animation steps for an indeterminate progress indicator. (Deprecated
in Mac OS X v10.5 and later. Progress indicators no longer allow the animation delay to be set.)

- (void)setAnimationDelay:(NSTimeInterval)delay

Parameters
delay

The number of seconds between animation steps. By default, the animation delay is set to 1/12 of a
second (5.0/60.0). Setting the delay to a double value larger than 5.0/60.0 slows the animation, while
setting the delay to a smaller value speeds it up. A determinate progress indicator does not use the
animation delay value.

Instance Methods 2123
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

Availability
Deprecated in Mac OS X v10.5 and later.

Declared In
NSProgressIndicator.h

setBezeled:
Sets whether the receiver’s frame has a three-dimensional bezel.

- (void)setBezeled:(BOOL)flag

Parameters
flag

YES if the progress indicator is bezeled; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isBezeled (page 2121)

Declared In
NSProgressIndicator.h

setControlSize:
Sets the size of the receiver.

- (void)setControlSize:(NSControlSize)size

Parameters
size

A constant indicating the size of the control. Valid values for size are described in NSCell (page 533).

Availability
Available in Mac OS X v10.0 and later.

See Also
– controlSize (page 2120)

Related Sample Code
AnimatedTableView

Declared In
NSProgressIndicator.h

setControlTint:
Sets the receiver’s control tint.

- (void)setControlTint:(NSControlTint)controlTint

2124 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

Parameters
controlTint

A constant indicating the desired control tint. Valid values for controlTint are described in
NSCell (page 533).

Availability
Available in Mac OS X v10.0 and later.

See Also
– controlTint (page 2120)

Declared In
NSProgressIndicator.h

setDisplayedWhenStopped:
Sets whether the receiver hides itself when it isn’t animating.

- (void)setDisplayedWhenStopped:(BOOL)isDisplayed

Parameters
isDisplayed

YES to hide the progress indicator when it isn't animating; otherwise NO. By default, this is YES if
style (page 2130) is NSProgressIndicatorBarStyle, and NO if style (page 2130) is
NSProgressIndicatorSpinningStyle.

Availability
Available in Mac OS X v10.2 and later.

See Also
– isDisplayedWhenStopped (page 2122)

Related Sample Code
ScannerBrowser

Declared In
NSProgressIndicator.h

setDoubleValue:
Sets the value that indicates the current extent of the receiver.

- (void)setDoubleValue:(double)doubleValue

Parameters
doubleValue

The current extent of a determinate progress indicator.

Discussion
An indeterminate progress indicator does not use this value.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2125
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

See Also
– doubleValue (page 2121)
– incrementBy: (page 2121)
– setMaxValue: (page 2126)
– setMinValue: (page 2127)

Related Sample Code
CIVideoDemoGL
EnhancedAudioBurn
ExtractMovieAudioToAIFF
From A View to A Movie
QTExtractAndConvertToAIFF

Declared In
NSProgressIndicator.h

setIndeterminate:
Sets whether the receiver is indeterminate.

- (void)setIndeterminate:(BOOL)flag

Parameters
flag

YES if the progress indicator should be indeterminate; otherwise NO.

Discussion
This method only has an effect ifstyle (page 2130) returnsNSProgressIndicatorBarStyle. Ifstyle (page
2130) returns NSProgressIndicatorSpinningStyle, the indicator is always indeterminate, regardless of
what you pass to this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isIndeterminate (page 2122)

Related Sample Code
AnimatedTableView
ExtractMovieAudioToAIFF
From A View to A Movie
QTExtractAndConvertToAIFF
ScannerBrowser

Declared In
NSProgressIndicator.h

setMaxValue:
Sets the maximum value for the receiver.

2126 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

- (void)setMaxValue:(double)newMaximum

Parameters
newMaximum

The maximum value of the progress indicator. An indeterminate progress indicator does not use this
value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxValue (page 2123)

Related Sample Code
EnhancedAudioBurn
From A View to A Movie

Declared In
NSProgressIndicator.h

setMinValue:
Sets the minimum value for the receiver.

- (void)setMinValue:(double)newMinimum

Parameters
newMinimum

The minimum value of the progress indicator. An indeterminate progress indicator does not use this
value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minValue (page 2123)

Related Sample Code
EnhancedAudioBurn
From A View to A Movie

Declared In
NSProgressIndicator.h

setStyle:
Sets the style of the progress indicator (bar or spinning).

- (void)setStyle:(NSProgressIndicatorStyle)style

Instance Methods 2127
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

Parameters
style

A constant indicating the style of the progress indicator. Possible values for style are described in
NSProgressIndicatorStyle (page 2131).

Availability
Available in Mac OS X v10.2 and later.

See Also
– style (page 2130)

Related Sample Code
AnimatedTableView
From A View to A Movie
SourceView

Declared In
NSProgressIndicator.h

setUsesThreadedAnimation:
Sets a hint as to whether the receiver should implement animation of the progress indicator in a separate
thread.

- (void)setUsesThreadedAnimation:(BOOL)flag

Parameters
flag

YES to indicate that animation of the progress indicator should occur in a separate thread; otherwise,
NO. This value is only a hint and may be ignored.

Discussion
If the application becomes multithreaded as a result of an invocation of this method, the application’s
performance could become noticeably slower.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesThreadedAnimation (page 2130)

Related Sample Code
SimpleStickies

Declared In
NSProgressIndicator.h

sizeToFit
This action method resizes the receiver to an appropriate size depending on what style (page 2130) returns.

- (void)sizeToFit

2128 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

Discussion
Use this after you use setStyle: (page 2127) to re-size the receiver.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
AnimatedTableView
From A View to A Movie

Declared In
NSProgressIndicator.h

startAnimation:
Starts the animation of an indeterminate progress indicator.

- (void)startAnimation:(id)sender

Parameters
sender

The object sending the message.

Discussion
Does nothing for a determinate progress indicator.

Availability
Available in Mac OS X v10.0 and later.

See Also
– animationDelay (page 2120)
– stopAnimation: (page 2129)

Related Sample Code
AnimatedTableView
ExtractMovieAudioToAIFF
SampleScannerApp
ScriptingBridgeFinder
SimpleStickies

Declared In
NSProgressIndicator.h

stopAnimation:
Stops the animation of an indeterminate progress indicator.

- (void)stopAnimation:(id)sender

Parameters
sender

The object sending the message.

Instance Methods 2129
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

Discussion
Does nothing for a determinate progress indicator.

Availability
Available in Mac OS X v10.0 and later.

See Also
– animationDelay (page 2120)
– startAnimation: (page 2129)

Related Sample Code
CAPlayThrough
ExtractMovieAudioToAIFF
QTExtractAndConvertToAIFF
SampleScannerApp
SimpleStickies

Declared In
NSProgressIndicator.h

style
Returns the style of the progress indicator (bar or spinning).

- (NSProgressIndicatorStyle)style

Return Value
A constant indicating the style of the progress indicator. Possible return values are described in
NSProgressIndicatorStyle (page 2131).

Availability
Available in Mac OS X v10.2 and later.

See Also
– setStyle: (page 2127)

Declared In
NSProgressIndicator.h

usesThreadedAnimation
Returns whether the receiver implements the animation of the progress indicator in a separate thread.

- (BOOL)usesThreadedAnimation

Return Value
YES if animation of the progress indicator occurs in a separate thread; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

2130 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

See Also
– setUsesThreadedAnimation: (page 2128)

Declared In
NSProgressIndicator.h

Constants

NSProgressIndicatorThickness
Specify the height of a progress indicator.

typedef enum _NSProgressIndicatorThickness {
 NSProgressIndicatorPreferredThickness = 14,
 NSProgressIndicatorPreferredSmallThickness = 10,
 NSProgressIndicatorPreferredLargeThickness = 18,
 NSProgressIndicatorPreferredAquaThickness = 12
} NSProgressIndicatorThickness;

Constants
NSProgressIndicatorPreferredThickness

14

Available in Mac OS X v10.0 and later.

Declared in NSProgressIndicator.h.

NSProgressIndicatorPreferredSmallThickness
10

Available in Mac OS X v10.0 and later.

Declared in NSProgressIndicator.h.

NSProgressIndicatorPreferredLargeThickness
18

Available in Mac OS X v10.0 and later.

Declared in NSProgressIndicator.h.

NSProgressIndicatorPreferredAquaThickness
12

Available in Mac OS X v10.0 and later.

Declared in NSProgressIndicator.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSProgressIndicator.h

NSProgressIndicatorStyle
Specify the progress indicator’s style and are used by style (page 2130) and setStyle: (page 2127).

Constants 2131
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

typedef enum _NSProgressIndicatorStyle {
 NSProgressIndicatorBarStyle = 0,
 NSProgressIndicatorSpinningStyle = 1
} NSProgressIndicatorStyle;

Constants
NSProgressIndicatorBarStyle

A rectangular indicator that can be determinate or indeterminate.

Available in Mac OS X v10.2 and later.

Declared in NSProgressIndicator.h.

NSProgressIndicatorSpinningStyle
A small square indicator that can be indeterminate only .

Available in Mac OS X v10.2 and later.

Declared in NSProgressIndicator.h.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSProgressIndicator.h

2132 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 106

NSProgressIndicator Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSResponder.h
AppKit/NSInterfaceStyle.h

Companion guide Cocoa Event-Handling Guide

Related sample code AnimatedTableView
LayerBackedOpenGLView
LightTable
NSOpenGL Fullscreen
SourceView

Overview

NSResponder is an abstract class that forms the basis of event and command processing in the Application
Kit. The core classes—NSApplication, NSWindow, and NSView—inherit from NSResponder, as must any
class that handles events. The responder model is built around three components: event messages, action
messages, and the responder chain.

Starting with Mac OS X v10.4, NSResponder plays an important role in the presentation of error information.
The default implementations of the presentError: (page 2187) and
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: (page 2187) methods
send willPresentError: (page 2205) to self, thereby giving subclasses the opportunity to customize the
localized information presented in error alerts. NSResponder then forwards the message to the next responder,
passing it the customized NSError object. The exact path up the modified responder chain depends on the
type of application window:

 ■ Windows owned by document: view to superviews to window to window controller to document object
to document controller to the application object

 ■ Windows with window controllers but no documents: view to superviews to window to window controller
to the application object

 ■ Windows with no window controllers: view to superviews to window to the application object

Overview 2133
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

NSApplication displays a document-modal error alert and, if the error object has a recovery attempter,
gives it a chance to recover from the error. (A recovery attempter is an object that conforms to the
NSErrorRecoveryAttempting informal protocol.)

Tasks

Changing the First Responder

– acceptsFirstResponder (page 2143)
Overridden by subclasses to return YES if the receiver accepts first responder status.

– becomeFirstResponder (page 2144)
Notifies the receiver that it’s about to become first responder in its NSWindow.

– resignFirstResponder (page 2189)
Notifies the receiver that it’s been asked to relinquish its status as first responder in its window.

Managing the Next Responder

– setNextResponder: (page 2197)
Sets the receiver’s next responder.

– nextResponder (page 2182)
Returns the receiver’s next responder, or nil if it has none.

Responding to Mouse Events

– mouseDown: (page 2164)
Informs the receiver that the user has pressed the left mouse button.

– mouseDragged: (page 2164)
Informs the receiver that the user has moved the mouse with the left button pressed.

– mouseUp: (page 2166)
Informs the receiver that the user has released the left mouse button.

– mouseMoved: (page 2166)
Informs the receiver that the mouse has moved.

– mouseEntered: (page 2165)
Informs the receiver that the cursor has entered a tracking rectangle.

– mouseExited: (page 2165)
Informs the receiver that the cursor has exited a tracking rectangle.

– rightMouseDown: (page 2189)
Informs the receiver that the user has pressed the right mouse button.

– rightMouseDragged: (page 2190)
Informs the receiver that the user has moved the mouse with the right button pressed .

– rightMouseUp: (page 2190)
Informs the receiver that the user has released the right mouse button.

2134 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

– otherMouseDown: (page 2183)
Informs the receiver that the user has pressed a mouse button other than the left or right one.

– otherMouseDragged: (page 2183)
Informs the receiver that the user has moved the mouse with a button other than the left or right
button pressed.

– otherMouseUp: (page 2184)
Informs the receiver that the user has released a mouse button other than the left or right button.

Responding to Key Events

– keyDown: (page 2159)
Informs the receiver that the user has pressed a key.

– keyUp: (page 2159)
Informs the receiver that the user has released a key.

– interpretKeyEvents: (page 2158)
Invoked by subclasses from their keyDown: (page 2159) method to handle a series of key events.

– performKeyEquivalent: (page 2186)
Overridden by subclasses to handle a key equivalent.

– performMnemonic: (page 2186)
Overridden by subclasses to handle a mnemonic.

– flushBufferedKeyEvents (page 2153)
Overridden by subclasses to clear any unprocessed key events.

Responding to Other Kinds of Events

– cursorUpdate: (page 2147)
Informs the receiver that the mouse cursor has moved into a cursor rectangle.

– flagsChanged: (page 2152)
Informs the receiver that the user has pressed or released a modifier key (Shift, Control, and so on).

– tabletPoint: (page 2199)
Informs the receiver that a tablet-point event has occurred.

– tabletProximity: (page 2200)
Informs the receiver that a tablet-proximity event has occurred.

– helpRequested: (page 2153)
Displays context-sensitive help for the receiver if such exists; otherwise passes this message to the
next responder.

– scrollWheel: (page 2193)
Informs the receiver that the mouse’s scroll wheel has moved.

Responding to Action Messages

– cancelOperation: (page 2145)
Implemented by subclasses to cancel the current operation.

Tasks 2135
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

– capitalizeWord: (page 2145)
Implemented by subclasses to capitalize the word or words surrounding the insertion point or selection,
expanding the selection if necessary.

– centerSelectionInVisibleArea: (page 2146)
Implemented by subclasses to scroll the selection, whatever it is, inside its visible area.

– changeCaseOfLetter: (page 2146)
Implemented by subclasses to change the case of a letter or letters in the selection, perhaps by
opening a panel with capitalization options or by cycling through possible case combinations.

– complete: (page 2147)
Implemented by subclasses to complete an operation in progress or a partially constructed element.

– deleteBackward: (page 2148)
Implemented by subclasses to delete the selection, if there is one, or a single element backward from
the insertion point (a letter or character in text, for example).

– deleteBackwardByDecomposingPreviousCharacter: (page 2148)
Implemented by subclasses to delete the selection, if there is one, or a single character backward
from the insertion point.

– deleteForward: (page 2148)
Implemented by subclasses to delete the selection, if there is one, or a single element forward from
the insertion point (a letter or character in text, for example).

– deleteToBeginningOfLine: (page 2149)
Implemented by subclasses to delete the selection, if there is one, or all text from the insertion point
to the beginning of a line (typically of text).

– deleteToBeginningOfParagraph: (page 2149)
Implemented by subclasses to delete the selection, if there is one, or all text from the insertion point
to the beginning of a paragraph of text.

– deleteToEndOfLine: (page 2150)
Implemented by subclasses to delete the selection, if there is one, or all text from the insertion point
to the end of a line (typically of text).

– deleteToEndOfParagraph: (page 2150)
Implemented by subclasses to delete the selection, if there is one, or all text from the insertion point
to the end of a paragraph of text.

– deleteToMark: (page 2150)
Implemented by subclasses to delete the selection, if there is one, or all items from the insertion point
to a previously placed mark, including the selection itself if not empty.

– deleteWordBackward: (page 2151)
Implemented by subclasses to delete the selection, if there is one, or a single word backward from
the insertion point.

– deleteWordForward: (page 2151)
Implemented by subclasses to delete the selection, if there is one, or a single word forward from the
insertion point.

– indent: (page 2153)
Implemented by subclasses to indent the selection or the insertion point if there is no selection.

– insertBacktab: (page 2154)
Implemented by subclasses to handle a backward tab.

2136 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

– insertContainerBreak: (page 2154)
Implemented by subclasses to insert a container break (typically a page break) at the insertion point
or selection, deleting the selection if there is one.

– insertLineBreak: (page 2155)
Implemented by subclasses to insert a line break (as distinguished from a paragraph break) at the
insertion point or selection, deleting the selection if there is one.

– insertNewline: (page 2155)
Implemented by subclasses to insert a newline character at the insertion point or selection, deleting
the selection if there is one, or to end editing if the receiver is a text field or other field editor.

– insertNewlineIgnoringFieldEditor: (page 2156)
Implemented by subclasses to insert a line-break character at the insertion point or selection, deleting
the selection if there is one.

– insertParagraphSeparator: (page 2156)
Implemented by subclasses to insert a paragraph separator at the insertion point or selection, deleting
the selection if there is one.

– insertTab: (page 2157)
Implemented by subclasses to insert a tab character at the insertion point or selection, deleting the
selection if there is one, or to end editing if the receiver is a text field or other field editor.

– insertTabIgnoringFieldEditor: (page 2157)
Implemented by subclasses to insert a tab character at the insertion point or selection, deleting the
selection if there is one.

– insertDoubleQuoteIgnoringSubstitution: (page 2155)
Implemented by subclasses to insert a double quote character at the insertion point without
interference by automatic quote correction.

– insertSingleQuoteIgnoringSubstitution: (page 2156)
Implemented by subclasses to insert a single quote character at the insertion point without interference
by automatic quote correction.

– insertText: (page 2158)
Overridden by subclasses to insert the supplied string at the insertion point or selection, deleting the
selection if there is one.

– lowercaseWord: (page 2160)
Implemented by subclasses to make lowercase every letter in the word or words surrounding the
insertion point or selection, expanding the selection if necessary.

– moveBackward: (page 2166)
Implemented by subclasses to move the selection or insertion point one element or character backward.

– moveBackwardAndModifySelection: (page 2167)
Implemented by subclasses to expand or reduce either end of the selection backward by one element
or character.

– moveParagraphForwardAndModifySelection: (page 2170)
Implemented by subclasses to move the selection or insertion point to the beginning of the next
paragraph, expanding or reducing the current selection.

– moveParagraphBackwardAndModifySelection: (page 2170)
Implemented by subclasses to move the selection or insertion point to the beginning of the previous
paragraph, expanding or reducing the current selection.

– moveToBeginningOfDocumentAndModifySelection: (page 2172)
Implemented by subclasses to move the selection or insertion point to the beginning of the document,
expanding or reducing the current selection.

Tasks 2137
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

– moveToEndOfDocumentAndModifySelection: (page 2174)
Implemented by subclasses to move the selection or insertion point to the end of the document,
expanding or reducing the current selection.

– moveToBeginningOfLineAndModifySelection: (page 2173)
Implemented by subclasses to move the selection or insertion point to the beginning of the line,
expanding or reducing the current selection.

– moveToEndOfLineAndModifySelection: (page 2175)
Implemented by subclasses to move the selection or insertion point to the end of the line, expanding
or reducing the current selection.

– moveToBeginningOfParagraphAndModifySelection: (page 2174)
Implemented by subclasses to move the selection or insertion point to the beginning of the current
paragraph, expanding or reducing the current selection.

– moveToEndOfParagraphAndModifySelection: (page 2176)
Implemented by subclasses to move the selection or insertion point to the end of the current
paragraph, expanding or reducing the current selection.

– moveToLeftEndOfLine: (page 2176)
Implemented by subclasses to move the selection or insertion point to the left end of the line.

– moveToLeftEndOfLineAndModifySelection: (page 2176)
Implemented by subclasses to move the selection or insertion point to the left end of the line,
expanding or contracting the selection as required.

– moveToRightEndOfLine: (page 2177)
Implemented by subclasses to move the selection or insertion point to the right end of the line

– moveToRightEndOfLineAndModifySelection: (page 2177)
Implemented by subclasses to move the selection or insertion point to the right end of the line,
expanding or contracting the selection as required.

– moveDown: (page 2167)
Implemented by subclasses to move the selection or insertion point one element or character down.

– moveDownAndModifySelection: (page 2168)
Implemented by subclasses to expand or reduce the top or bottom end of the selection downward
by one element, character, or line (whichever is appropriate for text direction).

– moveForward: (page 2168)
Implemented by subclasses to move the selection or insertion point one element or character forward.

– moveForwardAndModifySelection: (page 2168)
Implemented by subclasses to expand or reduce either end of the selection forward by one element
or character.

– moveLeft: (page 2169)
Implemented by subclasses to move the selection or insertion point one element or character to the
left.

– moveLeftAndModifySelection: (page 2169)
Implemented by subclasses to expand or reduce either end of the selection to the left (display order)
by one element or character.

– moveRight: (page 2171)
Implemented by subclasses to move the selection or insertion point one element or character to the
right.

2138 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

– moveRightAndModifySelection: (page 2171)
Implemented by subclasses to expand or reduce either end of the selection to the right (display order)
by one element or character.

– moveToBeginningOfDocument: (page 2172)
Implemented by subclasses to move the selection to the first element of the document or the insertion
point to the beginning.

– moveToBeginningOfLine: (page 2172)
Implemented by subclasses to move the selection to the first element of the selected line or the
insertion point to the beginning of the line.

– moveToBeginningOfParagraph: (page 2173)
Implemented by subclasses to move the insertion point to the beginning of the selected paragraph.

– moveToEndOfDocument: (page 2174)
Implemented by subclasses to move the selection to the last element of the document or the insertion
point to the end.

– moveToEndOfLine: (page 2175)
Implemented by subclasses to move the selection to the last element of the selected line or the
insertion point to the end of the line.

– moveToEndOfParagraph: (page 2175)
Implemented by subclasses to move the insertion point to the end of the selected paragraph.

– moveUp: (page 2177)
Implemented by subclasses to move the selection or insertion point one element or character up.

– moveUpAndModifySelection: (page 2178)
Implemented by subclasses to expand or reduce the top or bottom end of the selection upward by
one element, character, or line (whichever is appropriate for text direction).

– moveWordBackward: (page 2178)
Implemented by subclasses to move the selection or insertion point one word backward.

– moveWordBackwardAndModifySelection: (page 2179)
Implemented by subclasses to expand or reduce either end of the selection backward by one whole
word.

– moveWordForward: (page 2179)
Implemented by subclasses to move the selection or insertion point one word forward, in logical
order.

– moveWordForwardAndModifySelection: (page 2180)
Implemented by subclasses to expand or reduce either end of the selection forward by one whole
word.

– moveWordLeft: (page 2180)
Implemented by subclasses to move the selection or insertion point one word to the left, in display
order.

– moveWordRight: (page 2181)
Implemented by subclasses to move the selection or insertion point one word right.

– moveWordRightAndModifySelection: (page 2182)
Implemented by subclasses to expand or reduce either end of the selection to the right by one whole
word.

– moveWordLeftAndModifySelection: (page 2181)
Implemented by subclasses to expand or reduce either end of the selection left by one whole word
in display order.

Tasks 2139
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

– pageDown: (page 2184)
Implemented by subclasses to scroll the receiver down (or back) one page in its scroll view, also
moving the insertion point to the top of the newly displayed page.

– pageDownAndModifySelection: (page 2184)
Implemented by subclasses to scroll the receiver down (or back) one page in its scroll view, also
moving the insertion point to the top of the newly displayed page. The selection is expanded or
contracted as required.

– pageUp: (page 2185)
Implemented by subclasses to scroll the receiver up (or forward) one page in its scroll view, also
moving the insertion point to the top of the newly displayed page.

– pageUpAndModifySelection: (page 2185)
Implemented by subclasses to scroll the receiver up (or forward) one page in its scroll view, also
moving the insertion point to the top of the newly displayed page. The selection is expanded or
contracted as necessary.

– scrollToBeginningOfDocument: (page 2192)
Implemented by subclasses to scroll the receiver to the beginning of the document, without changing
the selection.

– scrollToEndOfDocument: (page 2193)
Implemented by subclasses to scroll the receiver to the end of the document, without changing the
selection.

– scrollLineUp: (page 2191)
Implemented by subclasses to scroll the receiver one line up in its scroll view, without changing the
selection.

– scrollLineDown: (page 2191)
Implemented by subclasses to scroll the receiver one line down in its scroll view, without changing
the selection.

– scrollPageUp: (page 2192)
Implemented by subclasses to scroll the receiver one page up in its scroll view, without changing the
selection.

– scrollPageDown: (page 2192)
Implemented by subclasses to scroll the receiver one page down in its scroll view, without changing
the selection.

– selectAll: (page 2194)
Implemented by subclasses to select all selectable elements.

– selectLine: (page 2194)
Implemented by subclasses to select all elements in the line or lines containing the selection or
insertion point.

– selectParagraph: (page 2194)
Implemented by subclasses to select all paragraphs containing the selection or insertion point.

– selectToMark: (page 2195)
Implemented by subclasses to select all items from the insertion point or selection to a previously
placed mark, including the selection itself if not empty.

– selectWord: (page 2195)
Implemented by subclasses to extend the selection to the nearest word boundaries outside it (up to,
but not including, word delimiters).

2140 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

– setMark: (page 2196)
Implemented by subclasses to set a mark at the insertion point or selection, which is used by
deleteToMark: (page 2150) and selectToMark: (page 2195).

– showContextHelp: (page 2198)
Implemented by subclasses to invoke the help system, displaying information relevant to the receiver
and its current state.

– swapWithMark: (page 2198)
Swaps the mark and the selection or insertion point, so that what was marked is now the selection
or insertion point, and what was the insertion point or selection is now the mark.

– transpose: (page 2202)
Transposes the characters to either side of the insertion point and advances the insertion point past
both of them. Does nothing to a selected range of text.

– transposeWords: (page 2202)
Transposes the words to either side of the insertion point and advances the insertion point past both
of them. Does nothing to a selected range of text.

– uppercaseWord: (page 2203)
Implemented by subclasses to make uppercase every letter in the word or words surrounding the
insertion point or selection, expanding the selection if necessary.

– yank: (page 2205)
Replaces the insertion point or selection with text from the kill buffer.

Presenting and Customizing Error Information

– presentError: (page 2187)
Presents an error alert to the user as an application-modal dialog.

– presentError:modalForWindow:delegate:didPresentSelector:contextInfo: (page 2187)
Presents an error alert to the user as a document-modal sheet attached to document window.

– willPresentError: (page 2205)
Implemented by subclasses to return a custom version of the supplied error object that is more
suitable for presentation in alert sheets and dialogs.

Dispatching Messages

– doCommandBySelector: (page 2152)
Attempts to perform the indicated command.

– tryToPerform:with: (page 2202)
Attempts to perform the action indicated method with a specified argument.

Managing a Responder’s Menu

– setMenu: (page 2196)
Sets the receiver’s menu.

– menu (page 2163)
Returns the receiver’s menu.

Tasks 2141
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Updating the Services Menu

– validRequestorForSendType:returnType: (page 2204)
Overridden by subclasses to determine what services are available.

Getting the Undo Manager

– undoManager (page 2203)
Returns the undo manager for this responder.

Testing Events

– shouldBeTreatedAsInkEvent: (page 2197)
Returns YES if the specified event should be treated as an ink event, NO if it should be treated as a
mouse event.

Terminating the Responder Chain

– noResponderFor: (page 2182)
Handles the case where an event or action message falls off the end of the responder chain.

Setting the Interface Style

– setInterfaceStyle: (page 2195)
Sets the receiver’s style to the style specified by interfaceStyle, such as
NSMacintoshInterfaceStyle or NSWindows95InterfaceStyle.

– interfaceStyle (page 2158)
Returns the receiver’s interface style.

Touch and Gesture Events

– beginGestureWithEvent: (page 2144)
Informs the receiver that the user has begun a touch gesture.

– endGestureWithEvent: (page 2152)
Informs the receiver that the user has ended a touch gesture.

– magnifyWithEvent: (page 2160)
Informs the receiver that the user has begun a pinch gesture.

– rotateWithEvent: (page 2190)
Informs the receiver that the user has begun a rotation gesture.

– swipeWithEvent: (page 2199)
Informs the receiver that the user has begun a swipe gesture.

– touchesBeganWithEvent: (page 2200)
Informs the receiver that new set of touches has been recognized.

2142 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

– touchesMovedWithEvent: (page 2201)
Informs the receiver that one or more touches has moved.

– touchesCancelledWithEvent: (page 2200)
Informs the receiver that tracking of touches has been cancelled for any reason..

– touchesEndedWithEvent: (page 2201)
Informs the receiver that a set of touches have been removed.

Setting the Writing Direction

– makeBaseWritingDirectionLeftToRight: (page 2161)
Sets the paragraph base writing direction to be left to right.

– makeBaseWritingDirectionNatural: (page 2161)
Sets the paragraph base writing direction to be natural.

– makeBaseWritingDirectionRightToLeft: (page 2162)
Sets the paragraph base writing direction to be right to left.

– makeTextWritingDirectionLeftToRight: (page 2162)
Sets the character level attributed string direction attribute for left to right text.

– makeTextWritingDirectionNatural: (page 2163)
Removes the character-level writing direction attribute

– makeTextWritingDirectionRightToLeft: (page 2163)
Sets the character-level writing direction attribute to a single right-to-left embedding.

Instance Methods

acceptsFirstResponder
Overridden by subclasses to return YES if the receiver accepts first responder status.

- (BOOL)acceptsFirstResponder

Discussion
As first responder, the receiver is the first object in the responder chain to be sent key events and action
messages. The NSResponder implementation returns NO, indicating that by default a responder object
doesn’t agree to become first responder.

Availability
Available in Mac OS X v10.0 and later.

See Also
– becomeFirstResponder (page 2144)
– resignFirstResponder (page 2189)
needsPanelToBecomeKey (page 3191) (NSView)

Related Sample Code
BindingsJoystick
OpenCL NBody Simulation Example

Instance Methods 2143
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Sketch-112
SurfaceVertexProgram
VertexPerformanceDemo

Declared In
NSResponder.h

becomeFirstResponder
Notifies the receiver that it’s about to become first responder in its NSWindow.

- (BOOL)becomeFirstResponder

Discussion
The default implementation returns YES, accepting first responder status. Subclasses can override this method
to update state or perform some action such as highlighting the selection, or to return NO, refusing first
responder status.

Use the NSWindow makeFirstResponder: (page 3344) method, not this method, to make an object the first
responder. Never invoke this method directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– resignFirstResponder (page 2189)
– acceptsFirstResponder (page 2143)

Related Sample Code
FilterDemo
NURBSSurfaceVertexProg
Sketch-112
SurfaceVertexProgram
VertexPerformanceDemo

Declared In
NSResponder.h

beginGestureWithEvent:
Informs the receiver that the user has begun a touch gesture.

- (void)beginGestureWithEvent:(NSEvent *)event

Parameters
event

An event object representing the gesture beginning.

Discussion
The event will be sent to the view under the touch in the key window.

2144 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

cancelOperation:
Implemented by subclasses to cancel the current operation.

- (void)cancelOperation:(id)sender

Parameters
sender

The object invoking this method.

Discussion
This method is bound to the Escape and Command-. (period) keys. The key window first searches the view
hierarchy for a view whose key equivalent is Escape or Command-., whichever was entered. If none of these
views handles the key equivalent, the window sends a default action message of cancelOperation: to
the first responder and from there the message travels up the responder chain.

If no responder in the responder chain implements cancelOperation:, the key window searches the view
hierarchy for a view whose key equivalent is Escape (note that this may be redundant if the original key
equivalent was Escape). If no such responder is found, then a cancel: action message is sent to the first
responder in the responder chain that implements it.

NSResponder declares but does not implement this method.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSResponder.h

capitalizeWord:
Implemented by subclasses to capitalize the word or words surrounding the insertion point or selection,
expanding the selection if necessary.

- (void)capitalizeWord:(id)sender

Parameters
sender

The object invoking the method.

Discussion
If either end of the selection partially covers a word, that entire word is made lowercase. The sender argument
is typically the object that invoked this method. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2145
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

See Also
– lowercaseWord: (page 2160)
– uppercaseWord: (page 2203)
– changeCaseOfLetter: (page 2146)

Declared In
NSResponder.h

centerSelectionInVisibleArea:
Implemented by subclasses to scroll the selection, whatever it is, inside its visible area.

- (void)centerSelectionInVisibleArea:(id)sender

Parameters
sender

The object that invoked the method (typically).

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollLineDown: (page 2191)
– scrollLineUp: (page 2191)
– scrollPageDown: (page 2192)
– scrollPageUp: (page 2192)

Declared In
NSResponder.h

changeCaseOfLetter:
Implemented by subclasses to change the case of a letter or letters in the selection, perhaps by opening a
panel with capitalization options or by cycling through possible case combinations.

- (void)changeCaseOfLetter:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lowercaseWord: (page 2160)

2146 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

– uppercaseWord: (page 2203)
– capitalizeWord: (page 2145)

Declared In
NSResponder.h

complete:
Implemented by subclasses to complete an operation in progress or a partially constructed element.

- (void)complete:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
This method can be interpreted, for example, as a request to attempt expansion of a partial word, such as
for expanding a glossary shortcut, or to close a graphics item being drawn. NSResponder declares but doesn’t
implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

cursorUpdate:
Informs the receiver that the mouse cursor has moved into a cursor rectangle.

- (void)cursorUpdate:(NSEvent *)event

Parameters
event

An object encapsulating information about the cursor-update event (NSCursorUpdate (page 1094)).

Discussion
Override this method to set the cursor image. The default implementation uses cursor rectangles, if cursor
rectangles are currently valid. If they are not, it calls super to send the message up the responder chain.

If the responder implements this method, but decides not to handle a particular event, it should invoke the
superclass implementation of this method.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSResponder.h

Instance Methods 2147
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

deleteBackward:
Implemented by subclasses to delete the selection, if there is one, or a single element backward from the
insertion point (a letter or character in text, for example).

- (void)deleteBackward:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

deleteBackwardByDecomposingPreviousCharacter:
Implemented by subclasses to delete the selection, if there is one, or a single character backward from the
insertion point.

- (void)deleteBackwardByDecomposingPreviousCharacter:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If the previous character is canonically decomposable, this method should try to delete only the last character
in the grapheme cluster (for example, deleting “a”+ “´” results in “a”). NSResponder declares but does not
implement this method.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSResponder.h

deleteForward:
Implemented by subclasses to delete the selection, if there is one, or a single element forward from the
insertion point (a letter or character in text, for example).

- (void)deleteForward:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

2148 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

deleteToBeginningOfLine:
Implemented by subclasses to delete the selection, if there is one, or all text from the insertion point to the
beginning of a line (typically of text).

- (void)deleteToBeginningOfLine:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Also places the deleted text into the kill buffer. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– yank: (page 2205)

Declared In
NSResponder.h

deleteToBeginningOfParagraph:
Implemented by subclasses to delete the selection, if there is one, or all text from the insertion point to the
beginning of a paragraph of text.

- (void)deleteToBeginningOfParagraph:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Also places the deleted text into the kill buffer. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– yank: (page 2205)

Declared In
NSResponder.h

Instance Methods 2149
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

deleteToEndOfLine:
Implemented by subclasses to delete the selection, if there is one, or all text from the insertion point to the
end of a line (typically of text).

- (void)deleteToEndOfLine:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Also places the deleted text into the kill buffer. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

deleteToEndOfParagraph:
Implemented by subclasses to delete the selection, if there is one, or all text from the insertion point to the
end of a paragraph of text.

- (void)deleteToEndOfParagraph:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Also places the deleted text into the kill buffer. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– yank: (page 2205)

Declared In
NSResponder.h

deleteToMark:
Implemented by subclasses to delete the selection, if there is one, or all items from the insertion point to a
previously placed mark, including the selection itself if not empty.

- (void)deleteToMark:(id)sender

Parameters
sender

Typically the object that invoked this method.

2150 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Discussion
Also places the deleted text into the kill buffer. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMark: (page 2196)
– selectToMark: (page 2195)
– yank: (page 2205)

Declared In
NSResponder.h

deleteWordBackward:
Implemented by subclasses to delete the selection, if there is one, or a single word backward from the
insertion point.

- (void)deleteWordBackward:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

deleteWordForward:
Implemented by subclasses to delete the selection, if there is one, or a single word forward from the insertion
point.

- (void)deleteWordForward:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

Instance Methods 2151
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

doCommandBySelector:
Attempts to perform the indicated command.

- (void)doCommandBySelector:(SEL)aSelector

Parameters
aSelector

The selector identifying the method.

Discussion
If the receiver responds to aSelector, it invokes the method with nil as the argument. If the receiver
doesn’t respond, it sends this message to its next responder with the same selector. NSWindow and
NSApplication also send the message to their delegates. If the receiver has no next responder or delegate,
it beeps.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tryToPerform:with: (page 2202)
sendAction:to:from: (page 166) (NSApplication)

Declared In
NSResponder.h

endGestureWithEvent:
Informs the receiver that the user has ended a touch gesture.

- (void)endGestureWithEvent:(NSEvent *)event

Parameters
event

An event object representing the gesture end.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

flagsChanged:
Informs the receiver that the user has pressed or released a modifier key (Shift, Control, and so on).

- (void)flagsChanged:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the modifier-key event.

Discussion
The default implementation simply passes this message to the next responder.

2152 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

flushBufferedKeyEvents
Overridden by subclasses to clear any unprocessed key events.

- (void)flushBufferedKeyEvents

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

helpRequested:
Displays context-sensitive help for the receiver if such exists; otherwise passes this message to the next
responder.

- (void)helpRequested:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the help-request event.

Discussion
NSWindow invokes this method automatically when the user clicks for help—while processing theEvent.
Subclasses need not override this method, and application code shouldn’t directly invoke it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– showContextHelp: (page 2198)

Declared In
NSResponder.h

indent:
Implemented by subclasses to indent the selection or the insertion point if there is no selection.

- (void)indent:(id)sender

Parameters
sender

Typically the object that invoked this method.

Instance Methods 2153
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

insertBacktab:
Implemented by subclasses to handle a backward tab.

- (void)insertBacktab:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
A field editor might respond to this method by selecting the field before it, while a regular text object either
doesn’t respond to or ignores such a message. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

insertContainerBreak:
Implemented by subclasses to insert a container break (typically a page break) at the insertion point or
selection, deleting the selection if there is one.

- (void)insertContainerBreak:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method. NSTextView implements it to insert an
NSFormFeedCharacter character (0x000c).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSResponder.h

2154 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

insertDoubleQuoteIgnoringSubstitution:
Implemented by subclasses to insert a double quote character at the insertion point without interference
by automatic quote correction.

- (void)insertDoubleQuoteIgnoringSubstitution:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

insertLineBreak:
Implemented by subclasses to insert a line break (as distinguished from a paragraph break) at the insertion
point or selection, deleting the selection if there is one.

- (void)insertLineBreak:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method. NSTextView implements it to insert an
NSLineSeparatorCharacter character (0x2028).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSResponder.h

insertNewline:
Implemented by subclasses to insert a newline character at the insertion point or selection, deleting the
selection if there is one, or to end editing if the receiver is a text field or other field editor.

- (void)insertNewline:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Instance Methods 2155
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

insertNewlineIgnoringFieldEditor:
Implemented by subclasses to insert a line-break character at the insertion point or selection, deleting the
selection if there is one.

- (void)insertNewlineIgnoringFieldEditor:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Unlike insertNewline: (page 2155), this method always inserts a line-break character and doesn’t cause the
receiver to end editing. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

insertParagraphSeparator:
Implemented by subclasses to insert a paragraph separator at the insertion point or selection, deleting the
selection if there is one.

- (void)insertParagraphSeparator:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

insertSingleQuoteIgnoringSubstitution:
Implemented by subclasses to insert a single quote character at the insertion point without interference by
automatic quote correction.

- (void)insertSingleQuoteIgnoringSubstitution:(id)sender

2156 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

insertTab:
Implemented by subclasses to insert a tab character at the insertion point or selection, deleting the selection
if there is one, or to end editing if the receiver is a text field or other field editor.

- (void)insertTab:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

insertTabIgnoringFieldEditor:
Implemented by subclasses to insert a tab character at the insertion point or selection, deleting the selection
if there is one.

- (void)insertTabIgnoringFieldEditor:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Unlike insertTab: (page 2157), this method always inserts a tab character and doesn’t cause the receiver to
end editing. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

Instance Methods 2157
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

insertText:
Overridden by subclasses to insert the supplied string at the insertion point or selection, deleting the selection
if there is one.

- (void)insertText:(id)aString

Parameters
aString

The string to insert or replace the selection with. aString can be either an NSString object or an
NSAttributedString object.

Discussion
This method is often invoked by the system input manager after the receiver sends a interpretKeyEvents: (page
2158) message. The NSResponder implementation simply passes this message to the next responder, or beeps
if there is no next responder.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

interfaceStyle
Returns the receiver’s interface style.

- (NSInterfaceStyle)interfaceStyle

Discussion
interfaceStyle is an abstract method in NSResponder and just returns NSNoInterfaceStyle. It is
overridden in classes such as NSWindow and NSView to return the interface style, such as
NSMacintoshInterfaceStyle. A responder’s style (if other than NSNoInterfaceStyle) overrides all
other settings, such as those established by the defaults system.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setInterfaceStyle: (page 2195)

Declared In
NSInterfaceStyle.h

interpretKeyEvents:
Invoked by subclasses from their keyDown: (page 2159) method to handle a series of key events.

- (void)interpretKeyEvents:(NSArray *)eventArray

Parameters
eventArray

An array of key-event characters to give to the system input manager.

2158 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Discussion
This method sends the character input in eventArray to the system input manager for interpretation as
text to insert or commands to perform. The input manager responds to the request by sending
insertText: (page 2158) and doCommandBySelector: (page 2152) messages back to the invoker of this
method. Subclasses shouldn’t override this method.

See the NSInputManager and NSTextInput class and protocol specifications for more information on input
management.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

keyDown:
Informs the receiver that the user has pressed a key.

- (void)keyDown:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the key-down event.

Discussion
The receiver can interpret theEvent itself, or pass it to the system input manager using
interpretKeyEvents: (page 2158). The default implementation simply passes this message to the next
responder.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DragItemAround
GLFullScreen
NSOpenGL Fullscreen
QTNoStepsDemo

Declared In
NSResponder.h

keyUp:
Informs the receiver that the user has released a key.

- (void)keyUp:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the key-up event.

Instance Methods 2159
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

lowercaseWord:
Implemented by subclasses to make lowercase every letter in the word or words surrounding the insertion
point or selection, expanding the selection if necessary.

- (void)lowercaseWord:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If either end of the selection partially covers a word, that entire word is made lowercase. NSResponder
declares, but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– uppercaseWord: (page 2203)
– capitalizeWord: (page 2145)
– changeCaseOfLetter: (page 2146)

Declared In
NSResponder.h

magnifyWithEvent:
Informs the receiver that the user has begun a pinch gesture.

- (void)magnifyWithEvent:(NSEvent *)event

Parameters
event

An event object representing the magnify gesture.

Discussion
The event will be sent to the view under the touch in the key window.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

2160 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

makeBaseWritingDirectionLeftToRight:
Sets the paragraph base writing direction to be left to right.

- (void)makeBaseWritingDirectionLeftToRight:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Sets the NSAttributedString key NSWritingDirectionAttributeName to
NSWritingDirectionLeftToRight.

This action method is intended to be used both as the target of a menu item and for key bindings. The base
writing direction methods should be the target of three menu items in a submenu, under the Edit menu.

Default key bindings will also be provided for this method but will only be enabled for users of Hebrew or
Arabic, or those who have otherwise enabled a suitable preference.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

makeBaseWritingDirectionNatural:
Sets the paragraph base writing direction to be natural.

- (void)makeBaseWritingDirectionNatural:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Natural directionality is determined from the text in accordance with the Unicode bi-di algorithm. For more
information see NSParagraphStyle.

Sets the NSAttributedStringkey NSWritingDirectionAttributeName to
NSTextWritingDirectionEmbedding.

This action method is intended to be used both as the target of a menu item and for key bindings. The base
writing direction methods should be the target of three menu items in a submenu, under the Edit menu.

Default key bindings will also be provided for this method but will only be enabled for users of Hebrew or
Arabic, or those who have otherwise enabled a suitable preference.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

Instance Methods 2161
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

makeBaseWritingDirectionRightToLeft:
Sets the paragraph base writing direction to be right to left.

- (void)makeBaseWritingDirectionRightToLeft:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Sets the NSAttributedString key NSWritingDirectionAttributeName to
NSWritingDirectionRightToLeft.

This action method is intended to be used both as the target of a menu item and for key bindings. The base
writing direction methods should be the target of three menu items in a submenu, under the Edit menu.

Default key bindings will also be provided for this method but will only be enabled for users of Hebrew or
Arabic, or those who have otherwise enabled a suitable preference.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

makeTextWritingDirectionLeftToRight:
Sets the character level attributed string direction attribute for left to right text.

- (void)makeTextWritingDirectionLeftToRight:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Sets the NSAttributedString NSWritingDirectionAttributeName to
NSWritingDirectionLeftToRight.

This action method is intended to be used both as the target of a menu item and for key bindings. The text
writing directions should be the target of three similar menu items in a submenu under the Edit menu.

Default key bindings will also be provided for this method but will only be enabled for users of Hebrew or
Arabic, or those who have otherwise enabled a suitable preference.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

2162 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

makeTextWritingDirectionNatural:
Removes the character-level writing direction attribute

- (void)makeTextWritingDirectionNatural:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Removes the NSWritingDirectionAttributeName from an NSAttributedString.

This action method is intended to be used both as the target of a menu item and for key bindings. The text
writing directions should be the target of three similar menu items in a submenu under the Edit menu.

Default key bindings will also be provided for this method but will only be enabled for users of Hebrew or
Arabic, or those who have otherwise enabled a suitable preference.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

makeTextWritingDirectionRightToLeft:
Sets the character-level writing direction attribute to a single right-to-left embedding.

- (void)makeTextWritingDirectionRightToLeft:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
Sets the NSAttributedString key NSWritingDirectionAttributeName to
NSWritingDirectionRightToLeft.

This action method is intended to be used both as the target of a menu item and for key bindings. The text
writing directions should be the target of three similar menu items in a submenu under the Edit menu.

Default key bindings will also be provided for this method but will only be enabled for users of Hebrew or
Arabic, or those who have otherwise enabled a suitable preference.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

menu
Returns the receiver’s menu.

Instance Methods 2163
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

- (NSMenu *)menu

Discussion
For NSApplication this menu is the same as the menu returned by its mainMenu (page 151) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMenu: (page 2196)
menuForEvent: (page 3189) (NSView)
defaultMenu (page 3137) (NSView)

Related Sample Code
ButtonMadness
GLUT
MenuItemView
QTAudioContextInsert
UIElementInspector

Declared In
NSResponder.h

mouseDown:
Informs the receiver that the user has pressed the left mouse button.

- (void)mouseDown:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-down event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLFullScreen
NSOpenGL Fullscreen
Sketch-112

Declared In
NSResponder.h

mouseDragged:
Informs the receiver that the user has moved the mouse with the left button pressed.

- (void)mouseDragged:(NSEvent *)theEvent

2164 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Parameters
theEvent

An object encapsulating information about the mouse-dragged event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLFullScreen
NSOpenGL Fullscreen

Declared In
NSResponder.h

mouseEntered:
Informs the receiver that the cursor has entered a tracking rectangle.

- (void)mouseEntered:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-entered event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

mouseExited:
Informs the receiver that the cursor has exited a tracking rectangle.

- (void)mouseExited:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-exited event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

Instance Methods 2165
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

mouseMoved:
Informs the receiver that the mouse has moved.

- (void)mouseMoved:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-moved event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.0 and later.

See Also
setAcceptsMouseMovedEvents: (page 3366) (NSWindow)

Declared In
NSResponder.h

mouseUp:
Informs the receiver that the user has released the left mouse button.

- (void)mouseUp:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-up event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLFullScreen
NSOpenGL Fullscreen

Declared In
NSResponder.h

moveBackward:
Implemented by subclasses to move the selection or insertion point one element or character backward.

- (void)moveBackward:(id)sender

Parameters
sender

Typically the object that invoked this method.

2166 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed at the beginning
of the former selection. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveBackwardAndModifySelection:
Implemented by subclasses to expand or reduce either end of the selection backward by one element or
character.

- (void)moveBackwardAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If the end being modified is the backward end, this method expands the selection; if the end being modified
is the forward end, it reduces the selection. The first moveBackwardAndModifySelection: or
moveForwardAndModifySelection: (page 2168) method in a series determines the end being modified by
always expanding. Hence, this method results in the backward end becoming the mobile one if invoked first.
By default, moveLeftAndModifySelection: (page 2169) is bound to the left arrow key.

NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveDown:
Implemented by subclasses to move the selection or insertion point one element or character down.

- (void)moveDown:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed below the
beginning of the former selection. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2167
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Declared In
NSResponder.h

moveDownAndModifySelection:
Implemented by subclasses to expand or reduce the top or bottom end of the selection downward by one
element, character, or line (whichever is appropriate for text direction).

- (void)moveDownAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If the end being modified is the bottom, this method expands the selection; if the end being modified is the
top, it reduces the selection. The first moveDownAndModifySelection: or
moveUpAndModifySelection: (page 2178) method in a series determines the end being modified by always
expanding. Hence, this method results in the bottom end becoming the mobile one if invoked first.

NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveForward:
Implemented by subclasses to move the selection or insertion point one element or character forward.

- (void)moveForward:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed at the end of
the former selection. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveForwardAndModifySelection:
Implemented by subclasses to expand or reduce either end of the selection forward by one element or
character.

2168 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

- (void)moveForwardAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If the end being modified is the backward end, this method reduces the selection; if the end being modified
is the forward end, it expands the selection. The first moveBackwardAndModifySelection: (page 2167) or
moveForwardAndModifySelection: method in a series determines the end being modified by always
expanding. Hence, this method results in the forward end becoming the mobile one if invoked first. By default,
moveRightAndModifySelection: (page 2171) is bound to the right arrow key.

NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveLeft:
Implemented by subclasses to move the selection or insertion point one element or character to the left.

- (void)moveLeft:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed at the left end
of the former selection. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveLeftAndModifySelection:
Implemented by subclasses to expand or reduce either end of the selection to the left (display order) by one
element or character.

- (void)moveLeftAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Instance Methods 2169
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Discussion
If the end being modified is the left end, this method expands the selection; if the end being modified is the
right end, it reduces the selection. The first moveLeftAndModifySelection: or
moveRightAndModifySelection: (page 2171) method in a series determines the end being modified by
always expanding. Hence, this method results in the left end becoming the mobile one if invoked first. By
default, this method is bound to the left arrow key.

NSResponder declares but doesn’t implement this method.

The essential difference between this method and the corresponding
moveBackwardAndModifySelection: (page 2167) is that the latter method moves in logical order, which
can differ in bidirectional text, whereas this method moves in display order.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSResponder.h

moveParagraphBackwardAndModifySelection:
Implemented by subclasses to move the selection or insertion point to the beginning of the previous
paragraph, expanding or reducing the current selection.

- (void)moveParagraphBackwardAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If the cursor is already at the beginning of a paragraph, the selection moves backward to the beginning of
the previous paragraph.

NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

moveParagraphForwardAndModifySelection:
Implemented by subclasses to move the selection or insertion point to the beginning of the next paragraph,
expanding or reducing the current selection.

- (void)moveParagraphForwardAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

2170 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Discussion
If the cursor is already at the end of a paragraph, the selection moves forward to the end of the next paragraph.

NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

moveRight:
Implemented by subclasses to move the selection or insertion point one element or character to the right.

- (void)moveRight:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed at the right
end of the former selection. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveRightAndModifySelection:
Implemented by subclasses to expand or reduce either end of the selection to the right (display order) by
one element or character.

- (void)moveRightAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If the end being modified is the left end, this method reduces the selection; if the end being modified is the
right end, it expands the selection. The first moveLeftAndModifySelection: (page 2169) or
moveRightAndModifySelection: method in a series determines the end being modified by always
expanding. Hence, this method results in the right end becoming the mobile one if invoked first. By default,
this method is bound to the right arrow key.

NSResponder declares but doesn’t implement this method.

The essential difference between this method and the corresponding
moveForwardAndModifySelection: (page 2168) is that the latter method moves in logical order, which
can differ in bidirectional text, whereas this method moves in display order.

Instance Methods 2171
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSResponder.h

moveToBeginningOfDocument:
Implemented by subclasses to move the selection to the first element of the document or the insertion point
to the beginning.

- (void)moveToBeginningOfDocument:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveToBeginningOfDocumentAndModifySelection:
Implemented by subclasses to move the selection or insertion point to the beginning of the document,
expanding or reducing the current selection.

- (void)moveToBeginningOfDocumentAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

moveToBeginningOfLine:
Implemented by subclasses to move the selection to the first element of the selected line or the insertion
point to the beginning of the line.

- (void)moveToBeginningOfLine:(id)sender

2172 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveToBeginningOfLineAndModifySelection:
Implemented by subclasses to move the selection or insertion point to the beginning of the line, expanding
or reducing the current selection.

- (void)moveToBeginningOfLineAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

moveToBeginningOfParagraph:
Implemented by subclasses to move the insertion point to the beginning of the selected paragraph.

- (void)moveToBeginningOfParagraph:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

Instance Methods 2173
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

moveToBeginningOfParagraphAndModifySelection:
Implemented by subclasses to move the selection or insertion point to the beginning of the current paragraph,
expanding or reducing the current selection.

- (void)moveToBeginningOfParagraphAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

moveToEndOfDocument:
Implemented by subclasses to move the selection to the last element of the document or the insertion point
to the end.

- (void)moveToEndOfDocument:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveToEndOfDocumentAndModifySelection:
Implemented by subclasses to move the selection or insertion point to the end of the document, expanding
or reducing the current selection.

- (void)moveToEndOfDocumentAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Availability
Available in Mac OS X v10.6 and later.

2174 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Declared In
NSResponder.h

moveToEndOfLine:
Implemented by subclasses to move the selection to the last element of the selected line or the insertion
point to the end of the line.

- (void)moveToEndOfLine:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveToEndOfLineAndModifySelection:
Implemented by subclasses to move the selection or insertion point to the end of the line, expanding or
reducing the current selection.

- (void)moveToEndOfLineAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

moveToEndOfParagraph:
Implemented by subclasses to move the insertion point to the end of the selected paragraph.

- (void)moveToEndOfParagraph:(id)sender

Parameters
sender

Typically the object that invoked this method.

Instance Methods 2175
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveToEndOfParagraphAndModifySelection:
Implemented by subclasses to move the selection or insertion point to the end of the current paragraph,
expanding or reducing the current selection.

- (void)moveToEndOfParagraphAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

moveToLeftEndOfLine:
Implemented by subclasses to move the selection or insertion point to the left end of the line.

- (void)moveToLeftEndOfLine:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed at left end of
the line. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

moveToLeftEndOfLineAndModifySelection:
Implemented by subclasses to move the selection or insertion point to the left end of the line, expanding or
contracting the selection as required.

2176 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

- (void)moveToLeftEndOfLineAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

moveToRightEndOfLine:
Implemented by subclasses to move the selection or insertion point to the right end of the line

- (void)moveToRightEndOfLine:(id)sender

Parameters
sender

Typically the object that invoked this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

moveToRightEndOfLineAndModifySelection:
Implemented by subclasses to move the selection or insertion point to the right end of the line, expanding
or contracting the selection as required.

- (void)moveToRightEndOfLineAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

moveUp:
Implemented by subclasses to move the selection or insertion point one element or character up.

- (void)moveUp:(id)sender

Instance Methods 2177
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Parameters
sender

Typically the object that invoked this method.

Discussion
In text, if there is a selection it should be deselected, and the insertion point should be placed above the
beginning of the former selection. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveUpAndModifySelection:
Implemented by subclasses to expand or reduce the top or bottom end of the selection upward by one
element, character, or line (whichever is appropriate for text direction).

- (void)moveUpAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If the end being modified is the bottom, this method reduces the selection; if the end being modified is the
top, it expands the selection. The first moveDownAndModifySelection: (page 2168) or
moveUpAndModifySelection:method in a series determines the end being modified by always expanding.
Hence, this method results in the top end becoming the mobile one if invoked first.

NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

moveWordBackward:
Implemented by subclasses to move the selection or insertion point one word backward.

- (void)moveWordBackward:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If there is a selection it should be deselected, and the insertion point should be placed at the end of the first
word preceding the former selection. NSResponder declares but doesn’t implement this method.

2178 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– moveWordLeft: (page 2180)

Declared In
NSResponder.h

moveWordBackwardAndModifySelection:
Implemented by subclasses to expand or reduce either end of the selection backward by one whole word.

- (void)moveWordBackwardAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If the end being modified is the backward end, this method expands the selection; if the end being modified
is the forward end, it reduces the selection. The first moveWordBackwardAndModifySelection: or
moveWordForwardAndModifySelection: (page 2180) method in a series determines the end being modified
by always expanding. Hence, this method results in the backward end becoming the mobile one if invoked
first.

NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– moveWordLeftAndModifySelection: (page 2181)

Declared In
NSResponder.h

moveWordForward:
Implemented by subclasses to move the selection or insertion point one word forward, in logical order.

- (void)moveWordForward:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If there is a selection it should be deselected, and the insertion point should be placed at the beginning of
the first word following the former selection. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2179
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

See Also
– moveWordRight: (page 2181)

Declared In
NSResponder.h

moveWordForwardAndModifySelection:
Implemented by subclasses to expand or reduce either end of the selection forward by one whole word.

- (void)moveWordForwardAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If the end being modified is the backward end, this method reduces the selection; if the end being modified
is the forward end, it expands the selection. The first moveWordBackwardAndModifySelection: (page
2179) or moveWordForwardAndModifySelection:method in a series determines the end being modified
by always expanding. Hence, this method results in the forward end becoming the mobile one if invoked
first. NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– moveWordRightAndModifySelection: (page 2182)

Declared In
NSResponder.h

moveWordLeft:
Implemented by subclasses to move the selection or insertion point one word to the left, in display order.

- (void)moveWordLeft:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If there is a selection it should be deselected, and the insertion point should be placed at the end of the first
word to the left of the former selection. NSResponder declares but doesn’t implement this method.

The main difference between this method and the corresponding moveWordBackward: (page 2178) method
is that the latter moves in logical order, which is important in bidirectional text, whereas this method moves
in display order.

Availability
Available in Mac OS X v10.3 and later.

2180 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Declared In
NSResponder.h

moveWordLeftAndModifySelection:
Implemented by subclasses to expand or reduce either end of the selection left by one whole word in display
order.

- (void)moveWordLeftAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If the end being modified is the left end, this method expands the selection; if the end being modified is the
right end, it reduces the selection. The first moveWordLeftAndModifySelection: or
moveWordRightAndModifySelection: (page 2182) method in a series determines the end being modified
by always expanding. Hence, this method results in the left end becoming the mobile one if invoked first.

NSResponder declares but doesn’t implement this method.

The main difference between this method and the corresponding
moveWordBackwardAndModifySelection: (page 2179) method is that the latter moves in logical order,
which is important in bidirectional text, whereas this method moves in display order.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSResponder.h

moveWordRight:
Implemented by subclasses to move the selection or insertion point one word right.

- (void)moveWordRight:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If there is a selection it should be deselected, and the insertion point should be placed at the beginning of
the first word to the right of the former selection. NSResponder declares but doesn’t implement this method.

The main difference between this method and the corresponding moveWordForward: (page 2179) method
is that the latter moves in logical order, which is important in bidirectional text, whereas this method moves
in display order.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 2181
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Declared In
NSResponder.h

moveWordRightAndModifySelection:
Implemented by subclasses to expand or reduce either end of the selection to the right by one whole word.

- (void)moveWordRightAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If the end being modified is the backward end, this method reduces the selection; if the end being modified
is the forward end, it expands the selection. The first moveWordBackwardAndModifySelection: (page
2179) or moveWordForwardAndModifySelection:method in a series determines the end being modified
by always expanding. Hence, this method results in the forward end becoming the mobile one if invoked
first. NSResponder declares but doesn’t implement this method.

The main difference between this method and the corresponding
moveWordForwardAndModifySelection: (page 2180) method is that the latter moves in logical order,
which is important in bidirectional text, whereas this method moves in display order.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSResponder.h

nextResponder
Returns the receiver’s next responder, or nil if it has none.

- (NSResponder *)nextResponder

Availability
Available in Mac OS X v10.0 and later.

See Also
– setNextResponder: (page 2197)
– noResponderFor: (page 2182)

Declared In
NSResponder.h

noResponderFor:
Handles the case where an event or action message falls off the end of the responder chain.

- (void)noResponderFor:(SEL)eventSelector

2182 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Parameters
eventSelector

A selector identifying the action or event message.

Discussion
The default implementation beeps if eventSelector is keyDown: (page 2159).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

otherMouseDown:
Informs the receiver that the user has pressed a mouse button other than the left or right one.

- (void)otherMouseDown:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-down event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSResponder.h

otherMouseDragged:
Informs the receiver that the user has moved the mouse with a button other than the left or right button
pressed.

- (void)otherMouseDragged:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-dragged event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSResponder.h

Instance Methods 2183
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

otherMouseUp:
Informs the receiver that the user has released a mouse button other than the left or right button.

- (void)otherMouseUp:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-up event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSResponder.h

pageDown:
Implemented by subclasses to scroll the receiver down (or back) one page in its scroll view, also moving the
insertion point to the top of the newly displayed page.

- (void)pageDown:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollPageDown: (page 2192)
– scrollPageUp: (page 2192)

Declared In
NSResponder.h

pageDownAndModifySelection:
Implemented by subclasses to scroll the receiver down (or back) one page in its scroll view, also moving the
insertion point to the top of the newly displayed page. The selection is expanded or contracted as required.

- (void)pageDownAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

2184 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

pageUp:
Implemented by subclasses to scroll the receiver up (or forward) one page in its scroll view, also moving the
insertion point to the top of the newly displayed page.

- (void)pageUp:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollPageDown: (page 2192)
– scrollPageUp: (page 2192)

Declared In
NSResponder.h

pageUpAndModifySelection:
Implemented by subclasses to scroll the receiver up (or forward) one page in its scroll view, also moving the
insertion point to the top of the newly displayed page. The selection is expanded or contracted as necessary.

- (void)pageUpAndModifySelection:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

Instance Methods 2185
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

performKeyEquivalent:
Overridden by subclasses to handle a key equivalent.

- (BOOL)performKeyEquivalent:(NSEvent *)theEvent

Parameters
theEvent

An event object that represents the key equivalent pressed.

Discussion
If the character code or codes in theEvent match the receiver’s key equivalent, the receiver should respond
to the event and return YES. The default implementation does nothing and returns NO.

Note: performKeyEquivalent: (page 2186) takes an NSEvent object as its argument, while
performMnemonic: (page 2186) takes an NSString object containing the uninterpreted characters of the
key event. You should extract the characters for a key equivalent using the NSEvent method
charactersIgnoringModifiers (page 1074).

Availability
Available in Mac OS X v10.0 and later.

See Also
performKeyEquivalent: (page 3195) (NSView)
performKeyEquivalent: (page 478) (NSButton)

Declared In
NSResponder.h

performMnemonic:
Overridden by subclasses to handle a mnemonic.

- (BOOL)performMnemonic:(NSString *)aString

Parameters
aString

A string containing mnemonic character code or codes.

Discussion
If the character code or codes in aString match the receiver’s mnemonic, the receiver should perform the
mnemonic and return YES. The default implementation does nothing and returns NO. Mnemonics are not
supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
performMnemonic: (page 3195) (NSView)

Declared In
NSResponder.h

2186 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

presentError:
Presents an error alert to the user as an application-modal dialog.

- (BOOL)presentError:(NSError *)anError

Parameters
anError

An object containing information about an error.

Discussion
The alert displays information found in the NSError object anError; this information can include error
description, recovery suggestion, failure reason, and button titles (all localized). The method returns YES if
error recovery succeeded and NO otherwise. For error recovery to be attempted, an recovery-attempter object
(that is, an object conforming to the NSErrorRecoveryAttempting informal protocol) must be associated
with anError.

The default implementation of this method sends willPresentError: (page 2205) to self. By doing this,
NSResponder gives subclasses an opportunity to customize error presentation. It then forwards the message,
passing any customized error object, to the next responder; if there is no next responder, it passes the error
object to NSApp, which displays a document-modal error alert. When the user dismisses the alert, any recovery
attempter associated with the error object is given a chance to recover from the error. See the class description
for the precise route up the responder chain (plus document and controller objects) this message might
travel.

It is not recommended that you attempt to override this method. If you wish to customize the error
presentation, override willPresentError: (page 2205) instead.

Availability
Available in Mac OS X v10.4 and later.

See Also
– presentError:modalForWindow:delegate:didPresentSelector:contextInfo: (page 2187)

Related Sample Code
AbstractTree
Core Data HTML Store
CoreRecipes
DesktopImage
Image Kit with Core Data

Declared In
NSResponder.h

presentError:modalForWindow:delegate:didPresentSelector:contextInfo:
Presents an error alert to the user as a document-modal sheet attached to document window.

- (void)presentError:(NSError *)error modalForWindow:(NSWindow *)aWindow
delegate:(id)delegate didPresentSelector:(SEL)didPresentSelector
contextInfo:(void *)contextInfo

Instance Methods 2187
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Parameters
error

The object encapsulating information about the error.

aWindow
The window object identifying the window owning the document-modal sheet.

delegate
The modal delegate for the sheet.

didPresentSelector
A selector identifying the message to be sent to the modal delegate. The didPresentSelector
selector must have the signature:

- (void)didPresentErrorWithRecovery:(BOOL)didRecover
 contextInfo:(void *)contextInfo

contextInfo
Supplemental data to be passed to the modal delegate; can be NULL.

Discussion
The information displayed in the alert is extracted from the NSError object error; it may include a description,
recovery suggestion, failure reason, and button titles (all localized). Once the user dismisses the alert and
any recovery attempter associated with the error object has had a chance to recover from it, the receiver
sends a message identified by didPresentSelector to the modal delegate delegate. (A recovery attempter
is an object that conforms to the NSErrorRecoveryAttempting informal protocol.)

The modal delegate implements the method identified by didPresentSelector to perform any post-error
processing if recovery failed or was not attempted (that is, didRecover is NO). Any supplemental data is
passed to the modal delegate via contextInfo.

The default implementation of this method sends willPresentError: (page 2205) to self. By doing this,
NSResponder gives subclasses an opportunity to customize error presentation. It then forwards the message,
passing any customized error, to the next responder or; if there is no next responder, it passes the error object
to NSApp, which displays a document-modal error alert. When the user dismisses the alert, any recovery
attempter associated with the error object is given a chance to recover from the error. See the class description
for the precise route up the responder chain (plus document and controller objects) this message might
travel.

It is not recommended that you attempt to override this method. If you wish to customize the error
presentation, override willPresentError: (page 2205) instead.

Availability
Available in Mac OS X v10.4 and later.

See Also
– presentError: (page 2187)

Related Sample Code
Sketch+Accessibility
ZipBrowser

Declared In
NSResponder.h

2188 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

resignFirstResponder
Notifies the receiver that it’s been asked to relinquish its status as first responder in its window.

- (BOOL)resignFirstResponder

Discussion
The default implementation returns YES, resigning first responder status. Subclasses can override this method
to update state or perform some action such as unhighlighting the selection, or to return NO, refusing to
relinquish first responder status.

Use the NSWindow makeFirstResponder: (page 3344) method, not this method, to make an object the first
responder. Never invoke this method directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– becomeFirstResponder (page 2144)
– acceptsFirstResponder (page 2143)

Related Sample Code
From A View to A Movie
From A View to A Picture
NURBSSurfaceVertexProg
SurfaceVertexProgram
VertexPerformanceDemo

Declared In
NSResponder.h

rightMouseDown:
Informs the receiver that the user has pressed the right mouse button.

- (void)rightMouseDown:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-down event.

Discussion
The default implementation simply passes this message to the next responder.

Note: The NSView implementation of this method does not pass the message up the responder chain, it
handles it directly. See rightMouseDown: in NSView Class Reference for details.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

Instance Methods 2189
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

rightMouseDragged:
Informs the receiver that the user has moved the mouse with the right button pressed .

- (void)rightMouseDragged:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-dragged event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

rightMouseUp:
Informs the receiver that the user has released the right mouse button.

- (void)rightMouseUp:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-up event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

rotateWithEvent:
Informs the receiver that the user has begun a rotation gesture.

- (void)rotateWithEvent:(NSEvent *)event

Parameters
event

An event object representing the rotate gesture.

Discussion
The event will be sent to the view under the touch in the key window.

Availability
Available in Mac OS X v10.6 and later.

2190 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Declared In
NSResponder.h

scrollLineDown:
Implemented by subclasses to scroll the receiver one line down in its scroll view, without changing the
selection.

- (void)scrollLineDown:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollLineUp: (page 2191)
lineScroll (page 2350) (NSScrollView)

Declared In
NSResponder.h

scrollLineUp:
Implemented by subclasses to scroll the receiver one line up in its scroll view, without changing the selection.

- (void)scrollLineUp:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollLineDown: (page 2191)
lineScroll (page 2350) (NSScrollView)

Declared In
NSResponder.h

Instance Methods 2191
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

scrollPageDown:
Implemented by subclasses to scroll the receiver one page down in its scroll view, without changing the
selection.

- (void)scrollPageDown:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pageDown: (page 2184)
– pageUp: (page 2185)
pageScroll (page 2351) (NSScrollView)

Declared In
NSResponder.h

scrollPageUp:
Implemented by subclasses to scroll the receiver one page up in its scroll view, without changing the selection.

- (void)scrollPageUp:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pageDown: (page 2184)
– pageUp: (page 2185)
pageScroll (page 2351) (NSScrollView)

Declared In
NSResponder.h

scrollToBeginningOfDocument:
Implemented by subclasses to scroll the receiver to the beginning of the document, without changing the
selection.

2192 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

- (void)scrollToBeginningOfDocument:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

scrollToEndOfDocument:
Implemented by subclasses to scroll the receiver to the end of the document, without changing the selection.

- (void)scrollToEndOfDocument:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

scrollWheel:
Informs the receiver that the mouse’s scroll wheel has moved.

- (void)scrollWheel:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the wheel-scrolling event.

Discussion
The default implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

Instance Methods 2193
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

selectAll:
Implemented by subclasses to select all selectable elements.

- (void)selectAll:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

selectLine:
Implemented by subclasses to select all elements in the line or lines containing the selection or insertion
point.

- (void)selectLine:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

selectParagraph:
Implemented by subclasses to select all paragraphs containing the selection or insertion point.

- (void)selectParagraph:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

2194 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Declared In
NSResponder.h

selectToMark:
Implemented by subclasses to select all items from the insertion point or selection to a previously placed
mark, including the selection itself if not empty.

- (void)selectToMark:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMark: (page 2196)
– deleteToMark: (page 2150)

Declared In
NSResponder.h

selectWord:
Implemented by subclasses to extend the selection to the nearest word boundaries outside it (up to, but not
including, word delimiters).

- (void)selectWord:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

setInterfaceStyle:
Sets the receiver’s style to the style specified by interfaceStyle, such as NSMacintoshInterfaceStyle
or NSWindows95InterfaceStyle.

Instance Methods 2195
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

- (void)setInterfaceStyle:(NSInterfaceStyle)interfaceStyle

Parameters
interfaceStyle

An enum constant identifying an interface style.

Discussion
setInterfaceStyle: is an abstract method in NSResponder, but is overridden in classes such as NSWindow
and NSView to actually set the interface style. You should almost never need to invoke or override this
method, but if you do override it, your version should always invoke the implementation in super.

Availability
Available in Mac OS X v10.0 and later.

See Also
– interfaceStyle (page 2158)

Declared In
NSInterfaceStyle.h

setMark:
Implemented by subclasses to set a mark at the insertion point or selection, which is used by
deleteToMark: (page 2150) and selectToMark: (page 2195).

- (void)setMark:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– swapWithMark: (page 2198)

Declared In
NSResponder.h

setMenu:
Sets the receiver’s menu.

- (void)setMenu:(NSMenu *)aMenu

Parameters
aMenu

The menu object to set as the receiver's menu.

2196 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Discussion
If the receiver is an NSApplication object, this method sets the main menu, typically set using
setMainMenu: (page 170).

Availability
Available in Mac OS X v10.0 and later.

See Also
– menu (page 2163)

Related Sample Code
From A View to A Movie
From A View to A Picture
VertexPerformanceTest

Declared In
NSResponder.h

setNextResponder:
Sets the receiver’s next responder.

- (void)setNextResponder:(NSResponder *)aResponder

Parameters
aResponder

An object that inherits, directly or indirectly, from NSResponder.

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextResponder (page 2182)

Declared In
NSResponder.h

shouldBeTreatedAsInkEvent:
Returns YES if the specified event should be treated as an ink event, NO if it should be treated as a mouse
event.

- (BOOL)shouldBeTreatedAsInkEvent:(NSEvent *)theEvent

Parameters
theEvent

An event object representing the event to be tested.

Discussion
This method provides the ability to distinguish when a pen-down should start inking versus when a pen-down
should be treated as a mouse down event. This allows for a write-anywhere model for pen-based input.

Instance Methods 2197
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

The default implementation in NSApplication sends the method to the NSWindow object under the pen.
If the window is inactive, this method returns YES, unless the pen-down is in the window drag region. If the
window is active, this method is sent to the NSView object under the pen.

The default implementation in NSView returns YES, and NSControl overrides and returns NO. This allows
write-anywhere over most NSView objects, but allows the pen to be used to track in controls and to move
windows.

A custom view should override this method to get the correct behavior for a pen-down in the view.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSResponder.h

showContextHelp:
Implemented by subclasses to invoke the help system, displaying information relevant to the receiver and
its current state.

- (void)showContextHelp:(id)sender

Parameters
sender

Typically the object that invoked this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– helpRequested: (page 2153)

Declared In
NSResponder.h

swapWithMark:
Swaps the mark and the selection or insertion point, so that what was marked is now the selection or insertion
point, and what was the insertion point or selection is now the mark.

- (void)swapWithMark:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

2198 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

See Also
– setMark: (page 2196)

Declared In
NSResponder.h

swipeWithEvent:
Informs the receiver that the user has begun a swipe gesture.

- (void)swipeWithEvent:(NSEvent *)event

Parameters
event

An event object representing the swipe gesture.

Discussion
The event will be sent to the view under the touch in the key window.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

tabletPoint:
Informs the receiver that a tablet-point event has occurred.

- (void)tabletPoint:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the tablet-point event.

Discussion
Tablet events are represented by NSEvent objects of type NSTabletPoint (page 1095). They describe the
current state of a transducer (that is, a pointing device) that is in proximity to its tablet, reflecting changes
such as location, pressure, tilt, and rotation. See the NSEvent reference for the methods that allow you to
extract this and other information from theEvent. The default implementation of NSResponder passes the
message to the next responder.

Availability
Available in Mac OS X v10.4 or later.

See Also
– tabletProximity: (page 2200)

Declared In
NSResponder.h

Instance Methods 2199
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

tabletProximity:
Informs the receiver that a tablet-proximity event has occurred.

- (void)tabletProximity:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the tablet-point event.

Discussion
Tablet events are represented by NSEvent objects of type NSTabletProximity (page 1095). Tablet devices
generate proximity events when the transducer (pointing device) nears a tablet and when it moves away
from a tablet. From an event object of this type you can extract information about the kind of device and its
capabilities, as well as the relation of this tablet-proximity event to various tablet-point events; see the
NSEvent reference for details. The default implementation passes the message to the next responder.

Availability
Available in Mac OS X v10.4 or later.

See Also
– tabletPoint: (page 2199)

Declared In
NSResponder.h

touchesBeganWithEvent:
Informs the receiver that new set of touches has been recognized.

- (void)touchesBeganWithEvent:(NSEvent *)event

Parameters
event

An event object representing the beginning of a touch.

Discussion
The event will be sent to the view under the touch in the key window. To get the set of touches that began
for this view (or descendants of this view) send [event touchesMatchingPhase:NSTouchPhaseBegan inView:self].

This is not always the point of contact with the touch device. A touch that transitions from resting to active
may be part of a touchesBeganWithEvent: set.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

touchesCancelledWithEvent:
Informs the receiver that tracking of touches has been cancelled for any reason..

- (void)touchesCancelledWithEvent:(NSEvent *)event

2200 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Parameters
event

An event object representing the cancellation of a touch event.

Discussion
The event will be sent to the view under the touch in the key window.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

touchesEndedWithEvent:
Informs the receiver that a set of touches have been removed.

- (void)touchesEndedWithEvent:(NSEvent *)event

Parameters
event

An event object representing the ending of a touch event.

Discussion
The event will be sent to the view under the touch in the key window. To get the set of touches that ended
for this view (or descendants of this view) send [event touchesMatchingPhase:NSTouchPhaseEnded inView:self].

This is not always the point of removal with the touch device. A touch that transitions from active to resting
may be part of an touchesEndedWithEvent: set.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSResponder.h

touchesMovedWithEvent:
Informs the receiver that one or more touches has moved.

- (void)touchesMovedWithEvent:(NSEvent *)event

Parameters
event

An event object representing a touch movement.

Discussion
The event will be sent to the view under the touch in the key window. To get the set of touches that moved
for this view (or descendants of this view) send [event touchesMatchingPhase:NSTouchPhaseMoved
inView:self].

Availability
Available in Mac OS X v10.6 and later.

Instance Methods 2201
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Declared In
NSResponder.h

transpose:
Transposes the characters to either side of the insertion point and advances the insertion point past both of
them. Does nothing to a selected range of text.

- (void)transpose:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

transposeWords:
Transposes the words to either side of the insertion point and advances the insertion point past both of
them. Does nothing to a selected range of text.

- (void)transposeWords:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
NSResponder declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSResponder.h

tryToPerform:with:
Attempts to perform the action indicated method with a specified argument.

- (BOOL)tryToPerform:(SEL)anAction with:(id)anObject

Parameters
anAction

The selector identifying the action method.

2202 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

anObject
The object to use as the sole argument of the action method.

Return Value
Returns NO if no responder is found that responds to anAction, YES otherwise.

Discussion
If the receiver responds to anAction, it invokes the method with anObject as the argument and returns
YES. If the receiver doesn’t respond, it sends this message to its next responder with the same selector and
object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– doCommandBySelector: (page 2152)
sendAction:to:from: (page 166) (NSApplication)

Declared In
NSResponder.h

undoManager
Returns the undo manager for this responder.

- (NSUndoManager *)undoManager

Discussion
NSResponder’s implementation simply passes this message to the next responder.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DotViewUndo
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility
Sketch-112

Declared In
NSResponder.h

uppercaseWord:
Implemented by subclasses to make uppercase every letter in the word or words surrounding the insertion
point or selection, expanding the selection if necessary.

- (void)uppercaseWord:(id)sender

Parameters
sender

Typically the object that invoked this method.

Instance Methods 2203
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Discussion
If either end of the selection partially covers a word, that entire word is made uppercase. NSResponder
declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lowercaseWord: (page 2160)
– capitalizeWord: (page 2145)
– changeCaseOfLetter: (page 2146)

Declared In
NSResponder.h

validRequestorForSendType:returnType:
Overridden by subclasses to determine what services are available.

- (id)validRequestorForSendType:(NSString *)sendType returnType:(NSString
*)returnType

Parameters
sendType

A string identifying the send type of pasteboard data. May be an empty string (see discussion).

returnType
A string identifying the return type of pasteboard data. May be an empty string (see discussion).

Return Value
If the receiver can place data of sendType on the pasteboard and receive data of returnType, it should
return self; otherwise it should return either [super validRequestorForSendType:returnType:] or
[[self nextResponder] validRequestorForSendType:returnType:], which allows an object higher
up in the responder chain to have an opportunity to handle the message.

Discussion
With each event, and for each service in the Services menu, the application object sends this message up
the responder chain with the send and return type for the service being checked. This method is therefore
invoked many times per event. The default implementation simply forwards this message to the next
responder, ultimately returning nil.

Either sendType or returnType—but not both—may be empty. If sendType is empty, the service doesn’t
require input from the application requesting the service. If returnType is empty, the service doesn’t return
data.

Availability
Available in Mac OS X v10.0 and later.

See Also
registerServicesMenuSendTypes:returnTypes: (page 158) (NSApplication)
writeSelectionToPasteboard:types: (page 3798) (NSServicesRequests protocol)
readSelectionFromPasteboard: (page 3797) (NSServicesRequests protocol)

2204 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Declared In
NSResponder.h

willPresentError:
Implemented by subclasses to return a custom version of the supplied error object that is more suitable for
presentation in alert sheets and dialogs.

- (NSError *)willPresentError:(NSError *)anError

Parameters
anError

The error object to be customized.

Return Value
The customized error object; if you decide not to customize the error presentation, return by sending this
message to super (that is, return [super willPresentError:anError]).

Discussion
When overriding this method, you can examine anError and, if its localized description or recovery
information is unhelpfully generic, return an error object with more specific localized text. If you do this,
always use the domain and error code of the NSError object to distinguish between errors whose presentation
you want to customize and those you do not. Don’t make decisions based on the localized description,
recovery suggestion, or recovery options because parsing localized text is problematic.

The default implementation of this method simply returns anError unchanged.

Availability
Available in Mac OS X v10.4 and later.

See Also
– presentError: (page 2187)
– presentError:modalForWindow:delegate:didPresentSelector:contextInfo: (page 2187)

Declared In
NSResponder.h

yank:
Replaces the insertion point or selection with text from the kill buffer.

- (void)yank:(id)sender

Parameters
sender

Typically the object that invoked this method.

Discussion
If invoked sequentially, cycles through the kill buffer in reverse order. See “Standard Action Methods for
Selecting and Editing” in Cocoa Event-Handling Guide for more information on the kill buffer. NSResponder
declares but doesn’t implement this method.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2205
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

See Also
– deleteToBeginningOfLine: (page 2149)
– deleteToEndOfLine: (page 2150)
– deleteToBeginningOfParagraph: (page 2149)
– deleteToEndOfParagraph: (page 2150)
– deleteToMark: (page 2150)

Declared In
NSResponder.h

2206 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 107

NSResponder Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSRuleEditor.h

Overview

An NSRuleEditor object is a view that allows the user to visually create and configure a list of options which
are expressed by the rule editor as a predicate (see Predicate Programming Guide). The view has a delegate
which offers a tree of choices to the view. The choices are presented by the view to the user as a row of
popup buttons, static text fields, and custom views. Each row in the list represents a particular path down
the tree of choices.

NSRuleEditor exposes one binding, rows. You can bind rows to an ordered collection (such as an instance
of NSMutableArray). Each object in the collection should have the following properties:

@"rowType"
An integer representing the type of the row (NSRuleEditorRowType).

@"subrows"
An ordered to-many relation (such as an instance of NSMutableArray) containing the directly nested
subrows for the given row.

@"displayValues"
An ordered to-many relation containing the display values for the row.

@"criteria"
An ordered to-many relation containing the criteria for the row.

Overview 2207
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Tasks

Configuring a Rule Editor

– delegate (page 2212)
Returns the receiver’s delegate.

– setDelegate: (page 2223)
Sets the receiver’s delegate.

– isEditable (page 2215)
Returns a Boolean value that indicates whether the receiver is editable.

– setEditable: (page 2224)
Sets whether the receiver is editable.

– nestingMode (page 2215)
Returns the nesting mode for the receiver.

– setNestingMode: (page 2225)
Sets the nesting mode for the receiver.

– canRemoveAllRows (page 2211)
Returns a Boolean value that indicates whether all the rows can be removed.

– setCanRemoveAllRows: (page 2221)
Sets whether all the rows can be removed.

– rowHeight (page 2219)
Returns the row height for the receiver.

– setRowHeight: (page 2226)
Sets the row height for the receiver.

Working with Formatting

– formattingDictionary (page 2213)
Returns the formatting dictionary for the receiver.

– setFormattingDictionary: (page 2224)
Sets the formatting dictionary for the receiver.

– formattingStringsFilename (page 2214)
Returns the name of the strings file for the receiver.

– setFormattingStringsFilename: (page 2224)
Sets the name of the strings file used for formatting.

Providing Data

– reloadCriteria (page 2217)
Instructs the receiver to refetch criteria from its delegate.

– setCriteria:andDisplayValues:forRowAtIndex: (page 2222)
Modifies the row at a given index to contain the given items and values.

2208 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

– criteriaForRow: (page 2211)
Returns the currently chosen items for a given row.

– displayValuesForRow: (page 2212)
Returns the chosen values for a given row.

Obtaining Row Information

– numberOfRows (page 2215)
Returns the number of rows in the receiver.

– parentRowForRow: (page 2216)
Returns the index of the parent of a given row.

– rowForDisplayValue: (page 2219)
Returns the index of the row containing a given value.

– rowTypeForRow: (page 2220)
Returns the type of a given row.

– subrowIndexesForRow: (page 2227)
Returns the immediate subrows of a given row.

Working with the Selection

– selectedRowIndexes (page 2221)
Returns the indexes of the receiver’s selected rows.

– selectRowIndexes:byExtendingSelection: (page 2221)
Sets in the receiver the indexes of rows that are selected.

Manipulating Rows

– addRow: (page 2210)
Adds a row to the receiver.

– insertRowAtIndex:withType:asSubrowOfRow:animate: (page 2214)
Adds a new row of a given type at a given location.

– removeRowAtIndex: (page 2217)
Removes the row at a given index.

– removeRowsAtIndexes:includeSubrows: (page 2218)
Removes the rows at given indexes.

Working with Predicates

– predicate (page 2216)
Returns the predicate for the receiver.

– reloadPredicate (page 2217)
Instructs the receiver to regenerate its predicate by invoking the corresponding delegate method.

Tasks 2209
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

– predicateForRow: (page 2216)
Returns the predicate for a given row.

Supporting Bindings

– rowClass (page 2218)
Returns the class used to create a new row in the “rows” binding.

– setRowClass: (page 2225)
Sets the class to use to create a new row in the "rows” binding.

– rowTypeKeyPath (page 2220)
Returns the key path for the row type.

– setRowTypeKeyPath: (page 2226)
Sets the key path for the row type.

– subrowsKeyPath (page 2227)
The key path for the subrows.

– setSubrowsKeyPath: (page 2227)
Set the key path for the subrows.

– criteriaKeyPath (page 2212)
Returns the criteria key path.

– setCriteriaKeyPath: (page 2222)
Sets the criteria key path.

– displayValuesKeyPath (page 2213)
Returns the display values key path.

– setDisplayValuesKeyPath: (page 2223)
Sets the display values key path.

Overriding ViewDidMoveToWindow

– viewDidMoveToWindow (page 2228)
Overrides the NSView implementation.

Instance Methods

addRow:
Adds a row to the receiver.

- (void)addRow:(id)sender

Parameters
sender

Typically the object that sent the message.

2210 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
PhotoSearch
PredicateEditorSample

Declared In
NSRuleEditor.h

canRemoveAllRows
Returns a Boolean value that indicates whether all the rows can be removed.

- (BOOL)canRemoveAllRows

Return Value
YES if all the rows can be removed, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setCanRemoveAllRows: (page 2221)

Declared In
NSRuleEditor.h

criteriaForRow:
Returns the currently chosen items for a given row.

- (NSArray *)criteriaForRow:(NSInteger)row

Parameters
row

The index of a row in the receiver.

Return Value
The currently chosen items for row row.

Discussion
The items returned are the same as those returned from the delegate method “Configuring a Rule Editor” (page
2208).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

Instance Methods 2211
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

criteriaKeyPath
Returns the criteria key path.

- (NSString *)criteriaKeyPath

Return Value
The criteria key path.

Discussion
The default value is @"criteria".

The key path is used to get the criteria for a row in the "rows" binding. The criteria objects are what the
delegate returns from “Configuring a Rule Editor” (page 2208). The corresponding property should be an
ordered to-many relationship.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setCriteriaKeyPath: (page 2222)

Declared In
NSRuleEditor.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setDelegate: (page 2223)

Declared In
NSRuleEditor.h

displayValuesForRow:
Returns the chosen values for a given row.

- (NSArray *)displayValuesForRow:(NSInteger)row

Parameters
row

The index of a row in the receiver.

2212 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Return Value
The chosen values (strings, views, or menu items) for row row.

Discussion
The values returned are the same as those returned from the delegate method “Working with
Formatting” (page 2208).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

displayValuesKeyPath
Returns the display values key path.

- (NSString *)displayValuesKeyPath

Return Value
The display values key path.

Discussion
The default is @"displayValues".

The key path is used to get the display values for a row in the "rows" binding. The display values are what
the delegate returns from “Working with Formatting” (page 2208). The corresponding property should be an
ordered to-many relationship.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setDisplayValuesKeyPath: (page 2223)

Declared In
NSRuleEditor.h

formattingDictionary
Returns the formatting dictionary for the receiver.

- (NSDictionary *)formattingDictionary

Return Value
The formatting dictionary for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setFormattingStringsFilename: (page 2224)

Instance Methods 2213
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Declared In
NSRuleEditor.h

formattingStringsFilename
Returns the name of the strings file for the receiver.

- (NSString *)formattingStringsFilename

Return Value
The name of the strings file for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setFormattingStringsFilename: (page 2224)

Declared In
NSRuleEditor.h

insertRowAtIndex:withType:asSubrowOfRow:animate:
Adds a new row of a given type at a given location.

- (void)insertRowAtIndex:(NSInteger)rowIndex withType:(NSRuleEditorRowType)rowType
asSubrowOfRow:(NSInteger)parentRow animate:(BOOL)shouldAnimate

Parameters
rowIndex

The index at which the new row should be inserted. rowIndex must be greater than parentRow,
and much specify a row that does not fall amongst the children of some other parent.

rowType
The type of the new row.

parentRow
The index of the row of which the new row is a child. Pass -1 to indicate that the new row should be
a root row.

shouldAnimate
YES if creation of the new row should be animated, otherwise NO.

Special Considerations

Important: If parentRow is greater than or equal to rowIndex, or if rowIndex would fall amongst the
children of some other parent, or if the nesting mode forbids this configuration, an
NSInvalidArgumentException is raised.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

2214 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

isEditable
Returns a Boolean value that indicates whether the receiver is editable.

- (BOOL)isEditable

Return Value
YES if the receiver is editable, otherwise NO.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setEditable: (page 2224)

Declared In
NSRuleEditor.h

nestingMode
Returns the nesting mode for the receiver.

- (NSRuleEditorNestingMode)nestingMode

Return Value
The nesting mode for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setNestingMode: (page 2225)

Declared In
NSRuleEditor.h

numberOfRows
Returns the number of rows in the receiver.

- (NSInteger)numberOfRows

Return Value
The number of rows in the receiver.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
PhotoSearch
PredicateEditorSample

Instance Methods 2215
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Declared In
NSRuleEditor.h

parentRowForRow:
Returns the index of the parent of a given row.

- (NSInteger)parentRowForRow:(NSInteger)rowIndex

Parameters
rowIndex

The index of a row in the receiver.

Important: Raises an NSRangeException if rowIndex is less than 0 or greater than or equal to the number
of rows.

Return Value
The index of the parent of the row at rowIndex. If the row at rowIndex is a root row, returns -1.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

predicate
Returns the predicate for the receiver.

- (NSPredicate *)predicate

Return Value
If the delegate implements NSRuleEditor (page 2207), the predicate for the receiver. If the delegate does
implement NSRuleEditor, or if the delegate does not return enough parts to construct a full predicate, returns
nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

predicateForRow:
Returns the predicate for a given row.

- (NSPredicate *)predicateForRow:(NSInteger)row

2216 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Parameters
row

The index of a row in the receiver.

Return Value
The predicate for the row at row.

Discussion
You should rarely have a need to call this directly, but you can override this method in a subclass to perform
specialized predicate handling for certain criteria or display values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

reloadCriteria
Instructs the receiver to refetch criteria from its delegate.

- (void)reloadCriteria

Discussion
You can use this method to indicate that the available criteria may have changed and should be refetched
from the delegate and the popups recalculated. If any item in a given row is “orphaned” (that is, is no longer
reported as a child of its previous parent), its criteria and display values are set to valid choices.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

reloadPredicate
Instructs the receiver to regenerate its predicate by invoking the corresponding delegate method.

- (void)reloadPredicate

Discussion
You typically invoke this method because something has changed (for example, a view's value).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

removeRowAtIndex:
Removes the row at a given index.

Instance Methods 2217
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

- (void)removeRowAtIndex:(NSInteger)rowIndex

Parameters
rowIndex

The index of a row in the receiver.

Important: Raises an NSRangeException if rowIndex is less than 0 or greater than or equal to the number
of rows.

Discussion
Any subrows of the deleted row are adopted by the parent of the deleted row, or are made root rows.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

removeRowsAtIndexes:includeSubrows:
Removes the rows at given indexes.

- (void)removeRowsAtIndexes:(NSIndexSet *)rowIndexes
includeSubrows:(BOOL)includeSubrows

Parameters
rowIndexes

Indexes of one or more rows in the receiver.

Important: Raises an NSRangeException if any index in rowIndexes is less than 0 or greater than or equal
to the number of rows.

includeSubrows
If YES, then sub-rows of deleted rows are also deleted; if NO, then each sub-row is adopted by its first
non-deleted ancestor, or becomes a root row.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

rowClass
Returns the class used to create a new row in the “rows” binding.

- (Class)rowClass

Return Value
The class used to create a new row in the "rows" binding.

2218 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Discussion
By default, this is NSMutableDictionary.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setRowClass: (page 2225)

Declared In
NSRuleEditor.h

rowForDisplayValue:
Returns the index of the row containing a given value.

- (NSInteger)rowForDisplayValue:(id)displayValue

Parameters
displayValue

The display value (string, view, or menu item) of an item in the receiver. This value must not be nil.

Important: Raises NSInvalidArgumentException if displayValue is nil.

Return Value
The index of the row containing displayValue, or NSNotFound.

Discussion
This method searches each row via pointer equality for the given display value, which may be present as an
alternative in a popup menu for that row.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

rowHeight
Returns the row height for the receiver.

- (CGFloat)rowHeight

Return Value
The row height for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setRowHeight: (page 2226)

Instance Methods 2219
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Related Sample Code
PredicateEditorSample

Declared In
NSRuleEditor.h

rowTypeForRow:
Returns the type of a given row.

- (NSRuleEditorRowType)rowTypeForRow:(NSInteger)rowIndex

Parameters
rowIndex

The index of a row in the receiver.

Important: Raises an NSRangeException if rowIndex is less than 0 or greater than or equal to the number
of rows.

Return Value
The type of the row at rowIndex.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

rowTypeKeyPath
Returns the key path for the row type.

- (NSString *)rowTypeKeyPath

Return Value
The key path for the row type.

Discussion
The default value is @"rowType".

The key path is used to get the row type in the “rows” binding. The corresponding property should be a
number that specifies an NSRuleEditorRowType value (see “Row Types” (page 2229)).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setRowTypeKeyPath: (page 2226)

Declared In
NSRuleEditor.h

2220 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

selectedRowIndexes
Returns the indexes of the receiver’s selected rows.

- (NSIndexSet *)selectedRowIndexes

Return Value
The indexes of the receiver’s selected rows.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

selectRowIndexes:byExtendingSelection:
Sets in the receiver the indexes of rows that are selected.

- (void)selectRowIndexes:(NSIndexSet *)indexes byExtendingSelection:(BOOL)extend

Parameters
indexes

The indexes of rows in the receiver to select.

Important: Raises an NSRangeException if any index in rowIndexes is less than 0 or greater than or equal
to the number of rows.

extend
If NO, the selected rows are specified by indexes. If YES, the rows indicated by indexes are added
to the collection of already selected rows, providing multiple selection.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

setCanRemoveAllRows:
Sets whether all the rows can be removed.

- (void)setCanRemoveAllRows:(BOOL)val

Parameters
val

YES if all the rows can be removed, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– canRemoveAllRows (page 2211)

Instance Methods 2221
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Declared In
NSRuleEditor.h

setCriteria:andDisplayValues:forRowAtIndex:
Modifies the row at a given index to contain the given items and values.

- (void)setCriteria:(NSArray *)criteria andDisplayValues:(NSArray *)values
forRowAtIndex:(NSInteger)rowIndex

Parameters
criteria

The array of criteria for the row at rowIndex. Pass an empty array to force the receiver to query its
delegate. This value must not be nil.

Important: Raises an NSInvalidArgumentException if criteria is nil.

values
The array of values for the row at rowIndex. Pass an empty array to force the receiver to query its
delegate. This value must not be nil.

Important: Raises an NSInvalidArgumentException if values is nil.

rowIndex
The index of a row in the receiver.

Important: Raises an NSRangeException if rowIndex is equal to or larger than the number of rows, or
less than 0.

Discussion
It is your responsibility to ensure that each item in the array is a child of the previous item, and that the first
item is a root item for the row type. If the last item has child items, then the items array will be extended by
querying the delegate for child items until a childless item is reached. If values contains fewer objects than
the (possibly extended) criteria array, then the delegate is queried to construct the remaining display values.
If you want the delegate to be queried for all the criteria or all the display values, pass empty arrays; do not
pass nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

setCriteriaKeyPath:
Sets the criteria key path.

- (void)setCriteriaKeyPath:(NSString *)keyPath

2222 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Parameters
keyPath

The criteria key path.

Discussion
The criteria key path is described in criteriaKeyPath (page 2212).

Availability
Available in Mac OS X v10.5 and later.

See Also
– criteriaKeyPath (page 2212)

Declared In
NSRuleEditor.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)delegate

Parameters
delegate

The delegate for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– delegate (page 2212)

Declared In
NSRuleEditor.h

setDisplayValuesKeyPath:
Sets the display values key path.

- (void)setDisplayValuesKeyPath:(NSString *)keyPath

Parameters
keyPath

The display values key path.

Discussion
The display values key path is described in displayValuesKeyPath (page 2213).

Availability
Available in Mac OS X v10.5 and later.

See Also
– displayValuesKeyPath (page 2213)

Instance Methods 2223
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Declared In
NSRuleEditor.h

setEditable:
Sets whether the receiver is editable.

- (void)setEditable:(BOOL)editable

Parameters
editable

YES if the receiver is editable, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isEditable (page 2215)

Declared In
NSRuleEditor.h

setFormattingDictionary:
Sets the formatting dictionary for the receiver.

- (void)setFormattingDictionary:(NSDictionary *)dictionary

Parameters
dictionary

The formatting dictionary for the receiver.

Discussion
If you set the formatting dictionary with this method, it sets the current to formatting strings file name nil
(see formattingStringsFilename (page 2214)).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setFormattingStringsFilename: (page 2224)

Declared In
NSRuleEditor.h

setFormattingStringsFilename:
Sets the name of the strings file used for formatting.

- (void)setFormattingStringsFilename:(NSString *)stringsFilename

2224 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Parameters
stringsFilename

The name of the strings file for the receiver.

Discussion
NSRuleEditor looks for a strings file with the given name in the main bundle and (if appropriate) the bundle
containing the nib file from which it was loaded. If it finds a strings file resource with the given name,
NSRuleEditor loads it and sets it as the formatting dictionary for the receiver. You can obtain the resulting
dictionary using formattingDictionary (page 2213)].

If you set the formatting dictionary with setFormattingDictionary: (page 2224), it sets the current to
formatting strings file name nil (see formattingStringsFilename (page 2214)).

Availability
Available in Mac OS X v10.5 and later.

See Also
– formattingDictionary (page 2213)

Declared In
NSRuleEditor.h

setNestingMode:
Sets the nesting mode for the receiver.

- (void)setNestingMode:(NSRuleEditorNestingMode)mode

Parameters
mode

The nesting mode for the receiver.

Discussion
You typically set the nesting mode at view creation time and do not subsequently modify it. The default is
NSRuleEditorNestingModeCompound.

Availability
Available in Mac OS X v10.5 and later.

See Also
– nestingMode (page 2215)

Declared In
NSRuleEditor.h

setRowClass:
Sets the class to use to create a new row in the "rows” binding.

- (void)setRowClass:(Class)rowClass

Instance Methods 2225
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Parameters
rowClass

The class to use to create a new row in the "rows” binding.

Availability
Available in Mac OS X v10.5 and later.

See Also
– rowClass (page 2218)

Declared In
NSRuleEditor.h

setRowHeight:
Sets the row height for the receiver.

- (void)setRowHeight:(CGFloat)height

Parameters
height

The row height for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– rowHeight (page 2219)

Declared In
NSRuleEditor.h

setRowTypeKeyPath:
Sets the key path for the row type.

- (void)setRowTypeKeyPath:(NSString *)keyPath

Parameters
keyPath

The key path for the row type.

Discussion
The row type key path is described in rowTypeKeyPath (page 2220).

Availability
Available in Mac OS X v10.5 and later.

See Also
– rowTypeKeyPath (page 2220)

Declared In
NSRuleEditor.h

2226 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

setSubrowsKeyPath:
Set the key path for the subrows.

- (void)setSubrowsKeyPath:(NSString *)keyPath

Parameters
keyPath

The key path for the subrows.

Discussion
The subrows key path is described in subrowsKeyPath (page 2227).

Availability
Available in Mac OS X v10.5 and later.

See Also
– subrowsKeyPath (page 2227)

Declared In
NSRuleEditor.h

subrowIndexesForRow:
Returns the immediate subrows of a given row.

- (NSIndexSet *)subrowIndexesForRow:(NSInteger)rowIndex

Parameters
rowIndex

The index of a row in the receiver, or -1 to get the top-level rows.

Important: Raises an NSRangeException if rowIndex is less than -1 or greater than or equal to the number
of rows.

Return Value
The immediate subrows of the row at rowIndex.

Discussion
Rows are numbered starting at 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

subrowsKeyPath
The key path for the subrows.

- (NSString *)subrowsKeyPath

Instance Methods 2227
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Return Value
The key path for the subrows.

Discussion
The default value is @"subrows".

The key path is used to get the nested rows in the “rows” binding. The corresponding property should be
an ordered to-many relationship containing additional bound row objects.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setSubrowsKeyPath: (page 2227)

Declared In
NSRuleEditor.h

viewDidMoveToWindow
Overrides the NSView implementation.

- (void)viewDidMoveToWindow

Special Considerations

If you override this method in a subclass, you must invoke super’s implementation.

Constants

NSRuleEditorNestingMode
Specifies a type for nesting modes.

typedef NSUInteger NSRuleEditorNestingMode;

Discussion
See “Nesting Modes” (page 2228) for possible values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

Nesting Modes
These constants specify the nesting mode for the rule editor.

2228 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

enum {
 NSRuleEditorNestingModeSingle,
 NSRuleEditorNestingModeList,
 NSRuleEditorNestingModeCompound,
 NSRuleEditorNestingModeSimple
};

Constants
NSRuleEditorNestingModeSingle

Only a single row is allowed.

Plus/minus buttons are not shown.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

NSRuleEditorNestingModeList
Allows a single list, with no nesting and no compound rows.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

NSRuleEditorNestingModeCompound
Unlimited nesting and compound rows.

This is the default.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

NSRuleEditorNestingModeSimple
One compound row at the top with subrows beneath it, and no further nesting allowed.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

Declared In
NSRuleEditor.h

NSRuleEditorRowType
Specifies a type for row types.

typedef NSUInteger NSRuleEditorRowType;

Discussion
See “Row Types” (page 2229) for possible values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

Row Types
Specify the type of a rule editor row.

Constants 2229
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

enum {
 NSRuleEditorRowTypeSimple,
 NSRuleEditorRowTypeCompound
};

Constants
NSRuleEditorRowTypeSimple

Specifies a simple row.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

NSRuleEditorRowTypeCompound
Specifies a compound row.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

Declared In
NSRuleEditor.h

Predicate Part Keys
These strings are used as keys to the dictionary returned from the optional delegate method
NSRuleEditor (page 2207). To construct a valid predicate, the union of the dictionaries for each item in the row
must contain the required parts.

APPKIT_EXTERN NSString * const NSRuleEditorPredicateLeftExpression;
APPKIT_EXTERN NSString * const NSRuleEditorPredicateRightExpression;
APPKIT_EXTERN NSString * const NSRuleEditorPredicateComparisonModifier;
APPKIT_EXTERN NSString * const NSRuleEditorPredicateOptions;
APPKIT_EXTERN NSString * const NSRuleEditorPredicateOperatorType;
APPKIT_EXTERN NSString * const NSRuleEditorPredicateCustomSelector;
APPKIT_EXTERN NSString * const NSRuleEditorPredicateCompoundType;

Constants
NSRuleEditorPredicateLeftExpression

The corresponding value is an NSExpression object representing the left expression in the predicate.

This value is required for a non-nil comparison predicate.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

NSRuleEditorPredicateRightExpression
The corresponding value is an NSExpression object representing the right expression in the predicate.

This value is required for a non-nil comparison predicate.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

NSRuleEditorPredicateComparisonModifier
The corresponding value is an NSNumber object representing a NSComparisonPredicateModifier
constant the of the predicate.

This value is optional—if not specified, NSDirectPredicateModifier is assumed.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

2230 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

NSRuleEditorPredicateOptions
The corresponding value is an NSNumber object representing a
NSComparisonPredicate_Optionsbitfield.

If no value is specified, 0 (no options) is assumed.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

NSRuleEditorPredicateOperatorType
The corresponding value is an NSNumber object representing a NSPredicateOperatorType constant.

This value is required for a non-nil comparison predicate.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

NSRuleEditorPredicateCustomSelector
The corresponding value is an NSString object representing a custom selector.

If specified, this overrides the operator type, options, and comparison modifier.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

NSRuleEditorPredicateCompoundType
The corresponding value is an NSNumber object representing a Compound Predicate Types
constant.

If specified, the other keys are ignored and the predicate for the row will be an NSCompoundPredicate
predicate whose subpredicates are the predicates of the subrows of the given row.

Available in Mac OS X v10.5 and later.

Declared in NSRuleEditor.h.

Declared In
NSRuleEditor.h

Notifications

NSRuleEditorRowsDidChangeNotification
This notification is posted to the default notification center whenever the view's rows change.

The object is the rule editor; there is no userInfo object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSRuleEditor.h

Notifications 2231
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

2232 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 108

NSRuleEditor Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSRulerMarker.h

Companion guide Rulers and Paragraph Styles

Related sample code Rulers
Sketch-112

Overview

An NSRulerMarker object displays a symbol on an NSRulerView object, indicating a location for whatever
graphics element it represents in the client of the ruler view (for example, a margin or tab setting, or the
edges of a graphic on the page).

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

NSCopying
– copyWithZone:

Overview 2233
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

Tasks

Creating Instances

– initWithRulerView:markerLocation:image:imageOrigin: (page 2237)
Initializes a newly allocated ruler marker, associating it with (but not adding it to) a specified ruler
view and assigning the attributes provided.

Getting the Ruler View

– ruler (page 2240)
Returns the receiver's ruler view.

Setting the Image

– setImage: (page 2240)
Sets the receiver’s image.

– image (page 2236)
Returns the image displayed by the receiver.

– setImageOrigin: (page 2241)
Sets the point in the receiver’s image that is positioned at the receiver’s location on the ruler view.

– imageOrigin (page 2236)
Returns the point in the receiver’s image positioned at the receiver’s location on the ruler view.

– imageRectInRuler (page 2236)
Returns the rectangle occupied by the receiver’s image.

– thicknessRequiredInRuler (page 2243)
Returns the amount of the receiver’s image that’s displayed above or to the left of the ruler view's
baseline.

Setting Movability

– setMovable: (page 2242)
Sets whether the user can move the receiver in its ruler view.

– isMovable (page 2238)
Returns whether the user can move the receiver on its ruler view.

– setRemovable: (page 2242)
Sets whether the user can remove the receiver from its ruler view.

– isRemovable (page 2239)
Returns whether the user can remove the receiver from its ruler view.

2234 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

Setting the Location

– setMarkerLocation: (page 2241)
Sets the location of the receiver in the coordinate system of the ruler view's client view.

– markerLocation (page 2239)
Returns the location of the receiver in the coordinate system of the ruler view's client view.

Setting the Represented Object

– setRepresentedObject: (page 2242)
Sets the object the receiver represents.

– representedObject (page 2239)
Returns the object the receiver represents.

Drawing and Event Handling

– drawRect: (page 2235)
Draws the receiver’s image that appears in the supplied rectangle.

– isDragging (page 2238)
Returns whether the receiver is being dragged.

– trackMouse:adding: (page 2243)
Handles user manipulation of the receiver in its ruler view.

Instance Methods

drawRect:
Draws the receiver’s image that appears in the supplied rectangle.

- (void)drawRect:(NSRect)aRect

Parameters
aRect

The rectangle to be drawn, in the ruler view's coordinate system.

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageRectInRuler (page 2236)

Declared In
NSRulerMarker.h

Instance Methods 2235
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

image
Returns the image displayed by the receiver.

- (NSImage *)image

Return Value
The image displayed by the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImage: (page 2240)

Declared In
NSRulerMarker.h

imageOrigin
Returns the point in the receiver’s image positioned at the receiver’s location on the ruler view.

- (NSPoint)imageOrigin

Return Value
The point in the receiver’s image positioned at the receiver’s location on the ruler view, expressed in the
image’s coordinate system.

Discussion
For a horizontal ruler, the x coordinate of the image origin is aligned with the location of the marker, and
the y coordinate lies on the baseline of the ruler. For vertical rulers, the y coordinate of the image origin is
the location, and the x coordinate lies on the baseline.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImageOrigin: (page 2241)
– imageRectInRuler (page 2236)

Declared In
NSRulerMarker.h

imageRectInRuler
Returns the rectangle occupied by the receiver’s image.

- (NSRect)imageRectInRuler

Return Value
The rectangle occupied by the receiver’s image, in the ruler view's coordinate system, accounting for whether
the ruler view's coordinate system is flipped.

2236 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawRect: (page 2235)
– thicknessRequiredInRuler (page 2243)

Declared In
NSRulerMarker.h

initWithRulerView:markerLocation:image:imageOrigin:
Initializes a newly allocated ruler marker, associating it with (but not adding it to) a specified ruler view and
assigning the attributes provided.

- (id)initWithRulerView:(NSRulerView *)aRulerView markerLocation:(CGFloat)location
image:(NSImage *)anImage imageOrigin:(NSPoint)imageOrigin

Parameters
aRulerView

The ruler view with which to associate the ruler marker. This method raises an
NSInvalidArgumentException if aRulerView is nil.

location
The x or y position of the marker in the client view’s coordinate system, depending on whether the
ruler view is horizontal or vertical.

anImage
The image displayed at the marker location. This method raises an NSInvalidArgumentException
if anImage is nil.

imageOrigin
The point within the image positioned at the marker location, expressed in pixels relative to the
lower-left corner of the image.

Return Value
An initialized ruler marker object.

Discussion
The image used to draw the marker must be appropriate for the orientation of the ruler. Markers may need
to look different on a horizontal ruler than on a vertical ruler, and the ruler view neither scales nor rotates
the images.

To add the new ruler marker to aRulerView, use either of NSRulerView’s addMarker: (page 2251) or
trackMarker:withMouseEvent: (page 2262) methods.addMarker: (page 2251) immediately puts the marker
on the ruler, while trackMarker:withMouseEvent: (page 2262) allows the client view to intercede in the
addition and placement of the marker.

A new ruler marker can be moved on its ruler view, but not removed. Use setMovable: (page 2242) and
setRemovable: (page 2242) to change these attributes. The new ruler marker also has no represented object;
use setRepresentedObject: (page 2242) to set one.

This method is the designated initializer for the NSRulerMarker class.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2237
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

See Also
– setMarkerLocation: (page 2241)
– setImage: (page 2240)
– setImageOrigin: (page 2241)

Related Sample Code
Rulers

Declared In
NSRulerMarker.h

isDragging
Returns whether the receiver is being dragged.

- (BOOL)isDragging

Return Value
YES if the receiver is being dragged, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– trackMouse:adding: (page 2243)

Declared In
NSRulerMarker.h

isMovable
Returns whether the user can move the receiver on its ruler view.

- (BOOL)isMovable

Return Value
YES if the user can move the receiver on its ruler view, NO otherwise.

Discussion
By default ruler markers are movable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMovable: (page 2242)
– isRemovable (page 2239)

Declared In
NSRulerMarker.h

2238 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

isRemovable
Returns whether the user can remove the receiver from its ruler view.

- (BOOL)isRemovable

Return Value
YES if the user can remove the receiver from its ruler view, NO otherwise.

Discussion
By default ruler markers are not removable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRemovable: (page 2242)
– isMovable (page 2238)

Declared In
NSRulerMarker.h

markerLocation
Returns the location of the receiver in the coordinate system of the ruler view's client view.

- (CGFloat)markerLocation

Return Value
The location of the receiver in the coordinate system of the ruler view's client view. This is an x position for
a horizontal ruler, a y position for a vertical ruler.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMarkerLocation: (page 2241)

Related Sample Code
Rulers

Declared In
NSRulerMarker.h

representedObject
Returns the object the receiver represents.

- (id < NSCopying >)representedObject

Return Value
The object the receiver represents.

Instance Methods 2239
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

Discussion
See About Ruler Markers for more information on the represented object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRepresentedObject: (page 2242)

Declared In
NSRulerMarker.h

ruler
Returns the receiver's ruler view.

- (NSRulerView *)ruler

Return Value
The receiver's ruler view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addMarker: (page 2251) (NSRulerView)

Declared In
NSRulerMarker.h

setImage:
Sets the receiver’s image.

- (void)setImage:(NSImage *)anImage

Parameters
anImage

The new image.

Discussion
The image used to draw the marker must be appropriate for the orientation of the ruler. Markers may need
to look different on a horizontal ruler than on a vertical ruler, and the ruler view neither scales nor rotates
the images.

Availability
Available in Mac OS X v10.0 and later.

See Also
– image (page 2236)
– setImageOrigin: (page 2241)

2240 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

Declared In
NSRulerMarker.h

setImageOrigin:
Sets the point in the receiver’s image that is positioned at the receiver’s location on the ruler view.

- (void)setImageOrigin:(NSPoint)aPoint

Parameters
aPoint

The point within the image positioned at the marker location, expressed in pixels relative to the
lower-left corner of the image.

Discussion
For a horizontal ruler, the x coordinate of the image origin is aligned with the location of the marker, and
the y coordinate lies on the baseline of the ruler. For vertical rulers, the y coordinate of the image origin is
the location, and the x coordinate lies on the baseline.

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageOrigin (page 2236)
– setImage: (page 2240)
– setMarkerLocation: (page 2241)

Declared In
NSRulerMarker.h

setMarkerLocation:
Sets the location of the receiver in the coordinate system of the ruler view's client view.

- (void)setMarkerLocation:(CGFloat)location

Parameters
location

The location of the receiver in the coordinate system of the ruler view's client view. This is an x position
for a horizontal ruler, a y position for a vertical ruler.

Availability
Available in Mac OS X v10.0 and later.

See Also
– markerLocation (page 2239)
– setImageOrigin: (page 2241)

Related Sample Code
Rulers

Declared In
NSRulerMarker.h

Instance Methods 2241
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

setMovable:
Sets whether the user can move the receiver in its ruler view.

- (void)setMovable:(BOOL)flag

Parameters
flag

YES to allow the user to drag the marker image in the ruler, NO to make it immobile.

Discussion
By default ruler markers are movable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isMovable (page 2238)
– setRemovable: (page 2242)

Declared In
NSRulerMarker.h

setRemovable:
Sets whether the user can remove the receiver from its ruler view.

- (void)setRemovable:(BOOL)flag

Parameters
flag

YES to allow the user to drag the marker image off of the ruler and remove the marker, NO to prevent
the user from removing the marker.

Discussion
By default ruler markers are not removable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isRemovable (page 2239)
– setMovable: (page 2242)

Related Sample Code
Rulers

Declared In
NSRulerMarker.h

setRepresentedObject:
Sets the object the receiver represents.

2242 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

- (void)setRepresentedObject:(id < NSCopying >)anObject

Parameters
anObject

The new represented object.

Discussion
See About Ruler Markers for more information on the represented object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representedObject (page 2239)

Related Sample Code
Rulers

Declared In
NSRulerMarker.h

thicknessRequiredInRuler
Returns the amount of the receiver’s image that’s displayed above or to the left of the ruler view's baseline.

- (CGFloat)thicknessRequiredInRuler

Return Value
The amount of the receiver’s image that’s displayed above or to the left of the ruler view's baseline, the
height for a horizontal ruler or width for a vertical ruler.

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageOrigin (page 2236)

Declared In
NSRulerMarker.h

trackMouse:adding:
Handles user manipulation of the receiver in its ruler view.

- (BOOL)trackMouse:(NSEvent *)theEvent adding:(BOOL)flag

Parameters
theEvent

The event that represents the user manipulation being attempted on the ruler marker.

flag
YES to indicate that the receiver is a new marker being added to its ruler view, NO otherwise.

Instance Methods 2243
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

Return Value
YES if the user manipulation was allowed, NO if it was not allowed.

Discussion
NSRulerView objects invoke this method automatically to add a new marker or to move or remove an
existing marker. You should never need to invoke it directly.

If the receiver is a new marker being added to its ruler view (flag is YES), the receiver queries the ruler view's
client before adding itself to the ruler view. If the client responds to rulerView:shouldAddMarker: (page
2265) and that method returns NO, this method immediately returns NO, and the new marker isn’t added.

If the receiver is not a new marker being added to its ruler view (flag is NO), this method attempts to move
or remove an existing marker, once again based on responses from the ruler view's client view. If the receiver
is neither movable nor removable, this method immediately returns NO. Further, if the ruler view's client
responds to rulerView:shouldMoveMarker: (page 2265) and returns NO, this method returns NO, indicating
the receiver can’t be moved.

If the receiver is being added or moved, this method queries the client view using
rulerView:willAddMarker:atLocation: (page 2266) or
rulerView:willMoveMarker:toLocation: (page 2266), respectively. If the client responds to the method,
the return value is used as the receiver’s location. These methods are invoked repeatedly as the receiver is
dragged within the ruler view.

If the receiver is an existing marker being removed (dragged off the ruler), this method queries the client
view usingrulerView:shouldRemoveMarker: (page 2265). If the client responds to this method and returns
NO, the marker is pinned to the ruler view's baseline (following the cursor on the baseline if it’s movable).

When the user releases the mouse button, this method informs the client view of the marker’s new status
using rulerView:didAddMarker: (page 2263), rulerView:didMoveMarker: (page 2263), or
rulerView:didRemoveMarker: (page 2264) as appropriate. The client view can use this notification to set
the marker’s represented object, modify its state and redisplay (for example, adjusting text layout around a
new tab stop), or take whatever other action it might need.

If flag is YES and the user dragged the new marker away from the ruler, the marker isn’t added, no message
is sent, and this method returns NO.

See Rulers and Paragraph Styles for more information on these client methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isMovable (page 2238)
– isRemovable (page 2239)

Declared In
NSRulerMarker.h

2244 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 109

NSRulerMarker Class Objective-C Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSRulerView.h

Companion guide Rulers and Paragraph Styles

Related sample code Rulers
Sketch+Accessibility
Sketch-112
WhackedTV

Class at a Glance

An NSRulerView displays a ruler and markers above or to the side of an NSScrollView’s document view. Views
within the NSScrollView can become clients of the ruler view, having it display markers for their elements,
and receiving messages from the ruler view when the user manipulates the markers.

Principal Attributes

 ■ Displays markers that represent elements of the client view.

 ■ Displays in arbitrary units.

 ■ Provides for an accessory view containing extra controls.

setHasHorizontalRuler: (page 2356) (NSScrollView)
setHasVerticalRuler: (page 2357) (NSScrollView)
initWithScrollView:orientation: (page 2253) Designated initializer.

Class at a Glance 2245
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

Commonly Used Methods

setClientView: (page 2258)
Changes the ruler’s client view.

setMarkers: (page 2259)
Sets the markers displayed by the ruler view.

setAccessoryView: (page 2258)
Sets the accessory view.

trackMarker:withMouseEvent: (page 2262)
Allows the user to add a new marker.

Overview

An NSRulerView resides in an NSScrollView, displaying a labeled ruler and markers for its client, the document
view of the NSScrollView, or a subview of the document view.

Tasks

Creating Instances

– initWithScrollView:orientation: (page 2253)
Initializes a newly allocated NSRulerView to have orientation (NSHorizontalRuler or
NSVerticalRuler) within aScrollView.

Altering Measurement Units

+ registerUnitWithName:abbreviation:unitToPointsConversionFactor:stepUpCycle:stepDownCycle: (page
2250)

Registers a new unit of measurement with the NSRulerView class, making it available to all instances
of NSRulerView.

– setMeasurementUnits: (page 2259)
Sets the measurement units used by the ruler to unitName.

– measurementUnits (page 2254)
Returns the full name of the measurement units in effect for the receiver.

Setting the Client View

– setClientView: (page 2258)
Sets the receiver’s client view to aView, without retaining it, and removes its ruler markers, after
informing the prior client of the change using rulerView:willSetClientView: (page 2267).

2246 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

– clientView (page 2252)
Returns the receiver’s client view, if it has one.

Setting an Accessory View

– setAccessoryView: (page 2258)
Sets the receiver’s accessory view to aView.

– accessoryView (page 2251)
Returns the receiver’s accessory view, if it has one.

Setting the Zero Mark Position

– setOriginOffset: (page 2260)
Sets the distance to the zero hash mark from the bounds origin of the NSScrollView’s document view
(not of the receiver’s client view), in the document view’s coordinate system.

– originOffset (page 2256)
Returns the distance from the receiver’s zero hash mark to the bounds origin of the NSScrollView’s
document view (not the receiver’s client view), in the document view’s coordinate system.

Adding and Removing Markers

– setMarkers: (page 2259)
Sets the receiver’s ruler markers to markers, removing any existing ruler markers and not consulting
with the client view about the new markers.

– markers (page 2254)
Returns the receiver’s NSRulerMarkers.

– addMarker: (page 2251)
Adds aMarker to the receiver, without consulting the client view for approval.

– removeMarker: (page 2256)
Removes aMarker from the receiver, without consulting the client view for approval.

– trackMarker:withMouseEvent: (page 2262)
Tracks the mouse to add aMarker based on the initial mouse-down or mouse-dragged event
theEvent.

Drawing Temporary Ruler Lines

– moveRulerlineFromLocation:toLocation: (page 2255)
Draws temporary lines in the ruler area.

Tasks 2247
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

Drawing

– drawHashMarksAndLabelsInRect: (page 2252)
Draws the receiver’s hash marks and labels in aRect, which is expressed in the receiver’s coordinate
system.

– drawMarkersInRect: (page 2252)
Draws the receiver’s markers in aRect, which is expressed in the receiver’s coordinate system.

– invalidateHashMarks (page 2253)
Forces recalculation of the hash mark spacing for the next time the receiver is displayed.

Ruler Layout

– setScrollView: (page 2262)
Sets the NSScrollView that owns the receiver to scrollView, without retaining it.

– scrollView (page 2258)
Returns the NSScrollView object that contains the receiver.

– setOrientation: (page 2260)
Sets the orientation of the receiver to orientation.

– orientation (page 2255)
Returns the orientation of the receiver.

– setReservedThicknessForAccessoryView: (page 2260)
Sets the room available for the receiver’s accessory view to thickness.

– reservedThicknessForAccessoryView (page 2257)
Returns the thickness reserved to contain the receiver’s accessory view, its height or width depending
on the receiver’s orientation.

– setReservedThicknessForMarkers: (page 2261)
Sets the room available for ruler markers to thickness.

– reservedThicknessForMarkers (page 2257)
Returns the thickness reserved to contain the images of the receiver’s ruler markers, the height or
width depending on the receiver’s orientation.

– setRuleThickness: (page 2262)
Sets to thickness the thickness of the area where ruler hash marks and labels are drawn.

– ruleThickness (page 2257)
Returns the thickness of the receiver’s ruler area (the area where hash marks and labels are drawn),
its height or width depending on the receiver’s orientation.

– requiredThickness (page 2256)
Returns the thickness needed for proper tiling of the receiver within an NSScrollView.

– baselineLocation (page 2251)
Returns the location of the receiver’s baseline, in its own coordinate system.

– isFlipped (page 2254) Deprecated in Mac OS X v10.6
Returns YES if the NSRulerView’s coordinate system is flipped, NO otherwise.

2248 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

Adding markers

– rulerView:shouldAddMarker: (page 2265) delegate method
Requests permission for aRulerView to add aMarker, an NSRulerMarker being dragged onto the
ruler by the user.

– rulerView:willAddMarker:atLocation: (page 2266) delegate method
Informs the client that aRulerView will add the new NSRulerMarker, aMarker.

– rulerView:didAddMarker: (page 2263) delegate method
Informs the client that aRulerView allowed the user to add aMarker.

Moving markers

– rulerView:shouldMoveMarker: (page 2265) delegate method
Requests permission for aRulerView to move aMarker.

– rulerView:willMoveMarker:toLocation: (page 2266) delegate method
Informs the client that aRulerView will move aMarker, an NSRulerMarker already on the ruler view.

– rulerView:didMoveMarker: (page 2263) delegate method
Informs the client that aRulerView allowed the user to move aMarker.

Removing markers

– rulerView:shouldRemoveMarker: (page 2265) delegate method
Requests permission for aRulerView to remove aMarker.

– rulerView:didRemoveMarker: (page 2264) delegate method
Informs the client that aRulerView allowed the user to remove aMarker.

Handling mouse events

– rulerView:handleMouseDown: (page 2264) delegate method
Informs the client that the user has pressed the mouse button while the cursor is in the ruler area of
aRulerView.

Changing client view

– rulerView:willSetClientView: (page 2267) delegate method
Informs the client view that aRulerView is about to be appropriated by newClient.

Tasks 2249
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

Class Methods

registerUnitWithName:abbreviation:unitToPointsConversionFactor:stepUpCycle:
stepDownCycle:
Registers a new unit of measurement with the NSRulerView class, making it available to all instances of
NSRulerView.

+ (void)registerUnitWithName:(NSString *)unitName abbreviation:(NSString
*)abbreviation unitToPointsConversionFactor:(CGFloat)conversionFactor
stepUpCycle:(NSArray *)stepUpCycle stepDownCycle:(NSArray *)stepDownCycle

Discussion
unitName is the name of the unit in English, in plural form and capitalized by convention—“Inches”, for
example. The unit name is used as a key to identify the measurement units and so shouldn’t be localized.
abbreviation is a localized short form of the unit name, such as “in” for Inches. conversionFactor is the
number of PostScript points in the specified unit; there are 72.0 points per inch, for example. stepUpCycle
and stepDownCycle are arrays of NSNumbers that specify how hash marks are calculated, as explained in
“Setting Up a Ruler View”. All numbers in stepUpCycle should be greater than 1.0, those in stepDownCycle
should be less than 1.0.

NSRulerView supports these units by default:

Step-Down CycleStep-Up CyclePoints/UnitAbbreviationUnit Name

0.52.072.0inInches

0.5, 0.22.028.35cmCentimeters

0.510.01.0ptPoints

0.510.012.0pcPicas

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMeasurementUnits: (page 2259)

Related Sample Code
Rulers

Declared In
NSRulerView.h

2250 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

Instance Methods

accessoryView
Returns the receiver’s accessory view, if it has one.

- (NSView *)accessoryView

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAccessoryView: (page 2258)
– reservedThicknessForAccessoryView (page 2257)

Declared In
NSRulerView.h

addMarker:
Adds aMarker to the receiver, without consulting the client view for approval.

- (void)addMarker:(NSRulerMarker *)aMarker

Discussion
Raises an NSInternalInconsistencyException if the receiver has no client view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMarkers: (page 2259)
– removeMarker: (page 2256)
– markers (page 2254)
– trackMarker:withMouseEvent: (page 2262)

Declared In
NSRulerView.h

baselineLocation
Returns the location of the receiver’s baseline, in its own coordinate system.

- (CGFloat)baselineLocation

Discussion
This is a y position for horizontal rulers and an x position for vertical ones.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2251
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

See Also
– ruleThickness (page 2257)

Declared In
NSRulerView.h

clientView
Returns the receiver’s client view, if it has one.

- (NSView *)clientView

Availability
Available in Mac OS X v10.0 and later.

See Also
– setClientView: (page 2258)

Declared In
NSRulerView.h

drawHashMarksAndLabelsInRect:
Draws the receiver’s hash marks and labels in aRect, which is expressed in the receiver’s coordinate system.

- (void)drawHashMarksAndLabelsInRect:(NSRect)aRect

Discussion
This method is invoked by drawRect: (page 2235)—you should never need to invoke it directly. You can
define custom measurement units using the class method
registerUnitWithName:abbreviation:unitToPointsConversionFactor:stepUpCycle:
stepDownCycle: (page 2250). Override this method if you want to customize the appearance of the hash
marks themselves.

Availability
Available in Mac OS X v10.0 and later.

See Also
– invalidateHashMarks (page 2253)
– drawMarkersInRect: (page 2252)

Declared In
NSRulerView.h

drawMarkersInRect:
Draws the receiver’s markers in aRect, which is expressed in the receiver’s coordinate system.

- (void)drawMarkersInRect:(NSRect)aRect

2252 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

Discussion
This method is invoked by drawRect: (page 2235); you should never need to invoke it directly, but you might
want to override it if you want to do something different when drawing markers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– reservedThicknessForMarkers (page 2257)
– drawHashMarksAndLabelsInRect: (page 2252)

Declared In
NSRulerView.h

initWithScrollView:orientation:
Initializes a newly allocated NSRulerView to have orientation (NSHorizontalRuler or NSVerticalRuler)
within aScrollView.

- (id)initWithScrollView:(NSScrollView *)aScrollView
orientation:(NSRulerOrientation)orientation

Discussion
The new ruler view displays the user’s preferred measurement units and has no client, markers, or accessory
view. Unlike most subclasses of NSView, no initial frame rectangle is given for NSRulerView; its containing
NSScrollView adjusts its frame rectangle as needed.

This method is the designated initializer for the NSRulerView class. Returns an initialized object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRulerView.h

invalidateHashMarks
Forces recalculation of the hash mark spacing for the next time the receiver is displayed.

- (void)invalidateHashMarks

Discussion
You should never need to invoke this method directly, but might need to override it if you override
drawHashMarksAndLabelsInRect: (page 2252).

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawHashMarksAndLabelsInRect: (page 2252)

Declared In
NSRulerView.h

Instance Methods 2253
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

isFlipped
Returns YES if the NSRulerView’s coordinate system is flipped, NO otherwise.

- (BOOL)isFlipped

Discussion
A vertical ruler takes into account whether the coordinate system of the NSScrollView’s document view—not
the receiver’s client view—is flipped. A horizontal ruler is always flipped.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
NSRulerView.h

markers
Returns the receiver’s NSRulerMarkers.

- (NSArray *)markers

Discussion
The markers aren’t guaranteed to be sorted in any particular order.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMarkers: (page 2259)
– addMarker: (page 2251)
– removeMarker: (page 2256)
– markerLocation (page 2239) (NSRulerMarker)

Related Sample Code
Rulers

Declared In
NSRulerView.h

measurementUnits
Returns the full name of the measurement units in effect for the receiver.

- (NSString *)measurementUnits

Availability
Available in Mac OS X v10.0 and later.

2254 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

See Also
– setMeasurementUnits: (page 2259)
+ registerUnitWithName:abbreviation:unitToPointsConversionFactor:stepUpCycle:stepDownCycle: (page
2250)

Declared In
NSRulerView.h

moveRulerlineFromLocation:toLocation:
Draws temporary lines in the ruler area.

- (void)moveRulerlineFromLocation:(CGFloat)oldLoc toLocation:(CGFloat)newLoc

Discussion
If oldLoc is 0 or greater, erases the ruler line at that location; if newLoc is 0 or greater, draws a new rulerline
at that location. oldLoc and newLoc are expressed in the coordinate system of the NSRulerView, not the
client or document view, and are x coordinates for horizontal rulers and y coordinates for vertical rulers. Use
NSView’s convert...methods to convert coordinates from the client or document view’s coordinate system
to that of the NSRulerView.

This method is useful for drawing highlight lines in the ruler to show the position or extent of an object while
it’s being dragged in the client view. The sender is responsible for keeping track of the number and positions
of temporary lines—the NSRulerView only does the drawing.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Rulers
Sketch+Accessibility
Sketch-112

Declared In
NSRulerView.h

orientation
Returns the orientation of the receiver.

- (NSRulerOrientation)orientation

Discussion
Possible values are described in “Constants” (page 2267).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOrientation: (page 2260)

Declared In
NSRulerView.h

Instance Methods 2255
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

originOffset
Returns the distance from the receiver’s zero hash mark to the bounds origin of the NSScrollView’s document
view (not the receiver’s client view), in the document view’s coordinate system.

- (CGFloat)originOffset

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOriginOffset: (page 2260)

Declared In
NSRulerView.h

removeMarker:
Removes aMarker from the receiver, without consulting the client view for approval.

- (void)removeMarker:(NSRulerMarker *)aMarker

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMarkers: (page 2259)
– addMarker: (page 2251)

Declared In
NSRulerView.h

requiredThickness
Returns the thickness needed for proper tiling of the receiver within an NSScrollView.

- (CGFloat)requiredThickness

Discussion
This thickness is the height of a horizontal ruler and the width of a vertical ruler. The required thickness is
the sum of the thicknesses of the ruler area, the marker area, and the accessory view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– ruleThickness (page 2257)
– reservedThicknessForMarkers (page 2257)
– reservedThicknessForAccessoryView (page 2257)

Declared In
NSRulerView.h

2256 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

reservedThicknessForAccessoryView
Returns the thickness reserved to contain the receiver’s accessory view, its height or width depending on
the receiver’s orientation.

- (CGFloat)reservedThicknessForAccessoryView

Discussion
This thickness is automatically enlarged as necessary to the accessory view’s thickness (but never automatically
reduced). To prevent retiling of a ruler view’s scroll view, you should set its maximal thickness upon creating
using setReservedThicknessForAccessoryView: (page 2260).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRulerView.h

reservedThicknessForMarkers
Returns the thickness reserved to contain the images of the receiver’s ruler markers, the height or width
depending on the receiver’s orientation.

- (CGFloat)reservedThicknessForMarkers

Discussion
This thickness is automatically enlarged as necessary to accommodate the thickest ruler marker image (but
never automatically reduced). To prevent retiling of a ruler view’s scroll view, you should set its maximal
thickness upon creating using setReservedThicknessForMarkers: (page 2261).

Availability
Available in Mac OS X v10.0 and later.

See Also
– thicknessRequiredInRuler (page 2243) (NSRulerMarker)

Declared In
NSRulerView.h

ruleThickness
Returns the thickness of the receiver’s ruler area (the area where hash marks and labels are drawn), its height
or width depending on the receiver’s orientation.

- (CGFloat)ruleThickness

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRuleThickness: (page 2262)

Declared In
NSRulerView.h

Instance Methods 2257
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

scrollView
Returns the NSScrollView object that contains the receiver.

- (NSScrollView *)scrollView

Availability
Available in Mac OS X v10.0 and later.

See Also
– setScrollView: (page 2262)
– setHorizontalRulerView: (page 2359) (NSScrollView)
– setVerticalRulerView: (page 2363) (NSScrollView)

Declared In
NSRulerView.h

setAccessoryView:
Sets the receiver’s accessory view to aView.

- (void)setAccessoryView:(NSView *)aView

Discussion
Raises an NSInternalInconsistencyException if aView is not nil and the receiver has no client view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– accessoryView (page 2251)
– reservedThicknessForAccessoryView (page 2257)

Related Sample Code
Sketch+Accessibility

Declared In
NSRulerView.h

setClientView:
Sets the receiver’s client view to aView, without retaining it, and removes its ruler markers, after informing
the prior client of the change using rulerView:willSetClientView: (page 2267).

- (void)setClientView:(NSView *)aView

Discussion
aView must be either the document view of the NSScrollView that contains the receiver or a subview of the
document view.

Availability
Available in Mac OS X v10.0 and later.

2258 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

See Also
– clientView (page 2252)

Related Sample Code
Rulers

Declared In
NSRulerView.h

setMarkers:
Sets the receiver’s ruler markers to markers, removing any existing ruler markers and not consulting with
the client view about the new markers.

- (void)setMarkers:(NSArray *)markers

Discussion
markers can be nil or empty to remove all ruler markers. Raises an NSInternalInconsistencyException
if markers is not nil and the receiver has no client view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addMarker: (page 2251)
– removeMarker: (page 2256)

Related Sample Code
Rulers
Sketch-112

Declared In
NSRulerView.h

setMeasurementUnits:
Sets the measurement units used by the ruler to unitName.

- (void)setMeasurementUnits:(NSString *)unitName

Discussion
unitName must have been registered with the NSRulerView class object prior to invoking this method. See
the description of the class method
registerUnitWithName:abbreviation:unitToPointsConversionFactor:stepUpCycle:
stepDownCycle: (page 2250) for a list of predefined units.

Availability
Available in Mac OS X v10.0 and later.

See Also
– measurementUnits (page 2254)

Instance Methods 2259
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

Related Sample Code
Rulers

Declared In
NSRulerView.h

setOrientation:
Sets the orientation of the receiver to orientation.

- (void)setOrientation:(NSRulerOrientation)orientation

Discussion
Possible values for orientation are described in “Constants” (page 2267). You should never need to invoke
this method directly—it’s automatically invoked by the containing NSScrollView.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orientation (page 2255)

Declared In
NSRulerView.h

setOriginOffset:
Sets the distance to the zero hash mark from the bounds origin of the NSScrollView’s document view (not
of the receiver’s client view), in the document view’s coordinate system.

- (void)setOriginOffset:(CGFloat)offset

Discussion
The default offset is 0.0, meaning that the ruler origin coincides with the bounds origin of the document
view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– originOffset (page 2256)

Related Sample Code
Rulers

Declared In
NSRulerView.h

setReservedThicknessForAccessoryView:
Sets the room available for the receiver’s accessory view to thickness.

2260 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

- (void)setReservedThicknessForAccessoryView:(CGFloat)thickness

Discussion
If the ruler is horizontal, thickness is the height of the accessory view; otherwise, it’s the width. NSRulerViews
by default reserve no space for an accessory view.

An NSRulerView automatically increases the reserved thickness as necessary to that of the accessory view.
When the accessory view is thinner than the reserved space, it’s centered in that space. If you plan to use
several accessory views of different sizes, you should set the reserved thickness beforehand to that of the
thickest accessory view, in order to avoid retiling of the NSScrollView.

Availability
Available in Mac OS X v10.0 and later.

See Also
– reservedThicknessForAccessoryView (page 2257)
– setAccessoryView: (page 2258)
– setReservedThicknessForMarkers: (page 2261)

Related Sample Code
Sketch+Accessibility
Sketch-112

Declared In
NSRulerView.h

setReservedThicknessForMarkers:
Sets the room available for ruler markers to thickness.

- (void)setReservedThicknessForMarkers:(CGFloat)thickness

Discussion
The default thickness reserved for markers is 15.0 PostScript units for a horizontal ruler and 0.0 PostScript
units for a vertical ruler (under the assumption that vertical rulers rarely contain markers). If you don’t expect
to have any markers on the ruler, you can set the reserved thickness to 0.0.

An NSRulerView automatically increases the reserved thickness as necessary to that of its thickest marker. If
you plan to use markers of varying sizes, you should set the reserved thickness beforehand to that of the
thickest one in order to avoid retiling of the NSScrollView.

Availability
Available in Mac OS X v10.0 and later.

See Also
– reservedThicknessForMarkers (page 2257)
– setMarkers: (page 2259)
– setReservedThicknessForAccessoryView: (page 2260)
– thicknessRequiredInRuler (page 2243) (NSRulerMarker)

Related Sample Code
Sketch-112

Instance Methods 2261
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

Declared In
NSRulerView.h

setRuleThickness:
Sets to thickness the thickness of the area where ruler hash marks and labels are drawn.

- (void)setRuleThickness:(CGFloat)thickness

Discussion
This value is the height of the ruler area for a horizontal ruler or the width of the ruler area for a vertical ruler.
Rulers are by default 16.0 PostScript units thick. You should rarely need to change this layout attribute, but
subclasses might do so to accommodate custom drawing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– ruleThickness (page 2257)

Declared In
NSRulerView.h

setScrollView:
Sets the NSScrollView that owns the receiver to scrollView, without retaining it.

- (void)setScrollView:(NSScrollView *)scrollView

Discussion
This method is generally invoked only by the ruler’s scroll view; you should rarely need to invoke it directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollView (page 2258)
– setHorizontalRulerView: (page 2359) (NSScrollView)
– setVerticalRulerView: (page 2363) (NSScrollView)

Declared In
NSRulerView.h

trackMarker:withMouseEvent:
Tracks the mouse to add aMarker based on the initial mouse-down or mouse-dragged event theEvent.

- (BOOL)trackMarker:(NSRulerMarker *)aMarker withMouseEvent:(NSEvent *)theEvent

Discussion
Returns YES if the receiver adds aMarker, NO if it doesn’t. This method works by sending
trackMouse:adding: (page 2243) to aMarker with theEvent and YES as arguments.

2262 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

An application typically invokes this method in one of two cases. In the simpler case, the client view can
implement rulerView:handleMouseDown: (page 2264) to invoke this method when the user presses the
mouse button while the cursor is in the NSRulerView’s ruler area. This technique is appropriate when it’s
clear what kind of marker will be added by clicking the ruler area. The second, more general, case involves
the application providing a palette of different kinds of markers that can be dragged onto the ruler, from
the ruler’s accessory view or from some other place. With this technique the palette tracks the cursor until
it enters the ruler view, at which time it hands over control to the ruler view by invoking
trackMarker:withMouseEvent: (page 2262).

Availability
Available in Mac OS X v10.0 and later.

See Also
– addMarker: (page 2251)
– setMarkers: (page 2259)

Related Sample Code
Rulers

Declared In
NSRulerView.h

Delegate Methods

rulerView:didAddMarker:
Informs the client that aRulerView allowed the user to add aMarker.

- (void)rulerView:(NSRulerView *)aRulerView didAddMarker:(NSRulerMarker *)aMarker

Discussion
The client can take whatever action it needs based on this message, such as adding a new tab stop to the
selected paragraph or creating a layout guideline.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representedObject (page 2239) (NSRulerMarker)
– markerLocation (page 2239) (NSRulerMarker)

Declared In
NSRulerView.h

rulerView:didMoveMarker:
Informs the client that aRulerView allowed the user to move aMarker.

- (void)rulerView:(NSRulerView *)aRulerView didMoveMarker:(NSRulerMarker *)aMarker

Delegate Methods 2263
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

Discussion
The client can take whatever action it needs based on this message, such as updating the location of a tab
stop in the selected paragraph, moving a layout guideline, or resizing a graphics element.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representedObject (page 2239) (NSRulerMarker)
– markerLocation (page 2239) (NSRulerMarker)

Declared In
NSRulerView.h

rulerView:didRemoveMarker:
Informs the client that aRulerView allowed the user to remove aMarker.

- (void)rulerView:(NSRulerView *)aRulerView didRemoveMarker:(NSRulerMarker *)aMarker

Discussion
The client can take whatever action it needs based on this message, such as deleting a tab stop from the
paragraph style or removing a layout guideline.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representedObject (page 2239) (NSRulerMarker)

Declared In
NSRulerView.h

rulerView:handleMouseDown:
Informs the client that the user has pressed the mouse button while the cursor is in the ruler area of
aRulerView.

- (void)rulerView:(NSRulerView *)aRulerView handleMouseDown:(NSEvent *)theEvent

Discussion
theEvent is the mouse-down event that triggered the message. The client view can implement this method
to perform an action such as adding a new marker using trackMarker:withMouseEvent: (page 2262) or
adding layout guidelines.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRulerView.h

2264 Delegate Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

rulerView:shouldAddMarker:
Requests permission for aRulerView to add aMarker, an NSRulerMarker being dragged onto the ruler by
the user.

- (BOOL)rulerView:(NSRulerView *)aRulerView shouldAddMarker:(NSRulerMarker *)aMarker

Discussion
If the client returns YES the ruler view accepts the new marker and begins tracking its movement; if the client
returns NO the ruler view refuses the new marker.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rulerView:willAddMarker:atLocation: (page 2266)

Declared In
NSRulerView.h

rulerView:shouldMoveMarker:
Requests permission for aRulerView to move aMarker.

- (BOOL)rulerView:(NSRulerView *)aRulerView shouldMoveMarker:(NSRulerMarker *)aMarker

Discussion
If the client returns YES the ruler view allows the user to move the marker; if the client returns NO the marker
doesn’t move.

The user’s ability to move a marker is typically set on the marker itself, using NSRulerMarker’s
setMovable: (page 2242) method. You should use this client view method only when the marker’s movability
can vary depending on a variable condition (for example, if graphic items can be locked down to prevent
them from being inadvertently moved).

Availability
Available in Mac OS X v10.0 and later.

See Also
– rulerView:willMoveMarker:toLocation: (page 2266)

Declared In
NSRulerView.h

rulerView:shouldRemoveMarker:
Requests permission for aRulerView to remove aMarker.

- (BOOL)rulerView:(NSRulerView *)aRulerView shouldRemoveMarker:(NSRulerMarker
*)aMarker

Delegate Methods 2265
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

Discussion
If the client returns YES the ruler view allows the user to remove the marker; if the client returns NO the
marker is kept pinned to the ruler’s baseline. This message is sent as many times as needed while the user
drags the marker.

The user’s ability to remove a marker is typically set on the marker itself, using NSRulerMarker’s
setRemovable: (page 2242) method. You should use this client view method only when the marker’s
removability can vary while the user drags it (for example, if the user must press the Shift key to remove a
marker).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRulerView.h

rulerView:willAddMarker:atLocation:
Informs the client that aRulerView will add the new NSRulerMarker, aMarker.

- (CGFloat)rulerView:(NSRulerView *)aRulerView willAddMarker:(NSRulerMarker *)aMarker
atLocation:(CGFloat)location

Discussion
location is the marker’s tentative new location, expressed in the client view’s coordinate system. The value
returned by the client view is actually used; the client can simply return location unchanged or adjust it
as needed. For example, it may snap the location to a grid. This message is sent repeatedly to the client as
the user drags the marker.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rulerView:willMoveMarker:toLocation: (page 2266)

Declared In
NSRulerView.h

rulerView:willMoveMarker:toLocation:
Informs the client that aRulerView will move aMarker, an NSRulerMarker already on the ruler view.

- (CGFloat)rulerView:(NSRulerView *)aRulerView willMoveMarker:(NSRulerMarker
*)aMarker toLocation:(CGFloat)location

Discussion
location is the marker’s tentative new location, expressed in the client view’s coordinate system. The value
returned by the client view is actually used; the client can simply return location unchanged or adjust it
as needed. For example, it may snap the location to a grid. This message is sent repeatedly to the client as
the user drags the marker.

Availability
Available in Mac OS X v10.0 and later.

2266 Delegate Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

See Also
– rulerView:willAddMarker:atLocation: (page 2266)

Declared In
NSRulerView.h

rulerView:willSetClientView:
Informs the client view that aRulerView is about to be appropriated by newClient.

- (void)rulerView:(NSRulerView *)aRulerView willSetClientView:(NSView *)newClient

Discussion
The client view can use this opportunity to clear any cached information related to the ruler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRulerView.h

Constants

NSRulerOrientation
These constants are defined to specify a ruler’s orientation and are used by orientation (page 2255) and
setOrientation: (page 2260).

typedef enum {
 NSHorizontalRuler,
 NSVerticalRuler
} NSRulerOrientation;

Constants
NSHorizontalRuler

Ruler is oriented horizontally.

Available in Mac OS X v10.0 and later.

Declared in NSRulerView.h.

NSVerticalRuler
Ruler is oriented vertically.

Available in Mac OS X v10.0 and later.

Declared in NSRulerView.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSRulerView.h

Constants 2267
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

2268 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 110

NSRulerView Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSRunningApplication.h

Related sample code AppList
UIElementInspector

Overview

NSRunningApplication is a class to manipulate and provide information for a single instance of an
application. Only user applications are tracked; this does not provide information about every process on
the system.

Some properties of an application are fixed, such as the bundle identifier. Other properties may vary over
time, such as whether the app is hidden. Properties that vary can be observed with key-value observing, in
which case the description comment for the method notes this capability.

Properties that vary over time are inherently race-prone. For example, a hidden app may unhide itself at any
time. To ameliorate this, properties persist until the next turn of the main run loop in a common mode. For
example, if you repeatedly poll an unhidden app for its hidden property without allowing the run loop to
run, it will continue to return NO, even if the app hides, until the next turn of the run loop.

NSRunningApplication is thread safe, in that its properties are returned atomically. However, it is still
subject to the main run loop policy described above. If you access an instance of NSRunningApplication from
a background thread, be aware that its time-varying properties may change from under you as the main run
loop runs (or not).

An NSRunningApplication instance remains valid after the application exits. However, most properties
lose their significance, and some properties may not be available on a terminated application.

To access the list of all running applications, use the runningApplications method in NSWorkspace.

Overview 2269
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

Tasks

Getting Running Application Instances

+ runningApplicationWithProcessIdentifier: (page 2276)
Returns the running application with the given process identifier, or nil if no application has that pid.

+ runningApplicationsWithBundleIdentifier: (page 2276)
Returns an array of currently running applications with the specified bundle identifier.

+ currentApplication (page 2275)
Returns an NSRunningApplication representing this application.

Activating Applications

 active (page 2271) property
Indicates whether the application is currently frontmost. (read-only)

– activateWithOptions: (page 2277)
Attempts to activate the application using the specified options.

 activationPolicy (page 2271) property
Indicates the activation policy of the application. (read-only)

Hiding and Unhiding Applications

– hide (page 2278)
Attempts to hide or the application.

– unhide (page 2279)
Attempts to unhide or the application.

 hidden (page 2273) property
Indicates whether the application is currently hidden. (read-only)

Application Information

 localizedName (page 2274) property
Indicates the localized name of the application. (read-only)

 icon (page 2274) property
Returns the icon for the receiver’s application. (read-only)

 bundleIdentifier (page 2272) property
Indicates the CFBundleIdentifier of the application. (read-only)

 bundleURL (page 2272) property
Indicates the URL to the application's bundle. (read-only)

 executableArchitecture (page 2272) property
Indicates the executing processor architecture for the application. (read-only)

2270 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

 executableURL (page 2273) property
Indicates the URL to the application's executable. (read-only)

 launchDate (page 2274) property
Indicates the date when the application was launched. (read-only)

 finishedLaunching (page 2273) property
Indicates whether the receiver’s process has finished launching, (read-only)

 processIdentifier (page 2275) property
Indicates the process identifier (pid) of the application. (read-only)

Terminating Applications

– forceTerminate (page 2277)
Attempts to force the receiver to quit.

– terminate (page 2278)
Attempts to quit the receiver normally.

 terminated (page 2275) property
Indicates that the receiver’s application has terminated. (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

activationPolicy
Indicates the activation policy of the application. (read-only)

@property(readonly) NSApplicationActivationPolicy activationPolicy

Discussion
The value returned by this property is usually fixed, but it may change through a call to
activateWithOptions: (page 2277).

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSRunningApplication.h

active
Indicates whether the application is currently frontmost. (read-only)

Properties 2271
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

@property(readonly, getter=isActive) BOOL active

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSRunningApplication.h

bundleIdentifier
Indicates the CFBundleIdentifier of the application. (read-only)

@property(readonly) NSString *bundleIdentifier

Discussion
The value of this property will be nil if the application does not have an Info.plist.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSRunningApplication.h

bundleURL
Indicates the URL to the application's bundle. (read-only)

@property(readonly) NSURL *bundleURL

Discussion
The value of this property is nil of the application does not have a bundle structure.

Availability
Available in Mac OS X v10.6 and later.

See Also
 @property executableURL (page 2273)

Declared In
NSRunningApplication.h

executableArchitecture
Indicates the executing processor architecture for the application. (read-only)

@property(readonly) NSInteger executableArchitecture

Discussion
The returned value will be one of the constants in Mach_O_Architecture in NSBundle Class Reference.

2272 Properties
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

Availability
Available in Mac OS X v10.6 and later.

See Also
 @property executableURL (page 2273)

Declared In
NSRunningApplication.h

executableURL
Indicates the URL to the application's executable. (read-only)

@property(readonly) NSURL *executableURL

Availability
Available in Mac OS X v10.6 and later.

See Also
 @property executableArchitecture (page 2272)

Declared In
NSRunningApplication.h

finishedLaunching
Indicates whether the receiver’s process has finished launching, (read-only)

@property(readonly, getter=isFinishedLaunching) BOOL finishedLaunching

Discussion
The value of this property corresponds to the running application having received an
NSApplicationDidFinishLaunchingNotification (page 194) notification internally. Some applications
do not post this notification (applications that do not rely on NSApplication) and so are never reported
as finished launching.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSRunningApplication.h

hidden
Indicates whether the application is currently hidden. (read-only)

@property(readonly, getter=isHidden) BOOL hidden

Discussion
This property is observable using key-value observing.

Properties 2273
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

Availability
Available in Mac OS X v10.6 and later.

See Also
– hide (page 2278)
– unhide (page 2279)

Declared In
NSRunningApplication.h

icon
Returns the icon for the receiver’s application. (read-only)

@property(readonly) NSImage *icon

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSRunningApplication.h

launchDate
Indicates the date when the application was launched. (read-only)

@property(readonly) NSDate *launchDate

Discussion
This property is not available for all applications. Specifically, it is not available for applications that were
launched not launched by LaunchServices.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSRunningApplication.h

localizedName
Indicates the localized name of the application. (read-only)

@property(readonly) NSString *localizedName

Discussion
The value of this property is dependent on the current localization of the application and is suitable for
presentation to the user.

Availability
Available in Mac OS X v10.6 and later.

2274 Properties
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

Declared In
NSRunningApplication.h

processIdentifier
Indicates the process identifier (pid) of the application. (read-only)

@property(readonly) pid_t processIdentifier

Discussion
Not all applications have a pid. Applications without a pid return a value of -1.

Do not rely on this for comparing processes, instead compare NSRunningApplication instances using
isEqual:.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSRunningApplication.h

terminated
Indicates that the receiver’s application has terminated. (read-only)

@property(readonly, getter=isTerminated) BOOL terminated

Discussion
The value of terminated is YES if the receiver’s application has terminated, otherwise NO.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.6 and later.

See Also
– terminate (page 2278)

Declared In
NSRunningApplication.h

Class Methods

currentApplication
Returns an NSRunningApplication representing this application.

+ (NSRunningApplication *)currentApplication

Class Methods 2275
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

Return Value
An NSRunningApplication instance for the current application.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSRunningApplication.h

runningApplicationsWithBundleIdentifier:
Returns an array of currently running applications with the specified bundle identifier.

+ (NSArray *)runningApplicationsWithBundleIdentifier:(NSString *)bundleIdentifier

Parameters
bundleIdentifier

The bundle identifier.

Return Value
An array of NSRunningApplications, or an empty array if no applications match the bundle identifier.

Availability
Available in Mac OS X v10.6 and later.

See Also
+ runningApplicationWithProcessIdentifier: (page 2276)

Declared In
NSRunningApplication.h

runningApplicationWithProcessIdentifier:
Returns the running application with the given process identifier, or nil if no application has that pid.

+ (NSRunningApplication *)runningApplicationWithProcessIdentifier:(pid_t)pid

Parameters
pid

The process identifier.

Return Value
An instance of NSRunningApplication for the specified pid, or nil if the application has no process identifier.

Discussion
Applications that do not have PIDs cannot be returned from this method.

Availability
Available in Mac OS X v10.6 and later.

See Also
+ runningApplicationsWithBundleIdentifier: (page 2276)

2276 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

Related Sample Code
UIElementInspector

Declared In
NSRunningApplication.h

Instance Methods

activateWithOptions:
Attempts to activate the application using the specified options.

- (BOOL)activateWithOptions:(NSApplicationActivationOptions)options

Parameters
options

The options to use when activating the application. See “NSApplicationActivationOptions” (page 2279)
for the possible values.

Return Value
YES if the application was activated successfully, otherwise NO.

Discussion
This method will return NO if the application has quit, or is not a type of application than can be activated.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSRunningApplication.h

forceTerminate
Attempts to force the receiver to quit.

- (BOOL)forceTerminate

Return Value
Returns YES if the application successfully terminated, otherwise NO.

Discussion
This method will return NO if the application is no longer running when the forceTerminate message is
sent to the receiver.

This method may return before the receiver exits; you should observe the terminated property to determine
when the application terminates.

Availability
Available in Mac OS X v10.6 and later.

See Also
 @property terminated (page 2275)

Instance Methods 2277
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

– terminate (page 2278)

Declared In
NSRunningApplication.h

hide
Attempts to hide or the application.

- (BOOL)hide

Return Value
YES if the application was successfully hidden, otherwise NO.

Discussion
The property of this value will be NO if the application has already quit, or if of a type that is unable to be
hidden.

Availability
Available in Mac OS X v10.6 and later.

See Also
– unhide (page 2279)
 @property hidden (page 2273)

Related Sample Code
AppList

Declared In
NSRunningApplication.h

terminate
Attempts to quit the receiver normally.

- (BOOL)terminate

Return Value
Returns YES if the application successfully terminated, otherwise NO.

Discussion
This method will return NO if the application is no longer running when the terminate message is sent to the
receiver.

This method may return before the receiver exits; you should observe the terminated property to determine
when the application terminates.

Availability
Available in Mac OS X v10.6 and later.

See Also
 @property terminated (page 2275)

2278 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

Related Sample Code
AppList

Declared In
NSRunningApplication.h

unhide
Attempts to unhide or the application.

- (BOOL)unhide

Return Value
YES if the application was successfully shown, otherwise NO.

Discussion
The property of this value will be NO if the application has already quit, or if of a type that is unable to be
hidden.

Availability
Available in Mac OS X v10.6 and later.

See Also
– hide (page 2278)
 @property hidden (page 2273)

Related Sample Code
AppList

Declared In
NSRunningApplication.h

Constants

NSApplicationActivationOptions
The following flags are for activateWithOptions: (page 2277).

enum {
 NSApplicationActivateAllWindows = 1 << 0,
 NSApplicationActivateIgnoringOtherApps = 1 << 1
};
typedef NSUInteger NSApplicationActivationOptions;

Constants
NSApplicationActivateAllWindows

By default, activation brings only the main and key windows forward. If you specify
NSApplicationActivateAllWindows, all of the application's windows are brought forward.

Available in Mac OS X v10.6 and later.

Declared in NSRunningApplication.h.

Constants 2279
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

NSApplicationActivateIgnoringOtherApps
By default, activation deactivates the calling app (assuming it was active), and then the new app is
activated only if there is no currently active application. This prevents the new app from stealing focus
from the user, if the app is slow to activate and the user has switched to a different app in the interim.
However, if you specify NSApplicationActivateIgnoringOtherApps, the application is activated regardless
of the currently active app, potentially stealing focus from the user. You should rarely pass this flag
because stealing key focus produces a very bad user experience.

Available in Mac OS X v10.6 and later.

Declared in NSRunningApplication.h.

NSApplicationActivationPolicy
The following activation policies control whether and how an application may be activated. They are used
by activationPolicy (page 2271).

enum {
 NSApplicationActivationPolicyRegular,
 NSApplicationActivationPolicyAccessory,
 NSApplicationActivationPolicyProhibited
};
typedef NSInteger NSApplicationActivationPolicy;

Constants
NSApplicationActivationPolicyRegular

The application is an ordinary app that appears in the Dock and may have a user interface. This is the
default for bundled apps, unless overridden in the Info.plist.

Available in Mac OS X v10.6 and later.

Declared in NSRunningApplication.h.

NSApplicationActivationPolicyAccessory
The application does not appear in the Dock and does not have a menu bar, but it may be activated
programmatically or by clicking on one of its windows. This corresponds to value of the LSUIElement
key in the application’s Info.plist being 1.

Available in Mac OS X v10.6 and later.

Declared in NSRunningApplication.h.

NSApplicationActivationPolicyProhibited
The application does not appear in the Dock and may not create windows or be activated. This
corresponds to the value of the LSBackgroundOnly key in the application’s Info.plist being 1.
This is also the default for unbundled executables that do not have Info.plists.

Available in Mac OS X v10.6 and later.

Declared in NSRunningApplication.h.

2280 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 111

NSRunningApplication Class Reference

Inherits from NSPanel : NSWindow : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSWindow)
NSAnimatablePropertyContainer (NSWindow)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSSavePanel.h

Companion guides Application File Management
Sheet Programming Topics

Related sample code ImageKitDemo
QTAudioContextInsert
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Overview

An NSSavePanel object creates and manages a Save panel and allows you to run the panel in a modal loop.
The Save panel provides a simple way for a user to specify a file to use when saving a document or other
data. It can restrict the user to files of a certain type, as specified by an extension.

An NSSavePanel object manages a panel that allows users to specify the directory and name under which
a file is saved. It supports browsing of the file system, and it accommodates custom accessory views.

An NSSavePanel object may have a delegate. The methods that delegates of NSSavePanelmay implement
are specified by the NSOpenSavePanelDelegate protocol.

Overview 2281
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Tasks

Creating Panels

+ savePanel (page 2285)
Returns a Save panel that has been initialized with default values.

Configuring Panels

– accessoryView (page 2285)
Returns the custom accessory view for the current application.

– setAccessoryView: (page 2296)
Customizes the panel for the application by adding a custom view to the panel.

– title (page 2306)
Returns the title of the panel.

– setTitle: (page 2305)
Sets the title of the panel.

– prompt (page 2294)
Returns the prompt of the default button.

– setPrompt: (page 2303)
Sets the prompt of the default button.

– nameFieldLabel (page 2293)
Returns the string displayed in front of the filename text field.

– setNameFieldLabel: (page 2302)
Sets the text displayed in front of the text field.

– message (page 2292)
Returns the message displayed in the save panel.

– setMessage: (page 2301)
Sets the message text displayed in the panel.

– canCreateDirectories (page 2289)
Returns a Boolean value that indicates whether the panel allows the user to create directories.

– setCanCreateDirectories: (page 2298)
Sets whether the panel allows the user to create directories.

– showsHiddenFiles (page 2306)
Returns whether the panel displays files that are normally hidden from the user.

– setShowsHiddenFiles: (page 2304)
Specifies whether the panel displays files that are normally hidden from the user.

– delegate (page 2290)
Returns the panel’s delegate.

– setDelegate: (page 2299)
Sets an object as the panel’s delegate, after verifying which delegate methods are implemented.

2282 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Configuring Panel Content

– isExtensionHidden (page 2292)
Returns a Boolean value that indicates whether the extension-hiding checkbox is visible and checked.

– setExtensionHidden: (page 2301)
Sets the value of the extension-hiding checkbox.

– canSelectHiddenExtension (page 2290)
Returns a Boolean value that indicates whether the panel allows the user to hide or show extensions.

– setCanSelectHiddenExtension: (page 2299)
Sets whether the panel allows the user to hide or show extensions.

– allowedFileTypes (page 2286)
Returns an array of the allowed file types.

– setAllowedFileTypes: (page 2297)
Specifies the allowed file types for the panel.

– allowsOtherFileTypes (page 2286)
Returns a Boolean value that indicates whether the panel allows the user to save files with an extension
that’s not in the list of allowed types.

– setAllowsOtherFileTypes: (page 2298)
Sets whether the panel allows the user to save files with an extension that’s not in the list of allowed
types.

– treatsFilePackagesAsDirectories (page 2306)
Returns a Boolean value that indicates whether the panel displays file packages as directories.

– setTreatsFilePackagesAsDirectories: (page 2305)
Sets the panel’s behavior for displaying file packages (for example, MyApp.app) to the user.

– requiredFileType (page 2294) Deprecated in Mac OS X v10.6
Returns the required file type (if any). (Deprecated. Use allowedFileTypes (page 2286) instead.)

– setRequiredFileType: (page 2303) Deprecated in Mac OS X v10.6
Specifies the type, an extension to be appended to any selected files that don’t already have that
extension; “nib” and “rtf” are examples. (Deprecated. UsesetAllowedFileTypes: (page 2297) instead.)

Running Panels

– beginSheetModalForWindow:completionHandler: (page 2288)
Presents the panel as a sheet modal to the specified window.

– beginWithCompletionHandler: (page 2288)
Presents the panel as a modeless window.

– runModal (page 2295)
Displays the panel and begins its event loop with the current working (or last selected) directory as
the default starting point.

– validateVisibleColumns (page 2307)
Validates and possibly reloads the browser columns visible in the panel by invoking the delegate
method panel:shouldShowFilename: (page 2309).

Tasks 2283
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

– beginSheetForDirectory:file:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page
2287) Deprecated in Mac OS X v10.6

Presents a Save panel as a sheet with a specified path and, optionally, a specified file in that path.
(Deprecated. Use beginSheetModalForWindow:completionHandler: (page 2288) instead.)

– runModalForDirectory:file: (page 2295) Deprecated in Mac OS X v10.6
Initializes the panel to the directory and file specified, if any, then displays it and begins its modal
event loop. (Deprecated. Use runModal (page 2295) instead.)

– panel:compareFilename:with:caseSensitive: (page 2307) delegate method Deprecated in Mac OS
X v10.6

Controls the ordering of files presented by the NSSavePanel object specified. (Deprecated. There is
no replacement.)

– panel:directoryDidChange: (page 2308) delegate method Deprecated in Mac OS X v10.6
Tells the delegate that the user has changed the selected directory in the NSSavePanel object
specified. (Deprecated. Use panel:didChangeToDirectoryURL: (page 3736)
(NSOpenSavePanelDelegate) instead.)

– panel:isValidFilename: (page 2309) delegate method Deprecated in Mac OS X v10.6
Gives the delegate the opportunity to validate selected items. (Deprecated. Use
panel:validateURL:error: (page 3737) (NSOpenSavePanelDelegate) instead. If both methods
are implemented, the URL version will be called.)

– panel:shouldShowFilename: (page 2309) delegate method Deprecated in Mac OS X v10.6
Gives the delegate the opportunity to filter items that it doesn’t want the user to choose. (Deprecated.
Use panel:shouldEnableURL: (page 3736) (NSOpenSavePanelDelegate).)

Accessing User Selection

– directoryURL (page 2291)
Returns the directory shown in the panel as a URL.

– setDirectoryURL: (page 2300)
Sets the directory shown in the panel to the directory with the specified URL.

– URL (page 2307)
Returns the absolute pathname of the file currently shown in the panel as a URL.

– isExpanded (page 2292)
Returns a Boolean value that indicates whether the panel is expanded.

– nameFieldStringValue (page 2293)
Returns the user-editable filename currently shown in the name field.

– setNameFieldStringValue: (page 2302)
Sets the filename in the name field to the specified value.

– selectText: (page 2296) Deprecated in Mac OS X v10.3
This method has been deprecated. (Deprecated. There is no replacement.)

– directory (page 2290) Deprecated in Mac OS X v10.6
Returns the absolute pathname of the directory currently shown in the panel. (Deprecated. Use
directoryURL (page 2291) instead.)

– filename (page 2291) Deprecated in Mac OS X v10.6
Returns the absolute pathname of the file currently shown in the panel. (Deprecated. Use URL (page
2307) instead.)

2284 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

– setDirectory: (page 2300) Deprecated in Mac OS X v10.6
Sets the current pathname in the panel’s browser. (Deprecated. Use setDirectoryURL: (page 2300)
instead.)

Handling Actions

– ok: (page 2294)
This action method is invoked when the user clicks the panel’s OK button.

– cancel: (page 2289)
This action method is invoked when the user clicks the panel’s Cancel button.

Class Methods

savePanel
Returns a Save panel that has been initialized with default values.

+ (NSSavePanel *)savePanel

Return Value
The initialized Save panel.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
ImageKitDemo
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSSavePanel.h

Instance Methods

accessoryView
Returns the custom accessory view for the current application.

- (NSView *)accessoryView

Return Value
The custom accessory view for the current application.

Class Methods 2285
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Discussion
In order to free up unused memory after closing the panel, the accessory view is released after the panel is
closed. If you rely on the panel to hold onto the accessory view until the next time you use it, the accessory
view may be deallocated unexpectedly. If you retain the accessory view in your own code, though, this
deallocation should not be a problem.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAccessoryView: (page 2296)

Declared In
NSSavePanel.h

allowedFileTypes
Returns an array of the allowed file types.

- (NSArray *)allowedFileTypes

Return Value
An array of the allowed file types.

Discussion
If the user specifies a file whose type is in the array of allowed types, the user is not presented with another
dialog (see allowsOtherFileTypes (page 2286) for details about this dialog) when trying to save. Examples
of common file types are “rtf”, “tiff”, and “ps”. File type strings encoding HFS file types are not valid values
for this attribute. A nil return value, which is the default, indicates that the user can save to any ASCII file.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAllowedFileTypes: (page 2297)

Declared In
NSSavePanel.h

allowsOtherFileTypes
Returns a Boolean value that indicates whether the panel allows the user to save files with an extension that’s
not in the list of allowed types.

- (BOOL)allowsOtherFileTypes

Return Value
YES if the panel allows the user to save files with an extension that’s not in the list of allowed types; otherwise,
NO.

2286 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Discussion
If the user tries to save a filename with a recognized extension that's not in the list of allowed types they are
presented with a dialog. If this method returns YES, then the dialog presents the option of using the extension
the user specified.

The default setting is NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAllowsOtherFileTypes: (page 2298)
– allowedFileTypes (page 2286)

Declared In
NSSavePanel.h

beginSheetForDirectory:file:modalForWindow:modalDelegate:didEndSelector:
contextInfo:
Presents a Save panel as a sheet with a specified path and, optionally, a specified file in that path. (Deprecated
in Mac OS X v10.6. Use beginSheetModalForWindow:completionHandler: (page 2288) instead.)

- (void)beginSheetForDirectory:(NSString *)path file:(NSString *)name
modalForWindow:(NSWindow *)docWindow modalDelegate:(id)modalDelegate
didEndSelector:(SEL)didEndSelector contextInfo:(void *)contextInfo

Parameters
path

Directory whose files the panel displays. When nil, the directory is the same directory used in the
previous invocation of the panel; this is probably the best choice for most situations.

name
Specifies a particular file in path that is selected when the Save panel is presented to a user. When
nil, no file is initially selected.

docWindow
If not nil, the Save panel slides down as a sheet running as a document modal window in docWindow.
If nil, the behavior defaults to a standalone modal window.

modalDelegate
This is not the same as a delegate assigned to the panel. This delegate is temporary and the relationship
only lasts until the panel is dismissed. The NSSavePanel object does not retain the modal delegate.

didEndSelector
Message sent to modalDelegate after the modal session has ended, but before dismissing the Save
panel. didEndSelector may dismiss the Save panel itself; otherwise, it is dismissed on return from
the method. The corresponding method should have the following signature:

- (void)savePanelDidEnd:(NSSavePanel *)sheet returnCode:(int)returnCode
contextInfo:(void *)contextInfo;

The value passed as returnCode is either NSCancelButton or NSOKButton.

contextInfo
Context information passed to modalDelegate in the didEndSelector message.

Instance Methods 2287
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– beginSheetModalForWindow:completionHandler: (page 2288)

Related Sample Code
Cropped Image
ImageKitDemo
QTAudioExtractionPanel
Quartz Composer WWDC 2005 TextEdit
RGB Image

Declared In
NSSavePanel.h

beginSheetModalForWindow:completionHandler:
Presents the panel as a sheet modal to the specified window.

- (void)beginSheetModalForWindow:(NSWindow *)window
completionHandler:(void (^)(NSInteger result))handler

Parameters
window

The window in which the panel will be presented.

handler
The block called after the user has closed the panel. The argument passed in will be
NSFileHandlingPanelOKButton if the user chose the OK button or
NSFileHandlingPanelCancelButton if the user chose the Cancel button.

Discussion
Any properties of the panel you wish to set should be set before calling this method.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
Denoise
DispatchFractal
From A View to A Movie
From A View to A Picture
TextSizingExample

Declared In
NSSavePanel.h

beginWithCompletionHandler:
Presents the panel as a modeless window.

2288 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

- (void)beginWithCompletionHandler:(void (^)(NSInteger result))handler

Parameters
handler

The block called after the user has closed the panel. The argument passed in will be
NSFileHandlingPanelOKButton if the user chose the OK button or
NSFileHandlingPanelCancelButton if the user chose the Cancel button.

Discussion
Any properties of the panel you wish to set should be set before calling this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSSavePanel.h

cancel:
This action method is invoked when the user clicks the panel’s Cancel button.

- (IBAction)cancel:(id)sender

Parameters
sender

The NSSavePanel object whose Cancel button was clicked.

Availability
Available in Mac OS X v10.0 and later.

See Also
– ok: (page 2294)

Declared In
NSSavePanel.h

canCreateDirectories
Returns a Boolean value that indicates whether the panel allows the user to create directories.

- (BOOL)canCreateDirectories

Return Value
YES when the panel allows the user to create directories; otherwise, NO.

Discussion
The default value is YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setCanCreateDirectories: (page 2298)

Instance Methods 2289
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Declared In
NSSavePanel.h

canSelectHiddenExtension
Returns a Boolean value that indicates whether the panel allows the user to hide or show extensions.

- (BOOL)canSelectHiddenExtension

Return Value
YES when the panel allows the user to hide or show extensions; otherwise, NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setCanSelectHiddenExtension: (page 2299)

Declared In
NSSavePanel.h

delegate
Returns the panel’s delegate.

- (id <NSOpenSavePanelDelegate>)delegate

Return Value
The panel’s delegate.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setDelegate: (page 2299)

Declared In
NSSavePanel.h

directory
Returns the absolute pathname of the directory currently shown in the panel. (Deprecated in Mac OS X v10.6.
Use directoryURL (page 2291) instead.)

- (NSString *)directory

Return Value
The absolute pathname of the directory currently shown in the panel.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

2290 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

See Also
– directoryURL (page 2291)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
NSSavePanel.h

directoryURL
Returns the directory shown in the panel as a URL.

- (NSURL *)directoryURL

Return Value
The directory’s URL.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setDirectoryURL: (page 2300)

Related Sample Code
From A View to A Movie
From A View to A Picture

Declared In
NSSavePanel.h

filename
Returns the absolute pathname of the file currently shown in the panel. (Deprecated in Mac OS X v10.6. Use
URL (page 2307) instead.)

- (NSString *)filename

Return Value
The absolute pathname of the file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– URL (page 2307)

Related Sample Code
CIVideoDemoGL
ImageKitDemo

Instance Methods 2291
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSSavePanel.h

isExpanded
Returns a Boolean value that indicates whether the panel is expanded.

- (BOOL)isExpanded

Return Value
YES if the panel is expanded; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSavePanel.h

isExtensionHidden
Returns a Boolean value that indicates whether the extension-hiding checkbox is visible and checked.

- (BOOL)isExtensionHidden

Return Value
YES when the extension-hiding checkbox is visible and checked; otherwise, NO.

Availability
Available in Mac OS X v10.1 and later.

See Also
– setCanSelectHiddenExtension: (page 2299)
– setExtensionHidden: (page 2301)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSSavePanel.h

message
Returns the message displayed in the save panel.

- (NSString *)message

Return Value
The message displayed in the save panel.

2292 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Discussion
This prompt appears on all NSSavePanel objects (or all NSOpenPanel objects if the receiver of this message
is an NSOpenPanel instance) in your application. The default message text is an empty string.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setMessage: (page 2301)

Declared In
NSSavePanel.h

nameFieldLabel
Returns the string displayed in front of the filename text field.

- (NSString *)nameFieldLabel

Return Value
The string displayed in front of the filename text field.

Discussion
By default the label is “Save As:”.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setNameFieldLabel: (page 2302)

Declared In
NSSavePanel.h

nameFieldStringValue
Returns the user-editable filename currently shown in the name field.

- (NSString *)nameFieldStringValue

Return Value
The filename currently selected.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setNameFieldStringValue: (page 2302)

Declared In
NSSavePanel.h

Instance Methods 2293
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

ok:
This action method is invoked when the user clicks the panel’s OK button.

- (IBAction)ok:(id)sender

Parameters
sender

The NSSavePanel object whose OK button was clicked.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cancel: (page 2289)

Declared In
NSSavePanel.h

prompt
Returns the prompt of the default button.

- (NSString *)prompt

Return Value
The prompt of the default button.

Discussion
This prompt appears on all NSSavePanel objects (or all NSOpenPanel objects if the receiver of this message
is an NSOpenPanel instance) in your application. By default, the text in the default button is “Open” for an
open panel and “Save” for a Save panel.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPrompt: (page 2303)

Declared In
NSSavePanel.h

requiredFileType
Returns the required file type (if any). (Deprecated in Mac OS X v10.6. Use allowedFileTypes (page 2286)
instead.)

- (NSString *)requiredFileType

Return Value
The required file type (if any).

2294 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Discussion
A file specified in the Save panel is saved with the designated filename and this file type as an extension.
Examples of common file types are “rtf”, “tiff”, and “ps”. File type strings encoding HFS file types are not valid
values for this attribute. An nil return value indicates that the user can save to any ASCII file.

This method is equivalent to calling allowedFileTypes (page 2286) and returning the first element of the
list of allowed types, or nil if there are none.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– allowedFileTypes (page 2286)

Declared In
NSSavePanel.h

runModal
Displays the panel and begins its event loop with the current working (or last selected) directory as the default
starting point.

- (NSInteger)runModal

Return Value
NSFileHandlingPanelOKButton (if the user clicks the OK button) orNSFileHandlingPanelCancelButton
(if the user clicks the Cancel button).

Discussion
This method invokesNSApplication‘srunModalForWindow: (page 163) method withself as the argument.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runModalForWindow: (page 163) (NSApplication)

Related Sample Code
AudioDataOutputToAudioUnit
QTKitProgressTester
ThreadsExportMovie

Declared In
NSSavePanel.h

runModalForDirectory:file:
Initializes the panel to the directory and file specified, if any, then displays it and begins its modal event loop.
(Deprecated in Mac OS X v10.6. Use runModal (page 2295) instead.)

- (NSInteger)runModalForDirectory:(NSString *)path file:(NSString *)filename

Instance Methods 2295
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Parameters
path

Directory whose files the panel displays. When nil, the directory is the same directory used in the
previous invocation of the panel; this is probably the best choice for most situations.

filename
Specifies a particular file in path that is selected when the Save panel is presented to a user. When
nil, no file is initially selected.

Return Value
NSFileHandlingPanelOKButton (if the user clicks the OK button) orNSFileHandlingPanelCancelButton
(if the user clicks the Cancel button).

Discussion
This method invokesNSApplication’srunModalForWindow: (page 163) method withself as the argument.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– runModal (page 2295)
– runModalForWindow: (page 163) (NSApplication)

Related Sample Code
AlbumToSlideshow
CIFilterGeneratorTest
CoreRecipes

Declared In
NSSavePanel.h

selectText:
This method has been deprecated. (Deprecated in Mac OS X v10.3. There is no replacement.)

- (IBAction)selectText:(id)sender

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
NSSavePanel.h

setAccessoryView:
Customizes the panel for the application by adding a custom view to the panel.

- (void)setAccessoryView:(NSView *)aView

2296 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Parameters
aView

View to set as the panel’s accessory view.

Discussion
The custom object that is added appears just above the OK and Cancel buttons at the bottom of the panel.
The NSSavePanel object automatically resizes itself to accommodate aView. You can invoke this method
repeatedly to change the accessory view as needed. If aView is nil, the Save panel removes the current
accessory view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– accessoryView (page 2285)

Related Sample Code
ImageApp
QTAudioContextInsert
QTAudioExtractionPanel
QTKitPlayer
Quartz Composer WWDC 2005 TextEdit

Declared In
NSSavePanel.h

setAllowedFileTypes:
Specifies the allowed file types for the panel.

- (void)setAllowedFileTypes:(NSArray *)types

Parameters
types

Array to set as the panel’s array of allowed file types.

Discussion
The parameter must not be empty. A file type is an extension to be appended to any selected files that don’t
already have that extension; “nib” and “rtf” are examples. The items in types should not include the period
that begins the extension. File type strings encoding HFS file types are not valid values. Pass nil to allow
any file type, which is the default.

Availability
Available in Mac OS X v10.3 and later.

See Also
– allowedFileTypes (page 2286)

Related Sample Code
AudioDataOutputToAudioUnit
ImageApp
TimelineToTC

Instance Methods 2297
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Declared In
NSSavePanel.h

setAllowsOtherFileTypes:
Sets whether the panel allows the user to save files with an extension that’s not in the list of allowed types.

- (void)setAllowsOtherFileTypes:(BOOL)flag

Parameters
flag

If YES, the panel allows the user to save files with an extension that’s not in the list of allowed types;
if NO, it does not.

Discussion
If the user tries to save a filename with a recognized extension that's not in the list of allowed types they are
presented with a dialog. If allowsOtherFileTypes (page 2286) is YES, then the dialog presents the option
of using the extension the user specified.

The default setting is NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– allowsOtherFileTypes (page 2286)
– allowedFileTypes (page 2286)

Related Sample Code
MassiveImage
Quartz 2D Transformer
Quartz Composer WWDC 2005 TextEdit

Declared In
NSSavePanel.h

setCanCreateDirectories:
Sets whether the panel allows the user to create directories.

- (void)setCanCreateDirectories:(BOOL)flag

Parameters
flag

If YES, the panel allows the user to create directories; if NO, the panel does not.

Availability
Available in Mac OS X v10.3 and later.

See Also
– canCreateDirectories (page 2289)

2298 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Related Sample Code
GridCalendar
OpenGLCaptureToMovie
Quartz Composer QCTV
WhackedTV

Declared In
NSSavePanel.h

setCanSelectHiddenExtension:
Sets whether the panel allows the user to hide or show extensions.

- (void)setCanSelectHiddenExtension:(BOOL)flag

Parameters
flag

If YES, the panel allows the user to hide or show extensions; if NO, it does not.

Discussion
This method must be called before the panel is displayed. If set to YES, isExtensionHidden and
setExtensionHidden:, respectively, can be used to get and set the value of the checkbox that hides or
shows extensions.

Availability
Available in Mac OS X v10.1 and later.

See Also
– canSelectHiddenExtension (page 2290)
– isExtensionHidden (page 2292)
– setExtensionHidden: (page 2301)

Related Sample Code
AudioDataOutputToAudioUnit
QTRecorder
Quartz 2D Transformer
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSSavePanel.h

setDelegate:
Sets an object as the panel’s delegate, after verifying which delegate methods are implemented.

- (void)setDelegate:(id <NSOpenSavePanelDelegate>)anObject

Parameters
anObject

Object to set as the panel’s delegate.

Instance Methods 2299
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 2290)

Related Sample Code
AudioBurn
QTAudioContextInsert
QTMetadataEditor
Quartz Composer WWDC 2005 TextEdit
SBSetFinderComment

Declared In
NSSavePanel.h

setDirectory:
Sets the current pathname in the panel’s browser. (Deprecated in Mac OS X v10.6. Use
setDirectoryURL: (page 2300) instead.)

- (void)setDirectory:(NSString *)path

Parameters
path

String to set as the panel’s current pathname.

Discussion
The path argument must be an absolute pathname.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setDirectoryURL: (page 2300)

Related Sample Code
CustomSave
Quartz Composer WWDC 2005 TextEdit

Declared In
NSSavePanel.h

setDirectoryURL:
Sets the directory shown in the panel to the directory with the specified URL.

- (void)setDirectoryURL:(NSURL *)url

2300 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Parameters
url

The URL of the directory to set.

Availability
Available in Mac OS X v10.6 and later.

See Also
– directoryURL (page 2291)

Declared In
NSSavePanel.h

setExtensionHidden:
Sets the value of the extension-hiding checkbox.

- (void)setExtensionHidden:(BOOL)flag

Parameters
flag

If YES, the extension-hiding checkbox is visible and checked; if NO, it is not.

Discussion
This method should rarely be used because the state is saved on a per-application basis. Use this method to
set whether a file’s extension should be indicated as being shown.

Availability
Available in Mac OS X v10.1 and later.

See Also
– setCanSelectHiddenExtension: (page 2299)
– isExtensionHidden (page 2292)

Related Sample Code
Fiendishthngs
FunHouse

Declared In
NSSavePanel.h

setMessage:
Sets the message text displayed in the panel.

- (void)setMessage:(NSString *)message

Parameters
message

String to set as the panel’s message.

Instance Methods 2301
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Discussion
This prompt appears on all NSSavePanel objects (or all NSOpenPanel objects if the receiver of this message
is an NSOpenPanel instance) in your application. The default message text is an empty string.

Availability
Available in Mac OS X v10.3 and later.

See Also
– message (page 2292)

Related Sample Code
CustomSave
NSOperationSample
Quartz 2D Transformer
SBSetFinderComment
ViewController

Declared In
NSSavePanel.h

setNameFieldLabel:
Sets the text displayed in front of the text field.

- (void)setNameFieldLabel:(NSString *)label

Parameters
label

String to set as the text displayed in front of the panel’s text field.

Discussion
By default the label is “Save As:”.

Availability
Available in Mac OS X v10.3 and later.

See Also
– nameFieldLabel (page 2293)

Related Sample Code
CustomSave

Declared In
NSSavePanel.h

setNameFieldStringValue:
Sets the filename in the name field to the specified value.

- (void)setNameFieldStringValue:(NSString *)value

2302 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Parameters
value

The filename to set. The value must not be nil.

Availability
Available in Mac OS X v10.6 and later.

See Also
– nameFieldStringValue (page 2293)

Declared In
NSSavePanel.h

setPrompt:
Sets the prompt of the default button.

- (void)setPrompt:(NSString *)prompt

Parameters
prompt

String to set as the prompt of the panel’s default button.

Discussion
This prompt appears on all NSSavePanel objects (or all NSOpenPanel objects if the receiver of this message
is an NSOpenPanel instance) in your application. By default, the text in the default button is “Open” for an
Open panel and “Save” for a Save panel.

It is intended that short words or phrases, such as “Open,” “Save,” “Set,” or “Choose,” be used on the button.
The button is not resized to accommodate long prompts.

Since this method previously affected a title field, any colon at the end of prompt is removed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– prompt (page 2294)

Related Sample Code
AudioBurn
CocoaSpeechSynthesisExample
ContentBurn
DataBurn
ObjectPath

Declared In
NSSavePanel.h

setRequiredFileType:
Specifies the type, an extension to be appended to any selected files that don’t already have that extension;
“nib” and “rtf” are examples. (Deprecated in Mac OS X v10.6. UsesetAllowedFileTypes: (page 2297) instead.)

Instance Methods 2303
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

- (void)setRequiredFileType:(NSString *)type

Parameters
type

String to set as the extension to be appended to any selected files that don’t already have that
extension.

Discussion
The argument type should not include the period that begins the extension. Pass nil to indicate any type.
File type strings encoding HFS file types are not valid values for this attribute. You need to invoke this method
each time the Save panel is used for another file type within the application.

This method is equivalent to calling setAllowedFileTypes: (page 2297) with an array containing only type
(unless type is nil, and then it’s equivalent to calling setAllowedFileTypes: with nil).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setAllowedFileTypes: (page 2297)

Related Sample Code
CIVideoDemoGL
ExtractMovieAudioToAIFF
Quartz Composer QCTV
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSSavePanel.h

setShowsHiddenFiles:
Specifies whether the panel displays files that are normally hidden from the user.

- (void)setShowsHiddenFiles:(BOOL)flag

Parameters
flag

If YES, the panel displays hidden files; if NO, it does not.

Availability
Available in Mac OS X v10.6 and later.

See Also
– showsHiddenFiles (page 2306)

Declared In
NSSavePanel.h

2304 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

setTitle:
Sets the title of the panel.

- (void)setTitle:(NSString *)title

Parameters
title

String to set as the panel’s title.

Discussion
By default, “Save” is the title string. If you adapt the NSSavePanel object for other uses, its title should reflect
the user action that brings it to the screen.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 2306)

Related Sample Code
AudioBurn
ContentBurn
MovieAssembler
ObjectPath
Quartz Composer WWDC 2005 TextEdit

Declared In
NSSavePanel.h

setTreatsFilePackagesAsDirectories:
Sets the panel’s behavior for displaying file packages (for example, MyApp.app) to the user.

- (void)setTreatsFilePackagesAsDirectories:(BOOL)flag

Parameters
flag

If YES, the panel will display file packages as directories; if NO, it will not.

Availability
Available in Mac OS X v10.0 and later.

See Also
– treatsFilePackagesAsDirectories (page 2306)

Related Sample Code
CustomSave
Quartz 2D Transformer
TextSizingExample

Declared In
NSSavePanel.h

Instance Methods 2305
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

showsHiddenFiles
Returns whether the panel displays files that are normally hidden from the user.

- (BOOL)showsHiddenFiles

Return Value
YES if the panel displays hidden files; otherwise, NO.

Discussion
The default value is NO.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setShowsHiddenFiles: (page 2304)

Declared In
NSSavePanel.h

title
Returns the title of the panel.

- (NSString *)title

Return Value
The title of the panel.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 2305)

Declared In
NSSavePanel.h

treatsFilePackagesAsDirectories
Returns a Boolean value that indicates whether the panel displays file packages as directories.

- (BOOL)treatsFilePackagesAsDirectories

Return Value
YES if the panel displays file packages as directories; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTreatsFilePackagesAsDirectories: (page 2305)

2306 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Declared In
NSSavePanel.h

URL
Returns the absolute pathname of the file currently shown in the panel as a URL.

- (NSURL *)URL

Return Value
The absolute pathname of the file currently shown in the panel as a URL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaSpeechSynthesisExample
MassiveImage
PDF Annotation Editor
PDF Calendar
Quartz2DBasics

Declared In
NSSavePanel.h

validateVisibleColumns
Validates and possibly reloads the browser columns visible in the panel by invoking the delegate method
panel:shouldShowFilename: (page 2309).

- (void)validateVisibleColumns

Discussion
You might use this method if you want the browser to only allow selection of files with certain extensions
based on the selection made in an accessory-view pop-up list. When the user changes the selection, you
would invoke this method to revalidate the visible columns.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSavePanel.h

Delegate Methods

panel:compareFilename:with:caseSensitive:
Controls the ordering of files presented by the NSSavePanel object specified. (Deprecated in Mac OS X
v10.6. There is no replacement.)

Delegate Methods 2307
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

- (NSComparisonResult)panel:(id)sender compareFilename:(NSString *)fileName1
with:(NSString *)fileName2 caseSensitive:(BOOL)flag

Parameters
sender

Panel requesting the ordering.

fileName1
String representing the first filename to order.

fileName2
String representing the second filename to order.

flag
If YES, the ordering is case-sensitive; if NO, it is not.

Return Value
One of the following:

 ■ NSOrderedAscending if fileName1 should precede fileName2

 ■ NSOrderedSame if the two names are equivalent

 ■ NSOrderedDescending if fileName2 should precede fileName1

Discussion
Don’t reorder filenames in the Save panel without good reason, because it may confuse the user to have
files in one Save panel or Open panel ordered differently than those in other such panels or in the Finder.
The default behavior of Save and Open panels is to order files as they appear in the Finder. Note also that
by implementing this method you will reduce the operating performance of the panel.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSSavePanel.h

panel:directoryDidChange:
Tells the delegate that the user has changed the selected directory in the NSSavePanel object specified.
(Deprecated in Mac OS X v10.6. Use panel:didChangeToDirectoryURL: (page 3736)
(NSOpenSavePanelDelegate) instead.)

- (void)panel:(id)sender directoryDidChange:(NSString *)path

Parameters
sender

Panel whose directory has changed.

path
String representing the new directory’s path.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.6.

2308 Delegate Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

See Also
– panel:didChangeToDirectoryURL: (page 3736) (NSOpenSavePanelDelegate)

Declared In
NSSavePanel.h

panel:isValidFilename:
Gives the delegate the opportunity to validate selected items. (Deprecated in Mac OS X v10.6. Use
panel:validateURL:error: (page 3737) (NSOpenSavePanelDelegate) instead. If both methods are
implemented, the URL version will be called.)

- (BOOL)panel:(id)sender isValidFilename:(NSString *)filename

Parameters
sender

Panel requesting filename validation.

filename
String representing the filename to validate.

Return Value
YES if the filename is valid, or NO if the save panel should stay in its modal loop and wait for the user to type
in or select a different filename or names.

Discussion
The NSSavePanel object sender sends this message just before the end of a modal session for each filename
displayed or selected (including filenames in multiple selections). If the delegate refuses a filename in a
multiple selection, none of the filenames in the selection is accepted.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– panel:validateURL:error: (page 3737) (NSOpenSavePanelDelegate)

Declared In
NSSavePanel.h

panel:shouldShowFilename:
Gives the delegate the opportunity to filter items that it doesn’t want the user to choose. (Deprecated in Mac
OS X v10.6. Use panel:shouldEnableURL: (page 3736) (NSOpenSavePanelDelegate).)

- (BOOL)panel:(id)sender shouldShowFilename:(NSString *)filename

Parameters
sender

Panel that is querying whether it should show a certain file.

filename
String representing the name of the file to be loaded in the browser.

Delegate Methods 2309
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Return Value
YES if filename should be selectable, and NO if the save panel should disable the file or directory.

Discussion
The NSSavePanel object sender sends this message to the panel’s delegate for each file or directory
(filename) it is about to load in the browser.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– panel:shouldEnableURL: (page 3736) (NSOpenSavePanelDelegate).

Declared In
NSSavePanel.h

Constants

Button tags
Button tags that refer to items on the panel.

enum {
 NSFileHandlingPanelCancelButton = NSCancelButton,
 NSFileHandlingPanelOKButton = NSOKButton
};

Constants
NSFileHandlingPanelCancelButton

The Cancel button.

Available in Mac OS X v10.0 and later.

Declared in NSSavePanel.h.

NSFileHandlingPanelOKButton
The OK button.

Available in Mac OS X v10.0 and later.

Declared in NSSavePanel.h.

NSFileHandlingPanelImageButton
Deleted in Mac OS X v10.3.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in NSSavePanel.h.

NSFileHandlingPanelTitleField
Deleted in Mac OS X v10.3.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in NSSavePanel.h.

2310 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

NSFileHandlingPanelBrowser
Deleted in Mac OS X v10.3.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in NSSavePanel.h.

NSFileHandlingPanelForm
Deleted in Mac OS X v10.3.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in NSSavePanel.h.

NSFileHandlingPanelHomeButton
Deleted in Mac OS X v10.3.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in NSSavePanel.h.

NSFileHandlingPanelDiskButton
Deleted in Mac OS X v10.3.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in NSSavePanel.h.

NSFileHandlingPanelDiskEjectButton
Deleted in Mac OS X v10.3.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in NSSavePanel.h.

Declared In
NSSavePanel.h

Constants 2311
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

2312 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 112

NSSavePanel Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSScreen.h

Companion guide Cocoa Drawing Guide

Related sample code DesktopImage
FunHouse
GLUT
OpenCL NBody Simulation Example
UIElementInspector

Overview

An NSScreen object describes the attributes of a computer’s monitor, or screen. An application may use an
NSScreen object to retrieve information about a screen and use this information to decide what to display
upon that screen. For example, an application may use the deepestScreen (page 2314) method to find out
which of the available screens can best represent color and then may choose to display all of its windows
on that screen.

The application object should be created before you use the methods in this class, so that the application
object can make the necessary connection to the window system. You can make sure the application object
exists by invoking the sharedApplication (page 135) method of NSApplication. If you created your
application with Xcode, the application object is automatically created for you during initialization.

Overview 2313
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 113

NSScreen Class Reference

Note: The NSScreen class is for getting information about the available displays only. If you need additional
information or want to change the attributes relating to a display, you must use Quartz Services. For more
information, see Quartz Display Services Reference.

Tasks

Getting NSScreen Objects

+ mainScreen (page 2315)
Returns the NSScreen object containing the window with the keyboard focus.

+ deepestScreen (page 2314)
Returns an NSScreen object representing the screen that can best represent color.

+ screens (page 2315)
Returns an array of NSScreen objects representing all of the screens available on the system.

Getting Screen Information

– depth (page 2316)
Returns the receiver’s current bit depth and colorspace information.

– frame (page 2317)
Returns the dimensions and location of the receiver.

– supportedWindowDepths (page 2318)
Returns a zero-terminated array of the window depths supported by the receiver.

– deviceDescription (page 2317)
Returns the device dictionary for the screen.

– userSpaceScaleFactor (page 2318)
Returns the scaling factor from user space to device space on the screen represented by the receiver.

– visibleFrame (page 2318)
Returns the current location and dimensions of the visible screen.

– colorSpace (page 2316)
Returns the colorSpace of the screen

Class Methods

deepestScreen
Returns an NSScreen object representing the screen that can best represent color.

+ (NSScreen *)deepestScreen

2314 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 113

NSScreen Class Reference

Return Value
The screen with the highest bit depth.

Discussion
This method always returns an object, even if there is only one screen and it is not a color screen.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScreen.h

mainScreen
Returns the NSScreen object containing the window with the keyboard focus.

+ (NSScreen *)mainScreen

Return Value
The main screen object.

Discussion
The main screen is not necessarily the same screen that contains the menu bar or has its origin at (0, 0). The
main screen refers to the screen containing the window that is currently receiving keyboard events. It is the
main screen because it is the one with which the user is most likely interacting.

The screen containing the menu bar is always the first object (index 0) in the array returned by the screens
method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ screens (page 2315)

Related Sample Code
ColorMatching
FunHouse
LightTable
MyPhoto
OpenCL NBody Simulation Example

Declared In
NSScreen.h

screens
Returns an array of NSScreen objects representing all of the screens available on the system.

+ (NSArray *)screens

Class Methods 2315
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 113

NSScreen Class Reference

Return Value
An array of the NSScreen objects available on the current system or nil if the screen information could not
be obtained from the window system.

Discussion
The screen at index 0 in the returned array corresponds to the primary screen of the user’s system. This is
the screen that contains the menu bar and whose origin is at the point (0, 0). In the case of mirroring, the
first screen is the largest drawable display; if all screens are the same size, it is the screen with the highest
pixel depth. This primary screen may not be the same as the one returned by the mainScreen (page 2315)
method, which returns the screen with the active window.

The array should not be cached. Screens can be added, removed, or dynamically reconfigured at any time.
When the display configuration is changed, the default notification center sends a
NSApplicationDidChangeScreenParametersNotification (page 194) notification.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AnimatedTableView
DesktopImage
GLUT

Declared In
NSScreen.h

Instance Methods

colorSpace
Returns the colorSpace of the screen

- (NSColorSpace *)colorSpace

Return Value
The colorSpace of the screen.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSScreen.h

depth
Returns the receiver’s current bit depth and colorspace information.

- (NSWindowDepth)depth

2316 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 113

NSScreen Class Reference

Return Value
The window depth information. This value cannot be used directly. You must pass it to a function such as
NSBitsPerPixelFromDepth (page 3966) orNSColorSpaceFromDepth (page 3966) to obtain a concrete value
for the desired information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScreen.h

deviceDescription
Returns the device dictionary for the screen.

- (NSDictionary *)deviceDescription

Return Value
A dictionary containing the attributes of the receiver's screen. For the list of keys you can use to retrieve
values from the returned dictionary, see Display Deviceâ Descriptions (page 3413).

Discussion
In addition to the display device constants described in NSWindow Class Reference, you can also retrieve the
CGDirectDisplayID value associated with the screen from this dictionary. To access this value, specify the
Objective-C string @"NSScreenNumber" as the key when requesting the item from the dictionary. The value
associated with this key is an NSNumber object containing the display ID value. This string is only valid when
used as a key for the dictionary returned by this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScreen.h

frame
Returns the dimensions and location of the receiver.

- (NSRect)frame

Return Value
The full screen rectangle at the current resolution. This rectangle includes any space currently occupied by
the menu bar and dock.

Availability
Available in Mac OS X v10.0 and later.

See Also
– visibleFrame (page 2318)

Related Sample Code
ColorMatching
FunHouse

Instance Methods 2317
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 113

NSScreen Class Reference

GLUT
LightTable
UIElementInspector

Declared In
NSScreen.h

supportedWindowDepths
Returns a zero-terminated array of the window depths supported by the receiver.

- (const NSWindowDepth *)supportedWindowDepths

Return Value
A C-style array of window depths. The returned values cannot be used directly. You must pass each one to
a function such as NSBitsPerPixelFromDepth (page 3966) or NSColorSpaceFromDepth (page 3966) to
obtain a concrete value for the desired screen.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScreen.h

userSpaceScaleFactor
Returns the scaling factor from user space to device space on the screen represented by the receiver.

- (CGFloat)userSpaceScaleFactor

Return Value
The scaling factor, measured in pixels per point, where a point is always equal to 1/72 of an inch. For example,
a scaling factor of 2.0 indicates the display has a resolution 2 pixels per point or 144 pixels-per-inch.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSScreen.h

visibleFrame
Returns the current location and dimensions of the visible screen.

- (NSRect)visibleFrame

Return Value
The rectangle defining the portion of the screen in which it is currently safe to draw your application content.

2318 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 113

NSScreen Class Reference

Discussion
The returned rectangle is always based on the current user-interface settings and does not include the area
currently occupied by the dock and menu bar. Because it is based on the current user -interface settings, the
returned rectangle can change between calls and should not be cached.

Note: Even when dock hiding is enabled, the rectangle returned by this method may be smaller than the
full screen. The system uses a small boundary area to determine when it should display the dock.

Availability
Available in Mac OS X v10.0 and later.

See Also
– frame (page 2317)

Related Sample Code
CocoaDVDPlayer
MyPhoto
OpenCL NBody Simulation Example
QTQuartzPlayer
RoundTransparentWindow

Declared In
NSScreen.h

Notifications

NSScreenColorSpaceDidChangeNotification
Posted when the colorSpace of the screen has changed.

The notification object is the NSScreenwhose colorSpace has changed.. This notification does not contain
a userInfo dictionary.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSScreen.h

Notifications 2319
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 113

NSScreen Class Reference

2320 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 113

NSScreen Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSScroller.h

Companion guide Cocoa Drawing Guide

Related sample code PDFKitLinker2
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility

Class at a Glance

An NSScroller object is a user control for scrolling a document view within a container view. You normally
don’t need to program with NSScrollers, as Interface Builder allows you to fully configure them with an
NSScrollView.

Principal Attributes

 ■ Scrolling by small and large increments

 ■ Proportional knob showing visible amount of document

Commonly Used Methods

hitPart (page 2328)
Indicates where the user clicked the NSScroller.

floatValue (page 819) (NSControl)
Returns the position of the NSScroller’s knob.

setFloatValue:knobProportion: (page 2330)
Sets the position and size of the NSScroller’s knob.

Class at a Glance 2321
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

Overview

An NSScroller object controls scrolling of a document view within an NSScrollView’s clip view (or potentially
another kind of container view). It typically displays a pair of buttons that the user can click to scroll by a
small amount (called a line increment or decrement) and Alt-click to scroll by a large amount (called a page
increment or decrement), plus a slot containing a knob that the user can drag directly to the desired location.
The knob indicates both the position within the document view and, by varying in size within the slot, the
amount visible relative to the size of the document view. You can configure whether an NSScroller object
uses scroll buttons, but it always draws the knob when there’s room for it.

Don’t use an NSScroller when an NSSlider would be better. A slider represents a range of values for something
in the application and lets the user choose a setting. A scroller represents the relative position of the visible
portion of a view and lets the user choose which portion to view.

Tasks

Determining NSScroller Size

+ scrollerWidth (page 2324)
Returns the width of “normal-sized” instances.

+ scrollerWidthForControlSize: (page 2324)
Returns the width of the scroller based on controlSize.

– setControlSize: (page 2329)
Sets the size of the receiver.

– controlSize (page 2325)
Returns the size of the receiver.

Laying out an NSScroller

– setArrowsPosition: (page 2329)
Sets the location of the scroll buttons within the receiver to location, or inhibits their display.

– arrowsPosition (page 2325)
Returns the location of the scroll buttons within the receiver, as described in
NSScrollArrowPosition (page 2334).

Setting the Knob Position

– setKnobProportion: (page 2331)
Sets the proportion of the knob slot the knob should fill.

– knobProportion (page 2328)
Returns the portion of the knob slot the knob should fill, as a floating-point value from 0.0 (minimal
size) to 1.0 (fills the slot).

2322 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

– setFloatValue:knobProportion: (page 2330) Deprecated in Mac OS X v10.5
Sets the position of the knob to aFloat, which is a value from 0.0 (indicating the top or left end) to
1.0 (the bottom or right end). (Deprecated. Code that targets Mac OS X 10.5 and later should use
setKnobProportion: (page 2331) and setDoubleValue: (page 831).)

Calculating Layout

– rectForPart: (page 2328)
Returns the rectangle occupied by aPart, which for this method is interpreted literally rather than
as an indicator of scrolling direction.

– testPart: (page 2331)
Returns the part that would be hit by a mouse-down event at aPoint (expressed in the window’s
coordinate system).

– checkSpaceForParts (page 2325)
Checks to see if there is enough room in the receiver to display the knob and buttons.

– usableParts (page 2332)
Returns a value indicating which parts of the receiver are displayed and usable.

Drawing the Parts

– drawArrow:highlight: (page 2326)
Draws the scroll button indicated by arrow, which is either NSScrollerIncrementArrow (the down
or right scroll button) or NSScrollerDecrementArrow (up or left).

– drawKnobSlotInRect:highlight: (page 2327)
Draws the portion of the scroller's track, possibly including the line increment and decrement arrow
buttons, that falls in the given slotRect.

– drawKnob (page 2326)
Draws the knob.

– drawParts (page 2327)
Caches images for the scroll buttons and knob.

– highlight: (page 2327)
Highlights or unhighlights the scroll button the user clicked.

Event Handling

– hitPart (page 2328)
Returns a part code indicating the manner in which the scrolling should be performed.

– trackKnob: (page 2331)
Tracks the knob and sends action messages to the receiver’s target.

– trackScrollButtons: (page 2332)
Tracks the scroll buttons and sends action messages to the receiver’s target.

Tasks 2323
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

Setting Control Tint

– controlTint (page 2326)
Returns the receiver’s control tint.

– setControlTint: (page 2330)
Sets the receiver’s control tint.

Class Methods

scrollerWidth
Returns the width of “normal-sized” instances.

+ (CGFloat)scrollerWidth

Discussion
NSScrollView uses this value to lay out its components. Subclasses that use a different width should override
this method.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
PDFKitLinker2

Declared In
NSScroller.h

scrollerWidthForControlSize:
Returns the width of the scroller based on controlSize.

+ (CGFloat)scrollerWidthForControlSize:(NSControlSize)controlSize

Discussion
Valid values for controlSize are described in NSCell’s NSControlSize (page 620).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScroller.h

2324 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

Instance Methods

arrowsPosition
Returns the location of the scroll buttons within the receiver, as described in NSScrollArrowPosition (page
2334).

- (NSScrollArrowPosition)arrowsPosition

Availability
Available in Mac OS X v10.0 and later.

See Also
– setArrowsPosition: (page 2329)

Declared In
NSScroller.h

checkSpaceForParts
Checks to see if there is enough room in the receiver to display the knob and buttons.

- (void)checkSpaceForParts

Discussion
usableParts (page 2332) returns the state calculated by this method. You should never need to invoke this
method; it’s invoked automatically whenever the NSScroller’s size changes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScroller.h

controlSize
Returns the size of the receiver.

- (NSControlSize)controlSize

Discussion
Valid return values are described in NSControlSize (page 620).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setControlSize: (page 2329)

Declared In
NSScroller.h

Instance Methods 2325
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

controlTint
Returns the receiver’s control tint.

- (NSControlTint)controlTint

Discussion
Valid return values are described in NSControlTint (page 619).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setControlTint: (page 2330)

Declared In
NSScroller.h

drawArrow:highlight:
Draws the scroll button indicated by arrow, which is either NSScrollerIncrementArrow (the down or
right scroll button) or NSScrollerDecrementArrow (up or left).

- (void)drawArrow:(NSScrollerArrow)arrow highlight:(BOOL)flag

Discussion
If flag is YES, the button is drawn highlighted; otherwise it’s drawn normally. You should never need to
invoke this method directly, but may wish to override it to customize the appearance of scroll buttons.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawKnob (page 2326)
– rectForPart: (page 2328)

Declared In
NSScroller.h

drawKnob
Draws the knob.

- (void)drawKnob

Discussion
You should never need to invoke this method directly, but may wish to override it to customize the appearance
of the knob.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawArrow:highlight: (page 2326)

2326 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

– rectForPart: (page 2328)

Declared In
NSScroller.h

drawKnobSlotInRect:highlight:
Draws the portion of the scroller's track, possibly including the line increment and decrement arrow buttons,
that falls in the given slotRect.

- (void)drawKnobSlotInRect:(NSRect)slotRecthighlight:(BOOL)flag

Parameters
slotRect

The rectangle in which to draw the knob slot.

flag
If flag is YES, any scroll arrow button that falls within slotRect is drawn highlighted; otherwise it's
drawn normally.

Discussion
Only one arrow button will be shown highlighted at a time, so you can expect this method to sometimes be
invoked with a slotRect that encompasses only one arrow.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScroller.h

drawParts
Caches images for the scroll buttons and knob.

- (void)drawParts

Discussion
It’s invoked only once when the NSScroller is created. You may want to override this method if you alter the
look of the NSScroller, but you should never invoke it directly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScroller.h

highlight:
Highlights or unhighlights the scroll button the user clicked.

- (void)highlight:(BOOL)flag

Instance Methods 2327
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

Discussion
The receiver invokes this method while tracking the mouse; you should not invoke it directly. If flag is YES,
the appropriate part is drawn highlighted; otherwise it’s drawn normally.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawArrow:highlight: (page 2326)
– rectForPart: (page 2328)

Declared In
NSScroller.h

hitPart
Returns a part code indicating the manner in which the scrolling should be performed.

- (NSScrollerPart)hitPart

Discussion
See NSScrollerPart (page 2332) for a list of part codes.

This method is typically invoked by an NSScrollView to determine how to scroll its document view when it
receives an action message from the NSScroller.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScroller.h

knobProportion
Returns the portion of the knob slot the knob should fill, as a floating-point value from 0.0 (minimal size) to
1.0 (fills the slot).

- (CGFloat)knobProportion

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScroller.h

rectForPart:
Returns the rectangle occupied by aPart, which for this method is interpreted literally rather than as an
indicator of scrolling direction.

- (NSRect)rectForPart:(NSScrollerPart)aPart

2328 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

Discussion
See NSScrollerPart (page 2332) for a list of possible values for aPart.

Note the interpretations of NSScrollerDecrementPage and NSScrollerIncrementPage. The actual part
of an NSScroller that causes page-by-page scrolling varies, so as a convenience these part codes refer to
useful parts different from the scroll buttons.

Returns NSZeroRect if the part requested isn’t present on the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hitPart (page 2328)
– testPart: (page 2331)
– usableParts (page 2332)

Declared In
NSScroller.h

setArrowsPosition:
Sets the location of the scroll buttons within the receiver to location, or inhibits their display.

- (void)setArrowsPosition:(NSScrollArrowPosition)location

Discussion
See NSScrollArrowPosition (page 2334) for a list of possible values for location.

Availability
Available in Mac OS X v10.0 and later.

See Also
– arrowsPosition (page 2325)

Declared In
NSScroller.h

setControlSize:
Sets the size of the receiver.

- (void)setControlSize:(NSControlSize)controlSize

Discussion
Valid values for controlSize are described in NSControlSize (page 620).

Availability
Available in Mac OS X v10.0 and later.

See Also
– controlSize (page 2325)

Instance Methods 2329
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

Related Sample Code
FunHouse
Quartz Composer QCTV
WhackedTV

Declared In
NSScroller.h

setControlTint:
Sets the receiver’s control tint.

- (void)setControlTint:(NSControlTint)controlTint

Discussion
Valid values for controlTint are described in NSControlTint (page 619).

Availability
Available in Mac OS X v10.0 and later.

See Also
– controlTint (page 2326)

Declared In
NSScroller.h

setFloatValue:knobProportion:
Sets the position of the knob to aFloat, which is a value from 0.0 (indicating the top or left end) to 1.0 (the
bottom or right end). (Deprecated in Mac OS X v10.5. Code that targets Mac OS X 10.5 and later should use
setKnobProportion: (page 2331) and setDoubleValue: (page 831).)

- (void)setFloatValue:(float)aFloat knobProportion:(CGFloat)knobProp

Discussion
Also sets the proportion of the knob slot filled by the knob to knobProp, also a value from 0.0 (minimal size)
to 1.0 (fills the slot).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– floatValue (page 819) (NSControl)
– knobProportion (page 2328)

Declared In
NSScroller.h

2330 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

setKnobProportion:
Sets the proportion of the knob slot the knob should fill.

- (void)setKnobProportion:(CGFloat)proportion

Parameters
proportion

A floating point value between 0.0 (minimal size) and 1.0 (fills the entire slot).

Discussion
Code that targets Mac OS X 10.5 and later should use -setKnobProportion: (page 2331) and
setDoubleValue: (page 831): in preference to the deprecated method that they replace,
setFloatValue:knobProportion: (page 2330). These methods provide more uniform, Key Value
Coding-compatible access to the two values, and allow for a double-precision scroll position.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSScroller.h

testPart:
Returns the part that would be hit by a mouse-down event at aPoint (expressed in the window’s coordinate
system).

- (NSScrollerPart)testPart:(NSPoint)aPoint

Discussion
See NSScrollerPart (page 2332) for a list of possible return values.

Note the interpretations of NSScrollerDecrementPage and NSScrollerIncrementPage. The actual part
of an NSScroller that causes page-by-page scrolling varies, so as a convenience these part codes refer to
useful parts different from the scroll buttons.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hitPart (page 2328)
– rectForPart: (page 2328)

Declared In
NSScroller.h

trackKnob:
Tracks the knob and sends action messages to the receiver’s target.

- (void)trackKnob:(NSEvent *)theEvent

Instance Methods 2331
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

Discussion
This method is invoked automatically when the receiver receives theEvent mouse-down event in the knob;
you should not invoke it directly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScroller.h

trackScrollButtons:
Tracks the scroll buttons and sends action messages to the receiver’s target.

- (void)trackScrollButtons:(NSEvent *)theEvent

Discussion
This method is invoked automatically when the receiver receives theEvent mouse-down event in a scroll
button; you should not invoke this method directly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScroller.h

usableParts
Returns a value indicating which parts of the receiver are displayed and usable.

- (NSUsableScrollerParts)usableParts

Discussion
See NSUsableScrollerParts (page 2335) for a list of possible values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– checkSpaceForParts (page 2325)
– arrowsPosition (page 2325)

Declared In
NSScroller.h

Constants

NSScrollerPart
These constants specify the different parts of the scroller:

2332 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

typedef enum _NSScrollerPart {
 NSScrollerNoPart = 0,
 NSScrollerDecrementPage = 1,
 NSScrollerKnob = 2,
 NSScrollerIncrementPage = 3,
 NSScrollerDecrementLine = 4,
 NSScrollerIncrementLine = 5,
 NSScrollerKnobSlot = 6
} NSScrollerPart;

Constants
NSScrollerKnob

Directly to the NSScroller’s value, as given by floatValue (page 819).

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

NSScrollerKnobSlot
Directly to the NSScroller’s value, as given by floatValue (page 819).

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

NSScrollerDecrementLine
Up or left by a small amount.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

NSScrollerDecrementPage
Up or left by a large amount.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

NSScrollerIncrementLine
Down or right by a small amount.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

NSScrollerIncrementPage
Down or right by a large amount.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

NSScrollerNoPart
Don’t scroll at all.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScroller.h

Constants 2333
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

NSScrollerArrow
These constants describe the two scroller buttons and are used by drawArrow:highlight: (page 2326):

typedef enum _NSScrollerArrow {
 NSScrollerIncrementArrow = 0,
 NSScrollerDecrementArrow = 1
} NSScrollerArrow;

Constants
NSScrollerIncrementArrow

The down or right scroll button.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

NSScrollerDecrementArrow
The up or left scroll button.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScroller.h

NSScrollArrowPosition
These constants specify where the scroller’s buttons appear and are used by arrowsPosition (page 2325)
and setArrowsPosition: (page 2329).

typedef enum _NSScrollArrowPosition {
 NSScrollerArrowsMaxEnd = 0,
 NSScrollerArrowsMinEnd = 1,
 NSScrollerArrowsDefaultSetting = 0,
 NSScrollerArrowsNone = 2
} NSScrollArrowPosition;

Constants
NSScrollerArrowsMaxEnd

Buttons at bottom or right. This constant has been deprecated.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

NSScrollerArrowsMinEnd
Buttons at top or left. This has been deprecated.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

NSScrollerArrowsDefaultSetting
Buttons are displayed according to the system-wide appearance preferences.

Available in Mac OS X v10.1 and later.

Declared in NSScroller.h.

2334 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

NSScrollerArrowsNone
No buttons.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScroller.h

NSUsableScrollerParts
These constants specify which parts of the scroller are visible.

typedef enum _NSUsableScrollerParts {
 NSNoScrollerParts = 0,
 NSOnlyScrollerArrows = 1,
 NSAllScrollerParts = 2
} NSUsableScrollerParts;

Constants
NSNoScrollerParts

Scroller has neither a knob nor scroll buttons, only the knob slot.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

NSOnlyScrollerArrows
Scroller has only scroll buttons, no knob.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

NSAllScrollerParts
Scroller has at least a knob, possibly also scroll buttons.

Available in Mac OS X v10.0 and later.

Declared in NSScroller.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScroller.h

Constants 2335
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

2336 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 114

NSScroller Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSScrollView.h

Companion guide Scroll View Programming Guide for Cocoa

Related sample code Quartz Composer WWDC 2005 TextEdit
Rulers
Sketch-112
TextSizingExample
WhackedTV

Class at a Glance

An NSScrollView allows the user to scroll a document view that’s too large to display in its entirety. In
addition to the document view, it displays horizontal and vertical scrollers and rulers (depending on which
it’s configured to have).

Principal Attributes

 ■ Configurable scrollers

 ■ Configurable rulers

 ■ Small and large increment scrolling

 ■ Dynamic (continuous) scrolling

 ■ Display of a special cursor over its document view

Interface Builder
Drag a scroll view to a window.

Class at a Glance 2337
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Commonly Used Methods

setDocumentView: (page 2355)
Sets the scroll view’s document view.

setLineScroll: (page 2360)
Sets the amount by which the document view moves during scrolling.

setRulersVisible: (page 2361)
Displays or hides rulers.

Overview

The NSScrollView class is the central coordinator for the Application Kit’s scrolling machinery, composed of
this class, NSClipView, and NSScroller. An NSScrollView displays a portion of a document view that’s too large
to be displayed whole and provides NSScroller scroll bars that allow the user to move the document view
within the NSScrollView. Note that, when using an NSClipView within an NSScrollView (the usual configuration),
you should issue messages that control background drawing state to the NSScrollView, rather than messaging
the NSClipView directly.

Tasks

Calculating Layout

+ contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType: (page
2342)

Returns the size of a content view for an NSScrollView whose frame size is frameSize.

+ frameSizeForContentSize:hasHorizontalScroller:hasVerticalScroller:borderType: (page
2342)

Returns the frame size of an NSScrollView that contains a content view whose size is contentSize.

Determining Component Sizes

– contentSize (page 2345)
Returns the size of the receiver’s content view.

– documentVisibleRect (page 2346)
Returns the portion of the document view, in its own coordinate system, visible through the receiver’s
content view.

Managing Graphics Attributes

– setBackgroundColor: (page 2353)
Sets the color of the content view’s background to aColor.

2338 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

– backgroundColor (page 2344)
Returns the content view’s background color.

– drawsBackground (page 2347)
Returns YES if the receiver cell fills the background with its background color; otherwise, NO.

– setDrawsBackground: (page 2356)
Sets whether the receiver draws its background.

– setBorderType: (page 2354)
Sets the border type of the receiver to borderType.

– borderType (page 2344)
Returns a value that represents the type of border surrounding the receiver; see the description of
setBorderType: (page 2354) for a list of possible values.

– setDocumentCursor: (page 2355)
Sets the cursor used when the cursor is over the content view to aCursor, by sending
setDocumentCursor: (page 2355) to the content view.

– documentCursor (page 2346)
Returns the content view’s document cursor.

Managing the Scrolled Views

– setContentView: (page 2354)
Sets the receiver’s content view, the view that clips the document view, to aView.

– contentView (page 2345)
Returns the receiver’s content view, the view that clips the document view.

– setDocumentView: (page 2355)
Sets the receiver’s document view to aView.

– documentView (page 2346)
Returns the view the receiver scrolls within its content view.

Managing Scrollers

– setHorizontalScroller: (page 2360)
Sets the receiver’s horizontal scroller to aScroller, establishing the appropriate target-action
relationships between them.

– horizontalScroller (page 2350)
Returns the receiver’s horizontal scroller, regardless of whether the receiver is currently displaying it,
or nil if the receiver has none.

– setHasHorizontalScroller: (page 2357)
Determines whether the receiver keeps a horizontal scroller.

– hasHorizontalScroller (page 2347)
Returns YES if the receiver displays a horizontal scroller, NO if it doesn’t.

– setVerticalScroller: (page 2364)
Sets the receiver’s vertical scroller to aScroller, establishing the appropriate target-action
relationships between them.

Tasks 2339
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

– verticalScroller (page 2366)
Returns the receiver’s vertical scroller, regardless of whether the receiver is currently displaying it, or
nil if the receiver has none.

– setHasVerticalScroller: (page 2358)
Determines whether the receiver keeps a vertical scroller.

– hasVerticalScroller (page 2348)
Returns YES if the receiver displays a vertical scroller, NO if it doesn’t.

– setAutohidesScrollers: (page 2353)
Determines whether the receiver automatically hides its scroll bars when they are not needed.

– autohidesScrollers (page 2344)
Returns YES when autohiding is set for scroll bars in the receiver.

Managing Rulers

+ setRulerViewClass: (page 2343)
Sets the default class to be used for ruler objects in NSScrollViews to aClass.

+ rulerViewClass (page 2343)
Returns the default class to be used for ruler objects in NSScrollViews.

– setHasHorizontalRuler: (page 2356)
Determines whether the receiver keeps a horizontal ruler object.

– hasHorizontalRuler (page 2347)
Returns YES if the receiver maintains a horizontal ruler view, NO if it doesn’t.

– setHorizontalRulerView: (page 2359)
Sets the receiver’s horizontal ruler view to aRulerView.

– horizontalRulerView (page 2350)
Returns the receiver’s horizontal ruler view, regardless of whether the receiver is currently displaying
it, or nil if the receiver has none.

– setHasVerticalRuler: (page 2357)
Determines whether the receiver keeps a vertical ruler object.

– hasVerticalRuler (page 2348)
Returns YES if the receiver maintains a vertical ruler view, NO if it doesn’t.

– setVerticalRulerView: (page 2363)
Sets the receiver’s vertical ruler view to aRulerView.

– verticalRulerView (page 2365)
Returns the receiver’s vertical ruler view, regardless of whether the receiver is currently displaying it,
or nil if the receiver has none.

– setRulersVisible: (page 2361)
Determines whether the receiver displays its rulers.

– rulersVisible (page 2352)
Returns YES if the receiver was set to show rulers using setRulersVisible: (page 2361) (whether
or not it has rulers at all), NO if it was set to hide them.

2340 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Setting Scrolling Behavior

– setLineScroll: (page 2360)
Sets the horizontal and vertical line scroll amounts to aFloat.

– lineScroll (page 2350)
Returns the vertical line scroll amount: the amount by which the receiver scrolls itself vertically when
scrolling line by line, expressed in the content view’s coordinate system.

– setHorizontalLineScroll: (page 2358)
Sets the amount by which the receiver scrolls itself horizontally when scrolling line by line to aFloat,
expressed in the content view’s coordinate system.

– horizontalLineScroll (page 2349)
Returns the amount by which the receiver scrolls itself horizontally when scrolling line by line, expressed
in the content view’s coordinate system.

– setVerticalLineScroll: (page 2362)
Sets the amount by which the receiver scrolls itself vertically when scrolling line by line to aFloat,
expressed in the content view’s coordinate system.

– verticalLineScroll (page 2364)
Returns the amount by which the receiver scrolls itself vertically when scrolling line by line, expressed
in the content view’s coordinate system.

– setPageScroll: (page 2361)
Sets the horizontal and vertical page scroll amounts to aFloat.

– pageScroll (page 2351)
Returns the vertical page scroll amount: the amount of the document view kept visible when scrolling
vertically page by page, expressed in the content view’s coordinate system.

– setHorizontalPageScroll: (page 2359)
Sets the amount of the document view kept visible when scrolling horizontally page by page to
aFloat, expressed in the content view’s coordinate system.

– horizontalPageScroll (page 2349)
Returns the amount of the document view kept visible when scrolling horizontally page by page,
expressed in the content view’s coordinate system.

– setVerticalPageScroll: (page 2363)
Sets the amount of the document view kept visible when scrolling vertically page by page to aFloat,
expressed in the content view’s coordinate system.

– verticalPageScroll (page 2365)
Returns the amount of the document view kept visible when scrolling vertically page by page,
expressed in the content view’s coordinate system.

– setScrollsDynamically: (page 2362)
Determines whether the receiver redraws its document view while scrolling continuously.

– scrollsDynamically (page 2352)
Returns YES if the receiver redraws its document view while tracking the knob, NO if it redraws only
when the scroller knob is released.

– scrollWheel: (page 2353)
Scrolls the receiver up or down, in response to the user moving the mouse’s scroll wheel specified
by theEvent.

Tasks 2341
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Updating Display After Scrolling

– reflectScrolledClipView: (page 2351)
Adjusts the receiver’s scrollers to reflect the size and positioning of its content view.

Arranging Components

– tile (page 2364)
Lays out the components of the receiver: the content view, the scrollers, and the ruler views.

Class Methods

contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType:
Returns the size of a content view for an NSScrollView whose frame size is frameSize.

+ (NSSize)contentSizeForFrameSize:(NSSize)frameSize hasHorizontalScroller:(BOOL)hFlag
hasVerticalScroller:(BOOL)vFlag borderType:(NSBorderType)borderType

Discussion
hFlag and vFlag indicate whether a horizontal or vertical scroller, respectively, is present. If either flag is
YES then the content size is reduced in the appropriate dimension by the width of an NSScroller. The
borderType argument indicates the appearance of the NSScrollView’s edge, which also affects the content
size; see the description of setBorderType: (page 2354) for a list of possible values.

For an existing NSScrollView, you can simply use the contentSize (page 2345) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ frameSizeForContentSize:hasHorizontalScroller:hasVerticalScroller:borderType: (page
2342)
+ scrollerWidth (page 2324) (NSScroller)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSScrollView.h

frameSizeForContentSize:hasHorizontalScroller:hasVerticalScroller:borderType:
Returns the frame size of an NSScrollView that contains a content view whose size is contentSize.

+ (NSSize)frameSizeForContentSize:(NSSize)contentSize
hasHorizontalScroller:(BOOL)hFlag hasVerticalScroller:(BOOL)vFlag
borderType:(NSBorderType)borderType

2342 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Discussion
The hFlag and vFlag arguments indicate whether a horizontal or vertical scroller, respectively, is present.
If either flag is YES then the frame size is increased in the appropriate dimension by the width of an NSScroller.
borderType indicates the appearance of the NSScrollView’s edge, which also affects the frame size; see the
description of setBorderType: (page 2354) for a list of possible values.

For an existing NSScrollView, you can simply use the frame method and extract its size.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType: (page
2342)
+ scrollerWidth (page 2324) (NSScroller)

Related Sample Code
CocoaAUHost
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit

Declared In
NSScrollView.h

rulerViewClass
Returns the default class to be used for ruler objects in NSScrollViews.

+ (Class)rulerViewClass

Discussion
This class is normally NSRulerView.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setRulerViewClass: (page 2343)

Declared In
NSScrollView.h

setRulerViewClass:
Sets the default class to be used for ruler objects in NSScrollViews to aClass.

+ (void)setRulerViewClass:(Class)aClass

Discussion
This class is normally NSRulerView, but you can use this method to set it to a custom subclass of NSRulerView.

This method simply sets a global variable private to NSScrollView. Subclasses of NSScrollView should override
both this method and rulerViewClass (page 2343) to store their ruler view classes in private variables.

Class Methods 2343
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
+ rulerViewClass (page 2343)

Declared In
NSScrollView.h

Instance Methods

autohidesScrollers
Returns YES when autohiding is set for scroll bars in the receiver.

- (BOOL)autohidesScrollers

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAutohidesScrollers: (page 2353)

Declared In
NSScrollView.h

backgroundColor
Returns the content view’s background color.

- (NSColor *)backgroundColor

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundColor: (page 2353)
– backgroundColor (page 632) (NSClipView)

Declared In
NSScrollView.h

borderType
Returns a value that represents the type of border surrounding the receiver; see the description of
setBorderType: (page 2354) for a list of possible values.

- (NSBorderType)borderType

2344 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit

Declared In
NSScrollView.h

contentSize
Returns the size of the receiver’s content view.

- (NSSize)contentSize

Availability
Available in Mac OS X v10.0 and later.

See Also
+ contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType: (page
2342)

Related Sample Code
CustomSave
FunHouse
Quartz Composer WWDC 2005 TextEdit

Declared In
NSScrollView.h

contentView
Returns the receiver’s content view, the view that clips the document view.

- (NSClipView *)contentView

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContentView: (page 2354)
– documentView (page 2346)

Related Sample Code
FunHouse
QTAudioContextInsert
WhackedTV

Declared In
NSScrollView.h

Instance Methods 2345
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

documentCursor
Returns the content view’s document cursor.

- (NSCursor *)documentCursor

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDocumentCursor: (page 2355)
– documentCursor (page 633) (NSClipView)

Declared In
NSScrollView.h

documentView
Returns the view the receiver scrolls within its content view.

- (id)documentView

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDocumentView: (page 2355)
– documentView (page 634) (NSClipView)

Related Sample Code
CocoaAUHost
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit
Rulers

Declared In
NSScrollView.h

documentVisibleRect
Returns the portion of the document view, in its own coordinate system, visible through the receiver’s content
view.

- (NSRect)documentVisibleRect

Availability
Available in Mac OS X v10.0 and later.

See Also
– documentVisibleRect (page 634) (NSClipView)
– visibleRect (page 3245) (NSView)

2346 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Related Sample Code
STUCAuthoringDeviceCocoaSample

Declared In
NSScrollView.h

drawsBackground
Returns YES if the receiver cell fills the background with its background color; otherwise, NO.

- (BOOL)drawsBackground

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScrollView.h

hasHorizontalRuler
Returns YES if the receiver maintains a horizontal ruler view, NO if it doesn’t.

- (BOOL)hasHorizontalRuler

Discussion
Display of rulers is controlled using the setRulersVisible: (page 2361) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– horizontalRulerView (page 2350)
– setHasHorizontalRuler: (page 2356)
– hasVerticalRuler (page 2348)
+ rulerViewClass (page 2343)

Declared In
NSScrollView.h

hasHorizontalScroller
Returns YES if the receiver displays a horizontal scroller, NO if it doesn’t.

- (BOOL)hasHorizontalScroller

Availability
Available in Mac OS X v10.0 and later.

See Also
– horizontalScroller (page 2350)
– setHasHorizontalScroller: (page 2357)

Instance Methods 2347
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

– hasVerticalScroller (page 2348)

Related Sample Code
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility

Declared In
NSScrollView.h

hasVerticalRuler
Returns YES if the receiver maintains a vertical ruler view, NO if it doesn’t.

- (BOOL)hasVerticalRuler

Discussion
Display of rulers is controlled using the setRulersVisible: (page 2361) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– verticalRulerView (page 2365)
– setHasVerticalRuler: (page 2357)
– hasHorizontalRuler (page 2347)
+ rulerViewClass (page 2343)

Declared In
NSScrollView.h

hasVerticalScroller
Returns YES if the receiver displays a vertical scroller, NO if it doesn’t.

- (BOOL)hasVerticalScroller

Availability
Available in Mac OS X v10.0 and later.

See Also
– verticalScroller (page 2366)
– setHasVerticalScroller: (page 2358)
– hasHorizontalScroller (page 2347)

Related Sample Code
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit

Declared In
NSScrollView.h

2348 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

horizontalLineScroll
Returns the amount by which the receiver scrolls itself horizontally when scrolling line by line, expressed in
the content view’s coordinate system.

- (CGFloat)horizontalLineScroll

Discussion
This amount is used when the user clicks the scroll arrows on the horizontal scroll bar without holding down
a modifier key.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHorizontalLineScroll: (page 2358)
– verticalLineScroll (page 2364)
– setLineScroll: (page 2360)
– horizontalPageScroll (page 2349)

Declared In
NSScrollView.h

horizontalPageScroll
Returns the amount of the document view kept visible when scrolling horizontally page by page, expressed
in the content view’s coordinate system.

- (CGFloat)horizontalPageScroll

Discussion
This amount is used when the user clicks the scroll arrows on the horizontal scroll bar while holding down
the Option key.

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHorizontalPageScroll: (page 2359)
– verticalPageScroll (page 2365)
– setPageScroll: (page 2361)
– horizontalLineScroll (page 2349)

Declared In
NSScrollView.h

Instance Methods 2349
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

horizontalRulerView
Returns the receiver’s horizontal ruler view, regardless of whether the receiver is currently displaying it, or
nil if the receiver has none.

- (NSRulerView *)horizontalRulerView

Discussion
If the receiver is set to display a horizontal ruler view and doesn’t yet have one, this method creates an
instance of the ruler view class set using the class method setRulerViewClass: (page 2343). Display of rulers
is controlled using the setRulersVisible: (page 2361) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasHorizontalRuler (page 2347)
– verticalRulerView (page 2365)

Related Sample Code
Rulers
Sketch-112

Declared In
NSScrollView.h

horizontalScroller
Returns the receiver’s horizontal scroller, regardless of whether the receiver is currently displaying it, or nil
if the receiver has none.

- (NSScroller *)horizontalScroller

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Sketch+Accessibility

Declared In
NSScrollView.h

lineScroll
Returns the vertical line scroll amount: the amount by which the receiver scrolls itself vertically when scrolling
line by line, expressed in the content view’s coordinate system.

- (CGFloat)lineScroll

Discussion
This amount is used when the user clicks the scroll arrows on the vertical scroll bar without holding down a
modifier key. As part of its implementation, this method calls verticalLineScroll (page 2364).

2350 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Note that a scroll view can have two different line scroll amounts: verticalLineScroll (page 2364) and
horizontalLineScroll (page 2349). Use this method only if you can be sure they’re both the same; for
example, you always use setLineScroll: (page 2360), which sets both amounts to the same value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLineScroll: (page 2360)
– verticalPageScroll (page 2365)
– horizontalPageScroll (page 2349)

Declared In
NSScrollView.h

pageScroll
Returns the vertical page scroll amount: the amount of the document view kept visible when scrolling
vertically page by page, expressed in the content view’s coordinate system.

- (CGFloat)pageScroll

Discussion
This amount is used when the user clicks the scroll arrows on the vertical scroll bar while holding down the
Option key. As part of its implementation, this method calls verticalPageScroll (page 2365).

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page.

Note that a scroll view can have two different page scroll amounts: verticalPageScroll (page 2365) and
horizontalPageScroll (page 2349). Use this method only if you can be sure they’re both the same; for
example, you always use setPageScroll: (page 2361), which sets both amounts to the same value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPageScroll: (page 2361)
– verticalLineScroll (page 2364)
– horizontalLineScroll (page 2349)

Declared In
NSScrollView.h

reflectScrolledClipView:
Adjusts the receiver’s scrollers to reflect the size and positioning of its content view.

- (void)reflectScrolledClipView:(NSClipView *)aClipView

Instance Methods 2351
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Parameters
aClipView

The clip view being adjusted to. If aClipView is any view object other than the receiver’s content
view, the method does nothing.

Discussion
This method is invoked automatically during scrolling and when an NSClipView object’s relationship to its
document view changes; you should rarely need to invoke it yourself, but may wish to override it for custom
updating or other behavior. If you override this method, be sure to call the superclass implementation. If you
do not, other controls (such as the current scrollers) may not be updated properly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentView (page 2345)
– documentView (page 2346)

Related Sample Code
WhackedTV

Declared In
NSScrollView.h

rulersVisible
Returns YES if the receiver was set to show rulers using setRulersVisible: (page 2361) (whether or not it
has rulers at all), NO if it was set to hide them.

- (BOOL)rulersVisible

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasHorizontalRuler (page 2347)
– hasVerticalRuler (page 2348)

Related Sample Code
Sketch+Accessibility
Sketch-112

Declared In
NSScrollView.h

scrollsDynamically
Returns YES if the receiver redraws its document view while tracking the knob, NO if it redraws only when
the scroller knob is released.

- (BOOL)scrollsDynamically

2352 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Discussion
NSScrollView scrolls dynamically by default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setScrollsDynamically: (page 2362)

Declared In
NSScrollView.h

scrollWheel:
Scrolls the receiver up or down, in response to the user moving the mouse’s scroll wheel specified by
theEvent.

- (void)scrollWheel:(NSEvent *)theEvent

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScrollView.h

setAutohidesScrollers:
Determines whether the receiver automatically hides its scroll bars when they are not needed.

- (void)setAutohidesScrollers:(BOOL)flag

Discussion
The horizontal and vertical scroll bars are hidden independently of each other. When autohiding is on and
the content of the receiver doesn't extend beyond the size of the clip view on a given axis, the scroller on
that axis is removed to leave more room for the content.

Availability
Available in Mac OS X v10.3 and later.

See Also
– autohidesScrollers (page 2344)

Related Sample Code
FunHouse
WhackedTV

Declared In
NSScrollView.h

setBackgroundColor:
Sets the color of the content view’s background to aColor.

Instance Methods 2353
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

- (void)setBackgroundColor:(NSColor *)aColor

Discussion
This color is used to paint areas inside the content view that aren’t covered by the document view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 2344)
– setBackgroundColor: (page 635) (NSClipView)

Declared In
NSScrollView.h

setBorderType:
Sets the border type of the receiver to borderType.

- (void)setBorderType:(NSBorderType)borderType

Discussion
borderType may be one of:

NSNoBorder

NSLineBorder

NSBezelBorder

NSGrooveBorder

Availability
Available in Mac OS X v10.0 and later.

See Also
– borderType (page 2344)

Related Sample Code
CustomSave
FunHouse
Sketch-112

Declared In
NSScrollView.h

setContentView:
Sets the receiver’s content view, the view that clips the document view, to aView.

- (void)setContentView:(NSClipView *)aView

Discussion
If aView has a document view, this method also sets the receiver’s document view to be the document view
of aView. The original content view retains its document view.

2354 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentView (page 2345)
– setDocumentView: (page 2355)

Declared In
NSScrollView.h

setDocumentCursor:
Sets the cursor used when the cursor is over the content view to aCursor, by sending
setDocumentCursor: (page 2355) to the content view.

- (void)setDocumentCursor:(NSCursor *)aCursor

Availability
Available in Mac OS X v10.0 and later.

See Also
– documentCursor (page 2346)

Declared In
NSScrollView.h

setDocumentView:
Sets the receiver’s document view to aView.

- (void)setDocumentView:(NSView *)aView

Availability
Available in Mac OS X v10.0 and later.

See Also
– documentView (page 2346)
– setDocumentView: (page 636) (NSClipView)

Related Sample Code
FunHouse
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit
Rulers
WhackedTV

Declared In
NSScrollView.h

Instance Methods 2355
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

setDrawsBackground:
Sets whether the receiver draws its background.

- (void)setDrawsBackground:(BOOL)flag

Discussion
If flag is NO, copy-on-scroll is automatically disabled.

If your NSScrollView encloses an NSClipView sending a setDrawsBackground: message with a parameter
of NO to the NSScrollView has the added effect of sending the NSClipView a setCopiesOnScroll:message
with a parameter of NO. The side effect of sending the setDrawsBackground: message directly to the
NSClipView instead would be the appearance of “trails” (vestiges of previous drawing) in the document view
as it is scrolled.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsBackground (page 2347)
– copiesOnScroll (page 633) (NSClipView)
– setDrawsBackground: (page 637) (NSClipView)

Related Sample Code
Quartz Composer QCTV

Declared In
NSScrollView.h

setHasHorizontalRuler:
Determines whether the receiver keeps a horizontal ruler object.

- (void)setHasHorizontalRuler:(BOOL)flag

Discussion
If flag is YES, the receiver allocates a horizontal ruler the first time it’s needed. Display of rulers is handled
independently with the setRulersVisible: (page 2361) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasHorizontalRuler (page 2347)
– horizontalRulerView (page 2350)
– setHasVerticalRuler: (page 2357)

Related Sample Code
Rulers
Sketch+Accessibility
Sketch-112

2356 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Declared In
NSScrollView.h

setHasHorizontalScroller:
Determines whether the receiver keeps a horizontal scroller.

- (void)setHasHorizontalScroller:(BOOL)flag

Discussion
If flag is YES, the receiver allocates and displays a horizontal scroller as needed. An NSScrollView by default
has neither a horizontal nor a vertical scroller.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasHorizontalScroller (page 2347)
– horizontalScroller (page 2350)
– setHasVerticalScroller: (page 2358)

Related Sample Code
ColorMatching
FunHouse
Quartz Composer QCTV
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSScrollView.h

setHasVerticalRuler:
Determines whether the receiver keeps a vertical ruler object.

- (void)setHasVerticalRuler:(BOOL)flag

Discussion
If flag is YES, the receiver allocates a vertical ruler the first time it’s needed. Display of rulers is handled
independently with the setRulersVisible: (page 2361) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasVerticalRuler (page 2348)
– verticalRulerView (page 2365)
– setHasHorizontalRuler: (page 2356)
– setRulersVisible: (page 2361)

Instance Methods 2357
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Related Sample Code
Rulers
Sketch+Accessibility
Sketch-112

Declared In
NSScrollView.h

setHasVerticalScroller:
Determines whether the receiver keeps a vertical scroller.

- (void)setHasVerticalScroller:(BOOL)flag

Discussion
If flag is YES, the receiver allocates and displays a vertical scroller as needed. An NSScrollView by default
has neither a vertical nor a horizontal scroller.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasVerticalScroller (page 2348)
– verticalScroller (page 2366)
– setHasHorizontalScroller: (page 2357)

Related Sample Code
ColorMatching
FancyAbout
FunHouse
Quartz Composer QCTV
WhackedTV

Declared In
NSScrollView.h

setHorizontalLineScroll:
Sets the amount by which the receiver scrolls itself horizontally when scrolling line by line to aFloat,
expressed in the content view’s coordinate system.

- (void)setHorizontalLineScroll:(CGFloat)aFloat

Discussion
This amount is the amount used when the user clicks the scroll arrows on the horizontal scroll bar without
holding down a modifier key. When displaying text in an NSScrollView, for example, you might set this
amount to the height of a single line of text in the default font.

Availability
Available in Mac OS X v10.0 and later.

2358 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

See Also
– lineScroll (page 2350)
– setPageScroll: (page 2361)

Declared In
NSScrollView.h

setHorizontalPageScroll:
Sets the amount of the document view kept visible when scrolling horizontally page by page to aFloat,
expressed in the content view’s coordinate system.

- (void)setHorizontalPageScroll:(CGFloat)aFloat

Discussion
This amount is used when the user clicks the scroll arrows on the horizontal scroll bar while holding down
the Option key.

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page. Thus, setting the page scroll amount to 0.0 implies that the entire visible portion
of the document view is replaced when a page scroll occurs.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pageScroll (page 2351)
– setLineScroll: (page 2360)

Declared In
NSScrollView.h

setHorizontalRulerView:
Sets the receiver’s horizontal ruler view to aRulerView.

- (void)setHorizontalRulerView:(NSRulerView *)aRulerView

Discussion
You can use this method to override the default ruler class set using the class method
setRulerViewClass: (page 2343). Display of rulers is controlled using thesetRulersVisible: (page 2361)
method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– horizontalRulerView (page 2350)
– setHasHorizontalRuler: (page 2356)
– setVerticalRulerView: (page 2363)

Instance Methods 2359
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

– setRulersVisible: (page 2361)

Declared In
NSScrollView.h

setHorizontalScroller:
Sets the receiver’s horizontal scroller to aScroller, establishing the appropriate target-action relationships
between them.

- (void)setHorizontalScroller:(NSScroller *)aScroller

Discussion
To make sure the scroller is visible, invoke the setHasHorizontalScroller: (page 2357) method with an
argument of YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– horizontalScroller (page 2350)
– setVerticalScroller: (page 2364)

Declared In
NSScrollView.h

setLineScroll:
Sets the horizontal and vertical line scroll amounts to aFloat.

- (void)setLineScroll:(CGFloat)aFloat

Discussion
The line scroll is the amount by which the receiver scrolls itself when scrolling line by line, expressed in the
content view’s coordinate system. It’s used when the user clicks the scroll arrows without holding down a
modifier key. When displaying text in an NSScrollView, for example, you might set this value to the height
of a single line of text in the default font.

As part of its implementation, this method calls setVerticalLineScroll: (page 2362) and
setHorizontalLineScroll: (page 2358).

Availability
Available in Mac OS X v10.0 and later.

See Also
– verticalLineScroll (page 2364)
– horizontalLineScroll (page 2349)

Declared In
NSScrollView.h

2360 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

setPageScroll:
Sets the horizontal and vertical page scroll amounts to aFloat.

- (void)setPageScroll:(CGFloat)aFloat

Discussion
The page scroll is the amount of the document view kept visible when scrolling page by page to aFloat,
expressed in the content view’s coordinate system. It’s used when the user clicks the scroll arrows while
holding down the Option key.

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page. Thus, setting the page scroll amount to 0.0 implies that the entire visible portion
of the document view is replaced when a page scroll occurs.

As part of its implementation, this method calls setVerticalPageScroll: (page 2363) and
setHorizontalPageScroll: (page 2359).

Availability
Available in Mac OS X v10.0 and later.

See Also
– verticalPageScroll (page 2365)
– verticalLineScroll (page 2364)

Declared In
NSScrollView.h

setRulersVisible:
Determines whether the receiver displays its rulers.

- (void)setRulersVisible:(BOOL)flag

Discussion
If flag is YES, the receiver displays its rulers (creating them if needed). If flag is NO, the receiver doesn’t
display its rulers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rulersVisible (page 2352)
– hasHorizontalRuler (page 2347)
– hasVerticalRuler (page 2348)

Related Sample Code
Rulers
Sketch+Accessibility
Sketch-112

Instance Methods 2361
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Declared In
NSScrollView.h

setScrollsDynamically:
Determines whether the receiver redraws its document view while scrolling continuously.

- (void)setScrollsDynamically:(BOOL)flag

Discussion
If flag is YES it does; if flag is NO it redraws only when the scroller knob is released. NSScrollView scrolls
dynamically by default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollsDynamically (page 2352)

Related Sample Code
WhackedTV

Declared In
NSScrollView.h

setVerticalLineScroll:
Sets the amount by which the receiver scrolls itself vertically when scrolling line by line to aFloat, expressed
in the content view’s coordinate system.

- (void)setVerticalLineScroll:(CGFloat)aFloat

Discussion
This value is the amount used when the user clicks the scroll arrows on the vertical scroll bar without holding
down a modifier key. When displaying text in an NSScrollView, for example, you might set this value to the
height of a single line of text in the default font.

Availability
Available in Mac OS X v10.0 and later.

See Also
– verticalLineScroll (page 2364)
– setHorizontalLineScroll: (page 2358)
– lineScroll (page 2350)
– setVerticalPageScroll: (page 2363)

Declared In
NSScrollView.h

2362 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

setVerticalPageScroll:
Sets the amount of the document view kept visible when scrolling vertically page by page to aFloat,
expressed in the content view’s coordinate system.

- (void)setVerticalPageScroll:(CGFloat)aFloat

Discussion
This amount is used when the user clicks the scroll arrows on the vertical scroll bar while holding down the
Option key.

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page. Thus, setting the page scroll amount to 0.0 implies that the entire visible portion
of the document view is replaced when a page scroll occurs.

Availability
Available in Mac OS X v10.0 and later.

See Also
– verticalPageScroll (page 2365)
– setHorizontalPageScroll: (page 2359)
– pageScroll (page 2351)
– setVerticalLineScroll: (page 2362)

Declared In
NSScrollView.h

setVerticalRulerView:
Sets the receiver’s vertical ruler view to aRulerView.

- (void)setVerticalRulerView:(NSRulerView *)aRulerView

Discussion
You can use this method to override the default ruler class set using the class method
setRulerViewClass: (page 2343). Display of rulers is controlled using thesetRulersVisible: (page 2361)
method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– verticalRulerView (page 2365)
– setHasVerticalRuler: (page 2357)
– setHorizontalRulerView: (page 2359)
– setRulersVisible: (page 2361)

Declared In
NSScrollView.h

Instance Methods 2363
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

setVerticalScroller:
Sets the receiver’s vertical scroller to aScroller, establishing the appropriate target-action relationships
between them.

- (void)setVerticalScroller:(NSScroller *)aScroller

Discussion
To make sure the scroller is visible, invoke the setHasVerticalScroller: (page 2358) method with an
argument of YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– verticalScroller (page 2366)
– setHorizontalScroller: (page 2360)

Declared In
NSScrollView.h

tile
Lays out the components of the receiver: the content view, the scrollers, and the ruler views.

- (void)tile

Discussion
You rarely need to invoke this method, but subclasses may override it to manage additional components.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility

Declared In
NSScrollView.h

verticalLineScroll
Returns the amount by which the receiver scrolls itself vertically when scrolling line by line, expressed in the
content view’s coordinate system.

- (CGFloat)verticalLineScroll

Discussion
This amount is used when the user clicks the scroll arrows on the vertical scroll bar without holding down a
modifier key.

Availability
Available in Mac OS X v10.0 and later.

2364 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

See Also
– setVerticalLineScroll: (page 2362)
– horizontalLineScroll (page 2349)
– setLineScroll: (page 2360)
– verticalPageScroll (page 2365)

Declared In
NSScrollView.h

verticalPageScroll
Returns the amount of the document view kept visible when scrolling vertically page by page, expressed in
the content view’s coordinate system.

- (CGFloat)verticalPageScroll

Discussion
This amount is used when the user clicks the scroll arrows on the vertical scroll bar while holding down the
Option key.

This amount expresses the context that remains when the receiver scrolls by one page, allowing the user to
orient to the new display. It differs from the line scroll amount, which indicates how far the document view
moves. The page scroll amount is the amount common to the content view before and after the document
view is scrolled by one page.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setVerticalPageScroll: (page 2363)
– horizontalPageScroll (page 2349)
– setPageScroll: (page 2361)
– verticalLineScroll (page 2364)

Declared In
NSScrollView.h

verticalRulerView
Returns the receiver’s vertical ruler view, regardless of whether the receiver is currently displaying it, or nil
if the receiver has none.

- (NSRulerView *)verticalRulerView

Discussion
If the receiver is set to display a vertical ruler view and doesn’t yet have one, this method creates an instance
of the ruler view class set using the class method setRulerViewClass: (page 2343). Display of rulers is
controlled using the setRulersVisible: (page 2361) method.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2365
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

See Also
– hasVerticalRuler (page 2348)
– horizontalRulerView (page 2350)

Related Sample Code
Rulers
Sketch-112

Declared In
NSScrollView.h

verticalScroller
Returns the receiver’s vertical scroller, regardless of whether the receiver is currently displaying it, or nil if
the receiver has none.

- (NSScroller *)verticalScroller

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasVerticalScroller (page 2348)
– setVerticalScroller: (page 2364)
– horizontalScroller (page 2350)

Related Sample Code
FunHouse
Quartz Composer QCTV
WhackedTV

Declared In
NSScrollView.h

2366 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 115

NSScrollView Class Reference

Inherits from NSTextField : NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSTextField)
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSSearchField.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Search Fields

Related sample code IdentitySample
iSpend
PDFKitLinker2
SearchField
SpotlightAPI

Overview

An NSSearchField object implements a text field control that is optimized for performing text-based
searches. The control provides a customized text field for entering search data, a search button, a cancel
button, and a pop-up icon menu for listing recent search strings and custom search categories.

An NSSearchField object wraps an NSSearchFieldCell object. Access to most search field attributes
occurs through the cell, which provides a more comprehensive programmatic interface for manipulating the
search field. You can use an NSSearchField object though to manipulate some aspects of the search field.
For additional information about search fields and how to manipulate them, see the NSSearchFieldCell class.

Tasks

Managing Recent Searches

– setRecentSearches: (page 2369)
Sets the list of recent search strings to list in the pop-up icon menu of the receiver.

Overview 2367
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 116

NSSearchField Class Reference

– recentSearches (page 2368)
Returns the list of recent search strings for the control.

Managing Autosave Name

– setRecentsAutosaveName: (page 2369)
Sets the autosave name under which the receiver automatically archives the list of recent search
strings.

– recentsAutosaveName (page 2368)
Returns the key under which the prior list of recent search strings has been archived.

Instance Methods

recentsAutosaveName
Returns the key under which the prior list of recent search strings has been archived.

- (NSString *)recentsAutosaveName

Return Value
The autosave name, which is used as a key in the standard user defaults to save the recent searches. The
default value is nil, which causes searches not to be autosaved.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setRecentsAutosaveName: (page 2369)

Declared In
NSSearchField.h

recentSearches
Returns the list of recent search strings for the control.

- (NSArray *)recentSearches

Return Value
An array of NSString objects, each of which contains a search string either displayed in the search menu
or from a recent autosave archive. If there have been no recent searches and no prior searches saved under
an autosave name, this array may be empty.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setRecentSearches: (page 2369)

2368 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 116

NSSearchField Class Reference

Declared In
NSSearchField.h

setRecentsAutosaveName:
Sets the autosave name under which the receiver automatically archives the list of recent search strings.

- (void)setRecentsAutosaveName:(NSString *)name

Parameters
name

The autosave name, which is used as a key in the standard user defaults to save the recent searches.
If you specify nil or an empty string for this parameter, no autosave name is set and searches are
not autosaved.

Availability
Available in Mac OS X v10.3 and later.

See Also
– recentsAutosaveName (page 2368)

Declared In
NSSearchField.h

setRecentSearches:
Sets the list of recent search strings to list in the pop-up icon menu of the receiver.

- (void)setRecentSearches:(NSArray *)searches

Parameters
searches

An array of NSString objects containing the search strings.

Discussion
You might use this method to set the recent list of searches from an archived copy.

Availability
Available in Mac OS X v10.3 and later.

See Also
– recentSearches (page 2368)

Declared In
NSSearchField.h

Instance Methods 2369
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 116

NSSearchField Class Reference

2370 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 116

NSSearchField Class Reference

Inherits from NSTextFieldCell : NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSSearchFieldCell.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Search Fields

Overview

The NSSearchFieldCell class defines the programmatic interface for text fields that are optimized for
text-based searches. An NSSearchFieldCell object is “wrapped” by an NSSearchField control object, which
directly inherits from the NSTextField class. The search field implemented by these classes presents a
standard user interface for searches, including a search button, a cancel button, and a pop-up icon menu for
listing recent search strings and custom search categories.

When the user types and then pauses, the cell’s action message is sent to its target. You can query the cell’s
string value for the current text to search for. Do not rely on the sender of the action to be an NSMenu object
because the menu may change. If you need to change the menu, modify the search menu template and call
the setSearchMenuTemplate: method to update.

Tasks

Managing Buttons

– setSearchButtonCell: (page 2380)
Sets the button cell used to display the search-button image

– searchButtonCell (page 2376)
Returns the button cell used to display the search-button image.

– resetSearchButtonCell (page 2375)
Resets the search button cell to its default attributes.

Overview 2371
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

– setCancelButtonCell: (page 2378)
Sets the button cell object used to display the cancel-button image

– cancelButtonCell (page 2373)
Returns the button cell object used to display the cancel-button image.

– resetCancelButtonCell (page 2375)
Resets the cancel button cell to its default attributes.

Custom Layout

– searchTextRectForBounds: (page 2377)
Modifies the bounding rectangle for the search-text field cell.

– searchButtonRectForBounds: (page 2376)
Modifies the bounding rectangle for the search button cell.

– cancelButtonRectForBounds: (page 2373)
Modifies the bounding rectangle for the cancel button cell.

Managing Menu Templates

– setSearchMenuTemplate: (page 2380)
Sets the menu template object used to dynamically construct the receiver's pop-up icon menu.

– searchMenuTemplate (page 2377)
Returns the menu template object used to dynamically construct the search pop-up icon menu.

Managing Search Modes

– setSendsWholeSearchString: (page 2381)
Sets whether the receiver sends the search action message when the user clicks the search button
(or presses return) or after each keystroke.

– sendsWholeSearchString (page 2378)
Returns a Boolean value indicating whether the receiver sends the search action message when the
user clicks the search button (or presses return) or after each keystroke.

– sendsSearchStringImmediately (page 2378)
Returns a Boolean value indicating whether the receiver sends its action immediately upon being
notified of changes to the search field text or after a brief pause.

– setSendsSearchStringImmediately: (page 2381)
Sets whether the cell sends its action message to the target immediately upon notification of any
changes to the search field text or after a brief pause.

Managing Recent Search Strings

– setMaximumRecents: (page 2379)
Sets the maximum number of search strings that can appear in the search menu

2372 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

– maximumRecents (page 2374)
Returns the maximum number of recent search strings to display in the custom search menu.

– setRecentSearches: (page 2380)
Sets the list of recent search strings to list in the pop-up icon menu of the receiver.

– recentSearches (page 2375)
Returns the list of recent search strings for the control.

– setRecentsAutosaveName: (page 2379)
Sets the autosave name under which the receiver automatically archives the list of recent search
strings.

– recentsAutosaveName (page 2374)
Returns the key under which the prior list of recent search strings has been archived.

Instance Methods

cancelButtonCell
Returns the button cell object used to display the cancel-button image.

- (NSButtonCell *)cancelButtonCell

Return Value
The cancel button cell.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setCancelButtonCell: (page 2378)
– resetCancelButtonCell (page 2375)

Declared In
NSSearchFieldCell.h

cancelButtonRectForBounds:
Modifies the bounding rectangle for the cancel button cell.

- (NSRect)cancelButtonRectForBounds:(NSRect)rect

Parameters
rect

The current bounding rectangle for the cancel button.

Return Value
The updated bounding rectangle to use for the cancel button. The default value is the value passed into the
rect parameter.

Instance Methods 2373
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

Discussion
Subclasses can override this method to return a new bounding rectangle for the cancel button cell. You
might use this method to provide a custom layout for the search field control.

Availability
Available in Mac OS X v10.3 and later.

See Also
– searchButtonRectForBounds: (page 2376)
– searchTextRectForBounds: (page 2377)

Declared In
NSSearchFieldCell.h

maximumRecents
Returns the maximum number of recent search strings to display in the custom search menu.

- (NSInteger)maximumRecents

Return Value
The maximum number of search strings that can appear in the menu. This value is between 0 and 254.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setMaximumRecents: (page 2379)

Declared In
NSSearchFieldCell.h

recentsAutosaveName
Returns the key under which the prior list of recent search strings has been archived.

- (NSString *)recentsAutosaveName

Return Value
The autosave name, which is used as a key in the standard user defaults to save the recent searches. The
default value is nil, which causes searches not to be autosaved.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setRecentsAutosaveName: (page 2379)

Declared In
NSSearchFieldCell.h

2374 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

recentSearches
Returns the list of recent search strings for the control.

- (NSArray *)recentSearches

Return Value
An array of NSString objects, each of which contains a search string either displayed in the search menu
or from a recent autosave archive. If there have been no recent searches and no prior searches saved under
an autosave name, this array may be empty.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setRecentsAutosaveName: (page 2379)
– setRecentSearches: (page 2380)

Declared In
NSSearchFieldCell.h

resetCancelButtonCell
Resets the cancel button cell to its default attributes.

- (void)resetCancelButtonCell

Discussion
This method resets the target, action, regular image, and pressed image. By default, when users click the
cancel button, the delete: action message is sent up the responder chain to the first NSText object that
can handle it. This method gives you a way to customize the cancel button for specific situations and then
reset the button defaults without having to undo changes individually.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setCancelButtonCell: (page 2378)
– cancelButtonCell (page 2373)

Declared In
NSSearchFieldCell.h

resetSearchButtonCell
Resets the search button cell to its default attributes.

- (void)resetSearchButtonCell

Instance Methods 2375
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

Discussion
This method resets the target, action, regular image, and pressed image. By default, when users click the
search button or press the Return key, the action defined for the receiver is sent to its designated target. This
method gives you a way to customize the search button for specific situations and then reset the button
defaults without having to undo changes individually.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSearchButtonCell: (page 2380)
– searchButtonCell (page 2376)

Declared In
NSSearchFieldCell.h

searchButtonCell
Returns the button cell used to display the search-button image.

- (NSButtonCell *)searchButtonCell

Return Value
The search button cell.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSearchButtonCell: (page 2380)
– resetSearchButtonCell (page 2375)

Declared In
NSSearchFieldCell.h

searchButtonRectForBounds:
Modifies the bounding rectangle for the search button cell.

- (NSRect)searchButtonRectForBounds:(NSRect)rect

Parameters
rect

The current bounding rectangle for the search button.

Return Value
The updated bounding rectangle to use for the search button. The default value is the value passed into the
rect parameter.

Discussion
Subclasses can override this method to return a new bounding rectangle for the search button cell. You
might use this method to provide a custom layout for the search field control.

2376 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– cancelButtonRectForBounds: (page 2373)
– searchTextRectForBounds: (page 2377)

Declared In
NSSearchFieldCell.h

searchMenuTemplate
Returns the menu template object used to dynamically construct the search pop-up icon menu.

- (NSMenu *)searchMenuTemplate

Return Value
The current menu template.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSearchMenuTemplate: (page 2380)

Declared In
NSSearchFieldCell.h

searchTextRectForBounds:
Modifies the bounding rectangle for the search-text field cell.

- (NSRect)searchTextRectForBounds:(NSRect)rect

Parameters
rect

The current bounding rectangle for the search text field.

Return Value
The updated bounding rectangle to use for the search text field. The default value is the value passed into
the rect parameter.

Discussion
Subclasses can override this method to return a new bounding rectangle for the text-field cell object. You
might use this method to provide a custom layout for the search field control.

Availability
Available in Mac OS X v10.3 and later.

See Also
– cancelButtonRectForBounds: (page 2373)
– searchButtonRectForBounds: (page 2376)

Instance Methods 2377
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

Declared In
NSSearchFieldCell.h

sendsSearchStringImmediately
Returns a Boolean value indicating whether the receiver sends its action immediately upon being notified
of changes to the search field text or after a brief pause.

- (BOOL)sendsSearchStringImmediately

Return Value
YES if the cell sends its action immediately upon notification of any changes to the search field; otherwise,
NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setSendsSearchStringImmediately: (page 2381)

Declared In
NSSearchFieldCell.h

sendsWholeSearchString
Returns a Boolean value indicating whether the receiver sends the search action message when the user
clicks the search button (or presses return) or after each keystroke.

- (BOOL)sendsWholeSearchString

Return Value
YES if the action message is sent all at once when the user clicks the search button or presses return; otherwise,
NO if the search string is sent after each keystroke. The default value is NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSendsWholeSearchString: (page 2381)

Declared In
NSSearchFieldCell.h

setCancelButtonCell:
Sets the button cell object used to display the cancel-button image

- (void)setCancelButtonCell:(NSButtonCell *)cell

Parameters
cell

The cancel button cell.

2378 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– cancelButtonCell (page 2373)
– resetCancelButtonCell (page 2375)

Declared In
NSSearchFieldCell.h

setMaximumRecents:
Sets the maximum number of search strings that can appear in the search menu

- (void)setMaximumRecents:(NSInteger)maxRecents

Parameters
maxRecents

The maximum number of search strings that can appear in the menu. This value can be between 0
and 254. Specifying a value less than 0 sets the value to the default, which is 10. Specifying a value
greater than 254 sets the maximum to 254.

Discussion
When the limit is exceeded, the oldest search string on the menu is dropped.

Availability
Available in Mac OS X v10.3 and later.

See Also
– maximumRecents (page 2374)

Declared In
NSSearchFieldCell.h

setRecentsAutosaveName:
Sets the autosave name under which the receiver automatically archives the list of recent search strings.

- (void)setRecentsAutosaveName:(NSString *)name

Parameters
name

The autosave name, which is used as a key in the standard user defaults to save the recent searches.
If you specify nil or an empty string for this parameter, no autosave name is set and searches are
not autosaved.

Availability
Available in Mac OS X v10.3 and later.

See Also
– recentsAutosaveName (page 2374)
– setRecentSearches: (page 2380)

Instance Methods 2379
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

Declared In
NSSearchFieldCell.h

setRecentSearches:
Sets the list of recent search strings to list in the pop-up icon menu of the receiver.

- (void)setRecentSearches:(NSArray *)searches

Parameters
searches

An array of NSString objects containing the search strings.

Discussion
You might use this method to set the recent list of searches from an archived copy.

Availability
Available in Mac OS X v10.3 and later.

See Also
– recentSearches (page 2375)

Declared In
NSSearchFieldCell.h

setSearchButtonCell:
Sets the button cell used to display the search-button image

- (void)setSearchButtonCell:(NSButtonCell *)cell

Parameters
cell

The search button cell.

Availability
Available in Mac OS X v10.3 and later.

See Also
– searchButtonCell (page 2376)
– resetSearchButtonCell (page 2375)

Declared In
NSSearchFieldCell.h

setSearchMenuTemplate:
Sets the menu template object used to dynamically construct the receiver's pop-up icon menu.

- (void)setSearchMenuTemplate:(NSMenu *)menu

2380 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

Parameters
menu

The menu template to use.

Discussion
The receiver looks for the tag constants described in “Menu tags” (page 2382) to determine how to populate
the menu with items related to recent searches. See “Configuring a Search Menu” for a sample of how you
might set up the search menu template.

Availability
Available in Mac OS X v10.3 and later.

See Also
– searchMenuTemplate (page 2377)

Declared In
NSSearchFieldCell.h

setSendsSearchStringImmediately:
Sets whether the cell sends its action message to the target immediately upon notification of any changes
to the search field text or after a brief pause.

- (void)setSendsSearchStringImmediately:(BOOL)flag

Parameters
flag

YES to send the cell's action immediately upon notification of any changes to the search field;
otherwise, NO if you want the cell to pause briefly before sending its action message. Pausing gives
the user the opportunity to type more text into the search field before initiating the search.

Availability
Available in Mac OS X v10.4 and later.

See Also
– sendsSearchStringImmediately (page 2378)

Declared In
NSSearchFieldCell.h

setSendsWholeSearchString:
Sets whether the receiver sends the search action message when the user clicks the search button (or presses
return) or after each keystroke.

- (void)setSendsWholeSearchString:(BOOL)flag

Parameters
flag

YES to send the action message all at once when the user clicks the search button or presses return;
otherwise, NO to send the search string after each keystroke.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 2381
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

See Also
– sendsWholeSearchString (page 2378)

Declared In
NSSearchFieldCell.h

Constants

Menu tags
The NSSearchFieldCell class uses these tag constants for identifying special menu items in the search-menu
template set by setSearchMenuTemplate: (page 2380). When an NSSearchFieldCell object dynamically
constructs the actual search menu from this template, it shows or hides the tagged items as directed.

#define NSSearchFieldRecentsTitleMenuItemTag 1000
#define NSSearchFieldRecentsMenuItemTag 1001
#define NSSearchFieldClearRecentsMenuItemTag 1002
#define NSSearchFieldNoRecentsMenuItemTag 1003

Constants
NSSearchFieldRecentsTitleMenuItemTag

Identifies the menu item that is the title of the menu group for recent search strings.

This item is hidden if there are no recent strings.

You may use this tagged item for separator characters that also do not appear if there are no recent
strings to display.

Available in Mac OS X v10.3 and later.

Declared in NSSearchFieldCell.h.

NSSearchFieldRecentsMenuItemTag
Identifies where recent search strings should appear in the “recents” menu group.

Available in Mac OS X v10.3 and later.

Declared in NSSearchFieldCell.h.

NSSearchFieldClearRecentsMenuItemTag
Identifies the menu item for clearing the current set of recent string searches in the menu.

This item is hidden if there are no recent strings.

Available in Mac OS X v10.3 and later.

Declared in NSSearchFieldCell.h.

NSSearchFieldNoRecentsMenuItemTag
Identifies the menu item that describes a lack of recent search strings (for example, “No recent
searches”).

This item is hidden if there have been recent searches.

Available in Mac OS X v10.3 and later.

Declared in NSSearchFieldCell.h.

Availability
Available in Mac OS X v10.3 and later.

2382 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

Declared In
NSSearchFieldCell.h

Constants 2383
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

2384 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 117

NSSearchFieldCell Class Reference

Inherits from NSTextField : NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSTextField)
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSSecureTextField.h

Companion guide Text Fields

Related sample code IdentitySample
NameAndPassword

Overview

NSSecureTextField is a subclass of NSTextField that hides its text from display or other access via the
user interface. It’s suitable for use as a password-entry object or for any item in which a secure value must
be kept.

NSSecureTextField uses NSSecureTextFieldCell to implement its user interface.

Overview 2385
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 118

NSSecureTextField Class Reference

2386 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 118

NSSecureTextField Class Reference

Inherits from NSTextFieldCell : NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSSecureTextField.h

Companion guide Text Fields

Overview

NSSecureTextFieldCell works with NSSecureTextField to provide a text field whose value is guarded
from user examination. It overrides the general cell use of the field editor to provide its own field editor,
which doesn’t display text or allow the user to cut or copy its value.

Tasks

Working with Character Echo

– echosBullets (page 2387)
Returns whether the receiver echoes a bullet character rather than each character typed.

– setEchosBullets: (page 2388)
Sets whether the receiver echoes bullets for each character typed.

Instance Methods

echosBullets
Returns whether the receiver echoes a bullet character rather than each character typed.

- (BOOL)echosBullets

Overview 2387
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 119

NSSecureTextFieldCell Class Reference

Discussion
Default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEchosBullets: (page 2388)

Declared In
NSSecureTextField.h

setEchosBullets:
Sets whether the receiver echoes bullets for each character typed.

- (void)setEchosBullets:(BOOL)flag

Discussion
If YES, bullets are echoed. If NO, the cursor is moved for each character typed, but nothing is displayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– echosBullets (page 2387)

Declared In
NSSecureTextField.h

2388 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 119

NSSecureTextFieldCell Class Reference

Inherits from NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSSegmentedCell.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Segmented Control Programming Guide

Overview

The NSSegmentedCell class implements the appearance and behavior of a horizontal button divided into
multiple segments. This class is used in conjunction with the NSSegmentedControl class to implement a
segmented control.

You can customize the attributes of a segmented control using the methods of NSSegmentedCell. To
customize the appearance of individual segments, you can also subclass and override the
drawSegment:inFrame:withView: (page 2391) method.

Tasks

Specifying the Number of Segments

– setSegmentCount: (page 2399)
Sets the number of segments in the receiver.

– segmentCount (page 2396)
Returns the number of segments in the receiver.

Specifying the Selected Segment

– setSelectedSegment: (page 2401)
Sets the selected segment of the receiver.

Overview 2389
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

– setSelected:forSegment: (page 2400)
Sets the selection state of the specified segment.

– selectSegmentWithTag: (page 2397)
Selects the segment with the specified tag.

– makeNextSegmentKey (page 2394)
Selects the next segment.

– makePreviousSegmentKey (page 2395)
Selects the previous segment.

– selectedSegment (page 2396)
Returns the index of the selected segment of the receiver.

– isSelectedForSegment: (page 2394)
Returns a Boolean value indicating whether the specified segment is selected,

Specifying the Tracking Mode

– setTrackingMode: (page 2402)
Sets the tracking mode for the receiver.

– trackingMode (page 2404)
Returns the tracking mode of the receiver.

Configuring Individual Segments

– setLabel:forSegment: (page 2398)
Sets the label for the specified segment.

– labelForSegment: (page 2394)
Returns the label of the specified segment.

– setImage:forSegment: (page 2397)
Sets the image for the specified segment.

– imageForSegment: (page 2392)
Returns the image associated with the specified segment.

– setImageScaling:forSegment: (page 2398)
Sets the image scaling mode for the specified segment.

– imageScalingForSegment: (page 2392)
Returns the image scaling mode associated with the specified segment.

– setWidth:forSegment: (page 2402)
Sets the width of the specified segment.

– widthForSegment: (page 2404)
Returns the width of the specified segment.

– setEnabled:forSegment: (page 2397)
Sets the enabled state of the specified segment

– isEnabledForSegment: (page 2393)
Returns a Boolean value indicating whether the specified segment is enabled.

2390 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

– setMenu:forSegment: (page 2399)
Sets the menu for the specified segment.

– menuForSegment: (page 2395)
Returns the menu for the specified segment.

– setToolTip:forSegment: (page 2402)
Sets the tool tip for the specified segment.

– toolTipForSegment: (page 2403)
Returns the tool tip of the specified segment.

– setTag:forSegment: (page 2401)
Sets the tag for the specified segment.

– tagForSegment: (page 2403)
Returns the tag of the specified segment.

Drawing Custom Content

– drawSegment:inFrame:withView: (page 2391)
Draws the segment in the specified view.

Specifying Segment Visual Styles

– interiorBackgroundStyleForSegment: (page 2393)
Returns the interior background style for the specified segment.

– segmentStyle (page 2396)
Returns the visual style used to display the receiver.

– setSegmentStyle: (page 2400)
Sets the visual style used to display the receiver.

Instance Methods

drawSegment:inFrame:withView:
Draws the segment in the specified view.

- (void)drawSegment:(NSInteger)segment inFrame:(NSRect)frame withView:(NSView
*)controlView

Parameters
segment

The index of the segment to draw. This method raises an NSRangeException if the index is out of
bounds.

frame
The rectangle in which to draw the segment. This rectangle is specified in user space coordinates of
the specified view.

Instance Methods 2391
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

controlView
The view in which to draw the segment.

Discussion
You can override this method to provide a custom appearance for segmented controls. You should not call
this method directly. It is called for you automatically by the control when it needs to be redrawn.

Availability
Available in Mac OS X v10.3 and later.

See Also
– drawWithFrame:inView: (page 554) (NSCell)

Declared In
NSSegmentedCell.h

imageForSegment:
Returns the image associated with the specified segment.

- (NSImage *)imageForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose image you want to get. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setImage:forSegment: (page 2397)

Declared In
NSSegmentedCell.h

imageScalingForSegment:
Returns the image scaling mode associated with the specified segment.

- (NSImageScaling)imageScalingForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose image scaling mode you want to get. This method raises an
NSRangeException if the index is out of bounds.

Return Value
The scaling mode in use for the specified segment. For the possible values see Segmented Control Visual
Styles (page 2419). If no value has been explicitly set NSImageScaleProportionallyDown (page 617) is
returned.

Availability
Available in Mac OS X v10.5 and later.

2392 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

See Also
– setImageScaling:forSegment: (page 2398)

Declared In
NSSegmentedCell.h

interiorBackgroundStyleForSegment:
Returns the interior background style for the specified segment.

- (NSBackgroundStyle)interiorBackgroundStyleForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose background style you want to get. This method raises an
NSRangeException if the index is out of bounds..

Return Value
The background style to use for specified segment See Background Styles in NSCell for possible values.

Discussion
The interior background style describes the surface drawn onto in drawInteriorWithFrame:inView:.

This is both an override point and a useful method to call. In a custom segment cell with a custom bezel you
can override this method to describe the surface on a per-segment basis.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSegmentedCell.h

isEnabledForSegment:
Returns a Boolean value indicating whether the specified segment is enabled.

- (BOOL)isEnabledForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose enabled state you want to get. This method raises an
NSRangeException if the index is out of bounds.

Return Value
YES if the segment is enabled; otherwise, NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setEnabled:forSegment: (page 2397)

Declared In
NSSegmentedCell.h

Instance Methods 2393
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

isSelectedForSegment:
Returns a Boolean value indicating whether the specified segment is selected,

- (BOOL)isSelectedForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose selection state you want to get. This method raises an
NSRangeException if the index is out of bounds.

Return Value
YES if the segment is selected; otherwise, NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSelected:forSegment: (page 2400)

Declared In
NSSegmentedCell.h

labelForSegment:
Returns the label of the specified segment.

- (NSString *)labelForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose label you want to get. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setLabel:forSegment: (page 2398)

Declared In
NSSegmentedCell.h

makeNextSegmentKey
Selects the next segment.

- (void)makeNextSegmentKey

Discussion
The next segment is the one to the right of the currently selected segment. For the last segment, the selection
wraps back to the beginning of the control.

2394 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– makePreviousSegmentKey (page 2395)

Declared In
NSSegmentedCell.h

makePreviousSegmentKey
Selects the previous segment.

- (void)makePreviousSegmentKey

Discussion
The previous segment is the one to the left of the currently selected segment. For the first segment, the
selection wraps around to the last segment of the control.

Availability
Available in Mac OS X v10.3 and later.

See Also
– makeNextSegmentKey (page 2394)

Declared In
NSSegmentedCell.h

menuForSegment:
Returns the menu for the specified segment.

- (NSMenu *)menuForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose menu you want to get. This method raises an NSRangeException
if the index is out of bounds.

Return Value
The menu associated with the segment; otherwise, nil.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setMenu:forSegment: (page 2399)

Declared In
NSSegmentedCell.h

Instance Methods 2395
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

segmentCount
Returns the number of segments in the receiver.

- (NSInteger)segmentCount

Return Value
The number of segments in the receiver.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSegmentCount: (page 2399)

Declared In
NSSegmentedCell.h

segmentStyle
Returns the visual style used to display the receiver.

- (NSSegmentStyle)segmentStyle

Return Value
An NSSegmentStyle value that specifies the visual display used by the receiver. For possible values see
“Segmented Control Visual Styles” (page 2419) in NSSegmentedControl Class Reference.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSegmentedCell.h

selectedSegment
Returns the index of the selected segment of the receiver.

- (NSInteger)selectedSegment

Return Value
The index of the currently selected segment, or -1 if no segment is selected. If the receiver allows multiple
selections, this method returns the most recently selected segment.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSelectedSegment: (page 2401)

Declared In
NSSegmentedCell.h

2396 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

selectSegmentWithTag:
Selects the segment with the specified tag.

- (BOOL)selectSegmentWithTag:(NSInteger)tag

Parameters
tag

The tag associated with the desired segment.

Return Value
YES if the segment was selected successfully; otherwise, NO.

Discussion
Typically, you use Interface Builder to specify the tag for each segment. You may also set this value
programmatically using the setTag:forSegment: (page 2401) method.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTag:forSegment: (page 2401)

Declared In
NSSegmentedCell.h

setEnabled:forSegment:
Sets the enabled state of the specified segment

- (void)setEnabled:(BOOL)flag forSegment:(NSInteger)segment

Parameters
flag

YES to enable the segment; otherwise, NO to disable it.

segment
The index of the segment you want to enable or disable. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– isEnabledForSegment: (page 2393)

Declared In
NSSegmentedCell.h

setImage:forSegment:
Sets the image for the specified segment.

- (void)setImage:(NSImage *)image forSegment:(NSInteger)segment

Instance Methods 2397
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

Parameters
image

The image to apply to the segment or nil if you want to clear the existing image. Images are not
scaled to fit inside a segment. If the image is larger than the available space, it is clipped.

segment
The index of the segment whose image you want to set. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– imageForSegment: (page 2392)

Declared In
NSSegmentedCell.h

setImageScaling:forSegment:
Sets the image scaling mode for the specified segment.

- (void)setImageScaling:(NSImageScaling)scaling forSegment:(NSInteger)segment

Parameters
scaling

The scaling mode to assign to the specified segment. For the possible values see Segmented Control
Visual Styles (page 2419).

segment
The index of the segment whose image scaling mode you want to set. This method raises an
NSRangeException if the index is out of bounds.

Discussion
The image scaling mode for a segment affects how the image inside the corresponding cell is positioned
and resized when the cell itself grows or shrinks. The image scaling mode does not itself cause the cell to
change size in any way. If a cell does not contain an image, the scaling mode has no effect.

Availability
Available in Mac OS X v10.5 and later.

See Also
– imageScalingForSegment: (page 2392)

Declared In
NSSegmentedCell.h

setLabel:forSegment:
Sets the label for the specified segment.

- (void)setLabel:(NSString *)label forSegment:(NSInteger)segment

2398 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

Parameters
label

The label you want to display in the segment. If the width of the string is greater than the width of
the segment, the string's text is truncated during drawing.

segment
The index of the segment whose label you want to set. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– labelForSegment: (page 2394)

Declared In
NSSegmentedCell.h

setMenu:forSegment:
Sets the menu for the specified segment.

- (void)setMenu:(NSMenu *)menu forSegment:(NSInteger)segment

Parameters
menu

The menu you want to add to the segment or nil to clear the current menu. This menu is displayed
when the user clicks and holds the mouse button while the mouse is over the segment.

segment
The index of the segment whose menu you want to set. This method raises an NSRangeException
if the index is out of bounds.

Discussion
Adding a menu to a segment allows that segment to be used as a pop-up button.

Availability
Available in Mac OS X v10.3 and later.

See Also
– menuForSegment: (page 2395)

Declared In
NSSegmentedCell.h

setSegmentCount:
Sets the number of segments in the receiver.

- (void)setSegmentCount:(NSInteger)count

Instance Methods 2399
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

Parameters
count

The number of segments the receiver should have. If this value is less than the number of segments
currently in the receiver, segments are removed from the right of the control. Similarly, if the number
is greater than the current number of segments, the new segments are added on the right. This value
must be between 0 and 2049.

Availability
Available in Mac OS X v10.3 and later.

See Also
– segmentCount (page 2396)

Declared In
NSSegmentedCell.h

setSegmentStyle:
Sets the visual style used to display the receiver.

- (void)setSegmentStyle:(NSSegmentStyle)segmentStyle

Parameters
segmentStyle

An NSSegmentStyle value that specifies the visual display used by the receiver. For possible values
see “Segmented Control Visual Styles” (page 2419) in NSSegmentedControl Class Reference.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSegmentedCell.h

setSelected:forSegment:
Sets the selection state of the specified segment.

- (void)setSelected:(BOOL)flag forSegment:(NSInteger)segment

Parameters
flag

YES if you want to select the segment; otherwise, NO.

segment
The index of the segment whose selection state you want to set. This method raises an
NSRangeException if the index is out of bounds.

Discussion
If the receiver allows only a single selection, this method deselects any other selected segments.

Availability
Available in Mac OS X v10.3 and later.

2400 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

See Also
– isSelectedForSegment: (page 2394)

Declared In
NSSegmentedCell.h

setSelectedSegment:
Sets the selected segment of the receiver.

- (void)setSelectedSegment:(NSInteger)selectedSegment

Parameters
selectedSegment

The zero-based index of the desired segment. This method raises an NSRangeException if the index
is out of bounds.

Discussion
If the receiver allows multiple selections, this method selects the specified segment using
setSelected:forSegment: (page 2400).

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectedSegment (page 2396)

Declared In
NSSegmentedCell.h

setTag:forSegment:
Sets the tag for the specified segment.

- (void)setTag:(NSInteger)tag forSegment:(NSInteger)segment

Parameters
tag

The tag of the segment.

segment
The index of the segment whose tool tag you want to set. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– tagForSegment: (page 2403)

Declared In
NSSegmentedCell.h

Instance Methods 2401
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

setToolTip:forSegment:
Sets the tool tip for the specified segment.

- (void)setToolTip:(NSString *)toolTip forSegment:(NSInteger)segment

Parameters
toolTip

The text of the tool tip you want to display for the segment.

segment
The index of the segment whose tool tip you want to set. This method raises an NSRangeException
if the index is out of bounds.

Discussion
Tool tips are currently not displayed.

Availability
Available in Mac OS X v10.3 and later.

See Also
– toolTipForSegment: (page 2403)

Declared In
NSSegmentedCell.h

setTrackingMode:
Sets the tracking mode for the receiver.

- (void)setTrackingMode:(NSSegmentSwitchTracking)trackingMode

Parameters
trackingMode

The tracking mode to use for the segments. Possible values for trackingMode are described in
NSSegmentSwitchTracking (page 2405).

Availability
Available in Mac OS X v10.3 and later.

See Also
– trackingMode (page 2404)

Declared In
NSSegmentedCell.h

setWidth:forSegment:
Sets the width of the specified segment.

- (void)setWidth:(CGFloat)width forSegment:(NSInteger)segment

2402 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

Parameters
width

The width of the segment, measured in points. Specify the value 0 if you want the segment to be
sized to fit the available space automatically.

segment
The index of the segment whose width you want to set. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– widthForSegment: (page 2404)

Declared In
NSSegmentedCell.h

tagForSegment:
Returns the tag of the specified segment.

- (NSInteger)tagForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose tool tag you want to get. This method raises an NSRangeException
if the index is out of bounds.

Return Value
The tag of the segment.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setTag:forSegment: (page 2401)

Declared In
NSSegmentedCell.h

toolTipForSegment:
Returns the tool tip of the specified segment.

- (NSString *)toolTipForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose tool tip you want to get. This method raises an NSRangeException
if the index is out of bounds.

Return Value
The text of the tool tip.

Instance Methods 2403
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

Discussion
Tool tips are currently not displayed.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setToolTip:forSegment: (page 2402)

Declared In
NSSegmentedCell.h

trackingMode
Returns the tracking mode of the receiver.

- (NSSegmentSwitchTracking)trackingMode

Return Value
The tracking mode used for the segments Possible values for trackingMode are described in
NSSegmentSwitchTracking (page 2405).The default value isNSSegmentSwitchTrackingSelectOne (page
2405).

Availability
Available in Mac OS X v10.3 and later.

See Also
– setTrackingMode: (page 2402)

Declared In
NSSegmentedCell.h

widthForSegment:
Returns the width of the specified segment.

- (CGFloat)widthForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose width you want to get. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setWidth:forSegment: (page 2402)

Declared In
NSSegmentedCell.h

2404 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

Constants

NSSegmentSwitchTracking
An NSSegmentedCell object uses the following constants, which describe the various tracking modes for
a cell. You access these values usingsetTrackingMode: (page 2402) andtrackingMode (page 2404) methods
of the class.

typedef enum {
 NSSegmentSwitchTrackingSelectOne = 0,
 NSSegmentSwitchTrackingSelectAny = 1,
 NSSegmentSwitchTrackingMomentary = 2
} NSSegmentSwitchTracking;

Constants
NSSegmentSwitchTrackingSelectOne

Only one segment may be selected.

Available in Mac OS X v10.3 and later.

Declared in NSSegmentedCell.h.

NSSegmentSwitchTrackingSelectAny
Any segment can be selected.

Available in Mac OS X v10.3 and later.

Declared in NSSegmentedCell.h.

NSSegmentSwitchTrackingMomentary
A segment is selected only when tracking.

Available in Mac OS X v10.3 and later.

Declared in NSSegmentedCell.h.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSegmentedCell.h

Constants 2405
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

2406 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 120

NSSegmentedCell Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSSegmentedControl.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Segmented Control Programming Guide

Related sample code ButtonMadness
ImageClient
ImageMapExample
PDF Annotation Editor
PDFKitLinker2

Overview

An NSSegmentedControl object implements a horizontal button made of multiple segments.

The NSSegmentedControl class uses an NSSegmentedCell class to implement much of the control's
functionality. Most methods in NSSegmentedControl are simply "cover methods” that call the corresponding
method in NSSegmentedCell. The methods of NSSegmentedCell that do not have covers relate to accessing
and setting values for tags and tool tips; programatically setting the key segment; and establishing the mode
of the control.

The features of a segmented control include:

 ■ Each segment can have an image, text (label), menu, tooltip, and tag

 ■ Either the whole control or individual segments can be enabled or disabled

 ■ There are three tracking modes for segments: select one mode (also known as radio button mode and
illustrated by Finder’s view mode selection control), momentary mode (as illustrated by Safari’s toolbar
buttons), or select any mode (where any combination of buttons may be on or off)

 ■ Each segment can be either a fixed width or autosized to fit the contents

 ■ If a segment has text and is marked as autosizing, then the text may be truncated so that the control
completely fits

Overview 2407
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

 ■ If an image is too large to fit in a segment, it is clipped

 ■ Full keyboard control of the user interface

Tasks

Specifying Number of Segments

– setSegmentCount: (page 2416)
Sets the number of segments in the receiver.

– segmentCount (page 2412)
Returns the number of segments in the receiver.

Specifying Selected Segment

– setSelectedSegment: (page 2418)
Sets the selected segment of the receiver.

– selectedSegment (page 2412)
Returns the index of the selected segment of the receiver.

– selectSegmentWithTag: (page 2413)
Selects the segment with the specified tag.

Working with Individual Segments

– setWidth:forSegment: (page 2418)
Sets the width of the specified segment.

– widthForSegment: (page 2418)
Returns the width of the specified segment.

– setImage:forSegment: (page 2414)
Sets the image for the specified segment.

– imageForSegment: (page 2409)
Returns the image associated with the specified segment.

– setLabel:forSegment: (page 2415)
Sets the label for the specified segment.

– labelForSegment: (page 2411)
Returns the label of the specified segment

– setMenu:forSegment: (page 2415)
Sets the menu for the specified segment.

– menuForSegment: (page 2411)
Returns the menu for the specified segment

– setSelected:forSegment: (page 2417)
Sets the selection state of the specified segment.

2408 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

– isSelectedForSegment: (page 2410)
Returns a Boolean value indicating whether the specified segment is selected.

– setEnabled:forSegment: (page 2413)
Sets the enabled state of the specified segment

– isEnabledForSegment: (page 2410)
Returns a Boolean value indicating whether the specified segment is enabled.

Specifying Segment Display

– setSegmentStyle: (page 2416)
Sets the visual style used to display the receiver.

– segmentStyle (page 2412)
Returns the visual style used to display the receiver.

– setImageScaling:forSegment: (page 2414)
Sets the scaling mode used to display the specified segment’s image.

– imageScalingForSegment: (page 2409)
Returns the scaling mode used to display the specified segment’s image.

Instance Methods

imageForSegment:
Returns the image associated with the specified segment.

- (NSImage *)imageForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose image you want to get. This method raises an NSRangeException
if the index is out of bounds.

Return Value
The image associated with the segment; otherwise, nil.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setImage:forSegment: (page 2414)

Declared In
NSSegmentedControl.h

imageScalingForSegment:
Returns the scaling mode used to display the specified segment’s image.

Instance Methods 2409
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

- (NSImageScaling)imageScalingForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose enabled state you want to get. This method raises an
NSRangeException if the index is out of bounds.

Return Value
One of the image scaling constants. For a list of possible values, see NSImageScaling (page 617). The default
value is NSImageScaleProportionallyDown (page 617).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setImageScaling:forSegment: (page 2414)

Declared In
NSSegmentedControl.h

isEnabledForSegment:
Returns a Boolean value indicating whether the specified segment is enabled.

- (BOOL)isEnabledForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose enabled state you want to get. This method raises an
NSRangeException if the index is out of bounds.

Return Value
YES if the segment is enabled; otherwise, NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setEnabled:forSegment: (page 2413)

Declared In
NSSegmentedControl.h

isSelectedForSegment:
Returns a Boolean value indicating whether the specified segment is selected.

- (BOOL)isSelectedForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose selection state you want to get. This method raises an
NSRangeException if the index is out of bounds.

2410 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

Return Value
YES if the segment is selected; otherwise, NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSelected:forSegment: (page 2417)

Declared In
NSSegmentedControl.h

labelForSegment:
Returns the label of the specified segment

- (NSString *)labelForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose label you want to get. This method raises an NSRangeException
if the index is out of bounds.

Return Value
The label of the segment. The returned string contains the entire text of the label, even if that text is normally
truncated during drawing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setLabel:forSegment: (page 2415)

Declared In
NSSegmentedControl.h

menuForSegment:
Returns the menu for the specified segment

- (NSMenu *)menuForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose menu you want to get. This method raises an NSRangeException
if the index is out of bounds.

Return Value
The menu associated with the segment; otherwise, nil.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 2411
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

See Also
– setMenu:forSegment: (page 2415)

Declared In
NSSegmentedControl.h

segmentCount
Returns the number of segments in the receiver.

- (NSInteger)segmentCount

Return Value
The number of segments.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSegmentCount: (page 2416)

Declared In
NSSegmentedControl.h

segmentStyle
Returns the visual style used to display the receiver.

- (NSSegmentStyle)segmentStyle

Return Value
An NSSegmentStyle value that specifies the visual display used by the receiver. For possible values see
“Segmented Control Visual Styles” (page 2419).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setSegmentStyle: (page 2416)

Declared In
NSSegmentedControl.h

selectedSegment
Returns the index of the selected segment of the receiver.

- (NSInteger)selectedSegment

Return Value
The index of the currently selected segment or -1 if no segment is selected. If the receiver allows multiple
selections, this method returns the most recently selected segment.

2412 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSelectedSegment: (page 2418)

Related Sample Code
ClipboardViewer
ImageClient
ImageMap
ImageMapExample

Declared In
NSSegmentedControl.h

selectSegmentWithTag:
Selects the segment with the specified tag.

- (BOOL)selectSegmentWithTag:(NSInteger)tag

Parameters
tag

The tag associated with the desired segment.

Return Value
YES if the segment was selected successfully; otherwise, NO.

Discussion
Typically, you use Interface Builder to specify the tag for each segment. You may also set this value
programmatically using the setTag:forSegment: method of NSSegmentedCell.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTag:forSegment: (page 2401) (NSSegmentedCell)

Declared In
NSSegmentedControl.h

setEnabled:forSegment:
Sets the enabled state of the specified segment

- (void)setEnabled:(BOOL)flag forSegment:(NSInteger)segment

Parameters
flag

YES to enable the segment; otherwise, NO to disable it.

Instance Methods 2413
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

segment
The index of the segment you want to enable or disable. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– isEnabledForSegment: (page 2410)

Related Sample Code
PDFKitLinker2

Declared In
NSSegmentedControl.h

setImage:forSegment:
Sets the image for the specified segment.

- (void)setImage:(NSImage *)image forSegment:(NSInteger)segment

Parameters
image

The image to apply to the segment or nil if you want to clear the existing image. Images are not
scaled to fit inside a segment. If the image is larger than the available space, it is clipped.

segment
The index of the segment whose image you want to set. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– imageForSegment: (page 2409)

Declared In
NSSegmentedControl.h

setImageScaling:forSegment:
Sets the scaling mode used to display the specified segment’s image.

- (void)setImageScaling:(NSImageScaling)scaling forSegment:(NSInteger)segment

Parameters
scaling

One of the image scaling constants. For a list of possible values, see NSImageScaling (page 617).

segment
The index of the segment whose enabled state you want to get. This method raises an
NSRangeException if the index is out of bounds.

2414 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– imageForSegment: (page 2409)

Declared In
NSSegmentedControl.h

setLabel:forSegment:
Sets the label for the specified segment.

- (void)setLabel:(NSString *)label forSegment:(NSInteger)segment

Parameters
label

The label you want to display in the segment. If the width of the string is greater than the width of
the segment, the string's text is truncated during drawing.

segment
The index of the segment whose label you want to set. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– labelForSegment: (page 2411)

Declared In
NSSegmentedControl.h

setMenu:forSegment:
Sets the menu for the specified segment.

- (void)setMenu:(NSMenu *)menu forSegment:(NSInteger)segment

Parameters
menu

The menu you want to add to the segment or nil to clear the current menu. This menu is displayed
when the user clicks and holds the mouse button while the mouse is over the segment.

segment
The index of the segment whose menu you want to set. This method raises an NSRangeException
if the index is out of bounds.

Discussion
Adding a menu to a segment allows that segment to be used as a pop-up button.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 2415
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

See Also
– menuForSegment: (page 2411)

Declared In
NSSegmentedControl.h

setSegmentCount:
Sets the number of segments in the receiver.

- (void)setSegmentCount:(NSInteger)count

Parameters
count

The number of segments the receiver should have. If this value is less than the number of segments
currently in the receiver, segments are removed from the right of the control. Similarly, if the number
is greater than the current number of segments, the new segments are added on the right. This value
must be between 0 and 2049.

Availability
Available in Mac OS X v10.3 and later.

See Also
– segmentCount (page 2412)

Declared In
NSSegmentedControl.h

setSegmentStyle:
Sets the visual style used to display the receiver.

- (void)setSegmentStyle:(NSSegmentStyle)segmentStyle

Parameters
segmentStyle

An NSSegmentStyle value that specifies the visual display used by the receiver. For the possible
values see “Segmented Control Visual Styles” (page 2419).

Discussion
Figure 121-1 (page 2417) shows the visual styles and their corresponding NSSegmentStyle constant. The
NSSegmentStyleAutomatic (page 2419) constant will automatically determined based on the type of window
in which the control is displayed and the position within the window., and is not shown in the figure.

2416 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

Figure 121-1 NSSegmentStyle examples

NSSegmentStyleRounded

NSSegmentStyleTexturedRounded

NSSegmentStyleRoundRect

NSSegmentStyleCapsule

NSSegmentStyleSmallSquare

Availability
Available in Mac OS X v10.5 and later.

See Also
– segmentStyle (page 2412)

Declared In
NSSegmentedControl.h

setSelected:forSegment:
Sets the selection state of the specified segment.

- (void)setSelected:(BOOL)flag forSegment:(NSInteger)segment

Parameters
flag

YES if you want to select the segment; otherwise, NO.

segment
The index of the segment whose selection state you want to set. This method raises an
NSRangeException if the index is out of bounds.

Discussion
If the receiver allows only a single selection, this method deselects any other selected segments.

Availability
Available in Mac OS X v10.3 and later.

See Also
– isSelectedForSegment: (page 2410)

Declared In
NSSegmentedControl.h

Instance Methods 2417
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

setSelectedSegment:
Sets the selected segment of the receiver.

- (void)setSelectedSegment:(NSInteger)selectedSegment

Parameters
selectedSegment

The zero-based index of the desired segment. This method raises an NSRangeException if the index
is out of bounds.

Discussion
If the receiver allows multiple selections, this method selects the specified segment using
setSelected:forSegment: (page 2417).

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectedSegment (page 2412)

Related Sample Code
PDFKitLinker2

Declared In
NSSegmentedControl.h

setWidth:forSegment:
Sets the width of the specified segment.

- (void)setWidth:(CGFloat)width forSegment:(NSInteger)segment

Parameters
width

The width of the segment, measured in points. Specify the value 0 if you want the segment to be
sized to fit the available space automatically.

segment
The index of the segment whose width you want to set. This method raises an NSRangeException
if the index is out of bounds.

Availability
Available in Mac OS X v10.3 and later.

See Also
– widthForSegment: (page 2418)

Declared In
NSSegmentedControl.h

widthForSegment:
Returns the width of the specified segment.

2418 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

- (CGFloat)widthForSegment:(NSInteger)segment

Parameters
segment

The index of the segment whose width you want to get. This method raises an NSRangeException
if the index is out of bounds.

Return Value
The width of the segment, measured in points, or 0 if the segment is sized to fit the available space
automatically.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setWidth:forSegment: (page 2418)

Declared In
NSSegmentedControl.h

Constants

Segmented Control Visual Styles
The following constants specify the visual style used to display the segmented control. They are used by
setSegmentStyle: (page 2416).

enum {
 NSSegmentStyleAutomatic = 0,
 NSSegmentStyleRounded = 1,
 NSSegmentStyleTexturedRounded = 2,
 NSSegmentStyleRoundRect = 3,
 NSSegmentStyleTexturedSquare = 4,
 NSSegmentStyleCapsule = 5,
 NSSegmentStyleSmallSquare = 6
};
typedef NSInteger NSSegmentStyle;

Constants
NSSegmentStyleAutomatic

The appearance of the segmented control is automatically determined based on the type of window
in which the control is displayed and the position within the window.

Available in Mac OS X v10.5 and later.

Declared in NSSegmentedControl.h.

NSSegmentStyleRounded
The control is displayed using the rounded style. See Figure 121-1 (page 2417) for examples.

Available in Mac OS X v10.5 and later.

Declared in NSSegmentedControl.h.

Constants 2419
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

NSSegmentStyleTexturedRounded
The control is displayed using the textured rounded style. See Figure 121-1 (page 2417) for examples.

Available in Mac OS X v10.5 and later.

Declared in NSSegmentedControl.h.

NSSegmentStyleRoundRect
The control is displayed using the round rect style. See Figure 121-1 (page 2417) for examples.

Available in Mac OS X v10.5 and later.

Declared in NSSegmentedControl.h.

NSSegmentStyleTexturedSquare
The control is displayed using the textured square style. See Figure 121-1 (page 2417) for examples.

Available in Mac OS X v10.5 and later.

Declared in NSSegmentedControl.h.

NSSegmentStyleCapsule
The control is displayed using the capsule style. See Figure 121-1 (page 2417) for examples.

Available in Mac OS X v10.5 and later.

Declared in NSSegmentedControl.h.

NSSegmentStyleSmallSquare
The control is displayed using the small square style. See Figure 121-1 (page 2417) for examples.

Available in Mac OS X v10.5 and later.

Declared in NSSegmentedControl.h.

2420 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 121

NSSegmentedControl Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSShadow.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Drawing Guide

Related sample code FunHouse
OpenCL NBody Simulation Example
Reducer
WebKitPluginStarter
WebKitPluginWithJavaScript

Overview

An NSShadow object encapsulates the attributes used to create a drop shadow during drawing operations.

Shadows are always drawn in the default user coordinate space, regardless of any transformations applied
to that space. This means that rotations, translations and other transformations of the current transformation
matrix (the CTM) do not affect the resulting shadow. Another way to think about this is that changes to the
CTM do not move or change the apparent position of the shadow’s light source.

There are two positional parameters for a shadow: an x-offset and a y-offset. These values are expressed
using a single NSSize data type and using the units of the default user coordinate space. Positive values for
these offsets extend up and to the right.

In addition to its positional parameters, a shadow also contains a blur radius, which specifies how much a
drawn object's image mask is blurred before it is composited onto the destination. A value of 0 means there
is no blur. Larger values give correspondingly larger amounts of blurring.

An NSShadow object may be used in one of two ways. First, it may be set, like a color or a font, in which case
its attributes are applied to all content drawn thereafter—or at least until another shadow is applied or a
previous graphics state is restored. Second, it may be used as the value for the NSShadowAttributeName
text attribute, in which case it is applied to the glyphs corresponding to the characters bearing this attribute.

Overview 2421
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 122

NSShadow Class Reference

Adopted Protocols

NSCoding
encodeWithCoder:

initWithCoder:

NSCopying
copyWithZone:

Tasks

Creating a Shadow

– init (page 2423)
Returns an NSShadow object initialized with default values.

Managing a Shadow

– setShadowOffset: (page 2424)
Sets the offset values for the receiver.

– shadowOffset (page 2426)
Returns the offset values for the receiver.

– setShadowBlurRadius: (page 2423)
Sets the blur radius of the receiver.

– shadowBlurRadius (page 2425)
Returns the blur radius of the receiver.

– setShadowColor: (page 2424)
Sets the shadow color for the receiver.

– shadowColor (page 2425)
Returns the color for the receiver.

Setting the Shadow

– set (page 2423)
Sets the shadow of subsequent drawing operations to the shadow represented by the receiver.

2422 Adopted Protocols
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 122

NSShadow Class Reference

Instance Methods

init
Returns an NSShadow object initialized with default values.

- (id)init

Return Value
An NSShadow object initialized with 0 as its offset, 0 as its blur radius, and the default color as its color. The
returned object may be different from the original receiver.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSShadow.h

set
Sets the shadow of subsequent drawing operations to the shadow represented by the receiver.

- (void)set

Discussion
The shadow attributes of the receiver are used until another shadow is set or until the graphics state is
restored.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
DockTile
Reducer
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSShadow.h

setShadowBlurRadius:
Sets the blur radius of the receiver.

- (void)setShadowBlurRadius:(CGFloat)val

Instance Methods 2423
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 122

NSShadow Class Reference

Parameters
val

The blur radius, as measured in the default user coordinate space. A value of 0 indicates no blur, while
larger values produce correspondingly larger blurring. This value must not be negative.

Availability
Available in Mac OS X v10.3 and later.

See Also
– shadowBlurRadius (page 2425)

Related Sample Code
ComplexBrowser
OpenCL NBody Simulation Example
Reducer
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSShadow.h

setShadowColor:
Sets the shadow color for the receiver.

- (void)setShadowColor:(NSColor *)color

Parameters
color

The shadow color, which must be convertible to an RGBA color. Specify nil if you do not want the
shadow to be drawn. Your color may contain alpha information.

Availability
Available in Mac OS X v10.3 and later.

See Also
– shadowColor (page 2425)

Related Sample Code
DockTile
OpenCL NBody Simulation Example
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSShadow.h

setShadowOffset:
Sets the offset values for the receiver.

2424 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 122

NSShadow Class Reference

- (void)setShadowOffset:(NSSize)offset

Parameters
offset

The horizontal and vertical offset values, specified using the width and height fields of the NSSize
data type. These offsets are measured using the default user coordinate space and are not affected
by custom transformations. This means that positive values always extend up and to the right from
the user's perspective.

Availability
Available in Mac OS X v10.3 and later.

See Also
– shadowOffset (page 2426)

Related Sample Code
ComplexBrowser
OpenCL NBody Simulation Example
Reducer
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSShadow.h

shadowBlurRadius
Returns the blur radius of the receiver.

- (CGFloat)shadowBlurRadius

Return Value
The blur radius, as measured in the default user coordinate space. A value of 0 indicates no blur, while larger
values produce correspondingly larger blurring. The default value is 0.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setShadowBlurRadius: (page 2423)

Related Sample Code
FunHouse

Declared In
NSShadow.h

shadowColor
Returns the color for the receiver.

- (NSColor *)shadowColor

Instance Methods 2425
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 122

NSShadow Class Reference

Return Value
The current shadow color. A nil shadow color indicates the shadow is not to be drawn. The default shadow
color is black with an alpha of 1/3.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setShadowColor: (page 2424)

Related Sample Code
FunHouse

Declared In
NSShadow.h

shadowOffset
Returns the offset values for the receiver.

- (NSSize)shadowOffset

Return Value
The horizontal and vertical offset values, specified using the width and height fields of the NSSize data
type. These offsets are measured using the default user coordinate space and are not affected by custom
transformations. This means that positive values always extend up and to the right from the user's perspective.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setShadowOffset: (page 2424)

Related Sample Code
FunHouse

Declared In
NSShadow.h

2426 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 122

NSShadow Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSSlider.h

Companion guide Slider Programming Topics

Related sample code Fireworks
FunHouse
MatrixMixerTest
NineSlice
OpenALExample

Overview

An NSSlider object displays a range of values for something in the application. Sliders can be vertical or
horizontal bars or circular dials. An indicator, or knob, notes the current setting. The user can move the knob
in the slider’s bar—or rotate the knob in a circular slider—to change the setting.

The NSSlider class uses the NSSliderCell class to implement its user interface.

Tasks

Asking About the Slider’s Appearance

– altIncrementValue (page 2430)
Returns the amount by which the receiver changes its value when the user Option–drags the slider
knob.

– image (page 2431)
This method has been deprecated. Returns nil.

Overview 2427
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

– knobThickness (page 2432)
Returns the knob’s thickness, in pixels.

– isVertical (page 2432)
Returns an integer indicating the orientation (horizontal or vertical) of the slider.

Changing the Slider’s Appearance

– setAltIncrementValue: (page 2435)
Sets the amount by which the NSSliderCell modifies its value when the user Option-drags the
knob.

– setKnobThickness: (page 2436)
This method has been deprecated. Lets you set the knob’s thickness, measured in pixels.

– setImage: (page 2435) Available in Mac OS X v10.0 through Mac OS X v10.5
This method has been deprecated. Sets the image the receiver displays in the bar behind its knob.

Asking About the Slider’s Title

– title (page 2441)
Returns the receiver’s title.

– titleCell (page 2441)
This method has been deprecated. Returns nil.

– titleColor (page 2441)
This method has been deprecated. Returns nil.

– titleFont (page 2442)
This method has been deprecated. Returns nil.

Changing the Slider’s Title

– setTitle: (page 2438)
This method has been deprecated. Sets the title the receiver displays in the bar behind its knob.

– setTitleCell: (page 2439)
This method has been deprecated. Sets the cell used to draw the receiver’s title.

– setTitleColor: (page 2439)
This method has been deprecated. Sets the color used to draw the receiver’s title.

– setTitleFont: (page 2439)
This method has been deprecated. Sets the font used to draw the receiver’s title.

Asking About the Value Limits

– maxValue (page 2433)
Returns the maximum value the receiver can send to its target.

– minValue (page 2433)
Returns the minimum value the receiver can send to its target.

2428 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

Changing the Value Limits

– setMaxValue: (page 2436)
Sets the maximum value the receiver can send to its target.

– setMinValue: (page 2437)
Sets the minimum value the receiver can send to its target

Handling Mouse-down Events

– acceptsFirstMouse: (page 2430)
Returns a Boolean value indicating whether the slider accepts a single mouse-down event that
simultaneously activates the window and takes hold of the slider’s knob.

Managing Tick Marks

– allowsTickMarkValuesOnly (page 2430)
Returns a Boolean value indicating whether the receiver fixes its values to those values represented
by its tick marks.

– closestTickMarkValueToValue: (page 2431)
Returns the value of the tick mark closest to the specified value.

– indexOfTickMarkAtPoint: (page 2432)
Returns the index of the tick mark closest to the location of the receiver represented by the given
point.

– numberOfTickMarks (page 2434)
Returns the number of tick marks associated with the receiver.

– rectOfTickMarkAtIndex: (page 2434)
Returns the bounding rectangle of the tick mark at the given index.

– setAllowsTickMarkValuesOnly: (page 2434)
Sets whether the receiver’s values are fixed to the values represented by the tick marks.

– setNumberOfTickMarks: (page 2437)
Sets the number of tick marks displayed by the receiver.

– setTickMarkPosition: (page 2438)
Sets where tick marks appear relative to the receiver.

– tickMarkPosition (page 2440)
Returns how the receiver’s tick marks are aligned with it.

– tickMarkValueAtIndex: (page 2440)
Returns the receiver’s value represented by the tick mark at the specified index.

Tasks 2429
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

Instance Methods

acceptsFirstMouse:
Returns a Boolean value indicating whether the slider accepts a single mouse-down event that simultaneously
activates the window and takes hold of the slider’s knob.

- (BOOL)acceptsFirstMouse:(NSEvent *)mouseDownEvent

Parameters
mouseDownEvent

The mouse-down event.

Return Value
YES if the receiver accepts the first mouse-down event; otherwise, NO. Returns YES by default.

Discussion
If you want the receiver to wait for its own mouse-down event, you must override this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSlider.h

allowsTickMarkValuesOnly
Returns a Boolean value indicating whether the receiver fixes its values to those values represented by its
tick marks.

- (BOOL)allowsTickMarkValuesOnly

Return Value
YES if the slider fixes its values to the values represented by its tick marks; otherwise, NO.

Discussion
In its implementation of this method, the receiving NSSlider object simply invokes the method of the same
name of its NSSliderCell object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsTickMarkValuesOnly: (page 2434)

Declared In
NSSlider.h

altIncrementValue
Returns the amount by which the receiver changes its value when the user Option–drags the slider knob.

2430 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

- (double)altIncrementValue

Return Value
The amount by which the value changes when the user drags the slider knob with the Option key held down.
Unless you call setAltIncrementValue: (page 2435), altIncrementValue (page 2430) returns –1.0, and
the receiver behaves no differently with the Option key down than with it up.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAltIncrementValue: (page 2435)

Declared In
NSSlider.h

closestTickMarkValueToValue:
Returns the value of the tick mark closest to the specified value.

- (double)closestTickMarkValueToValue:(double)aValue

Parameters
aValue

The value for which to return the closest tick mark.

Return Value
The value of the tick mark closest to aValue.

Discussion
In its implementation of this method, the receiver simply invokes the method of the same name of its
NSSliderCell instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfTickMarkAtPoint: (page 2432)

Declared In
NSSlider.h

image
This method has been deprecated. Returns nil.

- (NSImage *)image

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImage: (page 2435)

Instance Methods 2431
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

Declared In
NSSlider.h

indexOfTickMarkAtPoint:
Returns the index of the tick mark closest to the location of the receiver represented by the given point.

- (NSInteger)indexOfTickMarkAtPoint:(NSPoint)point

Parameters
point

The point representing the location for which to retrieve the tick mark.

Return Value
The index of the tick mark closest to the location specified by point. If point is not within the bounding
rectangle (plus an extra pixel of space) of any tick mark, the method returns NSNotFound.

Discussion
In its implementation of this method, the receiving NSSlider instance simply invokes the method of the
same name of its NSSliderCell instance. This method invokes rectOfTickMarkAtIndex: (page 2434) for
each tick mark on the slider until it finds a tick mark containing the point.

Availability
Available in Mac OS X v10.0 and later.

See Also
– closestTickMarkValueToValue: (page 2431)

Declared In
NSSlider.h

isVertical
Returns an integer indicating the orientation (horizontal or vertical) of the slider.

- (NSInteger)isVertical

Return Value
1 if the receiver is vertical, 0 if it’s horizontal, and –1 if the orientation can’t be determined (for example, if
the slider hasn’t been displayed yet). A slider is defined as vertical if its height is greater than its width.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSlider.h

knobThickness
Returns the knob’s thickness, in pixels.

- (CGFloat)knobThickness

2432 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

Return Value
The thickness of the slider knob. The thickness is defined to be the extent of the knob along the long dimension
of the bar. In a vertical slider, then, a knob’s thickness is its height; in a horizontal slider, a knob’s thickness
is its width.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setKnobThickness: (page 2436)

Declared In
NSSlider.h

maxValue
Returns the maximum value the receiver can send to its target.

- (double)maxValue

Return Value
The slider's maximum value. A horizontal slider sends its maximum value when the knob is at the right end
of the bar; a vertical slider sends it when the knob is at the top.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaxValue: (page 2436)

Declared In
NSSlider.h

minValue
Returns the minimum value the receiver can send to its target.

- (double)minValue

Return Value
The slider's minimum value. A vertical slider sends its minimum value when its knob is at the bottom; a
horizontal slider, when its knob is all the way to the left.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMinValue: (page 2437)

Declared In
NSSlider.h

Instance Methods 2433
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

numberOfTickMarks
Returns the number of tick marks associated with the receiver.

- (NSInteger)numberOfTickMarks

Return Value
The number of the slider's tick marks.The tick marks assigned to the minimum and maximum values are
included. In its implementation of this method, the receiving NNSSlider instance simply invokes the method
of the same name of its NSSliderCell instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setNumberOfTickMarks: (page 2437)

Declared In
NSSlider.h

rectOfTickMarkAtIndex:
Returns the bounding rectangle of the tick mark at the given index.

- (NSRect)rectOfTickMarkAtIndex:(NSInteger)index

Parameters
index

The index of the tick mark for which to retrieve the bounds. The minimum-value tick mark is at index
0.

Return Value
The bounding rectangle of the specified tick mark.

Discussion
If no tick mark is associated with index, the method raises NSRangeException. In its implementation of
this method, the receiving NSSlider instance simply invokes the method of the same name of its
NSSliderCell instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfTickMarkAtPoint: (page 2432)

Declared In
NSSlider.h

setAllowsTickMarkValuesOnly:
Sets whether the receiver’s values are fixed to the values represented by the tick marks.

- (void)setAllowsTickMarkValuesOnly:(BOOL)flag

2434 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

Parameters
flag

YES if the slider's values should be fixed to the values represented by its tick marks; otherwise NO. For
example, if a slider has a minimum value of 0, a maximum value of 100, and five markers, the allowable
values are 0, 25, 50, 75, and 100. When users move the slider’s knob, it jumps to the tick mark nearest
the cursor when the mouse button is released.

Discussion
This method has no effect if the slider has no tick marks. In its implementation of this method, the receiving
NSSlider instance simply invokes the method of the same name of its NSSliderCell instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsTickMarkValuesOnly (page 2430)

Declared In
NSSlider.h

setAltIncrementValue:
Sets the amount by which the NSSliderCell modifies its value when the user Option-drags the knob.

- (void)setAltIncrementValue:(double)increment

Parameters
increment

The amount by which the slider's value changes when the user Option–drags its knob. This value
must fit the range of values the slider can represent—for example, if the slider has a minimum value
of 5 and a maximum value of 10, increment should be between 0 and 5. If increment is outside that
range, the value is unchanged.

Discussion
If you don’t call this method, the slider behaves the same with the Option key down as with it up. This is also
the result when you call setAltIncrementValue: with an increment of –1.

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxValue (page 2433)
– minValue (page 2433)

Declared In
NSSlider.h

setImage:
This method has been deprecated. Sets the image the receiver displays in the bar behind its knob.

- (void)setImage:(NSImage *)barImage

Instance Methods 2435
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

Parameters
barImage

The image to set.

Discussion
The slider may scale and distort barImage to fit inside the bar.

The knob may cover part of the image. If you want the image to be visible all the time, you’re better off
placing it near the slider.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImage: (page 2435)

Declared In
NSSlider.h

setKnobThickness:
This method has been deprecated. Lets you set the knob’s thickness, measured in pixels.

- (void)setKnobThickness:(CGFloat)thickness

Parameters
thickness

The thickness of the knob. The thickness is defined to be the extent of the knob along the long
dimension of the bar. In a vertical slider, a knob’s thickness is its height; in a horizontal slider, a knob’s
thickness is its width.

Availability
Available in Mac OS X v10.0 and later.

See Also
– knobThickness (page 2432)

Declared In
NSSlider.h

setMaxValue:
Sets the maximum value the receiver can send to its target.

- (void)setMaxValue:(double)maxValue

Parameters
maxValue

The maximum value of the slider. A horizontal slider sends its maximum value when its knob is all
the way to the right; a vertical slider sends its maximum value when its knob is at the top.

Availability
Available in Mac OS X v10.0 and later.

2436 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

See Also
– maxValue (page 2433)

Related Sample Code
FunHouse
ImageApp

Declared In
NSSlider.h

setMinValue:
Sets the minimum value the receiver can send to its target

- (void)setMinValue:(double)minValue

Parameters
minValue

The minimum value of the slider. A horizontal slider sends its minimum value when its knob is all the
way to the left; a vertical slider sends its minimum value when its knob is at the bottom.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minValue (page 2433)

Related Sample Code
FunHouse
ImageApp

Declared In
NSSlider.h

setNumberOfTickMarks:
Sets the number of tick marks displayed by the receiver.

- (void)setNumberOfTickMarks:(NSInteger)numberOfTickMarks

Parameters
numberOfTickMarks

The number of tick marks (including those assigned to the minimum and maximum values) displayed
by the slider. By default, this value is 0, and no tick marks appear. The number of tick marks assigned
to a slider, along with the slider’s minimum and maximum values, determines the values associated
with the tick marks.

Discussion
In its implementation of this method, the receiving NSSlider instance simply invokes the method of the
same name of its NSSliderCell instance.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2437
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

See Also
– numberOfTickMarks (page 2434)

Declared In
NSSlider.h

setTickMarkPosition:
Sets where tick marks appear relative to the receiver.

- (void)setTickMarkPosition:(NSTickMarkPosition)position

Parameters
position

A constant indicating the position of the tick marks. For horizontal sliders, this can be
NSTickMarkBelow (the default) or NSTickMarkAbove; for vertical sliders, this can be
NSTickMarkLeft (the default) or NSTickMarkRight.

Discussion
This method has no effect if no tick marks have been assigned (that is, numberOfTickMarks (page 2434)
returns 0). In its implementation of this method, the receiving NSSlider instance simply invokes the method
of the same name of its NSSliderCell instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tickMarkPosition (page 2440)

Declared In
NSSlider.h

setTitle:
This method has been deprecated. Sets the title the receiver displays in the bar behind its knob.

- (void)setTitle:(NSString *)barTitle

Parameters
barTitle

The slider's title. The knob may cover part or all of the title. If you want the title to be visible all the
time, you’re better off placing a label near the slider.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 2441)

Declared In
NSSlider.h

2438 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

setTitleCell:
This method has been deprecated. Sets the cell used to draw the receiver’s title.

- (void)setTitleCell:(NSCell *)titleCell

Parameters
titleCell

The cell used to draw the title.

Discussion
You only need to invoke this method if the default title cell, NSTextFieldCell, doesn’t suit your needs—that
is, you want to display the title in a manner that NSTextFieldCell doesn’t permit. When you do choose
to override the default, titleCell should be an instance of a subclass of NSTextFieldCell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– titleCell (page 2441)

Declared In
NSSlider.h

setTitleColor:
This method has been deprecated. Sets the color used to draw the receiver’s title.

- (void)setTitleColor:(NSColor *)color

Parameters
color

The title color.

Availability
Available in Mac OS X v10.0 and later.

See Also
– titleColor (page 2441)

Declared In
NSSlider.h

setTitleFont:
This method has been deprecated. Sets the font used to draw the receiver’s title.

- (void)setTitleFont:(NSFont *)font

Parameters
font

The title font.

Instance Methods 2439
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– titleFont (page 2442)

Declared In
NSSlider.h

tickMarkPosition
Returns how the receiver’s tick marks are aligned with it.

- (NSTickMarkPosition)tickMarkPosition

Return Value
A constant indicating the position of the tick marks. Possible values are NSTickMarkBelow,
NSTickMarkAbove, NSTickMarkLeft, and NSTickMarkRight (the last two are for vertical sliders). The
default alignments are NSTickMarkBelow and NSTickMarkLeft.

Discussion
In its implementation of this method, the receiving NSSlider instance simply invokes the method of the
same name of its NSSliderCell instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTickMarkPosition: (page 2438)

Declared In
NSSlider.h

tickMarkValueAtIndex:
Returns the receiver’s value represented by the tick mark at the specified index.

- (double)tickMarkValueAtIndex:(NSInteger)index

Parameters
index

The index of the tick mark for which to return the value. The minimum-value tick mark has an index
of 0.

Return Value
The value of the specified tick mark.

Discussion
In its implementation of this method, the receiving NSSlider instance simply invokes the method of the
same name of its NSSliderCell instance.

Availability
Available in Mac OS X v10.0 and later.

2440 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

Declared In
NSSlider.h

title
Returns the receiver’s title.

- (NSString *)title

Return Value
The title. The default title is the empty string (@"").

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 2438)

Declared In
NSSlider.h

titleCell
This method has been deprecated. Returns nil.

- (id)titleCell

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitleCell: (page 2439)

Declared In
NSSlider.h

titleColor
This method has been deprecated. Returns nil.

- (NSColor *)titleColor

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitleColor: (page 2439)

Declared In
NSSlider.h

Instance Methods 2441
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

titleFont
This method has been deprecated. Returns nil.

- (NSFont *)titleFont

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitleFont: (page 2439)

Declared In
NSSlider.h

2442 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 123

NSSlider Class Reference

Inherits from NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSSliderCell.h

Companion guide Slider Programming Topics

Related sample code AnimatedSlider
QTKitMovieShuffler
Sketch+Accessibility

Overview

An NSSliderCell object controls the appearance and behavior of an NSSlider object, or of a single slider
in an NSMatrix object.

You can customize an NSSliderCell to a certain degree, using its set... methods. If these methods do
not allow you sufficient flexibility, you can create a subclass. In that subclass, you can override any of the
following methods:knobRectFlipped: (page 2450),drawBarInside:flipped: (page 2448),drawKnob (page
2448), and prefersTrackingUntilMouseUp (page 2446).

Tasks

Asking About the Cell’s Behavior

– altIncrementValue (page 2447)
Returns the amount by which the slider changes its value when the user drags with the Option key
held down.

+ prefersTrackingUntilMouseUp (page 2446)
Returns a Boolean value indicating whether the NSSliderCell continues to track the cursor until
the next mouse up.

Overview 2443
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

– trackRect (page 2459)
Returns the rectangle within which the cell tracks the cursor while the mouse button is down.

Setting the Slider Type

– setSliderType: (page 2455)
Sets the type of slider to a bar or a dial.

– sliderType (page 2457)
Returns the slider type; either a bar or a dial.

Changing the Cell’s Behavior

– setAltIncrementValue: (page 2452)
Sets the amount by which the receiver modifies its value when the knob is Option-dragged.

Displaying the Cell

– knobRectFlipped: (page 2450)
Returns the rectangle in which the slider knob is drawn.

– drawBarInside:flipped: (page 2448)
Draws the slider’s bar—but not its bezel or knob—inside the specified rectangle.

– drawKnob (page 2448)
Calculates the rectangle in which the knob should be drawn, then invokes drawKnob: (page 2448) to
actually draw the knob.

– drawKnob: (page 2448)
Draws the slider knob in the given rectangle.

Asking About the Cell’s Appearance

– knobThickness (page 2450)
Returns the slider knob’s thickness, in pixels.

– isVertical (page 2449)
Returns an integer indicating the orientation (vertical or horizontal) of the slider.

– title (page 2458)
This method has been deprecated. Returns the slider’s title.

– titleCell (page 2459)
This method has been deprecated. Returns nil.

– titleFont (page 2459)
This method has been deprecated. Returns nil.

– titleColor (page 2459)
This method has been deprecated. Returns nil.

2444 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

Changing the Cell’s Appearance

– setKnobThickness: (page 2453)
This method has been deprecated. Lets you set the knob’s thickness, measured in pixels.

– setTitle: (page 2456)
This method has been deprecated. Sets the title in the bar behind the slider’s knob.

– setTitleCell: (page 2456)
This method has been deprecated. Sets the cell used to draw the slider’s title.

– setTitleColor: (page 2456)
This method has been deprecated. Sets the color used to draw the slider’s title.

– setTitleFont: (page 2457)
This method has been deprecated. Sets the font used to draw the slider’s title.

Asking About the Value Limits

– maxValue (page 2450)
Returns the maximum value the slider can send to its target.

– minValue (page 2451)
Returns the minimum value the slider can send to its target.

Changing the Value Limits

– setMaxValue: (page 2453)
Sets the maximum value the slider can send to its target.

– setMinValue: (page 2454)
Sets the minimum value the slider can send to its target.

Managing Tick Marks

– allowsTickMarkValuesOnly (page 2446)
Returns a Boolean value indicating whether the receiver fixes its values to those values represented
by its tick marks.

– closestTickMarkValueToValue: (page 2447)
Returns the value of the tick mark closest to the specified value.

– indexOfTickMarkAtPoint: (page 2449)
Returns the index of the tick mark closest to the location of the slider represented by the specified
point.

– numberOfTickMarks (page 2451)
Returns the number of tick marks associated with the slider.

– rectOfTickMarkAtIndex: (page 2451)
Returns the bounding rectangle of the tick mark at the specified index.

– setAllowsTickMarkValuesOnly: (page 2452)
Sets whether the receiver’s values are fixed to the values represented by the tick marks.

Tasks 2445
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

– setNumberOfTickMarks: (page 2454)
Sets the number of tick marks displayed by the receiver.

– setTickMarkPosition: (page 2455)
Sets where tick marks appear relative to the receiver.

– tickMarkPosition (page 2457)
Returns the position of the tick marks relative to the receiver.

– tickMarkValueAtIndex: (page 2458)
Returns the receiver’s value represented by the tick mark at the specified index.

Class Methods

prefersTrackingUntilMouseUp
Returns a Boolean value indicating whether the NSSliderCell continues to track the cursor until the next
mouse up.

+ (BOOL)prefersTrackingUntilMouseUp

Return Value
YES if the NSSliderCell continues to track the cursor even after the cursor leaves the cell's tracking rectangle;
otherwise, NO. By default, this method returns YES.

Discussion
If this method returns YES, this means that, once you take hold of a slider’s knob (by putting the cursor inside
the cell’s frame rectangle and pressing the mouse button), you retain control of the knob until you release
the mouse button, even if you drag the cursor clear to the other side of the screen.

Never call this method explicitly. Override it if you create a subclass of NSSliderCell that you want to track
the mouse differently.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSliderCell.h

Instance Methods

allowsTickMarkValuesOnly
Returns a Boolean value indicating whether the receiver fixes its values to those values represented by its
tick marks.

- (BOOL)allowsTickMarkValuesOnly

Return Value
YES if the slider's values are limited to those values represented by tick marks; otherwise, NO.

2446 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsTickMarkValuesOnly: (page 2452)

Declared In
NSSliderCell.h

altIncrementValue
Returns the amount by which the slider changes its value when the user drags with the Option key held
down.

- (double)altIncrementValue

Return Value
The amount by which the slider changes its value when the user drags the knob with the Option key held
down. Unless you call setAltIncrementValue: (page 2452), altIncrementValue (page 2447) returns –1.0,
and the slider behaves no differently with the Option key down than with it up.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAltIncrementValue: (page 2452)

Declared In
NSSliderCell.h

closestTickMarkValueToValue:
Returns the value of the tick mark closest to the specified value.

- (double)closestTickMarkValueToValue:(double)aValue

Parameters
aValue

The value for which to obtain the closest tick mark.

Return Value
The value of the closest tick mark.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfTickMarkAtPoint: (page 2449)

Declared In
NSSliderCell.h

Instance Methods 2447
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

drawBarInside:flipped:
Draws the slider’s bar—but not its bezel or knob—inside the specified rectangle.

- (void)drawBarInside:(NSRect)aRect flipped:(BOOL)flipped

Parameters
aRect

The bounds of the slider's bar, not of its interior rectangle.

flipped
A Boolean value that indicates whether the cell’s control view—that is, the NSSlider or NSMatrix
associated with the NSSliderCell—has a flipped coordinate system.

Discussion
You should never invoke this method explicitly. It’s included so you can override it in a subclass.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawKnob: (page 2448)

Declared In
NSSliderCell.h

drawKnob
Calculates the rectangle in which the knob should be drawn, then invokes drawKnob: (page 2448) to actually
draw the knob.

- (void)drawKnob

Discussion
Before this message is sent, a lockFocus method must be sent to the cell’s control view.

You might invoke this method if you override one of the display methods belonging to NSControl or
NSCell.

If you create a subclass of NSSliderCell, don’t override this method. Override drawKnob: (page 2448)
instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSliderCell.h

drawKnob:
Draws the slider knob in the given rectangle.

- (void)drawKnob:(NSRect)knobRect

2448 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

Parameters
knobRect

The rectangle in which to draw the slider knob.

Discussion
Before this message is sent, a lockFocus (page 3187) message must be sent to the cell’s control view.

You should never invoke this method explicitly. It’s included so you can override it in a subclass.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSliderCell.h

indexOfTickMarkAtPoint:
Returns the index of the tick mark closest to the location of the slider represented by the specified point.

- (NSInteger)indexOfTickMarkAtPoint:(NSPoint)point

Parameters
point

The point representing the slider location.

Return Value
The index of the tick mark closest to the specified location.

Discussion
If point is not within the bounding rectangle (plus an extra pixel of space) of any tick mark, the method
returns NSNotFound. This method invokes rectOfTickMarkAtIndex: (page 2451) for each tick mark on the
slider until it finds a tick mark containing point.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSliderCell.h

isVertical
Returns an integer indicating the orientation (vertical or horizontal) of the slider.

- (NSInteger)isVertical

Return Value
1 if the slider is vertical, 0 if it’s horizontal, and –1 if the orientation can’t be determined (for example, if the
slider hasn’t been displayed yet). A slider is defined as vertical if its height is greater than its width.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSliderCell.h

Instance Methods 2449
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

knobRectFlipped:
Returns the rectangle in which the slider knob is drawn.

- (NSRect)knobRectFlipped:(BOOL)flipped

Parameters
flipped

YES if the coordinate system of the associated NSSlider or NSMatrix is flipped; otherwise NO. You
can determine whether this is the case by sending the NSView message isFlipped (page 3181)
message to the NSMatrix or NSSlider.

Return Value
The rectangle in which the knob is drawn, specified in the coordinate system of the NSSlider or NSMatrix
with which the receiver is associated.

The knob rectangle depends on where in the slider the knob belongs—that is, it depends on the receiver’s
minimum and maximum values and on the value the position of the knob will represent.

Discussion
You should never invoke this method explicitly. It’s included so you can override it in a subclass.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSliderCell.h

knobThickness
Returns the slider knob’s thickness, in pixels.

- (CGFloat)knobThickness

Return Value
The thickness of the slider knob. The thickness is defined to be the extent of the knob along the long dimension
of the bar. In a vertical slider, then, a knob’s thickness is its height; in a horizontal slider, its thickness is its
width.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setKnobThickness: (page 2453)

Declared In
NSSliderCell.h

maxValue
Returns the maximum value the slider can send to its target.

- (double)maxValue

2450 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

Return Value
The maximum value of the slider. A horizontal slider sends its maximum value when the knob is at the right
end of the slider; a vertical slider sends it when the knob is at the top. The maximum selectable value for a
circular slider is just below maxValue; for example, if maxValue is 360, you can set the dial up to 359.999.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaxValue: (page 2453)

Declared In
NSSliderCell.h

minValue
Returns the minimum value the slider can send to its target.

- (double)minValue

Return Value
The minimum value of the slider. A vertical slider sends this value when its knob is at the bottom; a horizontal
slider sends it when its knob is all the way to the left; a circular slider sends it when its knob is at the top.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSliderCell.h

numberOfTickMarks
Returns the number of tick marks associated with the slider.

- (NSInteger)numberOfTickMarks

Return Value
The number of tick marks. The tick marks assigned to the minimum and maximum values are included.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setNumberOfTickMarks: (page 2454)

Declared In
NSSliderCell.h

rectOfTickMarkAtIndex:
Returns the bounding rectangle of the tick mark at the specified index.

Instance Methods 2451
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

- (NSRect)rectOfTickMarkAtIndex:(NSInteger)index

Parameters
index

The index of the tick mark for which to return the bounding rectangle. The minimum-value tick mark
is at index 0.

Return Value
The bounding rectangle of the specified tick mark.

Discussion
If no tick mark is associated with index, the method raises NSRangeException.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfTickMarkAtPoint: (page 2449)

Declared In
NSSliderCell.h

setAllowsTickMarkValuesOnly:
Sets whether the receiver’s values are fixed to the values represented by the tick marks.

- (void)setAllowsTickMarkValuesOnly:(BOOL)flag

Parameters
flag

YES if the slider's values are fixed to the values represented by the slider's tick marks; otherwise NO.
For example, if you specify YES for a slider that has a minimum value of 0, a maximum value of 100,
and five markers, the allowable values are 0, 25, 50, 75, and 100. When users move the slider’s knob,
it jumps to the tick mark nearest the cursor when the mouse button is released. This method has no
effect if the slider has no tick marks.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsTickMarkValuesOnly (page 2446)

Declared In
NSSliderCell.h

setAltIncrementValue:
Sets the amount by which the receiver modifies its value when the knob is Option-dragged.

- (void)setAltIncrementValue:(double)increment

2452 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

Parameters
increment

The amount by which the receiver changes its value when the knob is Option-dragged. This number
should t the range of values the slider can represent—for example, if the slider has a minimum value
of 5 and a maximum value of 10, increment should be between 0 and 5.

Discussion
If you don’t call this method, the slider behaves the same with the Option key down as with it up. This is also
the result when you call setAltIncrementValue: (page 2452) with an increment of –1.

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxValue (page 2450)
– minValue (page 2451)

Declared In
NSSliderCell.h

setKnobThickness:
This method has been deprecated. Lets you set the knob’s thickness, measured in pixels.

- (void)setKnobThickness:(CGFloat)thickness

Parameters
thickness

The knob's thickness. The thickness is defined to be the extent of the knob along the long dimension
of the bar. In a vertical slider, then, a knob’s thickness is its height; in a horizontal slider, its thickness
is its width.

Availability
Available in Mac OS X v10.0 and later.

See Also
– knobThickness (page 2450)

Declared In
NSSliderCell.h

setMaxValue:
Sets the maximum value the slider can send to its target.

- (void)setMaxValue:(double)aDouble

Parameters
aDouble

The slider's maximum value. A horizontal slider sends its maximum value when its knob is all the way
to the right; a vertical slider sends its maximum value when its knob is at the top. The maximum
selectable value for a circular slider is just below maxValue; for example, if maxValue is 360, you can
set the dial up to 359.999.

Instance Methods 2453
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxValue (page 2450)

Declared In
NSSliderCell.h

setMinValue:
Sets the minimum value the slider can send to its target.

- (void)setMinValue:(double)aDouble

Parameters
aDouble

The slider's minimum value. A horizontal slider sends its minimum value when its knob is all the way
to the left; a vertical slider sends its minimum value when its knob is at the bottom; a circular slider
sends it when its knob is at the top.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minValue (page 2451)

Declared In
NSSliderCell.h

setNumberOfTickMarks:
Sets the number of tick marks displayed by the receiver.

- (void)setNumberOfTickMarks:(NSInteger)numberOfTickMarks

Parameters
numberOfTickMarks

The number of tick marks displayed by the slider, including those assigned to the minimum and
maximum values. By default, this value is 0, and no tick marks appear. The number of tick marks
assigned to a slider, along with the slider’s minimum and maximum values, determines the values
associated with the tick marks.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfTickMarks (page 2451)

Related Sample Code
QTKitMovieShuffler

2454 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

Declared In
NSSliderCell.h

setSliderType:
Sets the type of slider to a bar or a dial.

- (void)setSliderType:(NSSliderType)sliderType

Parameters
sliderType

A constant indicating the type of the slider. Possible values are described in
NSTickMarkPosition (page 2460).

Discussion
If sliderType is NSCircularSlider, then you get a fixed-size round slider. The minimum value (minValue)
is at the top, and the value increases as you go clockwise around the dial. The maximum selectable value is
just below maxValue; for example, if maxValue is 360, you can set the dial up to 359.999.

You can use the setNumberOfTickMarks: (page 2454) method to display tick marks, and you can use the
setAllowsTickMarkValuesOnly: (page 2452) method to specify that values are limited to those values
represented by tick marks. You can set this control to regular or small sizes; the mini size is not supported.

Availability
Available in Mac OS X v10.3 and later.

See Also
– sliderType (page 2457)
– setNumberOfTickMarks: (page 2454)
– setAllowsTickMarkValuesOnly: (page 2452)

Related Sample Code
QTKitMovieShuffler

Declared In
NSSliderCell.h

setTickMarkPosition:
Sets where tick marks appear relative to the receiver.

- (void)setTickMarkPosition:(NSTickMarkPosition)position

Parameters
position

A constant indicating the position of the tick marks. Possible values are described in
NSTickMarkPosition (page 2460).

Discussion
This method has no effect if no tick marks have been assigned (that is, numberOfTickMarks (page 2451)
returns 0).

Instance Methods 2455
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– tickMarkPosition (page 2457)

Declared In
NSSliderCell.h

setTitle:
This method has been deprecated. Sets the title in the bar behind the slider’s knob.

- (void)setTitle:(NSString *)title

Parameters
title

The title.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 2458)

Declared In
NSSliderCell.h

setTitleCell:
This method has been deprecated. Sets the cell used to draw the slider’s title.

- (void)setTitleCell:(NSCell *)aCell

Discussion
You only need to invoke this method if the default title cell, NSTextFieldCell, doesn’t suit your needs—that
is, if you want to display the title in a manner that NSTextFieldCell doesn’t permit. When you do choose
to override the default, aCell should be an instance of a subclass of NSTextFieldCell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– titleCell (page 2459)

Declared In
NSSliderCell.h

setTitleColor:
This method has been deprecated. Sets the color used to draw the slider’s title.

2456 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

- (void)setTitleColor:(NSColor *)color

Availability
Available in Mac OS X v10.0 and later.

See Also
– titleColor (page 2459)

Declared In
NSSliderCell.h

setTitleFont:
This method has been deprecated. Sets the font used to draw the slider’s title.

- (void)setTitleFont:(NSFont *)font

Availability
Available in Mac OS X v10.0 and later.

See Also
– titleFont (page 2459)

Declared In
NSSliderCell.h

sliderType
Returns the slider type; either a bar or a dial.

- (NSSliderType)sliderType

Return Value
A constant indicating the type of the slider. Possible return values are described in NSSliderType (page
2461).

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSliderType: (page 2455)

Declared In
NSSliderCell.h

tickMarkPosition
Returns the position of the tick marks relative to the receiver.

- (NSTickMarkPosition)tickMarkPosition

Instance Methods 2457
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

Return Value
A constant indicating the position of the tick marks. Possible values are described in
NSTickMarkPosition (page 2460). The default alignments are NSTickMarkBelow and NSTickMarkLeft.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTickMarkPosition: (page 2455)

Declared In
NSSliderCell.h

tickMarkValueAtIndex:
Returns the receiver’s value represented by the tick mark at the specified index.

- (double)tickMarkValueAtIndex:(NSInteger)index

Parameters
index

The index of the tick mark for which to retrieve the value. The minimum-value tick mark has an index
of 0.

Return Value
The value represented by the specified tick mark.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSliderCell.h

title
This method has been deprecated. Returns the slider’s title.

- (NSString *)title

Return Value
The title. The default title is the empty string (@"").

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 2456)

Declared In
NSSliderCell.h

2458 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

titleCell
This method has been deprecated. Returns nil.

- (id)titleCell

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitleCell: (page 2456)

Declared In
NSSliderCell.h

titleColor
This method has been deprecated. Returns nil.

- (NSColor *)titleColor

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitleColor: (page 2456)

Declared In
NSSliderCell.h

titleFont
This method has been deprecated. Returns nil.

- (NSFont *)titleFont

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitleFont: (page 2457)

Declared In
NSSliderCell.h

trackRect
Returns the rectangle within which the cell tracks the cursor while the mouse button is down.

- (NSRect)trackRect

Instance Methods 2459
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

Return Value
The tracking rectangle of the NSSliderCell. This rectangle includes the slider bar, but not the bezel.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSliderCell.h

Constants

NSTickMarkPosition
Specify where the tick marks of an NSSliderCell object appear.

typedef enum _NSTickMarkPosition {
 NSTickMarkBelow = 0,
 NSTickMarkAbove = 1,
 NSTickMarkLeft = NSTickMarkAbove,
 NSTickMarkRight = NSTickMarkBelow
} NSTickMarkPosition;

Constants
NSTickMarkBelow

Tick marks below (for horizontal sliders); the default for horizontal sliders.

Available in Mac OS X v10.0 and later.

Declared in NSSliderCell.h.

NSTickMarkAbove
Tick marks above (for horizontal sliders).

Available in Mac OS X v10.0 and later.

Declared in NSSliderCell.h.

NSTickMarkLeft
Tick marks to the left (for vertical sliders); the default. for vertical sliders

Available in Mac OS X v10.0 and later.

Declared in NSSliderCell.h.

NSTickMarkRight
Tick marks to the right (for vertical sliders).

Available in Mac OS X v10.0 and later.

Declared in NSSliderCell.h.

Discussion
These constants are used in setTickMarkPosition: (page 2455) and tickMarkPosition (page 2457).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSliderCell.h

2460 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

NSSliderType
Define the types of sliders, used by setSliderType: (page 2455) and sliderType (page 2457).

typedef enum {
 NSLinearSlider = 0,
 NSCircularSlider = 1
} NSSliderType;

Constants
NSLinearSlider

A bar-shaped slider.

Available in Mac OS X v10.3 and later.

Declared in NSSliderCell.h.

NSCircularSlider
A circular slider; that is, a dial.

Available in Mac OS X v10.3 and later.

Declared in NSSliderCell.h.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSliderCell.h

Constants 2461
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

2462 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 124

NSSliderCell Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSPasteboardWriting
NSPasteboardReading
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSSound.h

Companion guide Sound Programming Topics for Cocoa

Related sample code AttachAScript
BundleLoader
CustomSave
GeekGameBoard
TrackIt

Overview

The NSSound class provides a simple interface for loading and playing audio files. This class supports the
same audio encodings and file formats that are supported by Core Audio and QuickTime.

To use this class, initialize a new instance with the desired file or audio data. You can configure assorted
aspects of the audio playback, including the volume and whether the sound loops before you play it.
Depending on the type of the audio data, this class may use either Core Audio or QuickTime to handle the
actual playback. (Typically, it uses Core Audio to play files in the AIFF, WAVE, NeXT, SD2, AU, and MP3 formats
and may use it for other formats in the future as well.) Playback occurs asynchronously so that your application
can continue doing work.

You should retain NSSound objects before initiating playback or make sure you have a strong reference to
them in a garbage-collected environment. Upon deallocation, a sound object stops playback of the sound
(as needed) so that it can free up the corresponding audio resources. If you want to deallocate a sound object
immediately after playback, assign a delegate and use the sound:didFinishPlaying: (page 3799) method
to deallocate it.

If you want to play the system beep sound, use the NSBeep (page 3962) function.

Overview 2463
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

Tasks

Creating Sounds

+ canInitWithPasteboard: (page 2466)
Indicates whether the receiver can create an instance of itself from the data in a pasteboard.

– initWithContentsOfFile:byReference: (page 2470)
Initializes the receiver with the the audio data located at a given filepath.

– initWithContentsOfURL:byReference: (page 2470)
Initializes the receiver with the audio data located at a given URL.

– initWithData: (page 2470)
Initializes the receiver with a given audio data.

– initWithPasteboard: (page 2471)
Initializes the receiver with data from a pasteboard. The pasteboard should contain a type returned
by soundUnfilteredPasteboardTypes (page 2467). NSSound expects the data to have a proper
magic number, sound header, and data for the formats it supports.

Configuring Sounds

– name (page 2472)
Returns the name assigned to the receiver.

– setName: (page 2475)
Registers the receiver under a given name.

– volume (page 2477)
Provides the volume of the receiver.

– setVolume: (page 2476)
Specifies the volume of the receiver.

– currentTime (page 2469)
Provides the receiver’s playback progress in seconds.

– setCurrentTime: (page 2474)
Specifies the receivers playback progress in seconds.

– loops (page 2472)
Indicates whether the receiver restarts playback when it reaches the end of its content. Default: NO.

– setLoops: (page 2475)
Specifies whether the receiver restarts playback when it reaches the end of its content.

– playbackDeviceIdentifier (page 2473)
Identifies the receiver’s output device.

– setPlaybackDeviceIdentifier: (page 2476)
Specifies the receiver’s output device.

– channelMapping (page 2468)
Provides the receiver’s channel map.

– setChannelMapping: (page 2474)
Specifies the receiver’s channel map.

2464 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

– delegate (page 2469)
Returns the receiver’s delegate.

– setDelegate: (page 2474)
Set the receiver’s delegate.

Getting Sound Information

+ soundUnfilteredTypes (page 2468)
Provides the file types the NSSound class understands.

+ soundNamed: (page 2466)
Returns the NSSound instance associated with a given name.

– duration (page 2469)
Provides the duration of the receiver in seconds.

Playing Sounds

– isPlaying (page 2471)
Indicates whether the receiver is playing its audio data.

– pause (page 2472)
Pauses audio playback.

– play (page 2473)
Initiates audio playback.

– resume (page 2473)
Resumes audio playback.

– stop (page 2477)
Concludes audio playback.

Writing Sounds

– writeToPasteboard: (page 2477)
Writes the receiver’s data to a pasteboard.

Deprecated

+ soundUnfilteredFileTypes (page 2467) Deprecated in Mac OS X v10.5
Provides the list of file types the NSSound class understands. (Deprecated. Use
soundUnfilteredTypes (page 2468).)

+ soundUnfilteredPasteboardTypes (page 2467) Deprecated in Mac OS X v10.5
Provides a list of the pasteboard types that the NSSound class can accept. (Deprecated. Use
soundUnfilteredTypes (page 2468).)

Tasks 2465
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

Class Methods

canInitWithPasteboard:
Indicates whether the receiver can create an instance of itself from the data in a pasteboard.

+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

Pasteboard containing sound data.

Return Value
YES when the receiver can handle the data represented by pasteboard; NO otherwise.

Discussion
The soundUnfilteredPasteboardTypes (page 2467) method is used to find out whether the class can
handle the data in pasteboard.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSound.h

soundNamed:
Returns the NSSound instance associated with a given name.

+ (id)soundNamed:(NSString *)soundName

Parameters
soundName

Name that identifies sound data.

Return Value
NSSound instance initialized with the sound data identified by soundName.

Discussion
The returned object can be one of the following:

 ■ One that’s been assigned a name with setName: (page 2475)

 ■ One of the named system sounds provided by the Application Kit framework

If there’s no known NSSound object with soundName, this method tries to create one by searching for sound
files in the application’s main bundle (see NSBundle for a description of how the bundle’s contents are
searched). If no sound file can be located in the application main bundle, the following directories are searched
in order:

~/Library/Sounds

/Library/Sounds

/Network/Library/Sounds

2466 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

/System/Library/Sounds

If no data can be found for soundName, no object is created, and nil is returned.

The preferred way to locate a sound is to pass a name without the file extension. See the class description
for a list of the supported sound file extensions.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BundleLoader
ButtonMadness
CustomSave
GeekGameBoard
iChatTheater

Declared In
NSSound.h

soundUnfilteredFileTypes
Provides the list of file types the NSSound class understands. (Deprecated in Mac OS X v10.5. Use
soundUnfilteredTypes (page 2468).)

+ (NSArray *)soundUnfilteredFileTypes

Return Value
Array of strings representing the file types the NSSound class understands.

Discussion
The returned array may be passed directly to therunModalForTypes: (page 1821) method of theNSOpenPanel
class.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSSound.h

soundUnfilteredPasteboardTypes
Provides a list of the pasteboard types that the NSSound class can accept. (Deprecated in Mac OS X v10.5.
Use soundUnfilteredTypes (page 2468).)

+ (NSArray *)soundUnfilteredPasteboardTypes

Return Value
Array of pasteboard types that the NSSound class can accept.

Class Methods 2467
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSSound.h

soundUnfilteredTypes
Provides the file types the NSSound class understands.

+ (NSArray *)soundUnfilteredTypes

Return Value
Array of UTIs identifying the file types the NSSound class understands.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSound.h

Instance Methods

channelMapping
Provides the receiver’s channel map.

- (NSArray *)channelMapping

Return Value
The receiver’s audio-channel–to–device–channel mappings.

Discussion
A channel map correlates a sound’s channels to the the output-device’s channels. For example, a two-channel
sound being played on a five-channel device should have a channel map to optimize the sound-playing
experience. The default map, correlates the first sound channel to the first output channel, the second sound
channel to the second output channel, and so on.

For details about channel maps, see Core Audio Overview > “Common Tasks in Mac OS X.”

Availability
Available in Mac OS X v10.5 and later.

See Also
– setChannelMapping: (page 2474)

Declared In
NSSound.h

2468 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

currentTime
Provides the receiver’s playback progress in seconds.

- (NSTimeInterval)currentTime

Return Value
Receiver’s playback progress in seconds.

Discussion
Sounds start with currentTime == 0 and end with currentTime == ([<sound> duration] - 1).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setCurrentTime: (page 2474)
– duration (page 2469)

Declared In
NSSound.h

delegate
Returns the receiver’s delegate.

- (id < NSSoundDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 2474)

Declared In
NSSound.h

duration
Provides the duration of the receiver in seconds.

- (NSTimeInterval)duration

Return Value
Duration of the receiver in seconds.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSound.h

Instance Methods 2469
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

initWithContentsOfFile:byReference:
Initializes the receiver with the the audio data located at a given filepath.

- (id)initWithContentsOfFile:(NSString *)filepath byReference:(BOOL)byRef

Parameters
filepath

Path to the sound file with which the receiver is to be initialized.

byRef
When YES only the name of the sound is stored with the NSSound instance when archived using
encodeWithCoder:; otherwise the audio data is archived along with the instance.

Return Value
Initialized NSSound instance.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AttachAScript

Declared In
NSSound.h

initWithContentsOfURL:byReference:
Initializes the receiver with the audio data located at a given URL.

- (id)initWithContentsOfURL:(NSURL *)fileUrl byReference:(BOOL)byRef

Parameters
fileUrl

URL to the sound file with which the receiver is to be initialized.

byRef
When YES only the name of the sound is stored with the NSSound instance when archived using
encodeWithCoder:; otherwise the audio data is archived along with the instance.

Return Value
Initialized NSSound instance.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSound.h

initWithData:
Initializes the receiver with a given audio data.

- (id)initWithData:(NSData *)audioData

2470 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

Parameters
audioData

Audio data with which the receiver is to be initialized. The data must have a proper magic number,
sound header, and data for the formats the NSSound class supports.

Return Value
Initialized NSSound instance.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSound.h

initWithPasteboard:
Initializes the receiver with data from a pasteboard. The pasteboard should contain a type returned by
soundUnfilteredPasteboardTypes (page 2467).NSSound expects the data to have a proper magic number,
sound header, and data for the formats it supports.

- (id)initWithPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

The pasteboard containing the audio data with which the receiver is to be initialized. The pasteboard
must contain a type returned by soundUnfilteredPasteboardTypes (page 2467). The contained
data must have a proper magic number, sound header, and data for the formats the NSSound class
supports.

Return Value
Initialized NSSound instance.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSound.h

isPlaying
Indicates whether the receiver is playing its audio data.

- (BOOL)isPlaying

Return Value
YES when the receiver is playing its audio data, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSound.h

Instance Methods 2471
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

loops
Indicates whether the receiver restarts playback when it reaches the end of its content. Default: NO.

- (BOOL)loops

Return Value
YES when the receiver restarts playback when it finishes, NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setLoops: (page 2475)

Declared In
NSSound.h

name
Returns the name assigned to the receiver.

- (NSString *)name

Return Value
Name assigned to the receiver; nil when no name has been assigned.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setName: (page 2475)

Declared In
NSSound.h

pause
Pauses audio playback.

- (BOOL)pause

Return Value
YES when playback is paused successfully, NO when playback is already paused or when an error occurred.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSound.h

2472 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

play
Initiates audio playback.

- (BOOL)play

Return Value
YES when playback is initiated, NO when playback is already in progress or when an error occurred.

Discussion
This method initiates playback asynchronously and returns control to your application. Therefore, your
application can continue doing work while the audio is playing.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AttachAScript
BundleLoader
CocoaSlides

Declared In
NSSound.h

playbackDeviceIdentifier
Identifies the receiver’s output device.

- (NSString *)playbackDeviceIdentifier

Return Value
Unique identifier of a sound output device.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setPlaybackDeviceIdentifier: (page 2476)

Declared In
NSSound.h

resume
Resumes audio playback.

- (BOOL)resume

Return Value
YES when playback is resumed, NO when playback is in progress or when an error occurred.

Discussion
Assumes the receiver has been previously paused by sending it pause (page 2472).

Instance Methods 2473
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSound.h

setChannelMapping:
Specifies the receiver’s channel map.

- (void)setChannelMapping:(NSArray *)channelMapping

Parameters
channelMapping

Audio-channel—to—device–channel mappings for the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– channelMapping (page 2468)

Declared In
NSSound.h

setCurrentTime:
Specifies the receivers playback progress in seconds.

- (void)setCurrentTime:(NSTimeInterval)currentTime

Parameters
currentTime

Playback progress for the receiver.

Discussion
This property is not archived, copied, or stored on the pasteboard.

Availability
Available in Mac OS X v10.5 and later.

See Also
– currentTime (page 2469)

Declared In
NSSound.h

setDelegate:
Set the receiver’s delegate.

- (void)setDelegate:(id < NSSoundDelegate >)delegate

2474 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

Parameters
delegate

Object to serve as the receiver’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 2469)

Declared In
NSSound.h

setLoops:
Specifies whether the receiver restarts playback when it reaches the end of its content.

- (void)setLoops:(BOOL)loops

Parameters
Term

YES to have the receiver restart playback when it reaches the end of its content.

NO to have the receiver conclude playback, instead.

Discussion
When loops is YES, the receiver does not send sound:didFinishPlaying: (page 3799) to its delegate when
it reaches the end of its content and restarts playback.

Availability
Available in Mac OS X v10.5 and later.

See Also
– loops (page 2472)
– stop (page 2477)

Declared In
NSSound.h

setName:
Registers the receiver under a given name.

- (BOOL)setName:(NSString *)soundName

Parameters
soundName

Name to assign the receiver. The name must be unused by other NSSound instances.

Return Value
YES when successful; NO otherwise.

Discussion
If the receiver is already registered under another name, this method first unregisters the prior name.

Instance Methods 2475
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– name (page 2472)
+ soundNamed: (page 2466)

Declared In
NSSound.h

setPlaybackDeviceIdentifier:
Specifies the receiver’s output device.

- (void)setPlaybackDeviceIdentifier:(NSString *)playbackDeviceIdentifier

Parameters
playbackDeviceIdentifier

Unique identifier of a sound output device.

Availability
Available in Mac OS X v10.5 and later.

See Also
– playbackDeviceIdentifier (page 2473)

Declared In
NSSound.h

setVolume:
Specifies the volume of the receiver.

- (void)setVolume:(float)volume

Parameters
volume

Volume at which the receiver is to play.

Discussion
The valid range is between 0.0 and 1.0.

This method does not affect the systemwide volume.

Availability
Available in Mac OS X v10.5 and later.

See Also
– volume (page 2477)

Declared In
NSSound.h

2476 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

stop
Concludes audio playback.

- (BOOL)stop

Return Value
YES when playback is concluded successfully or if it’s paused, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sound:didFinishPlaying: (page 3799) (NSSoundDelegate)

Declared In
NSSound.h

volume
Provides the volume of the receiver.

- (float)volume

Return Value
Volume of the receiver.

Discussion
The valid range is between 0.0 and 1.0.

This method does not affect the systemwide volume.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setVolume: (page 2476)

Declared In
NSSound.h

writeToPasteboard:
Writes the receiver’s data to a pasteboard.

- (void)writeToPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

Pasteboard to which the receiver is to write its data.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2477
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

Declared In
NSSound.h

Constants

NSPasteboard Type for Sound Data
The NSSound class defines this common pasteboard data type.

NSString *NSSoundPboardType;

Constants
NSSoundPboardType

NSSound data

Available in Mac OS X v10.0 and later.

Declared in NSSound.h.

2478 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 125

NSSound Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.3 and later.

Declared in AppKit/NSSpeechRecognizer.h

Companion guide Speech

Overview

The NSSpeechRecognizer class is the Cocoa interface to Speech Recognition on Mac OS X. Speech Recognition
is architected as a “command and control” voice recognition system. It uses a finite state grammar and listens
for phrases in that grammar. When it recognizes a phrase, it notifies the client process. This architecture is
different from that used to support dictation.

Through an NSSpeechRecognizer instance, Cocoa applications can use the speech recognition engine built
into Mac OS X to recognize spoken commands. With speech recognition, users can accomplish complex,
multi-step tasks with one spoken command—for example, “schedule a meeting with Adam and John tomorrow
at ten o’clock.”

The NSSpeechRecognizer class has methods that let you specify which spoken words should be recognized
as commands (setCommands: (page 2483)) and to start and stop listening (startListening (page 2484) and
stopListening (page 2485)). When the Speech Recognition facility recognizes one of the designated
commands, NSSpeechRecognizer invokes the delegation method
speechRecognizer:didRecognizeCommand: (page 3801), allowing the delegate to perform the command.

Speech Recognition is just one of the Mac OS X speech technologies. The Speech Synthesis technology allows
applications to “pronounce” written text in U.S. English; the NSSpeechSynthesizer class is the Cocoa interface
to this technology. These technologies provide benefits for all users, and are particularly useful to those users
who have difficulties seeing the screen or using the mouse and keyboard. By incorporating speech into your
application, you can provide a concurrent mode of interaction for your users: In Mac OS X, your software can
accept input and provide output without requiring users to change their working context.

Overview 2479
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 126

NSSpeechRecognizer Class Reference

Tasks

Creating Speech Recognizers

– init (page 2482)
Initializes and returns an instance of the NSSpeechRecognizer class.

Configuring Speech Recognizers

– commands (page 2481)
Returns an array of strings defining the commands for which the receiver should listen.

– setCommands: (page 2483)
Sets the list of commands for which the receiver should listen to commands.

– displayedCommandsTitle (page 2482)
Returns the title of the commands section or nil if there is no title.

– setDisplayedCommandsTitle: (page 2484)
Sets whether the speech-recognition commands should be displayed indented under a section title
in the Speech Commands window, and if so, sets the title string to display.

– listensInForegroundOnly (page 2482)
Returns whether the receiver should only enable its commands when the receiver’s application is the
frontmost one.

– setListensInForegroundOnly: (page 2484)
Sets whether the receiver should only enable its commands when the receiver’s application is the
frontmost one.

– blocksOtherRecognizers (page 2481)
Returns whether the receiver should block all other recognizers (that is, other applications attempting
to understand spoken commands) when listening.

– setBlocksOtherRecognizers: (page 2482)
Sets whether the receiver’s commands should be the only enabled commands on the system.

– delegate (page 2481)
Returns the receiver’s delegate.

– setDelegate: (page 2483)
Sets the receiver’s delegate.

Listening

– startListening (page 2484)
Tells the speech recognition engine to begin listening for commands.

– stopListening (page 2485)
Tells the speech recognition engine to suspend listening for commands.

2480 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 126

NSSpeechRecognizer Class Reference

Instance Methods

blocksOtherRecognizers
Returns whether the receiver should block all other recognizers (that is, other applications attempting to
understand spoken commands) when listening.

- (BOOL)blocksOtherRecognizers

Availability
Available in Mac OS X v10.3 and later.

See Also
– setBlocksOtherRecognizers: (page 2482)

Declared In
NSSpeechRecognizer.h

commands
Returns an array of strings defining the commands for which the receiver should listen.

- (NSArray *)commands

Availability
Available in Mac OS X v10.3 and later.

See Also
– setCommands: (page 2483)

Declared In
NSSpeechRecognizer.h

delegate
Returns the receiver’s delegate.

- (id < NSSpeechRecognizerDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setDelegate: (page 2483)

Declared In
NSSpeechRecognizer.h

Instance Methods 2481
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 126

NSSpeechRecognizer Class Reference

displayedCommandsTitle
Returns the title of the commands section or nil if there is no title.

- (NSString *)displayedCommandsTitle

Discussion
Commands are displayed in the Speech Commands window indented under a section with this title.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setDisplayedCommandsTitle: (page 2484)

Declared In
NSSpeechRecognizer.h

init
Initializes and returns an instance of the NSSpeechRecognizer class.

- (id)init

Discussion
Returns nil if initialization did not succeed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSpeechRecognizer.h

listensInForegroundOnly
Returns whether the receiver should only enable its commands when the receiver’s application is the frontmost
one.

- (BOOL)listensInForegroundOnly

Availability
Available in Mac OS X v10.3 and later.

See Also
– setListensInForegroundOnly: (page 2484)

Declared In
NSSpeechRecognizer.h

setBlocksOtherRecognizers:
Sets whether the receiver’s commands should be the only enabled commands on the system.

2482 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 126

NSSpeechRecognizer Class Reference

- (void)setBlocksOtherRecognizers:(BOOL)flag

Discussion
If flag is YES, all other speech recognition commands on the system are disabled until the receiver object
is released, listening is stopped, or this method is called again with flag as NO. Because this option effectively
takes over the computer at the expense of other applications using speech recognition, you should use it
only in circumstances that warrant it, such as when listening for a response important to overall system
operation or when an application is running in full-screen mode (such as games and presentation software).
The default is NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– blocksOtherRecognizers (page 2481)

Declared In
NSSpeechRecognizer.h

setCommands:
Sets the list of commands for which the receiver should listen to commands.

- (void)setCommands:(NSArray *)commands

Discussion
If the receiver is already listening, the current command list is updated and listening continues. commands
should be an array of NSString objects. The commands must be in U.S. English.

Availability
Available in Mac OS X v10.3 and later.

See Also
– commands (page 2481)

Declared In
NSSpeechRecognizer.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSSpeechRecognizerDelegate >)anObject

Parameters
anObject

The delegate to set as the receiver’s. The delegate must conform to the
NSSpeechRecognizerDelegate Protocol protocol.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 2483
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 126

NSSpeechRecognizer Class Reference

See Also
– delegate (page 2481)

Declared In
NSSpeechRecognizer.h

setDisplayedCommandsTitle:
Sets whether the speech-recognition commands should be displayed indented under a section title in the
Speech Commands window, and if so, sets the title string to display.

- (void)setDisplayedCommandsTitle:(NSString *)title

Discussion
When title is a non-empty string, the receiver’s commands are displayed under a section with title. If
title is nil or an empty string, the commands are displayed at the top level of the Speech Commands
window. This default is not to display the commands under a section title.

Availability
Available in Mac OS X v10.3 and later.

See Also
– displayedCommandsTitle (page 2482)

Declared In
NSSpeechRecognizer.h

setListensInForegroundOnly:
Sets whether the receiver should only enable its commands when the receiver’s application is the frontmost
one.

- (void)setListensInForegroundOnly:(BOOL)flag

Discussion
If flag is YES, the receiver’s commands are only recognized when the receiver’s application is the frontmost
application—normally the application displaying the menu bar. If flag is NO, the commands are recognized
regardless of the visibility of applications, including agent applications (agent applications, which have the
LSUIElement property set, do not appear in the Dock or Force Quit window). The default is YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
– listensInForegroundOnly (page 2482)

Declared In
NSSpeechRecognizer.h

startListening
Tells the speech recognition engine to begin listening for commands.

2484 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 126

NSSpeechRecognizer Class Reference

- (void)startListening

Discussion
When a command is recognized the message speechRecognizer:didRecognizeCommand: (page 3801) is
sent to the delegate.

Availability
Available in Mac OS X v10.3 and later.

See Also
– stopListening (page 2485)

Declared In
NSSpeechRecognizer.h

stopListening
Tells the speech recognition engine to suspend listening for commands.

- (void)stopListening

Availability
Available in Mac OS X v10.3 and later.

See Also
– startListening (page 2484)

Declared In
NSSpeechRecognizer.h

Instance Methods 2485
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 126

NSSpeechRecognizer Class Reference

2486 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 126

NSSpeechRecognizer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSSpeechSynthesizer.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Speech

Related sample code SayIt

Overview

The NSSpeechSynthesizer class is the Cocoa interface to Speech Synthesis on Mac OS X. Instances of this
class are called speech synthesizers.

Speech Synthesis, also called text-to-speech (TTS), parses text and converts it into audible speech. It offers a
concurrent feedback mode that can be used in concert with or in place of traditional visual and aural
notifications. For example, your application can use an NSSpeechSynthesizer object to “pronounce” the
text of important alert dialogs. Synthesized speech has several advantages. It can provide urgent information
to users without forcing them to shift attention from their current task. And because speech doesn’t rely on
visual elements for meaning, it is a crucial technology for users with vision or attention disabilities.

In addition, synthesized speech can help save system resources. Because sound samples can take up large
amounts of room on disk, using text in place of sampled sound is extremely efficient, and so a multimedia
application might use an NSSpeechSynthesizer object to provide a narration of a QuickTime movie instead
of including sampled-sound data on a movie track.

When you create an NSSpeechSynthesizer instance using the default initializer (init), the class uses the
default voice selected in System Preferences > Speech. Alternatively, you can select a specific voice for an
NSSpeechSynthesizer instance by initializing it with initWithVoice: (page 2493). To begin synthesis,
send either startSpeakingString: (page 2498) or startSpeakingString:toURL: (page 2499) to the
instance. The former generates speech through the system’s default sound output device; the latter saves
the generated speech to a file. If you wish to be notified when the current speech concludes, set a delegate
object using setDelegate: (page 2496) and implement the delegate method
speechSynthesizer:didFinishSpeaking: (page 3805).

Overview 2487
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

Speech Synthesis is just one of the Mac OS X speech technologies. The Speech Recognizer technology allows
applications to “listen to” text spoken in U.S. English; the NSSpeechRecognizer class is the Cocoa interface
to this technology. Both technologies provide benefits for all users, and are particularly useful to those users
who have difficulties seeing the screen or using the mouse and keyboard.

Speech Feedback Window

The speech feedback window (Figure 127-1) displays the text recognized from the user’s speech and the text
from which an NSSpeechSynthesizer object synthesizes speech. Using the feedback window makes spoken
exchange more natural and helps the user understand the synthesized speech.

Figure 127-1 Speech feedback window

For example, your application may use an NSSpeechRecognizer object to listen for the command “Play
some music.” When it recognizes this command, your application might then respond by speaking “Which
artist?” using a speech synthesizer.

When UsesFeedbackWindow is YES, the speech synthesizer uses the feedback window if its visible, which
the user specifies in System Preferences > Speech.

Tasks

Creating Speech Synthesizers

– initWithVoice: (page 2493)
Initializes the receiver with a voice.

Configuring Speech Synthesizers

– usesFeedbackWindow (page 2501)
Indicates whether the receiver uses the speech feedback window.

– setUsesFeedbackWindow: (page 2497)
Specifies whether the receiver uses the speech feedback window.

2488 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

– voice (page 2501)
Returns the identifier of the receiver’s current voice.

– setVoice: (page 2497)
Sets the receiver’s current voice.

– rate (page 2495)
Provides the receiver’s speaking rate.

– setRate: (page 2496)
Specifies the receivers speaking rate.

– volume (page 2501)
Provides the receiver’s speaking volume.

– setVolume: (page 2498)
Specifies the receiver’s speaking volume.

– addSpeechDictionary: (page 2491)
Registers the given speech dictionary with the receiver.

– objectForProperty:error: (page 2494)
Provides the value of a receiver’s property.

– setObject:forProperty:error: (page 2496)
Specifies the value of a receiver’s property.

– delegate (page 2492)
Returns the receiver’s delegate.

– setDelegate: (page 2496)
Sets the receiver’s delegate.

Getting Speech Synthesizer Information

+ availableVoices (page 2490)
Provides the identifiers of the voices available on the system.

+ attributesForVoice: (page 2490)
Provides the attribute dictionary of a voice.

+ defaultVoice (page 2491)
Provides the identifier of the default voice.

Getting Speech State

+ isAnyApplicationSpeaking (page 2491)
Indicates whether any application is currently speaking through the sound output device.

Synthesizing Speech

– isSpeaking (page 2493)
Indicates whether the receiver is currently generating synthesized speech.

– startSpeakingString: (page 2498)
Begins speaking synthesized text through the system’s default sound output device.

Tasks 2489
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

– startSpeakingString:toURL: (page 2499)
Begins synthesizing text into a sound (AIFF) file.

– pauseSpeakingAtBoundary: (page 2494)
Pauses synthesis in progress at a given boundary.

– continueSpeaking (page 2492)
Resumes synthesis.

– stopSpeaking (page 2500)
Stops synthesis in progress.

– stopSpeakingAtBoundary: (page 2500)
Stops synthesis in progress at a given boundary.

Getting Phonemes

– phonemesFromText: (page 2495)
Provides the phoneme symbols generated by the given text.

Class Methods

attributesForVoice:
Provides the attribute dictionary of a voice.

+ (NSDictionary *)attributesForVoice:(NSString *)voiceIdentifier

Parameters
voiceIdentifier

Identifier of the voice whose attributes you want to obtain.

Return Value
Attribute dictionary of the voice identified by voiceIdentifier. The attributes keys and value types are
listed in “Voice Attributes” (page 2502)

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSpeechSynthesizer.h

availableVoices
Provides the identifiers of the voices available on the system.

+ (NSArray *)availableVoices

Return Value
Array of strings representing the identifiers of each voice available on the system.

2490 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
+ attributesForVoice: (page 2490)
– setVoice: (page 2497)

Declared In
NSSpeechSynthesizer.h

defaultVoice
Provides the identifier of the default voice.

+ (NSString *)defaultVoice

Return Value
Identifier of the default voice.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSpeechSynthesizer.h

isAnyApplicationSpeaking
Indicates whether any application is currently speaking through the sound output device.

+ (BOOL)isAnyApplicationSpeaking

Return Value
YES when another application is producing speech through the sound output device, NO otherwise.

Discussion
You usually invoke this method to prevent your application from speaking over speech being generated by
another application or system component.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSpeechSynthesizer.h

Instance Methods

addSpeechDictionary:
Registers the given speech dictionary with the receiver.

Instance Methods 2491
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

- (void)addSpeechDictionary:(NSDictionary *)speechDictionary

Parameters
speechDictionary

Speech dictionary to add to the receiver’s dictionaries. The key-value pairs are listed in “Speech
Dictionary Properties” (page 2513).

Discussion
See the discussion of UseSpeechDictionary in Speech Synthesis Manager Reference for more information.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSpeechSynthesizer.h

continueSpeaking
Resumes synthesis.

- (void)continueSpeaking

Discussion
At any time afterpauseSpeakingAtBoundary: (page 2494) is called,continueSpeaking (page 2492) can be
called to continue speaking from the beginning of the word at which speech paused.

Sending continueSpeaking (page 2492) to a receiver that is not currently in a paused state has no effect on
the synthesizer or on future calls to the pauseSpeakingAtBoundary: (page 2494) function. If you call
continueSpeaking (page 2492) on a synthesizer before a pause is effective, continueSpeaking (page 2492)
cancels the pause.

If the pauseSpeakingAtBoundary: (page 2494) method stopped speech in the middle of a word, the
synthesizer will start speaking that word from the beginning when you call continueSpeaking (page 2492).

Availability
Available in Mac OS X v10.5 and later.

See Also
– pauseSpeakingAtBoundary: (page 2494)

Declared In
NSSpeechSynthesizer.h

delegate
Returns the receiver’s delegate.

- (id < NSSpeechSynthesizerDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.3 and later.

2492 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

See Also
– setDelegate: (page 2496)

Declared In
NSSpeechSynthesizer.h

initWithVoice:
Initializes the receiver with a voice.

- (id)initWithVoice:(NSString *)voiceIdentifier

Parameters
voiceIdentifier

Identifier of the voice to set as the current voice. When nil, the default voice is used. Passing in a
specific voice means the initial speaking rate is determined by the synthesizer’s default speaking rate;
passing nil means the speaking rate is automatically set to the rate the user specifies in Speech
preferences.

Return Value
Initialized speech synthesizer or nil when the voice identified by voiceIdentifier is not available or
when there’s an allocation error.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ availableVoices (page 2490)

Declared In
NSSpeechSynthesizer.h

isSpeaking
Indicates whether the receiver is currently generating synthesized speech.

- (BOOL)isSpeaking

Return Value
YES when the receiver is generating synthesized speech, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

See Also
– startSpeakingString: (page 2498)
– startSpeakingString:toURL: (page 2499)
– stopSpeaking (page 2500)

Declared In
NSSpeechSynthesizer.h

Instance Methods 2493
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

objectForProperty:error:
Provides the value of a receiver’s property.

- (id)objectForProperty:(NSString *)speechProperty error:(NSError **)out_error

Parameters
speechProperty

Property to get.

out_error
On output, error that occurred while obtaining the value of speechProperty.

Return Value
The value of speechProperty.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setObject:forProperty:error: (page 2496)

Declared In
NSSpeechSynthesizer.h

pauseSpeakingAtBoundary:
Pauses synthesis in progress at a given boundary.

- (void)pauseSpeakingAtBoundary:(NSSpeechBoundary)boundary

Parameters
boundary

Boundary at which to pause speech. The supported bound types are listed in
“NSSpeechBoundary” (page 2514).

Discussion
Pass the constant NSSpeechImmediateBoundary (page 2514) to pause immediately, even in the middle of
a word. Pass NSSpeechWordBoundary (page 2514) or NSSpeechSentenceBoundary (page 2514) to pause
speech at the end of the current word or sentence, respectively.

You can determine whether your application has paused a synthesizer's speech output by obtaining the
NSSpeechStatusProperty (page 2505) property through the objectForProperty:error: (page 2494)
method. While a synthesizer is paused, the speech status information indicates that
NSSpeechStatusOutputBusy (page 2510) and NSSpeechStatusOutputPaused (page 2510) are both YES.

If the end of the string being spoken is reached before the specified pause point, speech output pauses at
the end of the string.

Availability
Available in Mac OS X v10.5 and later.

See Also
– continueSpeaking (page 2492)

2494 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

Declared In
NSSpeechSynthesizer.h

phonemesFromText:
Provides the phoneme symbols generated by the given text.

- (NSString *)phonemesFromText:(NSString *)text

Parameters
text

Text from which to generate phonemes.

Return Value
Phonemes generated from text.

Discussion
Converting textual data into phonetic data is particularly useful during application development, when you
might wish to adjust phrases that your application generates to produce smoother speech. By first converting
the target phrase into phonemes, you can see what the synthesizer will try to speak. Then you need correct
only the parts that would not have been spoken the way you want

The string returned by phonemesFromText: corresponds precisely to the phonemes that would be spoken
had the input text been sent to startSpeakingString: (page 2498) instead. All current property settings
for the synthesizer are applied to the converted speech.

No delegate methods are called while phonemesFromText: (page 2495) method is generating its output.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSpeechSynthesizer.h

rate
Provides the receiver’s speaking rate.

- (float)rate

Return Value
Speaking rate (words per minute).

Discussion
The range of supported rates is not predefined by the Speech Synthesis framework; but the synthesizer may
only respond to a limited range of speech rates. Average human speech occurs at a rate of 180 to 220 words
per minute.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setRate: (page 2496)

Instance Methods 2495
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

Declared In
NSSpeechSynthesizer.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSSpeechSynthesizerDelegate >)delegate

Parameters
delegate

Object to be the receiver’s delegate.

Availability
Available in Mac OS X v10.3 and later.

See Also
– delegate (page 2492)

Declared In
NSSpeechSynthesizer.h

setObject:forProperty:error:
Specifies the value of a receiver’s property.

- (BOOL)setObject:(id)object forProperty:(NSString *)property error:(NSError
**)outError

Parameters
speechProperty

Property to set. The supported properties are listed in “NSSpeechStatusProperty Dictionary Keys” (page
2509).

out_error
On output, error that occurred while setting speechProperty.

Return Value
YES when the speechProperty was set. NO when there was an error, specified in out_error.

Availability
Available in Mac OS X v10.5 and later.

See Also
– objectForProperty:error: (page 2494)

Declared In
NSSpeechSynthesizer.h

setRate:
Specifies the receivers speaking rate.

2496 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

- (void)setRate:(float)rate

Parameters
rate

Words to speak per minute.

Availability
Available in Mac OS X v10.5 and later.

See Also
– rate (page 2495)

Declared In
NSSpeechSynthesizer.h

setUsesFeedbackWindow:
Specifies whether the receiver uses the speech feedback window.

- (void)setUsesFeedbackWindow:(BOOL)useFeedbackWindow

Parameters
useFeedbackWindow

YES to make the receiver use the speech feedback window if it’s visible when the user begins speaking.
NO not to use the feedback window.

Discussion
See the class description for details on the UsesFeedbackWindow attribute.

Important: The delegate only receives thespeechSynthesizer:didFinishSpeaking: (page 3805) message
when speaking occurs through the feedback window.

Availability
Available in Mac OS X v10.3 and later.

See Also
– usesFeedbackWindow (page 2501)

Declared In
NSSpeechSynthesizer.h

setVoice:
Sets the receiver’s current voice.

- (BOOL)setVoice:(NSString *)voiceIdentifier

Parameters
voiceIdentifier

Identifier of the voice to set at the receiver’s current voice. When nil, the receiver sets the default
voice as its current voice.

Instance Methods 2497
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

Return Value
YES when the receiver is not currently synthesizing speech and the current voice is set successfully, NO
otherwise.

Availability
Available in Mac OS X v10.3 and later.

See Also
– voice (page 2501)
+ defaultVoice (page 2491)

Declared In
NSSpeechSynthesizer.h

setVolume:
Specifies the receiver’s speaking volume.

- (void)setVolume:(float)volume

Parameters
volume

Sound level to use for speech.

Discussion
Volumes are expressed in floating-point units ranging from 0.0 through 1.0. A value of 0.0 corresponds to
silence, and a value of 1.0 corresponds to the maximum possible volume. Volume units lie on a scale that is
linear with amplitude or voltage. A doubling of perceived loudness corresponds to a doubling of the volume.

Setting a value outside this range is undefined.

Availability
Available in Mac OS X v10.5 and later.

See Also
– volume (page 2501)

Declared In
NSSpeechSynthesizer.h

startSpeakingString:
Begins speaking synthesized text through the system’s default sound output device.

- (BOOL)startSpeakingString:(NSString *)text

Parameters
text

Text to speak. When nil or empty, no synthesis occurs.

Return Value
YES when speaking starts successfully, NO otherwise.

2498 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

Discussion
If the receiver is currently speaking synthesized speech when startSpeakingString: is called, that process
is stopped before text is spoken.

When synthesis of text finishes normally or is stopped, the message
speechSynthesizer:didFinishSpeaking: (page 3805) is sent to the delegate.

Availability
Available in Mac OS X v10.3 and later.

See Also
– isSpeaking (page 2493)
– startSpeakingString:toURL: (page 2499)
– stopSpeaking (page 2500)

Related Sample Code
SayIt

Declared In
NSSpeechSynthesizer.h

startSpeakingString:toURL:
Begins synthesizing text into a sound (AIFF) file.

- (BOOL)startSpeakingString:(NSString *)text toURL:(NSURL *)url

Parameters
text

Text to speak. When nil or empty, no synthesis is started.

url
Filesystem location of the output sound file.

Return Value
YES when synthesis starts successfully, NO otherwise.

Discussion
When synthesis of text finishes normally or is stopped, the message
speechSynthesizer:didFinishSpeaking: (page 3805) is sent to the delegate.

One example of how you might use this method is in an email program that automatically converts new
messages into sound files that can be stored on an iPod for later listening.

Note: In Mac OS X V 10.4 and earlier, the delegate does not receive
speechSynthesizer:willSpeakWord:ofString: (page 3806) and
speechSynthesizer:willSpeakPhoneme: (page 3805) messages when text is being synthesized to a file.

Availability
Available in Mac OS X v10.3 and later.

See Also
– isSpeaking (page 2493)

Instance Methods 2499
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

– startSpeakingString: (page 2498)
– stopSpeaking (page 2500)

Declared In
NSSpeechSynthesizer.h

stopSpeaking
Stops synthesis in progress.

- (void)stopSpeaking

Discussion
If the receiver is currently generating speech, synthesis is halted, and the message
speechSynthesizer:didFinishSpeaking: (page 3805) is sent to the delegate.

Availability
Available in Mac OS X v10.3 and later.

See Also
– isSpeaking (page 2493)
– startSpeakingString: (page 2498)
– startSpeakingString:toURL: (page 2499)

Related Sample Code
SayIt

Declared In
NSSpeechSynthesizer.h

stopSpeakingAtBoundary:
Stops synthesis in progress at a given boundary.

- (void)stopSpeakingAtBoundary:(NSSpeechBoundary)boundary

Parameters
boundary

Boundary at which to stop speech. The supported bound types are listed in “NSSpeechBoundary” (page
2514).

Discussion
Pass the constant NSSpeechImmediateBoundary (page 2514) to stop immediately, even in the middle of a
word. PassNSSpeechWordBoundary (page 2514) orNSSpeechSentenceBoundary (page 2514) to stop speech
at the end of the current word or sentence, respectively.

If the end of the string being spoken is reached before the specified stopping point, the synthesizer stops
at the end of the string without generating an error.

Availability
Available in Mac OS X v10.5 and later.

2500 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

Declared In
NSSpeechSynthesizer.h

usesFeedbackWindow
Indicates whether the receiver uses the speech feedback window.

- (BOOL)usesFeedbackWindow

Return Value
YES when the receiver uses the speech feedback window, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setUsesFeedbackWindow: (page 2497)

Declared In
NSSpeechSynthesizer.h

voice
Returns the identifier of the receiver’s current voice.

- (NSString *)voice

Return Value
Identifier of the receiver’s current voice.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setVoice: (page 2497)

Declared In
NSSpeechSynthesizer.h

volume
Provides the receiver’s speaking volume.

- (float)volume

Return Value
Speaking volume: From 0.0 (minimum) to 1.0 (maximum).

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 2501
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

See Also
– setVolume: (page 2498)

Declared In
NSSpeechSynthesizer.h

Constants

Voice Attributes Keys
The following constants are keys for the dictionary returned by attributesForVoice: (page 2490).

NSString *const NSVoiceIdentifier;
NSString *const NSVoiceName;
NSString *const NSVoiceAge;
NSString *const NSVoiceGender;
NSString *const NSVoiceDemoText;
NSString *const NSVoiceLanguage;
NSString *const NSVoiceLocaleIdentifier;
NSString *const NSVoiceSupportedCharacters;
NSString *const NSVoiceIndividuallySpokenCharacters;

Constants
NSVoiceIdentifier

A unique string identifying the voice. The identifiers of the system voices are listed in Listing
127-1 (page 2503).

Available in Mac OS X v10.3 and later.

Declared in NSSpeechSynthesizer.h.

NSVoiceName
The name of the voice suitable for display. An NSString.

Available in Mac OS X v10.3 and later.

Declared in NSSpeechSynthesizer.h.

NSVoiceAge
The perceived age (in years) of the voice. An NSString

Available in Mac OS X v10.3 and later.

Declared in NSSpeechSynthesizer.h.

NSVoiceGender
The perceived gender of the voice. The supported values are listed in “Voice Genders” (page 2504). An
NSString

Available in Mac OS X v10.3 and later.

Declared in NSSpeechSynthesizer.h.

NSVoiceDemoText
A demonstration string to speak. An NSString

Available in Mac OS X v10.3 and later.

Declared in NSSpeechSynthesizer.h.

2502 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

NSVoiceLanguage
The language of the voice (currently US English only). An NSString

Deprecated: Use NSVoiceLocaleIdentifier (page 2503) instead.

Available in Mac OS X v10.3 and later.

Deprecated in Mac OS X v10.5.

Declared in NSSpeechSynthesizer.h.

NSVoiceLocaleIdentifier
The language of the voice. An NSString

The canonical locale identifier string describing the voice's locale. A locale is generally composed of
three pieces of ordered information: a language code, a region code, and a variant code. Refer to
documentation about the NSLocale class or Locales Programming Guide for more information.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSVoiceSupportedCharacters
A list of unicode character id ranges that define the unicode characters supported by this voice. a
dictionary containing two keys: "UnicodeCharBegin", an integer value containing the beginning
unicode id of this range; and "UnicodeCharBegin", an integer value containing the ending unicode
id of this range. The synthesizer will convert or ignore any characters not contained in the range of
supported characters.

Some voices may not provide this attribute.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSVoiceIndividuallySpokenCharacters
A list of unicode character id ranges that define the unicode characters that can be spoken in
character-by-character mode by this voice. ach list entry is a dictionary containing two keys:
"UnicodeCharBegin", an integer value containing the beginning unicode id of this range; and
"UnicodeCharBegin", an integer value containing the ending unicode id of this range.

These ranges can be used by your application to determine if the voice can speak the name of an
individual character when spoken in character-by-character mode.

Ssome voices may not provide this attribute.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

Discussion
Listing 127-1 lists the identifiers of the system voices (defined in /System/Library/Speech/Voices):

Listing 127-1 Identifiers of the Mac OS X system voices

com.apple.speech.synthesis.voice.Agnes
com.apple.speech.synthesis.voice.Albert
com.apple.speech.synthesis.voice.Alex
com.apple.speech.synthesis.voice.BadNews
com.apple.speech.synthesis.voice.Bahh
com.apple.speech.synthesis.voice.Bells
com.apple.speech.synthesis.voice.Boing
com.apple.speech.synthesis.voice.Bruce
com.apple.speech.synthesis.voice.Bubbles
com.apple.speech.synthesis.voice.Cellos
com.apple.speech.synthesis.voice.Deranged

Constants 2503
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

com.apple.speech.synthesis.voice.Fred
com.apple.speech.synthesis.voice.GoodNews
com.apple.speech.synthesis.voice.Hysterical
com.apple.speech.synthesis.voice.Junior
com.apple.speech.synthesis.voice.Kathy
com.apple.speech.synthesis.voice.Organ
com.apple.speech.synthesis.voice.Princess
com.apple.speech.synthesis.voice.Ralph
com.apple.speech.synthesis.voice.Trinoids
com.apple.speech.synthesis.voice.Vicki
com.apple.speech.synthesis.voice.Victoria
com.apple.speech.synthesis.voice.Whisper
com.apple.speech.synthesis.voice.Zarvox

Voice Gender Keys
The following constants define voice gender attributes, which are the allowable values of the
NSVoiceGender (page 2502) key returned by attributesForVoice: (page 2490).

NSString *const NSVoiceGenderNeuter;
NSString *const NSVoiceGenderMale;
NSString *const NSVoiceGenderFemale;

Constants
NSVoiceGenderNeuter

A neutral voice (or a novelty voice with a humorous or whimsical quality).

Available in Mac OS X v10.3 and later.

Declared in NSSpeechSynthesizer.h.

NSVoiceGenderMale
A male voice

Available in Mac OS X v10.3 and later.

Declared in NSSpeechSynthesizer.h.

NSVoiceGenderFemale
A female voice

Available in Mac OS X v10.3 and later.

Declared in NSSpeechSynthesizer.h.

Speech Synthesizer Property Keys
These constants are used with setObject:forProperty:error: (page 2496) and
objectForProperty:error: (page 2494) to get or set the characteristics of a synthesizer.

2504 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

NSString *const NSSpeechStatusProperty;
NSString *const NSSpeechErrorsProperty;
NSString *const NSSpeechInputModeProperty;
NSString *const NSSpeechCharacterModeProperty;
NSString *const NSSpeechNumberModeProperty;
NSString *const NSSpeechRateProperty;
NSString *const NSSpeechPitchBaseProperty;
NSString *const NSSpeechPitchModProperty;
NSString *const NSSpeechVolumeProperty;
NSString *const NSSpeechSynthesizerInfoProperty;
NSString *const NSSpeechRecentSyncProperty;
NSString *const NSSpeechPhonemeSymbolsProperty;
NSString *const NSSpeechCurrentVoiceProperty;
NSString *const NSSpeechCommandDelimiterProperty;
NSString *const NSSpeechResetProperty;
NSString *const NSSpeechOutputToFileURLProperty;

Constants
NSSpeechStatusProperty

Get speech-status information for the synthesizer. An NSDictionary that contains speech-status
information for the synthesizer. See “NSSpeechStatusProperty Dictionary Keys” (page 2509) for a
description of the keys present in the dictionary.

This property is used with setObject:forProperty:error: (page 2496).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechErrorsProperty
Get speech-error information for the synthesizer. An NSDictionary object that contains speech-error
information. See “NSSpeechErrorProperty Dictionary Keys” (page 2510) for a description of the keys
present in the dictionary.

This property lets you get information about various run-time errors that occur during speaking, such
as the detection of badly formed embedded commands. Errors returned directly by the Speech
Synthesis Manager are not reported here.

If your application implements the
speechSynthesizer:didEncounterErrorAtIndex:ofString:message: (page 3804) delegate
message, the delegate message can use this property to get error information.

This property is used with setObject:forProperty:error: (page 2496).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechInputModeProperty
Get or set the synthesizer’s current text-processing mode. An NSString object that specifies whether
the channel is currently in text input mode or phoneme input mode.The supported values are listed
in “Speaking Modes for NSSpeechInputModeProperty” (page 2509).

When in phoneme-processing mode, a text string is interpreted to be a series of characters representing
various phonemes and prosodic controls. Some synthesizers might support additional input-processing
modes and define constants for these modes.

This property is used with setObject:forProperty:error: (page 2496) and
objectForProperty:error: (page 2494).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

Constants 2505
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

NSSpeechCharacterModeProperty
Get or set the synthesizer’s current text-processing mode. An NSString object that specifies whether
the channel is currently in text input mode or phoneme input mode.The supported values are listed
in “Speaking Modes for NSSpeechInputModeProperty” (page 2509).

When the character-processing mode is NSSpeechModeNormal (page 2509), input characters are
spoken as you would expect to hear them. When the mode is NSSpeechModeLiteral (page 2509),
each character is spoken literally, so that the word “cat” is spoken “C–A–T”.

This property is used with setObject:forProperty:error: (page 2496) and
objectForProperty:error: (page 2494).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechNumberModeProperty
Get or set the synthesizer’s current number-processing mode. An NSString object that specifies
whether the synthesizer is currently in normal or literal number-processing mode. The constants
NSSpeechModeNormal (page 2509) andNSSpeechModeLiteral (page 2509) are the possible values of
this string.

When the number-processing mode is NSSpeechModeNormal (page 2509), the synthesizer assembles
digits into numbers (so that “12” is spoken as “twelve”). When the mode is
NSSpeechModeLiteral (page 2509), each digit is spoken literally (so that “12” is spoken as “one, two”).

This property is used with setObject:forProperty:error: (page 2496) and
objectForProperty:error: (page 2494).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechRateProperty
Get or set the synthesizer’s baseline speech pitch. An NSNumber object that specifies the synthesizer’s
baseline speech pitch.

Typical voice frequencies range from around 90 hertz for a low-pitched male voice to perhaps 300
hertz for a high-pitched child’s voice. These frequencies correspond to approximate pitch values in
the ranges of 30.000 to 40.000 and 55.000 to 65.000, respectively.

This property is used with setObject:forProperty:error: (page 2496) and
objectForProperty:error: (page 2494).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechPitchBaseProperty
Get or set a synthesizer’s baseline speech pitch. An NSNumberobject that specifies the baseline speech
pitch.

Typical voice frequencies range from around 90 hertz for a low-pitched male voice to perhaps 300
hertz for a high-pitched child’s voice. These frequencies correspond to approximate pitch values in
the ranges of 30.000 to 40.000 and 55.000 to 65.000, respectively.

This property is used with setObject:forProperty:error: (page 2496) and
objectForProperty:error: (page 2494).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

2506 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

NSSpeechPitchModProperty
Get or set a synthesizer’s pitch modulation. An NSNumber object that specifies the synthesizer’s pitch
modulation.

Pitch modulation is also expressed as a floating-point value in the range of 0.000 to 127.000. These
values correspond to MIDI note values, where 60.000 is equal to middle C on a piano scale. The most
useful speech pitches fall in the range of 40.000 to 55.000. A pitch modulation value of 0.000
corresponds to a monotone in which all speech is generated at the frequency corresponding to the
speech pitch. Given a speech pitch value of 46.000, a pitch modulation of 2.000 would mean that the
widest possible range of pitches corresponding to the actual frequency of generated text would be
44.000 to 48.000.

This property is used with setObject:forProperty:error: (page 2496) and
objectForProperty:error: (page 2494).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechVolumeProperty
Get or set the speech volume for a synthesizer. An NSNumber that specifies the synthesizer’s speech
volume.

Volumes are expressed in floating-point values ranging from 0.0 through 1.0. A value of 0.0 corresponds
to silence, and a value of 1.0 corresponds to the maximum possible volume. Volume units lie on a
scale that is linear with amplitude or voltage. A doubling of perceived loudness corresponds to a
doubling of the volume.

This property is used with setObject:forProperty:error: (page 2496) and
objectForProperty:error: (page 2494).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechSynthesizerInfoProperty
Get information about the speech synthesizer being used on the specified synthesizer. An
NSDictionary object that contains information about the speech synthesizer being used on the
specified synthesizer. See “Speech Synthesizer Property Keys” (page 2504) for a description of the keys
present in the dictionary.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechRecentSyncProperty
Get the message code for the most recently encountered synchronization command. An NSNumber
object that specifies the most recently encountered synchronization command.

This property works with setObject:forProperty:error: (page 2496).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

Constants 2507
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

NSSpeechPhonemeSymbolsProperty
Get a list of phoneme symbols and example words defined for the synthesizer. An NSDictionary
object that contains the phoneme symbols and example words defined for the current synthesizer

Your application might use this information to show the user what symbols to use when entering
phonemic text directly. See “NSSpeechPhonemeSymbolsProperty Dictionary Keys” (page 2512) for a
description of the keys present in the dictionary.

This property works with setObject:forProperty:error: (page 2496).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechCurrentVoiceProperty
Set the current voice on the synthesizer to the specified voice. An NSDictionary object that contains
the phoneme symbols and example words defined for the current synthesizer.

Your application might use this information to show the user what symbols to use when entering
phonemic text directly. See “NSSpeechPhonemeSymbolsProperty Dictionary Keys” (page 2512) for the
keys you can use to specify values in this dictionary.

This property works with setObject:forProperty:error: (page 2496).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechCommandDelimiterProperty
Set the embedded speech command delimiter characters to be used for the synthesizer. An
NSDictionary object that contains the delimiter information. See “Command Delimiter Keys” for
the keys you can use to specify values in this dictionary.

By default, the opening delimiter is “[[” and the closing delimiter is “]]”. Your application might need
to change these delimiters temporarily if those character sequences occur naturally in a text buffer
that is to be spoken. Your application can also disable embedded command processing by passing
empty delimiters (as empty strings). See “Speech Command Delimiter” (page 2513) for the keys you
can use to specify values in this dictionary.

This property works with setObject:forProperty:error: (page 2496).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechResetProperty
Set a synthesizer back to its default state. There is no value associated with this property; to reset the
channel to its default state, set the key to NULL.

You can use this function to, for example, set speech pitch and speech rate to default values.

This property works with setObject:forProperty:error: (page 2496).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechOutputToFileURLProperty
Set the speech output destination to a file or to the computer’s speakers. An NSURL object. To write
the speech output to a file, use the file’s NSURL; to generate the sound through the computer’s
speakers, use NULL.

This property works with setObject:forProperty:error: (page 2496).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

2508 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

Speaking Modes for NSSpeechInputModeProperty
These constants identify input modes are used with NSSpeechInputModeProperty (page 2505).

NSString *const NSSpeechModeText;
NSString *const NSSpeechModePhoneme;

Constants
NSSpeechModeText

Indicates that the synthesizer is in text-processing mode.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechModePhoneme
Indicates that the synthesizer is in phoneme-processing mode. When in phoneme-processing mode,
a text buffer is interpreted to be a series of characters representing various phonemes and prosodic
controls.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

Speaking Modes for NSSpeechNumberModeProperty
These constants define the available text-processing and number-processing modes for a synthesizer. These
keys are used with NSSpeechInputModeProperty (page 2505) and NSSpeechNumberModeProperty (page
2506))

NSString *const NSSpeechModeNormal;
NSString *const NSSpeechModeLiteral;

Constants
NSSpeechModeNormal

Indicates that the synthesizer assembles digits into numbers (so that 12 is spoken as "twelve") and
text into words.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechModeLiteral
Indicates that each digit or character is spoken literally (so that 12 is spoken as "one, two", or the word
"cat" is spoken as "C A T").

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechStatusProperty Dictionary Keys
These constants identify speech status keys used with NSSpeechStatusProperty (page 2505).

Constants 2509
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

NSString *const NSSpeechStatusOutputBusy;
NSString *const NSSpeechStatusOutputPaused;
NSString *const NSSpeechStatusNumberOfCharactersLeft;
NSString *const NSSpeechStatusPhonemeCode;

Constants
NSSpeechStatusOutputBusy

Indicates whether the synthesizer is currently producing speech.

A synthesizer is considered to be producing speech even at some times when no audio data is being
produced through the computer’s speaker. This occurs, for example, when the synthesizer is processing
input, but has not yet initiated speech or when speech output is paused.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechStatusOutputPaused
Indicates whether speech output in the synthesizer has been paused by sending the message
pauseSpeakingAtBoundary: (page 2494).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechStatusNumberOfCharactersLeft
The number of characters left in the input string of text.

When the value of this key is zero, you can destroy the input string.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechStatusPhonemeCode
Indicates that the synthesizer is in phoneme-processing mode. When in phoneme-processing mode,
a text buffer is interpreted to be a series of characters representing various phonemes and prosodic
controls.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechErrorProperty Dictionary Keys
These key constants identify errors that may occur during speech synthesis. They are used with
NSSpeechErrorsProperty (page 2505).

2510 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

NSString *const NSSpeechErrorCount;
NSString *const NSSpeechErrorOldestCode;
NSString *const NSSpeechErrorOldestCharacterOffset;
NSString *const NSSpeechErrorNewestCode;
NSString *const NSSpeechErrorNewestCharacterOffset;

Constants
NSSpeechErrorCount

The number of errors that have occurred in processing the current text string, since the last call to
objectForProperty:error: (page 2494) with theNSSpeechErrorsProperty (page 2505) property.
An NSNumber

Using theNSSpeechErrorOldestCode (page 2511) keys and theNSSpeechErrorNewestCode (page
2511) keys, you can get information about the oldest and most recent errors that occurred since the
last call to objectForProperty:error: (page 2494), but you cannot get information about any
intervening errors.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechErrorOldestCode
The error code of the first error that occurred since the last call to objectForProperty:error: (page
2494) with the NSSpeechErrorsProperty (page 2505) property. An NSNumber

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechErrorOldestCharacterOffset
The position in the text string of the first error that occurred since the last call to
objectForProperty:error: (page 2494) with theNSSpeechErrorsProperty (page 2505) property.
An NSNumber

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechErrorNewestCode
The error code of the most recent error that occurred since the last call to
objectForProperty:error: (page 2494) with theNSSpeechErrorsProperty (page 2505) property.
An NSNumber

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechErrorNewestCharacterOffset
The position in the text string of the most recent error that occurred since the last call to
objectForProperty:error: (page 2494) with theNSSpeechErrorsProperty (page 2505) property.
An NSNumber.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechSynthesizerInfoProperty Dictionary Keys
These constants are keys used in the NSSpeechSynthesizerInfoProperty dictionary.

Constants 2511
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

NSString *const NSSpeechSynthesizerInfoIdentifier;
NSString *const NSSpeechSynthesizerInfoVersion;

Constants
NSSpeechSynthesizerInfoIdentifier

The identifier of the speech synthesizer.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechSynthesizerInfoVersion
The version of the speech synthesizer.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechPhonemeSymbolsProperty Dictionary Keys
These constants are keys used in the NSSpeechPhonemeSymbolsProperty dictionary.

 NSString *const NSSpeechPhonemeInfoOpcode
 NSString *const NSSpeechPhonemeInfoSymbol;
 NSString *const NSSpeechPhonemeInfoExample;
 NSString *const NSSpeechPhonemeInfoHiliteStart;
 NSString *const NSSpeechPhonemeInfoHiliteEnd;

Constants
NSSpeechPhonemeInfoOpcode

NSNumber

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechPhonemeInfoSymbol
The symbol used to represent the phoneme.

The symbol does not necessarily have a phonetic connection to the phoneme, but might simply be
an abstract textual representation of it.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechPhonemeInfoExample
An example word that illustrates the use of the phoneme.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechPhonemeInfoHiliteStart
The character offset into the example word that identifies the location of the beginning of the
phoneme.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechPhonemeInfoHiliteEnd
The character offset into the example word that identifies the location of the end of the phoneme.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

2512 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

Speech Command Delimiter Keys
These constants speech-command delimiters keys used in NSSpeechCommandDelimiterProperty (page
2508).

NSString *const NSSpeechCommandPrefix;
NSString *const NSSpeechCommandSuffix;

Constants
NSSpeechCommandPrefix

The command delimiter string that prefixes a command, by default, this is [[.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechCommandSuffix
The command delimiter string that suffixes a command,by default, this is]].

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

Speech Dictionary Properties Keys
These constants identify key-value pairs used to add vocabulary to the dictionary using
addSpeechDictionary: (page 2491).

NSString *const NSSpeechDictionaryLocaleIdentifier;
NSString *const NSSpeechDictionaryModificationDate;
NSString *const NSSpeechDictionaryPronunciations;
NSString *const NSSpeechDictionaryAbbreviations;
NSString *const NSSpeechDictionaryEntrySpelling;
NSString *const NSSpeechDictionaryEntryPhonemes;

Constants
NSSpeechDictionaryLocaleIdentifier

The canonical locale identifier string describing the dictionary's locale. A locale is generally composed
of three pieces of ordered information: a language code, a region code, and a variant code. Refer to
documentation about NSLocale or Locales Programming Guide for more information

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechDictionaryModificationDate
A string representation of the dictionary's last modification date in the international format
(YYYY-MM-DD HH:MM:SS ±HHMM). If the same word appears across multiple dictionaries, the one
from the dictionary with the most recent date will be used.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechDictionaryPronunciations
An array of dictionary objects containing the keys NSSpeechDictionaryEntrySpelling (page 2514)
and NSSpeechDictionaryEntryPhonemes (page 2514).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

Constants 2513
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

NSSpeechDictionaryAbbreviations
An array of dictionary objects containing the keys NSSpeechDictionaryEntrySpelling (page 2514)
and NSSpeechDictionaryEntryPhonemes (page 2514).

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechDictionaryEntrySpelling
The spelling of an entry. An NSString.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechDictionaryEntryPhonemes
The phonemic representation of an entry. An NSString.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechBoundary
These constants are used to indicate where speech should be stopped and paused. See
pauseSpeakingAtBoundary: (page 2494) and stopSpeakingAtBoundary: (page 2500).

enum {
 NSSpeechImmediateBoundary = 0,
 NSSpeechWordBoundary,
 NSSpeechSentenceBoundary
};
typedef NSUInteger NSSpeechBoundary;

Constants
NSSpeechImmediateBoundary

Speech should be paused or stopped immediately.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechWordBoundary
Speech should be paused or stopped at the end of the word.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

NSSpeechSentenceBoundary
Speech should be paused or stopped at the end of the sentence.

Available in Mac OS X v10.5 and later.

Declared in NSSpeechSynthesizer.h.

2514 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 127

NSSpeechSynthesizer Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSSpellChecker.h

Companion guide Spell Checking

Related sample code SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
SpellingChecker-CocoaCarbon

Overview

The NSSpellChecker class provides an interface to the Cocoa spell-checking service. To handle all its spell
checking, an application needs only one instance of NSSpellChecker, known as the spell checker. Through
the spell checker you manage the Spelling panel, in which the user can specify decisions about words that
are suspect.

The spell checker also offers the ability to provide word completions to augment the text completion system
in Mac OS X v10.3.

Tasks

Getting the Spell Checker

+ sharedSpellChecker (page 2518)
Returns the NSSpellChecker (one per application).

+ sharedSpellCheckerExists (page 2518)
Returns whether the application’s NSSpellChecker has already been created.

Overview 2515
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

Configuring Spell Checkers Languages

– availableLanguages (page 2520)
Provides a list of all available languages.

– userPreferredLanguages (page 2535)
Provides a subset of the available languages to be used for spell checking.

– automaticallyIdentifiesLanguages (page 2520)
Returns whether the spell checker will automatically identify languages.

– setAutomaticallyIdentifiesLanguages: (page 2531)
Sets whether the spell checker will automatically identify languages.

– language (page 2528)
Returns the current language used in spell checking.

– setLanguage: (page 2531)
Returns whether the specified language is in the Spelling pop-up list.

Managing Panels

– spellingPanel (page 2533)
Returns the spell checker’s panel.

– substitutionsPanel (page 2533)
Returns the substitutions panel.

– updateSpellingPanelWithGrammarString:detail: (page 2535)
Specifies a grammar-analysis detail to highlight in the Spelling panel.

– updatePanels (page 2534)
Updates the available panels to account for user changes.

– substitutionsPanelAccessoryViewController (page 2533)
Returns the substitutions panel’s accessory view controller.

– setSubstitutionsPanelAccessoryViewController: (page 2532)
Sets the substitutions panel’s accessory view.

– setAccessoryView: (page 2530) Deprecated in Mac OS X v10.5
Makes an view an accessory of the Spelling panel by making it a subview of the panel’s content view.

– accessoryView (page 2519) Deprecated in Mac OS X v10.5 Deprecated in Mac OS X v10.5 Deprecated in
Mac OS X v10.5

Returns the Spelling panel’s accessory view.

Checking Strings for Spelling and Grammar

– countWordsInString:language: (page 2524)
Returns the number of words in stringToCount.

– checkSpellingOfString:startingAt: (page 2521)
Starts the search for a misspelled word in stringToCheck starting at startingOffset within the
string object.

2516 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

– checkSpellingOfString:startingAt:language:wrap:inSpellDocumentWithTag:wordCount: (page
2522)

Starts the search for a misspelled word in a string starting at specified offset within the string.

– checkGrammarOfString:startingAt:language:wrap:inSpellDocumentWithTag:details: (page
2520)

Initiates a grammatical analysis of a given string.

– checkString:range:types:options:inSpellDocumentWithTag:orthography:wordCount: (page
2523)

Requests unified text checking for the given range of the given string.

– requestCheckingOfString:range:types:options:inSpellDocumentWithTag:completionHandler: (page
2529)

Requests that the string be checked in the background.

– guessesForWordRange:inString:language:inSpellDocumentWithTag: (page 2526)
Returns an array of possible substitutions for the specified string.

– guessesForWord: (page 2525) Deprecated in Mac OS X v10.6
Returns an array of suggested spellings for the misspelled word. (Deprecated. Use
guessesForWordRange:inString:language:inSpellDocumentWithTag: (page 2526) instead.)

Managing the Spell-Checking Process

+ uniqueSpellDocumentTag (page 2519)
Returns a guaranteed unique tag to use as the spell-document tag for a document.

– closeSpellDocumentWithTag: (page 2523)
Notifies the receiver that the user has finished with the tagged document.

– ignoreWord:inSpellDocumentWithTag: (page 2527)
Instructs the spell checker to ignore all future occurrences of wordToIgnore in the document identified
by tag.

– ignoredWordsInSpellDocumentWithTag: (page 2527)
Returns the array of ignored words for a document identified by tag.

– setIgnoredWords:inSpellDocumentWithTag: (page 2531)
Initializes the ignored-words document (a dictionary identified by tag with someWords), an array of
words to ignore.

– setWordFieldStringValue: (page 2533)
Sets the string that appears in the misspelled word field, using the string object aString.

– updateSpellingPanelWithMisspelledWord: (page 2535)
Causes the spell checker to update the Spelling panel’s misspelled-word field to reflect word.

– completionsForPartialWordRange:inString:language:inSpellDocumentWithTag: (page 2524)
Provides a list of complete words that the user might be trying to type based on a partial word in a
given string.

– hasLearnedWord: (page 2526)
Indicates whether the spell checker has learned a given word.

– unlearnWord: (page 2534)
Tells the spell checker to unlearn a given word.

– forgetWord: (page 2525)
Remove this word from the spelling dictionary. (Deprecated. Use unlearnWord: (page 2534) instead.)

Tasks 2517
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

– learnWord: (page 2528)
Adds the word to the spell checker dictionary.

– userQuotesArrayForLanguage: (page 2536)
Returns the default values for quote replacement.

– userReplacementsDictionary (page 2536)
Returns the dictionary used when replacing words.

Data Detector Interaction

– menuForResult:string:options:atLocation:inView: (page 2528)
Provides a menu containing contextual menu items suitable for certain kinds of detected results.

Class Methods

sharedSpellChecker
Returns the NSSpellChecker (one per application).

+ (NSSpellChecker *)sharedSpellChecker

Return Value
The spelling checker shared by this application.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ sharedSpellCheckerExists (page 2518)

Related Sample Code
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
SpellingChecker-CocoaCarbon

Declared In
NSSpellChecker.h

sharedSpellCheckerExists
Returns whether the application’s NSSpellChecker has already been created.

+ (BOOL)sharedSpellCheckerExists

Return Value
YES if the shared spell checker already exists, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

2518 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

See Also
+ sharedSpellChecker (page 2518)

Declared In
NSSpellChecker.h

uniqueSpellDocumentTag
Returns a guaranteed unique tag to use as the spell-document tag for a document.

+ (NSInteger)uniqueSpellDocumentTag

Return Value
Returns a unique tag to identified this spell checked object.

Discussion
Use this method to generate tags to avoid collisions with other objects that can be spell checked.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
SpellingChecker-CocoaCarbon

Declared In
NSSpellChecker.h

Instance Methods

accessoryView
Returns the Spelling panel’s accessory view.

- (NSView *)accessoryView

Return Value
The accessory view or nil if there is none.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAccessoryView: (page 2530)

Declared In
NSSpellChecker.h

Instance Methods 2519
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

automaticallyIdentifiesLanguages
Returns whether the spell checker will automatically identify languages.

- (BOOL)automaticallyIdentifiesLanguages

Return Value
YES if languages are automatically identified, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setAutomaticallyIdentifiesLanguages: (page 2531)

Declared In
NSSpellChecker.h

availableLanguages
Provides a list of all available languages.

- (NSArray *)availableLanguages

Return Value
An array containing all the available spell checking languages. The languages are ordered in the user’s
preferred order as set in the system preferences.

Discussion
If automaticallyIdentifiesLanguages (page 2520) is YES, then text checking will automatically use this
method as appropriate; otherwise, it will use the language set by setLanguage: (page 2531).

The older
checkSpellingOfString:startingAt:language:wrap:inSpellDocumentWithTag:wordCount: (page
2522) and
checkGrammarOfString:startingAt:language:wrap:inSpellDocumentWithTag:details: (page
2520). methods will use the language set by setLanguage: (page 2531), if they are called with a nil language
argument.

Availability
Available in Mac OS X v10.5 and later.

See Also
– userPreferredLanguages (page 2535)

Declared In
NSSpellChecker.h

checkGrammarOfString:startingAt:language:wrap:inSpellDocumentWithTag:details:
Initiates a grammatical analysis of a given string.

2520 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

- (NSRange)checkGrammarOfString:(NSString *)string startingAt:(NSInteger)start
language:(NSString *)language wrap:(BOOL)wrap
inSpellDocumentWithTag:(NSInteger)documentTag details:(NSArray **)outDetails

Parameters
string

String to analyze.

start
Location within string at which to start the analysis.

language
Language use in string. When nil, the language selected in the Spelling panel is used.

wrap
YES to specify that the analysis continue to the beginning of string when the end is reached.

NO to have the analysis stop at the end of string.

documentTag
An identifier unique within the application used to inform the spell checker which document that
text is associated, potentially for many purposes, not necessarily just for ignored words. A value of 0
can be passed in for text not associated with a particular document.

outDetails
On output, dictionaries describing grammar-analysis details within the flagged grammatical unit. See
the NSSpellServer class for information about these dictionaries.

Return Value
Location of the first flagged grammatical unit.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSpellChecker.h

checkSpellingOfString:startingAt:
Starts the search for a misspelled word in stringToCheck starting at startingOffset within the string
object.

- (NSRange)checkSpellingOfString:(NSString *)stringToCheck
startingAt:(NSInteger)startingOffset

Parameters
stringToCheck

The string to spell check.

startingOffset
The offset at which to start checking.

Return Value
Returns the range of the first misspelled word.

Discussion
Wrapping occurs, but no ignored-words dictionary is used.

Instance Methods 2521
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
SpellingChecker-CocoaCarbon

Declared In
NSSpellChecker.h

checkSpellingOfString:startingAt:language:wrap:inSpellDocumentWithTag:wordCount:
Starts the search for a misspelled word in a string starting at specified offset within the string.

- (NSRange)checkSpellingOfString:(NSString *)stringToCheck
startingAt:(NSInteger)startingOffset language:(NSString *)language
wrap:(BOOL)wrapFlag inSpellDocumentWithTag:(NSInteger)tag wordCount:(NSInteger
 *)wordCount

Parameters
stringToCheck

The string object containing the words to spellcheck.

startingOffset
The offset within stringToCheck at which to begin spellchecking.

language
The language of the words in the string. If language is nil, or if you obtain the value by sending
language (page 2528) to self, the current selection in the Spelling panel’s pop-up menu is used. Do
not pass in an empty string for language.

wrapFlag
YES to indicate that spell checking should continue at the beginning of the string when the end of
the string is reached; NO to indicate that spellchecking should stop at the end of the document.

tag
An identifier unique within the application used to inform the spell checker which document that
text is associated, potentially for many purposes, not necessarily just for ignored words. A value of 0
can be passed in for text not associated with a particular document.

wordCount
Returns by indirection a count of the words spell-checked up to and including the first error (if any),
or -1 if the spell checker fails or does not support word counting. Specify NULL if you do not want
this word count.

Return Value
The range of the first misspelled word and optionally (and by reference) the count of words spellchecked in
the string in wordCount.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa

2522 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

SpellingChecker-CocoaCarbon

Declared In
NSSpellChecker.h

checkString:range:types:options:inSpellDocumentWithTag:orthography:wordCount:
Requests unified text checking for the given range of the given string.

- (NSArray *)checkString:(NSString *)stringToCheck range:(NSRange)range
types:(NSTextCheckingTypes)checkingTypes options:(NSDictionary *)options
inSpellDocumentWithTag:(NSInteger)tag orthography:(NSOrthography **)orthography
wordCount:(NSInteger *)wordCount

Parameters
stringToCheck

The string to check.

range
The range of the string to check.

checkingTypes
The type of checking to be performed. The possible constants are listed in NSTextCheckingType
and can be combined using the C bit-wise OR operator to perform multiple checks at the same time.

options
The options dictionary specifying the types of checking to perform. See “Spell Checking Option
Dictionary Keys” (page 2537) for the possible keys and expected values.

tag
An identifier unique within the application used to inform the spell checker which document that
text is associated, potentially for many purposes, not necessarily just for ignored words. A value of 0
can be passed in for text not associated with a particular document.

orthography
Returns by-reference, the orthography of the range of the string. See NSOrthography for more
information.

wordCount
Returns by-reference, the word count for the range of the string.

Return Value
An array of NSTextCheckingResult objects describing particular items found during checking and their
individual ranges, sorted by range origin, then range end, then result type.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSSpellChecker.h

closeSpellDocumentWithTag:
Notifies the receiver that the user has finished with the tagged document.

- (void)closeSpellDocumentWithTag:(NSInteger)tag

Instance Methods 2523
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

Discussion
The spell checker will release any resources associated with the document, including but not necessarily
limited to, ignored words.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
SpellingChecker-CocoaCarbon

Declared In
NSSpellChecker.h

completionsForPartialWordRange:inString:language:inSpellDocumentWithTag:
Provides a list of complete words that the user might be trying to type based on a partial word in a given
string.

- (NSArray *)completionsForPartialWordRange:(NSRange)partialWordRange
inString:(NSString *)string language:(NSString *)language
inSpellDocumentWithTag:(NSInteger)spellDocumentTag

Parameters
partialWordRange

Range that identifies a partial word in string.

string
String with the partial word from which to generate the result.

language
Language to used in string. When nil, this method uses the language selected in the Spelling
panel.

spellDocumentTag
Identifies the spell document with ignored words to use.

Return Value
List of complete words from the spell checker dictionary in the order they should be presented to the user.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSpellChecker.h

countWordsInString:language:
Returns the number of words in stringToCount.

- (NSInteger)countWordsInString:(NSString *)stringToCount language:(NSString
*)language

2524 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

Parameters
stringToCount

The string to count the words in.

language
The language of the string.

Return Value
The number of words in the string.

Discussion
If language is nil, the current selection in the Spelling panel’s pop-up menu is used.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellChecker.h

forgetWord:
Remove this word from the spelling dictionary. (Deprecated in Mac OS X v10.5. Use unlearnWord: (page
2534) instead.)

- (void)forgetWord:(NSString *)word

Parameters
word

The word to remove.

Availability
Available in Mac OS X v10.5 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSSpellChecker.h

guessesForWord:
Returns an array of suggested spellings for the misspelled word. (Deprecated in Mac OS X v10.6. Use
guessesForWordRange:inString:language:inSpellDocumentWithTag: (page 2526) instead.)

- (NSArray *)guessesForWord:(NSString *)word

Parameters
word

A misspelled word.

Return Value
An array of suggested spellings for the word.

Discussion
If word contains all capital letters, or its first letter is capitalized, the suggested words are capitalized in the
same way.

Instance Methods 2525
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Related Sample Code
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
SpellingChecker-CocoaCarbon

Declared In
NSSpellChecker.h

guessesForWordRange:inString:language:inSpellDocumentWithTag:
Returns an array of possible substitutions for the specified string.

- (NSArray *)guessesForWordRange:(NSRange)range inString:(NSString *)string
language:(NSString *)language inSpellDocumentWithTag:(NSInteger)tag

Parameters
range

The range of the string to check.

string
The string to guess

language
The language of the string

tag
An identifier unique within the application used to inform the spell checker which document that
text is associated, potentially for many purposes, not necessarily just for ignored words. A value of 0
can be passed in for text not associated with a particular document.

Return Value
An array of strings containing possible replacement words.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSSpellChecker.h

hasLearnedWord:
Indicates whether the spell checker has learned a given word.

- (BOOL)hasLearnedWord:(NSString *)word

Parameters
word

Word in question.

Return Value
YES when the spell checker has learned word, NO otherwise.

2526 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– learnWord: (page 2528)

Declared In
NSSpellChecker.h

ignoredWordsInSpellDocumentWithTag:
Returns the array of ignored words for a document identified by tag.

- (NSArray *)ignoredWordsInSpellDocumentWithTag:(NSInteger)tag

Discussion
Invoke this method before closeSpellDocumentWithTag: (page 2523) if you want to store the ignored
words.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIgnoredWords:inSpellDocumentWithTag: (page 2531)

Related Sample Code
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
SpellingChecker-CocoaCarbon

Declared In
NSSpellChecker.h

ignoreWord:inSpellDocumentWithTag:
Instructs the spell checker to ignore all future occurrences of wordToIgnore in the document identified by
tag.

- (void)ignoreWord:(NSString *)wordToIgnore inSpellDocumentWithTag:(NSInteger)tag

Discussion
You should invoke this method from within your implementation of the NSIgnoreMisspelledWords protocol’s
ignoreSpelling: (page 3692) method.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
SpellingChecker-CocoaCarbon

Instance Methods 2527
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

Declared In
NSSpellChecker.h

language
Returns the current language used in spell checking.

- (NSString *)language

Return Value
The current spell checking language, as a string.

Discussion
The result string specifies the language using the language and regional designations described in Language
and Locale Designations in Internationalization Programming Topics.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLanguage: (page 2531)

Declared In
NSSpellChecker.h

learnWord:
Adds the word to the spell checker dictionary.

- (void)learnWord:(NSString *)word

Parameters
word

The word to add.

Availability
Available in Mac OS X v10.5 and later.

See Also
– unlearnWord: (page 2534)

Declared In
NSSpellChecker.h

menuForResult:string:options:atLocation:inView:
Provides a menu containing contextual menu items suitable for certain kinds of detected results.

- (NSMenu *)menuForResult:(NSTextCheckingResult *)result string:(NSString
*)checkedString options:(NSDictionary *)options atLocation:(NSPoint)location
inView:(NSView *)view

2528 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

Parameters
result

The NSTextCheckingResult instance for the checked string.

checkedString
The string that has been checked.

options
The options dictionary allows clients to pass in information associated with the document. See “Spell
Checking Option Dictionary Keys” (page 2537) for possible key-value pairs.

location
The location, in the view’s coordinate system, to display the menu.

view
The view object over which to display the contextual menu.

Return Value
A menu suitable for displaying as a contextual menu, or adding to another contextual menu as a submenu.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSSpellChecker.h

requestCheckingOfString:range:types:options:inSpellDocumentWithTag:
completionHandler:
Requests that the string be checked in the background.

- (NSInteger)requestCheckingOfString:(NSString *)stringToCheck range:(NSRange)range
types:(NSTextCheckingTypes)checkingTypes options:(NSDictionary *)options
inSpellDocumentWithTag:(NSInteger)tag completionHandler:(void (^)(NSInteger
sequenceNumber, NSArray *results, NSOrthography *orthography, NSInteger
wordCount))completionHandler

Parameters
stringToCheck

The string to check.

range
The range of the string to check.

checkingTypes
The type of checking to be performed. The possible constants are listed in NSTextCheckingType
and can be combined using the C bit-wise OR operator to perform multiple checks at the same time.

options
The options dictionary specifying the types of checking to perform. See “Spell Checking Option
Dictionary Keys” (page 2537) for the possible keys and expected values.

tag
An identifier unique within the application used to inform the spell checker which document that
text is associated, potentially for many purposes, not necessarily just for ignored words. A value of 0
can be passed in for text not associated with a particular document.

Instance Methods 2529
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

completionHandler
The completion handler block object will be called (in an arbitrary context) when results are available,
with the sequence number and results.

The block takes four arguments:

sequenceNumber

A monotonically increasing sequence number.

results

An array ofNSTextCheckingResult objects describing particular items found during checking
and their individual ranges, sorted by range origin, then range end, then result type..

orthography

The orthography of the string.

wordCount

The number of words in the range of the string.

Return Value
The return value is a monotonically increasing sequence number that can be used to keep track of requests
in flight.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSSpellChecker.h

setAccessoryView:
Makes an view an accessory of the Spelling panel by making it a subview of the panel’s content view.

- (void)setAccessoryView:(NSView *)aView

Parameters
aView

The accessory view displayed in the receiver.

Discussion
The accessory view can be any custom view you want to display with the spelling panel. The accessory view
is displayed below the spelling checker and the panel automatically resizes to accommodate the accessory
view.

This method posts a notification named NSWindowDidResizeNotification (page 3426) with the Spelling
panel object to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– accessoryView (page 2519)

Declared In
NSSpellChecker.h

2530 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

setAutomaticallyIdentifiesLanguages:
Sets whether the spell checker will automatically identify languages.

- (void)setAutomaticallyIdentifiesLanguages:(BOOL)flag

Parameters
flag

YES if languages should be automatically identified, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

See Also
– automaticallyIdentifiesLanguages (page 2520)

Declared In
NSSpellChecker.h

setIgnoredWords:inSpellDocumentWithTag:
Initializes the ignored-words document (a dictionary identified by tag with someWords), an array of words
to ignore.

- (void)setIgnoredWords:(NSArray *)someWords inSpellDocumentWithTag:(NSInteger)tag

Availability
Available in Mac OS X v10.0 and later.

See Also
– ignoredWordsInSpellDocumentWithTag: (page 2527)

Related Sample Code
SpellingChecker CarbonCocoa Bundled
SpellingChecker-CarbonCocoa
SpellingChecker-CocoaCarbon

Declared In
NSSpellChecker.h

setLanguage:
Returns whether the specified language is in the Spelling pop-up list.

- (BOOL)setLanguage:(NSString *)language

Parameters
language

The requested language.

Return Value
YES if the language is available in the pop-up list, otherwise NO.

Instance Methods 2531
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

Discussion
Listing 128-1 shows how languages can be specified in language. If the language specified is listed in the
user’s list of preferred languages, the spell checker uses that language to accomplish its task.

Listing 128-1 Specifying the spell checker language

NSSpellChecker* spell_checker = [NSSpellChecker sharedSpellChecker];

// Sets language to French. The language method returns "fr".
[spell_checker setLanguage:@"fr"];

// Sets language to the one spoken in Netherlands (English). The language method
 returns "en".
[spell_checker setLanguage:@"NL"];

// Sets language to British English. The language method returns "en_GB".
[spell_checker setLanguage:@"en_GB"]

 // Sets language to German. The language method returns "de".
[spell_checker setLanguage:@"German"];

To learn about the strings you can use to specify a language in language, see Language and Locale
Designations in Internationalization Programming Topics.

Availability
Available in Mac OS X v10.0 and later.

See Also
– language (page 2528)

Declared In
NSSpellChecker.h

setSubstitutionsPanelAccessoryViewController:
Sets the substitutions panel’s accessory view.

- (void)setSubstitutionsPanelAccessoryViewController:(NSViewController
*)accessoryController

Parameters
accessoryController

The accessory view controller or nil if there is none.

Discussion
The accessory view controller can accommodate be any custom view you want to display with the substitutions
panel. The accessory view controller’s view is displayed below the substitutions list and the panel automatically
resizes to accommodate the accessory view.

This method posts a notification namedNSWindowDidResizeNotification (page 3426) with the substitutions
panel object to the default notification center.

Availability
Available in Mac OS X v10.6 and later.

2532 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

See Also
– substitutionsPanelAccessoryViewController (page 2533)

Declared In
NSSpellChecker.h

setWordFieldStringValue:
Sets the string that appears in the misspelled word field, using the string object aString.

- (void)setWordFieldStringValue:(NSString *)aString

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellChecker.h

spellingPanel
Returns the spell checker’s panel.

- (NSPanel *)spellingPanel

Return Value
The spell checking panel.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellChecker.h

substitutionsPanel
Returns the substitutions panel.

- (NSPanel *)substitutionsPanel

Return Value
The substitutions checking panel.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSSpellChecker.h

substitutionsPanelAccessoryViewController
Returns the substitutions panel’s accessory view controller.

Instance Methods 2533
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

- (NSViewController *)substitutionsPanelAccessoryViewController

Return Value
The accessory view controller or nil if there is none.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setSubstitutionsPanelAccessoryViewController: (page 2532)

Declared In
NSSpellChecker.h

unlearnWord:
Tells the spell checker to unlearn a given word.

- (void)unlearnWord:(NSString *)word

Parameters
word

Word to unlearn.

Availability
Available in Mac OS X v10.5 and later.

See Also
– learnWord: (page 2528)

Declared In
NSSpellChecker.h

updatePanels
Updates the available panels to account for user changes.

- (void)updatePanels

Discussion
This method should be called when a client changes some relevant setting, such as what kind of spelling,
grammar checking, or substitutions it uses.

Availability
Available in Mac OS X v10.6 and later.

See Also
– spellingPanel (page 2533)
– substitutionsPanel (page 2533)

Declared In
NSSpellChecker.h

2534 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

updateSpellingPanelWithGrammarString:detail:
Specifies a grammar-analysis detail to highlight in the Spelling panel.

- (void)updateSpellingPanelWithGrammarString:(NSString *)problemString
detail:(NSDictionary *)detail

Parameters
problemString

Problematic grammatical unit identified by
checkGrammarOfString:startingAt:language:wrap:inSpellDocumentWithTag:details: (page
2520).

detail
One of the grammar-analysis details provided by
checkGrammarOfString:startingAt:language:wrap:inSpellDocumentWithTag:details: (page
2520).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSpellChecker.h

updateSpellingPanelWithMisspelledWord:
Causes the spell checker to update the Spelling panel’s misspelled-word field to reflect word.

- (void)updateSpellingPanelWithMisspelledWord:(NSString *)word

Discussion
You are responsible for highlighting word in the document and for extracting it from the document using
the range returned by the checkSpelling:...methods. Pass the empty string as word to have the system
beep, indicating no misspelled words were found.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellChecker.h

userPreferredLanguages
Provides a subset of the available languages to be used for spell checking.

- (NSArray *)userPreferredLanguages

Return Value
An array containing the user’s preferred languages for spell checking. The order is set in the system preferences.

Discussion
If automaticallyIdentifiesLanguages (page 2520) is YES, then text checking will automatically use this
method as appropriate; otherwise, it will use the language set by setLanguage: (page 2531).

Instance Methods 2535
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

The older
checkSpellingOfString:startingAt:language:wrap:inSpellDocumentWithTag:wordCount: (page
2522) and
checkGrammarOfString:startingAt:language:wrap:inSpellDocumentWithTag:details: (page
2520). methods will use the language set by setLanguage: (page 2531), if they are called with a nil language
argument.

Availability
Available in Mac OS X v10.6 and later.

See Also
– availableLanguages (page 2520)

Declared In
NSSpellChecker.h

userQuotesArrayForLanguage:
Returns the default values for quote replacement.

- (NSArray *)userQuotesArrayForLanguage:(NSString *)language

Parameters
language

The language for quote replacement.

Return Value
An array of quote replacements used by the NSTextCheckingQuotesKey (page 2537) key-value pair.

Availability
Available in Mac OS X v10.6 and later.

See Also
– userReplacementsDictionary (page 2536)

Declared In
NSSpellChecker.h

userReplacementsDictionary
Returns the dictionary used when replacing words.

- (NSDictionary *)userReplacementsDictionary

Return Value
The dictionary.

Discussion
The key-value pairs in this dictionary are used by theNSTextCheckingQuotesKey (page 2537) when replacing
characters and words.

Availability
Available in Mac OS X v10.6 and later.

2536 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

See Also
– userQuotesArrayForLanguage: (page 2536)

Declared In
NSSpellChecker.h

Constants

Spell Checking Option Dictionary Keys
The constants are optional keys that can be used in the options dictionary parameter of the
checkString:range:types:options:inSpellDocumentWithTag:orthography:wordCount: (page
2523), requestCheckingOfString:range:types:options:inSpellDocumentWithTag:
completionHandler: (page 2529), andmenuForResult:string:options:atLocation:inView: (page
2528) methods.

NSString *NSTextCheckingOrthographyKey;
NSString *NSTextCheckingQuotesKey;
NSString *NSTextCheckingReplacementsKey;
NSString *NSTextCheckingReferenceDateKey;
NSString *NSTextCheckingReferenceTimeZoneKey;
NSString *NSTextCheckingDocumentURLKey;
NSString *NSTextCheckingDocumentTitleKey;
NSString *NSTextCheckingDocumentAuthorKey;

Constants
NSTextCheckingOrthographyKey

An NSOrthography instance indicating an orthography to be used as a starting point for orthography
checking, or as the orthography if orthography checking is not enabled.

Available in Mac OS X v10.6 and later.

Declared in NSSpellChecker.h.

NSTextCheckingQuotesKey
An NSArray containing four strings to be used with NSTextCheckingTypeQuote (opening double
quote, closing double quote, opening single quote, and closing single quote in that order); if not
specified, values will be taken from user's preferences.

Available in Mac OS X v10.6 and later.

Declared in NSSpellChecker.h.

NSTextCheckingReplacementsKey
An NSDictionary containing replacements to be used with NSTextCheckingTypeReplacement; if not
specified, values will be taken from user's preferences.

Available in Mac OS X v10.6 and later.

Declared in NSSpellChecker.h.

NSTextCheckingReferenceDateKey
An NSDate to be associated with the document, used as a referent for relative dates; if not specified,
the current date will be used.

Available in Mac OS X v10.6 and later.

Declared in NSSpellChecker.h.

Constants 2537
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

NSTextCheckingReferenceTimeZoneKey
An NSTimeZone to be associated with the document, used as a reference for dates without time
zones; if not specified, the current time zone will be used.

Available in Mac OS X v10.6 and later.

Declared in NSSpellChecker.h.

NSTextCheckingDocumentURLKey
An NSURL to be associated with the document.

Available in Mac OS X v10.6 and later.

Declared in NSSpellChecker.h.

NSTextCheckingDocumentTitleKey
An NSString containing the title to be associated with the document.

Available in Mac OS X v10.6 and later.

Declared in NSSpellChecker.h.

NSTextCheckingDocumentAuthorKey
An NSString containing the name of an author to be associated with the document

Available in Mac OS X v10.6 and later.

Declared in NSSpellChecker.h.

2538 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 128

NSSpellChecker Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSSplitView.h

Companion guides Scroll View Programming Guide for Cocoa
View Programming Guide

Related sample code ClipboardViewer
CoreAnimationText
MyPhoto
QTMetadataEditor
SourceView

Overview

An NSSplitView object stacks several subviews within one view so that the user can change their relative
sizes. By default, the split bars between the views are horizontal, so the views are one on top of the other.

Divider indices are zero-based, with the topmost (in horizontal split views) or leftmost (vertical) divider having
an index of 0.

Tasks

Managing Subviews

– adjustSubviews (page 2541)
Adjusts the sizes of the receiver’s subviews so they (plus the dividers) fill the receiver.

– isSubviewCollapsed: (page 2544)
Returns whether the specified view is collapsed.

Overview 2539
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

Managing Split View Orientation

– isVertical (page 2545)
Returns whether the split bars are vertical.

– setVertical: (page 2548)
Sets whether the split bars are vertical.

Assigning a Delegate

– delegate (page 2542)
Returns the receiver’s delegate.

– setDelegate: (page 2547)
Sets the receiver’s delegate.

Configuring and Drawing View Dividers

– setDividerStyle: (page 2547)
Sets the style of divider drawn between subviews.

– dividerStyle (page 2543)
Returns the style of the divider drawn between subviews.

– dividerThickness (page 2543)
Returns the thickness of the divider.

– dividerColor (page 2542)
Return the color of the dividers that the split view is drawing between subviews.

– drawDividerInRect: (page 2543)
Draws the divider between two of the receiver’s subviews.

Saving Subview Positions

– setAutosaveName: (page 2546)
Sets the name under which receiver’s divider position is automatically saved.

– autosaveName (page 2541)
Returns the name under which receiver’s divider position is automatically saved.

Configuring Pane Splitters

– isPaneSplitter (page 2544) Deprecated in Mac OS X v10.6
Returns YES if the receiver’s splitter is a bar that goes across the split view. Returns NO if the splitter
is a thumb on the regular background pattern. (Deprecated. This functionality is no longer relevant
and there is no alternative method.)

– setIsPaneSplitter: (page 2547) Deprecated in Mac OS X v10.6
Sets the type of splitter. (Deprecated. This functionality is no longer relevant and there is no alternative
method.)

2540 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

Constraining Split Position

– minPossiblePositionOfDividerAtIndex: (page 2546)
Returns the minimum possible position of the divider at the specified index.

– maxPossiblePositionOfDividerAtIndex: (page 2545)
Returns the maximum possible position of the divider at the specified index.

– setPosition:ofDividerAtIndex: (page 2548)
Sets the position of the divider at the specified index.

Instance Methods

adjustSubviews
Adjusts the sizes of the receiver’s subviews so they (plus the dividers) fill the receiver.

- (void)adjustSubviews

Discussion
The subviews are resized proportionally; the size of a subview relative to the other subviews doesn’t change.

In Mac OS X v10.5 and earlier adjustSubviews did not invalidate the split view’s cursor. This made it difficult
to correctly animate divider positioning by sending setFrameSize: (page 3221) to the animator (page 3556)
proxy of the subviews on either side of the divider and letting adjustSubviews (page 2541) to be invoked
repeatedly during the animation. In Mac OS X v10.6 and later adjustSubviews (page 2541) now invalidates
its cursor so the cursor over the divider is always correct during and after such an animation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 2547)
– setFrame: (page 3218) (NSView)

Related Sample Code
ClipboardViewer
MyPhoto
PDFKitLinker2

Declared In
NSSplitView.h

autosaveName
Returns the name under which receiver’s divider position is automatically saved.

- (NSString *)autosaveName

Return Value
The name used to save the receiver’s state.

Instance Methods 2541
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAutosaveName: (page 2546)

Declared In
NSSplitView.h

delegate
Returns the receiver’s delegate.

- (id < NSSplitViewDelegate >)delegate

Return Value
The receiver’s delegate object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 2547)

Declared In
NSSplitView.h

dividerColor
Return the color of the dividers that the split view is drawing between subviews.

- (NSColor *)dividerColor

Return Value
The color of the divider drawn between the subviews.

Discussion
The default implementation of this method returns clearColor (page 668) when dividerStyle (page 2543)
returns NSSplitViewDividerStyleThick (page 2549) or when dividerStyle (page 2543) returns
NSSplitViewDividerStylePaneSplitter (page 2549) and the receiver is in a textured window. All other
thin dividers are drawn with a color that looks good between two white panes.

You can override this method to change the color of dividers.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSplitView.h

2542 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

dividerStyle
Returns the style of the divider drawn between subviews.

- (NSSplitViewDividerStyle)dividerStyle

Return Value
The current divider style. The possible values are described in “Split View Divider Styles” (page 2549).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setDividerStyle: (page 2547)

Declared In
NSSplitView.h

dividerThickness
Returns the thickness of the divider.

- (CGFloat)dividerThickness

Return Value
The thickness of the divider.

Discussion
You can subclass NSSplitView and override this method to change the divider’s size, if necessary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawDividerInRect: (page 2543)

Related Sample Code
SourceView

Declared In
NSSplitView.h

drawDividerInRect:
Draws the divider between two of the receiver’s subviews.

- (void)drawDividerInRect:(NSRect)aRect

Parameters
aRect

The entire divider rectangle in the receiver’s coordinate system, which is flipped.

Instance Methods 2543
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

Discussion
If you override this method and use a custom icon to identify the divider, you may need to change the size
of the divider.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dividerThickness (page 2543)
– compositeToPoint:operation: (page 1342) (NSImage)

Declared In
NSSplitView.h

isPaneSplitter
Returns YES if the receiver’s splitter is a bar that goes across the split view. Returns NO if the splitter is a thumb
on the regular background pattern. (Deprecated in Mac OS X v10.6. This functionality is no longer relevant
and there is no alternative method.)

- (BOOL)isPaneSplitter

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– setIsPaneSplitter: (page 2547)

Declared In
NSSplitView.h

isSubviewCollapsed:
Returns whether the specified view is collapsed.

- (BOOL)isSubviewCollapsed:(NSView *)subview

Parameters
subview

The subview in the splitview.

Return Value
YES if subview is in a collapsed state, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSplitView.h

2544 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

isVertical
Returns whether the split bars are vertical.

- (BOOL)isVertical

Return Value
YES if the split bars are vertical (subviews are side by side), NO if they are horizontal (views are one on top of
the other).

Discussion
By default, split bars are vertical.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setVertical: (page 2548)

Declared In
NSSplitView.h

maxPossiblePositionOfDividerAtIndex:
Returns the maximum possible position of the divider at the specified index.

- (CGFloat)maxPossiblePositionOfDividerAtIndex:(NSInteger)dividerIndex

Parameters
dividerIndex

The index of the divider.

Return Value
A CGFloat specifying the maximum possible position of the divider.

Discussion
The position is "possible" in that it is dictated by the bounds of the receiver and the current position of other
dividers. "Allowable" positions are those that result from letting the delegate apply constraints to the possible
positions.

You can invoke this method to determine the range of values that can be usefully passed to
setPosition:ofDividerAtIndex: (page 2548).

You can also invoke it from delegate methods like
splitView:constrainSplitPosition:ofSubviewAt: (page 3813) to implement relatively complex
behaviors that depend on the current state of the split view.

The results of invoking this method whenadjustSubviews (page 2541) has not been invoked, and the subview
frames are invalid, is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSplitView.h

Instance Methods 2545
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

minPossiblePositionOfDividerAtIndex:
Returns the minimum possible position of the divider at the specified index.

- (CGFloat)minPossiblePositionOfDividerAtIndex:(NSInteger)dividerIndex

Parameters
dividerIndex

The index of the divider.

Return Value
A CGFloat specifying the minimum possible position of the divider.

Discussion
The position is "possible" in that it is dictated by the bounds of the receiver and the current position of other
dividers. "Allowable" positions are those that result from letting the delegate apply constraints to the possible
positions.

You can invoke this method to determine the range of values that can be usefully passed to
setPosition:ofDividerAtIndex: (page 2548).

You can also invoke it from delegate methods like
splitView:constrainSplitPosition:ofSubviewAt: (page 3813) to implement relatively complex
behaviors that depend on the current state of the split view.

The results of invoking this method whenadjustSubviews (page 2541) has not been invoked, and the subview
frames are invalid, is undefined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSSplitView.h

setAutosaveName:
Sets the name under which receiver’s divider position is automatically saved.

- (void)setAutosaveName:(NSString *)autosaveName

Parameters
autosaveName

The name used to save the receiver’s state.

Discussion
If this value is nil or the string is empty no autosaving is done.

Availability
Available in Mac OS X v10.5 and later.

See Also
– autosaveName (page 2541)

Declared In
NSSplitView.h

2546 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSSplitViewDelegate >)theDelegate

Parameters
theDelegate

The receiver’s delegate object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 2542)

Declared In
NSSplitView.h

setDividerStyle:
Sets the style of divider drawn between subviews.

- (void)setDividerStyle:(NSSplitViewDividerStyle)dividerStyle

Parameters
dividerStyle

The divider style. Possible values are described in “Split View Divider Styles” (page 2549).

Availability
Available in Mac OS X v10.5 and later.

See Also
– dividerStyle (page 2543)

Declared In
NSSplitView.h

setIsPaneSplitter:
Sets the type of splitter. (Deprecated in Mac OS X v10.6. This functionality is no longer relevant and there is
no alternative method.)

- (void)setIsPaneSplitter:(BOOL)flag

Parameters
flag

YES if the receiver’s splitter is a bar that goes across the split view. NO if the splitter is a thumb on the
regular background pattern.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Instance Methods 2547
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

See Also
– isPaneSplitter (page 2544)

Declared In
NSSplitView.h

setPosition:ofDividerAtIndex:
Sets the position of the divider at the specified index.

- (void)setPosition:(CGFloat)position ofDividerAtIndex:(NSInteger)dividerIndex

Parameters
position

The position of the divider

dividerIndex
The index of the divider.

Discussion
The default implementation of this method behaves as if the user were attempting to drag the divider to
the proposed position, so the constraints imposed by the delegate are applied and one of the views adjacent
to the divider may be collapsed.

This method is not invoked by NSSplitView itself.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
ClipboardViewer

Declared In
NSSplitView.h

setVertical:
Sets whether the split bars are vertical.

- (void)setVertical:(BOOL)flag

Parameters
flag

If YES, the split bars are vertical (views are side by side); if NO, they’re horizontal (views are one on
top of the other).

Discussion
Split bars are horizontal by default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isVertical (page 2545)

2548 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

Declared In
NSSplitView.h

Constants

Split View Divider Styles
These constants specify the possible divider styles used by dividerStyle (page 2543) and
setDividerStyle: (page 2547).

enum {
 NSSplitViewDividerStyleThick = 1,
 NSSplitViewDividerStyleThin = 2,
 NSSplitViewDividerStylePaneSplitter = 3,
};
typedef NSInteger NSSplitViewDividerStyle;

Constants
NSSplitViewDividerStyleThick

A thick style divider is displayed between subviews. This is the default.

Available in Mac OS X v10.5 and later.

Declared in NSSplitView.h.

NSSplitViewDividerStyleThin
A thin style divider is displayed between subviews.

Available in Mac OS X v10.5 and later.

Declared in NSSplitView.h.

NSSplitViewDividerStylePaneSplitter
A thick style divider with a 3D appearance is displayed between subviews.

Available in Mac OS X v10.6 and later.

Declared in NSSplitView.h.

Notifications

NSSplitView declares and posts the following notifications. In addition, it posts notifications declared by its
superclass, NSView. See the NSView class specification for more information.

NSSplitViewDidResizeSubviewsNotification
Posted after an NSSplitView changes the sizes of some or all of its subviews. The notification object is the
NSSplitView that resized its subviews.

Constants 2549
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

Note: In Mac OS X v10.5 and later if the notification is sent because the user is dragging a divider, the
userInfo dictionary contains a key @"NSSplitViewDividerIndex" containing an NSNumber-wrapped
NSInteger that is the index of the divider being dragged. Earlier versions of Mac OS X do not return a user
info dictionary in any situation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– splitViewDidResizeSubviews: (page 3817) (NSSplitViewDelegate Protocol)

Declared In
NSSplitView.h

NSSplitViewWillResizeSubviewsNotification
Posted before an NSSplitView changes the sizes of some or all of its subviews. The notification object is the
NSSplitView object that is about to resize its subviews.

Note: In Mac OS X v10.5 and later if the notification is sent because the user is dragging a divider, the
userInfo dictionary contains a key @"NSSplitViewDividerIndex" containing an NSInteger-wrapped
NSNumber that is the index of the divider being dragged. Earlier versions of Mac OS X do not return a user
info dictionary in any situation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– splitViewWillResizeSubviews: (page 3817) (NSSplitViewDelegate Protocol)

Declared In
NSSplitView.h

2550 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 129

NSSplitView Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSStatusBar.h

Companion guide Status Bar Programming Topics

Overview

The NSStatusBar class defines an object that manages a collection of NSStatusItem objects displayed
within the system-wide menu bar. A status item can be displayed with text or an icon, can provide a menu
and a target-action message when clicked, or can be a fully customized view that you create.

Use status items sparingly and only if the alternatives (such as a Dock menu, preference pane, or status
window) are not suitable. Because there is limited space in which to display status items, status items are
not guaranteed to be available at all times. For this reason, do not rely on them being available and always
provide a user preference for hiding your application’s status items to free up space in the menu bar.

Tasks

Getting the System-Wide Instance

+ systemStatusBar (page 2552)
Returns the system-wide status bar located in the menu bar.

Managing Status Items

– statusItemWithLength: (page 2553)
Returns a newly created status item that has been allotted a specified space within the status bar.

– removeStatusItem: (page 2553)
Removes the specified status item from the receiver.

Overview 2551
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 130

NSStatusBar Class Reference

Getting Status-Bar Attributes

– isVertical (page 2552)
Returns whether the receiver has a vertical orientation.

– thickness (page 2553)
Returns the thickness of the status bar.

Class Methods

systemStatusBar
Returns the system-wide status bar located in the menu bar.

+ (NSStatusBar *)systemStatusBar

Return Value
The shared status bar object.

Discussion
The status bar begins at the right side of the menu bar (to the left of Menu Extras and the menu bar clock)
and grows to the left as NSStatusItem objects are added to it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSStatusBar.h

Instance Methods

isVertical
Returns whether the receiver has a vertical orientation.

- (BOOL)isVertical

Return Value
YES if the receiver has a vertical orientation, otherwise NO.

Discussion
The status bar returned by systemStatusBar (page 2552) is horizontal, so it always returns NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSStatusBar.h

2552 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 130

NSStatusBar Class Reference

removeStatusItem:
Removes the specified status item from the receiver.

- (void)removeStatusItem:(NSStatusItem *)item

Parameters
item

The NSStatusItem object to remove.

Discussion
Status items to the left of the specified one in the status bar shift to the right to reclaim its space.

Availability
Available in Mac OS X v10.0 and later.

See Also
– statusItemWithLength: (page 2553)

Declared In
NSStatusBar.h

statusItemWithLength:
Returns a newly created status item that has been allotted a specified space within the status bar.

- (NSStatusItem *)statusItemWithLength:(CGFloat)length

Parameters
length

A constant that specifies whether the status item is of fixed width, or variable width. The valid constants
are described in “Status Bar Item Length” (page 2554).

Return Value
An NSStatusItem object or nil if the item could not be created.

Discussion
The receiver does not retain a reference to the status item, so you need to retain it. Otherwise, the object is
removed from the status bar when it is deallocated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeStatusItem: (page 2553)

Declared In
NSStatusBar.h

thickness
Returns the thickness of the status bar.

- (CGFloat)thickness

Instance Methods 2553
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 130

NSStatusBar Class Reference

Return Value
The thickness of the status bar in pixels.

Discussion
The status bar returned by systemStatusBar (page 2552) has a thickness of 22 pixels, the thickness of the
menu bar.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSStatusBar.h

Constants

Status Bar Item Length
The following constants are used by statusItemWithLength: (page 2553).

#define NSVariableStatusItemLength (-1)
#define NSSquareStatusItemLength (-2)

Constants
NSSquareStatusItemLength

Sets the status item length to the status bar thickness.

Available in Mac OS X v10.0 and later.

Declared in NSStatusBar.h.

NSVariableStatusItemLength
Makes the status item length dynamic, adjusting to the width of its contents.

Available in Mac OS X v10.0 and later.

Declared in NSStatusBar.h.

2554 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 130

NSStatusBar Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSStatusItem.h

Companion guide Status Bar Programming Topics

Overview

The NSStatusItem class represents the individual elements displayed within an NSStatusBar object.
Instances are created by theNSStatusBarmethodstatusItemWithLength: (page 2553), which automatically
adds the new status item to the status bar. The appearance and behavior of the status item are then set
using the various NSStatusItem methods, such as setTitle: (page 2565) and setAction: (page 2561).

Tasks

Getting the Item’s Status Bar

– statusBar (page 2566)
Returns the status bar in which the receiver is displayed.

Configuring the Status Item’s Appearance

– setTitle: (page 2565)
Sets the string that is displayed at the receiver’s position in the status bar.

– title (page 2567)
Returns the string that is displayed at the receiver’s position in the status bar.

– setAttributedTitle: (page 2562)
Sets the attributed string that is displayed at the receiver’s position in the status bar.

– attributedTitle (page 2558)
Returns the attributed string that is displayed at the receiver’s position in the status bar

Overview 2555
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

– setImage: (page 2563)
Sets the image that is displayed at the receiver’s position in the status bar to image.

– image (page 2559)
Returns the image that is displayed at the receiver’s position in the status bar.

– setAlternateImage: (page 2562)
Sets an alternate image to be displayed when a status bar item is highlighted.

– alternateImage (page 2557)
Returns the alternate image that is displayed when a status bar item is highlighted.

– setLength: (page 2564)
Sets the amount of space in the status bar that should be allocated to the receiver.

– length (page 2560)
Returns the amount of space allocated to the receiver within its status bar.

– setHighlightMode: (page 2563)
Sets whether the receiver is highlighted when it is clicked.

– highlightMode (page 2559)
Returns whether the receiver is highlighted when clicked.

– setToolTip: (page 2566)
Sets the tool tip string that is displayed when the cursor pauses over the receiver.

– toolTip (page 2567)
Returns the tool tip string that is displayed when the cursor pauses over the receiver.

Managing the Status Item’s Behavior

– setEnabled: (page 2563)
Sets whether the receiver is enabled to respond to clicks.

– isEnabled (page 2559)
Returns whether the receiver is enabled and responding to clicks.

– setTarget: (page 2565)
Sets the target object to which the receiver’s action message is sent when the receiver is clicked.

– target (page 2567)
Returns the target to which the receiver’s action message is sent when the user clicks the receiver.

– setAction: (page 2561)
Sets the selector that is sent to the receiver’s target when the receiver is clicked.

– action (page 2557)
Returns the selector that is sent to the receiver’s target when the user clicks the receiver.

– setDoubleAction: (page 2562)
Sets the selector that is sent to the receiver’s target when the receiver is double-clicked.

– doubleAction (page 2558)
Returns the selector that is sent to the receiver’s target when the user double-clicks the receiver.

– sendActionOn: (page 2561)
Sets the conditions on which the receiver sends action messages to its target.

– setMenu: (page 2564)
Sets the pull-down menu that is displayed when the receiver is clicked.

2556 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

– menu (page 2560)
Returns the drop-down menu that is displayed when the receiver is clicked.

– popUpStatusItemMenu: (page 2560)
Displays a menu under a custom status bar item.

Managing a Custom View

– setView: (page 2566)
Sets the custom view that is displayed at the receiver’s position in the status bar.

– view (page 2567)
Returns the custom view that is displayed at the receiver’s position in the status bar.

Drawing a Status Item

– drawStatusBarBackgroundInRect:withHighlight: (page 2558)
Draws the menu background pattern for a custom status-bar item in regular or highlight pattern.

Instance Methods

action
Returns the selector that is sent to the receiver’s target when the user clicks the receiver.

- (SEL)action

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAction: (page 2561)
– target (page 2567)

Declared In
NSStatusItem.h

alternateImage
Returns the alternate image that is displayed when a status bar item is highlighted.

- (NSImage *)alternateImage

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAlternateImage: (page 2562)

Instance Methods 2557
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

– image (page 2559)

Declared In
NSStatusItem.h

attributedTitle
Returns the attributed string that is displayed at the receiver’s position in the status bar

- (NSAttributedString *)attributedTitle

Discussion
.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttributedTitle: (page 2562)
– setTitle: (page 2565)
– title (page 2567)

Declared In
NSStatusItem.h

doubleAction
Returns the selector that is sent to the receiver’s target when the user double-clicks the receiver.

- (SEL)doubleAction

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDoubleAction: (page 2562)
– target (page 2567)

Declared In
NSStatusItem.h

drawStatusBarBackgroundInRect:withHighlight:
Draws the menu background pattern for a custom status-bar item in regular or highlight pattern.

- (void)drawStatusBarBackgroundInRect:(NSRect)rect withHighlight:(BOOL)highlight

Parameters
rect

A rectangle defining the area of a custom status-bar item.

2558 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

highlight
YES to draw the background pattern in the standard highlight pattern, NO to not highlight the pattern..

Discussion
You can use this method to help a custom status-bar item emulate the behavior of a standard item.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setView: (page 2566)

Declared In
NSStatusItem.h

highlightMode
Returns whether the receiver is highlighted when clicked.

- (BOOL)highlightMode

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHighlightMode: (page 2563)

Declared In
NSStatusItem.h

image
Returns the image that is displayed at the receiver’s position in the status bar.

- (NSImage *)image

Discussion
Returns nil if an image has not been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImage: (page 2563)
– alternateImage (page 2557)

Declared In
NSStatusItem.h

isEnabled
Returns whether the receiver is enabled and responding to clicks.

Instance Methods 2559
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

- (BOOL)isEnabled

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEnabled: (page 2563)

Declared In
NSStatusItem.h

length
Returns the amount of space allocated to the receiver within its status bar.

- (CGFloat)length

Discussion
If the status bar is horizontal, the return value is the width of the status item. Besides a physical length, the
return value may be NSSquareStatusItemLength or NSVariableStatusItemLength (see NSStatusBar
“Constants” (page 2554)), if the status item size is either determined by the status bar thickness or allowed to
vary according to the status item’s true size, respectively.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLength: (page 2564)
– statusItemWithLength: (page 2553) (NSStatusBar)

Declared In
NSStatusItem.h

menu
Returns the drop-down menu that is displayed when the receiver is clicked.

- (NSMenu *)menu

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMenu: (page 2564)

Declared In
NSStatusItem.h

popUpStatusItemMenu:
Displays a menu under a custom status bar item.

2560 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

- (void)popUpStatusItemMenu:(NSMenu *)menu

Parameters
menu

The NSMenu object to display.

Discussion
You can use this method to cause a popup menu to appear under a custom status bar item when the user
clicks the item. Note that the view of the receiver must exist (that is, it must not be nil).

Availability
Available in Mac OS X v10.3 and later.

See Also
– setMenu: (page 2564)
– setView: (page 2566)

Declared In
NSStatusItem.h

sendActionOn:
Sets the conditions on which the receiver sends action messages to its target.

- (NSInteger)sendActionOn:(NSInteger)mask

Parameters
mask

Takes one or more of the following bit masks described in “Constants” (page 1091) section of the
NSEvent class reference:NSLeftMouseUpMask,NSLeftMouseDownMask,NSLeftMouseDraggedMask,
and NSPeriodicMask. Bitwise-OR multiple bit masks.

Return Value
A bit mask containing the previous settings. This bit mask uses the same values as specified in the mask
parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSStatusItem.h

setAction:
Sets the selector that is sent to the receiver’s target when the receiver is clicked.

- (void)setAction:(SEL)action

Discussion
If the receiver has a menu set, action is not sent to the target when the receiver is clicked; instead, the click
causes the menu to appear.

See Action Messages for additional information on action messages.

Instance Methods 2561
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 2557)
– setMenu: (page 2564)

Declared In
NSStatusItem.h

setAlternateImage:
Sets an alternate image to be displayed when a status bar item is highlighted.

- (void)setAlternateImage:(NSImage *)image

Availability
Available in Mac OS X v10.3 and later.

See Also
– alternateImage (page 2557)
– setImage: (page 2563)

Declared In
NSStatusItem.h

setAttributedTitle:
Sets the attributed string that is displayed at the receiver’s position in the status bar.

- (void)setAttributedTitle:(NSAttributedString *)title

Discussion
If an image is also set, the title appears to the right of the image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– attributedTitle (page 2558)
– setImage: (page 2563)
– setTitle: (page 2565)

Declared In
NSStatusItem.h

setDoubleAction:
Sets the selector that is sent to the receiver’s target when the receiver is double-clicked.

- (void)setDoubleAction:(SEL)action

2562 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

Discussion
For the method to have any effect, the receiver’s action and target must be set to the class in which the
selector is declared. See Action Messages for additional information on action messages.

Availability
Available in Mac OS X v10.4 and later.

See Also
– doubleAction (page 2558)

Declared In
NSStatusItem.h

setEnabled:
Sets whether the receiver is enabled to respond to clicks.

- (void)setEnabled:(BOOL)flag

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEnabled (page 2559)

Declared In
NSStatusItem.h

setHighlightMode:
Sets whether the receiver is highlighted when it is clicked.

- (void)setHighlightMode:(BOOL)flag

Discussion
The default is NO, which means the receiver isn’t highlighted when it is clicked.

Availability
Available in Mac OS X v10.0 and later.

See Also
– highlightMode (page 2559)

Declared In
NSStatusItem.h

setImage:
Sets the image that is displayed at the receiver’s position in the status bar to image.

- (void)setImage:(NSImage *)image

Instance Methods 2563
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

Discussion
If a title is also set, the image appears to the left of the title.

Availability
Available in Mac OS X v10.0 and later.

See Also
– image (page 2559)
– setAlternateImage: (page 2562)
– setAttributedTitle: (page 2562)
– setTitle: (page 2565)

Declared In
NSStatusItem.h

setLength:
Sets the amount of space in the status bar that should be allocated to the receiver.

- (void)setLength:(CGFloat)len

Parameters
len

If the status bar is horizontal, len is the horizontal space to allocate. In addition to a fixed length, len
can be NSSquareStatusItemLength or NSVariableStatusItemLength (see “Constants” (page
2554) in the NSStatusBar class reference) to allow the status bar to allocate (and adjust) the space
according to either the status bar’s thickness or the status item’s true size.

Availability
Available in Mac OS X v10.0 and later.

See Also
– length (page 2560)
– statusItemWithLength: (page 2553) (NSStatusBar)

Declared In
NSStatusItem.h

setMenu:
Sets the pull-down menu that is displayed when the receiver is clicked.

- (void)setMenu:(NSMenu *)menu

Parameters
menu

The NSMenu object to display.

Discussion
When set, the receiver’s single click action behavior is not used. The menu can be removed by setting menu
to nil.

2564 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– menu (page 2560)
– setAction: (page 2561)
– setTarget: (page 2565)
– popUpStatusItemMenu: (page 2560)

Declared In
NSStatusItem.h

setTarget:
Sets the target object to which the receiver’s action message is sent when the receiver is clicked.

- (void)setTarget:(id)target

Discussion
If the receiver has a menu set, the action is not sent to target when the receiver is clicked; instead, the click
causes the menu to appear.

Availability
Available in Mac OS X v10.0 and later.

See Also
– target (page 2567)
– setMenu: (page 2564)

Declared In
NSStatusItem.h

setTitle:
Sets the string that is displayed at the receiver’s position in the status bar.

- (void)setTitle:(NSString *)title

Discussion
If an image is also set, the title appears to the right of the image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 2567)
– setAttributedTitle: (page 2562)
– setImage: (page 2563)

Declared In
NSStatusItem.h

Instance Methods 2565
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

setToolTip:
Sets the tool tip string that is displayed when the cursor pauses over the receiver.

- (void)setToolTip:(NSString *)toolTip

Parameters
toolTip

A string that functions as the title of the status item.

Availability
Available in Mac OS X v10.0 and later.

See Also
– toolTip (page 2567)

Declared In
NSStatusItem.h

setView:
Sets the custom view that is displayed at the receiver’s position in the status bar.

- (void)setView:(NSView *)view

Parameters
view

The NSView object representing the custom view.

Discussion
Setting a custom view overrides all the other appearance and behavior settings defined by NSStatusItem.
The custom view is responsible for drawing itself and providing its own behaviors, such as processing mouse
clicks and sending action messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– view (page 2567)

Declared In
NSStatusItem.h

statusBar
Returns the status bar in which the receiver is displayed.

- (NSStatusBar *)statusBar

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSStatusItem.h

2566 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

target
Returns the target to which the receiver’s action message is sent when the user clicks the receiver.

- (id)target

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTarget: (page 2565)
– action (page 2557)

Declared In
NSStatusItem.h

title
Returns the string that is displayed at the receiver’s position in the status bar.

- (NSString *)title

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttributedTitle: (page 2562)
– setTitle: (page 2565)

Declared In
NSStatusItem.h

toolTip
Returns the tool tip string that is displayed when the cursor pauses over the receiver.

- (NSString *)toolTip

Availability
Available in Mac OS X v10.0 and later.

See Also
– setToolTip: (page 2566)

Declared In
NSStatusItem.h

view
Returns the custom view that is displayed at the receiver’s position in the status bar.

- (NSView *)view

Instance Methods 2567
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setView: (page 2566)

Declared In
NSStatusItem.h

2568 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 131

NSStatusItem Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSStepper.h

Companion guide Steppers

Related sample code ButtonMadness
Quartz 2D Transformer
SampleScannerApp

Overview

A stepper consists of two small arrows that can increment and decrement a value that appears beside it,
such as a date or time. The illustration below shows a stepper to the right of a text field, which would show
the stepper’s value.

The NSStepper class uses the NSStepperCell class to implement its user interface.

Tasks

Specifying Value Range

– maxValue (page 2571)
Returns the maximum value for the receiver.

– setMaxValue: (page 2572)
Sets the maximum value for the receiver

Overview 2569
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 132

NSStepper Class Reference

– minValue (page 2571)
Returns the minimum value for the receiver.

– setMinValue: (page 2573)
Sets the minimum value for the receiver

– increment (page 2570)
Returns the amount by which the receiver will change per increment (decrement).

– setIncrement: (page 2572)
Sets the amount by which the receiver will change per increment (decrement).

Specifying How the Stepper Responds

– autorepeat (page 2570)
Returns a Boolean value indicating how the receiver responds to mouse events.

– setAutorepeat: (page 2572)
Sets how the receiver responds to mouse events.

– valueWraps (page 2573)
Returns a Boolean value indicating whether the receiver wraps around the minimum and maximum
values.

– setValueWraps: (page 2573)
Sets whether the receiver wraps around the minimum and maximum values.

Instance Methods

autorepeat
Returns a Boolean value indicating how the receiver responds to mouse events.

- (BOOL)autorepeat

Return Value
YES if the first mouse down does one increment (or decrement) and, after a delay of 0.5 seconds, increments
(or decrements) at a rate of ten times per second. NO if the receiver does one increment (decrement) on a
mouse up. The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutorepeat: (page 2572)

Declared In
NSStepper.h

increment
Returns the amount by which the receiver will change per increment (decrement).

2570 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 132

NSStepper Class Reference

- (double)increment

Return Value
The amount by which the receiver changes with each increment or decrement. The default is 1.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIncrement: (page 2572)

Declared In
NSStepper.h

maxValue
Returns the maximum value for the receiver.

- (double)maxValue

Return Value
The maximum value. The default is 59.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaxValue: (page 2572)

Declared In
NSStepper.h

minValue
Returns the minimum value for the receiver.

- (double)minValue

Return Value
The minimum value. The default is 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMinValue: (page 2573)

Declared In
NSStepper.h

Instance Methods 2571
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 132

NSStepper Class Reference

setAutorepeat:
Sets how the receiver responds to mouse events.

- (void)setAutorepeat:(BOOL)autorepeat

Parameters
autorepeat

If YES, the first mouse down does one increment (decrement) and, after a delay of 0.5 seconds,
increments (decrements) at a rate of ten times per second. If autorepeat is NO, the receiver does
one increment (decrement) on a mouse up.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autorepeat (page 2570)

Declared In
NSStepper.h

setIncrement:
Sets the amount by which the receiver will change per increment (decrement).

- (void)setIncrement:(double)increment

Parameters
increment

The amount by which the receiver changes with each decrement or increment.

Availability
Available in Mac OS X v10.0 and later.

See Also
– increment (page 2570)

Declared In
NSStepper.h

setMaxValue:
Sets the maximum value for the receiver

- (void)setMaxValue:(double)maxValue

Parameters
maxValue

The new maximum value.

Availability
Available in Mac OS X v10.0 and later.

2572 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 132

NSStepper Class Reference

See Also
– maxValue (page 2571)

Declared In
NSStepper.h

setMinValue:
Sets the minimum value for the receiver

- (void)setMinValue:(double)minValue

Parameters
minValue

The new minimum value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minValue (page 2571)

Declared In
NSStepper.h

setValueWraps:
Sets whether the receiver wraps around the minimum and maximum values.

- (void)setValueWraps:(BOOL)valueWraps

Parameters
valueWraps

IfYES, then when incrementing or decrementing, the value wraps around to the minimum or maximum.
If valueWraps is NO, the value stays pinned at the minimum or maximum.

Availability
Available in Mac OS X v10.0 and later.

See Also
– valueWraps (page 2573)

Declared In
NSStepper.h

valueWraps
Returns a Boolean value indicating whether the receiver wraps around the minimum and maximum values.

- (BOOL)valueWraps

Instance Methods 2573
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 132

NSStepper Class Reference

Return Value
YES if, when incrementing or decrementing, the value wraps around to the minimum or maximum. NO if the
value stays pinned at the minimum or maximum. The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setValueWraps: (page 2573)

Declared In
NSStepper.h

2574 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 132

NSStepper Class Reference

Inherits from NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSStepperCell.h

Companion guide Steppers

Overview

An NSStepperCell object controls the appearance and behavior of an NSStepper object.

Tasks

Specifying Value Range

– maxValue (page 2577)
Returns the maximum value for the receiver.

– setMaxValue: (page 2578)
Sets the maximum value for the receiver.

– minValue (page 2577)
Returns the minimum value for the receiver.

– setMinValue: (page 2578)
Sets the minimum value for the receiver.

– increment (page 2576)
Returns the amount by which the receiver will change per increment or decrement.

– setIncrement: (page 2578)
Sets the amount by which the receiver will change per increment or decrement.

Overview 2575
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 133

NSStepperCell Class Reference

Specifying How Stepper Cell Responds

– autorepeat (page 2576)
Returns a Boolean value indicating how the receiver responds to mouse events.

– setAutorepeat: (page 2577)
Sets how the receiver responds to mouse events.

– valueWraps (page 2579)
Returns a Boolean value indicating whether the receiver wraps around the minimum and maximum
values.

– setValueWraps: (page 2579)
Sets whether the receiver wraps around the minimum and maximum values.

Instance Methods

autorepeat
Returns a Boolean value indicating how the receiver responds to mouse events.

- (BOOL)autorepeat

Return Value
If YES, the first mouse down will do one increment (decrement), and, after a delay of 0.5 seconds, will increment
(decrement) at a rate of ten times per second. If NO, the receiver will do one increment (decrement) on a
mouse up. The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutorepeat: (page 2577)

Declared In
NSStepperCell.h

increment
Returns the amount by which the receiver will change per increment or decrement.

- (double)increment

Return Value
The amount by which the receiver changes. The default is 1.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIncrement: (page 2578)

2576 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 133

NSStepperCell Class Reference

Declared In
NSStepperCell.h

maxValue
Returns the maximum value for the receiver.

- (double)maxValue

Return Value
The maximum value. The default is 59.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaxValue: (page 2578)

Declared In
NSStepperCell.h

minValue
Returns the minimum value for the receiver.

- (double)minValue

Return Value
The minimum value. The default is 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMinValue: (page 2578)

Declared In
NSStepperCell.h

setAutorepeat:
Sets how the receiver responds to mouse events.

- (void)setAutorepeat:(BOOL)autorepeat

Parameters
autorepeat

If YES, the first mouse down will do one increment (decrement) and, after a delay of 0.5 seconds, will
increment (decrement) at a rate of ten times per second. If autorepeat is NO, the receiver will do
one increment (decrement) on a mouse up.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2577
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 133

NSStepperCell Class Reference

See Also
– autorepeat (page 2576)

Declared In
NSStepperCell.h

setIncrement:
Sets the amount by which the receiver will change per increment or decrement.

- (void)setIncrement:(double)increment

Parameters
increment

The amount by which the receiver changes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– increment (page 2576)

Declared In
NSStepperCell.h

setMaxValue:
Sets the maximum value for the receiver.

- (void)setMaxValue:(double)maxValue

Parameters
maxValue

The new maximum value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxValue (page 2577)

Declared In
NSStepperCell.h

setMinValue:
Sets the minimum value for the receiver.

- (void)setMinValue:(double)minValue

2578 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 133

NSStepperCell Class Reference

Parameters
minValue

The new minimum value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minValue (page 2577)

Declared In
NSStepperCell.h

setValueWraps:
Sets whether the receiver wraps around the minimum and maximum values.

- (void)setValueWraps:(BOOL)valueWraps

Parameters
valueWraps

If YES, then when incrementing or decrementing, the value will wrap around to the minimum or
maximum. If valueWraps is NO, the value will stay pinned at the minimum or maximum.

Availability
Available in Mac OS X v10.0 and later.

See Also
– valueWraps (page 2579)

Declared In
NSStepperCell.h

valueWraps
Returns a Boolean value indicating whether the receiver wraps around the minimum and maximum values.

- (BOOL)valueWraps

Return Value
YES if, when incrementing or decrementing, the value wraps around to the minimum or maximum. NO if the
value stays pinned at the minimum or maximum. The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setValueWraps: (page 2579)

Declared In
NSStepperCell.h

Instance Methods 2579
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 133

NSStepperCell Class Reference

2580 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 133

NSStepperCell Class Reference

Inherits from NSObject

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSStringDrawing.h

Companion guides String Programming Guide
Attributed String Programming Guide

Overview

The Application Kit adds three methods to the NSString class to support drawing string objects directly in
anNSView instance:drawAtPoint:withAttributes: (page 2582),drawInRect:withAttributes: (page
2583), and sizeWithAttributes: (page 2585).

The Application Kit adds similar methods to the NSAttributedString class, described in NSAttributedString
Application Kit Additions Reference. The two drawing methods draw a string object with a single set of attributes
that apply to the entire string. To draw a string with multiple attributes, such as multiple text fonts, you must
use an attributed string.

Tasks

Drawing String Objects

– drawAtPoint:withAttributes: (page 2582)
Draws the receiver with the font and other display characteristics of the given attributes, at the
specified point in the currently focused view.

– drawInRect:withAttributes: (page 2583)
Draws the receiver with the font and other display characteristics of the given attributes, within the
specified rectangle in the currently focused NSView.

– drawWithRect:options:attributes: (page 2584)
Draws the receiver with the specified options and other display characteristics of the given attributes,
within the specified rectangle in the current graphics context.

– sizeWithAttributes: (page 2585)
Returns the bounding box size the receiver occupies when drawn with the given attributes.

Overview 2581
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 134

NSString Application Kit Additions Reference

Getting the Bounding Rect of Rendered Strings

– boundingRectWithSize:options:attributes: (page 2582)
Calculates and returns the bounding rect for the receiver drawn using the given options and display
characteristics, within the specified rectangle in the current graphics context.

Instance Methods

boundingRectWithSize:options:attributes:
Calculates and returns the bounding rect for the receiver drawn using the given options and display
characteristics, within the specified rectangle in the current graphics context.

- (NSRect)boundingRectWithSize:(NSSize)size options:(NSStringDrawingOptions)options
attributes:(NSDictionary *)attributes

Parameters
size

The size of the rectangle to draw in.

options
String drawing options.

attributes
A dictionary of text attributes to be applied to the string. These are the same attributes that can be
applied to an NSAttributedString object, but in the case of NSString objects, the attributes
apply to the entire string, rather than ranges within the string.

Return Value
The bounding rect for the receiver drawn using the given options and display characteristics. The rect origin
returned from this method is the first glyph origin.

Availability
Available in Mac OS X v10.4 and later.

See Also
drawInRect:withAttributes: (page 2583)

Declared In
NSStringDrawing.h

drawAtPoint:withAttributes:
Draws the receiver with the font and other display characteristics of the given attributes, at the specified
point in the currently focused view.

- (void)drawAtPoint:(NSPoint)aPoint withAttributes:(NSDictionary *)attributes

2582 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 134

NSString Application Kit Additions Reference

Parameters
aPoint

The origin for the bounding box for drawing the string. If the focused view is flipped, the origin is the
upper-left corner of the drawing bounding box; otherwise, the origin is the lower-left corner.

attributes
A dictionary of text attributes to be applied to the string. These are the same attributes that can be
applied to an NSAttributedString object, but in the case of NSString objects, the attributes
apply to the entire string, rather than ranges within the string.

Discussion
The width (height for vertical layout) of the rendering area is unlimited, unlike
drawInRect:withAttributes: (page 2583), which uses a bounding rectangle. As a result, this method
renders the text in a single line.

You should only invoke this method when an NSView object has focus.

Availability
Available in Mac OS X v10.0 and later.

See Also
drawInRect:withAttributes: (page 2583) (NSView)
drawWithRect:options:attributes: (page 2584)
lockFocus (page 3187)

Related Sample Code
CIVideoDemoGL
ClockControl
CocoaVideoFrameToGWorld
FunHouse
SpecialPictureProtocol

Declared In
NSStringDrawing.h

drawInRect:withAttributes:
Draws the receiver with the font and other display characteristics of the given attributes, within the specified
rectangle in the currently focused NSView.

- (void)drawInRect:(NSRect)aRect withAttributes:(NSDictionary *)attributes

Parameters
aRect

The rectangle in which to draw the string.

attributes
A dictionary of text attributes to be applied to the string. These are the same attributes that can be
applied to an NSAttributedString object, but in the case of NSString objects, the attributes
apply to the entire string, rather than ranges within the string.

Discussion
The rendering area is bounded by aRect, unlike drawAtPoint:withAttributes: (page 2582), which has
an unlimited width. As a result, this method renders the text in multiple lines.

Instance Methods 2583
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 134

NSString Application Kit Additions Reference

You should only invoke this method when an NSView has focus.

Availability
Available in Mac OS X v10.0 and later.

See Also
drawAtPoint:withAttributes: (page 2582) (NSView)
drawWithRect:options:attributes: (page 2584)
lockFocus (page 3187)

Related Sample Code
FilterDemo
SampleRaster
SurfaceVertexProgram
VertexPerformanceDemo
Worm

Declared In
NSStringDrawing.h

drawWithRect:options:attributes:
Draws the receiver with the specified options and other display characteristics of the given attributes, within
the specified rectangle in the current graphics context.

- (void)drawWithRect:(NSRect)rect options:(NSStringDrawingOptions)options
attributes:(NSDictionary *)attributes

Parameters
rect

The rectangle in which to draw the string.

options
String drawing options.

attributes
A dictionary of text attributes to be applied to the string. These are the same attributes that can be
applied to an NSAttributedString object, but in the case of NSString objects, the attributes
apply to the entire string, rather than ranges within the string.

Discussion
The rect argument's origin field specifies the rendering origin. The point is interpreted as the baseline
origin by default. With NSStringDrawingUsesLineFragmentOrigin, it is interpreted as the upper left
corner of the line fragment rect. The size field specifies the text container size. The width part of the size
field specifies the maximum line fragment width if larger than 0.0. The height defines the maximum size
that can be occupied with text if larger than 0.0 and NSStringDrawingUsesLineFragmentOrigin is
specified. If NSStringDrawingUsesLineFragmentOrigin is not specified, height is ignored and considered
to be single-line rendering (NSLineBreakByWordWrapping and NSLineBreakByCharWrapping are treated
as NSLineBreakByClipping).

You should only invoke this method when there is a current graphics context.

Availability
Available in Mac OS X v10.4 and later.

2584 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 134

NSString Application Kit Additions Reference

See Also
drawAtPoint:withAttributes: (page 2582) (NSView)
drawInRect:withAttributes: (page 2583)
lockFocus (page 3187)

Declared In
NSStringDrawing.h

sizeWithAttributes:
Returns the bounding box size the receiver occupies when drawn with the given attributes.

- (NSSize)sizeWithAttributes:(NSDictionary *)attributes

Parameters
attributes

A dictionary of text attributes to be applied to the string. These are the same attributes that can be
applied to an NSAttributedString object, but in the case of NSString objects, the attributes
apply to the entire string, rather than ranges within the string.

Return Value
The bounding box size the receiver occupies when drawn with attributes.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIVideoDemoGL
CocoaVideoFrameToGWorld
PhotoSearch
SampleRaster
SpecialPictureProtocol

Declared In
NSStringDrawing.h

Constants

NSStringDrawingOptions
The following constants are provided as rendering options for a string when it is drawn.

Constants 2585
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 134

NSString Application Kit Additions Reference

enum {
 NSStringDrawingUsesLineFragmentOrigin = (1 << 0),
 NSStringDrawingUsesFontLeading = (1 << 1),
 NSStringDrawingDisableScreenFontSubstitution = (1 << 2),
 NSStringDrawingUsesDeviceMetrics = (1 << 3),
 NSStringDrawingOneShot = (1 << 4),
 NSStringDrawingTruncatesLastVisibleLine = (1 << 5)
};
typedef NSInteger NSStringDrawingOptions;

Constants
NSStringDrawingUsesLineFragmentOrigin

The specified origin is the line fragment origin, not the baseline origin.

Available in Mac OS X v10.4 and later.

Declared in NSStringDrawing.h.

NSStringDrawingUsesFontLeading
Uses the font leading for calculating line heights.

Available in Mac OS X v10.4 and later.

Declared in NSStringDrawing.h.

NSStringDrawingDisableScreenFontSubstitution
Disable screen font substitution (equivalent to [NSLayoutManager setUsesScreenFonts:NO]).

Available in Mac OS X v10.4 and later.

Declared in NSStringDrawing.h.

NSStringDrawingUsesDeviceMetrics
Uses image glyph bounds instead of typographic bounds.

Available in Mac OS X v10.4 and later.

Declared in NSStringDrawing.h.

NSStringDrawingOneShot
Suppresses caching layout information.

Available in Mac OS X v10.4 and later.

Declared in NSStringDrawing.h.

NSStringDrawingTruncatesLastVisibleLine
Truncates and adds the ellipsis character to the last visible line if the text doesn't fit into the bounds
specified.

This option is ignored if NSStringDrawingUsesLineFragmentOrigin is not also set. In addition,
the line break mode must be either NSLineBreakByWordWrapping or
NSLineBreakByCharWrapping for this option to take effect. The line break mode can be specified
in a paragraph style passed in the attributes dictionary argument of the drawing methods.

Available in Mac OS X v10.5 and later.

Declared in NSStringDrawing.h.

2586 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 134

NSString Application Kit Additions Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTableColumn.h

Companion guide Table View Programming Guide

Related sample code AnimatedTableView
MixMash
MyPhoto
QTKitMovieShuffler
STUCAuthoringDeviceCocoaSample

Overview

An NSTableColumn stores the display characteristics and attribute identifier for a column in an NSTableView.
The NSTableColumn determines the width and width limits, resizability, and editability of its column in the
NSTableView. It also stores two NSCell objects: the header cell, which is used to draw the column header,
and the data cell, used to draw the values for each row. You can control the display of the column by setting
the subclasses of NSCell used and by setting the font and other display characteristics for these NSCells. For
example, you can use the default NSTextFieldCell for displaying string values or substitute an NSImageCell
to display pictures.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

Overview 2587
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

Tasks

Creating an NSTableColumn

– initWithIdentifier: (page 2592)
Initializes a newly created NSTableColumn with identifier as its identifier and with an
NSTextFieldCell as its data cell.

Setting the NSTableView

– setTableView: (page 2599)
Sets aTableView as the receiver’s NSTableView.

– tableView (page 2601)
Returns the NSTableView the receiver belongs to.

Controlling Size

– setWidth: (page 2600)
Sets the receiver’s width to newWidth.

– width (page 2601)
Returns the width of the receiver.

– setMinWidth: (page 2598)
Sets the receiver’s minimum width to minWidth, also adjusting the current width if it’s less than this
value.

– minWidth (page 2594)
Returns the minimum width for the receiver.

– setMaxWidth: (page 2597)
Sets the receiver’s maximum width to maxWidth, also adjusting the current width if it’s greater than
this value.

– maxWidth (page 2593)
Returns the maximum width of the receiver.

– setResizingMask: (page 2598)
Sets the resizing mask for the receiver to resizingMask.

– resizingMask (page 2594)
Returns the receiver’s resizing mask.

– sizeToFit (page 2600)
Resizes the receiver to fit the width of its header cell.

Setting Component Cells

– setHeaderCell: (page 2596)
Sets the NSCell used to draw the receiver’s header to aCell.

2588 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

– headerCell (page 2591)
Returns the NSTableHeaderCell object used to draw the header of the receiver.

– setDataCell: (page 2595)
Sets the NSCell used by the NSTableView to draw individual values for the receiver to aCell.

– dataCell (page 2590)
Returns the NSCell object used by the NSTableView to draw values for the receiver.

– dataCellForRow: (page 2590)
Returns the NSCell object used by the NSTableView to draw values for the receiver.

Setting the Identifier

– setIdentifier: (page 2597)
Sets the receiver’s identifier to anObject.

– identifier (page 2591)
Returns the object used by the data source to identify the attribute corresponding to the receiver.

Controlling Editability

– setEditable: (page 2595)
Controls whether the user can edit cells in the receiver by double-clicking them.

– isEditable (page 2592)
Returns YES if the user can edit cells associated with the receiver by double-clicking the column in
the NSTableView, NO otherwise.

Sorting

– setSortDescriptorPrototype: (page 2599)
Sets the receiver’s sort descriptor prototype.

– sortDescriptorPrototype (page 2600)
Returns the receiver’s sort descriptor prototype.

Setting Column Visibility

– isHidden (page 2593)
Returns a Boolean value that indicates whether the receiver is hidden.

– setHidden: (page 2596)
Sets whether the receiver is hidden.

Setting Tool Tips

– setHeaderToolTip: (page 2596)
Sets the tooltip string that is displayed when the cursor pauses over the header cell of the receiver.

Tasks 2589
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

– headerToolTip (page 2591)
Returns the tooltip string that is displayed when the cursor pauses over the header cell of the receiver.

Deprecated Methods

– isResizable (page 2593) Deprecated in Mac OS X v10.4
Returns YES if the user is allowed to resize the receiver in its NSTableView, NO otherwise.

– setResizable: (page 2598) Deprecated in Mac OS X v10.4
Sets whether the user can resize the receiver in its NSTableView.

Instance Methods

dataCell
Returns the NSCell object used by the NSTableView to draw values for the receiver.

- (id)dataCell

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDataCell: (page 2595)

Related Sample Code
AnimatedTableView
DragNDropOutlineView
FunHouse
SourceView

Declared In
NSTableColumn.h

dataCellForRow:
Returns the NSCell object used by the NSTableView to draw values for the receiver.

- (id)dataCellForRow:(NSInteger)row

Discussion
NSTableView always calls this method. By default, this method just calls dataCell (page 2590). Subclassers
can override if they need to potentially use different cells for different rows. Subclasses should expect this
method to be invoked with row equal to –1 in cases where no actual row is involved but the table view needs
to get some generic cell info.

Availability
Available in Mac OS X v10.0 and later.

2590 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

Declared In
NSTableColumn.h

headerCell
Returns the NSTableHeaderCell object used to draw the header of the receiver.

- (id)headerCell

Discussion
You can set the column title by sending setStringValue: (page 596) to this object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHeaderCell: (page 2596)

Related Sample Code
CapabilitiesSample

Declared In
NSTableColumn.h

headerToolTip
Returns the tooltip string that is displayed when the cursor pauses over the header cell of the receiver.

- (NSString *)headerToolTip

Return Value
The tooltip displayed when the cursor pauses over the header cell of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setHeaderToolTip: (page 2596)

Declared In
NSTableColumn.h

identifier
Returns the object used by the data source to identify the attribute corresponding to the receiver.

- (id)identifier

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2591
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

See Also
– setIdentifier: (page 2597)

Related Sample Code
DragNDropOutlineView
MyPhoto
NewsReader
NSOperationSample
QTAudioContextInsert

Declared In
NSTableColumn.h

initWithIdentifier:
Initializes a newly created NSTableColumn with identifier as its identifier and with an NSTextFieldCell as
its data cell.

- (id)initWithIdentifier:(id)identifier

Discussion
Send setStringValue: (page 596) to the header cell to set the column title. This method is the designated
initializer for the NSTableColumn class. Returns an initialized object.

See the NSTableView class specification for information on identifiers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIdentifier: (page 2597)

Declared In
NSTableColumn.h

isEditable
Returns YES if the user can edit cells associated with the receiver by double-clicking the column in the
NSTableView, NO otherwise.

- (BOOL)isEditable

Discussion
You can initiate editing programmatically regardless of this setting with NSTableView’s
editColumn:row:withEvent:select: (page 2633) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEditable: (page 2595)

2592 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

Declared In
NSTableColumn.h

isHidden
Returns a Boolean value that indicates whether the receiver is hidden.

- (BOOL)isHidden

Return Value
YES if the receiver is hidden, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setHidden: (page 2596)

Declared In
NSTableColumn.h

isResizable
Returns YES if the user is allowed to resize the receiver in its NSTableView, NO otherwise. (Deprecated in Mac
OS X v10.4.)

- (BOOL)isResizable

Discussion
You can change the size programmatically regardless of this setting.

This method is deprecated. You should use resizingMask (page 2594) instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– setWidth: (page 2600)
– setMinWidth: (page 2598)
– setMaxWidth: (page 2597)
– setResizable: (page 2598)

Declared In
NSTableColumn.h

maxWidth
Returns the maximum width of the receiver.

- (CGFloat)maxWidth

Instance Methods 2593
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

Discussion
The receiver’s width can’t be made larger than this size either by the user or programmatically.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minWidth (page 2594)
– width (page 2601)
– setMaxWidth: (page 2597)
– autoresizesAllColumnsToFit (page 2622) (NSTableView)

Declared In
NSTableColumn.h

minWidth
Returns the minimum width for the receiver.

- (CGFloat)minWidth

Discussion
The receiver’s width can’t be made less than this size either by the user or programmatically.

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxWidth (page 2593)
– width (page 2601)
– setMinWidth: (page 2598)
– autoresizesAllColumnsToFit (page 2622) (NSTableView)

Declared In
NSTableColumn.h

resizingMask
Returns the receiver’s resizing mask.

- (NSUInteger)resizingMask

Discussion
See “Resizing Modes” (page 2602) for a description of the resizing mask constants.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setResizingMask: (page 2598)

2594 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

Declared In
NSTableColumn.h

setDataCell:
Sets the NSCell used by the NSTableView to draw individual values for the receiver to aCell.

- (void)setDataCell:(NSCell *)aCell

Discussion
You can use this method to control the font, alignment, and other text attributes for an NSTableColumn. You
can also assign a cell to display things other than text—for example, an NSImageCell to display images.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataCell (page 2590)

Related Sample Code
EnhancedDataBurn
ImageBackground
QTKitMovieShuffler
SourceView

Declared In
NSTableColumn.h

setEditable:
Controls whether the user can edit cells in the receiver by double-clicking them.

- (void)setEditable:(BOOL)flag

Discussion
If flag is YES a double click initiates editing; if flag is NO it merely sends the double-click action to the
NSTableView’s target. You can initiate editing programmatically regardless of this setting with NSTableView’s
editColumn:row:withEvent:select: (page 2633) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEditable (page 2592)

Related Sample Code
SimpleCocoaMovie
SimpleCocoaMovieQT

Declared In
NSTableColumn.h

Instance Methods 2595
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

setHeaderCell:
Sets the NSCell used to draw the receiver’s header to aCell.

- (void)setHeaderCell:(NSCell *)aCell

Discussion
aCell should never be nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– headerCell (page 2591)

Declared In
NSTableColumn.h

setHeaderToolTip:
Sets the tooltip string that is displayed when the cursor pauses over the header cell of the receiver.

- (void)setHeaderToolTip:(NSString *)string

Parameters
string

A string that functions as the tooltip for the header cell of the receiver.

Availability
Available in Mac OS X v10.5 and later.

See Also
– headerToolTip (page 2591)

Declared In
NSTableColumn.h

setHidden:
Sets whether the receiver is hidden.

- (void)setHidden:(BOOL)hidden

Parameters
hidden

YES if the receiver is to be hidden, otherwise NO.

Discussion
Columns which are hidden still exist in the tableview’s tableColumns (page 2670) array and are included in
the tableview’s numberOfColumns (page 2641) count.

The hidden state of the receiver is stored when the tableview autosaves the NSTableColumn state.

2596 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– isHidden (page 2593)

Declared In
NSTableColumn.h

setIdentifier:
Sets the receiver’s identifier to anObject.

- (void)setIdentifier:(id)anObject

Discussion
This object is used by the data source to identify the attribute corresponding to the NSTableColumn.

Availability
Available in Mac OS X v10.0 and later.

See Also
– identifier (page 2591)

Related Sample Code
CapabilitiesSample

Declared In
NSTableColumn.h

setMaxWidth:
Sets the receiver’s maximum width to maxWidth, also adjusting the current width if it’s greater than this
value.

- (void)setMaxWidth:(CGFloat)maxWidth

Discussion
The NSTableView can be made no wider than this size, either by the user or programmatically.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMinWidth: (page 2598)
– setWidth: (page 2600)
– maxWidth (page 2593)
– autoresizesAllColumnsToFit (page 2622) (NSTableView)

Declared In
NSTableColumn.h

Instance Methods 2597
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

setMinWidth:
Sets the receiver’s minimum width to minWidth, also adjusting the current width if it’s less than this value.

- (void)setMinWidth:(CGFloat)minWidth

Discussion
The NSTableView can be made no less wide than this size, either by the user or programmatically.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaxWidth: (page 2597)
– setWidth: (page 2600)
– minWidth (page 2594)
– autoresizesAllColumnsToFit (page 2622) (NSTableView)

Declared In
NSTableColumn.h

setResizable:
Sets whether the user can resize the receiver in its NSTableView. (Deprecated in Mac OS X v10.4.)

- (void)setResizable:(BOOL)flag

Discussion
If flag is YES the user can resize the receiver; if flag is NO the user can’t resize it. You can always set the
size programmatically.

This method is deprecated. You should use setResizingMask: (page 2598) instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– isResizable (page 2593)
– setWidth: (page 2600)
– setMinWidth: (page 2598)
– setMaxWidth: (page 2597)

Declared In
NSTableColumn.h

setResizingMask:
Sets the resizing mask for the receiver to resizingMask.

- (void)setResizingMask:(NSUInteger)resizingMask

2598 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

Discussion
If resizingMask is 0, the column is not resizable. See “Resizing Modes” (page 2602) for the appropriate
mask values.

Availability
Available in Mac OS X v10.4 and later.

See Also
– resizingMask (page 2594)

Declared In
NSTableColumn.h

setSortDescriptorPrototype:
Sets the receiver’s sort descriptor prototype.

- (void)setSortDescriptorPrototype:(NSSortDescriptor *)sortDescriptor

Discussion
A table column is considered sortable if it has a sort descriptor that specifies the sorting direction, a key to
sort by, and a selector defining how to sort.

Availability
Available in Mac OS X v10.3 and later.

See Also
– sortDescriptorPrototype (page 2600)

Declared In
NSTableColumn.h

setTableView:
Sets aTableView as the receiver’s NSTableView.

- (void)setTableView:(NSTableView *)aTableView

Discussion
You should never need to invoke this method; it’s invoked automatically when you add an NSTableColumn
to an NSTableView.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tableView (page 2601)
– addTableColumn: (page 2619) (NSTableView)

Declared In
NSTableColumn.h

Instance Methods 2599
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

setWidth:
Sets the receiver’s width to newWidth.

- (void)setWidth:(CGFloat)newWidth

Discussion
If newWidth exceeds the minimum or maximum width, it’s adjusted to the appropriate limiting value. Marks
the NSTableView as needing display.

This method posts NSTableViewColumnDidResizeNotification (page 2679) on behalf of the receiver’s
NSTableView.

Availability
Available in Mac OS X v10.0 and later.

See Also
– width (page 2601)
– setMinWidth: (page 2598)
– setMaxWidth: (page 2597)
– autoresizesAllColumnsToFit (page 2622) (NSTableView)

Declared In
NSTableColumn.h

sizeToFit
Resizes the receiver to fit the width of its header cell.

- (void)sizeToFit

Discussion
If the maximum width is less than the width of the header, the maximum is increased to the header’s width.
Similarly, if the minimum width is greater than the width of the header, the minimum is reduced to the
header’s width. Marks the NSTableView as needing display if the width actually changes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– width (page 2601)
– minWidth (page 2594)
– maxWidth (page 2593)
– autoresizesAllColumnsToFit (page 2622) (NSTableView)

Declared In
NSTableColumn.h

sortDescriptorPrototype
Returns the receiver’s sort descriptor prototype.

2600 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

- (NSSortDescriptor *)sortDescriptorPrototype

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSortDescriptorPrototype: (page 2599)

Declared In
NSTableColumn.h

tableView
Returns the NSTableView the receiver belongs to.

- (NSTableView *)tableView

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTableView: (page 2599)

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel

Declared In
NSTableColumn.h

width
Returns the width of the receiver.

- (CGFloat)width

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FunHouse

Declared In
NSTableColumn.h

Instance Methods 2601
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

Constants

Resizing Modes
These constants specify the resizing modes available for the table column. You specify either
NSTableColumnNoResizing or a resizing mask created using the C bitwise OR operator. These values are then
passed as the parameter to the setResizingMask: (page 2598) method.

enum { NSTableColumnNoResizing = 0, NSTableColumnAutoresizingMask = (1
<< 0), NSTableColumnUserResizingMask = (1 << 1), };

Constants
NSTableColumnNoResizing

Prevents the table column from resizing.

Available in Mac OS X v10.4 and later.

Declared in NSTableColumn.h.

NSTableColumnAutoresizingMask
Allows the table column to resize automatically in response to resizing the tableview. Enabling this
option is the same as enabling the "Live Resizable" option in Interface Builder. The resizing behavior
for the table view is set using the NSTableView method setColumnAutoresizingStyle: (page
2659).

Available in Mac OS X v10.4 and later.

Declared in NSTableColumn.h.

NSTableColumnUserResizingMask
Allows the table column to be resized explicitly by the user. Enabling this option is the same as
enabling the "User Resizable" option in Interface Builder.

Available in Mac OS X v10.4 and later.

Declared in NSTableColumn.h.

Declared In
NSTableColumn.h

2602 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 135

NSTableColumn Class Reference

Inherits from NSTextFieldCell : NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTableHeaderCell.h

Companion guide Table View Programming Guide

Overview

An NSTableHeaderCell is used by an NSTableHeaderView to draw its column headers. See the NSTableView
class specification for more information on how it’s used.

Subclasses of NSTableHeaderCell can override drawInteriorWithFrame:inView: (page 553),
editWithFrame:inView:editor:delegate:event: (page 555), and
highlight:withFrame:inView: (page 560) to change the way headers appear. See the NSCell class
specification, and the following description, for information on these methods.

Tasks

Sorting

– drawSortIndicatorWithFrame:inView:ascending:priority: (page 2604)
Draws a sorting indicator given a cellFrame contained inside controlView.

– sortIndicatorRectForBounds: (page 2604)
Returns the location to display the sorting indicator given theRect.

Overview 2603
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 136

NSTableHeaderCell Class Reference

Instance Methods

drawSortIndicatorWithFrame:inView:ascending:priority:
Draws a sorting indicator given a cellFrame contained inside controlView.

- (void)drawSortIndicatorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView
ascending:(BOOL)ascending priority:(NSInteger)priority

Discussion
If priority is 0, this is the primary sort indicator. If ascending is YES, a "^" indicator will be drawn. Override
this method to customize the sorting user interface.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTableHeaderCell.h

sortIndicatorRectForBounds:
Returns the location to display the sorting indicator given theRect.

- (NSRect)sortIndicatorRectForBounds:(NSRect)theRect

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTableHeaderCell.h

2604 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 136

NSTableHeaderCell Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTableHeaderView.h

Companion guide Table View Programming Guide

Overview

An NSTableHeaderView is used by an NSTableView to draw headers over its columns and to handle mouse
events in those headers.

NSTableHeaderView uses NSTableHeaderCell to implement its user interface.

Tasks

Setting the Table View

– setTableView: (page 2608)
Sets aTableView as the receiver’s NSTableView.

– tableView (page 2608)
Returns the NSTableView the receiver belongs to.

Checking Altered Columns

– draggedColumn (page 2606)
If the user is dragging a column in the receiver, returns the index of that column.

– draggedDistance (page 2607)
If the user is dragging a column in the receiver, returns the column’s horizontal distance from its
original position.

Overview 2605
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 137

NSTableHeaderView Class Reference

– resizedColumn (page 2607)
If the user is resizing a column in the receiver, returns the index of that column.

Utility Methods

– columnAtPoint: (page 2606)
Returns the index of the column whose header lies under aPoint in the receiver, or –1 if no such
column is found.

– headerRectOfColumn: (page 2607)
Returns the rectangle containing the header tile for the column at columnIndex.

Instance Methods

columnAtPoint:
Returns the index of the column whose header lies under aPoint in the receiver, or –1 if no such column is
found.

- (NSInteger)columnAtPoint:(NSPoint)aPoint

Discussion
aPoint is expressed in the receiver’s coordinate system.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTableHeaderView.h

draggedColumn
If the user is dragging a column in the receiver, returns the index of that column.

- (NSInteger)draggedColumn

Discussion
Otherwise returns –1.

Availability
Available in Mac OS X v10.0 and later.

See Also
– draggedDistance (page 2607)

Declared In
NSTableHeaderView.h

2606 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 137

NSTableHeaderView Class Reference

draggedDistance
If the user is dragging a column in the receiver, returns the column’s horizontal distance from its original
position.

- (CGFloat)draggedDistance

Discussion
Otherwise the return value is meaningless.

Availability
Available in Mac OS X v10.0 and later.

See Also
– draggedColumn (page 2606)

Declared In
NSTableHeaderView.h

headerRectOfColumn:
Returns the rectangle containing the header tile for the column at columnIndex.

- (NSRect)headerRectOfColumn:(NSInteger)columnIndex

Discussion
Raises an NSInternalInconsistencyException if columnIndex is out of bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rectOfColumn: (page 2644) (NSTableView)

Declared In
NSTableHeaderView.h

resizedColumn
If the user is resizing a column in the receiver, returns the index of that column.

- (NSInteger)resizedColumn

Discussion
Otherwise returns –1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTableHeaderView.h

Instance Methods 2607
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 137

NSTableHeaderView Class Reference

setTableView:
Sets aTableView as the receiver’s NSTableView.

- (void)setTableView:(NSTableView *)aTableView

Discussion
You should never need to invoke this method; it’s invoked automatically when you set the header view for
an NSTableView.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHeaderView: (page 2664) (NSTableView)

Declared In
NSTableHeaderView.h

tableView
Returns the NSTableView the receiver belongs to.

- (NSTableView *)tableView

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTableHeaderView.h

2608 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 137

NSTableHeaderView Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations
NSTextViewDelegate
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTableView.h

Companion guides Table View Programming Guide
Drag and Drop Programming Topics for Cocoa

Related sample code CoreRecipes
DemoMonkey
MyPhoto
QTAudioContextInsert
With and Without Bindings

Class at a Glance

An NSTableView object displays record-oriented data in a table and allows the user to edit values and resize
and rearrange columns.

Principal Attributes

 ■ A data source

 ■ Table columns

Commonly Used Methods

dataSource (page 2627)
Returns the object providing the data that the table view displays.

Class at a Glance 2609
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

tableColumns (page 2670)
Returns the NSTableColumn objects representing attributes for the table view.

selectedColumn (page 2650)
Returns the index of the selected column.

selectedRow (page 2651)
Returns the index of the selected row.

numberOfRows (page 2642)
Returns the number of rows in the table view.

reloadData (page 2645)
Informs the table view that data has changed and needs to be retrieved and displayed again.

Overview

An NSTableView object displays data for a set of related records, with rows representing individual records
and columns representing the attributes of those records.

A table view is usually displayed in a scroll view, like this:

A table view does not store its own data, instead it retrieves data values as needed from a data source to
which it has a weak reference (see Communicating With Objects). You should not, therefore, try to directly
set data values programmatically in the table view; instead you should modify the values in the data source
and allow the changes to be reflected in the table view. See the NSTableDataSource protocol, which
declares the methods that an NSTableView object uses to access the contents of its data source object.

Tasks

Setting the Data Source

– setDataSource: (page 2660)
Sets the receiver’s data source to a given object.

2610 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

– dataSource (page 2627)
Returns the object that provides the data displayed by the receiver.

Loading Data

– reloadData (page 2645)
Marks the receiver as needing redisplay, so it will reload the data for visible cells and draw the new
values.

– reloadDataForRowIndexes:columnIndexes: (page 2646)
Reloads the data for only the specified rows and columns.

Target-action Behavior

– setDoubleAction: (page 2661)
Sets the message sent to the target when the user double-clicks an uneditable cell or a column header
to a given selector.

– doubleAction (page 2630)
Returns the message sent to the target when the user double-clicks a column header or an uneditable
cell.

– clickedColumn (page 2624)
Returns the index of the column the user clicked to trigger an action message.

– clickedRow (page 2624)
Returns the index of the row the user clicked to trigger an action message.

Configuring Behavior

– setAllowsColumnReordering: (page 2654)
Controls whether the user can drag column headers to reorder columns.

– allowsColumnReordering (page 2619)
Returns a Boolean value that indicates whether the receiver allows the user to rearrange columns by
dragging their headers.

– setAllowsColumnResizing: (page 2655)
Controls whether the user can resize columns by dragging between headers.

– allowsColumnResizing (page 2619)
Returns a Boolean value that indicates whether the receiver allows the user to resize columns by
dragging between their headers.

– setAllowsMultipleSelection: (page 2656)
Controls whether the user can select more than one row or column at a time.

– allowsMultipleSelection (page 2621)
Returns a Boolean value that indicates whether the receiver allows the user to select more than one
column or row at a time.

– setAllowsEmptySelection: (page 2656)
Controls whether the receiver allows zero rows or columns to be selected.

Tasks 2611
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

– allowsEmptySelection (page 2620)
Returns a Boolean value that indicates whether the receiver allows the user to select zero columns
or rows.

– setAllowsColumnSelection: (page 2655)
Controls whether the user can select an entire column by clicking its header.

– allowsColumnSelection (page 2620)
Returns a Boolean value that indicates whether the receiver allows the user to select columns by
clicking their headers.

Setting Display Attributes

– setIntercellSpacing: (page 2666)
Sets the width and height between cells to those in a given NSSize struct.

– intercellSpacing (page 2638)
Returns the horizontal and vertical spacing between cells.

– setRowHeight: (page 2666)
Sets the height for rows to a given value.

– rowHeight (page 2647)
Returns the height of each row in the receiver.

– setBackgroundColor: (page 2658)
Sets the receiver’s background color to a given color.

– backgroundColor (page 2623)
Returns the color used to draw the background of the receiver.

– setUsesAlternatingRowBackgroundColors: (page 2667)
Sets whether the receiver uses the standard alternating row colors for its background.

– usesAlternatingRowBackgroundColors (page 2673)
Returns a Boolean value that indicates whether the receiver uses the standard alternating row colors
for its background.

– selectionHighlightStyle (page 2653)
Returns the selection highlight style used by the receiver to indicate row and column selection.

– setSelectionHighlightStyle: (page 2667)
Sets the selection highlight style used by the receiver to indicate row and column selection.

– setGridColor: (page 2664)
Sets the color used to draw grid lines to a given color.

– gridColor (page 2636)
Returns the color used to draw grid lines.

– setGridStyleMask: (page 2664)
Sets the grid style mask to specify if no grid lines, vertical grid lines, or horizontal grid lines should be
displayed.

– gridStyleMask (page 2636)
Returns the receiver’s grid style mask.

– indicatorImageInTableColumn: (page 2638)
Returns the indicator image of a given table column.

2612 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

– setIndicatorImage:inTableColumn: (page 2665)
Sets the indicator image of aTableColumn to anImage.

Column Management

– addTableColumn: (page 2619)
Adds a given column as the last column of the receiver.

– removeTableColumn: (page 2646)
Removes a given column from the receiver.

– moveColumn:toColumn: (page 2640)
Moves the column and heading at a given index to a new given index.

– tableColumns (page 2670)
Returns an array containing the the NSTableColumn objects in the receiver.

– columnWithIdentifier: (page 2627)
Returns the index of the first column in the receiver whose identifier is equal to a given identifier.

– tableColumnWithIdentifier: (page 2670)
Returns the NSTableColumn object for the first column whose identifier is equal to a given object.

Selecting Columns and Rows

– selectColumnIndexes:byExtendingSelection: (page 2650)
Sets the column selection using indexes.

– selectedColumn (page 2650)
Returns the index of the last column selected or added to the selection.

– selectedColumnIndexes (page 2651)
Returns an index set containing the indexes of the selected columns.

– deselectColumn: (page 2629)
Deselects the column at a given index if it’s selected.

– numberOfSelectedColumns (page 2642)
Returns the number of selected columns.

– isColumnSelected: (page 2639)
Returns a Boolean value that indicates whether the column at a given index is selected.

– selectRowIndexes:byExtendingSelection: (page 2654)
Sets the row selection using indexes.

– selectedRow (page 2651)
Returns the index of the last row selected or added to the selection.

– selectedRowIndexes (page 2652)
Returns an index set containing the indexes of the selected rows.

– deselectRow: (page 2630)
Deselects the row at a given index if it’s selected.

– numberOfSelectedRows (page 2642)
Returns the number of selected rows.

Tasks 2613
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

– isRowSelected: (page 2639)
Returns a Boolean value that indicates whether the row at a given index is selected.

– selectAll: (page 2649)
Selects all rows or all columns, according to whether rows or columns were most recently selected.

– deselectAll: (page 2628)
Deselects all selected rows or columns if empty selection is allowed; otherwise does nothing.

Managing Type Select

– allowsTypeSelect (page 2621)
Returns a Boolean value that indicates whether the receiver allows the user to type characters to
select rows.

– setAllowsTypeSelect: (page 2657)
Sets whether the receiver allows the user to type characters to select rows.

Getting and Setting Column Focus

– focusedColumn (page 2635)
Returns the currently focused column.

– setFocusedColumn: (page 2663)
Sets the currently focused column to the specified index.

– shouldFocusCell:atColumn:row: (page 2668)
Returns whether the fully cell at the specified row and column can be made the focused cell or not.

Table Dimensions

– numberOfColumns (page 2641)
Returns the number of columns in the receiver.

– numberOfRows (page 2642)
Returns the number of rows in the receiver.

Displaying Cell

– preparedCellAtColumn:row: (page 2643)
Returns the fully prepared cell that the receiver will use for drawing or processing of the specified
row and column.

Editing Cells

– editColumn:row:withEvent:select: (page 2633)
Edits the cell at columnIndex and rowIndex, selecting its entire contents if flag is YES.

– editedColumn (page 2634)
Returns the index of the column being edited.

2614 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

– editedRow (page 2634)
Returns the index of the row being edited.

– performClickOnCellAtColumn:row: (page 2643)
Performs a click action on the cell at the specified row and column.

Setting Auxiliary Views

– setHeaderView: (page 2664)
Sets the receiver’s header view to a given header view.

– headerView (page 2637)
Returns the NSTableHeaderView object used to draw headers over columns.

– setCornerView: (page 2659)
Sets the receiver’s corner view to a given view.

– cornerView (page 2627)
Returns the view used to draw the area to the right of the column headers and above the vertical
scroller of the enclosing scroll view.

Layout Support

– rectOfColumn: (page 2644)
Returns the rectangle containing the column at a given index.

– rectOfRow: (page 2645)
Returns the rectangle containing the row at a given index.

– rowsInRect: (page 2648)
Returns a range of indices for the rows that lie wholly or partially within the vertical boundaries of a
given rectangle.

– columnIndexesInRect: (page 2626)
Returns the indexes of the receiver’s columns that intersect the specified rectangle.

– columnAtPoint: (page 2625)
Returns the index of the column a given point lies in.

– rowAtPoint: (page 2647)
Returns the index of the row a given point lies in.

– frameOfCellAtColumn:row: (page 2635)
Returns a rectangle locating the cell that lies at the intersection of columnIndex and rowIndex.

– columnAutoresizingStyle (page 2625)
Returns the receiver’s column autoresizing style.

– setColumnAutoresizingStyle: (page 2659)
Sets the column autoresizing style of the receiver to a given style.

– sizeLastColumnToFit (page 2669)
Resizes the last column if there’s room so the receiver fits exactly within its enclosing clip view.

– noteNumberOfRowsChanged (page 2641)
Informs the receiver that the number of records in its data source has changed.

– tile (page 2673)
Properly sizes the receiver and its header view and marks it as needing display.

Tasks 2615
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

– sizeToFit (page 2669)
Changes the width of columns in the receiver so all columns are visible.

– noteHeightOfRowsWithIndexesChanged: (page 2640)
Informs the receiver that the rows specified in indexSet have changed height.

– columnsInRect: (page 2626) Deprecated in Mac OS X v10.5
Returns a range of indices for the receiver’s columns that lie wholly or partially within the horizontal
boundaries of a given rectangle. (Deprecated. Use columnIndexesInRect: (page 2626) instead.)

Drawing

– drawRow:clipRect: (page 2633)
Draws the cells for the row at rowIndex in the columns that intersect clipRect.

– drawGridInClipRect: (page 2632)
Draws the grid lines within aRect, using the grid color set with setGridColor: (page 2664).

– highlightSelectionInClipRect: (page 2638)
Highlights the region of the receiver in clipRect.

– drawBackgroundInClipRect: (page 2632)
Draws the background in the clip rect specified by clipRect.

Scrolling

– scrollRowToVisible: (page 2648)
Scrolls the receiver vertically in an enclosing NSClipView so the row specified by rowIndex is visible.

– scrollColumnToVisible: (page 2648)
Scrolls the receiver and header view horizontally in an enclosing NSClipView so the column specified
by columnIndex is visible.

Persistence

– autosaveName (page 2622)
Returns the name under which table information is automatically saved.

– autosaveTableColumns (page 2623)
Returns a Boolean value that indicates whether the order and width of the receiver’s columns are
automatically saved.

– setAutosaveName: (page 2657)
Sets the name under which table information is automatically saved to name.

– setAutosaveTableColumns: (page 2658)
Sets whether the order and width of this table view’s columns are automatically saved.

Setting the Delegate

– setDelegate: (page 2660)
Sets the receiver’s delegate to a given object.

2616 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

– delegate (page 2628)
Returns the receiver’s delegate.

Highlightable Column Headers

– highlightedTableColumn (page 2637)
Returns the table column highlighted in the receiver.

– setHighlightedTableColumn: (page 2665)
Sets aTableColumn to be the currently highlighted column header.

Dragging

– dragImageForRowsWithIndexes:tableColumns:event:offset: (page 2631)
Computes and returns an image to use for dragging.

– canDragRowsWithIndexes:atPoint: (page 2623)
Returns whether the receiver allows dragging the rows at rowIndexes with a drag initiated at
mousedDownPoint.

– setDraggingSourceOperationMask:forLocal: (page 2662)
Sets the default operation mask returned by draggingSourceOperationMaskForLocal: to mask.

– setVerticalMotionCanBeginDrag: (page 2668)
Sets whether vertical motion is treated as a drag or selection change to flag.

– verticalMotionCanBeginDrag (page 2674)
Returns whether vertical motion is treated as a drag or selection change.

– draggingDestinationFeedbackStyle (page 2631)
Returns the feedback style displayed when the user drags over the table view.

– setDraggingDestinationFeedbackStyle: (page 2662)
Sets the feedback style displayed when the user drags over the table view.

– setDropRow:dropOperation: (page 2663)
Used if you wish to “retarget” the proposed drop.

Sorting

– setSortDescriptors: (page 2667)
Sets the receiver’s sort descriptors to the NSSortDescriptor objects in array.

– sortDescriptors (page 2670)
Returns the receiver’s sort descriptors.

Text Delegate Methods

– textShouldBeginEditing: (page 2672)
Queries the delegate using control:textShouldBeginEditing:, returning the delegate’s response,
or simply returning YES to allow editing of textObject if the delegate doesn’t respond to that
method.

Tasks 2617
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

– textDidBeginEditing: (page 2671)
Posts an NSControlTextDidBeginEditingNotification (page 847) to the default notification
center.

– textDidChange: (page 2671)
Sends textDidChange: (page 2671) to the edited cell and posts an
NSControlTextDidChangeNotification (page 848) to the default notification center.

– textShouldEndEditing: (page 2673)
Validates the textObject cell being edited and queries the delegate using
control:textShouldEndEditing:, returning the delegate’s response if it responds to that method.

– textDidEndEditing: (page 2672)
Updates the data source based on the newly edited value and selects another cell for editing if possible
according to the character that ended editing (Return, Tab, Backtab).

Deprecated Methods

– tableView:writeRows:toPasteboard: (page 2674) delegate method
Writes the specified rows to the specified pasteboard. (Deprecated. This method has been deprecated.
You should implementtableView:writeRowsWithIndexes:toPasteboard: (page 3825) instead.)

– drawsGrid (page 2633) Deprecated in Mac OS X v10.3
Returns a Boolean value that indicates whether the receiver draws a grid. (Deprecated. Use
gridStyleMask (page 2636) instead.)

– selectColumn:byExtendingSelection: (page 2649) Deprecated in Mac OS X v10.3
Selects a column at a given index, optionally extending any existing selection. (Deprecated. Use
selectColumnIndexes:byExtendingSelection: (page 2650) instead.)

– selectedColumnEnumerator (page 2651) Deprecated in Mac OS X v10.3
This method has been deprecated. (Deprecated. Use selectedColumnIndexes (page 2651) instead.)

– selectedRowEnumerator (page 2652) Deprecated in Mac OS X v10.3
This method has been deprecated. (Deprecated. Use selectedRowIndexes (page 2652) instead.)

– selectRow:byExtendingSelection: (page 2653) Deprecated in Mac OS X v10.3
Selects a row at a given index, optionally extending any existing selection. (Deprecated. Use
selectRowIndexes:byExtendingSelection: (page 2654) instead.)

– setDrawsGrid: (page 2662) Deprecated in Mac OS X v10.3
Sets whether the receiver draws a grid. (Deprecated. Use setGridStyleMask: (page 2664) instead.)

– autoresizesAllColumnsToFit (page 2622) Deprecated in Mac OS X v10.4
Returns YES if the receiver proportionally resizes its columns to fit when its superview’s frame changes,
NO if it only resizes the last column. (Deprecated. UsecolumnAutoresizingStyle (page 2625) instead.)

– dragImageForRows:event:dragImageOffset: (page 2631) Deprecated in Mac OS X v10.4
Computes and returns an image to use for dragging. (Deprecated. Use
dragImageForRowsWithIndexes:tableColumns:event:offset: (page 2631) instead.)

– setAutoresizesAllColumnsToFit: (page 2657) Deprecated in Mac OS X v10.4
Controls whether the receiver proportionally resizes its columns to fit when its superview’s frame
changes. (Deprecated. Use setColumnAutoresizingStyle: (page 2659) instead.)

2618 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Instance Methods

addTableColumn:
Adds a given column as the last column of the receiver.

- (void)addTableColumn:(NSTableColumn *)aColumn

Parameters
aColumn

The column to add to the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sizeLastColumnToFit (page 2669)
– removeTableColumn: (page 2646)

Declared In
NSTableView.h

allowsColumnReordering
Returns a Boolean value that indicates whether the receiver allows the user to rearrange columns by dragging
their headers.

- (BOOL)allowsColumnReordering

Return Value
YES to allow the user to rearrange columns by dragging their headers, otherwise NO.

Discussion
The default is YES. You can rearrange columns programmatically regardless of this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– moveColumn:toColumn: (page 2640)
– setAllowsColumnReordering: (page 2654)

Declared In
NSTableView.h

allowsColumnResizing
Returns a Boolean value that indicates whether the receiver allows the user to resize columns by dragging
between their headers.

- (BOOL)allowsColumnResizing

Instance Methods 2619
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Return Value
YES if the receiver allows the user to resize columns by dragging between their headers, otherwise NO.

Discussion
The default is YES. You can resize columns programmatically regardless of this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWidth: (page 2600) (NSTableColumn)
– setAllowsColumnResizing: (page 2655)

Declared In
NSTableView.h

allowsColumnSelection
Returns a Boolean value that indicates whether the receiver allows the user to select columns by clicking
their headers.

- (BOOL)allowsColumnSelection

Return Value
YES if the receiver allows the user to select columns by clicking their headers, otherwise NO.

Discussion
The default is NO. You can select columns programmatically regardless of this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectColumn:byExtendingSelection: (page 2649)
– allowsColumnReordering (page 2619)
– setAllowsColumnSelection: (page 2655)

Declared In
NSTableView.h

allowsEmptySelection
Returns a Boolean value that indicates whether the receiver allows the user to select zero columns or rows.

- (BOOL)allowsEmptySelection

Return Value
YES if the receiver allows the user to select zero columns or rows, otherwise NO.

Discussion
The default is YES.

2620 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

You cannot set an empty selection programmatically if this setting is NO, unlike with the other settings that
affect selection behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deselectAll: (page 2628)
– deselectColumn: (page 2629)
– deselectRow: (page 2630)
– setAllowsEmptySelection: (page 2656)

Declared In
NSTableView.h

allowsMultipleSelection
Returns a Boolean value that indicates whether the receiver allows the user to select more than one column
or row at a time.

- (BOOL)allowsMultipleSelection

Return Value
YES if the receiver allows the user to select more than one column or row at a time, otherwise NO.

Discussion
The default is NO. You can select multiple columns or rows programmatically regardless of this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectColumn:byExtendingSelection: (page 2649)
– selectRow:byExtendingSelection: (page 2653)
– setAllowsMultipleSelection: (page 2656)

Declared In
NSTableView.h

allowsTypeSelect
Returns a Boolean value that indicates whether the receiver allows the user to type characters to select rows.

- (BOOL)allowsTypeSelect

Return Value
YES if the receiver allows type selection, otherwise NO.

Discussion
The default value is YES.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 2621
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

See Also
– setAllowsTypeSelect: (page 2657)

Declared In
NSTableView.h

autoresizesAllColumnsToFit
Returns YES if the receiver proportionally resizes its columns to fit when its superview’s frame changes, NO
if it only resizes the last column. (Deprecated in Mac OS X v10.4. Use columnAutoresizingStyle (page
2625) instead.)

- (BOOL)autoresizesAllColumnsToFit

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– columnAutoresizingStyle (page 2625)
– setColumnAutoresizingStyle: (page 2659)

Declared In
NSTableView.h

autosaveName
Returns the name under which table information is automatically saved.

- (NSString *)autosaveName

Return Value
The name under which table information is automatically saved. If no name has been set, returns nil.

Discussion
The table information is saved separately for each user and for each application that user uses.

Note that even when a table view has an autosave name, it may not be saving table information automatically.
To check whether table information is being saved automatically, use autosaveTableColumns (page 2623).

Availability
Available in Mac OS X v10.0 and later.

See Also
– autosaveTableColumns (page 2623)
– setAutosaveName: (page 2657)

Declared In
NSTableView.h

2622 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

autosaveTableColumns
Returns a Boolean value that indicates whether the order and width of the receiver’s columns are automatically
saved.

- (BOOL)autosaveTableColumns

Discussion
The table information is saved separately for each user and for each application that user uses. Note that if
autosaveName (page 2622) returns nil, this setting is ignored and table information isn’t saved.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autosaveName (page 2622)
– setAutosaveTableColumns: (page 2658)
– setAutosaveName: (page 2657)

Declared In
NSTableView.h

backgroundColor
Returns the color used to draw the background of the receiver.

- (NSColor *)backgroundColor

Return Value
The color used to draw the background of the receiver.

Discussion
The default background color is light gray.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundColor: (page 2658)

Declared In
NSTableView.h

canDragRowsWithIndexes:atPoint:
Returns whether the receiver allows dragging the rows at rowIndexes with a drag initiated at
mousedDownPoint.

- (BOOL)canDragRowsWithIndexes:(NSIndexSet *)rowIndexes
atPoint:(NSPoint)mouseDownPoint

Discussion
Return NO to disallow the drag.

Instance Methods 2623
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTableView.h

clickedColumn
Returns the index of the column the user clicked to trigger an action message.

- (NSInteger)clickedColumn

Return Value
The index of the column the user clicked to trigger an action message. Returns –1 if the user clicked in an
area of the table view not occupied by columns.

Discussion
The return value of this method is meaningful only in the target’s implementation of the action or
double-action method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– clickedRow (page 2624)
– setAction: (page 828) (NSControl)
– setDoubleAction: (page 2661)

Related Sample Code
AnimatedTableView
DragNDropOutlineView
PhotoSearch

Declared In
NSTableView.h

clickedRow
Returns the index of the row the user clicked to trigger an action message.

- (NSInteger)clickedRow

Return Value
The index of the row the user clicked to trigger an action message. Returns –1 if the user clicked in an area
of the table view not occupied by table rows.

Discussion
The return value of this method is meaningful only in the target’s implementation of the action or
double-action method.

Availability
Available in Mac OS X v10.0 and later.

2624 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

See Also
– clickedColumn (page 2624)
– setAction: (page 828) (NSControl)
– setDoubleAction: (page 2661)

Related Sample Code
AnimatedTableView
DragNDropOutlineView
PhotoSearch
WhackedTV

Declared In
NSTableView.h

columnAtPoint:
Returns the index of the column a given point lies in.

- (NSInteger)columnAtPoint:(NSPoint)aPoint

Parameters
aPoint

A point in the coordinate system of the receiver.

Return Value
The index of the column aPoint lies in, or –1 if aPoint lies outside the receiver’s bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rowAtPoint: (page 2647)

Declared In
NSTableView.h

columnAutoresizingStyle
Returns the receiver’s column autoresizing style.

- (NSTableViewColumnAutoresizingStyle)columnAutoresizingStyle

Return Value
The receiver’s column autoresizing style. For possible values, see “Autoresizing Styles” (page 2677).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setColumnAutoresizingStyle: (page 2659)

Instance Methods 2625
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Declared In
NSTableView.h

columnIndexesInRect:
Returns the indexes of the receiver’s columns that intersect the specified rectangle.

- (NSIndexSet *)columnIndexesInRect:(NSRect)rect

Parameters
rect

The rectangle in the receiver’s coordinate system to test for column enclosure.

Return Value
New NSIndexSet object containing the indexes of the receiver’s columns that intersect with rect.

Discussion
Columns that return YES for the NSTableColumn method isHidden (page 2593) are excluded from the results.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTableView.h

columnsInRect:
Returns a range of indices for the receiver’s columns that lie wholly or partially within the horizontal boundaries
of a given rectangle. (Deprecated in Mac OS X v10.5. Use columnIndexesInRect: (page 2626) instead.)

- (NSRange)columnsInRect:(NSRect)aRect

Parameters
aRect

A rectangle in the coordinate system of the receiver.

Return Value
A range of indices for the receiver’s columns that lie wholly or partially within the horizontal boundaries of
aRect. If the width or height of aRect is 0, returns an NSRange whose length is 0.

Discussion
The location of the range is the first such column’s index, and the length is the number of columns that lie
in aRect.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

See Also
– rowsInRect: (page 2648)

Declared In
NSTableView.h

2626 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

columnWithIdentifier:
Returns the index of the first column in the receiver whose identifier is equal to a given identifier.

- (NSInteger)columnWithIdentifier:(id)anObject

Parameters
anObject

A column identifier.

Return Value
The index of the first column in the receiver whose identifier is equal to anObject (when compared using
isEqual:) or –1 if no columns are found with the specified identifier.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tableColumnWithIdentifier: (page 2670)

Declared In
NSTableView.h

cornerView
Returns the view used to draw the area to the right of the column headers and above the vertical scroller of
the enclosing scroll view.

- (NSView *)cornerView

Return Value
The view used to draw the area to the right of the column headers and above the vertical scroller of the
enclosing NSScrollView object.

Discussion
This is by default a simple view that merely fills in its frame, but you can replace it with a custom view using
setCornerView: (page 2659).

Availability
Available in Mac OS X v10.0 and later.

See Also
– headerView (page 2637)

Declared In
NSTableView.h

dataSource
Returns the object that provides the data displayed by the receiver.

- (id < NSTableViewDataSource >)dataSource

Instance Methods 2627
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Return Value
The object that provides the data displayed by the receiver.

Discussion
See Using a Table Data Source and the NSTableDataSource informal protocol specification for more
information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDataSource: (page 2660)

Related Sample Code
CocoaAUHost

Declared In
NSTableView.h

delegate
Returns the receiver’s delegate.

- (id < NSTableViewDelegate >)delegate

Return Value
The receiver’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 2660)

Related Sample Code
AnimatedTableView
People

Declared In
NSTableView.h

deselectAll:
Deselects all selected rows or columns if empty selection is allowed; otherwise does nothing.

- (void)deselectAll:(id)sender

Parameters
sender

Typically the object that sent the message.

2628 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Discussion
Posts NSTableViewSelectionDidChangeNotification (page 2679) to the default notification center if
the selection does in fact change.

As a target-action method, deselectAll: checks with the delegate before changing the selection, using
selectionShouldChangeInTableView: (page 3829).

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEmptySelection (page 2620)
– selectAll: (page 2649)
– selectColumn:byExtendingSelection: (page 2649)
– selectionShouldChangeInTableView: (page 3829) (NSTableViewDelegate)

Related Sample Code
DragNDropOutlineView
EnhancedAudioBurn
EnhancedDataBurn
QTKitMovieShuffler

Declared In
NSTableView.h

deselectColumn:
Deselects the column at a given index if it’s selected.

- (void)deselectColumn:(NSInteger)columnIndex

Parameters
columnIndex

The index of the column to deselect.

Discussion
Deselects the column at columnIndex if it’s selected, regardless of whether empty selection is allowed.

If the selection does in fact change, posts NSTableViewSelectionDidChangeNotification (page 2679)
to the default notification center.

If the indicated column was the last column selected by the user, the column nearest it effectively becomes
the last selected column. In case of a tie, priority is given to the column on the left.

This method doesn’t check with the delegate before changing the selection.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedColumn (page 2650)
– allowsEmptySelection (page 2620)
– selectRow:byExtendingSelection: (page 2653)

Instance Methods 2629
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Declared In
NSTableView.h

deselectRow:
Deselects the row at a given index if it’s selected.

- (void)deselectRow:(NSInteger)rowIndex

Parameters
rowIndex

The index of the row to deselect.

Discussion
Deselects the row at rowIndex if it’s selected, regardless of whether empty selection is allowed.

If the selection does in fact change, posts NSTableViewSelectionDidChangeNotification (page 2679)
to the default notification center.

If the indicated row was the last row selected by the user, the row nearest it effectively becomes the last
selected row. In case of a tie, priority is given to the row above.

This method doesn’t check with the delegate before changing the selection.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedRow (page 2651)
– allowsEmptySelection (page 2620)

Related Sample Code
XMLBrowser

Declared In
NSTableView.h

doubleAction
Returns the message sent to the target when the user double-clicks a column header or an uneditable cell.

- (SEL)doubleAction

Return Value
The message the receiver sends to its target when the user double-clicks a column header or an uneditable
cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 814) (NSControl)
– target (page 844) (NSControl)

2630 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

– setDoubleAction: (page 2661)

Declared In
NSTableView.h

draggingDestinationFeedbackStyle
Returns the feedback style displayed when the user drags over the table view.

- (NSTableViewDraggingDestinationFeedbackStyle)draggingDestinationFeedbackStyle

Return Value
The dragging feedback style. See “NSTableViewDraggingDestinationFeedbackStyle” (page 2675) for the possible
values.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setDraggingDestinationFeedbackStyle: (page 2662)

Declared In
NSTableView.h

dragImageForRows:event:dragImageOffset:
Computes and returns an image to use for dragging. (Deprecated in Mac OS X v10.4. Use
dragImageForRowsWithIndexes:tableColumns:event:offset: (page 2631) instead.)

- (NSImage *)dragImageForRows:(NSArray *)dragRows event:(NSEvent *)dragEvent
dragImageOffset:(NSPointPointer)dragImageOffset

Discussion
Override this to return a custom image. dragRows represents the rows participating in the drag. dragEvent
is a reference to the mouse-down event that began the drag. dragImageOffset is an in/out parameter.

This method is called with dragImageOffset set to NSZeroPoint, but it can be modified to reposition the
returned image. A dragImageOffset of NSZeroPointwill cause the image to be centered under the cursor.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSTableView.h

dragImageForRowsWithIndexes:tableColumns:event:offset:
Computes and returns an image to use for dragging.

- (NSImage *)dragImageForRowsWithIndexes:(NSIndexSet *)dragRows tableColumns:(NSArray
 *)tableColumns event:(NSEvent *)dragEvent offset:(NSPointPointer)dragImageOffset

Instance Methods 2631
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Discussion
Override this to return a custom image. dragRows represents the rows participating in the drag.
tableColumns represents the table columns that should be in the output image. dragEvent is a reference
to the mouse-down event that began the drag. dragImageOffset is an in/out parameter.

This method is called with dragImageOffset set to NSZeroPoint, but it can be modified to reposition the
returned image. A dragImageOffset of NSZeroPointwill cause the image to be centered under the cursor.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTableView.h

drawBackgroundInClipRect:
Draws the background in the clip rect specified by clipRect.

- (void)drawBackgroundInClipRect:(NSRect)clipRect

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTableView.h

drawGridInClipRect:
Draws the grid lines within aRect, using the grid color set with setGridColor: (page 2664).

- (void)drawGridInClipRect:(NSRect)aRect

Discussion
This method draws a grid regardless of whether the receiver is set to draw one automatically.

Subclasses can override this method to draw grid lines other than the standard ones.

Availability
Available in Mac OS X v10.0 and later.

See Also
– gridColor (page 2636)
– setIntercellSpacing: (page 2666)
– drawsGrid (page 2633)
– drawRow:clipRect: (page 2633)
– highlightSelectionInClipRect: (page 2638)

Declared In
NSTableView.h

2632 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

drawRow:clipRect:
Draws the cells for the row at rowIndex in the columns that intersect clipRect.

- (void)drawRow:(NSInteger)rowIndex clipRect:(NSRect)clipRect

Discussion
Sends tableView:willDisplayCell:forTableColumn:row: (page 3840) to the delegate before drawing
each cell.

Subclasses can override this method to customize their appearance.

Availability
Available in Mac OS X v10.0 and later.

See Also
– columnsInRect: (page 2626)
– highlightSelectionInClipRect: (page 2638)
– drawGridInClipRect: (page 2632)

Declared In
NSTableView.h

drawsGrid
Returns a Boolean value that indicates whether the receiver draws a grid. (Deprecated in Mac OS X v10.3.
Use gridStyleMask (page 2636) instead.)

- (BOOL)drawsGrid

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
NSTableView.h

editColumn:row:withEvent:select:
Edits the cell at columnIndex and rowIndex, selecting its entire contents if flag is YES.

- (void)editColumn:(NSInteger)columnIndex row:(NSInteger)rowIndex withEvent:(NSEvent
 *)theEvent select:(BOOL)flag

Discussion
This method is invoked automatically in response to user actions; you should rarely need to invoke it directly.
theEvent is usually the mouse event that triggered editing; it can be nil when starting an edit
programmatically.

This method scrolls the receiver so that the cell is visible, sets up the field editor, and sends
selectWithFrame:inView:editor:delegate:start:length: (page 575) and
editWithFrame:inView:editor:delegate:event: (page 555) to the field editor’s NSCell object with
the NSTableView as the text delegate.

Instance Methods 2633
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

The row at rowIndex must be selected prior to calling editColumn:row:withEvent:select:, or an
exception will be raised.

Availability
Available in Mac OS X v10.0 and later.

See Also
– editedColumn (page 2634)
– editedRow (page 2634)

Related Sample Code
DragNDropOutlineView
IdentitySample
SourceView

Declared In
NSTableView.h

editedColumn
Returns the index of the column being edited.

- (NSInteger)editedColumn

Return Value
If sent during editColumn:row:withEvent:select: (page 2633), the index of the column being edited;
otherwise –1.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AnimatedTableView
People

Declared In
NSTableView.h

editedRow
Returns the index of the row being edited.

- (NSInteger)editedRow

Return Value
If sent during editColumn:row:withEvent:select: (page 2633), the index of the row being edited;
otherwise –1.

Availability
Available in Mac OS X v10.0 and later.

2634 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Related Sample Code
AnimatedTableView
People

Declared In
NSTableView.h

focusedColumn
Returns the currently focused column.

- (NSInteger)focusedColumn

Return Value
The index of the column, or -1 if there is no focused column

Discussion
The focus interaction will always be on the selectedRow (page 2651) of the table. If the selectedRow (page
2651) is a full width cell, then focusedColumn will return 1 when focused..

Availability
Available in Mac OS X v10.6 and later.

See Also
– shouldFocusCell:atColumn:row: (page 2668)
– setFocusedColumn: (page 2663)

Declared In
NSTableView.h

frameOfCellAtColumn:row:
Returns a rectangle locating the cell that lies at the intersection of columnIndex and rowIndex.

- (NSRect)frameOfCellAtColumn:(NSInteger)columnIndex row:(NSInteger)rowIndex

Parameters
columnIndex

The index of the column containing the cell whose rectangle you want.

rowIndex
The index of the row containing the cell whose rectangle you want.

Return Value
A rectangle locating the cell that lies at the intersection of columnIndex and rowIndex. Returns NSZeroRect
if columnIndex or rowIndex is greater than the number of columns or rows in the receiver.

Discussion
You can use this method to update a single cell more efficiently than sending the table view a reloadData (page
2645) message.

[aTableView setNeedsDisplayInRect:[aTableView frameOfCellAtColumn:column
row:row]];

Instance Methods 2635
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

The result of this method is used in a drawWithFrame:inView: (page 554) message to the table column's
data cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rectOfColumn: (page 2644)
– rectOfRow: (page 2645)

Related Sample Code
AnimatedTableView
DragNDropOutlineView
PhotoSearch

Declared In
NSTableView.h

gridColor
Returns the color used to draw grid lines.

- (NSColor *)gridColor

Return Value
The color used to draw grid lines.

Discussion
The default color is gray.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsGrid (page 2633)
– drawGridInClipRect: (page 2632)
– setGridColor: (page 2664)

Declared In
NSTableView.h

gridStyleMask
Returns the receiver’s grid style mask.

- (NSUInteger)gridStyleMask

Return Value
The receiver’s grid style mask. Possible return values are described in “Grid styles” (page 2676).

Availability
Available in Mac OS X v10.3 and later.

2636 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

See Also
– setGridStyleMask: (page 2664)

Declared In
NSTableView.h

headerView
Returns the NSTableHeaderView object used to draw headers over columns.

- (NSTableHeaderView *)headerView

Return Value
The NSTableHeaderView object used to draw headers over columns, or nil if the receiver has no header
view

Discussion
See The Parts of a Table and the NSTableHeaderView class specification for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHeaderView: (page 2664)

Declared In
NSTableView.h

highlightedTableColumn
Returns the table column highlighted in the receiver.

- (NSTableColumn *)highlightedTableColumn

Return Value
The table column highlighted in the receiver.

Discussion
A highlightable column header can be used in conjunction with row selection to highlight a particular column
of the table. An example of this is how the Mail application indicates the currently sorted column.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHighlightedTableColumn: (page 2665)

Declared In
NSTableView.h

Instance Methods 2637
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

highlightSelectionInClipRect:
Highlights the region of the receiver in clipRect.

- (void)highlightSelectionInClipRect:(NSRect)clipRect

Discussion
This method is invoked before drawRow:clipRect: (page 2633).

Subclasses can override this method to change the manner in which they highlight selections.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawGridInClipRect: (page 2632)

Declared In
NSTableView.h

indicatorImageInTableColumn:
Returns the indicator image of a given table column.

- (NSImage *)indicatorImageInTableColumn:(NSTableColumn *)aTableColumn

Parameters
aTableColumn

A table column in the receiver.

Discussion
An indicator image is an arbitrary (small) image that is rendered on the right side of the column header. An
example of its use is in Mail to indicate the sorting direction of the currently sorted column in a mailbox.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIndicatorImage:inTableColumn: (page 2665)

Declared In
NSTableView.h

intercellSpacing
Returns the horizontal and vertical spacing between cells.

- (NSSize)intercellSpacing

Return Value
The horizontal and vertical spacing between cells.

Discussion
The default spacing is (3.0, 2.0).

2638 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDrawsGrid: (page 2662)
– setIntercellSpacing: (page 2666)

Related Sample Code
MP3 Player

Declared In
NSTableView.h

isColumnSelected:
Returns a Boolean value that indicates whether the column at a given index is selected.

- (BOOL)isColumnSelected:(NSInteger)columnIndex

Parameters
columnIndex

The index of the column to test.

Return Value
YES if the column at columnIndex is selected, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedColumn (page 2650)
– selectedColumnEnumerator (page 2651)
– selectColumn:byExtendingSelection: (page 2649)

Declared In
NSTableView.h

isRowSelected:
Returns a Boolean value that indicates whether the row at a given index is selected.

- (BOOL)isRowSelected:(NSInteger)rowIndex

Parameters
rowIndex

The index of the row to test.

Return Value
YES if the row at rowIndex is selected, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2639
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

See Also
– selectedRow (page 2651)
– selectedRowEnumerator (page 2652)
– selectRow:byExtendingSelection: (page 2653)

Related Sample Code
DragNDropOutlineView

Declared In
NSTableView.h

moveColumn:toColumn:
Moves the column and heading at a given index to a new given index.

- (void)moveColumn:(NSInteger)columnIndex toColumn:(NSInteger)newIndex

Parameters
columnIndex

The current index of the column to move.

newIndex
The new index for the moved column.

Discussion
This method posts NSTableViewColumnDidMoveNotification (page 2678) to the default notification
center.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTableView.h

noteHeightOfRowsWithIndexesChanged:
Informs the receiver that the rows specified in indexSet have changed height.

- (void)noteHeightOfRowsWithIndexesChanged:(NSIndexSet *)indexSet

Discussion
If the delegate implements tableView:heightOfRow: (page 3831) this method immediately re-tiles the
table view using the row heights the delegate provides.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTableView.h

2640 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

noteNumberOfRowsChanged
Informs the receiver that the number of records in its data source has changed.

- (void)noteNumberOfRowsChanged

Discussion
This method allows the receiver to update the scrollers in its scroll view without actually reloading data into
the receiver. It’s useful for a data source that continually receives data in the background over a period of
time, in which case the table view can remain responsive to the user while the data is received.

See the NSTableDataSource informal protocol specification for information on the messages an
NSTableView object sends to its data source.

Availability
Available in Mac OS X v10.0 and later.

See Also
– reloadData (page 2645)
– numberOfRowsInTableView: (NSTableDataSource informal protocol)

Related Sample Code
NewsReader

Declared In
NSTableView.h

numberOfColumns
Returns the number of columns in the receiver.

- (NSInteger)numberOfColumns

Return Value
The number of columns in the receiver.

Discussion
The value returned includes table columns that are currently hidden.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfRows (page 2642)

Related Sample Code
NSOperationSample

Declared In
NSTableView.h

Instance Methods 2641
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

numberOfRows
Returns the number of rows in the receiver.

- (NSInteger)numberOfRows

Return Value
The number of rows in the receiver.

Discussion
Typically you should not ask the table view how many rows it has; instead you should interrogate the table
view's data source.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfColumns (page 2641)
– numberOfRowsInTableView: (NSTableDataSource informal protocol)

Related Sample Code
EnhancedAudioBurn
iSpend
MP3 Player
PDFKitLinker2
QTAudioExtractionPanel

Declared In
NSTableView.h

numberOfSelectedColumns
Returns the number of selected columns.

- (NSInteger)numberOfSelectedColumns

Return Value
The number of selected columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfSelectedRows (page 2642)
– selectedColumnEnumerator (page 2651)

Declared In
NSTableView.h

numberOfSelectedRows
Returns the number of selected rows.

2642 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

- (NSInteger)numberOfSelectedRows

Return Value
The number of selected rows.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfSelectedColumns (page 2642)
– selectedRowEnumerator (page 2652)

Related Sample Code
DragNDropOutlineView
EnhancedAudioBurn

Declared In
NSTableView.h

performClickOnCellAtColumn:row:
Performs a click action on the cell at the specified row and column.

- (void)performClickOnCellAtColumn:(NSInteger)column row:(NSInteger)row

Parameters
column

The column of the cell.

row
The row of the cell.

Discussion
Acquires the preparedCellAtColumn:row: (page 2643), copies it, invokes performClick: (page 573) or
performClickWithFrame:inView: (page 2002) (if the cell is an NSPopUpButtonCell), and then updates
the datasource, if required. This method does not do any checks to see if the cell is enabled.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTableView.h

preparedCellAtColumn:row:
Returns the fully prepared cell that the receiver will use for drawing or processing of the specified row and
column.

- (NSCell *)preparedCellAtColumn:(NSInteger)column row:(NSInteger)row

Parameters
column

The column index for which to return the appropriate cell.

Instance Methods 2643
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

row
The row index for which to return the appropriate cell.

Return Value
New NSCell subclass instance to use for the specified row and column. The value for the cell is correctly
set, and the delegate method tableView:willDisplayCell:forTableColumn:row: will have been
called.

Discussion
You can override this method to do any additional cell set up that is required, or invoke it to retrieve a cell
that has its contents configured for the specified column and row.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Cocoa Tips and Tricks
DragNDropOutlineView
PhotoSearch

Declared In
NSTableView.h

rectOfColumn:
Returns the rectangle containing the column at a given index.

- (NSRect)rectOfColumn:(NSInteger)columnIndex

Parameters
columnIndex

The index of a column in the receiver.

Return Value
The rectangle containing the column at columnIndex. Returns NSZeroRect if columnIndex lies outside
the range of valid column indices for the receiver.

Discussion
You can use this method to update a single column more efficiently than sending the table view a
reloadData (page 2645) message.

[aTableView setNeedsDisplayInRect:[aTableView rectOfColumn:column]];

Availability
Available in Mac OS X v10.0 and later.

See Also
– frameOfCellAtColumn:row: (page 2635)
– rectOfRow: (page 2645)
– headerRectOfColumn: (page 2607) (NSTableHeaderView)

Declared In
NSTableView.h

2644 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

rectOfRow:
Returns the rectangle containing the row at a given index.

- (NSRect)rectOfRow:(NSInteger)rowIndex

Return Value
The rectangle containing the row at rowIndex. Returns NSZeroRect if rowIndex lies outside the range of
valid row indices for the receiver.

Discussion
You can use this method to update a single row more efficiently than sending the table view a
reloadData (page 2645) message.

[aTableView setNeedsDisplayInRect:[aTableView rectOfRow:row]];

Availability
Available in Mac OS X v10.0 and later.

See Also
– frameOfCellAtColumn:row: (page 2635)
– rectOfColumn: (page 2644)

Related Sample Code
DragNDropOutlineView
NewsReader

Declared In
NSTableView.h

reloadData
Marks the receiver as needing redisplay, so it will reload the data for visible cells and draw the new values.

- (void)reloadData

Discussion
This method forces redraw of all the visible cells in the receiver. If you want to update the value in a single
cell, column, or row, it is more efficient to use frameOfCellAtColumn:row: (page 2635), rectOfColumn: (page
2644), or rectOfRow: (page 2645) in conjunction with setNeedsDisplayInRect: (NSView). If you just want to
update the scroller, use noteNumberOfRowsChanged (page 2641); if the height of a set of rows changes, use
noteHeightOfRowsWithIndexesChanged: (page 2640).

Availability
Available in Mac OS X v10.0 and later.

See Also
– noteNumberOfRowsChanged (page 2641)
– noteHeightOfRowsWithIndexesChanged: (page 2640)
– frameOfCellAtColumn:row: (page 2635)
– rectOfColumn: (page 2644)
– rectOfRow: (page 2645)

Instance Methods 2645
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Related Sample Code
DragNDropOutlineView
QTAudioContextInsert
QTAudioExtractionPanel
WhackedTV
With and Without Bindings

Declared In
NSTableView.h

reloadDataForRowIndexes:columnIndexes:
Reloads the data for only the specified rows and columns.

- (void)reloadDataForRowIndexes:(NSIndexSet *)rowIndexes columnIndexes:(NSIndexSet
 *)columnIndexes

Parameters
rowIndexes

The indexes of the rows to update.

columnIndexes
The indexes of the columns to update.

Discussion
For cells that are visible, the appropriate dataSource (page 2627) and delegate (page 2628) methods will be
called and the cells will be redrawn.

For tables that support variable row heights, the row height will not be re-queried from the delegate; it is
your responsibility to invoke noteHeightOfRowsWithIndexesChanged: (page 2640) if a row height change
is required.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
AnimatedTableView

Declared In
NSTableView.h

removeTableColumn:
Removes a given column from the receiver.

- (void)removeTableColumn:(NSTableColumn *)aTableColumn

Parameters
aTableColumn

The column to remove from the receiver.

Availability
Available in Mac OS X v10.0 and later.

2646 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

See Also
– sizeLastColumnToFit (page 2669)
– addTableColumn: (page 2619)

Declared In
NSTableView.h

rowAtPoint:
Returns the index of the row a given point lies in.

- (NSInteger)rowAtPoint:(NSPoint)aPoint

Parameters
aPoint

A point in the coordinate system of the receiver.

Return Value
The index of the row aPoint lies in, or –1 if aPoint lies outside the receiver’s bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– columnAtPoint: (page 2625)

Declared In
NSTableView.h

rowHeight
Returns the height of each row in the receiver.

- (CGFloat)rowHeight

Return Value
The height of each row in the receiver.

Discussion
The default row height is 16.0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRowHeight: (page 2666)

Related Sample Code
AnimatedTableView
Mountains
MP3 Player
PhotoSearch

Instance Methods 2647
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Declared In
NSTableView.h

rowsInRect:
Returns a range of indices for the rows that lie wholly or partially within the vertical boundaries of a given
rectangle.

- (NSRange)rowsInRect:(NSRect)aRect

Parameters
aRect

A rectangle in the coordinate system of the receiver.

Return Value
A range of indices for the receiver’s rows that lie wholly or partially within the horizontal boundaries of aRect.
If the width or height of aRect is 0, returns an NSRange whose length is 0.

Discussion
The location of the range is the first such row’s index, and the length is the number of rows that lie in aRect.

Availability
Available in Mac OS X v10.0 and later.

See Also
– columnsInRect: (page 2626)

Declared In
NSTableView.h

scrollColumnToVisible:
Scrolls the receiver and header view horizontally in an enclosing NSClipView so the column specified by
columnIndex is visible.

- (void)scrollColumnToVisible:(NSInteger)columnIndex

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollRowToVisible: (page 2648)
– scrollToPoint: (page 635) (NSClipView)

Declared In
NSTableView.h

scrollRowToVisible:
Scrolls the receiver vertically in an enclosing NSClipView so the row specified by rowIndex is visible.

- (void)scrollRowToVisible:(NSInteger)rowIndex

2648 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– scrollColumnToVisible: (page 2648)
– scrollToPoint: (page 635) (NSClipView)

Related Sample Code
DemoMonkey
MixMash

Declared In
NSTableView.h

selectAll:
Selects all rows or all columns, according to whether rows or columns were most recently selected.

- (void)selectAll:(id)sender

Parameters
sender

Typically the object that sent the message.

Discussion
If the table allows multiple selection, this action method selects all rows or all columns, according to whether
rows or columns were most recently selected. If nothing has been recently selected, this method selects all
rows. If this table doesn’t allow multiple selection, this method does nothing.

If the selection does change, this method posts NSTableViewSelectionDidChangeNotification (page
2679) to the default notification center.

As a target-action method, selectAll: checks with the delegate before changing the selection.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsMultipleSelection (page 2621)
– deselectAll: (page 2628)
– selectColumn:byExtendingSelection: (page 2649)

Declared In
NSTableView.h

selectColumn:byExtendingSelection:
Selects a column at a given index, optionally extending any existing selection. (Deprecated in Mac OS X v10.3.
Use selectColumnIndexes:byExtendingSelection: (page 2650) instead.)

- (void)selectColumn:(NSInteger)columnIndex byExtendingSelection:(BOOL)flag

Instance Methods 2649
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

See Also
– allowsMultipleSelection (page 2621)
– allowsColumnSelection (page 2620)
– deselectColumn: (page 2629)
– selectedColumn (page 2650)
– selectRow:byExtendingSelection: (page 2653)

Declared In
NSTableView.h

selectColumnIndexes:byExtendingSelection:
Sets the column selection using indexes.

- (void)selectColumnIndexes:(NSIndexSet *)indexes byExtendingSelection:(BOOL)extend

Discussion
If the extend flag is NO the selected columns are specified by indexes. If extend is YES, the columns
indicated by indexes are added to the collection of already selected columns, providing multiple selection.

If a subclass implements only the deprecatedselectColumn:byExtendingSelection: (page 2649) method,
then this method will be invoked in a loop. If a subclass implements this method, then
selectColumn:byExtendingSelection: is not used. This allows subclasses that already implement
selectColumn:byExtendingSelection: to still receive all selection messages. To avoid cycles,
implementations of this method and selectColumn:byExtendingSelection: should not invoke each
other.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectRowIndexes:byExtendingSelection: (page 2654)

Declared In
NSTableView.h

selectedColumn
Returns the index of the last column selected or added to the selection.

- (NSInteger)selectedColumn

Return Value
The index of the last column selected or added to the selection, or –1 if no column is selected.

Availability
Available in Mac OS X v10.0 and later.

2650 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

See Also
– selectedColumnEnumerator (page 2651)
– numberOfSelectedColumns (page 2642)
– selectColumn:byExtendingSelection: (page 2649)
– deselectColumn: (page 2629)

Declared In
NSTableView.h

selectedColumnEnumerator
This method has been deprecated. (Deprecated in Mac OS X v10.3. Use selectedColumnIndexes (page
2651) instead.)

- (NSEnumerator *)selectedColumnEnumerator

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

See Also
– numberOfSelectedColumns (page 2642)
– selectedColumn (page 2650)
– selectedRowEnumerator (page 2652)

Declared In
NSTableView.h

selectedColumnIndexes
Returns an index set containing the indexes of the selected columns.

- (NSIndexSet *)selectedColumnIndexes

Return Value
An index set containing the indexes of the selected columns.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectedRowIndexes (page 2652)
– selectColumnIndexes:byExtendingSelection: (page 2650)

Declared In
NSTableView.h

selectedRow
Returns the index of the last row selected or added to the selection.

Instance Methods 2651
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

- (NSInteger)selectedRow

Return Value
The index of the last row selected or added to the selection, or –1 if no row is selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedRowEnumerator (page 2652)
– numberOfSelectedRows (page 2642)
– selectRow:byExtendingSelection: (page 2653)
– deselectRow: (page 2630)

Related Sample Code
EnhancedAudioBurn
FunHouse
IdentitySample
QTAudioContextInsert
With and Without Bindings

Declared In
NSTableView.h

selectedRowEnumerator
This method has been deprecated. (Deprecated in Mac OS X v10.3. Use selectedRowIndexes (page 2652)
instead.)

- (NSEnumerator *)selectedRowEnumerator

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

See Also
– numberOfSelectedRows (page 2642)
– selectedRow (page 2651)
– selectedColumnEnumerator (page 2651)

Declared In
NSTableView.h

selectedRowIndexes
Returns an index set containing the indexes of the selected rows.

- (NSIndexSet *)selectedRowIndexes

Return Value
An index set containing the indexes of the selected rows.

2652 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectedColumnIndexes (page 2651)
– selectRowIndexes:byExtendingSelection: (page 2654)

Related Sample Code
AnimatedTableView
DragNDropOutlineView
IdentitySample
STUCAuthoringDeviceCocoaSample
With and Without Bindings

Declared In
NSTableView.h

selectionHighlightStyle
Returns the selection highlight style used by the receiver to indicate row and column selection.

- (NSTableViewSelectionHighlightStyle)selectionHighlightStyle

Return Value
The selection highlight style used by the receiver to use to indicate row and column selection. See “Selection
Styles” (page 2678) for the possible values.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTableView.h

selectRow:byExtendingSelection:
Selects a row at a given index, optionally extending any existing selection. (Deprecated in Mac OS X v10.3.
Use selectRowIndexes:byExtendingSelection: (page 2654) instead.)

- (void)selectRow:(NSInteger)rowIndex byExtendingSelection:(BOOL)flag

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

See Also
– allowsMultipleSelection (page 2621)
– deselectRow: (page 2630)
– selectedRow (page 2651)
– selectColumn:byExtendingSelection: (page 2649)

Instance Methods 2653
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Related Sample Code
EnhancedAudioBurn
EnhancedDataBurn
PDFKitLinker2
WhackedTV

Declared In
NSTableView.h

selectRowIndexes:byExtendingSelection:
Sets the row selection using indexes.

- (void)selectRowIndexes:(NSIndexSet *)indexes byExtendingSelection:(BOOL)extend

Discussion
If the extend flag is NO the selected rows are specified by indexes. If extend is YES, the rows indicated by
indexes are added to the collection of already selected rows, providing multiple selection.

If a subclass implements only the deprecated selectRow:byExtendingSelection: (page 2653) method,
then that method will be invoked in a loop. This allows subclasses that already implement
selectRow:byExtendingSelection: to still receive all selection messages. If a subclass implements
selectRowIndexes:byExtendingSelection:, then selectRow:byExtendingSelection: is not used.
Note that to avoid cycles, implementations of this method and selectRow:byExtendingSelection:
should not invoke each other.

Availability
Available in Mac OS X v10.3 and later.

See Also
– selectColumnIndexes:byExtendingSelection: (page 2650)

Related Sample Code
DemoMonkey
DragNDropOutlineView
IdentitySample

Declared In
NSTableView.h

setAllowsColumnReordering:
Controls whether the user can drag column headers to reorder columns.

- (void)setAllowsColumnReordering:(BOOL)flag

Parameters
flag

YES to allow the user to reorder columns, otherwise NO.

Discussion
The default is YES. You can rearrange columns programmatically regardless of this setting.

2654 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– moveColumn:toColumn: (page 2640)
– allowsColumnReordering (page 2619)

Declared In
NSTableView.h

setAllowsColumnResizing:
Controls whether the user can resize columns by dragging between headers.

- (void)setAllowsColumnResizing:(BOOL)flag

Parameters
flag

YES to allow the user to resize columns, otherwise NO.

Discussion
The default is YES. You can resize columns programmatically regardless of this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWidth: (page 2600) (NSTableColumn)
– allowsColumnResizing (page 2619)

Declared In
NSTableView.h

setAllowsColumnSelection:
Controls whether the user can select an entire column by clicking its header.

- (void)setAllowsColumnSelection:(BOOL)flag

Parameters
flag

YES to allow the user to select columns, otherwise NO.

Discussion
The default is NO. You can select columns programmatically regardless of this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectColumn:byExtendingSelection: (page 2649)
– setAllowsColumnReordering: (page 2654)
– allowsColumnSelection (page 2620)

Instance Methods 2655
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Declared In
NSTableView.h

setAllowsEmptySelection:
Controls whether the receiver allows zero rows or columns to be selected.

- (void)setAllowsEmptySelection:(BOOL)flag

Parameters
flag

YES if an empty selection is allowed, otherwise NO.

Discussion
The default is YES.

Unlike with the other settings that affect selection behavior, you cannot set an empty selection
programmatically if empty selection is disallowed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deselectAll: (page 2628)
– deselectColumn: (page 2629)
– deselectRow: (page 2630)
– allowsEmptySelection (page 2620)

Declared In
NSTableView.h

setAllowsMultipleSelection:
Controls whether the user can select more than one row or column at a time.

- (void)setAllowsMultipleSelection:(BOOL)flag

Parameters
flag

YES to allow the user to select multiple rows or columns, otherwise NO.

Discussion
The default is NO. You can select multiple columns or rows programmatically regardless of this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectColumn:byExtendingSelection: (page 2649)
– selectRow:byExtendingSelection: (page 2653)
– allowsMultipleSelection (page 2621)

2656 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Declared In
NSTableView.h

setAllowsTypeSelect:
Sets whether the receiver allows the user to type characters to select rows.

- (void)setAllowsTypeSelect:(BOOL)value

Parameters
value

YES if the receiver allows type selection, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– allowsTypeSelect (page 2621)

Declared In
NSTableView.h

setAutoresizesAllColumnsToFit:
Controls whether the receiver proportionally resizes its columns to fit when its superview’s frame changes.
(Deprecated in Mac OS X v10.4. Use setColumnAutoresizingStyle: (page 2659) instead.)

- (void)setAutoresizesAllColumnsToFit:(BOOL)flag

Discussion
If flag is YES, the difference in width is distributed among the receiver’s table columns; if flag is NO, only
the last column is resized to fit.

To preserve compatibility this method sets the autoresizing style to
NSTableViewUniformColumnAutoresizingStyle , if flag is YES. Otherwise the autoresizing style is set
to NSTableViewLastColumnOnlyAutoresizingStyle.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

See Also
– setColumnAutoresizingStyle: (page 2659)

Declared In
NSTableView.h

setAutosaveName:
Sets the name under which table information is automatically saved to name.

- (void)setAutosaveName:(NSString *)name

Instance Methods 2657
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Discussion
If name is different from the current name, this method also reads in the saved information and sets the order
and width of this table view’s columns to match.

The table information is saved separately for each user and for each application that user uses. Note that
even though a table view has an autosave name, it may not be saving table information automatically. To
set whether table information is being saved automatically, use setAutosaveTableColumns: (page 2658).

Availability
Available in Mac OS X v10.0 and later.

See Also
– autosaveName (page 2622)
– setAutosaveTableColumns: (page 2658)

Declared In
NSTableView.h

setAutosaveTableColumns:
Sets whether the order and width of this table view’s columns are automatically saved.

- (void)setAutosaveTableColumns:(BOOL)flag

Discussion
If flag is different from the current value, this method also reads in the saved information and sets the table
options to match.

The table information is saved separately for each user and for each application that user uses. Note that if
autosaveName (page 2622) returns nil, this setting is ignored and table information isn’t saved.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autosaveTableColumns (page 2623)
– setAutosaveName: (page 2657)

Declared In
NSTableView.h

setBackgroundColor:
Sets the receiver’s background color to a given color.

- (void)setBackgroundColor:(NSColor *)aColor

Parameters
aColor

The background color for the receiver.

Availability
Available in Mac OS X v10.0 and later.

2658 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

See Also
– setNeedsDisplay: (page 3225) (NSView)
– backgroundColor (page 2623)

Declared In
NSTableView.h

setColumnAutoresizingStyle:
Sets the column autoresizing style of the receiver to a given style.

- (void)setColumnAutoresizingStyle:(NSTableViewColumnAutoresizingStyle)style

Parameters
style

The column autoresizing style for the receiver. For possible values, see “Autoresizing Styles” (page
2677).

Availability
Available in Mac OS X v10.4 and later.

See Also
– columnAutoresizingStyle (page 2625)

Declared In
NSTableView.h

setCornerView:
Sets the receiver’s corner view to a given view.

- (void)setCornerView:(NSView *)aView

Parameters
aView

The corner view for the receiver.

Discussion
The default corner view merely draws a bezeled rectangle using a blank NSTableHeaderCell object, but
you can replace it with a custom view that displays an image or with a control that can handle mouse events,
such as a select all button. Your custom corner view should be as wide as a vertical NSScroller object and
as tall as the receiver’s header view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHeaderView: (page 2664)
– cornerView (page 2627)

Declared In
NSTableView.h

Instance Methods 2659
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

setDataSource:
Sets the receiver’s data source to a given object.

- (void)setDataSource:(id < NSTableViewDataSource >)anObject

Parameters
anObject

The data source for the receiver. The object must implement the appropriate methods of the
NSTableDataSource informal protocol.

Discussion
In a managed memory environment, the receiver maintains a weak reference to the data source (that is, it
does not retain the data source, see Communicating With Objects). After setting the data source, this method
invokes tile (page 2673).

This method raises an NSInternalInconsistencyException if anObject doesn’t respond to either
numberOfRowsInTableView: or tableView:objectValueForTableColumn:row:.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataSource (page 2627)

Related Sample Code
TimelineToTC

Declared In
NSTableView.h

setDelegate:
Sets the receiver’s delegate to a given object.

- (void)setDelegate:(id < NSTableViewDelegate >)anObject

Parameters
anObject

The delegate for the receiver.

Discussion
In a managed memory environment, the receiver maintains a weak reference to the delegate (that is, it does
not retain the delegate, see Communicating With Objects).

Special Considerations

When you call the tableview’s setDelegate: (page 2660) method, the delegate is automatically registered
for the following notifications with the following delegate methods:

 ■ The notification named NSTableViewSelectionDidChangeNotification (page 2679) is configured
to notify the delegate’s tableViewSelectionDidChange: (page 3841).

 ■ The notification named NSTableViewSelectionDidChangeNotification (page 2679) is configured
to notify the delegate’s tableViewColumnDidMove: (page 3840).

2660 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

 ■ The notification named NSTableViewColumnDidResizeNotification (page 2679) is configured to
notify the delegate’s tableViewColumnDidResize: (page 3841).

 ■ The notification named NSTableViewSelectionIsChangingNotification (page 2679) is configured
to notify the delegate’s tableViewSelectionIsChanging: (page 3841).

Setting the delegate to nil will cause these notifications to be disconnected. Rather than setting the delegate
to nil and listening for notifications (and expecting NSTableView to still function correctly) you should instead
implement the appropriate delegate method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 2628)

Declared In
NSTableView.h

setDoubleAction:
Sets the message sent to the target when the user double-clicks an uneditable cell or a column header to a
given selector.

- (void)setDoubleAction:(SEL)aSelector

Parameters
aSelector

The message the receiver sends to its target when the user double-clicks an uneditable cell or a
column header.

Discussion
If the double-clicked cell is editable, this message isn’t sent and the cell is edited instead. You can use this
method to implement features such as sorting records according to the column that was double-clicked. See
also clickedRow (page 2624) which you can use to determine if a row was clicked rather than the column
heading.

For the method to have any effect, the receiver’s action and target must be set to the class in which the
selector is declared. See Action Messages for additional information on action messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAction: (page 828) (NSControl)
– setTarget: (page 838) (NSControl)
– doubleAction (page 2630)

Related Sample Code
ScriptingBridgeFinder

Declared In
NSTableView.h

Instance Methods 2661
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

setDraggingDestinationFeedbackStyle:
Sets the feedback style displayed when the user drags over the table view.

-
(void)setDraggingDestinationFeedbackStyle:(NSTableViewDraggingDestinationFeedbackStyle)style

Parameters
style

The dragging feedback style. See “NSTableViewDraggingDestinationFeedbackStyle” (page 2675) for
the possible values.

Availability
Available in Mac OS X v10.6 and later.

See Also
– draggingDestinationFeedbackStyle (page 2631)

Declared In
NSTableView.h

setDraggingSourceOperationMask:forLocal:
Sets the default operation mask returned by draggingSourceOperationMaskForLocal: to mask.

- (void)setDraggingSourceOperationMask:(NSDragOperation)mask forLocal:(BOOL)isLocal

Discussion
If isLocal is YES then mask applies when the destination object is in the same application. If isLocal is
NO then mask applies when the destination object in an application outside the receiver's application.
NSTableView will archive the operation mask you set for each isLocal setting.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTableView.h

setDrawsGrid:
Sets whether the receiver draws a grid. (Deprecated in Mac OS X v10.3. Use setGridStyleMask: (page 2664)
instead.)

- (void)setDrawsGrid:(BOOL)flag

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
NSTableView.h

2662 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

setDropRow:dropOperation:
Used if you wish to “retarget” the proposed drop.

- (void)setDropRow:(NSInteger)row dropOperation:(NSTableViewDropOperation)operation

Discussion
To specify a drop on the second row, one would specify row as 1, and operation as NSTableViewDropOn.
To specify a drop below the last row, one would specify row as [self numberOfRows] and operation as
NSTableViewDropAbove. Passing a value of –1 for row, and NSTableViewDropOn as the operation causes
the entire table view to be highlighted rather than a specific row. This is useful if the data displayed by the
receiver does not allow the user to drop items at a specific row location.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DemoMonkey
EnhancedAudioBurn
iSpend
MP3 Player
With and Without Bindings

Declared In
NSTableView.h

setFocusedColumn:
Sets the currently focused column to the specified index.

- (void)setFocusedColumn:(NSInteger)focusedColumn

Parameters
focusedColumn

The index of the column to focus, or -1 if there should be no focused column.

Discussion
This method will redisplay the old previouslyfocusedColumn (page 2635) and the newlyfocusedColumn (page
2635), if required.

The focused column has a focus ring drawn around the selectedRow (page 2651) that intersects with the
focusedColumn (page 2635).

You should not override this method.

Availability
Available in Mac OS X v10.6 and later.

See Also
– focusedColumn (page 2635)
– shouldFocusCell:atColumn:row: (page 2668)

Declared In
NSTableView.h

Instance Methods 2663
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

setGridColor:
Sets the color used to draw grid lines to a given color.

- (void)setGridColor:(NSColor *)aColor

Parameters
aColor

The color to use to draw grid lines.

Discussion
The default color is gray.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDrawsGrid: (page 2662)
– drawGridInClipRect: (page 2632)
– gridColor (page 2636)

Declared In
NSTableView.h

setGridStyleMask:
Sets the grid style mask to specify if no grid lines, vertical grid lines, or horizontal grid lines should be displayed.

- (void)setGridStyleMask:(NSUInteger)gridType

Parameters
gridType

The grid style mask. Possible values for gridType are described in “Grid styles” (page 2676).

Availability
Available in Mac OS X v10.3 and later.

See Also
– gridStyleMask (page 2636)

Declared In
NSTableView.h

setHeaderView:
Sets the receiver’s header view to a given header view.

- (void)setHeaderView:(NSTableHeaderView *)aHeaderView

Parameters
aHeaderView

The header view for the receiver.

2664 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Discussion
If aHeaderView is nil, the current header view is removed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCornerView: (page 2659)
– headerView (page 2637)

Declared In
NSTableView.h

setHighlightedTableColumn:
Sets aTableColumn to be the currently highlighted column header.

- (void)setHighlightedTableColumn:(NSTableColumn *)aTableColumn

Availability
Available in Mac OS X v10.0 and later.

See Also
– highlightedTableColumn (page 2637)

Related Sample Code
NSOperationSample

Declared In
NSTableView.h

setIndicatorImage:inTableColumn:
Sets the indicator image of aTableColumn to anImage.

- (void)setIndicatorImage:(NSImage *)anImage inTableColumn:(NSTableColumn
*)aTableColumn

Discussion
anImage is retained and released by the table view as appropriate.

The default sorting order indicators are available as named NSImage objects. These images are accessed
using [NSImage imageNamed:] passing either @"NSAscendingSortIndicator" (the "^" icon), and
@"NSDescendingSortIndicator" (the "v" icon).

Availability
Available in Mac OS X v10.0 and later.

See Also
– indicatorImageInTableColumn: (page 2638)

Related Sample Code
NSOperationSample

Instance Methods 2665
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Declared In
NSTableView.h

setIntercellSpacing:
Sets the width and height between cells to those in a given NSSize struct.

- (void)setIntercellSpacing:(NSSize)aSize

Parameters
aSize

An NSSize struct that defines the width and height between cells in the receiver.

Discussion
The receiver redisplays after the new value is set.

The default intercell spacing is (3.0, 2.0).

Table views normally have a 1 pixel separation between consecutively selected rows or columns. An intercell
spacing of (1.0, 1.0) or greater is required if you want this separation. An intercell spacing of (0.0,
0.0) forces there to be no separation between consecutive selections.

Availability
Available in Mac OS X v10.0 and later.

See Also
– intercellSpacing (page 2638)

Declared In
NSTableView.h

setRowHeight:
Sets the height for rows to a given value.

- (void)setRowHeight:(CGFloat)rowHeight

Parameters
rowHeight

The height for rows.

Discussion
After the height is set, this method invokes tile (page 2673).

Availability
Available in Mac OS X v10.0 and later.

See Also
– rowHeight (page 2647)

Related Sample Code
Mountains

2666 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Declared In
NSTableView.h

setSelectionHighlightStyle:
Sets the selection highlight style used by the receiver to indicate row and column selection.

-
(void)setSelectionHighlightStyle:(NSTableViewSelectionHighlightStyle)selectionHighlightStyle

Parameters
selectionHighlightStyle

The selection highlight style to use to indicate row and column selection. See “Selection Styles” (page
2678) for the possible values.

Discussion
Setting the selection highlight style to NSTableViewSelectionHighlightStyleSourceList (page 2678)
causes the receiver to draw its background using the source list style.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTableView.h

setSortDescriptors:
Sets the receiver’s sort descriptors to the NSSortDescriptor objects in array.

- (void)setSortDescriptors:(NSArray *)array

Discussion
A table column is considered sortable if it has a sort descriptor that specifies the sorting direction, a key to
sort by, and a selector defining how to sort. The array of sort descriptors is archived. Sort descriptors persist
along with other column information if an autosave name is set.

Availability
Available in Mac OS X v10.3 and later.

See Also
– sortDescriptors (page 2670)

Declared In
NSTableView.h

setUsesAlternatingRowBackgroundColors:
Sets whether the receiver uses the standard alternating row colors for its background.

- (void)setUsesAlternatingRowBackgroundColors:(BOOL)useAlternatingRowColors

Instance Methods 2667
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Parameters
useAlternatingRowColors

YES to specify standard alternating row colors for the background, NO to specify a solid color.

Availability
Available in Mac OS X v10.3 and later.

See Also
– usesAlternatingRowBackgroundColors (page 2673)

Declared In
NSTableView.h

setVerticalMotionCanBeginDrag:
Sets whether vertical motion is treated as a drag or selection change to flag.

- (void)setVerticalMotionCanBeginDrag:(BOOL)flag

Discussion
If flag is NO then vertical motion will not start a drag. The default is YES.

Note that horizontal motion is always a valid motion to begin a drag. Most often, you would want to disable
vertical dragging when it’s expected that horizontal dragging is the natural motion.

Availability
Available in Mac OS X v10.0 and later.

See Also
– verticalMotionCanBeginDrag (page 2674)

Related Sample Code
QTKitMovieShuffler

Declared In
NSTableView.h

shouldFocusCell:atColumn:row:
Returns whether the fully cell at the specified row and column can be made the focused cell or not.

- (BOOL)shouldFocusCell:(NSCell *)cell atColumn:(NSInteger)column row:(NSInteger)row

Parameters
cell

The prepared cell to be focused upon.

column
The column of the cell.

row
The row of the cell.

Return Value
YES if the cell can be made the focused cell, otherwise NO.

2668 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Discussion
By default, only cells that are enabled can be focused. In addition, if the cell is an NSTextFieldCell, it will
can only be focused if it is selectable or editable, and the table view delegate responds YES to
-tableView:shouldEditTableColumn:row: (page 3834). Subclasses can override this to further control
what cells can and cannot be made focused.

Availability
Available in Mac OS X v10.6 and later.

See Also
– focusedColumn (page 2635)
– setFocusedColumn: (page 2663)

Declared In
NSTableView.h

sizeLastColumnToFit
Resizes the last column if there’s room so the receiver fits exactly within its enclosing clip view.

- (void)sizeLastColumnToFit

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutoresizesAllColumnsToFit: (page 2657)
– minWidth (page 2594) (NSTableColumn)
– maxWidth (page 2593) (NSTableColumn)

Declared In
NSTableView.h

sizeToFit
Changes the width of columns in the receiver so all columns are visible.

- (void)sizeToFit

Discussion
All columns are resized to the same size, up to a column's maximum size. This method then invokes tile (page
2673).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTableView.h

Instance Methods 2669
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

sortDescriptors
Returns the receiver’s sort descriptors.

- (NSArray *)sortDescriptors

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSortDescriptors: (page 2667)

Related Sample Code
DictionaryController

Declared In
NSTableView.h

tableColumns
Returns an array containing the the NSTableColumn objects in the receiver.

- (NSArray *)tableColumns

Return Value
An array containing the the NSTableColumn objects in the receiver.

Discussion
The array returned by tableColumns contains all receiver’s columns, including those that are hidden.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AnimatedTableView
DragNDropOutlineView
NSOperationSample
People

Declared In
NSTableView.h

tableColumnWithIdentifier:
Returns the NSTableColumn object for the first column whose identifier is equal to a given object.

- (NSTableColumn *)tableColumnWithIdentifier:(id)anObject

Parameters
anObject

A column identifier.

2670 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Return Value
The NSTableColumn object for the first column whose identifier is equal to anObject, as compared using
isEqual:, or nil if no columns are found with the specified identifier.

Availability
Available in Mac OS X v10.0 and later.

See Also
– columnWithIdentifier: (page 2627)

Related Sample Code
DragNDropOutlineView
QTKitMovieShuffler

Declared In
NSTableView.h

textDidBeginEditing:
Posts an NSControlTextDidBeginEditingNotification (page 847) to the default notification center.

- (void)textDidBeginEditing:(NSNotification *)aNotification

Parameters
aNotification

The notification posted by the field editor; see the NSText class specifications for more information
on this text delegate method.

Discussion
For more details, see the NSControl class specification.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textShouldBeginEditing: (page 2672)

Declared In
NSTableView.h

textDidChange:
Sends textDidChange: (page 2671) to the edited cell and posts an
NSControlTextDidChangeNotification (page 848) to the default notification center.

- (void)textDidChange:(NSNotification *)aNotification

Parameters
aNotification

The notification posted by the field editor.

Instance Methods 2671
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Discussion
See the NSText class specification for more information on this text delegate method. For additional details,
see the NSControl class specification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTableView.h

textDidEndEditing:
Updates the data source based on the newly edited value and selects another cell for editing if possible
according to the character that ended editing (Return, Tab, Backtab).

- (void)textDidEndEditing:(NSNotification *)aNotification

Discussion
aNotification is the NSNotification posted by the field editor; see the NSText class specification for more
information on this text delegate method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textShouldEndEditing: (page 2673)

Declared In
NSTableView.h

textShouldBeginEditing:
Queries the delegate using control:textShouldBeginEditing:, returning the delegate’s response, or
simply returning YES to allow editing of textObject if the delegate doesn’t respond to that method.

- (BOOL)textShouldBeginEditing:(NSText *)textObject

Discussion
See the NSText class specification for more information on this text delegate method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textDidBeginEditing: (page 2671)

Declared In
NSTableView.h

2672 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

textShouldEndEditing:
Validates the textObject cell being edited and queries the delegate using
control:textShouldEndEditing:, returning the delegate’s response if it responds to that method.

- (BOOL)textShouldEndEditing:(NSText *)textObject

Discussion
If it doesn’t, it returns YES if the cell’s new value is valid and NO if it isn’t. See the NSText class specification
for more information on this text delegate method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textDidEndEditing: (page 2672)

Declared In
NSTableView.h

tile
Properly sizes the receiver and its header view and marks it as needing display.

- (void)tile

Discussion
Also resets cursor rectangles for the header view and line scroll amounts for the NSScrollView object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setNeedsDisplay: (page 3225) (NSView)

Declared In
NSTableView.h

usesAlternatingRowBackgroundColors
Returns a Boolean value that indicates whether the receiver uses the standard alternating row colors for its
background.

- (BOOL)usesAlternatingRowBackgroundColors

Return Value
YES if the receiver uses standard alternating row colors for the background, NO if it uses a solid color.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setUsesAlternatingRowBackgroundColors: (page 2667)

Instance Methods 2673
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Declared In
NSTableView.h

verticalMotionCanBeginDrag
Returns whether vertical motion is treated as a drag or selection change.

- (BOOL)verticalMotionCanBeginDrag

Discussion
NO means that vertical motion will not start a drag. Note that horizontal motion is always a valid motion to
begin a drag.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setVerticalMotionCanBeginDrag: (page 2668)

Declared In
NSTableView.h

Delegate Methods

tableView:writeRows:toPasteboard:
Writes the specified rows to the specified pasteboard. (Deprecated in Mac OS X v10.4. This method has been
deprecated. You should implement tableView:writeRowsWithIndexes:toPasteboard: (page 3825)
instead.)

- (BOOL)tableView:(NSTableView *)aTableView writeRows:(NSArray *)rows
toPasteboard:(NSPasteboard *)pboard

Discussion
Invoked by aTableView after it has been determined that a drag should begin, but before the drag has
been started. To refuse the drag, return NO. To start a drag, return YES and place the drag data onto pboard
(data, owner, and so on). The drag image and other drag-related information will be set up and provided by
the table view once this call returns with YES. rows is the list of row numbers that will be participating in
the drag.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
NSTableView.h

2674 Delegate Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Constants

NSTableViewDraggingDestinationFeedbackStyle
These constants specify the drag styles displayed by the table view. They’re used by the
draggingDestinationFeedbackStyle (page 2631) andsetDraggingDestinationFeedbackStyle: (page
2662)

enum {
 NSTableViewDraggingDestinationFeedbackStyleNone = -1,
 NSTableViewDraggingDestinationFeedbackStyleRegular = 0,
 NSTableViewDraggingDestinationFeedbackStyleSourceList = 1,
};
#endif
typedef NSInteger NSTableViewDraggingDestinationFeedbackStyle;

Constants
NSTableViewDraggingDestinationFeedbackStyleNone

Provides no feedback when the user drags over the table view. This option exists to allow subclasses
to implement their dragging destination highlighting, or to make it not show anything all.

Available in Mac OS X v10.6 and later.

Declared in NSTableView.h.

NSTableViewDraggingDestinationFeedbackStyleRegular
Draws a solid round-rect background on drop target rows, and an insertion marker between rows.
This style should be used in most cases.

Available in Mac OS X v10.6 and later.

Declared in NSTableView.h.

NSTableViewDraggingDestinationFeedbackStyleSourceList
Draws an outline on drop target rows, and an insertion marker between rows. This style will
automatically be set for source lists when the table’s setSelectionHighlightStyle: (page 2667)
is set to NSTableViewSelectionHighlightStyleSourceList (page 2678). This is the standard
look for Source Lists, but may be used in other areas as needed.

Available in Mac OS X v10.6 and later.

Declared in NSTableView.h.

Drop Operations
NSTableView defines these constants to specify drop operations.

Constants 2675
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

enum {
 NSTableViewDropOn,
 NSTableViewDropAbove
};
typedef NSUInteger NSTableViewDropOperation;

Constants
NSTableViewDropOn

Specifies that the drop should occur on the specified row.

Available in Mac OS X v10.0 and later.

Declared in NSTableView.h.

NSTableViewDropAbove
Specifies that the drop should occur above the specified row.

Available in Mac OS X v10.0 and later.

Declared in NSTableView.h.

Discussion
For example, given a table with n rows (numbered with row 0 at the top visually), a row of n–1 and operation
of NSTableViewDropOn would specify a drop on the last row. To specify a drop below the last row, you use
a row of n and NSTableViewDropAbove for the operation.

Declared In
NSTableView.h

Grid styles
NSTableView defines these constants to specify grid styles. These constants are used by
gridStyleMask (page 2636) and setGridStyleMask: (page 2664). The mask can be either
NSTableViewGridNone (page 2676) or it can contain either or both of the other options combined using the
C bitwise OR operator.

enum {
 NSTableViewGridNone = 0,
 NSTableViewSolidVerticalGridLineMask = 1 << 0,
 NSTableViewSolidHorizontalGridLineMask = 1 << 1
};

Constants
NSTableViewGridNone

Specifies that no grid lines should be displayed.

Available in Mac OS X v10.3 and later.

Declared in NSTableView.h.

NSTableViewSolidVerticalGridLineMask
Specifies that vertical grid lines should be displayed.

Available in Mac OS X v10.3 and later.

Declared in NSTableView.h.

NSTableViewSolidHorizontalGridLineMask
Specifies that horizontal grid lines should be displayed.

Available in Mac OS X v10.3 and later.

Declared in NSTableView.h.

2676 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Autoresizing Styles
The following constants specify the autoresizing styles. These constants are used by
columnAutoresizingStyle (page 2625) and setColumnAutoresizingStyle: (page 2659).

enum {
 NSTableViewNoColumnAutoresizing = 0,
 NSTableViewUniformColumnAutoresizingStyle,
 NSTableViewSequentialColumnAutoresizingStyle,
 NSTableViewReverseSequentialColumnAutoresizingStyle,
 NSTableViewLastColumnOnlyAutoresizingStyle,
 NSTableViewFirstColumnOnlyAutoresizingStyle
};
typedef NSUInteger NSTableViewColumnAutoresizingStyle;

Constants
NSTableViewNoColumnAutoresizing

Disable table column autoresizing.

Available in Mac OS X v10.4 and later.

Declared in NSTableView.h.

NSTableViewUniformColumnAutoresizingStyle
Autoresize all columns by distributing space equally, simultaneously.

Available in Mac OS X v10.4 and later.

Declared in NSTableView.h.

NSTableViewSequentialColumnAutoresizingStyle
Autoresize each table column sequentially, from the last auto-resizable column to the first auto-resizable
column; proceed to the next column when the current column has reached its minimum or maximum
size.

Available in Mac OS X v10.4 and later.

Declared in NSTableView.h.

NSTableViewReverseSequentialColumnAutoresizingStyle
Autoresize each table column sequentially, from the first auto-resizable column to the last auto-resizable
column; proceed to the next column when the current column has reached its minimum or maximum
size.

Available in Mac OS X v10.4 and later.

Declared in NSTableView.h.

NSTableViewLastColumnOnlyAutoresizingStyle
Autoresize only the last table column.

When that table column can no longer be resized, stop autoresizing. Normally you should use one
of the sequential autoresizing modes instead.

Available in Mac OS X v10.4 and later.

Declared in NSTableView.h.

NSTableViewFirstColumnOnlyAutoresizingStyle
Autoresize only the first table column.

When that table column can no longer be resized, stop autoresizing. Normally you should use one
of the sequential autoresizing modes instead.

Available in Mac OS X v10.4 and later.

Declared in NSTableView.h.

Constants 2677
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Selection Styles
The following constants specify the selection highlight styles. These constants are used by
selectionHighlightStyle (page 2653) and setSelectionHighlightStyle: (page 2667).

enum {
 NSTableViewSelectionHighlightStyleNone = -1,
 NSTableViewSelectionHighlightStyleRegular = 0,
 NSTableViewSelectionHighlightStyleSourceList = 1,
};
typedef NSInteger NSTableViewSelectionHighlightStyle;

Constants
NSTableViewSelectionHighlightStyleNone

Displays no highlight style at all.

Available in Mac OS X v10.6 and later.

Declared in NSTableView.h.

NSTableViewSelectionHighlightStyleRegular
The regular highlight style of NSTableView. On Mac OS X v10.5 a light blue (returned by sending
NSColor a alternateSelectedControlColor (page 666) message) or light gray color (returned
by sending NSColor a secondarySelectedControlColor (page 688) message).

Available in Mac OS X v10.5 and later.

Declared in NSTableView.h.

NSTableViewSelectionHighlightStyleSourceList
The source list style of NSTableView. On 10.5, a light blue gradient is used to highlight selected rows.

Note: When using this style, cell subclasses that implement drawsBackground must set the value to NO.
Otherwise, the cells will draw over the tableview’s highlighting.

Available in Mac OS X v10.5 and later.

Declared in NSTableView.h.

Notifications

NSTableViewColumnDidMoveNotification
Posted whenever a column is moved by user action in an NSTableView object. The notification object is
the table view in which a column moved. The userInfo dictionary contains the following information:

ValueKey

An NSNumber object containing the integer value of
the column’s original index.

@"NSOldColumn"

An NSNumber object containing the integer value of
the column’s present index.

@"NSNewColumn"

2678 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– moveColumn:toColumn: (page 2640)

Declared In
NSTableView.h

NSTableViewColumnDidResizeNotification
Posted whenever a column is resized in an NSTableView object. The notification object is the table view in
which a column was resized. The userInfo dictionary contains the following information:

ValueKey

The column that was resized.@"NSTableColumn"

An NSNumber containing the integer value of the
column’s original width.

@"NSOldWidth"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTableView.h

NSTableViewSelectionDidChangeNotification
Posted after an NSTableView object's selection changes. The notification object is the table view whose
selection changed. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTableView.h

NSTableViewSelectionIsChangingNotification
Posted as an NSTableView object's selection changes (while the mouse button is still down). The notification
object is the table view whose selection is changing. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTableView.h

Notifications 2679
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

2680 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 138

NSTableView Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTabView.h

Companion guide Tab Views

Related sample code EnhancedAudioBurn
iChatTheater
MyPhoto
PDF Annotation Editor
Reducer

Overview

An NSTabView object provides a convenient way to present information in multiple pages. The view contains
a row of tabs that give the appearance of folder tabs, as shown in the following figure. The user selects the
desired page by clicking the appropriate tab or using the arrow keys to move between pages. Each page
displays a view hierarchy provided by your application.

Overview 2681
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

Tasks

Adding and Removing Tabs

– addTabViewItem: (page 2685)
Adds the tab item specified by tabViewItem.

– insertTabViewItem:atIndex: (page 2689)
Inserts tabViewItem into the receiver’s array of tab view items at index.

– removeTabViewItem: (page 2690)
Removes the item specified by tabViewItem from the receiver’s array of tab view items.

Accessing Tabs

– indexOfTabViewItem: (page 2688)
Returns the index of the specified item in the tab view.

– indexOfTabViewItemWithIdentifier: (page 2688)
Returns the index of the item that matches the specified identifier. identifier, or NSNotFound if
the item is not found.

– numberOfTabViewItems (page 2690)
Returns the number of items in the receiver’s array of tab view items.

– tabViewItemAtIndex: (page 2697)
Returns the tab view item at index in the tab view’s array of items.

– tabViewItems (page 2698)
Returns the receiver’s array of tab view items.

2682 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

Selecting a Tab

– selectFirstTabViewItem: (page 2691)
This action method selects the first tab view item.

– selectLastTabViewItem: (page 2691)
This action method selects the last tab view item.

– selectNextTabViewItem: (page 2692)
This action method selects the next tab view item in the sequence.

– selectPreviousTabViewItem: (page 2692)
This action method selects the previous tab view item in the sequence.

– selectTabViewItem: (page 2693)
Selects the specified tab view item.

– selectTabViewItemAtIndex: (page 2693)
Selects the tab view item specified by index.

– selectTabViewItemWithIdentifier: (page 2694)
Selects the tab view item specified by identifier.

– selectedTabViewItem (page 2691)
Returns the tab view item for the currently selected tab

– takeSelectedTabViewItemFromSender: (page 2698)
Sets the selected tab view item to the selected item obtained from the sender.

Modifying the Font

– font (page 2687)
Returns the font for tab label text.

– setFont: (page 2696)
Sets the font for tab label text to font.

Modifying the Tab Type

– setTabViewType: (page 2697)
Sets the tab type to tabViewType.

– tabViewType (page 2698)
Returns the tab type for the receiver.

Modifying Controls Tint

– controlTint (page 2686)
Returns the receiver’s control tint.

– setControlTint: (page 2695)
Sets the receiver’s control tint to controlTint.

Tasks 2683
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

Manipulating the Background

– drawsBackground (page 2687)
Returns whether if the receiver draws a background color when the tab view type is
NSNoTabsNoBorder.

– setDrawsBackground: (page 2696)
Sets whether a background is drawn when the view type is NSNoTabsNoBorder to flag.

Determining the Size

– minimumSize (page 2689)
Returns the minimum size necessary for the receiver to display tabs in a useful way.

– contentRect (page 2686)
Returns the rectangle describing the content area of the receiver.

– controlSize (page 2686)
Returns the size of the receiver.

– setControlSize: (page 2695)
Sets the size of the receiver to controlSize.

Truncating Tab Labels

– allowsTruncatedLabels (page 2685)
Returns whether if the receiver allows truncating for labels that don’t fit on a tab.

– setAllowsTruncatedLabels: (page 2694)
Sets whether the receiver allows truncating for names that don’t fit on a tab.

Assigning a Delegate

– setDelegate: (page 2695)
Sets the receiver’s delegate.

– delegate (page 2687)
Returns the receiver’s delegate.

Event Handling

– tabViewItemAtPoint: (page 2697)
Returns the tab view item at the specified point.

2684 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

Instance Methods

addTabViewItem:
Adds the tab item specified by tabViewItem.

- (void)addTabViewItem:(NSTabViewItem *)tabViewItem

Parameters
tabViewItem

The tab view item to be added.

Discussion
The item is added at the end of the array of tab items, so the new tab appears on the right side of the view.
If the delegate supports it, invokes the delegate’s tabViewDidChangeNumberOfTabViewItems: (page
3845) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertTabViewItem:atIndex: (page 2689)
– numberOfTabViewItems (page 2690)
– removeTabViewItem: (page 2690)
– tabViewItemAtIndex: (page 2697)
– tabViewItems (page 2698)

Declared In
NSTabView.h

allowsTruncatedLabels
Returns whether if the receiver allows truncating for labels that don’t fit on a tab.

- (BOOL)allowsTruncatedLabels

Return Value
YES if the receiver allows truncating for labels that don’t fit on a tab, otherwise NO.

Discussion
The default is NO.

When truncating is allowed, the tab view inserts an ellipsis, if necessary, to fit a label in the tab.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsTruncatedLabels: (page 2694)

Declared In
NSTabView.h

Instance Methods 2685
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

contentRect
Returns the rectangle describing the content area of the receiver.

- (NSRect)contentRect

Return Value
Returns the rectangle describing the content area of the receiver.

Discussion
This area does not include the space required for the receiver’s tabs or borders (if any).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTabView.h

controlSize
Returns the size of the receiver.

- (NSControlSize)controlSize

Return Value
Valid return values are described inControl Sizes in NSCell Class Reference.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setControlSize: (page 2695)

Declared In
NSTabView.h

controlTint
Returns the receiver’s control tint.

- (NSControlTint)controlTint

Return Value
The tab view’s control tint. See NSControlTint (page 619) for the supported values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setControlTint: (page 2695)

Declared In
NSTabView.h

2686 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

delegate
Returns the receiver’s delegate.

- (id < NSTabViewDelegate >)delegate

Return Value
The object’s delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 2695)

Declared In
NSTabView.h

drawsBackground
Returns whether if the receiver draws a background color when the tab view type is NSNoTabsNoBorder.

- (BOOL)drawsBackground

Return Value
YES if the receiver draws a background color when the tab view type is NSNoTabsNoBorder, otherwise NO.

Discussion
If the receiver uses bezeled edges or a line border, the appropriate background color for that border is used.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTabViewType: (page 2697)
– setDrawsBackground: (page 2696)

Declared In
NSTabView.h

font
Returns the font for tab label text.

- (NSFont *)font

Return Value
Returns the tab view label font.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFont: (page 2696)

Instance Methods 2687
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

Declared In
NSTabView.h

indexOfTabViewItem:
Returns the index of the specified item in the tab view.

- (NSInteger)indexOfTabViewItem:(NSTabViewItem *)tabViewItem

Parameters
tabViewItem

The tab view item.

Return Value
The zero-based index of tabViewItem, or [NSNotFound] if the item is not found.

Discussion
The returned index is zero-based.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfTabViewItemWithIdentifier: (page 2688)
– insertTabViewItem:atIndex: (page 2689)
– numberOfTabViewItems (page 2690)
– tabViewItemAtIndex: (page 2697)

Declared In
NSTabView.h

indexOfTabViewItemWithIdentifier:
Returns the index of the item that matches the specified identifier. identifier, or NSNotFound if the item
is not found.

- (NSInteger)indexOfTabViewItemWithIdentifier:(id)identifier

Parameters
identifier

The identifier of a tab view item.

Return Value
The zero-based index of the tab view item corresponding to identifier, or [NSNotFound] if the item is
not found.

Discussion
The returned index is zero-based.

Availability
Available in Mac OS X v10.0 and later.

2688 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

See Also
– indexOfTabViewItem: (page 2688)
– insertTabViewItem:atIndex: (page 2689)
– numberOfTabViewItems (page 2690)
– tabViewItemAtIndex: (page 2697)

Declared In
NSTabView.h

insertTabViewItem:atIndex:
Inserts tabViewItem into the receiver’s array of tab view items at index.

- (void)insertTabViewItem:(NSTabViewItem *)tabViewItem atIndex:(NSInteger)index

Parameters
tabViewItem

The tab view item to be added.

index
The index at which to insert the tab view item. The index parameter is zero-based.

Discussion
If there is a delegate and the delegate supports it, sends the delegate the
tabViewDidChangeNumberOfTabViewItems: (page 3845) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfTabViewItem: (page 2688)
– indexOfTabViewItemWithIdentifier: (page 2688)
– numberOfTabViewItems (page 2690)
– tabViewItemAtIndex: (page 2697)

Declared In
NSTabView.h

minimumSize
Returns the minimum size necessary for the receiver to display tabs in a useful way.

- (NSSize)minimumSize

Return Value
The minimum size necessary for the receiver to display tabs in a useful way.

Discussion
You can use the value returned by this method to limit how much a user can resize a tab view.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2689
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

See Also
– setTabViewType: (page 2697)

Declared In
NSTabView.h

numberOfTabViewItems
Returns the number of items in the receiver’s array of tab view items.

- (NSInteger)numberOfTabViewItems

Return Value
The number of items in the tab view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfTabViewItem: (page 2688)
– tabViewItems (page 2698)

Declared In
NSTabView.h

removeTabViewItem:
Removes the item specified by tabViewItem from the receiver’s array of tab view items.

- (void)removeTabViewItem:(NSTabViewItem *)tabViewItem

Parameters
tabViewItem

The tab view item to be removed.

Discussion
If there is a delegate and the delegate supports it, sends the delegate the
tabViewDidChangeNumberOfTabViewItems: (page 3845) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTabViewItem: (page 2685)
– insertTabViewItem:atIndex: (page 2689)
– tabViewItems (page 2698)

Declared In
NSTabView.h

2690 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

selectedTabViewItem
Returns the tab view item for the currently selected tab

- (NSTabViewItem *)selectedTabViewItem

Return Value
The currently selected tab view item, or nil if no item is selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectTabViewItemAtIndex: (page 2693)

Related Sample Code
iChatTheater

Declared In
NSTabView.h

selectFirstTabViewItem:
This action method selects the first tab view item.

- (void)selectFirstTabViewItem:(id)sender

Parameters
sender

Typically the object that sent invoked the message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectTabViewItem: (page 2693)

Declared In
NSTabView.h

selectLastTabViewItem:
This action method selects the last tab view item.

- (void)selectLastTabViewItem:(id)sender

Parameters
sender

Typically the object that sent invoked the message.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2691
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

See Also
– selectTabViewItem: (page 2693)

Declared In
NSTabView.h

selectNextTabViewItem:
This action method selects the next tab view item in the sequence.

- (void)selectNextTabViewItem:(id)sender

Parameters
sender

Typically the object that sent invoked the message.

Discussion
If the currently visible item is the last item in the sequence, this method does nothing, and the last page
remains displayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectTabViewItem: (page 2693)

Declared In
NSTabView.h

selectPreviousTabViewItem:
This action method selects the previous tab view item in the sequence.

- (void)selectPreviousTabViewItem:(id)sender

Parameters
sender

Typically the object that sent invoked the message.

Discussion
If the currently visible item is the first item in the sequence, this method does nothing, and the first page
remains displayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectTabViewItem: (page 2693)

Declared In
NSTabView.h

2692 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

selectTabViewItem:
Selects the specified tab view item.

- (void)selectTabViewItem:(NSTabViewItem *)tabViewItem

Parameters
tabViewItem

The tab item to select.

Discussion
If there is a delegate and the delegate supports it, sends the delegate the
tabView:shouldSelectTabViewItem: (page 3844) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertTabViewItem:atIndex: (page 2689)
– selectedTabViewItem (page 2691)

Related Sample Code
From A View to A Movie
From A View to A Picture
iChatTheater

Declared In
NSTabView.h

selectTabViewItemAtIndex:
Selects the tab view item specified by index.

- (void)selectTabViewItemAtIndex:(NSInteger)index

Parameters
index

The index of the tab item to selected.

Discussion
The index parameter is base 0. If there is a delegate and the delegate supports it, sends the delegate the
tabView:shouldSelectTabViewItem: (page 3844) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertTabViewItem:atIndex: (page 2689)
– selectedTabViewItem (page 2691)

Related Sample Code
EnhancedAudioBurn
PDFKitLinker2
QTAudioContextInsert

Instance Methods 2693
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

XMLBrowser

Declared In
NSTabView.h

selectTabViewItemWithIdentifier:
Selects the tab view item specified by identifier.

- (void)selectTabViewItemWithIdentifier:(id)identifier

Parameters
identifier

The identifier of the tab item to select.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setIdentifier: (page 2705) (NSTabViewItem)
– identifier (page 2704) (NSTabViewItem)
– selectTabViewItemAtIndex: (page 2693)
– selectedTabViewItem (page 2691)

Related Sample Code
FinalCutPro_AppleEvents

Declared In
NSTabView.h

setAllowsTruncatedLabels:
Sets whether the receiver allows truncating for names that don’t fit on a tab.

- (void)setAllowsTruncatedLabels:(BOOL)allowTruncatedLabels

Parameters
allowTruncatedLabels

YES if the receiver allows truncating for labels that don’t fit on a tab, otherwise NO.

Discussion
The default is NO.

When truncating is allowed, the tab view inserts an ellipsis, if necessary, to fit a label in the tab.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsTruncatedLabels (page 2685)

Declared In
NSTabView.h

2694 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

setControlSize:
Sets the size of the receiver to controlSize.

- (void)setControlSize:(NSControlSize)controlSize

Parameters
controlSize

The size of the receiver. Valid values are described in Control Sizes in NSCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– controlSize (page 2686)

Declared In
NSTabView.h

setControlTint:
Sets the receiver’s control tint to controlTint.

- (void)setControlTint:(NSControlTint)controlTint

Parameters
controlTint

The tab view’s control tint. See NSControlTint (page 619) for the supported values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– controlTint (page 2686)

Declared In
NSTabView.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSTabViewDelegate >)anObject

Parameters
anObject

The delegate object. It must conform to the NSTabViewDelegate protocol.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 2687)

Instance Methods 2695
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

Related Sample Code
JSPong

Declared In
NSTabView.h

setDrawsBackground:
Sets whether a background is drawn when the view type is NSNoTabsNoBorder to flag.

- (void)setDrawsBackground:(BOOL)flag

Parameters
flag

YES if the background should be drawn, otherwise NO.

Discussion
If the receiver has a bezeled border or a line border, the appropriate background for that border is used.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTabViewType: (page 2697)
– drawsBackground (page 2687)

Declared In
NSTabView.h

setFont:
Sets the font for tab label text to font.

- (void)setFont:(NSFont *)font

Parameters
font

The font to use as the tab view label font.

Discussion
Tab height is adjusted automatically to accommodate a new font size. If the view allows truncating, tab labels
are truncated as needed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsTruncatedLabels (page 2685)
– font (page 2687)
– setAllowsTruncatedLabels: (page 2694)

Declared In
NSTabView.h

2696 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

setTabViewType:
Sets the tab type to tabViewType.

- (void)setTabViewType:(NSTabViewType)tabViewType

Parameters
tabViewType

The tab type to display the tabs. The supported values are listed in NSTabViewType (page 2699)

Availability
Available in Mac OS X v10.0 and later.

See Also
– tabViewType (page 2698)

Declared In
NSTabView.h

tabViewItemAtIndex:
Returns the tab view item at index in the tab view’s array of items.

- (NSTabViewItem *)tabViewItemAtIndex:(NSInteger)index

Parameters
index

The index at which to insert the tab view item. The index parameter is zero-based.

Return Value
The tab view item at the specified index.

Availability
Available in Mac OS X v10.0 and later.

See Also
– indexOfTabViewItem: (page 2688)
– insertTabViewItem:atIndex: (page 2689)
– tabViewItems (page 2698)

Declared In
NSTabView.h

tabViewItemAtPoint:
Returns the tab view item at the specified point.

- (NSTabViewItem *)tabViewItemAtPoint:(NSPoint)point

Parameters
point

The hit point.

Instance Methods 2697
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

Return Value
The tab view item under the hit point, or nil if no tab view item is under that location.

Discussion
You can use this method to find a tab view item based on a user’s mouse click.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTabView.h

tabViewItems
Returns the receiver’s array of tab view items.

- (NSArray *)tabViewItems

Return Value
An array of tab view items.

Discussion
A tab view keeps an array containing one tab view item for each tab in the view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– numberOfTabViewItems (page 2690)
– tabViewItemAtIndex: (page 2697)

Declared In
NSTabView.h

tabViewType
Returns the tab type for the receiver.

- (NSTabViewType)tabViewType

Return Value
The tab type to display the tabs. The supported values are listed in NSTabViewType (page 2699)

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTabView.h

takeSelectedTabViewItemFromSender:
Sets the selected tab view item to the selected item obtained from the sender.

2698 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

- (void)takeSelectedTabViewItemFromSender:(id)sender

Parameters
sender

Typically the object that sent invoked the message.

Discussion
If sender responds to the indexOfSelectedItem method, this method invokes that method and selects
the tab view item at the specified index.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTabView.h

Constants

NSTabViewType
These constants specify the tab view’s type as used bytabViewType (page 2698) andsetTabViewType: (page
2697).

enum {
 NSTopTabsBezelBorder = 0,
 NSLeftTabsBezelBorder = 1,
 NSBottomTabsBezelBorder = 2,
 NSRightTabsBezelBorder = 3,
 NSNoTabsBezelBorder = 4,
 NSNoTabsLineBorder = 5,
 NSNoTabsNoBorder = 6
};
typedef NSUInteger NSTabViewType;

Constants
NSTopTabsBezelBorder

The view includes tabs on the top of the view and has a bezeled border (the default).

Available in Mac OS X v10.0 and later.

Declared in NSTabView.h.

NSNoTabsBezelBorder
The view does not include tabs and has a bezeled border.

Available in Mac OS X v10.0 and later.

Declared in NSTabView.h.

NSNoTabsLineBorder
The view does not include tabs and has a lined border.

Available in Mac OS X v10.0 and later.

Declared in NSTabView.h.

Constants 2699
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

NSNoTabsNoBorder
The view does not include tabs and has no border.

Available in Mac OS X v10.0 and later.

Declared in NSTabView.h.

NSBottomTabsBezelBorder
Tabs are on the bottom of the view with a bezeled border.

Available in Mac OS X v10.0 and later.

Declared in NSTabView.h.

NSLeftTabsBezelBorder
Tabs are on the left of the view with a bezeled border.

Available in Mac OS X v10.0 and later.

Declared in NSTabView.h.

NSRightTabsBezelBorder
Tabs are on the right of the view with a bezeled border.

Available in Mac OS X v10.0 and later.

Declared in NSTabView.h.

NSAppKitVersionNumberWithDirectionalTabs
This constant specifies the minimum version of the Application Kit that supports directional tabs.

#define NSAppKitVersionNumberWithDirectionalTabs 631.0

Constants
NSAppKitVersionNumberWithDirectionalTabs

The specific version of the AppKit framework that introduced support for directional tab items.
Developers should not need to use this constant unless they are writing applications for Mac OS X
v10.1 and earlier.

Available in Mac OS X v10.2 and later.

Declared in NSTabView.h.

2700 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 139

NSTabView Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTabViewItem.h

Companion guide Tab Views

Related sample code CoreRecipes
From A View to A Movie
From A View to A Picture
iChatTheater
TextSizingExample

Overview

An NSTabViewItem is a convenient way for presenting information in multiple pages. A tab view is usually
distinguished by a row of tabs that give the visual appearance of folder tabs. When the user clicks a tab, the
tab view displays a view page provided by your application. A tab view keeps a zero-based array of
NSTabViewItems, one for each tab in the view.

Tasks

Creating a Tab View Item

– initWithIdentifier: (page 2704)
Performs default initialization for the receiver.

Working with Labels

– drawLabel:inRect: (page 2703)
Draws the receiver’s label in tabRect, which is the area between the curved end caps.

Overview 2701
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTabViewItem Class Reference

– label (page 2705)
Returns the label text for the receiver.

– setLabel: (page 2706)
Sets the label text for the receiver to label.

– sizeOfLabel: (page 2707)
Calculates the size of the receiver’s label.

Checking the Tab Display State

– tabState (page 2708)
Returns the current display state of the tab associated with the receiver.

Assigning an Identifier Object

– identifier (page 2704)
Returns the receiver’s optional identifier object.

– setIdentifier: (page 2705)
Sets the receiver’s optional identifier object to identifier.

Setting the Color

– color (page 2703)
Returns the color for the receiver.

– setColor: (page 2705)
Deprecated. NSTabViewItems use a color supplied by the current theme.

Assigning a View

– view (page 2709)
Returns the view associated with the receiver.

– setView: (page 2707)
Sets the view associated with the receiver to view.

Setting the Initial First Responder

– initialFirstResponder (page 2704)
Returns the initial first responder for the view associated with the receiver.

– setInitialFirstResponder: (page 2706)
Sets the initial first responder for the view associated with the receiver (the view that is displayed
when a user clicks on the tab) to view.

2702 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTabViewItem Class Reference

Accessing the Parent Tab View

– tabView (page 2708)
Returns the parent tab view for the receiver.

Getting and Setting Tooltips

– toolTip (page 2708)
Returns the tooltip displayed for the tab view item

– setToolTip: (page 2706)
Sets the tooltip displayed for the tab view item.

Instance Methods

color
Returns the color for the receiver.

- (NSColor *)color

Discussion
The color is specified by the current theme.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setColor: (page 2705)

Declared In
NSTabViewItem.h

drawLabel:inRect:
Draws the receiver’s label in tabRect, which is the area between the curved end caps.

- (void)drawLabel:(BOOL)shouldTruncateLabel inRect:(NSRect)tabRect

Discussion
If shouldTruncateLabel is NO, draws the full label in the rectangle specified by tabRect. If
shouldTruncateLabel is YES, draws the truncated label. You can override this method to perform
customized label drawing. For example, you might want to add an icon to each tab in the view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– sizeOfLabel: (page 2707)

Instance Methods 2703
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTabViewItem Class Reference

Declared In
NSTabViewItem.h

identifier
Returns the receiver’s optional identifier object.

- (id)identifier

Discussion
To customize how your application works with tabs, you can initialize each tab view item with an identifier
object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithIdentifier: (page 2704)
– setIdentifier: (page 2705)

Declared In
NSTabViewItem.h

initialFirstResponder
Returns the initial first responder for the view associated with the receiver.

- (id)initialFirstResponder

Availability
Available in Mac OS X v10.0 and later.

See Also
– setInitialFirstResponder: (page 2706)

Declared In
NSTabViewItem.h

initWithIdentifier:
Performs default initialization for the receiver.

- (id)initWithIdentifier:(id)identifier

Discussion
Sets the receiver’s identifier object to identifier, if it is not nil. Use this method when creating tab view
items programmatically.

Availability
Available in Mac OS X v10.0 and later.

2704 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTabViewItem Class Reference

See Also
– identifier (page 2704)
– setIdentifier: (page 2705)

Declared In
NSTabViewItem.h

label
Returns the label text for the receiver.

- (NSString *)label

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLabel: (page 2706)

Declared In
NSTabViewItem.h

setColor:
Deprecated. NSTabViewItems use a color supplied by the current theme.

- (void)setColor:(NSColor *)color

Availability
Available in Mac OS X v10.0 and later.

See Also
– color (page 2703)

Declared In
NSTabViewItem.h

setIdentifier:
Sets the receiver’s optional identifier object to identifier.

- (void)setIdentifier:(id)identifier

Discussion
To customize how your application works with tabs, you can specify an identifier object for each tab view
item.

Availability
Available in Mac OS X v10.0 and later.

See Also
– identifier (page 2704)

Instance Methods 2705
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTabViewItem Class Reference

– initWithIdentifier: (page 2704)

Declared In
NSTabViewItem.h

setInitialFirstResponder:
Sets the initial first responder for the view associated with the receiver (the view that is displayed when a
user clicks on the tab) to view.

- (void)setInitialFirstResponder:(NSView *)view

Availability
Available in Mac OS X v10.0 and later.

See Also
– initialFirstResponder (page 2704)

Related Sample Code
TextSizingExample

Declared In
NSTabViewItem.h

setLabel:
Sets the label text for the receiver to label.

- (void)setLabel:(NSString *)label

Availability
Available in Mac OS X v10.0 and later.

See Also
– label (page 2705)

Related Sample Code
CoreRecipes

Declared In
NSTabViewItem.h

setToolTip:
Sets the tooltip displayed for the tab view item.

- (void)setToolTip:(NSString *)toolTip

Parameters
toolTip

A string representing the tooltip to be displayed.

2706 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTabViewItem Class Reference

Availability
Available in Mac OS X v10.6 and later.

See Also
– toolTip (page 2708)

Declared In
NSTabViewItem.h

setView:
Sets the view associated with the receiver to view.

- (void)setView:(NSView *)view

Discussion
This is the view displayed when a user clicks the tab. When you set a new view, the old view is released.

Availability
Available in Mac OS X v10.0 and later.

See Also
– view (page 2709)

Related Sample Code
CoreRecipes
TextSizingExample

Declared In
NSTabViewItem.h

sizeOfLabel:
Calculates the size of the receiver’s label.

- (NSSize)sizeOfLabel:(BOOL)shouldTruncateLabel

Discussion
If shouldTruncateLabel is NO, returns the size of the receiver’s full label. If shouldTruncateLabel is YES,
returns the truncated size. If your application does anything to change the size of tab labels, such as overriding
the drawLabel:inRect: (page 2703) method to add an icon to each tab, you should override
sizeOfLabel: (page 2707) too so the NSTabView knows the correct size for the tab label.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawLabel:inRect: (page 2703)
– setFont: (page 2696) (NSTabView)

Declared In
NSTabViewItem.h

Instance Methods 2707
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTabViewItem Class Reference

tabState
Returns the current display state of the tab associated with the receiver.

- (NSTabState)tabState

Discussion
The possible values are NSSelectedTab, NSBackgroundTab, or NSPressedTab. Your application does not
directly set the tab state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTabViewItem.h

tabView
Returns the parent tab view for the receiver.

- (NSTabView *)tabView

Discussion
Note that this is the tab view itself, not the view displayed when a user clicks the tab.

A tab view item normally learns about its parent tab view when it is inserted into the view’s array of items.
The NSTabView methods addTabViewItem: (page 2685) and insertTabViewItem:atIndex: (page 2689)
set the tab view for the added or inserted item.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setView: (page 2707)
– view (page 2709)

Declared In
NSTabViewItem.h

toolTip
Returns the tooltip displayed for the tab view item

- (NSString *)toolTip

Return Value
A string representing the tooltip to be displayed.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setToolTip: (page 2706)

2708 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTabViewItem Class Reference

Declared In
NSTabViewItem.h

view
Returns the view associated with the receiver.

- (id)view

Discussion
This is the view displayed when a user clicks the tab.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setView: (page 2707)

Related Sample Code
iChatTheater
Reducer

Declared In
NSTabViewItem.h

Constants

NSTabState
These constants describe the current display state of a tab:

typedef enum _NSTabState {
 NSSelectedTab = 0,
 NSBackgroundTab = 1,
 NSPressedTab = 2
} NSTabState;

Constants
NSBackgroundTab

A tab that’s not being displayed.

Available in Mac OS X v10.0 and later.

Declared in NSTabViewItem.h.

NSPressedTab
A tab that the user is in the process of clicking. That is, the user has pressed the mouse button while
the cursor is over the tab but has not released the mouse button.

Available in Mac OS X v10.0 and later.

Declared in NSTabViewItem.h.

Constants 2709
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTabViewItem Class Reference

NSSelectedTab
The tab that’s being displayed.

Available in Mac OS X v10.0 and later.

Declared in NSTabViewItem.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTabViewItem.h

2710 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 140

NSTabViewItem Class Reference

Inherits from NSView : NSResponder : NSObject

Conforms to NSChangeSpelling
NSIgnoreMisspelledWords
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSText.h

Companion guide Text System Overview

Related sample code DragNDropOutlineView
EnhancedAudioBurn
QTKitMovieShuffler
SourceView
STUCAuthoringDeviceCocoaSample

Class at a Glance

NSText declares the most general programmatic interface for objects that manage text. You usually use
instances of its subclass, NSTextView.

Principal Attributes

 ■ Draws text for user interface objects

 ■ Uses a delegate

 ■ Provides text editing capabilities

 ■ Controls text attributes such as type size, font, and color

Class at a Glance 2711
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Commonly Used Methods

readRTFDFromFile: (page 2729)
Reads an .rtf or .rtfd file.

writeRTFDToFile:atomically: (page 2747)
Writes the receiver’s text to a file.

string (page 2744)
Returns the receiver’s text without attributes.

RTFFromRange: (page 2732)
Returns the receiver’s text with attributes.

RTFDFromRange: (page 2731)
Returns the receiver’s text with attributes and attachments.

Overview

NSText declares the most general programmatic interface for objects that manage text. You usually use
instances of its subclass, NSTextView.

NSTextView extends the interface declared by NSText and provides much more sophisticated functionality
than that declared in NSText.

NSText initialization creates an instance of a concrete subclass, such as NSTextView. Instances of any of
these classes are generically called text objects.

Text objects are used by the Application Kit wherever text appears in interface objects: A text object draws
the title of a window, the commands in a menu, the title of a button, and the items in a browser. Your
application can also create text objects for its own purposes.

Adopted Protocols

NSChangeSpelling
changeSpelling: (page 3605)

NSIgnoreMisspelledWords
ignoreSpelling: (page 3692)

Tasks

Getting the Characters

– string (page 2744)
Returns the characters of the receiver’s text.

2712 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Setting Graphics Attributes

– setBackgroundColor: (page 2734)
Sets the receiver’s background color to a given color.

– backgroundColor (page 2719)
Returns the receiver’s background color.

– setDrawsBackground: (page 2735)
Controls whether the receiver draws its background.

– drawsBackground (page 2723)
Returns a Boolean value that indicates whether the receiver draws its background.

Setting Behavioral Attributes

– setEditable: (page 2736)
Controls whether the receiver allows the user to edit its text.

– isEditable (page 2724)
Returns a Boolean value that indicates whether the receiver allows the user to edit text, NO if it doesn’t.

– setSelectable: (page 2740)
Controls whether the receiver allows the user to select its text.

– isSelectable (page 2726)
Returns a Boolean value that indicates whether the receiver allows the user to select text, NO if it
doesn’t.

– setFieldEditor: (page 2736)
Controls whether the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing and
possibly to change the first responder.

– isFieldEditor (page 2725)
Returns a Boolean value that indicates whether the receiver interprets Tab, Shift-Tab, and Return
(Enter) as cues to end editing and possibly to change the first responder.

– setRichText: (page 2739)
Controls whether the receiver allows the user to apply attributes to specific ranges of the text.

– isRichText (page 2726)
Returns a Boolean value that indicates whether the receiver allows the user to apply attributes to
specific ranges of the text.

– setImportsGraphics: (page 2738)
Controls whether the receiver allows the user to import files by dragging.

– importsGraphics (page 2724)
Returns a Boolean value that indicates whether the receiver allows the user to import files by dragging.

Using the Font Panel and Menu

– setUsesFontPanel: (page 2742)
Controls whether the receiver uses the Font panel and Font menu.

– usesFontPanel (page 2746)
Returns a Boolean value that indicates whether the receiver uses the Font panel.

Tasks 2713
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Using the Ruler

– toggleRuler: (page 2745)
This action method shows or hides the ruler, if the receiver is enclosed in a scroll view.

– isRulerVisible (page 2726)
Returns a Boolean value that indicates whether the receiver’s enclosing scroll view shows its ruler.

Changing the Selection

– setSelectedRange: (page 2740)
Selects the receiver’s characters within aRange.

– selectedRange (page 2733)
Returns the range of selected characters.

Replacing Text

– replaceCharactersInRange:withRTF: (page 2729)
Replaces the characters in the given range with RTF text interpreted from the given RTF data.

– replaceCharactersInRange:withRTFD: (page 2730)
Replaces the characters in the given range with RTFD text interpreted from the given RTFD data.

– replaceCharactersInRange:withString: (page 2731)
Replaces the characters in the given range with those in the given string.

– setString: (page 2741)
Replaces the receiver’s entire text with aString, applying the formatting attributes of the old first
character to its new contents.

Action Methods for Editing

– selectAll: (page 2732)
This action method selects all of the receiver’s text.

– copy: (page 2721)
This action method copies the selected text onto the general pasteboard, in as many formats as the
receiver supports.

– cut: (page 2722)
This action method deletes the selected text and places it onto the general pasteboard, in as many
formats as the receiver supports.

– paste: (page 2728)
This action method pastes text from the general pasteboard at the insertion point or over the selection.

– copyFont: (page 2721)
This action method copies the font information for the first character of the selection (or for the
insertion point) onto the font pasteboard, as NSFontPboardType.

– pasteFont: (page 2728)
This action method pastes font information from the font pasteboard onto the selected text or insertion
point of a rich text object, or over all text of a plain text object.

2714 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

– copyRuler: (page 2722)
This action method copies the paragraph style information for first selected paragraph onto the ruler
pasteboard, as NSRulerPboardType, and expands the selection to paragraph boundaries.

– pasteRuler: (page 2728)
This action method pastes paragraph style information from the ruler pasteboard onto the selected
paragraphs of a rich text object.

– delete: (page 2723)
This action method deletes the selected text.

Changing the Font

– changeFont: (page 2720)
This action method changes the font of the selection for a rich text object, or of all text for a plain
text object.

– setFont: (page 2736)
Sets the font of all the receiver’s text to aFont.

– setFont:range: (page 2737)
Sets the font of characters within aRange to aFont.

– font (page 2723)
Returns the font of the first character in the receiver’s text, or of the insertion point if there’s no text.

Setting Text Alignment

– alignCenter: (page 2718)
This action method applies center alignment to selected paragraphs (or all text if the receiver is a
plain text object).

– alignLeft: (page 2718)
This action method applies left alignment to selected paragraphs (or all text if the receiver is a plain
text object).

– alignRight: (page 2719)
This action method applies right alignment to selected paragraphs (or all text if the receiver is a plain
text object).

– alignment (page 2718)
Returns the alignment of the first paragraph (or all text if the receiver is a plain text object).

– setAlignment: (page 2733) Available in Mac OS X v10.0 through Mac OS X v10.5
Sets the alignment of all the receiver’s text to mode.

Setting Text Color

– setTextColor: (page 2741)
Sets the text color of all characters in the receiver to aColor.

– setTextColor:range: (page 2742)
Sets the text color of characters within aRange to aColor.

Tasks 2715
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

– textColor (page 2745)
Returns the color of the receiver’s first character, or for the insertion point if there’s no text.

Writing Direction

– baseWritingDirection (page 2719)
Returns the initial writing direction used to determine the actual writing direction for text.

– setBaseWritingDirection: (page 2734)
Sets the initial writing direction used to determine the actual writing direction for text.

Setting Superscripting and Subscripting

– superscript: (page 2745)
This action method applies a superscript attribute to selected text (or all text if the receiver is a plain
text object), raising its baseline offset by a predefined amount.

– subscript: (page 2744)
This action method applies a subscript attribute to selected text (or all text if the receiver is a plain
text object), lowering its baseline offset by a predefined amount.

– unscript: (page 2746)
This action method removes any superscripting or subscripting from selected text (or all text if the
receiver is a plain text object).

Underlining Text

– underline: (page 2746)
Adds the underline attribute to the selected text attributes if absent; removes the attribute if present.

Reading and Writing RTF Files

– readRTFDFromFile: (page 2729)
Attempts to read the RTFD file at path, returning YES if successful and NO if not.

– writeRTFDToFile:atomically: (page 2747)
Writes the receiver’s text as RTF with attachments to a file or directory at path.

– RTFDFromRange: (page 2731)
Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes
within aRange.

– RTFFromRange: (page 2732)
Returns an NSData object that contains an RTF stream corresponding to the characters and attributes
within aRange, omitting any attachment characters and attributes.

2716 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Checking Spelling

– checkSpelling: (page 2720)
This action method searches for a misspelled word in the receiver’s text.

– showGuessPanel: (page 2743)
This action method opens the Spelling panel, allowing the user to make a correction during spell
checking.

Constraining Size

– setMaxSize: (page 2738)
Sets the receiver’s maximum size to aSize.

– maxSize (page 2727)
Returns the receiver’s maximum size.

– setMinSize: (page 2739)
Sets the receiver’s minimum size to aSize.

– minSize (page 2727)
Returns the receiver’s minimum size.

– setVerticallyResizable: (page 2743)
Controls whether the receiver changes its height to fit the height of its text.

– isVerticallyResizable (page 2727)
Returns YES if the receiver automatically changes its height to accommodate the height of its text,
NO if it doesn’t.

– setHorizontallyResizable: (page 2737)
Controls whether the receiver changes its width to fit the width of its text.

– isHorizontallyResizable (page 2725)
Returns YES if the receiver automatically changes its width to accommodate the width of its text, NO
if it doesn’t.

– sizeToFit (page 2743) Deprecated in Mac OS X v10.2
Resizes the receiver to fit its text.

Scrolling

– scrollRangeToVisible: (page 2732)
Scrolls the receiver in its enclosing scroll view so the first characters of aRange are visible.

Setting the Delegate

– setDelegate: (page 2735)
Sets the receiver’s delegate.

– delegate (page 2722)
Returns the receiver’s delegate.

Tasks 2717
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Instance Methods

alignCenter:
This action method applies center alignment to selected paragraphs (or all text if the receiver is a plain text
object).

- (void)alignCenter:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– alignLeft: (page 2718)
– alignRight: (page 2719)
– alignment (page 2718)
– setAlignment: (page 2733)

Declared In
NSText.h

alignLeft:
This action method applies left alignment to selected paragraphs (or all text if the receiver is a plain text
object).

- (void)alignLeft:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– alignCenter: (page 2718)
– alignRight: (page 2719)
– alignment (page 2718)
– setAlignment: (page 2733)

Declared In
NSText.h

alignment
Returns the alignment of the first paragraph (or all text if the receiver is a plain text object).

- (NSTextAlignment)alignment

Discussion
The returned value is one of the alignments described in “NSTextAlignment” (page 2747).

2718 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Text using NSNaturalTextAlignment is actually displayed using one of the other alignments, depending
on the natural alignment of the text’s script.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSText.h

alignRight:
This action method applies right alignment to selected paragraphs (or all text if the receiver is a plain text
object).

- (void)alignRight:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– alignLeft: (page 2718)
– alignCenter: (page 2718)
– alignment (page 2718)
– setAlignment: (page 2733)

Declared In
NSText.h

backgroundColor
Returns the receiver’s background color.

- (NSColor *)backgroundColor

Return Value
The receiver’s background color.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsBackground (page 2723)
– setBackgroundColor: (page 2734)

Declared In
NSText.h

baseWritingDirection
Returns the initial writing direction used to determine the actual writing direction for text.

Instance Methods 2719
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

- (NSWritingDirection)baseWritingDirection

Discussion
The Text system uses this value as a hint for calculating the actual direction for displaying Unicode characters.
You should not need to call this method directly. If no writing direction is set, returns
NSWritingDirectionNatural.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBaseWritingDirection: (page 2734)

Declared In
NSText.h

changeFont:
This action method changes the font of the selection for a rich text object, or of all text for a plain text object.

- (void)changeFont:(id)sender

Discussion
If the receiver doesn’t use the Font panel, this method does nothing.

This method changes the font by sending aconvertFont: (page 1220) message to the shared NSFontManager
and applying each NSFont returned to the appropriate text. See the NSFontManager class specification for
more information on font conversion.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesFontPanel (page 2746)

Declared In
NSText.h

checkSpelling:
This action method searches for a misspelled word in the receiver’s text.

- (void)checkSpelling:(id)sender

Discussion
The search starts at the end of the selection and continues until it reaches a word suspected of being misspelled
or the end of the text. If a word isn’t recognized by the spelling server, a showGuessPanel: (page 2743)
message then opens the Guess panel and allows the user to make a correction or add the word to the local
dictionary.

Availability
Available in Mac OS X v10.0 and later.

2720 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

See Also
– showGuessPanel: (page 2743)

Declared In
NSText.h

copy:
This action method copies the selected text onto the general pasteboard, in as many formats as the receiver
supports.

- (void)copy:(id)sender

Discussion
A plain text object uses NSStringPboardType for plain text, and a rich text object also uses
NSRTFPboardType.

Availability
Available in Mac OS X v10.0 and later.

See Also
– copyFont: (page 2721)
– copyRuler: (page 2722)
– cut: (page 2722)
– paste: (page 2728)

Declared In
NSText.h

copyFont:
This action method copies the font information for the first character of the selection (or for the insertion
point) onto the font pasteboard, as NSFontPboardType.

- (void)copyFont:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– copy: (page 2721)
– copyRuler: (page 2722)
– cut: (page 2722)
– paste: (page 2728)

Declared In
NSText.h

Instance Methods 2721
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

copyRuler:
This action method copies the paragraph style information for first selected paragraph onto the ruler
pasteboard, as NSRulerPboardType, and expands the selection to paragraph boundaries.

- (void)copyRuler:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– copy: (page 2721)
– copyFont: (page 2721)
– cut: (page 2722)
– paste: (page 2728)

Declared In
NSText.h

cut:
This action method deletes the selected text and places it onto the general pasteboard, in as many formats
as the receiver supports.

- (void)cut:(id)sender

Discussion
A plain text object uses NSStringPboardType for plain text, and a rich text object also uses
NSRTFPboardType.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delete: (page 2723)
– copy: (page 2721)
– copyFont: (page 2721)
– copyRuler: (page 2722)
– paste: (page 2728)

Declared In
NSText.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver’s delegate, or nil if it has none.

2722 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 2735)

Declared In
NSText.h

delete:
This action method deletes the selected text.

- (void)delete:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– cut: (page 2722)

Declared In
NSText.h

drawsBackground
Returns a Boolean value that indicates whether the receiver draws its background.

- (BOOL)drawsBackground

Return Value
YES if the receiver draws its background, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 2719)
– setDrawsBackground: (page 2735)

Declared In
NSText.h

font
Returns the font of the first character in the receiver’s text, or of the insertion point if there’s no text.

- (NSFont *)font

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2723
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

See Also
– setFont: (page 2736)
– setFont:range: (page 2737)

Related Sample Code
Aperture Edit Plugin - Borders & Titles
TipWrapper
ToolbarSample

Declared In
NSText.h

importsGraphics
Returns a Boolean value that indicates whether the receiver allows the user to import files by dragging.

- (BOOL)importsGraphics

Return Value
YES if the receiver allows the user to import files by dragging, otherwise NO.

Discussion
A text object that accepts dragged files is also a rich text object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isRichText (page 2726)
– setImportsGraphics: (page 2738)

Declared In
NSText.h

isEditable
Returns a Boolean value that indicates whether the receiver allows the user to edit text, NO if it doesn’t.

- (BOOL)isEditable

Return Value
YES if the receiver allows the user to edit text, otherwise NO.

Discussion
You can change the receiver’s text programmatically regardless of this setting.

If the receiver is editable, it’s also selectable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isSelectable (page 2726)

2724 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

– setEditable: (page 2736)

Declared In
NSText.h

isFieldEditor
Returns a Boolean value that indicates whether the receiver interprets Tab, Shift-Tab, and Return (Enter) as
cues to end editing and possibly to change the first responder.

- (BOOL)isFieldEditor

Return Value
YES if the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing and possibly to change
the first responder; NO if it accepts them as text input.

Discussion
See the NSWindow class specification for more information on field editors. By default, NSText objects don’t
behave as field editors.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFieldEditor: (page 2736)

Declared In
NSText.h

isHorizontallyResizable
Returns YES if the receiver automatically changes its width to accommodate the width of its text, NO if it
doesn’t.

- (BOOL)isHorizontallyResizable

Discussion
By default, an NSText object is not horizontally resizable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isVerticallyResizable (page 2727)
– setHorizontallyResizable: (page 2737)

Related Sample Code
Sketch-112

Declared In
NSText.h

Instance Methods 2725
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

isRichText
Returns a Boolean value that indicates whether the receiver allows the user to apply attributes to specific
ranges of the text.

- (BOOL)isRichText

Return Value
YES if the receiver allows the user to apply attributes to specific ranges of the text, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– importsGraphics (page 2724)
– setRichText: (page 2739)

Declared In
NSText.h

isRulerVisible
Returns a Boolean value that indicates whether the receiver’s enclosing scroll view shows its ruler.

- (BOOL)isRulerVisible

Return Value
YES if the receiver’s enclosing scroll view shows its ruler, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– toggleRuler: (page 2745)

Declared In
NSText.h

isSelectable
Returns a Boolean value that indicates whether the receiver allows the user to select text, NO if it doesn’t.

- (BOOL)isSelectable

Return Value
YES if the receiver allows the user to select text, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEditable (page 2724)
– setSelectable: (page 2740)

2726 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Declared In
NSText.h

isVerticallyResizable
Returns YES if the receiver automatically changes its height to accommodate the height of its text, NO if it
doesn’t.

- (BOOL)isVerticallyResizable

Discussion
By default, an NSText object is vertically resizable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isHorizontallyResizable (page 2725)
– setVerticallyResizable: (page 2743)

Declared In
NSText.h

maxSize
Returns the receiver’s maximum size.

- (NSSize)maxSize

Availability
Available in Mac OS X v10.0 and later.

See Also
– minSize (page 2727)
– setMaxSize: (page 2738)

Declared In
NSText.h

minSize
Returns the receiver’s minimum size.

- (NSSize)minSize

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxSize (page 2727)
– setMinSize: (page 2739)

Instance Methods 2727
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Declared In
NSText.h

paste:
This action method pastes text from the general pasteboard at the insertion point or over the selection.

- (void)paste:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– copy: (page 2721)
– cut: (page 2722)
– pasteFont: (page 2728)
– pasteRuler: (page 2728)

Related Sample Code
GLUT

Declared In
NSText.h

pasteFont:
This action method pastes font information from the font pasteboard onto the selected text or insertion
point of a rich text object, or over all text of a plain text object.

- (void)pasteFont:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– copyFont: (page 2721)
– pasteRuler: (page 2728)

Declared In
NSText.h

pasteRuler:
This action method pastes paragraph style information from the ruler pasteboard onto the selected paragraphs
of a rich text object.

- (void)pasteRuler:(id)sender

Discussion
It doesn’t apply to a plain text object.

2728 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– copyFont: (page 2721)
– pasteRuler: (page 2728)

Declared In
NSText.h

readRTFDFromFile:
Attempts to read the RTFD file at path, returning YES if successful and NO if not.

- (BOOL)readRTFDFromFile:(NSString *)path

Discussion
path should be the path for an .rtf file or an .rtfd file wrapper, not for the RTF file within an .rtfd file
wrapper.

Availability
Available in Mac OS X v10.0 and later.

See Also
– writeRTFDToFile:atomically: (page 2747)

Related Sample Code
GLSL Showpiece Lite
GLSLShowpiece

Declared In
NSText.h

replaceCharactersInRange:withRTF:
Replaces the characters in the given range with RTF text interpreted from the given RTF data.

- (void)replaceCharactersInRange:(NSRange)aRange withRTF:(NSData *)rtfData

Parameters
aRange

The range of characters to be replaced.

rtfData
The RTF data from which to derive the replacement string.

Discussion
This method applies only to rich text objects.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

Instance Methods 2729
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

This method is designed for transferring text from out-of-process sources such as the pasteboard. In most
cases, programmatic modification of the text is best done by operating on the text storage directly, using
the general methods of NSMutableAttributedString.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replaceCharactersInRange:withRTFD: (page 2730)
– replaceCharactersInRange:withString: (page 2731)

Related Sample Code
CocoaSpeechSynthesisExample

Declared In
NSText.h

replaceCharactersInRange:withRTFD:
Replaces the characters in the given range with RTFD text interpreted from the given RTFD data.

- (void)replaceCharactersInRange:(NSRange)aRange withRTFD:(NSData *)rtfdData

Parameters
aRange

The range of characters to be replaced.

rtfdData
The RTFD data from which to derive the replacement string.

Discussion
This method applies only to rich text objects.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

This method is designed for transferring text from out-of-process sources such as the pasteboard. In most
cases, programmatic modification of the text is best done by operating on the text storage directly, using
the general methods of NSMutableAttributedString.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replaceCharactersInRange:withRTF: (page 2729)
– replaceCharactersInRange:withString: (page 2731)

Declared In
NSText.h

2730 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

replaceCharactersInRange:withString:
Replaces the characters in the given range with those in the given string.

- (void)replaceCharactersInRange:(NSRange)aRange withString:(NSString *)aString

Parameters
aRange

The range of characters to be replaced.

aString
The replacement string.

Discussion
For a rich text object, the text of aString is assigned the formatting attributes of the first character of the
text it replaces, or of the character immediately before aRange if the range’s length is 0. If the range’s location
is 0, the formatting attributes of the first character in the receiver are used.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

In most cases, programmatic modification of the text is best done by operating on the text storage directly,
using the general methods of NSMutableAttributedString.

Availability
Available in Mac OS X v10.0 and later.

See Also
– replaceCharactersInRange:withRTF: (page 2729)
– replaceCharactersInRange:withRTFD: (page 2730)

Related Sample Code
CocoaSpeechSynthesisExample
STUCAuthoringDeviceCocoaSample

Declared In
NSText.h

RTFDFromRange:
Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes within
aRange.

- (NSData *)RTFDFromRange:(NSRange)aRange

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard's
setData:forType: (page 1898) method, with a second argument of NSRTFDPboardType.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2731
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

See Also
– RTFFromRange: (page 2732)

Declared In
NSText.h

RTFFromRange:
Returns an NSData object that contains an RTF stream corresponding to the characters and attributes within
aRange, omitting any attachment characters and attributes.

- (NSData *)RTFFromRange:(NSRange)aRange

Discussion
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard's
setData:forType: (page 1898) method, with a second argument of NSRTFPboardType.

Availability
Available in Mac OS X v10.0 and later.

See Also
– RTFDFromRange: (page 2731)

Declared In
NSText.h

scrollRangeToVisible:
Scrolls the receiver in its enclosing scroll view so the first characters of aRange are visible.

- (void)scrollRangeToVisible:(NSRange)aRange

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
CocoaSpeechSynthesisExample
Quartz Composer WWDC 2005 TextEdit
STUCAuthoringDeviceCocoaSample
TextSizingExample

Declared In
NSText.h

selectAll:
This action method selects all of the receiver’s text.

2732 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

- (void)selectAll:(id)sender

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Aperture Edit Plugin - Borders & Titles
CIAnnotation
GLUT

Declared In
NSText.h

selectedRange
Returns the range of selected characters.

- (NSRange)selectedRange

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectedRange: (page 2740)

Related Sample Code
CocoaSpeechSynthesisExample
Quartz Composer WWDC 2005 TextEdit
STUCAuthoringDeviceCocoaSample
TextLinks

Declared In
NSText.h

setAlignment:
Sets the alignment of all the receiver’s text to mode.

- (void)setAlignment:(NSTextAlignment)mode

Discussion
The value of mode must be one of the alignments described in “NSTextAlignment” (page 2747).

Text using NSNaturalTextAlignment is actually displayed using one of the other alignments, depending
on the natural alignment of the text’s script.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

Instance Methods 2733
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– alignment (page 2718)
– alignLeft: (page 2718)
– alignCenter: (page 2718)
– alignRight: (page 2719)

Related Sample Code
OpenCL NBody Simulation Example
TextSizingExample

Declared In
NSText.h

setBackgroundColor:
Sets the receiver’s background color to a given color.

- (void)setBackgroundColor:(NSColor *)aColor

Parameters
aColor

The background color for the receiver.

Discussion
This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDrawsBackground: (page 2735)
– backgroundColor (page 2719)

Declared In
NSText.h

setBaseWritingDirection:
Sets the initial writing direction used to determine the actual writing direction for text.

- (void)setBaseWritingDirection:(NSWritingDirection)writingDirection

Discussion
If you know the base writing direction of the text you are rendering, you can use this method to specify that
direction to the text system.

2734 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

Availability
Available in Mac OS X v10.4 and later.

See Also
– baseWritingDirection (page 2719)

Declared In
NSText.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)anObject

Parameters
anObject

The delegate for the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 2722)

Declared In
NSText.h

setDrawsBackground:
Controls whether the receiver draws its background.

- (void)setDrawsBackground:(BOOL)flag

Parameters
flag

If flag is YES, the receiver fills its background with the background color, if flag is NO, it doesn’t.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundColor: (page 2734)
– drawsBackground (page 2723)

Declared In
NSText.h

Instance Methods 2735
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

setEditable:
Controls whether the receiver allows the user to edit its text.

- (void)setEditable:(BOOL)flag

Parameters
flag

If flag is YES, the receiver allows the user to edit text and attributes; if flag is NO, it doesn’t.

Discussion
You can change the receiver’s text programmatically regardless of this setting. If the receiver is made editable,
it’s also made selectable. NSText objects are by default editable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectable: (page 2740)
– isEditable (page 2724)

Declared In
NSText.h

setFieldEditor:
Controls whether the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing and possibly
to change the first responder.

- (void)setFieldEditor:(BOOL)flag

Parameters
flag

If flag is YES, the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing and
possibly to change the first responder; if flag is NO, it doesn’t, instead accepting these characters as
text input.

Discussion
See the NSWindow class specification for more information on field editors. By default, NSText objects don’t
behave as field editors.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isFieldEditor (page 2725)

Declared In
NSText.h

setFont:
Sets the font of all the receiver’s text to aFont.

2736 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

- (void)setFont:(NSFont *)aFont

Discussion
This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFont:range: (page 2737)
– font (page 2723)

Related Sample Code
FunHouse
OpenCL NBody Simulation Example
TipWrapper
ToolbarSample
UIElementInspector

Declared In
NSText.h

setFont:range:
Sets the font of characters within aRange to aFont.

- (void)setFont:(NSFont *)aFont range:(NSRange)aRange

Discussion
This method applies only to a rich text object.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFont: (page 2736)
– font (page 2723)

Declared In
NSText.h

setHorizontallyResizable:
Controls whether the receiver changes its width to fit the width of its text.

Instance Methods 2737
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

- (void)setHorizontallyResizable:(BOOL)flag

Discussion
If flag is YES it does; if flag is NO it doesn’t.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setVerticallyResizable: (page 2743)
– isHorizontallyResizable (page 2725)

Related Sample Code
FunHouse
GLUT
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextSizingExample

Declared In
NSText.h

setImportsGraphics:
Controls whether the receiver allows the user to import files by dragging.

- (void)setImportsGraphics:(BOOL)flag

Parameters
flag

If flag is YES, the receiver allows the user to import files by dragging; if flag is NO, it doesn’t.

Discussion
If the receiver is set to accept dragged files, it’s also made a rich text object. Subclasses may or may not accept
dragged files by default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRichText: (page 2739)
– importsGraphics (page 2724)

Declared In
NSText.h

setMaxSize:
Sets the receiver’s maximum size to aSize.

- (void)setMaxSize:(NSSize)aSize

2738 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMinSize: (page 2739)
– maxSize (page 2727)

Related Sample Code
FunHouse
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility
Sketch-112
TextSizingExample

Declared In
NSText.h

setMinSize:
Sets the receiver’s minimum size to aSize.

- (void)setMinSize:(NSSize)aSize

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaxSize: (page 2738)
– minSize (page 2727)

Related Sample Code
FunHouse
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility
Sketch-112
TextSizingExample

Declared In
NSText.h

setRichText:
Controls whether the receiver allows the user to apply attributes to specific ranges of the text.

- (void)setRichText:(BOOL)flag

Parameters
flag

If flag is YES the receiver allows the user to apply attributes to specific ranges of the text; if flag is
NO it doesn’t.

Instance Methods 2739
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Discussion
If flag is NO, the receiver is also set not to accept dragged files. Subclasses may or may not let the user apply
multiple attributes to the text and accept drag files by default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isRichText (page 2726)
– setImportsGraphics: (page 2738)

Declared In
NSText.h

setSelectable:
Controls whether the receiver allows the user to select its text.

- (void)setSelectable:(BOOL)flag

Parameters
flag

If flag is YES, the receiver allows the user to select text; if flag is NO, it doesn’t.

Discussion
You can set selections programmatically regardless of this setting. If the receiver is made not selectable, it’s
also made not editable. NSText objects are by default editable and selectable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEditable: (page 2736)
– isSelectable (page 2726)

Declared In
NSText.h

setSelectedRange:
Selects the receiver’s characters within aRange.

- (void)setSelectedRange:(NSRange)aRange

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedRange (page 2733)

Declared In
NSText.h

2740 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

setString:
Replaces the receiver’s entire text with aString, applying the formatting attributes of the old first character
to its new contents.

- (void)setString:(NSString *)aString

Discussion
This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
DeviceListener
TextSizingExample
TipWrapper
XMLBrowser

Declared In
NSText.h

setTextColor:
Sets the text color of all characters in the receiver to aColor.

- (void)setTextColor:(NSColor *)aColor

Discussion
Removes the text color attribute if aColor is nil.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextColor:range: (page 2742)
– textColor (page 2745)

Related Sample Code
FunHouse
TextSizingExample
ToolbarSample
UIElementInspector

Instance Methods 2741
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Declared In
NSText.h

setTextColor:range:
Sets the text color of characters within aRange to aColor.

- (void)setTextColor:(NSColor *)aColor range:(NSRange)aRange

Discussion
Removes the text color attribute if aColor is nil. This method applies only to rich text objects.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextColor: (page 2741)
– textColor (page 2745)

Related Sample Code
TextViewDelegate

Declared In
NSText.h

setUsesFontPanel:
Controls whether the receiver uses the Font panel and Font menu.

- (void)setUsesFontPanel:(BOOL)flag

Parameters
flag

If flag is YES, the receiver responds to messages from the Font panel and from the Font menu and
updates the Font panel with the selection font whenever it changes. If flag is NO the receiver doesn’t
do any of these actions.

Discussion
By default, an NSText object uses the Font panel and menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesFontPanel (page 2746)

Declared In
NSText.h

2742 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

setVerticallyResizable:
Controls whether the receiver changes its height to fit the height of its text.

- (void)setVerticallyResizable:(BOOL)flag

Discussion
If flag is YES it does; if flag is NO it doesn’t.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHorizontallyResizable: (page 2737)
– isVerticallyResizable (page 2727)

Related Sample Code
CIAnnotation
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility
Sketch-112
TextSizingExample

Declared In
NSText.h

showGuessPanel:
This action method opens the Spelling panel, allowing the user to make a correction during spell checking.

- (void)showGuessPanel:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– checkSpelling: (page 2720)

Declared In
NSText.h

sizeToFit
Resizes the receiver to fit its text.

- (void)sizeToFit

Discussion
The text view will not be sized any smaller than its minimum size, however.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2743
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

See Also
– isHorizontallyResizable (page 2725)
– isVerticallyResizable (page 2727)

Related Sample Code
CIAnnotation
TextSizingExample
TipWrapper

Declared In
NSText.h

string
Returns the characters of the receiver’s text.

- (NSString *)string

Return Value
The characters of the receiver’s text.

Discussion
For performance reasons, this method returns the current backing store of the text object. If you want to
maintain a snapshot of this as you manipulate the text storage, you should make a copy of the appropriate
substring.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setString: (page 2741)

Related Sample Code
CocoaSpeechSynthesisExample
FinalCutPro_AppleEvents
FunHouse
JSInterpreter
SimpleComboBox

Declared In
NSText.h

subscript:
This action method applies a subscript attribute to selected text (or all text if the receiver is a plain text object),
lowering its baseline offset by a predefined amount.

- (void)subscript:(id)sender

Availability
Available in Mac OS X v10.0 and later.

2744 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

See Also
– subscript: (page 2744)
– unscript: (page 2746)
lowerBaseline: (page 2906) (NSTextView)

Declared In
NSText.h

superscript:
This action method applies a superscript attribute to selected text (or all text if the receiver is a plain text
object), raising its baseline offset by a predefined amount.

- (void)superscript:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– subscript: (page 2744)
– unscript: (page 2746)
raiseBaseline: (page 2911) (NSTextView)

Declared In
NSText.h

textColor
Returns the color of the receiver’s first character, or for the insertion point if there’s no text.

- (NSColor *)textColor

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextColor: (page 2741)
– setTextColor:range: (page 2742)

Declared In
NSText.h

toggleRuler:
This action method shows or hides the ruler, if the receiver is enclosed in a scroll view.

- (void)toggleRuler:(id)sender

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2745
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Declared In
NSText.h

underline:
Adds the underline attribute to the selected text attributes if absent; removes the attribute if present.

- (void)underline:(id)sender

Discussion
If there is a selection and the first character of the selected range has any form of underline on it, or if there
is no selection and the typing attributes have any form of underline, then underline is removed; otherwise
a single simple underline is added.

Operates on the selected range if the receiver contains rich text. For plain text the range is the entire contents
of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSText.h

unscript:
This action method removes any superscripting or subscripting from selected text (or all text if the receiver
is a plain text object).

- (void)unscript:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
– subscript: (page 2744)
– superscript: (page 2745)
raiseBaseline: (page 2911) (NSTextView)
lowerBaseline: (page 2906) (NSTextView)

Declared In
NSText.h

usesFontPanel
Returns a Boolean value that indicates whether the receiver uses the Font panel.

- (BOOL)usesFontPanel

Return Value
YES if the receiver uses the Font panel, otherwise NO.

2746 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setUsesFontPanel: (page 2742)

Declared In
NSText.h

writeRTFDToFile:atomically:
Writes the receiver’s text as RTF with attachments to a file or directory at path.

- (BOOL)writeRTFDToFile:(NSString *)path atomically:(BOOL)atomicFlag

Discussion
Returns YES on success and NO on failure. If atomicFlag is YES, attempts to write the file safely so that an
existing file at path is not overwritten, nor does a new file at path actually get created, unless the write is
successful.

Availability
Available in Mac OS X v10.0 and later.

See Also
– RTFFromRange: (page 2732)
– RTFDFromRange: (page 2731)
– readRTFDFromFile: (page 2729)

Declared In
NSText.h

Constants

NSTextAlignment
These constants specify text alignment.

typedef enum _NSTextAlignment {
 NSLeftTextAlignment = 0,
 NSRightTextAlignment = 1,
 NSCenterTextAlignment = 2,
 NSJustifiedTextAlignment = 3,
 NSNaturalTextAlignment = 4
} NSTextAlignment;

Constants
NSLeftTextAlignment

Text is visually left aligned.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

Constants 2747
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

NSRightTextAlignment
Text is visually right aligned.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSCenterTextAlignment
Text is visually center aligned.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSJustifiedTextAlignment
Text is justified.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSNaturalTextAlignment
Use the natural alignment of the text’s script.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

Declared In
NSText.h

NSWritingDirection
These constants specify the writing directions:

enum {
 NSWritingDirectionNatural = -1,
 NSWritingDirectionLeftToRight = 0,
 NSWritingDirectionRightToLeft
};
typedef NSInteger NSWritingDirection;

Constants
NSWritingDirectionNatural

The writing direction is determined using the Unicode Bidi Algorithm rules P2 and P3. Default.

Available in Mac OS X v10.4 and later.

Declared in NSText.h.

NSWritingDirectionLeftToRight
The writing direction is left to right.

Available in Mac OS X v10.2 and later.

Declared in NSText.h.

NSWritingDirectionRightToLeft
The writing direction is right to left.

Available in Mac OS X v10.2 and later.

Declared in NSText.h.

2748 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Additional Writing Directions
Additional values to be added to NSWritingDirectionLeftToRight (page 2748) or
NSWritingDirectionRightToLeft (page 2748), when used with
NSWritingDirectionAttributeName (page 274).

enum {
 NSTextWritingDirectionEmbedding = (0 << 1),
 NSTextWritingDirectionOverride = (1 << 1)
};

Constants
NSTextWritingDirectionEmbedding

Direction is embedded.

Available in Mac OS X v10.6 and later.

Declared in NSText.h.

NSTextWritingDirectionOverride
Direction override

Available in Mac OS X v10.6 and later.

Declared in NSText.h.

Movement Codes
These constants specify the reason for a change of editing focus among text fields, in essence answering the
question “why am I leaving the field?”

enum {
 NSIllegalTextMovement = 0,
 NSReturnTextMovement = 0x10,
 NSTabTextMovement = 0x11,
 NSBacktabTextMovement = 0x12,
 NSLeftTextMovement = 0x13,
 NSRightTextMovement = 0x14,
 NSUpTextMovement = 0x15,
 NSDownTextMovement = 0x16,
 NSCancelTextMovement = 0x17,
 NSOtherTextMovement = 0
};

Constants
NSIllegalTextMovement

Currently unused.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSReturnTextMovement
The Return key was pressed.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

Constants 2749
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

NSTabTextMovement
The Tab key was pressed.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSBacktabTextMovement
The Backtab (Shift-Tab) key was pressed.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSLeftTextMovement
The left arrow key was pressed.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSRightTextMovement
The right arrow key was pressed.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSUpTextMovement
The up arrow key was pressed.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSDownTextMovement
The down arrow key was pressed.

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSCancelTextMovement
The user cancelled the completion.

Available in Mac OS X v10.3 and later.

Declared in NSText.h.

NSOtherTextMovement
The user performed some undefined action.

Available in Mac OS X v10.3 and later.

Declared in NSText.h.

Discussion
They are the possible values for the NSTextMovement key of the
NSTextDidEndEditingNotification (page 2752)userInfo dictionary. The field editor makes sure that
these are the values sent when the user presses the Tab, Backtab, or Return key while editing. The control
then uses this information to decide where to send focus next.

Declared In
NSText.h

Commonly-used Unicode characters
These constants specify several commonly used Unicode characters.

2750 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

enum {
 NSParagraphSeparatorCharacter = 0x2029,
 NSLineSeparatorCharacter = 0x2028,
 NSTabCharacter = 0x0009,
 NSFormFeedCharacter = 0x000c,
 NSNewlineCharacter = 0x000a,
 NSCarriageReturnCharacter = 0x000d,
 NSEnterCharacter = 0x0003,
 NSBackspaceCharacter = 0x0008,
 NSBackTabCharacter = 0x0019,
 NSDeleteCharacter = 0x007f
};

Constants
NSParagraphSeparatorCharacter

The paragraph separator character: 0x2029

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSLineSeparatorCharacter
The line separator character: 0x2028

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSTabCharacter
The tab character: 0x0009

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSBackTabCharacter
The back tab character: 0x0019

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSFormFeedCharacter
The form feed character: 0x000c

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSNewlineCharacter
The newline character: 0x000a

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSCarriageReturnCharacter
The carriage return character: 0x000d

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSEnterCharacter
The enter character: 0x0003

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

Constants 2751
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

NSBackspaceCharacter
The backspace character: 0x0008

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

NSDeleteCharacter
The delete character: 0x007f

Available in Mac OS X v10.0 and later.

Declared in NSText.h.

Declared In
NSText.h

Notifications

NSTextDidBeginEditingNotification
Posted when an NSText object begins any operation that changes characters or formatting attributes.

The notification object is the notifying NSText object. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSText.h

NSTextDidChangeNotification
Posted after an NSText object performs any operation that changes characters or formatting attributes.

The notification object is the notifying NSText object. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSText.h

NSTextDidEndEditingNotification
Posted when focus leaves an NSText object, whether or not any operation has changed characters or
formatting attributes.

The notification object is the notifying NSText object. The userInfo dictionary contains the following
information:

ValueKey

Possible movement code values are described in
“Movement Codes” (page 2749).

@"NSTextMovement"

2752 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Note: It is common for NSTextDidEndEditingNotification (page 2752) to be sent without a matching
NSTextDidBeginEditingNotification (page 2752). The begin notification is only sent if the user actually
makes changes (that is, types something or changes formatting attributes). However, the end notification is
sent when focus leaves the text view, regardless of whether there was a change.

This distinction enables an application to know whether the user actually made a change to the text or just
clicked in the text view and then clicked outside it. In both cases,
NSTextDidEndEditingNotification (page 2752) is sent, but to tell the difference, the application can
listen for NSTextDidBeginEditingNotification (page 2752).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSText.h

Notifications 2753
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

2754 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 141

NSText Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTextAttachment.h

Companion guides Text System Overview
Text Attachment Programming Topics

Related sample code CoreRecipes
GLUT
Quartz Composer WWDC 2005 TextEdit

Overview

NSTextAttachment objects are used by the NSAttributedString class cluster as the values for attachment
attributes (stored in the attributed string under the key named NSAttachmentAttributeName). The objects
you create with this class are referred to as text attachment objects, or when no confusion will result, as text
attachments or merely attachments.

A text attachment object contains an NSFileWrapper object, which in turn holds the contents of the attached
file. It also uses a cell object conforming to the NSTextAttachmentCell protocol to draw and handle mouse
events. Most of the behavior of a text attachment is relegated to the file wrapper and the attachment cell.
See the corresponding class and protocol specifications for more information.

See the NSAttributedString and NSTextView class specifications for general information on text attachments.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

Overview 2755
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTextAttachment Class Reference

Tasks

Initializing an NSTextAttachment Object

– initWithFileWrapper: (page 2757)
Initializes a newly allocated NSTextAttachment object to contain the given file wrapper.

Setting the File Wrapper

– setFileWrapper: (page 2758)
Sets the receiver’s file wrapper.

– fileWrapper (page 2757)
Returns the receiver’s file wrapper.

Setting the Attachment Cell

– setAttachmentCell: (page 2758)
Sets the object used to draw the icon for the receiver and to handle mouse events.

– attachmentCell (page 2756)
Returns the object used to draw the icon for the receiver and to handle mouse events.

Instance Methods

attachmentCell
Returns the object used to draw the icon for the receiver and to handle mouse events.

- (id < NSTextAttachmentCell >)attachmentCell

Return Value
The object used to draw the icon for the receiver and to handle mouse events.

Discussion
An NSTextAttachment object by default uses an NSTextAttachmentCell object that displays the attached
file’s icon, or its contents if the file contains an image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileWrapper (page 2757)
– image (page 562) (NSCell)
– icon (NSFileWrapper)
– setAttachmentCell: (page 2758)

2756 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTextAttachment Class Reference

Declared In
NSTextAttachment.h

fileWrapper
Returns the receiver’s file wrapper.

- (NSFileWrapper *)fileWrapper

Return Value
The receiver’s file wrapper.

Discussion
The file wrapper holds the contents of the attached file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFileWrapper: (page 2758)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextAttachment.h

initWithFileWrapper:
Initializes a newly allocated NSTextAttachment object to contain the given file wrapper.

- (id)initWithFileWrapper:(NSFileWrapper *)aWrapper

Parameters
aWrapper

The file wrapper for the receiver.

Return Value
The receiver initialized to contain aWrapper and use an NSTextAttachmentCell as its attachment cell.

Discussion
This method is the designated initializer for the NSTextAttachment class.

If aWrapper contains an image file that the receiver can interpret as an NSImage object, sets the attachment
cell’s image to the NSImage rather than to the icon of aWrapper.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFileWrapper: (page 2758)
– setAttachmentCell: (page 2758)

Instance Methods 2757
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTextAttachment Class Reference

Related Sample Code
CoreRecipes

Declared In
NSTextAttachment.h

setAttachmentCell:
Sets the object used to draw the icon for the receiver and to handle mouse events.

- (void)setAttachmentCell:(id < NSTextAttachmentCell >)aCell

Parameters
aCell

The object used to draw the icon for the receiver and to handle mouse events.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFileWrapper: (page 2758)
– setImage: (page 589) (NSCell)
– icon (NSFileWrapper)
– attachmentCell (page 2756)

Declared In
NSTextAttachment.h

setFileWrapper:
Sets the receiver’s file wrapper.

- (void)setFileWrapper:(NSFileWrapper *)aWrapper

Parameters
aWrapper

The file wrapper for the receiver.

Discussion
The file wrapper holds the contents of the attached file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileWrapper (page 2757)

Declared In
NSTextAttachment.h

2758 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTextAttachment Class Reference

Constants

Attachment Character
This character is used to denote an attachment.

enum {
 NSAttachmentCharacter = 0xfffc
};

Constants
NSAttachmentCharacter

Specifies a character that denotes attachment an attachment.

Available in Mac OS X v10.0 and later.

Declared in NSTextAttachment.h.

Declared In
NSTextAttachment.h

Constants 2759
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTextAttachment Class Reference

2760 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 142

NSTextAttachment Class Reference

Inherits from NSCell : NSObject

Conforms to NSTextAttachmentCell
NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in NSTextAttachment.h

Companion guides Text System Overview
Text Attachment Programming Topics

Related sample code Quartz Composer WWDC 2005 TextEdit

Overview

NSTextAttachmentCell implements the functionality of the NSTextAttachmentCell protocol. See the
NSTextAttachmentCell protocol specification for a general discussion of the protocol’s methods. This
specification describes only those methods whose implementations have features peculiar to this class.

Adopted Protocols

NSTextAttachmentCell
– attachment (page 3848)
– cellBaselineOffset (page 3849)
– cellFrameForTextContainer:proposedLineFragment:glyphPosition:characterIndex: (page
3849)
– cellSize (page 3849)
– drawWithFrame:inView: (page 3850)
– drawWithFrame:inView:characterIndex: (page 3850)
– drawWithFrame:inView:characterIndex:layoutManager: (page 3850)
– highlight:withFrame:inView: (page 3851)
– setAttachment: (page 3851)
– trackMouse:inRect:ofView:untilMouseUp: (page 3852)

Overview 2761
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTextAttachmentCell Class Reference

– trackMouse:inRect:ofView:atCharacterIndex:untilMouseUp: (page 3851)
– wantsToTrackMouse (page 3853)
– wantsToTrackMouseForEvent:inRect:ofView:atCharacterIndex: (page 3853)

2762 Adopted Protocols
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 143

NSTextAttachmentCell Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSTextTable.h

Availability Available in Mac OS X v10.4 and later.

Companion guides Text System Overview
Text Layout Programming Guide

Overview

NSTextBlock objects represent a block of text laid out in a subregion of the text container. Text blocks
appear as attributes on paragraphs, as part of the paragraph style.

The most important subclass is NSTextTableBlock, which represents a block of text that appears as a cell
in a table. The table itself is represented by a separate class, NSTextTable, which is referenced by all of its
NSTextTableBlock objects and which controls their sizing and positioning.

Tasks

Creating Text Blocks

– init (page 2768)
Initializes and returns an empty text block object.

Working with Dimensions of Content

– setValue:type:forDimension: (page 2770)
Sets a dimension of the text block.

– valueForDimension: (page 2772)
Returns the value of the specified text block dimension.

Overview 2763
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

– valueTypeForDimension: (page 2773)
Returns the value type of the specified text block dimension.

– setContentWidth:type: (page 2770)
Sets the width of the text block.

– contentWidth (page 2766)
Returns the width of the text block.

– contentWidthValueType (page 2767)
Returns the type of value stored for the text block width.

Getting and Setting Margins, Borders, and Padding

– setWidth:type:forLayer:edge: (page 2772)
Sets the width of a specified edge of a specified layer of the text block.

– setWidth:type:forLayer: (page 2771)
Sets the width of all edges of a specified layer of the text block.

– widthForLayer:edge: (page 2774)
Returns the width of an edge of a specified layer of the text block.

– widthValueTypeForLayer:edge: (page 2774)
Returns the value type of an edge of a specified layer of the text block.

Getting and Setting Alignment

– setVerticalAlignment: (page 2771)
Sets the vertical alignment of the text block.

– verticalAlignment (page 2773)
Returns the vertical alignment of the text block.

Working with Color

– setBackgroundColor: (page 2769)
Sets the background color of the text block.

– backgroundColor (page 2765)
Returns the background color of the text block.

– setBorderColor:forEdge: (page 2769)
Sets the border color of the specified edge of the text block.

– setBorderColor: (page 2769)
Sets the color of all borders of the text block.

– borderColorForEdge: (page 2765)
Returns the border color of the specified text block edge.

2764 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

Determining Size and Position of a Text Block

– rectForLayoutAtPoint:inRect:textContainer:characterRange: (page 2768)
Returns the rectangle within which glyphs should be laid out for the specified arguments.

– boundsRectForContentRect:inRect:textContainer:characterRange: (page 2766)
Returns the rectangle the text in the block actually occupies, including padding, borders, and margins.

Drawing Colors and Decorations

– drawBackgroundWithFrame:inView:characterRange:layoutManager: (page 2767)
Called by the layout manager to draw any colors and other decorations before the text is drawn.

Instance Methods

backgroundColor
Returns the background color of the text block.

- (NSColor *)backgroundColor

Return Value
The background color of the text block.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBackgroundColor: (page 2769)

Declared In
NSTextTable.h

borderColorForEdge:
Returns the border color of the specified text block edge.

- (NSColor *)borderColorForEdge:(NSRectEdge)edge

Parameters
edge

The edge of the text block in question.

Return Value
The border color of the text block edge edge.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 2765
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

See Also
– setBorderColor:forEdge: (page 2769)

Declared In
NSTextTable.h

boundsRectForContentRect:inRect:textContainer:characterRange:
Returns the rectangle the text in the block actually occupies, including padding, borders, and margins.

- (NSRect)boundsRectForContentRect:(NSRect)contentRect inRect:(NSRect)rect
textContainer:(NSTextContainer *)textContainer characterRange:(NSRange)charRange

Parameters
contentRect

The actual rectangle in which the text was laid out, as determined by
rectForLayoutAtPoint:inRect:textContainer:characterRange: (page 2768).

rect
The initial rectangle in textContainer proposed by the typesetter.

textContainer
The text container being used for the layout.

charRange
The range of the characters in the NSTextStorage object whose glyphs are to be drawn.

Return Value
The rectangle the text in the block actually occupies, including padding, borders, and margins.

Discussion
This methods is called by the typesetter after the text block is laid out to return the rectangle the text in the
block actually occupies, including padding, borders, and margins.

Availability
Available in Mac OS X v10.4 and later.

See Also
– rectForLayoutAtPoint:inRect:textContainer:characterRange: (page 2768)

Declared In
NSTextTable.h

contentWidth
Returns the width of the text block.

- (CGFloat)contentWidth

Return Value
The width of the text block. This value must be interpreted according to the value type returned by
contentWidthValueType (page 2767).

Discussion
This is a convenience method that invokes valueForDimension:NSTextBlockWidth.

2766 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setContentWidth:type: (page 2770)
– contentWidthValueType (page 2767)

Declared In
NSTextTable.h

contentWidthValueType
Returns the type of value stored for the text block width.

- (NSTextBlockValueType)contentWidthValueType

Return Value
The value type for the text block width. This determines how the width value should be interpreted.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setContentWidth:type: (page 2770)
– contentWidth (page 2766)

Declared In
NSTextTable.h

drawBackgroundWithFrame:inView:characterRange:layoutManager:
Called by the layout manager to draw any colors and other decorations before the text is drawn.

- (void)drawBackgroundWithFrame:(NSRect)frameRect inView:(NSView *)controlView
characterRange:(NSRange)charRange layoutManager:(NSLayoutManager *)layoutManager

Parameters
frameRect

The bounds rectangle in view coordinates.

controlView
The view in which drawing occurs.

charRange
The range of the characters in the NSTextStorage object whose glyphs are to be drawn.

layoutManager
The layout manager controlling the typesetting.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextTable.h

Instance Methods 2767
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

init
Initializes and returns an empty text block object.

- (id)init

Return Value
An initialized text block object.

Discussion
This is the designated initializer for NSTextBlock.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextTable.h

rectForLayoutAtPoint:inRect:textContainer:characterRange:
Returns the rectangle within which glyphs should be laid out for the specified arguments.

- (NSRect)rectForLayoutAtPoint:(NSPoint)startingPoint inRect:(NSRect)rect
textContainer:(NSTextContainer *)textContainer characterRange:(NSRange)charRange

Parameters
startingPoint

The location, in container coordinates, where layout begins.

rect
The rectangle in which the block is constrained to lie. For top-level blocks, this is the container rectangle
of textContainer; for nested blocks, this is the layout rectangle of the enclosing block.

textContainer
The text container being used for the layout.

charRange
The range of the characters in the NSTextStorage object whose glyphs are to be drawn.

Return Value
The rectangle within which glyphs should be laid out.

Discussion
This method is called by the typesetter before the text block is laid out to return the rectangle within which
glyphs should be laid out.

Availability
Available in Mac OS X v10.4 and later.

See Also
– boundsRectForContentRect:inRect:textContainer:characterRange: (page 2766)

Declared In
NSTextTable.h

2768 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

setBackgroundColor:
Sets the background color of the text block.

- (void)setBackgroundColor:(NSColor *)color

Parameters
color

The new background color.

Availability
Available in Mac OS X v10.4 and later.

See Also
– backgroundColor (page 2765)

Declared In
NSTextTable.h

setBorderColor:
Sets the color of all borders of the text block.

- (void)setBorderColor:(NSColor *)color

Parameters
color

The new color.

Discussion
This setting has no visible effect unless the border width is larger than the default, which is 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
– borderColorForEdge: (page 2765)
– setBorderColor:forEdge: (page 2769)
– setWidth:type:forLayer: (page 2771)

Related Sample Code
iSpend

Declared In
NSTextTable.h

setBorderColor:forEdge:
Sets the border color of the specified edge of the text block.

- (void)setBorderColor:(NSColor *)color forEdge:(NSRectEdge)edge

Instance Methods 2769
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

Parameters
color

The new color.

edge
The edge whose color is to be set.

Discussion
This setting has no visible effect unless the border width is larger than the default, which is 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
– borderColorForEdge: (page 2765)
– setWidth:type:forLayer: (page 2771)

Declared In
NSTextTable.h

setContentWidth:type:
Sets the width of the text block.

- (void)setContentWidth:(CGFloat)val type:(NSTextBlockValueType)type

Parameters
val

The new value for the width.

type
The type of value being provided. This controls how val is interpreted.

Availability
Available in Mac OS X v10.4 and later.

See Also
– contentWidth (page 2766)
– contentWidthValueType (page 2767)

Declared In
NSTextTable.h

setValue:type:forDimension:
Sets a dimension of the text block.

- (void)setValue:(CGFloat)val type:(NSTextBlockValueType)type
forDimension:(NSTextBlockDimension)dimension

Parameters
val

The new value for the dimension.

2770 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

type
The type of value being provided. This controls how val is interpreted.

dimension
The dimension to set.

Availability
Available in Mac OS X v10.4 and later.

See Also
– valueForDimension: (page 2772)
– valueTypeForDimension: (page 2773)

Declared In
NSTextTable.h

setVerticalAlignment:
Sets the vertical alignment of the text block.

- (void)setVerticalAlignment:(NSTextBlockVerticalAlignment)alignment

Parameters
alignment

The new vertical alignment for the text block.

Availability
Available in Mac OS X v10.4 and later.

See Also
– verticalAlignment (page 2773)

Related Sample Code
iSpend

Declared In
NSTextTable.h

setWidth:type:forLayer:
Sets the width of all edges of a specified layer of the text block.

- (void)setWidth:(CGFloat)val type:(NSTextBlockValueType)type
forLayer:(NSTextBlockLayer)layer

Parameters
val

The new value for the specified edge width.

type
The type of value being provided. This controls how val is interpreted.

layer
The layer of the text block to modify.

Instance Methods 2771
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– widthForLayer:edge: (page 2774)
– setWidth:type:forLayer:edge: (page 2772)

Related Sample Code
iSpend

Declared In
NSTextTable.h

setWidth:type:forLayer:edge:
Sets the width of a specified edge of a specified layer of the text block.

- (void)setWidth:(CGFloat)val type:(NSTextBlockValueType)type
forLayer:(NSTextBlockLayer)layer edge:(NSRectEdge)edge

Parameters
val

The new value for the specified edge width.

type
The type of value being provided. This controls how val is interpreted.

layer
The layer of the text block to modify.

edge
The edge of the layer to modify.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setWidth:type:forLayer: (page 2771)
– widthForLayer:edge: (page 2774)

Related Sample Code
iSpend

Declared In
NSTextTable.h

valueForDimension:
Returns the value of the specified text block dimension.

- (CGFloat)valueForDimension:(NSTextBlockDimension)dimension

2772 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

Return Value
The value for the specified dimension. This value should be interpreted according to the value type returned
by valueTypeForDimension: (page 2773).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setValue:type:forDimension: (page 2770)
valueTypeForDimension: (page 2773)

Declared In
NSTextTable.h

valueTypeForDimension:
Returns the value type of the specified text block dimension.

- (NSTextBlockValueType)valueTypeForDimension:(NSTextBlockDimension)dimension

Return Value
The value type for the specified text block dimension. This result determines how the value for the dimension
should be interpreted.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setValue:type:forDimension: (page 2770)
valueForDimension: (page 2772)

Declared In
NSTextTable.h

verticalAlignment
Returns the vertical alignment of the text block.

- (NSTextBlockVerticalAlignment)verticalAlignment

Return Value
The vertical alignment of the text block.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setVerticalAlignment: (page 2771)

Declared In
NSTextTable.h

Instance Methods 2773
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

widthForLayer:edge:
Returns the width of an edge of a specified layer of the text block.

- (CGFloat)widthForLayer:(NSTextBlockLayer)layer edge:(NSRectEdge)edge

Parameters
layer

The layer to examine.

edge
The edge of the layer to examine.

Return Value
The width of the edge of layer. This value must be interpreted according to the value type returned by
widthValueTypeForLayer:edge: (page 2774).

Availability
Available in Mac OS X v10.4 and later.

See Also
widthValueTypeForLayer:edge: (page 2774)
– setWidth:type:forLayer:edge: (page 2772)
– setWidth:type:forLayer: (page 2771)

Declared In
NSTextTable.h

widthValueTypeForLayer:edge:
Returns the value type of an edge of a specified layer of the text block.

- (NSTextBlockValueType)widthValueTypeForLayer:(NSTextBlockLayer)layer
edge:(NSRectEdge)edge

Parameters
layer

The layer to examine.

edge
The edge of the layer to examine.

Return Value
The value type of the edge of layer. This determines how the value for this edge of layer should be
interpreted.

Availability
Available in Mac OS X v10.4 and later.

See Also
widthForLayer:edge: (page 2774)
– setWidth:type:forLayer:edge: (page 2772)

Declared In
NSTextTable.h

2774 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

Constants

Text Block Value Type Constants
The following constants specify values used by the methods setValue:type:forDimension: (page 2770)
and valueTypeForDimension: (page 2773)

enum {
 NSTextBlockAbsoluteValueType = 0,
 NSTextBlockPercentageValueType = 1
};
typedef NSUInteger NSTextBlockValueType;

Constants
NSTextBlockAbsoluteValueType

Absolute value in points.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockPercentageValueType
Percentage value (out of 100).

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockValueType
A type defined for the text block value type constants.

Text Block Dimension Constants
The following constants specify values used by the methods setValue:type:forDimension: (page 2770),
valueForDimension: (page 2772), and valueTypeForDimension: (page 2773).

enum {
 NSTextBlockWidth = 0,
 NSTextBlockMinimumWidth = 1,
 NSTextBlockMaximumWidth = 2,
 NSTextBlockHeight = 4,
 NSTextBlockMinimumHeight = 5,
 NSTextBlockMaximumHeight = 6
};
typedef NSUInteger NSTextBlockDimension;

Constants
NSTextBlockWidth

Width of the text block.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

Constants 2775
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

NSTextBlockMinimumWidth
Minimum width of the text block.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockMaximumWidth
Maximum width of the text block.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockHeight
Height of the text block.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockMinimumHeight
Minimum height of the text block.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockMaximumHeight
Maximum height of the text block.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockDimension
A type defined for the text block dimension constants.

Text Block Layer Constants
The following constants specify values used by the methods setContentWidth:type: (page 2770),
contentWidthValueType (page 2767), setWidth:type:forLayer:edge: (page 2772),
setWidth:type:forLayer: (page 2771), widthForLayer:edge: (page 2774), and
widthValueTypeForLayer:edge: (page 2774).

enum {
 NSTextBlockPadding = -1,
 NSTextBlockBorder = 0,
 NSTextBlockMargin = 1
};
typedef NSInteger NSTextBlockLayer;

Constants
NSTextBlockPadding

Padding of the text block: space surrounding the content area extending to the border.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

2776 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

NSTextBlockBorder
Border of the text block: space between padding and margin, typically colored to present a visible
boundary.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockMargin
Margin of the text block: space surrounding the border.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockLayer
A type defined for the text block layer constants.

Text Block Vertical Alignment Constants
The following constants specify values used by the methods setVerticalAlignment: (page 2771) and
verticalAlignment (page 2773).

enum {
 NSTextBlockTopAlignment = 0,
 NSTextBlockMiddleAlignment = 1,
 NSTextBlockBottomAlignment = 2,
 NSTextBlockBaselineAlignment = 3
};
typedef NSUInteger NSTextBlockVerticalAlignment;

Constants
NSTextBlockTopAlignment

Aligns adjacent blocks at their top.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockMiddleAlignment
Aligns adjacent blocks at their middle.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockBottomAlignment
Aligns adjacent blocks at their bottom.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockBaselineAlignment
Aligns adjacent blocks at the baseline of the first line of text in the block.

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextBlockVerticalAlignment
A type defined for the text block vertical alignment constants.

Constants 2777
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

2778 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 144

NSTextBlock Class Reference

Inherits from NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTextContainer.h

Companion guide Text System Overview

Related sample code Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112
TextSizingExample

Overview

An NSTextContainer object defines a region where text is laid out. An NSLayoutManager uses
NSTextContainers to determine where to break lines, lay out portions of text, and so on. NSTextContainer
defines rectangular regions, but you can create subclasses that define regions of other shapes, such as circular
regions, regions with holes in them, or regions that flow alongside graphics.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

Overview 2779
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

Tasks

Creating an Instance

– initWithContainerSize: (page 2782)
Initializes a text container with a specified bounding rectangle.

Managing Text Components

– setLayoutManager: (page 2787)
Sets the receiver’s layout manager.

– layoutManager (page 2784)
Returns the receiver’s layout manager.

– replaceLayoutManager: (page 2785)
Replaces the layout manager for the group of text system objects containing the receiver.

– setTextView: (page 2788)
Sets the receiver’s text view.

– textView (page 2789)
Returns the receiver’s text view.

Controlling Size

– setContainerSize: (page 2786)
Sets the size of the receiver’s bounding rectangle.

– containerSize (page 2781)
Returns the size of the receiver’s bounding rectangle, regardless of the size of its region.

– setWidthTracksTextView: (page 2789)
Controls whether the receiver adjusts the width of its bounding rectangle when its text view is resized.

– widthTracksTextView (page 2790)
Returns whether the receiver adjusts the width of its bounding rectangle when its text view is resized.

– setHeightTracksTextView: (page 2786)
Controls whether the receiver adjusts the height of its bounding rectangle when its text view is resized.

– heightTracksTextView (page 2782)
Returns whether the receiver adjusts the height of its bounding rectangle when its text view is resized.

Setting Line Fragment Padding

– setLineFragmentPadding: (page 2788)
Sets the amount by which text is inset within line fragment rectangles.

– lineFragmentPadding (page 2784)
Returns the amount by which text is inset within line fragment rectangles.

2780 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

Calculating Text Layout

– lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect: (page
2785)

Overridden by subclasses to calculate and return the longest rectangle available in the proposed
rectangle for displaying text, or NSZeroRect if there is none according to the receiver’s region
definition.

– isSimpleRectangularTextContainer (page 2783)
Overridden by subclasses to return whether the receiver’s region is a rectangle with no holes or gaps
and whose edges are parallel to the text view's coordinate system axes.

Mouse Hit Testing

– containsPoint: (page 2781)
Overridden by subclasses to return whether a point lies within the receiver’s region or on the region’s
edge—not simply within its bounding rectangle.

Instance Methods

containerSize
Returns the size of the receiver’s bounding rectangle, regardless of the size of its region.

- (NSSize)containerSize

Return Value
The size of the receiver’s bounding rectangle, regardless of the size of its region.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainerInset (page 2956) (NSTextView)
– setContainerSize: (page 2786)

Related Sample Code
TextLayoutDemo

Declared In
NSTextContainer.h

containsPoint:
Overridden by subclasses to return whether a point lies within the receiver’s region or on the region’s
edge—not simply within its bounding rectangle.

- (BOOL)containsPoint:(NSPoint)aPoint

Instance Methods 2781
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

Parameters
aPoint

The point in question.

Return Value
YES if aPoint lies within the receiver’s region or on the region’s edge—not simply within its bounding
rectangle—NO otherwise.

Discussion
For example, if the receiver defines a donut shape and aPoint lies in the hole, this method returns NO. This
method can be used for hit testing of mouse events.

NSTextContainer’s implementation merely checks that aPoint lies within its bounding rectangle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextContainer.h

heightTracksTextView
Returns whether the receiver adjusts the height of its bounding rectangle when its text view is resized.

- (BOOL)heightTracksTextView

Return Value
YES if the receiver adjusts the height of its bounding rectangle when its text view is resized, NO otherwise.

Discussion
If the receiver does track the text view height, its height is adjusted to the height of the text view minus
twice the inset height (as given by NSTextView’s textContainerInset (page 2956) method).

See Text System Storage Layer Overview for more information on size tracking.

Availability
Available in Mac OS X v10.0 and later.

See Also
– widthTracksTextView (page 2790)
– setHeightTracksTextView: (page 2786)

Declared In
NSTextContainer.h

initWithContainerSize:
Initializes a text container with a specified bounding rectangle.

- (id)initWithContainerSize:(NSSize)aSize

2782 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

Parameters
aSize

The size of the text container's bounding rectangle.

Return Value
The newly initialized text container.

Discussion
The new text container must be added to an NSLayoutManager object before it can be used. The text
container must also have an NSTextView object set for text to be displayed. This method is the designated
initializer for the NSTextContainer class.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTextContainer: (page 1449) (NSLayoutManager)
– setTextView: (page 2788)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112
TextViewConfig

Declared In
NSTextContainer.h

isSimpleRectangularTextContainer
Overridden by subclasses to return whether the receiver’s region is a rectangle with no holes or gaps and
whose edges are parallel to the text view's coordinate system axes.

- (BOOL)isSimpleRectangularTextContainer

Return Value
YES if the receiver’s region is a rectangle with no holes or gaps and whose edges are parallel to the text
view's coordinate system axes, NO otherwise.

Discussion
A text container whose shape changes can return YES if its region is currently a simple rectangle, but when
its shape does change it must send textContainerChangedGeometry: (page 1518) to its layout manager
so the layout can be recalculated.

NSTextContainer’s implementation of this method returns YES.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
TextLayoutDemo

Instance Methods 2783
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

Declared In
NSTextContainer.h

layoutManager
Returns the receiver’s layout manager.

- (NSLayoutManager *)layoutManager

Return Value
The text container's layout manager.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLayoutManager: (page 2787)
– replaceLayoutManager: (page 2785)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextContainer.h

lineFragmentPadding
Returns the amount by which text is inset within line fragment rectangles.

- (CGFloat)lineFragmentPadding

Return Value
The amount by which text is inset within line fragment rectangles, in points.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect: (page
2785)
– setLineFragmentPadding: (page 2788)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
TextSizingExample

Declared In
NSTextContainer.h

2784 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect:
Overridden by subclasses to calculate and return the longest rectangle available in the proposed rectangle
for displaying text, or NSZeroRect if there is none according to the receiver’s region definition.

- (NSRect)lineFragmentRectForProposedRect:(NSRect)proposedRect
sweepDirection:(NSLineSweepDirection)sweepDirection
movementDirection:(NSLineMovementDirection)movementDirection
remainingRect:(NSRectPointer)remainingRect

Parameters
proposedRect

The proposed rectangle in which to layout text.

sweepDirection
The line sweep direction.

movementDirection
The line movement direction.

remainingRect
Upon return, the unused, possibly shifted, portion of proposedRect that’s available for further text,
or NSZeroRect if there is no remainder.

Return Value
The longest rectangle available in the proposed rectangle for displaying text, or NSZeroRect if there is none
according to the receiver’s region definition.

Discussion
There is no guarantee as to the width of the proposed rectangle or to its location. For example, the proposed
rectangle is likely to be much wider than the width of the receiver. The receiver should examine proposedRect
to see that it intersects its bounding rectangle and should return a modified rectangle based on
sweepDirection and movementDirection, whose possible values are listed in the class description. If
sweepDirection is NSLineSweepRight, for example, the receiver uses this information to trim the right
end of proposedRect as needed rather than the left end.

If proposedRect doesn’t completely overlap the region along the axis of movementDirection and
movementDirection isn’t NSLineDoesntMove, this method can either shift the rectangle in that direction
as much as needed so that it does completely overlap, or return NSZeroRect to indicate that the proposed
rectangle simply doesn’t fit.

See the class description for more information on overriding this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextContainer.h

replaceLayoutManager:
Replaces the layout manager for the group of text system objects containing the receiver.

- (void)replaceLayoutManager:(NSLayoutManager *)aLayoutManager

Instance Methods 2785
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

Parameters
aLayoutManager

The new layout manager.

Discussion
All text containers and text views sharing the original layout manager share the new layout manager. This
method makes all the adjustments necessary to keep these relationships intact, unlike
setLayoutManager: (page 2787).

Availability
Available in Mac OS X v10.0 and later.

See Also
– layoutManager (page 2784)

Declared In
NSTextContainer.h

setContainerSize:
Sets the size of the receiver’s bounding rectangle.

- (void)setContainerSize:(NSSize)aSize

Parameters
aSize

The new size of the text container's bounding rectangle.

Discussion
This method also sends textContainerChangedGeometry: (page 1518) to the text container's layout
manager.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextContainerInset: (page 2946) (NSTextView)
– containerSize (page 2781)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112
TextSizingExample

Declared In
NSTextContainer.h

setHeightTracksTextView:
Controls whether the receiver adjusts the height of its bounding rectangle when its text view is resized.

2786 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

- (void)setHeightTracksTextView:(BOOL)flag

Parameters
flag

YES if the receiver should follow changes to the height of its text view, NO otherwise.

Discussion
See Text System Storage Layer Overview for more information on size tracking.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContainerSize: (page 2786)
– setWidthTracksTextView: (page 2789)
– heightTracksTextView (page 2782)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility
Sketch-112
TextLayoutDemo
TextSizingExample

Declared In
NSTextContainer.h

setLayoutManager:
Sets the receiver’s layout manager.

- (void)setLayoutManager:(NSLayoutManager *)aLayoutManager

Parameters
aLayoutManager

The new layout manager.

Discussion
This method is invoked automatically when you add a text container to a layout manager; you should never
need to invoke it directly, but might want to override it. If you want to replace the layout manager for an
established group of text system objects, use replaceLayoutManager: (page 2785).

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTextContainer: (page 1449) (NSLayoutManager)
– layoutManager (page 2784)

Declared In
NSTextContainer.h

Instance Methods 2787
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

setLineFragmentPadding:
Sets the amount by which text is inset within line fragment rectangles.

- (void)setLineFragmentPadding:(CGFloat)aFloat

Parameters
aFloat

The amount by which text is inset within line fragment rectangles, in points.

Discussion
This method also sends textContainerChangedGeometry: (page 1518) to the text container's layout
manager.

Line fragment padding is not designed to express text margins. Instead, use the NSTextView method
setTextContainerInset: (page 2946), paragraph margin attributes, or the position of the text view within
a superview.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect: (page
2785)
– lineFragmentPadding (page 2784)

Related Sample Code
TipWrapper

Declared In
NSTextContainer.h

setTextView:
Sets the receiver’s text view.

- (void)setTextView:(NSTextView *)aTextView

Parameters
aTextView

The new text view.

Discussion
This method sends setTextContainer: (page 2945) to aTextView to complete the association of the text
container and text view.

Because you usually specify a text container when you create a text view, you should rarely need to invoke
this method. A text container doesn’t need a text view to calculate line fragment rectangles, but must have
one to display text.

You can use this method to disconnect a text view from a group of text system objects by sending this
message to its text container and passing nil as aTextView.

Availability
Available in Mac OS X v10.0 and later.

2788 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

See Also
– initWithFrame:textContainer: (page 2896) (NSTextView)
– replaceTextContainer: (page 2916) (NSTextView)

Related Sample Code
Sketch-112

Declared In
NSTextContainer.h

setWidthTracksTextView:
Controls whether the receiver adjusts the width of its bounding rectangle when its text view is resized.

- (void)setWidthTracksTextView:(BOOL)flag

Parameters
flag

YES if the receiver should follow changes to the width of its text view, NO otherwise.

Discussion
See Text System Storage Layer Overview for more information on size tracking.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContainerSize: (page 2786)
– setHeightTracksTextView: (page 2786)
– widthTracksTextView (page 2790)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility
Sketch-112
TextLayoutDemo
TextSizingExample

Declared In
NSTextContainer.h

textView
Returns the receiver’s text view.

- (NSTextView *)textView

Return Value
The receiver's text view, or nil if it has none.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2789
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

See Also
– setTextView: (page 2788)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextContainer.h

widthTracksTextView
Returns whether the receiver adjusts the width of its bounding rectangle when its text view is resized.

- (BOOL)widthTracksTextView

Return Value
YES if the receiver adjusts the width of its bounding rectangle when its text view is resized, NO otherwise.

Discussion
If the receiver does track the text view width, its width is adjusted to the width of the text view minus twice
the inset width (as given by NSTextView’s textContainerInset (page 2956) method).

See Text System Storage Layer Overview for more information on size tracking.

Availability
Available in Mac OS X v10.0 and later.

See Also
– heightTracksTextView (page 2782)
– setWidthTracksTextView: (page 2789)

Declared In
NSTextContainer.h

Constants

NSLineSweepDirection
These constants describe the progression of text on a page. The typesetter decides which way text is supposed
to flow and passes these values as arguments to the text container, which uses them to calculate the next
line rectangle.

2790 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

typedef enum {
 NSLineSweepLeft = 0,
 NSLineSweepRight = 1,
 NSLineSweepDown = 2,
 NSLineSweepUp = 3
} NSLineSweepDirection;

Constants
NSLineSweepLeft

Characters move from right to left.

Available in Mac OS X v10.0 and later.

Declared in NSTextContainer.h.

NSLineSweepRight
Characters move from left to right.

Available in Mac OS X v10.0 and later.

Declared in NSTextContainer.h.

NSLineSweepDown
Characters move from top to bottom.

Available in Mac OS X v10.0 and later.

Declared in NSTextContainer.h.

NSLineSweepUp
Characters move from bottom to top.

Available in Mac OS X v10.0 and later.

Declared in NSTextContainer.h.

Discussion
Line sweep is the direction text progresses within a line. See Text System Storage Layer Overview.

The only values currently used by the supplied typesetters are NSLineSweepRight and NSLineMovesDown.
An NSTextContainer subclass should be prepared to deal with any value, and an NSTypesetter subclass should
be able to use any of them.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextContainer.h

NSLineMovementDirection
Line movement is the direction in which lines move. See Text System Storage Layer Overview.

Constants 2791
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

typedef enum {
 NSLineDoesntMove = 0,
 NSLineMovesLeft = 1,
 NSLineMovesRight = 2,
 NSLineMovesDown = 3,
 NSLineMovesUp = 4
} NSLineMovementDirection;

Constants
NSLineMovesLeft

Lines move from right to left.

Available in Mac OS X v10.0 and later.

Declared in NSTextContainer.h.

NSLineMovesRight
Lines move from left to right.

Available in Mac OS X v10.0 and later.

Declared in NSTextContainer.h.

NSLineMovesDown
Lines move from top to bottom.

Available in Mac OS X v10.0 and later.

Declared in NSTextContainer.h.

NSLineMovesUp
Lines move from bottom to top.

Available in Mac OS X v10.0 and later.

Declared in NSTextContainer.h.

NSLineDoesntMove
Line has no movement.

Available in Mac OS X v10.0 and later.

Declared in NSTextContainer.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextContainer.h

2792 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 145

NSTextContainer Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTextField.h

Companion guide Text Fields

Related sample code EnhancedAudioBurn
EnhancedDataBurn
FunHouse
ImageClient
OpenALExample

Overview

An NSTextField object is a kind of NSControl that displays text that the user can select or edit and that
sends its action message to its target when the user presses the Return key while editing.

The NSTextField class uses the NSTextFieldCell class to implement its user interface.

Tasks

Controlling Editability and Selectability

– setEditable: (page 2804)
Controls whether the user can edit the receiver’s text.

– isEditable (page 2799)
Returns a Boolean value indicating whether the user is allowed to select and edit the receiver's text.

– setSelectable: (page 2806)
Sets whether the receiver is selectable (but not editable).

Overview 2793
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

– isSelectable (page 2800)
Returns a Boolean value indicating whether the user is allowed to select the receiver’s text.

Controlling Rich Text Behavior

– setAllowsEditingTextAttributes: (page 2801)
Controls whether the receiver allows the user to change font attributes of the receiver’s text.

– allowsEditingTextAttributes (page 2796)
Returns a Boolean value indicating whether the user is allowed to change font attributes of the
receiver's text.

– setImportsGraphics: (page 2805)
Controls whether the receiver allows the user to drag image files into it.

– importsGraphics (page 2798)
Returns a Boolean value indicating whether the receiver allows the user to drag image files into it.

Setting the Text Color

– setTextColor: (page 2806)
Sets the color used to draw the receiver’s text.

– textColor (page 2807)
Returns the color used to draw the receiver’s text.

Controlling the Background

– setBackgroundColor: (page 2801)
Sets the color of the background that the receiver’s cell draws behind the text.

– backgroundColor (page 2797)
Returns the color of the background that the receiver’s cell draws behind the text.

– setDrawsBackground: (page 2803)
Controls whether the receiver’s cell draws its background color behind its text.

– drawsBackground (page 2798)
Returns a Boolean value indicating whether the receiver's cell draws its background color.

Setting a Border

– setBezeled: (page 2802)
Controls whether the receiver draws a bezeled border around its contents.

– isBezeled (page 2798)
Returns a Boolean value indicating whether the receiver draws a bezeled frame.

– setBezelStyle: (page 2802)
Sets the receiver’s bezel style.

– bezelStyle (page 2797)
Returns the receiver’s bezel style.

2794 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

– setBordered: (page 2803)
Controls whether the receiver draws a solid black border around its contents.

– isBordered (page 2799)
Returns a Boolean value indicating whether the receiver draws a black border around its contents.

Selecting the Text

– selectText: (page 2801)
Ends editing and selects the entire contents of the receiver if it’s selectable.

Working with the Responder Chain

– acceptsFirstResponder (page 2796)
Returns a Boolean value indicating whether the receiver is editable.

– nextText (page 2800)
Returns the object selected when the user presses Tab. (Deprecated. Use the NSView method
nextKeyView (page 3192) instead.)

– previousText (page 2800)
Returns the object selected when the user presses Shift-Tab. (Deprecated. Use the NSView method
previousKeyView (page 3197) instead.)

– setNextText: (page 2805)
Sets the object selected when the user presses Tab. (Deprecated. Use the NSView method
setNextKeyView: (page 3226) instead.)

– setPreviousText: (page 2805)
Sets the object selected when the user presses Shift-Tab. (Deprecated. Use the NSView method
setNextKeyView: (page 3226) instead.)

Using Keyboard Interface Control

– setTitleWithMnemonic: (page 2807)
Sets the receiver’s string value, using the embedded character as the keyboard mnemonic.

Setting the Delegate

– setDelegate: (page 2803)
Sets the receiver’s delegate.

– delegate (page 2797)
Returns the receiver’s delegate.

NSText Delegate Method Implementations

– textShouldBeginEditing: (page 2809)
Requests permission to begin editing a text object.

Tasks 2795
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

– textDidBeginEditing: (page 2807)
Posts a notification that the text is about to begin editing to the default notification center.

– textDidChange: (page 2808)
Posts a notification that the text has changed and forwards this message to the receiver’s cell if it
responds.

– textShouldEndEditing: (page 2810)
Performs validation on the receiver’s new value.

– textDidEndEditing: (page 2808)
Handles an end of editing.

Instance Methods

acceptsFirstResponder
Returns a Boolean value indicating whether the receiver is editable.

- (BOOL)acceptsFirstResponder

Return Value
YES if the receiver is editable, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextField.h

allowsEditingTextAttributes
Returns a Boolean value indicating whether the user is allowed to change font attributes of the receiver's
text.

- (BOOL)allowsEditingTextAttributes

Return Value
YES if the receiver allows the user to change font attributes of the receiver’s text, otherwise NO. You can
change text attributes programmatically regardless of this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– importsGraphics (page 2798)
– setAllowsEditingTextAttributes: (page 2801)

Declared In
NSTextField.h

2796 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

backgroundColor
Returns the color of the background that the receiver’s cell draws behind the text.

- (NSColor *)backgroundColor

Return Value
The color used to draw the background.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsBackground (page 2798)
– setBackgroundColor: (page 2801)

Declared In
NSTextField.h

bezelStyle
Returns the receiver’s bezel style.

- (NSTextFieldBezelStyle)bezelStyle

Return Value
A constant indicating the bezel style. Possible values are described in the Bezel Styles (page 522) section
of NSTextFieldCell Class Reference (page 2811).

Availability
Available in Mac OS X v10.2 and later.

See Also
– setBezelStyle: (page 2802)

Declared In
NSTextField.h

delegate
Returns the receiver’s delegate.

- (id < NSTextFieldDelegate >)delegate

Return Value
The object that acts as the receiver's delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 2803)

Instance Methods 2797
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

Declared In
NSTextField.h

drawsBackground
Returns a Boolean value indicating whether the receiver's cell draws its background color.

- (BOOL)drawsBackground

Return Value
YES if the receiver’s cell draws its background color behind its text, NO if it draws no background.

Discussion
In order to prevent inconsistent rendering, background color rendering is disabled for rounded-bezel text
fields.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 2797)
– drawsBackground (page 2814) (NSTextFieldCell)
– setDrawsBackground: (page 2803)

Declared In
NSTextField.h

importsGraphics
Returns a Boolean value indicating whether the receiver allows the user to drag image files into it.

- (BOOL)importsGraphics

Return Value
YES if the receiver allows the user to drag image files into it, otherwise NO. You can add images
programmatically regardless of this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsEditingTextAttributes (page 2796)
– importsGraphics (page 2895) (NSTextView)
– setImportsGraphics: (page 2805)

Declared In
NSTextField.h

isBezeled
Returns a Boolean value indicating whether the receiver draws a bezeled frame.

2798 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

- (BOOL)isBezeled

Return Value
YES if the receiver draws a bezeled frame around its contents; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isBordered (page 2799)
– setBezeled: (page 2802)

Declared In
NSTextField.h

isBordered
Returns a Boolean value indicating whether the receiver draws a black border around its contents.

- (BOOL)isBordered

Return Value
YES if the receiver draws a solid black border around its contents; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isBezeled (page 2798)
– setBordered: (page 2803)

Declared In
NSTextField.h

isEditable
Returns a Boolean value indicating whether the user is allowed to select and edit the receiver's text.

- (BOOL)isEditable

Return Value
YES if the user is allowed to select and edit the receiver’s text, NO if the user isn’t allowed to edit it (though
the user may be able to select it).

Availability
Available in Mac OS X v10.0 and later.

See Also
– isSelectable (page 2800)
– setEditable: (page 2804)

Declared In
NSTextField.h

Instance Methods 2799
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

isSelectable
Returns a Boolean value indicating whether the user is allowed to select the receiver’s text.

- (BOOL)isSelectable

Return Value
YES if the user is allowed to select the receiver’s text; otherwise NO.

Discussion
Selectable text isn’t necessarily editable; use isEditable (page 2799) to check for editability.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectable: (page 2806)

Declared In
NSTextField.h

nextText
Returns the object selected when the user presses Tab. (Available in Mac OS X v10.0 through Mac OS X v10.1.
Use the NSView method nextKeyView (page 3192) instead.)

- (id)nextText

Return Value
The object to be selected.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared In
NSTextField.h

previousText
Returns the object selected when the user presses Shift-Tab. (Available in Mac OS X v10.0 through Mac OS
X v10.1. Use the NSView method previousKeyView (page 3197) instead.)

- (id)previousText

Return Value
The object to be selected.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared In
NSTextField.h

2800 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

selectText:
Ends editing and selects the entire contents of the receiver if it’s selectable.

- (void)selectText:(id)sender

Parameters
sender

The sender of the message.

Discussion
If the receiver isn’t in some window’s view hierarchy, this method has no effect.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isSelectable (page 2800)

Related Sample Code
QTMetadataEditor
TipWrapper

Declared In
NSTextField.h

setAllowsEditingTextAttributes:
Controls whether the receiver allows the user to change font attributes of the receiver’s text.

- (void)setAllowsEditingTextAttributes:(BOOL)flag

Parameters
flag

If YES, the user is permitted to change font attributes of the receiver’s text; if flag is NO, the user isn’t
so permitted. You can change text attributes programmatically regardless of this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImportsGraphics: (page 2805)
– allowsEditingTextAttributes (page 2796)

Declared In
NSTextField.h

setBackgroundColor:
Sets the color of the background that the receiver’s cell draws behind the text.

- (void)setBackgroundColor:(NSColor *)aColor

Instance Methods 2801
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

Parameters
aColor

The color used to draw the background.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDrawsBackground: (page 2803)
– backgroundColor (page 2797)

Declared In
NSTextField.h

setBezeled:
Controls whether the receiver draws a bezeled border around its contents.

- (void)setBezeled:(BOOL)flag

Parameters
flag

If YES, it draws a bezeled border and invokes setDrawsBackground: (page 2803) with an argument
of NO; if NO, the receiver does not draw a border.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isBezeled (page 2798)
– setBordered: (page 2803)

Related Sample Code
FunHouse
Quartz Composer QCTV
Vertex Optimization

Declared In
NSTextField.h

setBezelStyle:
Sets the receiver’s bezel style.

- (void)setBezelStyle:(NSTextFieldBezelStyle)style

Parameters
style

A constant indicating the bezel style. Possible values for style are described in the Bezel
Styles (page 522) section of NSTextFieldCell Class Reference (page 2811). You must have already sent
the receiver setBezeled: (page 2802) with an argument of YES

2802 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
– bezelStyle (page 2797)

Declared In
NSTextField.h

setBordered:
Controls whether the receiver draws a solid black border around its contents.

- (void)setBordered:(BOOL)flag

Parameters
flag

If YES, the receiver draws a border; if NO, it draws no border.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isBordered (page 2799)
– setBezeled: (page 2802)

Declared In
NSTextField.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSTextFieldDelegate >)anObject

Parameters
anObject

The object that acts as the receiver's delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 2797)

Declared In
NSTextField.h

setDrawsBackground:
Controls whether the receiver’s cell draws its background color behind its text.

Instance Methods 2803
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

- (void)setDrawsBackground:(BOOL)flag

Parameters
flag

If YES, the receiver’s cell draws its background; if NO, it draws nothing behind its text.

Discussion
In order to prevent inconsistent rendering, background color rendering is disabled for rounded-bezel text
fields.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundColor: (page 2801)
– setDrawsBackground: (page 2817) (NSTextFieldCell)
– drawsBackground (page 2798)

Related Sample Code
FunHouse
Quartz Composer QCTV

Declared In
NSTextField.h

setEditable:
Controls whether the user can edit the receiver’s text.

- (void)setEditable:(BOOL)flag

Parameters
flag

If YES, then the user is allowed to both select and edit text. If flag is NO, then the user isn’t permitted
to edit text, and the receiver’s selectability is restored to its previous value.

Discussion
For example, if an NSTextField object is selectable but not editable, then made editable for a time, then
made not editable, it remains selectable. To guarantee that text is neither editable nor selectable, simply use
setSelectable: (page 2806) to turn off selectability.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEditable (page 2799)

Related Sample Code
FinalCutPro_AppleEvents
FunHouse
SharedMemory
UIElementInspector
With and Without Bindings

2804 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

Declared In
NSTextField.h

setImportsGraphics:
Controls whether the receiver allows the user to drag image files into it.

- (void)setImportsGraphics:(BOOL)flag

Parameters
flag

If YES, the receiver accepts dragged images; if NO, it doesn’t. You can add images programmatically
regardless of this setting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsEditingTextAttributes: (page 2801)
– setImportsGraphics: (page 2936) (NSTextView)
– importsGraphics (page 2798)

Declared In
NSTextField.h

setNextText:
Sets the object selected when the user presses Tab. (Available in Mac OS X v10.0 through Mac OS X v10.1.
Use the NSView method setNextKeyView: (page 3226) instead.)

- (void)setNextText:(id)anObject

Parameters
anObject

The object to be selected.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared In
NSTextField.h

setPreviousText:
Sets the object selected when the user presses Shift-Tab. (Available in Mac OS X v10.0 through Mac OS X
v10.1. Use the NSView method setNextKeyView: (page 3226) instead.)

- (void)setPreviousText:(id)anObject

Parameters
anObject

The object to be selected.

Instance Methods 2805
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

Availability
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared In
NSTextField.h

setSelectable:
Sets whether the receiver is selectable (but not editable).

- (void)setSelectable:(BOOL)flag

Parameters
flag

If YES, the receiver is made selectable but not editable (use setEditable: (page 2804) to make text
both selectable and editable). If NO, the text is neither editable nor selectable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEditable: (page 2804)

Related Sample Code
Quartz Composer QCTV
With and Without Bindings

Declared In
NSTextField.h

setTextColor:
Sets the color used to draw the receiver’s text.

- (void)setTextColor:(NSColor *)aColor

Parameters
aColor

The color used to draw text.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundColor: (page 2801)
– setTextColor: (page 2818) (NSTextFieldCell)
– textColor (page 2807)

Related Sample Code
IdentitySample
UIElementInspector
Vertex Optimization

2806 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

Declared In
NSTextField.h

setTitleWithMnemonic:
Sets the receiver’s string value, using the embedded character as the keyboard mnemonic.

- (void)setTitleWithMnemonic:(NSString *)aString

Parameters
aString

The string to set as the title. The first character preceded by an ampersand (‘&’) is used as the mnemonic
(the first ampersand character is stripped out).

Discussion
Mnemonics are not supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextField.h

textColor
Returns the color used to draw the receiver’s text.

- (NSColor *)textColor

Return Value
The color used to draw text.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 2797)
– textColor (page 2819) (NSTextFieldCell)
– setTextColor: (page 2806)

Declared In
NSTextField.h

textDidBeginEditing:
Posts a notification that the text is about to begin editing to the default notification center.

- (void)textDidBeginEditing:(NSNotification *)aNotification

Parameters
aNotification

The NSControlTextDidBeginEditingNotification (page 847) notification to post.

Instance Methods 2807
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

Discussion
This action causes the receiver’s delegate to receive a controlTextDidBeginEditing: (page 846) message.
See the NSControl class specification for more information on the text delegate method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textDidBeginEditing: (page 2807)
– textDidChange: (page 2808)
– textShouldEndEditing: (page 2810)
– textDidEndEditing: (page 2808)

Declared In
NSTextField.h

textDidChange:
Posts a notification that the text has changed and forwards this message to the receiver’s cell if it responds.

- (void)textDidChange:(NSNotification *)aNotification

Parameters
aNotification

The NSControlTextDidChangeNotification (page 848) notification that is posted to the default
notification center.

Discussion
This method causes the receiver’s delegate to receive a controlTextDidChange: (page 846) message. See
the NSControl class specification for more information on the text delegate method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textShouldBeginEditing: (page 2809)
– textDidBeginEditing: (page 2807)
– textShouldEndEditing: (page 2810)
– textDidEndEditing: (page 2808)

Declared In
NSTextField.h

textDidEndEditing:
Handles an end of editing.

- (void)textDidEndEditing:(NSNotification *)aNotification

Parameters
aNotification

The notification that editing has ended.

2808 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

Discussion
After validating the new value, posts an NSControlTextDidEndEditingNotification (page 848) to the
default notification center. This posting causes the receiver’s delegate to receive a
controlTextDidEndEditing: (page 847) message. After this message, sends endEditing: (page 555) to
the receiver’ cell and handles the key that caused editing to end:

 ■ If the user ended editing by pressing Return, this method tries to send the receiver’s action to its target;
if unsuccessful, it sends performKeyEquivalent: (page 3195) to its NSView (for example, to handle the
default button on a panel); if that also fails, the receiver simply selects its text.

 ■ If the user ended editing by pressing Tab or Shift-Tab, the receiver tries to have its NSWindow object
select its next or previous key view, using theNSWindowmethodselectKeyViewFollowingView: (page
3364) or selectKeyViewPrecedingView: (page 3364). If unsuccessful in doing this, the receiver simply
selects its text.

See the NSControl class specification for more information on the text delegate method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textShouldBeginEditing: (page 2809)
– textDidBeginEditing: (page 2807)
– textDidChange: (page 2808)
– textShouldEndEditing: (page 2810)

Declared In
NSTextField.h

textShouldBeginEditing:
Requests permission to begin editing a text object.

- (BOOL)textShouldBeginEditing:(NSText *)textObject

Parameters
textObject

The object to begin editing.

Return Value
YES if editing should be allowed to occur, NO otherwise.

Discussion
If the receiver isn’t editable, returns NO immediately. If it is editable and its delegate responds to
control:textShouldBeginEditing:, this invokes that method and returns the result. Otherwise it simply
returns YES to allow editing to occur. See the NSControl class specification for more information on the
text delegate method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textDidBeginEditing: (page 2807)

Instance Methods 2809
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

– textDidChange: (page 2808)
– textShouldEndEditing: (page 2810)
– textDidEndEditing: (page 2808)

Declared In
NSTextField.h

textShouldEndEditing:
Performs validation on the receiver’s new value.

- (BOOL)textShouldEndEditing:(NSText *)textObject

Parameters
textObject

The text object requesting permission to end editing.

Return Value
YES if the new value is valid; otherwise NO.

Discussion
This method validates the receiver's new value using the NSCellmethod isEntryAcceptable: (page 568).
If the new value is valid and the delegate responds to control:textShouldEndEditing:, invokes that
method and returns the result, in addition beeping if the delegate returns NO. See the NSControl class
specification for more information on the text delegate method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textShouldBeginEditing: (page 2809)
– textDidBeginEditing: (page 2807)
– textDidChange: (page 2808)
– textDidEndEditing: (page 2808)

Declared In
NSTextField.h

2810 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 146

NSTextField Class Reference

Inherits from NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTextFieldCell.h

Companion guide Text Fields

Related sample code AnimatedTableView
FunHouse
PhotoSearch
SourceView
STUCAuthoringDeviceCocoaSample

Overview

The NSTextFieldCell class adds to the text display capabilities of the NSCell class by allowing you to set
the color of both the text and its background. You can also specify whether the cell draws its background at
all.

All of the methods declared by this class are also declared by the NSTextField class, which uses
NSTextFieldCell objects to draw and edit text. These NSTextField cover methods call the corresponding
NSTextFieldCell methods.

Placeholder strings, set using setPlaceholderString: (page 2818) or
setPlaceholderAttributedString: (page 2817), now appear in the text field cell if the actual string is
nil or @"". They are drawn in grey on the cell and are not archived in the “pre-10.2” nib format.

Designated Initializers

When subclassing NSTextFieldCell you must implement all of the designated initializers. Those methods
are: initWithCoder:, initTextCell: (page 564), and initImageCell: (page 563).

Overview 2811
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 147

NSTextFieldCell Class Reference

Tasks

Setting the Text Color

– setTextColor: (page 2818)
Sets the color used to draw the receiver’s text.

– textColor (page 2819)
Returns the color used to draw the receiver’s text.

Setting the Bezel Style

– setBezelStyle: (page 2816)
Sets the receiver’s bezel style.

– bezelStyle (page 2814)
Returns the receiver’s bezel style.

Controlling the Background

– setBackgroundColor: (page 2816)
Sets the color of the background that the receiver draws behind the text.

– backgroundColor (page 2813)
Returns the color of the background the receiver draws behind the text.

– setDrawsBackground: (page 2817)
Controls whether the receiver draws its background color behind its text.

– drawsBackground (page 2814)
Returns a Boolean value that indicates whether the receiver draws its background color.

Managing the Field Editor

– setUpFieldEditorAttributes: (page 2819)
Sets up the field editor. You never invoke this method directly; by overriding it, however, you can
customize the field editor.

– setWantsNotificationForMarkedText: (page 2819)
Directs the cell’s associated field editor to post text change notifications.

Managing Placeholder Strings

– setPlaceholderString: (page 2818)
Sets the placeholder of the cell as a plain text string.

– placeholderString (page 2815)
Returns the cell’s plain text placeholder string.

2812 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 147

NSTextFieldCell Class Reference

– setPlaceholderAttributedString: (page 2817)
Sets the placeholder of the cell as an attributed string.

– placeholderAttributedString (page 2815)
Returns the cell’s attributed placeholder string.

Accessing Input Source Locales

– allowedInputSourceLocales (page 2813)
Returns an array of locale identifiers representing input sources that are allowed to be enabled when
the receiver has the keyboard focus.

– setAllowedInputSourceLocales: (page 2816)
Sets an array of locale identifiers representing input sources that are allowed to be enabled when the
receiver has the keyboard focus.

Instance Methods

allowedInputSourceLocales
Returns an array of locale identifiers representing input sources that are allowed to be enabled when the
receiver has the keyboard focus.

- (NSArray *)allowedInputSourceLocales

Return Value
The locale identifiers of allowed input sources.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAllowedInputSourceLocales: (page 2816)

Declared In
NSTextFieldCell.h

backgroundColor
Returns the color of the background the receiver draws behind the text.

- (NSColor *)backgroundColor

Return Value
The background color of the text field cell.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2813
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 147

NSTextFieldCell Class Reference

See Also
– drawsBackground (page 2814)
– backgroundColor (page 2797) (NSTextField)
– setBackgroundColor: (page 2816)

Related Sample Code
DragNDropOutlineView
EnhancedDataBurn
ImageBackground
QTKitMovieShuffler
STUCAuthoringDeviceCocoaSample

Declared In
NSTextFieldCell.h

bezelStyle
Returns the receiver’s bezel style.

- (NSTextFieldBezelStyle)bezelStyle

Return Value
A constant indicating the bezel style of the text field cell. See NSTextFieldBezelStyle (page 2820).

Availability
Available in Mac OS X v10.2 and later.

See Also
– setBezelStyle: (page 2816)

Declared In
NSTextFieldCell.h

drawsBackground
Returns a Boolean value that indicates whether the receiver draws its background color.

- (BOOL)drawsBackground

Return Value
YES if the receiver draws its background color behind its text, NO if it draws no background.

Discussion
In order to prevent inconsistent rendering, background color rendering is disabled for rounded-bezel text
fields.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 2813)
– drawsBackground (page 2798) (NSTextField)

2814 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 147

NSTextFieldCell Class Reference

– setDrawsBackground: (page 2817)

Related Sample Code
DragNDropOutlineView
EnhancedDataBurn
ImageBackground
QTKitMovieShuffler
STUCAuthoringDeviceCocoaSample

Declared In
NSTextFieldCell.h

placeholderAttributedString
Returns the cell’s attributed placeholder string.

- (NSAttributedString *)placeholderAttributedString

Return Value
The attributed string used as the cell's placeholder.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setPlaceholderAttributedString: (page 2817)
– placeholderString (page 2815)

Declared In
NSTextFieldCell.h

placeholderString
Returns the cell’s plain text placeholder string.

- (NSString *)placeholderString

Return Value
The cell''s placeholder string.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setPlaceholderString: (page 2818)
– placeholderAttributedString (page 2815)

Declared In
NSTextFieldCell.h

Instance Methods 2815
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 147

NSTextFieldCell Class Reference

setAllowedInputSourceLocales:
Sets an array of locale identifiers representing input sources that are allowed to be enabled when the receiver
has the keyboard focus.

- (void)setAllowedInputSourceLocales:(NSArray *)localeIdentifiers

Parameters
localeIdentifiers

The new locale identifiers of allowed input sources.

Discussion
You can use the meta-locale identifier,NSAllRomanInputSourcesLocaleIdentifier (page 2972), to specify
input sources that are limited for Roman script editing.

Availability
Available in Mac OS X v10.5 and later.

See Also
– allowedInputSourceLocales (page 2813)

Declared In
NSTextFieldCell.h

setBackgroundColor:
Sets the color of the background that the receiver draws behind the text.

- (void)setBackgroundColor:(NSColor *)aColor

Parameters
aColor

The background color of the text field cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDrawsBackground: (page 2817)
– setBackgroundColor: (page 2801) (NSTextField)
– backgroundColor (page 2813)

Declared In
NSTextFieldCell.h

setBezelStyle:
Sets the receiver’s bezel style.

- (void)setBezelStyle:(NSTextFieldBezelStyle)style

2816 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 147

NSTextFieldCell Class Reference

Parameters
style

A constant specifying the bezel style of the text field cell. See NSTextFieldBezelStyle (page 2820).

Discussion
To set the bezel style, you must have already sent setBezeled: (page 2802) with an argument of YES.

Availability
Available in Mac OS X v10.2 and later.

See Also
– bezelStyle (page 2814)

Declared In
NSTextFieldCell.h

setDrawsBackground:
Controls whether the receiver draws its background color behind its text.

- (void)setDrawsBackground:(BOOL)flag

Parameters
flag

If YES, the receiver draws its background; if NO it draws nothing behind its text.

Discussion
In order to prevent inconsistent rendering, background color rendering is disabled for rounded-bezel text
fields.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundColor: (page 2816)
– setDrawsBackground: (page 2803) (NSTextField)
– drawsBackground (page 2814)

Declared In
NSTextFieldCell.h

setPlaceholderAttributedString:
Sets the placeholder of the cell as an attributed string.

- (void)setPlaceholderAttributedString:(NSAttributedString *)string

Return Value
The attributed string to use as a placeholder.

Discussion
Note that invoking this successfully will clear out any plain text string set by setPlaceholderString: (page
2818).

Instance Methods 2817
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 147

NSTextFieldCell Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
– placeholderAttributedString (page 2815)
– setPlaceholderString: (page 2818)

Declared In
NSTextFieldCell.h

setPlaceholderString:
Sets the placeholder of the cell as a plain text string.

- (void)setPlaceholderString:(NSString *)string

Parameters
string

The placeholder string.

Discussion
Note that invoking this successfully will clear out any attributed string set by
setPlaceholderAttributedString: (page 2817).

Availability
Available in Mac OS X v10.3 and later.

See Also
– placeholderString (page 2815)
– setPlaceholderAttributedString: (page 2817)

Declared In
NSTextFieldCell.h

setTextColor:
Sets the color used to draw the receiver’s text.

- (void)setTextColor:(NSColor *)aColor

Parameters
aColor

The color used to draw the text.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundColor: (page 2816)
– setTextColor: (page 2806) (NSTextField)
– textColor (page 2819)

2818 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 147

NSTextFieldCell Class Reference

Declared In
NSTextFieldCell.h

setUpFieldEditorAttributes:
Sets up the field editor. You never invoke this method directly; by overriding it, however, you can customize
the field editor.

- (NSText *)setUpFieldEditorAttributes:(NSText *)textObj

Discussion
When you override this method, you should generally invoke the implementation of super and return the
textObj argument. For information on field editors, see “Using the Window’s Field Editor”.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextFieldCell.h

setWantsNotificationForMarkedText:
Directs the cell’s associated field editor to post text change notifications.

- (void)setWantsNotificationForMarkedText:(BOOL)flag

Parameters
flag

If YES, the field editor posts text change notifications (NSTextDidChangeNotification) while
editing marked text; if NO, notifications are delayed until the marked text confirmation.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTextFieldCell.h

textColor
Returns the color used to draw the receiver’s text.

- (NSColor *)textColor

Return Value
The color used to draw the text.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 2813)
– textColor (page 2807) (NSTextField)

Instance Methods 2819
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 147

NSTextFieldCell Class Reference

– setTextColor: (page 2818)

Related Sample Code
PhotoSearch

Declared In
NSTextFieldCell.h

Constants

NSTextFieldBezelStyle
Specify the bezel style of the text field cell.

enum {
 NSTextFieldSquareBezel = 0,
 NSTextFieldRoundedBezel = 1
};
typedef NSUInteger NSTextFieldBezelStyle;

Constants
NSTextFieldSquareBezel

Corners are square.

Available in Mac OS X v10.2 and later.

Declared in NSTextFieldCell.h.

NSTextFieldRoundedBezel
Corners are rounded.

Available in Mac OS X v10.2 and later.

Declared in NSTextFieldCell.h.

Discussion
The bezel style of a text field is set using the bezelStyle (page 2814) and setBezelStyle: (page 2816)
methods.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSTextFieldCell.h

2820 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 147

NSTextFieldCell Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in NSTextInputContext.h

Overview

An NSTextInputContext object represents the Cocoa text input system. The text input system communicates
primarily with the client of the activated input context via the NSTextInputClient protocol.

Tasks

Creating an Input Context

– initWithClient: (page 2826)
The designated initializer

Getting the Input Context and Client

+ currentInputContext (page 2824)
Returns the current, activated, text input context object.

 client (page 2823) property
The owner of this input context. (read-only)

Configuring the Input Context

 acceptsGlyphInfo (page 2822) property
A Boolean value that indicates whether the client handles NSGlyphInfoAttributeName or not.

 allowedInputSourceLocales (page 2823) property
The set of keyboard input source locales allowed when this input context is active.

Overview 2821
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 148

NSTextInputContext Class Reference

Activating the Input Context

– activate (page 2824)
Activates the receiver.

– deactivate (page 2825)
Deactivates the receiver.

Handling Input Sources

– handleEvent: (page 2825)
Tells the Cocoa text input system to handle mouse or key events.

– discardMarkedText (page 2825)
Tells the Cocoa test input system to discard the current conversion session.

– invalidateCharacterCoordinates (page 2826)
Notifies the Cocoa text input system that the position information previously queried via methods
like firstRectForCharacterRange:actualRange: needs to be updated.

 keyboardInputSources (page 2823) property
The array of keyboard text input source identifier strings available to the receiver. (read-only)

 selectedKeyboardInputSource (page 2823) property
The identifier string for the selected keyboard text input source.

+ localizedNameForInputSource: (page 2824)
Returns the display name for the given text input source identifier.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

acceptsGlyphInfo
A Boolean value that indicates whether the client handles NSGlyphInfoAttributeName or not.

@property BOOL acceptsGlyphInfo;

Discussion
The default value is determined by examining the return value from sending a
validAttributesForMarkedText message to the client at initialization.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextInputContext.h

2822 Properties
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 148

NSTextInputContext Class Reference

allowedInputSourceLocales
The set of keyboard input source locales allowed when this input context is active.

@property(copy) NSArray *allowedInputSourceLocales;

Discussion
NSAllRomanInputSourcesLocaleIdentifier can be specified as a valid locale.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextInputContext.h

client
The owner of this input context. (read-only)

@property(readonly) id <NSTextInputClient> client;

Discussion
The client (owner) of the input context, typically an NSView instance, retains its NSTextInputContext
instance. The NSTextInputContext instance doesn't retain its client.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextInputContext.h

keyboardInputSources
The array of keyboard text input source identifier strings available to the receiver. (read-only)

@property(readonly) NSArray *keyboardInputSources;

Discussion
The Text Input Source Services API identifies text input sources with text input source identifier strings (for
example, com.apple.inputmethod.Kotoeri.Japanese) supplied by the underlying text input sources
framework. The ID corresponds to the kTISPropertyInputSourceID attribute.

For more information on the Text Input Source Services API, see Text Input Source Services Reference.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextInputContext.h

selectedKeyboardInputSource
The identifier string for the selected keyboard text input source.

Properties 2823
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 148

NSTextInputContext Class Reference

@property(copy) NSString *selectedKeyboardInputSource;

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextInputContext.h

Class Methods

currentInputContext
Returns the current, activated, text input context object.

+ (NSTextInputContext *)currentInputContext;

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextInputContext.h

localizedNameForInputSource:
Returns the display name for the given text input source identifier.

+ (NSString *)localizedNameForInputSource:(NSString *)inputSourceIdentifier;

Parameters
inputSourceIdentifier

The text input source identifier.

Return Value
The localized display name for inputSourceIdentifier.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextInputContext.h

Instance Methods

activate
Activates the receiver.

- (void)activate;

2824 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 148

NSTextInputContext Class Reference

Discussion
You should not call this method directly; it is invoked by the system. It is provided as an override point for
subclasses.

Availability
Available in Mac OS X v10.6 and later.

See Also
– deactivate (page 2825)

Declared In
NSTextInputContext.h

deactivate
Deactivates the receiver.

- (void)deactivate;

Discussion
You should not call this method directly; it is invoked by the system. It is provided as an override point for
subclasses.

Availability
Available in Mac OS X v10.6 and later.

See Also
– activate (page 2824)

Declared In
NSTextInputContext.h

discardMarkedText
Tells the Cocoa test input system to discard the current conversion session.

- (void)discardMarkedText;

Discussion
The client should clear its marked range when sending this message.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextInputContext.h

handleEvent:
Tells the Cocoa text input system to handle mouse or key events.

- (BOOL)handleEvent:(NSEvent *)theEvent;

Instance Methods 2825
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 148

NSTextInputContext Class Reference

Parameters
theEvent

The event to handle.

Return Value
YES if the system consumed the event; otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextInputContext.h

initWithClient:
The designated initializer

- (id)initWithClient:(id <NSTextInputClient>)theClient;

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextInputContext.h

invalidateCharacterCoordinates
Notifies the Cocoa text input system that the position information previously queried via methods like
firstRectForCharacterRange:actualRange: needs to be updated.

- (void)invalidateCharacterCoordinates;

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
TextInputView

Declared In
NSTextInputContext.h

Notifications

NSTextInputContextKeyboardSelectionDidChangeNotification
Posted after the selected text input source changes.

Availability
Available in Mac OS X v10.6 and later.

2826 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 148

NSTextInputContext Class Reference

Declared In
NSTextInputContext.h

Notifications 2827
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 148

NSTextInputContext Class Reference

2828 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 148

NSTextInputContext Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSTextList.h

Availability Available in Mac OS X v10.4 and later.

Overview

An NSTextList object represents a section of text that forms a single list. The visible elements of the list,
including list markers, appear in the text as they do for lists created by hand. The list object, however, allows
the list to be recognized as such by the text system. This enables automatic creation of markers and spacing.
Text lists are used in HTML import and export.

Text lists appear as attributes on paragraphs, as part of the paragraph style. An NSParagraphStyle may have
an array of text lists, representing the nested lists containing the paragraph, in order from outermost to
innermost. For example, if list1 contains four paragraphs, the middle two of which are also in the inner list2,
then the text lists array for the first and fourth paragraphs is (list1), while the text lists array for the second
and third paragraphs is (list1, list2).

The methods implementing this are textLists (page 1877) on NSParagraphStyle, and
setTextLists: (page 1726) on NSMutableParagraphStyle.

In addition, NSAttributedString has convenience methods for lists:rangeOfTextList:atIndex: (page
267), which determines the range covered by a list, and itemNumberInTextList:atIndex: (page 265),
which determines the ordinal position within a list of a particular item.

Tasks

Creating a Text List

– initWithMarkerFormat:options: (page 2830)
Returns an initialized text list.

Overview 2829
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 149

NSTextList Class Reference

Working with Markers

– markerFormat (page 2832)
Returns the marker format string used by the receiver.

– markerForItemNumber: (page 2831)
Returns the computed value for a specific ordinal position in the list.

Getting List Options

– listOptions (page 2831)
Returns the list options mask value of the receiver.

Managing Item Numbering

– startingItemNumber (page 2832)
Returns the starting item number for the text list.

– setStartingItemNumber: (page 2832)
Sets the starting item number for the text list.

Instance Methods

initWithMarkerFormat:options:
Returns an initialized text list.

- (id)initWithMarkerFormat:(NSString *)format options:(NSUInteger)mask

Parameters
format

The marker format for the text list.

mask
The marker options for the text list. Values for mask are listed in “Constants” (page 2833).

Return Value
An initialized text list.

Discussion
The marker format is specified as a constant string, except for a numbering specifier, which takes the form
{keyword}. The currently supported values for keyword include:

box

check

circle

diamond

disc

hyphen

2830 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 149

NSTextList Class Reference

square

lower-hexadecimal

upper-hexadecimal

octal

lower-alpha or lower-latin
upper-alpha or upper-latin
lower-roman

upper-roman

decimal

Thus, for example, @"({decimal})" would specify the format for a list numbered (1), (2), (3), and so on,
and @"{upper-roman}" would specify the format for a list numbered I, II, III, IV, and so on. (All of these
keywords are included in the Cascading Style Sheets level 3 specification.)

Availability
Available in Mac OS X v10.4 and later.

See Also
– markerFormat (page 2832)
– listOptions (page 2831)

Declared In
NSTextList.h

listOptions
Returns the list options mask value of the receiver.

- (NSUInteger)listOptions

Return Value
The list options mask value of the receiver.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextList.h

markerForItemNumber:
Returns the computed value for a specific ordinal position in the list.

- (NSString *)markerForItemNumber:(NSInteger)itemNum

Parameters
itemNum

The ordinal position in the list whose computed marker value is desired.

Return Value
The computed maker value for itemNum.

Instance Methods 2831
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 149

NSTextList Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextList.h

markerFormat
Returns the marker format string used by the receiver.

- (NSString *)markerFormat

Return Value
The marker format string used by the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithMarkerFormat:options: (page 2830)

Declared In
NSTextList.h

setStartingItemNumber:
Sets the starting item number for the text list.

- (void)setStartingItemNumber:(NSInteger)itemNum

Parameters
itemNum

The item number.

Discussion
The default value is 1. This value will be used only for ordered lists, and ignored in other cases.

Availability
Available in Mac OS X v10.6 and later.

See Also
– startingItemNumber (page 2832)

Declared In
NSTextList.h

startingItemNumber
Returns the starting item number for the text list.

- (NSInteger)startingItemNumber

2832 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 149

NSTextList Class Reference

Return Value
The item number.

Discussion
The default value is 1. This value will be used only for ordered lists, and ignored in other cases.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setStartingItemNumber: (page 2832)

Declared In
NSTextList.h

Constants

The following constant specifies an option mask used with initWithMarkerFormat:options: (page 2830).

DescriptionConstant

Specifies that a nested list should include the marker for its enclosing
superlist before its own marker.
Available in Mac OS X v10.4 and later.

Declared in NSTextList.h.

NSTextListPrepend-
EnclosingMarker

Constants 2833
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 149

NSTextList Class Reference

2834 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 149

NSTextList Class Reference

Inherits from NSMutableAttributedString : NSAttributedString : NSObject

Conforms to NSCoding (NSAttributedString)
NSCopying (NSAttributedString)
NSMutableCopying (NSAttributedString)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTextStorage.h
AppKit/NSTextStorageScripting.h

Companion guides Text System Overview
Text System Storage Layer Overview
Cocoa Scripting Guide

Related sample code Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112
TextSizingExample

Overview

NSTextStorage is a semiconcrete subclass of NSMutableAttributedString that manages a set of client
NSLayoutManager objects, notifying them of any changes to its characters or attributes so that they can
relay and redisplay the text as needed. NSTextStorage defines the fundamental storage mechanism of the
Application Kit’s extended text-handling system.

NSTextStorage also defines a set of methods, listed under “Getting and setting scriptable properties” in
the Method Types section, useful for getting and setting scriptable properties of NSTextStorage objects.
Unless you are dealing with scriptability, you do not normally need to invoke these methods directly. In
particular, using the characters, words or paragraphs methods or their corresponding setter methods
is an inefficient way to manipulate the text storage, since these methods create and return many objects.
Instead, use the text access methods defined by NSMutableAttributedString, NSAttributedString,
NSMutableString, and NSString to perform character-level manipulation.

Overview 2835
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

Tasks

Managing NSLayoutManager Objects

– addLayoutManager: (page 2837)
Adds a layout manager to the receiver’s set of layout managers.

– removeLayoutManager: (page 2844)
Removes a layout manager from the receiver’s set of layout managers.

– layoutManagers (page 2843)
Returns the receiver’s layout managers.

Handling Text Edited Messages

– edited:range:changeInLength: (page 2839)
Tracks changes made to the receiver, allowing the text storage to record the full extent of changes
made.

– ensureAttributesAreFixedInRange: (page 2841)
Ensures that attributes are fixed in the given range.

– fixesAttributesLazily (page 2842)
Returns whether the receiver fixes attributes lazily.

– invalidateAttributesInRange: (page 2843)
Invalidates attributes in the specified range.

– processEditing (page 2844)
Cleans up changes made to the receiver and notifies its delegate and layout managers of changes.

Determining the Nature of Changes

– editedMask (page 2840)
Returns the kinds of edits pending for the receiver

Determining the Extent of Changes

– editedRange (page 2841)
Returns the range of the receiver to which pending changes have been made, whether of characters
or of attributes.

– changeInLength (page 2838)
Returns the difference between the current length of the edited range and its length before editing
began.

2836 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

Setting the Delegate

– setDelegate: (page 2845)
Sets the receiver’s delegate.

– delegate (page 2839)
Returns the receiver’s delegate.

Getting and Setting Scriptable Properties

– attributeRuns (page 2838)
Returns an array of the receiver’s attribute runs.

– setAttributeRuns: (page 2845)
Sets the receiver’s attribute runs.

– characters (page 2839)
Returns the receiver’s text as an array of characters.

– setCharacters: (page 2845)
Sets the text storage's text.

– font (page 2842)
Returns the receiver’s font.

– setFont: (page 2846)
Sets the text storage's font.

– foregroundColor (page 2842)
Returns the text storage's foreground color.

– setForegroundColor: (page 2846)
Sets the text storage's foreground color.

– paragraphs (page 2843)
Returns an array of the text storage's paragraphs.

– setParagraphs: (page 2846)
Sets the text storage's paragraphs.

– words (page 2847)
Returns an array of the text storage's words.

– setWords: (page 2847)
Sets the text storage's words.

Instance Methods

addLayoutManager:
Adds a layout manager to the receiver’s set of layout managers.

- (void)addLayoutManager:(NSLayoutManager *)aLayoutManager

Instance Methods 2837
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

Parameters
aLayoutManager

The layout manager to add.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeLayoutManager: (page 2844)
– layoutManagers (page 2843)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112
TextViewConfig

Declared In
NSTextStorage.h

attributeRuns
Returns an array of the receiver’s attribute runs.

- (NSArray *)attributeRuns

Return Value
An array of the receiver’s attribute runs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorageScripting.h

changeInLength
Returns the difference between the current length of the edited range and its length before editing began.

- (NSInteger)changeInLength

Return Value
The difference between the current length of the edited range and its length before editing began. That is,
before the receiver was sent the first beginEditing message or a single
edited:range:changeInLength: (page 2839) message.

Discussion
This difference is accumulated with each invocation of edited:range:changeInLength: (page 2839), until
a final message processes the changes.

The receiver’s delegate and layout managers can use this information to determine the nature of edits in
their respective notification methods.

2838 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– editedRange (page 2841)
– editedMask (page 2840)

Declared In
NSTextStorage.h

characters
Returns the receiver’s text as an array of characters.

- (NSArray *)characters

Special Considerations

Do not use this method unless you are dealing directly with scriptability. For indexed access to characters,
use NSAttributedString’s length method to access the string, and NSString’s characterAtIndex:
method to access the individual characters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorageScripting.h

delegate
Returns the receiver’s delegate.

- (id)delegate

Return Value
The receiver's delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 2845)

Declared In
NSTextStorage.h

edited:range:changeInLength:
Tracks changes made to the receiver, allowing the text storage to record the full extent of changes made.

- (void)edited:(NSUInteger)mask range:(NSRange)oldRange
changeInLength:(NSInteger)lengthChange

Instance Methods 2839
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

Parameters
mask

A mask specifying the nature of the changes. The value is made by combining with the C bitwise OR
operator the options described in “Change notifications” (page 2847).

oldRange
The extent of characters affected before the change took place.

lengthChange
The number of characters added to or removed from oldRange. If no characters where edited as
noted by mask, its value is irrelevant and undefined. For example, when replacing “The” with “Several”
in the string “The files couldn’t be saved”, oldRange is {0, 3} and lengthChange is 4.

Discussion
This method invokes processEditing (page 2844). NSTextStorage invokes this method automatically each
time it makes a change to its attributed string. Subclasses that override or add methods that alter their
attributed strings directly should invoke this method after making those changes; otherwise you should not
invoke this method. The information accumulated with this method is then used in an invocation of
processEditing (page 2844) to report the affected portion of the receiver.

The methods for querying changes,editedRange (page 2841) andchangeInLength (page 2838), indicate the
extent of characters affected after the change. This method expects the characters before the change because
that information is readily available as the argument to whatever method performs the change (such as
replaceCharactersInRange:withString:).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ClipboardViewer

Declared In
NSTextStorage.h

editedMask
Returns the kinds of edits pending for the receiver

- (NSUInteger)editedMask

Return Value
A mask describing the kinds of edits pending for the receiver.

Discussion
Use the C bitwise AND operator to test the mask; testing for equality will fail if additional mask flags are
added later. The receiver’s delegate and layout managers can use this information to determine the nature
of edits in their respective notification methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
– editedRange (page 2841)
– changeInLength (page 2838)

2840 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

Declared In
NSTextStorage.h

editedRange
Returns the range of the receiver to which pending changes have been made, whether of characters or of
attributes.

- (NSRange)editedRange

Return Value
The range of the receiver to which pending changes have been made, whether of characters or of attributes.

Discussion
The receiver’s delegate and layout managers can use this information to determine the nature of edits in
their respective notification methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
– changeInLength (page 2838)
– editedMask (page 2840)

Declared In
NSTextStorage.h

ensureAttributesAreFixedInRange:
Ensures that attributes are fixed in the given range.

- (void)ensureAttributesAreFixedInRange:(NSRange)range

Parameters
range

The range of characters whose attributes might be examined.

Discussion
An NSTextStorage object using lazy attribute fixing is required to call this method before accessing any
attributes within range. This method gives attribute fixing a chance to occur if necessary. NSTextStorage
subclasses wishing to support laziness must call this method from all attribute accessors they implement.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fixesAttributesLazily (page 2842)
– invalidateAttributesInRange: (page 2843)

Declared In
NSTextStorage.h

Instance Methods 2841
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

fixesAttributesLazily
Returns whether the receiver fixes attributes lazily.

- (BOOL)fixesAttributesLazily

Return Value
YES if the text storage fixes attributes lazily, NO otherwise.

Discussion
By default, custom NSTextStorage subclasses are not lazy, but the provided concrete subclass is lazy by
default.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorage.h

font
Returns the receiver’s font.

- (NSFont *)font

Return Value
The receiver's font.

Discussion
In Mac OS X v10.5 and later, if the font has not been set, this method and font-related scripting commands
assume Helvetica 12.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorageScripting.h

foregroundColor
Returns the text storage's foreground color.

- (NSColor *)foregroundColor

Return Value
The text storage's foreground color.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorageScripting.h

2842 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

invalidateAttributesInRange:
Invalidates attributes in the specified range.

- (void)invalidateAttributesInRange:(NSRange)range

Parameters
range

The range of characters whose attributes should be invalidated.

Discussion
Called fromprocessEditing (page 2844) to invalidate attributes when the text storage changes. If the receiver
is not lazy, this method simply calls fixAttributesInRange: (page 1709). If lazy attribute fixing is in effect,
this method instead records the range needing fixing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– ensureAttributesAreFixedInRange: (page 2841)
– fixesAttributesLazily (page 2842)

Declared In
NSTextStorage.h

layoutManagers
Returns the receiver’s layout managers.

- (NSArray *)layoutManagers

Return Value
The receiver's layout managers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addLayoutManager: (page 2837)
– removeLayoutManager: (page 2844)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextStorage.h

paragraphs
Returns an array of the text storage's paragraphs.

- (NSArray *)paragraphs

Instance Methods 2843
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

Return Value
An array of the text storage's paragraphs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorageScripting.h

processEditing
Cleans up changes made to the receiver and notifies its delegate and layout managers of changes.

- (void)processEditing

Discussion
This method is automatically invoked in response to an edited:range:changeInLength: (page 2839)
message. You should never need to invoke it directly.

This method begins by posting an NSTextStorageWillProcessEditingNotification (page 2848) to the
default notification center (which results in the delegate receiving a textStorageWillProcessEditing:
message). After this, it posts an NSTextStorageDidProcessEditingNotification (page 2848) to the
default notification center (which results in the delegate receiving a textStorageDidProcessEditing:
message). Finally, it sends a textStorage:edited:range:changeInLength:invalidatedRange: (page
1521) message to each of the receiver’s layout managers using the argument values provided.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorage.h

removeLayoutManager:
Removes a layout manager from the receiver’s set of layout managers.

- (void)removeLayoutManager:(NSLayoutManager *)aLayoutManager

Parameters
aLayoutManager

The layout manager to remove.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addLayoutManager: (page 2837)
– layoutManagers (page 2843)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility

2844 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

Sketch-112

Declared In
NSTextStorage.h

setAttributeRuns:
Sets the receiver’s attribute runs.

- (void)setAttributeRuns:(NSArray *)attributeRuns

Parameters
attributeRuns

The array of attribute runs to set.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorageScripting.h

setCharacters:
Sets the text storage's text.

- (void)setCharacters:(NSArray *)characters

Parameters
characters

The characters to set as the text of the text storage.

Special Considerations

Do not use this method if you are not dealing directly with scriptability. Use NSMutableAttributedString’s
mutableStringmethod to return a string object that will be tracked by the corresponding attributed string
for modifications.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorageScripting.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id)anObject

Parameters
anObject

The new delegate.

Instance Methods 2845
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 2839)

Declared In
NSTextStorage.h

setFont:
Sets the text storage's font.

- (void)setFont:(NSFont *)font

Parameters
font

The new font.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSTextStorageScripting.h

setForegroundColor:
Sets the text storage's foreground color.

- (void)setForegroundColor:(NSColor *)color

Parameters
color

The new foreground color.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorageScripting.h

setParagraphs:
Sets the text storage's paragraphs.

- (void)setParagraphs:(NSArray *)paragraphs

2846 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

Parameters
paragraphs

An array of strings to set as the text storage's paragraphs.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorageScripting.h

setWords:
Sets the text storage's words.

- (void)setWords:(NSArray *)words

Parameters
words

An array of strings to set as the text storage's words.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorageScripting.h

words
Returns an array of the text storage's words.

- (NSArray *)words

Return Value
An array of the text storage's words.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorageScripting.h

Constants

Change notifications
These constants are used in edited:range:changeInLength: (page 2839).

Constants 2847
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

enum {
 NSTextStorageEditedAttributes = 1,
 NSTextStorageEditedCharacters = 2
};

Constants
NSTextStorageEditedAttributes

Attributes were added, removed, or changed.

Available in Mac OS X v10.0 and later.

Declared in NSTextStorage.h.

NSTextStorageEditedCharacters
Characters were added, removed, or replaced.

Available in Mac OS X v10.0 and later.

Declared in NSTextStorage.h.

Discussion
These values are also OR'ed together in notifications to inform instances of NSLayoutManager was
changed—see textStorage:edited:range:changeInLength:invalidatedRange: (page 1521).

Declared In
NSTextStorage.h

Notifications

NSTextStorageDidProcessEditingNotification
Posted after a text storage finishes processing edits in processEditing (page 2844).

Observers other than the delegate shouldn’t make further changes to the text storage. The notification object
is the text storage object that processed the edits. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorage.h

NSTextStorageWillProcessEditingNotification
Posted before a text storage finishes processing edits in processEditing (page 2844).

Observers other than the delegate shouldn’t make further changes to the text storage. The notification object
is the text storage object that is about to process the edits. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextStorage.h

2848 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 150

NSTextStorage Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSParagraphStyle.h

Companion guide Text System Overview

Related sample code Quartz Composer WWDC 2005 TextEdit

Overview

An NSTextTab object represents a tab in an NSParagraphStyle object, storing an alignment type and
location. NSTextTab objects are most frequently used with the Application Kit’s text system and with
NSRulerView and NSRulerMarker objects. See the appropriate class specifications for more information on
these uses.

The text system supports four alignment types: left, center, right, and decimal (based on the decimal separator
character of the locale in effect). These alignment types are absolute, not based on the line sweep direction
of text. For example, tabbed text is always positioned to the left of a right-aligned tab, whether the line sweep
direction is left to right or right to left. A tab’s location, on the other hand, is relative to the back margin. A
tab set at 1.5”, for example, is at 1.5” from the right in right to left text.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

NSCopying
– copyWithZone:

Overview 2849
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 151

NSTextTab Class Reference

Tasks

Creating an NSTextTab

– initWithType:location: (page 2851)
Initializes a newly allocated NSTextTab with an alignment of type at location on the paragraph.

– initWithTextAlignment:location:options: (page 2850)
Initializes a text tab with the text alignment, location, and options.

Getting Tab Stop Information

– location (page 2851)
Returns the receiver’s ruler location relative to the back margin.

– tabStopType (page 2852)
Returns the receiver’s tab stop type.

Getting Text Tab Information

– alignment (page 2850)
Returns the text alignment of the receiver.

– options (page 2851)
Returns the dictionary of attributes associated with the receiver.

Instance Methods

alignment
Returns the text alignment of the receiver.

- (NSTextAlignment)alignment

Return Value
The text alignment of the receiver as an NSTextAlignment (page 2747) constant

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSParagraphStyle.h

initWithTextAlignment:location:options:
Initializes a text tab with the text alignment, location, and options.

2850 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 151

NSTextTab Class Reference

- (id)initWithTextAlignment:(NSTextAlignment)alignment location:(CGFloat)loc
options:(NSDictionary *)options

Discussion
The text alignment is used to determine the position of text inside the tab column. See NSTextTabType (page
2852) for a mapping between alignments and tab stop types

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSParagraphStyle.h

initWithType:location:
Initializes a newly allocated NSTextTab with an alignment of type at location on the paragraph.

- (id)initWithType:(NSTextTabType)type location:(CGFloat)location

Discussion
The location is relative to the back margin, based on the line sweep direction of the paragraph. type can be
any of the values described in NSTextTabType (page 2852).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSParagraphStyle.h

location
Returns the receiver’s ruler location relative to the back margin.

- (CGFloat)location

Return Value
The receiver’s ruler location relative to the back margin.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSParagraphStyle.h

options
Returns the dictionary of attributes associated with the receiver.

- (NSDictionary *)options

Instance Methods 2851
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 151

NSTextTab Class Reference

Return Value
The dictionary of attributes associated with the receiver.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSParagraphStyle.h

tabStopType
Returns the receiver’s tab stop type.

- (NSTextTabType)tabStopType

Return Value
The receiver’s tab stop type. Possible values are listed in NSTextTabType (page 2852).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSParagraphStyle.h

Constants

NSTextTabType
These constants describe the various type of tab stop.

typedef enum _NSTextTabType {
 NSLeftTabStopType = 0,
 NSRightTabStopType,
 NSCenterTabStopType,
 NSDecimalTabStopType
} NSTextTabType;

Constants
NSLeftTabStopType

A left-aligned tab stop.

Available in Mac OS X v10.0 and later.

Declared in NSParagraphStyle.h.

NSRightTabStopType
A right-aligned tab stop.

Available in Mac OS X v10.0 and later.

Declared in NSParagraphStyle.h.

2852 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 151

NSTextTab Class Reference

NSCenterTabStopType
A center-aligned tab stop.

Available in Mac OS X v10.0 and later.

Declared in NSParagraphStyle.h.

NSDecimalTabStopType
Aligns columns of numbers by the decimal point.

Available in Mac OS X v10.0 and later.

Declared in NSParagraphStyle.h.

Discussion
The following mappings define the conversions between text alignment in NSTextTab and tab stop types
defined by NSTextTab:

Tab Stop TypeAlignment

NSLeftTabStopTypeNSLeftTextAlignment

NSRightTabStopTypeNSRightTextAlignment

NSCenterTabStopTypeNSCenterTextAlignment

NSLeftTabStopTypeNSJustifiedTextAlignment

NSLeftTabStopType or NSRightTabStopType, depending
on the user setting

NSNaturalTextAlignment

NSDecimalTabStopTypeNSRightTextAlignment with terminator

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSParagraphStyle.h

Terminating character
This constant specifies the terminating character for a tab column.

NSString *NSTabColumnTerminatorsAttributeName;

Constants
NSTabColumnTerminatorsAttributeName

The value is an NSCharacterSet object.

The character set is used to determine the terminating character for a tab column. The tab and newline
characters are implied even if they don’t exist in the character set. This attribute is optional.

Available in Mac OS X v10.3 and later.

Declared in NSParagraphStyle.h.

Declared In
NSParagraphStyle.h

Constants 2853
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 151

NSTextTab Class Reference

2854 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 151

NSTextTab Class Reference

Inherits from NSTextBlock : NSObject

Conforms to NSCoding (NSTextBlock)
NSCopying (NSTextBlock)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSTextTable.h

Availability Available in Mac OS X v10.4 and later.

Companion guides Text System Overview
Text Layout Programming Guide

Related sample code iSpend

Overview

An NSTextTable object represents a text table as a whole. It is responsible for laying out and drawing the
text table blocks it contains, and it maintains the basic parameters of the table.

Tasks

Getting and Setting Number of Columns

– numberOfColumns (page 2859)
Returns the number of columns in the text table.

– setNumberOfColumns: (page 2861)
Sets the number of columns in the text table.

Getting and Setting Layout Algorithm

– layoutAlgorithm (page 2858)
Returns the text table layout algorithm.

Overview 2855
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 152

NSTextTable Class Reference

– setLayoutAlgorithm: (page 2861)
Sets the text table layout algorithm.

Collapsing Borders

– collapsesBorders (page 2857)
Returns whether the text table borders are collapsible.

– setCollapsesBorders: (page 2860)
Sets whether the text table borders are collapsible.

Hiding Empty Cells

– hidesEmptyCells (page 2858)
Returns whether the text table hides empty cells.

– setHidesEmptyCells: (page 2860)
Sets whether the text table hides empty cells.

Determining Layout Rectangles

– rectForBlock:layoutAtPoint:inRect:textContainer:characterRange: (page 2859)
Returns the rectangle within which glyphs should be laid out for a text table block.

– boundsRectForBlock:contentRect:inRect:textContainer:characterRange: (page 2856)
Returns the rectangle the text table block actually occupies, including padding, borders, and margins.

Drawing the Table

– drawBackgroundForBlock:withFrame:inView:characterRange:layoutManager: (page 2857)
Draws any colors and other decorations for a text table block.

Instance Methods

boundsRectForBlock:contentRect:inRect:textContainer:characterRange:
Returns the rectangle the text table block actually occupies, including padding, borders, and margins.

- (NSRect)boundsRectForBlock:(NSTextTableBlock *)block
contentRect:(NSRect)contentRect inRect:(NSRect)rect
textContainer:(NSTextContainer *)textContainer characterRange:(NSRange)charRange

Parameters
block

The text table block that wants to determine where to layout its glyphs.

2856 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 152

NSTextTable Class Reference

contentRect
The actual rectangle in which the text was laid out, as determined by
rectForLayoutAtPoint:inRect:textContainer:characterRange: (page 2768).

rect
The initial rectangle in textContainer proposed by the typesetter.

textContainer
The text container being used for the layout.

charRange
The range of the characters whose glyphs are to be drawn.

Return Value
The rectangle the text table block actually occupies, including padding, borders, and margins.

Discussion
This method is called by the text table block block after it is laid out to determine the rectangle the text
table block actually occupies, including padding, borders, and margins.

Availability
Available in Mac OS X v10.4 and later.

See Also
– rectForBlock:layoutAtPoint:inRect:textContainer:characterRange: (page 2859)

Declared In
NSTextTable.h

collapsesBorders
Returns whether the text table borders are collapsible.

- (BOOL)collapsesBorders

Return Value
YES if the text table borders are collapsible, NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCollapsesBorders: (page 2860)

Declared In
NSTextTable.h

drawBackgroundForBlock:withFrame:inView:characterRange:layoutManager:
Draws any colors and other decorations for a text table block.

- (void)drawBackgroundForBlock:(NSTextTableBlock *)block withFrame:(NSRect)frameRect
inView:(NSView *)controlView characterRange:(NSRange)charRange
layoutManager:(NSLayoutManager *)layoutManager

Instance Methods 2857
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 152

NSTextTable Class Reference

Parameters
block

The text table block that wants to draw its background.

frameRect
The area in which drawing occurs.

controlView
The view controlling the drawing.

charRange
The range of the characters whose glyphs are to be drawn.

layoutManager
The layout manager controlling the typesetting.

Discussion
This methods is called by the text table block block to draw any colors and other decorations before the
text is drawn.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextTable.h

hidesEmptyCells
Returns whether the text table hides empty cells.

- (BOOL)hidesEmptyCells

Return Value
YES if the text table hides empty cells, NO otherwise.

Discussion
If empty cells are hidden, locations with empty cells allow the background of the enclosing block or text
container to show through.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setHidesEmptyCells: (page 2860)

Declared In
NSTextTable.h

layoutAlgorithm
Returns the text table layout algorithm.

- (NSTextTableLayoutAlgorithm)layoutAlgorithm

Return Value
The text table layout algorithm.

2858 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 152

NSTextTable Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLayoutAlgorithm: (page 2861)

Declared In
NSTextTable.h

numberOfColumns
Returns the number of columns in the text table.

- (NSUInteger)numberOfColumns

Return Value
The number of columns in the text table.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setNumberOfColumns: (page 2861)

Declared In
NSTextTable.h

rectForBlock:layoutAtPoint:inRect:textContainer:characterRange:
Returns the rectangle within which glyphs should be laid out for a text table block.

- (NSRect)rectForBlock:(NSTextTableBlock *)block layoutAtPoint:(NSPoint)startingPoint
inRect:(NSRect)rect textContainer:(NSTextContainer *)textContainer
characterRange:(NSRange)charRange

Parameters
block

The text table block that wants to determine where to layout its glyphs.

startingPoint
The location, in container coordinates, where layout begins.

rect
The rectangle in which the block is constrained to lie. For top-level blocks, this is the container rectangle
of textContainer; for nested blocks, this is the layout rectangle of the enclosing block.

textContainer
The text container being used for the layout.

charRange
The range of the characters whose glyphs are to be drawn.

Return Value
The rectangle within which glyphs should be laid out.

Instance Methods 2859
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 152

NSTextTable Class Reference

Discussion
This method is called by the text table block block to determine the rectangle within which glyphs should
be laid out for the text table block.

Availability
Available in Mac OS X v10.4 and later.

See Also
– boundsRectForBlock:contentRect:inRect:textContainer:characterRange: (page 2856)

Declared In
NSTextTable.h

setCollapsesBorders:
Sets whether the text table borders are collapsible.

- (void)setCollapsesBorders:(BOOL)flag

Parameters
flag

YES if the text table borders should be collapsible, NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– collapsesBorders (page 2857)

Related Sample Code
iSpend

Declared In
NSTextTable.h

setHidesEmptyCells:
Sets whether the text table hides empty cells.

- (void)setHidesEmptyCells:(BOOL)flag

Parameters
flag

YES if the text table should hide empty cells, NO otherwise.

Discussion
If empty cells are hidden, locations with empty cells allow the background of the enclosing block or text
container to show through.

Availability
Available in Mac OS X v10.4 and later.

See Also
– hidesEmptyCells (page 2858)

2860 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 152

NSTextTable Class Reference

Related Sample Code
iSpend

Declared In
NSTextTable.h

setLayoutAlgorithm:
Sets the text table layout algorithm.

- (void)setLayoutAlgorithm:(NSTextTableLayoutAlgorithm)algorithm

Parameters
algorithm

The new layout algorithm.

Availability
Available in Mac OS X v10.4 and later.

See Also
– layoutAlgorithm (page 2858)

Related Sample Code
iSpend

Declared In
NSTextTable.h

setNumberOfColumns:
Sets the number of columns in the text table.

- (void)setNumberOfColumns:(NSUInteger)numCols

Parameters
numCols

The new number of columns.

Availability
Available in Mac OS X v10.4 and later.

See Also
– numberOfColumns (page 2859)

Related Sample Code
iSpend

Declared In
NSTextTable.h

Instance Methods 2861
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 152

NSTextTable Class Reference

Constants

NSTextTableLayoutAlgorithm
These constants, specifying the type of text table layout algorithm, are used with
setLayoutAlgorithm: (page 2861).

enum {
 NSTextTableAutomaticLayoutAlgorithm = 0,
 NSTextTableFixedLayoutAlgorithm = 1
};
typedef NSUInteger NSTextTableLayoutAlgorithm;

Constants
NSTextTableAutomaticLayoutAlgorithm

Specifies automatic layout algorithm

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

NSTextTableFixedLayoutAlgorithm
Specifies fixed layout algorithm

Available in Mac OS X v10.4 and later.

Declared in NSTextTable.h.

Declared In
NSTextTable.h

2862 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 152

NSTextTable Class Reference

Inherits from NSTextBlock : NSObject

Conforms to NSCoding (NSTextBlock)
NSCopying (NSTextBlock)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSTextTable.h

Availability Available in Mac OS X v10.4 and later.

Companion guides Text System Overview
Text Layout Programming Guide

Related sample code iSpend

Overview

An NSTextTableBlock object represents a text block that appears as a cell in a text table.

Tasks

Creation

– initWithTable:startingRow:rowSpan:startingColumn:columnSpan: (page 2864)
Returns an initialized text table block.

Getting the Block’s Enclosing Table

– table (page 2866)
Returns the table containing this text table block.

Overview 2863
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 153

NSTextTableBlock Class Reference

Getting Information About the Block’s Position in Its Enclosing Table

– startingRow (page 2865)
Returns the table row at which this text table block starts.

– rowSpan (page 2865)
Returns the number of table rows spanned by this text table block.

– startingColumn (page 2865)
Returns the table column at which this text table block starts.

– columnSpan (page 2864)
Returns the number of table columns spanned by this text table block.

Instance Methods

columnSpan
Returns the number of table columns spanned by this text table block.

- (NSInteger)columnSpan

Return Value
The number of table columns spanned by this text table block.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextTable.h

initWithTable:startingRow:rowSpan:startingColumn:columnSpan:
Returns an initialized text table block.

- (id)initWithTable:(NSTextTable *)table startingRow:(NSInteger)row
rowSpan:(NSInteger)rowSpan startingColumn:(NSInteger)col
columnSpan:(NSInteger)colSpan

Parameters
table

The text table containing this text table block.

row
The table row at which the text table block starts.

rowSpan
How many rows the text table block covers.

col
The table column at which the text table block starts.

colSpan
How many columns the text table block covers.

2864 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 153

NSTextTableBlock Class Reference

Discussion
This is the designated initializer.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
iSpend

Declared In
NSTextTable.h

rowSpan
Returns the number of table rows spanned by this text table block.

- (NSInteger)rowSpan

Return Value
The number of table rows spanned by this text table block.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextTable.h

startingColumn
Returns the table column at which this text table block starts.

- (NSInteger)startingColumn

Return Value
The table column at which this text table block starts.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextTable.h

startingRow
Returns the table row at which this text table block starts.

- (NSInteger)startingRow

Return Value
The table row at which this text table block starts.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 2865
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 153

NSTextTableBlock Class Reference

Declared In
NSTextTable.h

table
Returns the table containing this text table block.

- (NSTextTable *)table

Return Value
The table containing this text table block.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
iSpend

Declared In
NSTextTable.h

2866 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 153

NSTextTableBlock Class Reference

Inherits from NSText : NSView : NSResponder : NSObject

Conforms to NSTextInput
NSUserInterfaceValidations
NSTextInputClient
NSChangeSpelling (NSText)
NSIgnoreMisspelledWords (NSText)
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTextView.h

Companion guides Text System Overview
Text System User Interface Layer Programming Guide

Related sample code Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextSizingExample
TipWrapper
XMLBrowser

Overview

NSTextView is the front-end class to the Application Kit’s text system. It draws the text managed by the
back-end components and handles user events to select and modify its text. NSTextView is the principal
means to obtain a text object that caters to almost all needs for displaying and managing text at the user
interface level. While NSTextView is a subclass of NSText—which declares the most general Cocoa interface
to the text system—NSTextView adds major features beyond the capabilities of NSText.

About Delegate Methods

NSTextView communicates with its delegate through methods declared both by the NSTextViewDelegate
Protocol protocol and by its superclass’s protocol, NSTextDelegate Protocol. Note that all delegation
messages come from the first text view.

Overview 2867
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Tasks

Initializing

– initWithFrame:textContainer: (page 2896)
Initializes a text view.

– initWithFrame: (page 2895)
Initializes a text view.

Registering Services Information

+ registerForServices (page 2879)
Registers send and return types for the Services facility.

Accessing Text System Objects

– setTextContainer: (page 2945)
Sets the receiver’s text container.

– replaceTextContainer: (page 2916)
Replaces the text container for the group of text system objects containing the receiver, keeping the
association between the receiver and its layout manager intact.

– textContainer (page 2955)
Returns the receiver’s text container.

– setTextContainerInset: (page 2946)
Sets the empty space the receiver leaves around its associated text container.

– textContainerInset (page 2956)
Returns the empty space the receiver leaves around its text container.

– textContainerOrigin (page 2956)
Returns the origin of the receiver’s text container.

– invalidateTextContainerOrigin (page 2898)
Invalidates the calculated origin of the text container.

– layoutManager (page 2904)
Returns the layout manager that lays out text for the receiver’s text container.

– textStorage (page 2957)
Returns the receiver’s text storage object.

Setting Graphics Attributes

– setBackgroundColor: (page 2930)
Sets the receiver’s background color.

– backgroundColor (page 2882)
Returns the receiver’s background color.

2868 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– setDrawsBackground: (page 2934)
Sets whether the receiver draws its background.

– drawsBackground (page 2893)
Returns whether the receiver draws its background

– setAllowsDocumentBackgroundColorChange: (page 2926)
Sets whether the receiver allows its background color to change.

– allowsDocumentBackgroundColorChange (page 2881)
Returns whether the receiver allows its background color to change.

– changeDocumentBackgroundColor: (page 2884)
An action method used to set the background color.

Controlling Display

– setNeedsDisplayInRect:avoidAdditionalLayout: (page 2938)
Marks the receiver as requiring display.

– shouldDrawInsertionPoint (page 2950)
Returns whether the receiver should draw its insertion point.

– drawInsertionPointInRect:color:turnedOn: (page 2892)
Draws or erases the insertion point.

– drawViewBackgroundInRect: (page 2893)
Draws the background of the text view.

– setConstrainedFrameSize: (page 2931)
Attempts to set the frame size as if by user action.

– cleanUpAfterDragOperation (page 2887)
Releases the drag information still existing after the dragging session has completed.

– showFindIndicatorForRange: (page 2951)
Causes a temporary highlighting effect to appear around the visible portion (or portions) of the
specified range.

Inserting Text

– insertText: (page 2898)
Inserts aString into the receiver’s text at the insertion point if there is one, otherwise replacing the
selection.

– allowedInputSourceLocales (page 2881)
Returns an array of locale identifiers representing input sources that are allowed to be enabled when
the receiver has the keyboard focus.

– setAllowedInputSourceLocales: (page 2926)
Sets an array of locale identifiers representing input sources that are allowed to be enabled when the
receiver has the keyboard focus.

Tasks 2869
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Setting Behavioral Attributes

– allowsUndo (page 2882)
Returns whether the receiver allows undo.

– setAllowsUndo: (page 2927)
Sets whether undo support is enabled.

– setEditable: (page 2934)
Controls whether the text views sharing the receiver’s layout manager allow the user to edit text.

– isEditable (page 2902)
Returns whether the text views sharing the receiver’s layout manager allow the user to edit text.

– setSelectable: (page 2940)
Controls whether the text views sharing the receiver’s layout manager allow the user to select text.

– isSelectable (page 2904)
Returns whether the text views sharing the receiver’s layout manager allow the user to select text.

– setFieldEditor: (page 2935)
Controls whether the text views sharing the receiver’s layout manager behave as field editors.

– isFieldEditor (page 2902)
Returns whether the text views sharing the receiver’s layout manager behave as field editors.

– setRichText: (page 2939)
Controls whether the text views sharing the receiver’s layout manager allow the user to apply attributes
to specific ranges of text.

– isRichText (page 2903)
Returns whether the text views sharing the receiver’s layout manager allow the user to apply attributes
to specific ranges of text.

– setImportsGraphics: (page 2936)
Controls whether the text views sharing the receiver’s layout manager allow the user to import files
by dragging.

– importsGraphics (page 2895)
Returns whether the text views sharing the receiver’s layout manager allow the user to import files
by dragging.

– setBaseWritingDirection:range: (page 2931)
Sets the base writing direction of a range of text.

– setDefaultParagraphStyle: (page 2932)
Sets the receiver’s default paragraph style.

– defaultParagraphStyle (page 2889)
Returns the receiver’s default paragraph style.

– outline: (page 2908)
Adds the outline attribute to the selected text attributes if absent; removes the attribute if present.

– allowsImageEditing (page 2881)
Indicates whether image attachments should permit editing of their images.

– setAllowsImageEditing: (page 2927)
Specifies whether image attachments should permit editing of their images.

– setAutomaticQuoteSubstitutionEnabled: (page 2929)
Enables and disables automatic quotation mark substitution.

2870 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– isAutomaticQuoteSubstitutionEnabled (page 2900)
Indicates whether automatic quotation mark substitution is enabled.

– toggleAutomaticQuoteSubstitution: (page 2959)
Changes the state of automatic quotation mark substitution from enabled to disabled and vice versa.

– setAutomaticLinkDetectionEnabled: (page 2929)
Enables or disables automatic link detection.

– isAutomaticLinkDetectionEnabled (page 2899)
Indicates whether automatic link detection is enabled.

– toggleAutomaticLinkDetection: (page 2958)
Changes the state of automatic link detection from enabled to disabled and vice versa.

– displaysLinkToolTips (page 2890)
Indicates whether the text view automatically supplies the destination of a link as a tooltip for text
that has a link attribute.

– setDisplaysLinkToolTips: (page 2933)
Enables or disables automatic display of link tooltips.

– toggleBaseWritingDirection: (page 2960) Deprecated in Mac OS X v10.6
Changes the base writing direction of a paragraph between left-to-right and right-to-left.

Using the Ruler

– setUsesRuler: (page 2948)
Controls whether the text views sharing the receiver’s layout manager use a ruler.

– usesRuler (page 2966)
Returns whether the text views sharing the receiver’s layout manager use a ruler.

– setRulerVisible: (page 2939)
Controls whether the scroll view enclosing text views sharing the receiver’s layout manager displays
the ruler.

– isRulerVisible (page 2904)
Returns whether the scroll view enclosing the text views sharing the receiver’s layout manager shows
its ruler.

Managing the Selection

– selectedRanges (page 2923)
Returns an array containing the ranges of characters selected in the receiver’s layout manager.

– setSelectedRange: (page 2940)
Sets the selection to the characters in a single range.

– setSelectedRanges: (page 2942)
Sets the selection to the characters in an array of ranges.

– setSelectedRange:affinity:stillSelecting: (page 2941)
Sets the selection to a range of characters in response to user action.

– setSelectedRanges:affinity:stillSelecting: (page 2943)
Sets the selection to the characters in an array of ranges in response to user action.

Tasks 2871
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– selectionAffinity (page 2923)
Returns the preferred direction of selection.

– setSelectionGranularity: (page 2944)
Sets the selection granularity for subsequent extension of a selection.

– selectionGranularity (page 2924)
Returns the current selection granularity, used during mouse tracking to modify the range of the
selection.

– setInsertionPointColor: (page 2937)
Sets the color of the insertion point

– insertionPointColor (page 2897)
Returns the color used to draw the insertion point.

– updateInsertionPointStateAndRestartTimer: (page 2964)
Updates the insertion point’s location and optionally restarts the blinking cursor timer.

– setSelectedTextAttributes: (page 2943)
Sets the attributes used to indicate the selection.

– selectedTextAttributes (page 2923)
Returns the attributes used to indicate the selection.

– setMarkedTextAttributes: (page 2938)
Sets the attributes used to draw marked text.

– markedTextAttributes (page 2906)
Returns the attributes used to draw marked text.

– setLinkTextAttributes: (page 2937)
Sets the attributes used to draw the onscreen presentation of link text.

– linkTextAttributes (page 2905)
Returns the attributes used to draw the onscreen presentation of link text.

– characterIndexForInsertionAtPoint: (page 2885)
Returns a character index appropriate for placing a zero-length selection for an insertion point
associated with the mouse at the given point.

Managing the Pasteboard

– preferredPasteboardTypeFromArray:restrictedToTypesFromArray: (page 2910)
Returns whatever type on the pasteboard would be most preferred for copying data.

– readSelectionFromPasteboard: (page 2915)
Reads the text view’s preferred type of data from the specified pasteboard.

– readSelectionFromPasteboard:type: (page 2916)
Reads data of the given type from the specified pasteboard.

– readablePasteboardTypes (page 2915)
Returns the types this text view can read immediately from the pasteboard.

– writablePasteboardTypes (page 2968)
Returns the pasteboard types that can be provided from the current selection.

– writeSelectionToPasteboard:type: (page 2968)
Writes the current selection to the specified pasteboard using the given type.

2872 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– writeSelectionToPasteboard:types: (page 2969)
Writes the current selection to the specified pasteboard under each given type.

– validRequestorForSendType:returnType: (page 2967)
Returns self if the text view can provide and accept the specified data types, or nil if it can't.

Setting Text Attributes

– alignJustified: (page 2880)
Applies full justification to selected paragraphs (or all text, if the receiver is a plain text object).

– changeAttributes: (page 2883)
Changes the attributes of the current selection.

– changeColor: (page 2884)
Sets the color of the selected text.

– setAlignment:range: (page 2925)
Sets the alignment of the paragraphs containing characters in the specified range.

– setTypingAttributes: (page 2947)
Sets the receiver’s typing attributes.

– typingAttributes (page 2963)
Returns the current typing attributes.

– useStandardKerning: (page 2966)
Set the receiver to use pair kerning data for the glyphs in its selection, or for all glyphs if the receiver
is a plain text view.

– lowerBaseline: (page 2906)
Lowers the baseline offset of selected text by 1 point, or of all text if the receiver is a plain text view.

– raiseBaseline: (page 2911)
Raises the baseline offset of selected text by 1 point, or of all text if the receiver is a plain text view.

– turnOffKerning: (page 2962)
Sets the receiver to use nominal glyph spacing for the glyphs in its selection, or for all glyphs if the
receiver is a plain text view.

– loosenKerning: (page 2905)
Increases the space between glyphs in the receiver’s selection, or in all text if the receiver is a plain
text view.

– tightenKerning: (page 2957)
Decreases the space between glyphs in the receiver’s selection, or for all glyphs if the receiver is a
plain text view.

– useStandardLigatures: (page 2967)
Sets the receiver to use the standard ligatures available for the fonts and languages used when setting
text, for the glyphs in the selection if the receiver is a rich text view, or for all glyphs if it’s a plain text
view.

– turnOffLigatures: (page 2962)
Sets the receiver to use only required ligatures when setting text, for the glyphs in the selection if the
receiver is a rich text view, or for all glyphs if it’s a plain text view.

– useAllLigatures: (page 2965)
Sets the receiver to use all ligatures available for the fonts and languages used when setting text, for
the glyphs in the selection if the receiver is a rich text view, or for all glyphs if it’s a plain text view.

Tasks 2873
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– toggleTraditionalCharacterShape: (page 2962)
Toggles the NSCharacterShapeAttributeName attribute at the current selection.

Clicking and Pasting

– clickedOnLink:atIndex: (page 2887)
Causes the text view to act as if the user clicked on some text with the given link as the value of a
link attribute associated with the text.

– pasteAsPlainText: (page 2909)
Inserts the contents of the pasteboard into the receiver’s text as plain text.

– pasteAsRichText: (page 2909)
This action method inserts the contents of the pasteboard into the receiver’s text as rich text,
maintaining its attributes.

Undo Support

– breakUndoCoalescing (page 2883)
Informs the receiver that it should begin coalescing successive typing operations in a new undo
grouping.

– isCoalescingUndo (page 2901)
Returns whether undo coalescing is in progress.

Methods for Subclasses to Use or Override

– updateFontPanel (page 2964)
Updates the Font panel to contain the font attributes of the selection.

– updateRuler (page 2965)
Updates the ruler view in the receiver’s enclosing scroll view to reflect the selection’s paragraph and
marker attributes.

– acceptableDragTypes (page 2879)
Returns the data types that the receiver accepts as the destination view of a dragging operation.

– updateDragTypeRegistration (page 2963)
Updates the acceptable drag types of all text views associated with the receiver's layout manager.

– selectionRangeForProposedRange:granularity: (page 2924)
Returns an adjusted selected range based on the selection granularity.

– rangeForUserCharacterAttributeChange (page 2911)
Returns the range of characters affected by an action method that changes character (not paragraph)
attributes.

– rangesForUserCharacterAttributeChange (page 2913)
Returns an array containing the ranges of characters affected by an action method that changes
character (not paragraph) attributes.

– rangeForUserParagraphAttributeChange (page 2912)
Returns the range of characters affected by an action method that changes paragraph (not character)
attributes.

2874 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– rangesForUserParagraphAttributeChange (page 2914)
Returns an array containing the ranges of characters affected by a method that changes paragraph
(not character) attributes.

– rangeForUserTextChange (page 2913)
Returns the range of characters affected by a method that changes characters (as opposed to
attributes).

– rangesForUserTextChange (page 2914)
Returns an array containing the ranges of characters affected by a method that changes characters
(as opposed to attributes).

– shouldChangeTextInRange:replacementString: (page 2949)
Initiates a series of delegate messages (and general notifications) to determine whether modifications
can be made to the characters and attributes of the receiver’s text.

– shouldChangeTextInRanges:replacementStrings: (page 2950)
Initiates a series of delegate messages (and general notifications) to determine whether modifications
can be made to the characters and attributes of the receiver’s text.

– didChangeText (page 2890)
Sends out necessary notifications when a text change completes.

– setSmartInsertDeleteEnabled: (page 2944)
Controls whether the receiver inserts or deletes space around selected words so as to preserve proper
spacing and punctuation.

– smartInsertDeleteEnabled (page 2953)
Returns whether the receiver inserts or deletes space around selected words so as to preserve proper
spacing and punctuation.

– smartDeleteRangeForProposedRange: (page 2951)
Returns an extended range that includes adjacent whitespace that should be deleted along with the
proposed range in order to preserve proper spacing and punctuation.

– smartInsertAfterStringForString:replacingRange: (page 2952)
Returns any whitespace that needs to be added after the string to preserve proper spacing and
punctuation when the string replaces the characters in the specified range.

– smartInsertBeforeStringForString:replacingRange: (page 2952)
Returns any whitespace that needs to be added before the string to preserve proper spacing and
punctuation when the string replaces the characters in the specified range.

– smartInsertForString:replacingRange:beforeString:afterString: (page 2953)
Determines whether whitespace needs to be added around the string to preserve proper spacing
and punctuation when it replaces the characters in the specified range.

– toggleSmartInsertDelete: (page 2961)
Changes the state of smart insert and delete from enabled to disabled and vice versa.

Working With the Spelling Checker

– isContinuousSpellCheckingEnabled (page 2902)
Indicates whether the receiver has continuous spell checking enabled.

– setContinuousSpellCheckingEnabled: (page 2932)
Enables or disables continuous spell checking.

– spellCheckerDocumentTag (page 2954)
Returns a tag identifying the text view's text as a document for the spell checker server.

Tasks 2875
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– toggleContinuousSpellChecking: (page 2960)
Toggles whether continuous spell checking is enabled for the receiver.

– setGrammarCheckingEnabled: (page 2936)
Enables and disables grammar checking.

– isGrammarCheckingEnabled (page 2903)
Indicates whether or not grammar checking is enabled.

– toggleGrammarChecking: (page 2961)
Changes the state of grammar checking from enabled to disabled and vice versa.

– setSpellingState:range: (page 2945)
Sets the spelling state, which controls the display of the spelling and grammar indicators on the given
text range.

NSRulerView Client Methods

– rulerView:didMoveMarker: (page 2918)
Modifies the paragraph style of the paragraphs containing the selection to record the new location
of the marker.

– rulerView:willMoveMarker:toLocation: (page 2922)
Returns a potentially modified location to which the marker should be moved.

– rulerView:shouldMoveMarker: (page 2920)
Returns whether the marker should be moved.

– rulerView:didRemoveMarker: (page 2919)
Modifies the paragraph style of the paragraphs containing the selection—if possible—by removing
the specified marker.

– rulerView:shouldRemoveMarker: (page 2921)
Returns whether the marker should be removed.

– rulerView:didAddMarker: (page 2917)
Modifies the paragraph style of the paragraphs containing the selection to accommodate a new
marker.

– rulerView:shouldAddMarker: (page 2920)
Returns whether a new marker can be added.

– rulerView:willAddMarker:atLocation: (page 2921)
Returns a potentially modified location to which the marker should be added.

– rulerView:handleMouseDown: (page 2919)
Adds a left tab marker to the ruler at the location clicked.

Assigning a Delegate

– setDelegate: (page 2933)
Sets the delegate for all text views sharing the receiver’s layout manager.

– delegate (page 2889)
Returns the delegate used by the receiver and all other text views sharing the receiver’s layout manager.

2876 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Dragging

– dragImageForSelectionWithEvent:origin: (page 2890)
Returns an appropriate drag image for the drag initiated by the specified event.

– dragOperationForDraggingInfo:type: (page 2891)
Returns the type of drag operation that should be performed if the image were released now.

– dragSelectionWithEvent:offset:slideBack: (page 2892)
Begins dragging the current selected text range.

– acceptsGlyphInfo (page 2880)
Returns whether the receiver accepts the glyph info attribute.

– setAcceptsGlyphInfo: (page 2925)
Sets whether the receiver accepts the glyph info attribute.

Speaking Text

– startSpeaking: (page 2954)
Speaks the selected text, or all text if no selection.

– stopSpeaking: (page 2955)
Stops the speaking of text.

Working with Panels

– setUsesFontPanel: (page 2947)
Controls whether the text views sharing the receiver’s layout manager use the Font panel and Font
menu.

– usesFontPanel (page 2966)
Returns whether the text views sharing the receiver’s layout manager use the Font panel.

– setUsesFindPanel: (page 2947)
Specifies whether the receiver allows for a find panel.

– usesFindPanel (page 2965)
Returns whether the receiver allows for a find panel.

– performFindPanelAction: (page 2910)
Performs a find panel action specified by the sender's tag.

– orderFrontLinkPanel: (page 2907)
Brings forward a panel allowing the user to manipulate links in the text view.

– orderFrontListPanel: (page 2907)
Brings forward a panel allowing the user to manipulate text lists in the text view.

– orderFrontSpacingPanel: (page 2907)
Brings forward a panel allowing the user to manipulate text line heights, interline spacing, and
paragraph spacing, in the text view.

– orderFrontTablePanel: (page 2908)
Brings forward a panel allowing the user to manipulate text tables in the text view.

– orderFrontSubstitutionsPanel: (page 2908)
Brings forward a panel allowing the user to specify string substitutions in the text view.

Tasks 2877
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Text Completion

– complete: (page 2888)
Invokes completion in a text view.

– completionsForPartialWordRange:indexOfSelectedItem: (page 2888)
Returns an array of potential completions, in the order to be presented, representing possible word
completions available from a partial word.

– insertCompletion:forPartialWordRange:movement:isFinal: (page 2897)
Inserts the selected completion into the text at the appropriate location.

– rangeForUserCompletion (page 2912)
Returns the partial range from the most recent beginning of a word up to the insertion point.

Text Checking and Substitutions

– checkTextInDocument: (page 2885)
Performs the default text checking on the entire document.

– checkTextInSelection: (page 2886)
Performs the default text checking on the current selection.

– checkTextInRange:types:options: (page 2886)
Check and replace the text in the range using the specified checking types and options.

– handleTextCheckingResults:forRange:types:options:orthography:wordCount: (page 2894)
Handles the text checking results returned by the text view

– enabledTextCheckingTypes (page 2894)
Returns the default text checking types.

– setEnabledTextCheckingTypes: (page 2935)
Sets the default text checking types.

– isAutomaticDashSubstitutionEnabled (page 2899)
Returns whether automatic dash substitution is enabled.

– setAutomaticDashSubstitutionEnabled: (page 2928)
Sets whether automatic dash substitution is enabled.

– toggleAutomaticDashSubstitution: (page 2957)
Toggles the state of the automatic dash substitution.

– isAutomaticDataDetectionEnabled (page 2899)
Returns whether automatic data detection is enabled.

– setAutomaticDataDetectionEnabled: (page 2928)
Sets whether automatic data detection is enabled.

– toggleAutomaticDataDetection: (page 2958)
Toggles the state of the automatic data detection.

– isAutomaticSpellingCorrectionEnabled (page 2900)
Returns whether automatic spelling correction is enabled.

– setAutomaticSpellingCorrectionEnabled: (page 2929)
Sets whether automatic spelling correction is enabled.

– toggleAutomaticSpellingCorrection: (page 2959)
Toggles the state of the automatic spelling correction.

2878 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– isAutomaticTextReplacementEnabled (page 2901)
Returns whether automatic text replacement is enabled.

– setAutomaticTextReplacementEnabled: (page 2930)
Sets whether automatic text replacement is enabled.

– toggleAutomaticTextReplacement: (page 2960)
Toggles the state of the automatic text replacement.

Changing First Responder Status

– becomeFirstResponder (page 2883) Available in Mac OS X v10.0 through Mac OS X v10.4
Informs the receiver that it’s becoming the first responder. (Deprecated. Use the NSWindow method
makeFirstResponder: (page 3344) to make a text view the first responder.)

– resignFirstResponder (page 2917) Available in Mac OS X v10.0 through Mac OS X v10.4
Notifies the receiver that it’s been asked to relinquish its status as first responder. (Deprecated. Use
the NSWindowmethod makeFirstResponder: (page 3344) to make a text view the first responder.)

Class Methods

registerForServices
Registers send and return types for the Services facility.

+ (void)registerForServices

Discussion
This method is invoked automatically when the first instance of a text view is created; you should never need
to invoke it directly.

Subclasses of NSTextView that wish to add support for new service types should override
registerForServices to call super and then register their own new types.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

Instance Methods

acceptableDragTypes
Returns the data types that the receiver accepts as the destination view of a dragging operation.

- (NSArray *)acceptableDragTypes

Class Methods 2879
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Return Value
The data types that the receiver accepts as the destination view of a dragging operation.

Discussion
These types are automatically registered as necessary by the text view. Subclasses should override this method
as necessary to add their own types to those returned by NSTextView’s implementation. They must then
also override the appropriate methods of the NSDraggingDestination protocol to support import of those
types. See that protocol’s specification for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– updateDragTypeRegistration (page 2963)

Declared In
NSTextView.h

acceptsGlyphInfo
Returns whether the receiver accepts the glyph info attribute.

- (BOOL)acceptsGlyphInfo

Return Value
YES if the receiver accepts the NSGlyphInfoAttributeName attribute from text input sources such as input
methods and the pasteboard, NO otherwise.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setAcceptsGlyphInfo: (page 2925)

Declared In
NSTextView.h

alignJustified:
Applies full justification to selected paragraphs (or all text, if the receiver is a plain text object).

- (void)alignJustified:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alignCenter: (page 2718) (NSText)
– alignLeft: (page 2718) (NSText)

2880 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– alignRight: (page 2719) (NSText)
– alignment (page 2718) (NSText)
– setAlignment: (page 2733) (NSText)

Declared In
NSTextView.h

allowedInputSourceLocales
Returns an array of locale identifiers representing input sources that are allowed to be enabled when the
receiver has the keyboard focus.

- (NSArray *)allowedInputSourceLocales

Return Value
The locale identifiers of allowed input sources.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAllowedInputSourceLocales: (page 2926)

Declared In
NSTextView.h

allowsDocumentBackgroundColorChange
Returns whether the receiver allows its background color to change.

- (BOOL)allowsDocumentBackgroundColorChange

Return Value
YES if the receiver allows its background color to change, otherwise NO.

Discussion
This corresponds to the background color of the entirety of the text view, not just to a selected range of text.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAllowsDocumentBackgroundColorChange: (page 2926)
– changeDocumentBackgroundColor: (page 2884)

Declared In
NSTextView.h

allowsImageEditing
Indicates whether image attachments should permit editing of their images.

Instance Methods 2881
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

- (BOOL)allowsImageEditing

Return Value
YES if image editing is allowed; otherwise, NO.

Discussion
For image editing to be allowed, the text view must be editable and the text attachment cell must support
image editing.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAllowsImageEditing: (page 2927)

Declared In
NSTextView.h

allowsUndo
Returns whether the receiver allows undo.

- (BOOL)allowsUndo

Return Value
YES if the receiver allows undo, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsUndo: (page 2927)

Declared In
NSTextView.h

backgroundColor
Returns the receiver’s background color.

- (NSColor *)backgroundColor

Return Value
The receiver’s background color.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawsBackground (page 2893)
– setBackgroundColor: (page 2930)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

2882 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Declared In
NSTextView.h

becomeFirstResponder
Informs the receiver that it’s becoming the first responder. (Available in Mac OS X v10.0 through Mac OS X
v10.4. Use the NSWindowmethod makeFirstResponder: (page 3344) to make a text view the first responder.)

- (BOOL)becomeFirstResponder

Return Value
Returns YES.

Discussion
If the previous first responder was not an NSTextView on the same NSLayoutManager as the receiving
NSTextView, this method draws the selection and updates the insertion point if necessary.

Use the NSWindow method makeFirstResponder: (page 3344), not this method, to make a text view the
first responder. Never invoke this method directly.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

See Also
– resignFirstResponder (page 2917)

Declared In
NSTextView.h

breakUndoCoalescing
Informs the receiver that it should begin coalescing successive typing operations in a new undo grouping.

- (void)breakUndoCoalescing

Special Considerations

This method should be invoked when saving the receiver’s contents to preserve proper tracking of unsaved
changes and the document’s dirty state.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextView.h

changeAttributes:
Changes the attributes of the current selection.

Instance Methods 2883
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

- (void)changeAttributes:(id)sender

Parameters
sender

The control that sent the message. Must respond to convertAttributes:.

Discussion
This method changes the attributes by invoking convertAttributes: (page 1220) on sender and applying
the returned attributes to the appropriate text. See the NSFontManager class reference for more information
on attribute conversion.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTextView.h

changeColor:
Sets the color of the selected text.

- (void)changeColor:(id)sender

Parameters
sender

The control that sent the message. NSTextView’s implementation sends a color (page 731) message
to sender to get the new color.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

changeDocumentBackgroundColor:
An action method used to set the background color.

- (void)changeDocumentBackgroundColor:(id)sender

Parameters
sender

The control that wants to set the background color.

Discussion
This method gets the new color by sending a color (page 731) message to sender.

This will only set the background color if allowsDocumentBackgroundColorChange (page 2881)returns
YES.

Availability
Available in Mac OS X v10.3 and later.

2884 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

See Also
– setAllowsDocumentBackgroundColorChange: (page 2926)
– allowsDocumentBackgroundColorChange (page 2881)

Declared In
NSTextView.h

characterIndexForInsertionAtPoint:
Returns a character index appropriate for placing a zero-length selection for an insertion point associated
with the mouse at the given point.

- (NSUInteger)characterIndexForInsertionAtPoint:(NSPoint)point

Parameters
point

The point for which to return an index, in view coordinates.

Return Value
The character index for the insertion point.

Discussion
This method should be used for insertion points associated with mouse clicks, drag events, and so forth. For
other purposes, it is better to use NSLayoutManager methods.

The NSTextInputmethod characterIndexForPoint: (page 3863) is not suitable for this role; it is intended
only for uses related to text input methods.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTextView.h

checkTextInDocument:
Performs the default text checking on the entire document.

- (void)checkTextInDocument:(id)sender

Parameters
sender

The control sending the message. May be nil.

Discussion
Immediately performs the text checking and replaces the document content with the checked content.

The checks performed are specified by setEnabledTextCheckingTypes: (page 2935);

Availability
Available in Mac OS X v10.6 and later.

See Also
– setEnabledTextCheckingTypes: (page 2935)

Instance Methods 2885
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– checkTextInSelection: (page 2886)

Declared In
NSTextView.h

checkTextInRange:types:options:
Check and replace the text in the range using the specified checking types and options.

- (void)checkTextInRange:(NSRange)range types:(NSTextCheckingTypes)checkingTypes
options:(NSDictionary *)options

Parameters
range

The range to check.

checkingTypes
The type of checking to be performed, passed by-reference. The possible constants are listed in
NSTextCheckingTypes and can be combined using the C bit-wise OR operator to perform multiple
checks at the same time.

options
A dictionary of values used during the checking process to perform. See Spell Checking Option
Dictionary Keys (page 2537) for the supported values.

Discussion
This method calls the delegate method textView:willCheckTextInRange:options:types: (page 3893)
allowing you to modify the parameters before the checking occurs.

This method usually would not be called directly, since NSTextView itself will call it as needed, but it can
be overridden.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextView.h

checkTextInSelection:
Performs the default text checking on the current selection.

- (void)checkTextInSelection:(id)sender

Parameters
sender

The control sending the message. May be nil.

Discussion
Immediately performs the text checking and replaces the selection with the checked content.

The checks performed are specified by setEnabledTextCheckingTypes: (page 2935);

Availability
Available in Mac OS X v10.6 and later.

2886 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

See Also
– setEnabledTextCheckingTypes: (page 2935)
– checkTextInDocument: (page 2885)

Declared In
NSTextView.h

cleanUpAfterDragOperation
Releases the drag information still existing after the dragging session has completed.

- (void)cleanUpAfterDragOperation

Discussion
Subclasses may override this method to clean up any additional data structures used for dragging. In your
overridden method, be sure to invoke super’s implementation of this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

clickedOnLink:atIndex:
Causes the text view to act as if the user clicked on some text with the given link as the value of a link attribute
associated with the text.

- (void)clickedOnLink:(id)link atIndex:(NSUInteger)charIndex

Parameters
link

The link that was clicked; the value of NSLinkAttributeName (page 272).

charIndex
The character index where the click occurred, indexed within the text storage.

Discussion
If, for instance, you have a special attachment cell that can follow links, you can use this method to ask the
text view to follow a link once you decide it should. In addition, this method is invoked by the text view
during mouse tracking if the user clicks a link.

The charIndex parameter is a character index somewhere in the range of the link attribute. If the user
actually physically clicked the link, then it should be the character that was originally clicked. In some cases
a link may be opened indirectly or programmatically, in which case a character index somewhere in the range
of the link attribute is supplied.

This method sends the textView:clickedOnLink:atIndex: (page 3883) delegate message if the delegate
implements it, so that the delegate can handle the click.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 2887
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

See Also
– textView:clickedOnLink:atIndex: (page 3883) (NSTextViewDelegate)

Declared In
NSTextView.h

complete:
Invokes completion in a text view.

- (void)complete:(id)sender

Parameters
sender

The control sending the message. May be nil.

Discussion
By default invoked using the F5 key, this method provides users with a choice of completions for the word
currently being typed. May be invoked programmatically if autocompletion is desired by a client of the text
system. You can change the key invoking this method using the text system’s key bindings mechanism; see
“Text System Defaults and Key Bindings" for an explanation of the procedure.

The delegate may replace or modify the list of possible completions by implementing
textView:completions:forPartialWordRange:indexOfSelectedItem: (page 3884). Subclasses may
control the list by overriding completionsForPartialWordRange:indexOfSelectedItem: (page 2888).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
SearchField

Declared In
NSTextView.h

completionsForPartialWordRange:indexOfSelectedItem:
Returns an array of potential completions, in the order to be presented, representing possible word
completions available from a partial word.

- (NSArray *)completionsForPartialWordRange:(NSRange)charRange
indexOfSelectedItem:(NSInteger *)index

Parameters
charRange

The range of characters of the partial word to be completed.

index
On return, optionally set to the completion that should be initially selected. The default is 0, and –1
indicates no selection.

Return Value
An array of potential completions, in the order to be presented, representing possible word completions
available from a partial word at charRange. Returning nil or a zero-length array suppresses completion.

2888 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Discussion
May be overridden by subclasses to modify or override the list of possible completions.

This method should call the delegate method
textView:completions:forPartialWordRange:indexOfSelectedItem: (page 3884)s if the delegate
implements such a method.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTextView.h

defaultParagraphStyle
Returns the receiver’s default paragraph style.

- (NSParagraphStyle *)defaultParagraphStyle

Return Value
The receiver's default paragraph style.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setDefaultParagraphStyle: (page 2932)

Declared In
NSTextView.h

delegate
Returns the delegate used by the receiver and all other text views sharing the receiver’s layout manager.

- (id < NSTextViewDelegate >)delegate

Return Value
The delegate used by the receiver and all other text views sharing the receiver’s layout manager, or nil if
there is none.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 2933)

Related Sample Code
TextLinks

Declared In
NSTextView.h

Instance Methods 2889
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

didChangeText
Sends out necessary notifications when a text change completes.

- (void)didChangeText

Discussion
Invoked automatically at the end of a series of changes, this method posts an
NSTextDidChangeNotification (page 2752) to the default notification center, which also results in the
delegate receiving an NSText delegate textDidChange: message.

Subclasses implementing methods that change their text should invoke this method at the end of those
methods. See Subclassing NSTextView for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– shouldChangeTextInRange:replacementString: (page 2949)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextView.h

displaysLinkToolTips
Indicates whether the text view automatically supplies the destination of a link as a tooltip for text that has
a link attribute.

- (BOOL)displaysLinkToolTips

Return Value
YES if link tooltips are automatically displayed; otherwise, NO.

Discussion
The default value for this feature is YES; clients who do not wish tooltips to be displayed automatically must
explicitly disable it.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setDisplaysLinkToolTips: (page 2933)

Declared In
NSTextView.h

dragImageForSelectionWithEvent:origin:
Returns an appropriate drag image for the drag initiated by the specified event.

2890 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

- (NSImage *)dragImageForSelectionWithEvent:(NSEvent *)event
origin:(NSPointPointer)origin

Parameters
event

The event that initiated the drag session.

origin
On return, the lower-left point of the image in view coordinates.

Return Value
An appropriate drag image for the drag initiated by event. May be nil, in which case a default icon will be
used.

Discussion
This method is used by dragSelectionWithEvent:offset:slideBack: (page 2892). It can be called by
others who need such an image, or can be overridden by subclasses to return a different image.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

dragOperationForDraggingInfo:type:
Returns the type of drag operation that should be performed if the image were released now.

- (NSDragOperation)dragOperationForDraggingInfo:(id < NSDraggingInfo >)dragInfo
type:(NSString *)type

Parameters
dragInfo

The drag information.

type
The pasteboard type that will be read from the dragging pasteboard.

Return Value
The drag operation that should be performed if the image were released now.

Discussion
The returned value should be one of the following:

MeaningOption

The data represented by the image will be copied.NSDragOperationCopy

The data will be shared.NSDragOperationLink

The operation will be defined by the destination.NSDragOperationGeneric

The operation is negotiated privately between the source and the
destination.

NSDragOperationPrivate

Instance Methods 2891
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

If none of the operations is appropriate, this method should return NSDragOperationNone.

This method is called repeatedly from draggingEntered: (page 3655) and draggingUpdated: (page 3656)
as the user drags the image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– draggingEntered: (page 3655) (NSDraggingDestination)
– draggingUpdated: (page 3656) (NSDraggingDestination)

Declared In
NSTextView.h

dragSelectionWithEvent:offset:slideBack:
Begins dragging the current selected text range.

- (BOOL)dragSelectionWithEvent:(NSEvent *)event offset:(NSSize)mouseOffset
slideBack:(BOOL)slideBack

Parameters
event

The event that initiated dragging the selection.

mouseOffset
The cursor’s current location relative to the mouse-down event.

slideBack
YES if the image being dragged should slide back to its original position if the drag does not succeed,
NO otherwise.

Return Value
YES if the drag can be successfully initiated, NO otherwise.

Discussion
Primarily for subclasses, who can override it to intervene at the beginning of a drag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

drawInsertionPointInRect:color:turnedOn:
Draws or erases the insertion point.

- (void)drawInsertionPointInRect:(NSRect)aRect color:(NSColor *)aColor
turnedOn:(BOOL)flag

2892 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Parameters
aRect

The rectangle in which to draw the insertion point.

aColor
The color with which to draw the insertion point.

flag
YES to draw the insertion point, NO to erase it.

Special Considerations

The focus must be locked on the receiver when this method is invoked. You should not need to invoke this
method directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– insertionPointColor (page 2897)
– shouldDrawInsertionPoint (page 2950)
– backgroundColor (page 2882)
– lockFocus (page 3187) (NSView)

Declared In
NSTextView.h

drawsBackground
Returns whether the receiver draws its background

- (BOOL)drawsBackground

Return Value
YES if the receiver draws its background, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 2882)
– setDrawsBackground: (page 2934)

Declared In
NSTextView.h

drawViewBackgroundInRect:
Draws the background of the text view.

- (void)drawViewBackgroundInRect:(NSRect)rect

Instance Methods 2893
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Parameters
rect

The rectangle in which to draw the background.

Discussion
Subclasses can override this method to perform additional drawing behind the text.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTextView.h

enabledTextCheckingTypes
Returns the default text checking types.

- (NSTextCheckingTypes)enabledTextCheckingTypes

Return Value
The currently enabled default text checking types

Availability
Available in Mac OS X v10.6 and later.

See Also
– .: (page 2935)

Declared In
NSTextView.h

handleTextCheckingResults:forRange:types:options:orthography:wordCount:
Handles the text checking results returned by the text view

- (void)handleTextCheckingResults:(NSArray *)results forRange:(NSRange)range
types:(NSTextCheckingTypes)checkingTypes options:(NSDictionary *)options
orthography:(NSOrthography *)orthography wordCount:(NSInteger)wordCount

Parameters
results

An array of NSTextCheckingResult objects.

range
The range of text that was checked.

checkingTypes
The type of checking performed. The possible constants are listed in NSTextCheckingTypes and
can be combined using the C bit-wise OR operator to perform multiple checks at the same time.

options
The dictionary of values used during the checking process to perform. See Spell Checking Option
Dictionary Keys (page 2537) for the supported values.

2894 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

orthography
The orthography of the checked text.

wordCount
The number of words.

Discussion
The NSTextViewDelegate Protocol offers a method,
textView:didCheckTextInRange:types:options:results:orthography:wordCount: (page 3884)
that is called after the checking is performed, allowing you to modify the results.

This method usually would not be called directly, since NSTextView itself will call it as needed, but it can
be overridden.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextView.h

importsGraphics
Returns whether the text views sharing the receiver’s layout manager allow the user to import files by
dragging.

- (BOOL)importsGraphics

Return Value
YES if the user is allowed to import files by dragging onto the text views sharing the receiver’s layout manager,
NO otherwise.

Discussion
Text views that are set to accept dragged files are also set to allow rich text. By default, text views don’t
accept dragged files but do allow rich text.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isRichText (page 2903)
– textStorage (page 2957)
+ attributedStringWithAttachment: (page 252) (NSAttributedString Additions)
insertAttributedString:atIndex: (NSMutableAttributedString)
– setImportsGraphics: (page 2936)

Declared In
NSTextView.h

initWithFrame:
Initializes a text view.

- (id)initWithFrame:(NSRect)frameRect

Instance Methods 2895
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Parameters
frameRect

The frame rectangle of the text view.

Return Value
An initialized text view.

Discussion
This method creates the entire collection of objects associated with a text view—its text container, layout
manager, and text storage—and invokes initWithFrame:textContainer: (page 2896).

This method creates the text web in such a manner that the text view is the principal owner of the objects
in the web.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

initWithFrame:textContainer:
Initializes a text view.

- (id)initWithFrame:(NSRect)frameRect textContainer:(NSTextContainer *)aTextContainer

Parameters
frameRect

The frame rectangle of the text view.

aTextContainer
The text container of the text view.

Return Value
An initialized text view.

Discussion
This method is the designated initializer for NSTextView objects.

Unlike initWithFrame: (page 2895), which builds up an entire group of text-handling objects, you use this
method after you’ve created the other components of the text-handling system—a text storage object, a
layout manager, and a text container. Assembling the components in this fashion means that the text storage,
not the text view, is the principal owner of the component objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFrame: (page 2895)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextLayoutDemo
TextSizingExample

2896 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

TextViewConfig

Declared In
NSTextView.h

insertCompletion:forPartialWordRange:movement:isFinal:
Inserts the selected completion into the text at the appropriate location.

- (void)insertCompletion:(NSString *)word forPartialWordRange:(NSRange)charRange
movement:(NSInteger)movement isFinal:(BOOL)flag

Parameters
word

The completion to insert.

charRange
The character range of the text being completed.

movement
The direction of movement. For possible values see the NSText Constants section. This value allows
subclasses to distinguish between canceling completion and selection by arrow keys, by return, by
tab, or by other means such as clicking.

flag
NO while the user navigates through the potential text completions, YES when a completion is
definitively selected or cancelled and the original value is reinserted.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTextView.h

insertionPointColor
Returns the color used to draw the insertion point.

- (NSColor *)insertionPointColor

Return Value
The color used to draw the insertion point.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawInsertionPointInRect:color:turnedOn: (page 2892)
– shouldDrawInsertionPoint (page 2950)
– setInsertionPointColor: (page 2937)

Declared In
NSTextView.h

Instance Methods 2897
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

insertText:
Inserts aString into the receiver’s text at the insertion point if there is one, otherwise replacing the selection.

- (void)insertText:(id)aString

Parameters
aString

The string to insert. aString can be either an NSString object or an NSAttributedString object.

Discussion
The inserted text is assigned the current typing attributes.

This method is the means by which text typed by the user enters an NSTextView. See the NSInputManager
class and NSTextInput protocol specifications for more information.

This method is the entry point for inserting text typed by the user and is generally not suitable for other
purposes. Programmatic modification of the text is best done by operating on the text storage directly.
Because this method pertains to the actions of the user, the text view must be editable for the insertion to
work.

Availability
Available in Mac OS X v10.0 and later.

See Also
– typingAttributes (page 2963)

Related Sample Code
BetterAuthorizationSample
LSMSmartCategorizer
SampleScannerApp
SBSetFinderComment
TextViewDelegate

Declared In
NSTextView.h

invalidateTextContainerOrigin
Invalidates the calculated origin of the text container.

- (void)invalidateTextContainerOrigin

Discussion
This method is invoked automatically; you should never need to invoke it directly. Usually called because
the text view has been resized or the contents of the text container have changed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainer (page 2955)
– textContainerOrigin (page 2956)

2898 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Declared In
NSTextView.h

isAutomaticDashSubstitutionEnabled
Returns whether automatic dash substitution is enabled.

- (BOOL)isAutomaticDashSubstitutionEnabled

Return Value
YES if it is enabled, otherwise NO.

Discussion
Turning on automatic dash substitution enables automatic conversion of sequences of ASCII hyphen (-)
characters to typographic dashes.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setAutomaticDashSubstitutionEnabled: (page 2928)
– toggleAutomaticDashSubstitution: (page 2957)

Declared In
NSTextView.h

isAutomaticDataDetectionEnabled
Returns whether automatic data detection is enabled.

- (BOOL)isAutomaticDataDetectionEnabled

Return Value
YES if it is enabled, otherwise NO.

Discussion
Automatic data detection enables detection of dates, addresses, and phone numbers.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setAutomaticDataDetectionEnabled: (page 2928)
– toggleAutomaticDataDetection: (page 2958)

Declared In
NSTextView.h

isAutomaticLinkDetectionEnabled
Indicates whether automatic link detection is enabled.

Instance Methods 2899
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

- (BOOL)isAutomaticLinkDetectionEnabled

Return Value
YES if automatic link detection is enabled; otherwise, NO.

Discussion
Automatic link detection causes strings representing URLs typed in the view to be automatically made into
links to those URLs.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAutomaticLinkDetectionEnabled: (page 2929)
– toggleAutomaticLinkDetection: (page 2958)
URLAtIndex:effectiveRange: (page 270) (NSAttributedString)

Declared In
NSTextView.h

isAutomaticQuoteSubstitutionEnabled
Indicates whether automatic quotation mark substitution is enabled.

- (BOOL)isAutomaticQuoteSubstitutionEnabled

Return Value
YES if automatic quotation mark substitution is enabled; otherwise, NO.

Discussion
Automatic quote substitution causes ASCII quotation marks and apostrophes to be automatically replaced,
on a context-dependent basis, with more typographically accurate symbols.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAutomaticQuoteSubstitutionEnabled: (page 2929)
– toggleAutomaticQuoteSubstitution: (page 2959)

Declared In
NSTextView.h

isAutomaticSpellingCorrectionEnabled
Returns whether automatic spelling correction is enabled.

- (BOOL)isAutomaticSpellingCorrectionEnabled

Return Value
YES if it is enabled, otherwise NO.

2900 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.6 and later.

See Also
– setAutomaticSpellingCorrectionEnabled: (page 2929)
– toggleAutomaticSpellingCorrection: (page 2959)

Declared In
NSTextView.h

isAutomaticTextReplacementEnabled
Returns whether automatic text replacement is enabled.

- (BOOL)isAutomaticTextReplacementEnabled

Return Value
YES if it is enabled, otherwise NO.

Discussion
Turning on automatic text replacement enables automatic substitution of a variety of static text items based
on user preferences.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setAutomaticTextReplacementEnabled: (page 2930)
– toggleAutomaticTextReplacement: (page 2960)

Declared In
NSTextView.h

isCoalescingUndo
Returns whether undo coalescing is in progress.

- (BOOL)isCoalescingUndo

Return Value
YES if undo coalescing is in progress, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

See Also
– breakUndoCoalescing (page 2883)

Declared In
NSTextView.h

Instance Methods 2901
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

isContinuousSpellCheckingEnabled
Indicates whether the receiver has continuous spell checking enabled.

- (BOOL)isContinuousSpellCheckingEnabled

Return Value
YES if the receiver has continuous spell checking enabled, otherwise,NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContinuousSpellCheckingEnabled: (page 2932)
– toggleContinuousSpellChecking: (page 2960)

Declared In
NSTextView.h

isEditable
Returns whether the text views sharing the receiver’s layout manager allow the user to edit text.

- (BOOL)isEditable

Return Value
YES if the text views sharing the receiver’s layout manager allow the user to edit text, NO otherwise.

Discussion
If a text view is editable, it’s also selectable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isSelectable (page 2904)
– setEditable: (page 2934)

Declared In
NSTextView.h

isFieldEditor
Returns whether the text views sharing the receiver’s layout manager behave as field editors.

- (BOOL)isFieldEditor

Return Value
YES if the text views sharing the receiver’s layout manager behave as field editors, NO otherwise.

Discussion
Field editors interpret Tab, Shift-Tab, and Return (Enter) as cues to end editing and possibly to change the
first responder. Non-field editors instead accept these characters as text input. See Text Fields, Text Views,
and the Field Editor for more information on field editors. By default, text views don’t behave as field editors.

2902 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFieldEditor: (page 2935)

Declared In
NSTextView.h

isGrammarCheckingEnabled
Indicates whether or not grammar checking is enabled.

- (BOOL)isGrammarCheckingEnabled

Return Value
YES if grammar checking is enabled; otherwise, NO.

Discussion
If grammar checking is enabled, then it is performed alongside spell checking, whenever the text view checks
spelling, whether continuously or manually.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setGrammarCheckingEnabled: (page 2936)
– toggleGrammarChecking: (page 2961)

Declared In
NSTextView.h

isRichText
Returns whether the text views sharing the receiver’s layout manager allow the user to apply attributes to
specific ranges of text.

- (BOOL)isRichText

Return Value
YES if the user is allowed to apply attributes to specific ranges of text in text views sharing the receiver’s
layout manager, NO otherwise.

Discussion
Text fields that don't allow rich text also don't accept dragged files. By default, text views let the user apply
multiple attributes to text, but don’t accept dragged files.

Availability
Available in Mac OS X v10.0 and later.

See Also
– importsGraphics (page 2895)
– textStorage (page 2957)

Instance Methods 2903
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– setRichText: (page 2939)

Declared In
NSTextView.h

isRulerVisible
Returns whether the scroll view enclosing the text views sharing the receiver’s layout manager shows its
ruler.

- (BOOL)isRulerVisible

Return Value
YES if the scroll view enclosing the text views sharing the receiver’s layout manager shows its ruler, NO
otherwise. The default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesRuler (page 2966)
– setRulerVisible: (page 2939)
– toggleRuler: (page 2745) (NSText)

Declared In
NSTextView.h

isSelectable
Returns whether the text views sharing the receiver’s layout manager allow the user to select text.

- (BOOL)isSelectable

Return Value
YES if the user is allowed to select text of all text views sharing the receiver's layout manager, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEditable (page 2902)
– setSelectable: (page 2940)

Declared In
NSTextView.h

layoutManager
Returns the layout manager that lays out text for the receiver’s text container.

- (NSLayoutManager *)layoutManager

2904 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Return Value
The layout manager that lays out text for the receiver’s text container, or nil if there’s no such object, such
as when a text view isn’t linked into a group of text objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainer (page 2955)
– setLayoutManager: (page 2787) (NSTextContainer)
– replaceLayoutManager: (page 2785) (NSTextContainer)

Related Sample Code
LayoutManagerDemo
Sketch-112

Declared In
NSTextView.h

linkTextAttributes
Returns the attributes used to draw the onscreen presentation of link text.

- (NSDictionary *)linkTextAttributes

Return Value
A dictionary of attributes corresponding to the onscreen presentation of link text.

Discussion
Link text attributes are applied as temporary attributes to any text with a link attribute. Candidates include
those attributes that do not affect layout.

In applications created prior to Mac OS X v10.3, the default value is an empty dictionary. In applications
created with Mac OS X v10.3 or greater, the default attributes specify blue text with a single underline and
the pointing hand cursor.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setLinkTextAttributes: (page 2937)

Declared In
NSTextView.h

loosenKerning:
Increases the space between glyphs in the receiver’s selection, or in all text if the receiver is a plain text view.

- (void)loosenKerning:(id)sender

Instance Methods 2905
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Parameters
sender

The control that sent the message; may be nil.

Discussion
Kerning values are determined by the point size of the fonts in the selection.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tightenKerning: (page 2957)
– turnOffKerning: (page 2962)
– useStandardKerning: (page 2966)

Declared In
NSTextView.h

lowerBaseline:
Lowers the baseline offset of selected text by 1 point, or of all text if the receiver is a plain text view.

- (void)lowerBaseline:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Discussion
As such, this method defines a more primitive operation than subscripting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– raiseBaseline: (page 2911)
– subscript: (page 2744) (NSText)
– unscript: (page 2746) (NSText)

Declared In
NSTextView.h

markedTextAttributes
Returns the attributes used to draw marked text.

- (NSDictionary *)markedTextAttributes

Return Value
A dictionary of attributes used to draw marked text. Text color, background color, and underline are the only
supported attributes for marked text.

2906 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMarkedTextAttributes: (page 2938)

Declared In
NSTextView.h

orderFrontLinkPanel:
Brings forward a panel allowing the user to manipulate links in the text view.

- (void)orderFrontLinkPanel:(id)sender

Parameters
sender

The control sending the message. May be nil.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextView.h

orderFrontListPanel:
Brings forward a panel allowing the user to manipulate text lists in the text view.

- (void)orderFrontListPanel:(id)sender

Parameters
sender

The control sending the message. May be nil.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextView.h

orderFrontSpacingPanel:
Brings forward a panel allowing the user to manipulate text line heights, interline spacing, and paragraph
spacing, in the text view.

- (void)orderFrontSpacingPanel:(id)sender

Parameters
sender

The control sending the message. May be nil.

Instance Methods 2907
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextView.h

orderFrontSubstitutionsPanel:
Brings forward a panel allowing the user to specify string substitutions in the text view.

- (void)orderFrontSubstitutionsPanel:(id)sender

Parameters
sender

The control sending the message. May be nil.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextView.h

orderFrontTablePanel:
Brings forward a panel allowing the user to manipulate text tables in the text view.

- (void)orderFrontTablePanel:(id)sender

Parameters
sender

The control sending the message. May be nil.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextView.h

outline:
Adds the outline attribute to the selected text attributes if absent; removes the attribute if present.

- (void)outline:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Discussion
If there is a selection and the first character of the selected range has a non-zero stroke width, or if there is
no selection and the typing attributes have a non-zero stroke width, then the stroke width is removed;
otherwise the value of NSStrokeWidthAttributeName is set to the default value for outline (3.0).

2908 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Operates on the selected range if the receiver contains rich text. For plain text the range is the entire contents
of the receiver.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTextView.h

pasteAsPlainText:
Inserts the contents of the pasteboard into the receiver’s text as plain text.

- (void)pasteAsPlainText:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Discussion
This method behaves analogously to insertText: (page 2898).

Availability
Available in Mac OS X v10.0 and later.

See Also
– pasteAsRichText: (page 2909)
– insertText: (page 2898)

Declared In
NSTextView.h

pasteAsRichText:
This action method inserts the contents of the pasteboard into the receiver’s text as rich text, maintaining
its attributes.

- (void)pasteAsRichText:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Discussion
The text is inserted at the insertion point if there is one, otherwise replacing the selection.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pasteAsRichText: (page 2909)
– insertText: (page 2898)

Instance Methods 2909
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Declared In
NSTextView.h

performFindPanelAction:
Performs a find panel action specified by the sender's tag.

- (void)performFindPanelAction:(id)sender

Parameters
sender

The control sending the message. This method sends the tag (page 840) method to determine what
operation to perform. The list of possible tags is provided in “Constants” (page 2970).

Discussion
This is the generic action method for the find menu and find panel, and can be overridden to implement a
custom find panel.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTextView.h

preferredPasteboardTypeFromArray:restrictedToTypesFromArray:
Returns whatever type on the pasteboard would be most preferred for copying data.

- (NSString *)preferredPasteboardTypeFromArray:(NSArray *)availableTypes
restrictedToTypesFromArray:(NSArray *)allowedTypes

Parameters
availableTypes

The types currently available on the pasteboard.

allowedTypes
Types allowed in the return value. If nil, any available type is allowed.

Return Value
The preferred type to provide given the available types and the allowed types.

Discussion
You should not need to override this method. You should also not need to invoke it unless you are
implementing a new type of pasteboard to handle services other than copy/paste or dragging.

Availability
Available in Mac OS X v10.0 and later.

See Also
– pasteAsPlainText: (page 2909)
– pasteAsRichText: (page 2909)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

2910 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Declared In
NSTextView.h

raiseBaseline:
Raises the baseline offset of selected text by 1 point, or of all text if the receiver is a plain text view.

- (void)raiseBaseline:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Discussion
As such, this method defines a more primitive operation than superscripting.

Availability
Available in Mac OS X v10.0 and later.

See Also
– lowerBaseline: (page 2906)
– superscript: (page 2745) (NSText)
– unscript: (page 2746) (NSText)

Declared In
NSTextView.h

rangeForUserCharacterAttributeChange
Returns the range of characters affected by an action method that changes character (not paragraph)
attributes.

- (NSRange)rangeForUserCharacterAttributeChange

Return Value
The range of characters affected by an action method that changes character (not paragraph) attributes,
such as the NSText action method changeFont: (page 2720). For rich text this range is typically the range of
the selection. For plain text this range is the entire contents of the receiver. If the receiver isn’t editable or
doesn’t use the Font panel, the range returned has a location of NSNotFound.

Special Considerations

In Mac OS X v10.4 and later, returns the first subrange where there is a multiple-range selection.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rangesForUserCharacterAttributeChange (page 2913)
– rangeForUserParagraphAttributeChange (page 2912)
– rangeForUserTextChange (page 2913)
– isEditable (page 2902)
– usesFontPanel (page 2966)

Instance Methods 2911
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Declared In
NSTextView.h

rangeForUserCompletion
Returns the partial range from the most recent beginning of a word up to the insertion point.

- (NSRange)rangeForUserCompletion

Return Value
The partial range from the most recent beginning of a word up to the insertion point. Returning (NSNotFound,
0) suppresses completion.

Discussion
May be overridden by subclasses to alter the range to be completed.

The return value from this method is intended to be used for the range argument in the text completion
methods such as completionsForPartialWordRange:indexOfSelectedItem: (page 2888).

Special Considerations

In Mac OS X version 10.4 and later, if there are multiple selections, this method acts on the first selected
subrange.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTextView.h

rangeForUserParagraphAttributeChange
Returns the range of characters affected by an action method that changes paragraph (not character)
attributes.

- (NSRange)rangeForUserParagraphAttributeChange

Return Value
The range of characters affected by an action method that changes paragraph (not character) attributes,
such as the NSText action method alignLeft: (page 2718). For rich text this range is typically calculated by
extending the range of the selection to paragraph boundaries. For plain text this range is the entire contents
of the receiver. If the receiver isn’t editable or doesn’t use the Font panel, the range returned has a location
of NSNotFound.

Special Considerations

In Mac OS X version 10.4 and later, if there are multiple selections, this method acts on the first selected
subrange.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rangesForUserParagraphAttributeChange (page 2914)
– rangeForUserCharacterAttributeChange (page 2911)

2912 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– rangeForUserTextChange (page 2913)
– isEditable (page 2902)
– usesRuler (page 2966)

Declared In
NSTextView.h

rangeForUserTextChange
Returns the range of characters affected by a method that changes characters (as opposed to attributes).

- (NSRange)rangeForUserTextChange

Return Value
The range of characters affected by a method that changes characters (as opposed to attributes), such as
insertText: (page 2898). This is typically the range of the selection. If the receiver isn’t editable the range
returned has a location of NSNotFound.

Special Considerations

In Mac OS X version 10.4 and later, if there are multiple selections, this method acts on the first selected
subrange.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rangesForUserTextChange (page 2914)
– rangeForUserParagraphAttributeChange (page 2912)
– rangeForUserCharacterAttributeChange (page 2911)
– isEditable (page 2902)
– usesRuler (page 2966)

Declared In
NSTextView.h

rangesForUserCharacterAttributeChange
Returns an array containing the ranges of characters affected by an action method that changes character
(not paragraph) attributes.

- (NSArray *)rangesForUserCharacterAttributeChange

Return Value
An array containing the ranges of characters affected by an action method that changes character (not
paragraph) attributes, such as the NSText action method changeFont: (page 2720). For rich text these ranges
are typically the ranges of the selections. For plain text the range is the entire contents of the receiver. Returns
nil if the receiver isn’t editable or doesn’t use the Font panel.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 2913
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

See Also
– rangesForUserParagraphAttributeChange (page 2914)
– rangesForUserTextChange (page 2914)
– isEditable (page 2902)
– usesFontPanel (page 2966)

Declared In
NSTextView.h

rangesForUserParagraphAttributeChange
Returns an array containing the ranges of characters affected by a method that changes paragraph (not
character) attributes.

- (NSArray *)rangesForUserParagraphAttributeChange

Return Value
An array containing the ranges of characters affected by an action method that changes paragraph (not
character) attributes, such as the NSText action method alignLeft: (page 2718). For rich text these ranges
are typically calculated by extending the range of the selection to paragraph boundaries. For plain text the
range is the entire contents of the receiver. Returns nil if the receiver isn’t editable or doesn’t use the Font
panel.

Availability
Available in Mac OS X v10.4 and later.

See Also
– rangesForUserCharacterAttributeChange (page 2913)
– rangesForUserTextChange (page 2914)
– isEditable (page 2902)
– usesRuler (page 2966)

Declared In
NSTextView.h

rangesForUserTextChange
Returns an array containing the ranges of characters affected by a method that changes characters (as
opposed to attributes).

- (NSArray *)rangesForUserTextChange

Return Value
An array containing the ranges of characters affected by a method that changes characters (as opposed to
attributes), such as insertText: (page 2898). These are typically the ranges of the selections. Returns nil if
the receiver isn’t editable.

Availability
Available in Mac OS X v10.4 and later.

See Also
– rangesForUserCharacterAttributeChange (page 2913)

2914 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– rangesForUserParagraphAttributeChange (page 2914)
– isEditable (page 2902)
– usesRuler (page 2966)

Declared In
NSTextView.h

readablePasteboardTypes
Returns the types this text view can read immediately from the pasteboard.

- (NSArray *)readablePasteboardTypes

Return Value
An array of strings describing the types this text view can read immediately from the pasteboard. The strings
are ordered by the default preferences.

Discussion
You can override this method to provide support for new types of data. If you want to add support for the
default types, you can invoke the superclass version of this method or add the types directly in your overridden
version.

Availability
Available in Mac OS X v10.0 and later.

See Also
– preferredPasteboardTypeFromArray:restrictedToTypesFromArray: (page 2910)
– writablePasteboardTypes (page 2968)

Declared In
NSTextView.h

readSelectionFromPasteboard:
Reads the text view’s preferred type of data from the specified pasteboard.

- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard

Parameters
pboard

The pasteboard to read from.

Return Value
YES if the data was successfully read, NO otherwise.

Discussion
This method invokes thepreferredPasteboardTypeFromArray:restrictedToTypesFromArray: (page
2910) method to determine the text view’s preferred type of data and then reads the data using the
readSelectionFromPasteboard:type: (page 2916) method.

You should not need to override this method. You might need to invoke this method if you are implementing
a new type of pasteboard to handle services other than copy/paste or dragging.

Instance Methods 2915
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– preferredPasteboardTypeFromArray:restrictedToTypesFromArray: (page 2910)
– readSelectionFromPasteboard:type: (page 2916)

Declared In
NSTextView.h

readSelectionFromPasteboard:type:
Reads data of the given type from the specified pasteboard.

- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard type:(NSString *)type

Parameters
pboard

The pasteboard to read from.

type
The type of data to read.

Return Value
YES if the data was successfully read, NO otherwise.

Discussion
The new data is placed at the current insertion point, replacing the current selection if one exists.

You should override this method to read pasteboard types other than the default types. Use the
rangeForUserTextChange (page 2913) method to obtain the range of characters (if any) to be replaced by
the new data.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rangeForUserTextChange (page 2913)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextView.h

replaceTextContainer:
Replaces the text container for the group of text system objects containing the receiver, keeping the association
between the receiver and its layout manager intact.

- (void)replaceTextContainer:(NSTextContainer *)aTextContainer

2916 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Parameters
aTextContainer

The new text container. This method raises NSInvalidArgumentException if aTextContainer
is nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithFrame:textContainer: (page 2896)
– setTextContainer: (page 2945)

Related Sample Code
ClipboardViewer

Declared In
NSTextView.h

resignFirstResponder
Notifies the receiver that it’s been asked to relinquish its status as first responder. (Available in Mac OS X
v10.0 through Mac OS X v10.4. Use the NSWindow method makeFirstResponder: (page 3344) to make a
text view the first responder.)

- (BOOL)resignFirstResponder

Return Value
YES if the text view will resign first responder, NO otherwise.

Discussion
If the object that will become the new first responder is a text view attached to the same layout manager as
the receiver, this method returns YES with no further action. Otherwise, this method sends a
textShouldEndEditing: message to its delegate (if any). If the delegate returns NO, this method returns
NO. If the delegate returns YES, this method hides the selection highlighting and posts an
NSTextDidEndEditingNotification (page 2752) to the default notification center and then returns YES.

Use the NSWindow method makeFirstResponder: (page 3344), not this method, to make a text view the
first responder. Never invoke this method directly.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

See Also
– breakUndoCoalescing (page 2883)

Declared In
NSTextView.h

rulerView:didAddMarker:
Modifies the paragraph style of the paragraphs containing the selection to accommodate a new marker.

- (void)rulerView:(NSRulerView *)aRulerView didAddMarker:(NSRulerMarker *)aMarker

Instance Methods 2917
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Parameters
aRulerView

The ruler view sending the message.

aMarker
The marker that was added.

Discussion
This method records the change by invoking didChangeText (page 2890) after adding the marker.

NSTextView checks for permission to make the change in its rulerView:shouldAddMarker: (page 2920)
method, which invokes shouldChangeTextInRange:replacementString: (page 2949) to send out the
proper request and notifications, and only invokes this method if permission is granted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representedObject (page 2239) (NSRulerMarker)
– rulerView:didMoveMarker: (page 2918)
– rulerView:didRemoveMarker: (page 2919)

Declared In
NSTextView.h

rulerView:didMoveMarker:
Modifies the paragraph style of the paragraphs containing the selection to record the new location of the
marker.

- (void)rulerView:(NSRulerView *)aRulerView didMoveMarker:(NSRulerMarker *)aMarker

Parameters
aRulerView

The ruler view sending the message.

aMarker
The marker that was moved.

Discussion
This method records the change by invoking didChangeText (page 2890) after moving the marker.

NSTextView checks for permission to make the change in its rulerView:shouldMoveMarker: (page 2920)
method, which invokes shouldChangeTextInRange:replacementString: (page 2949) to send out the
proper request and notifications, and only invokes this method if permission is granted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representedObject (page 2239) (NSRulerMarker)
– rulerView:didAddMarker: (page 2917)
– rulerView:didRemoveMarker: (page 2919)

2918 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Declared In
NSTextView.h

rulerView:didRemoveMarker:
Modifies the paragraph style of the paragraphs containing the selection—if possible—by removing the
specified marker.

- (void)rulerView:(NSRulerView *)aRulerView didRemoveMarker:(NSRulerMarker *)aMarker

Parameters
aRulerView

The ruler view sending the message.

aMarker
The marker that was removed.

Discussion
This method records the change by invoking didChangeText (page 2890) after removing the marker.

NSTextView checks for permission to move or remove a tab stop in its
rulerView:shouldMoveMarker: (page 2920) method, which invokes
shouldChangeTextInRange:replacementString: (page 2949) to send out the proper request and
notifications, and only invokes this method if permission is granted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representedObject (page 2239) (NSRulerMarker)
– shouldChangeTextInRange:replacementString: (page 2949)
– rulerView:didAddMarker: (page 2917)
– rulerView:didMoveMarker: (page 2918)

Declared In
NSTextView.h

rulerView:handleMouseDown:
Adds a left tab marker to the ruler at the location clicked.

- (void)rulerView:(NSRulerView *)aRulerView handleMouseDown:(NSEvent *)theEvent

Parameters
aRulerView

The ruler view sending the message.

theEvent
The mouse down event.

Discussion
A subclass can override this method to provide other behavior, such as creating guidelines. This method is
invoked once with theEvent when the user first clicks the ruler area of aRulerView, as described in the
NSRulerView class specification.

Instance Methods 2919
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

rulerView:shouldAddMarker:
Returns whether a new marker can be added.

- (BOOL)rulerView:(NSRulerView *)aRulerView shouldAddMarker:(NSRulerMarker *)aMarker

Parameters
aRulerView

The ruler view sending the message.

aMarker
The marker to be added.

Return Value
YES if aMarker can be added, NO otherwise.

Discussion
The receiver checks for permission to make the change by invoking
shouldChangeTextInRange:replacementString: (page 2949) and returning the return value of that
message. If the change is allowed, the receiver is then sent arulerView:didAddMarker: (page 2917) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rulerView:shouldMoveMarker: (page 2920)
– rulerView:shouldRemoveMarker: (page 2921)

Declared In
NSTextView.h

rulerView:shouldMoveMarker:
Returns whether the marker should be moved.

- (BOOL)rulerView:(NSRulerView *)aRulerView shouldMoveMarker:(NSRulerMarker *)aMarker

Parameters
aRulerView

The ruler view sending the message.

aMarker
The marker to be moved.

Return Value
YES if aMarker can be moved, NO otherwise.

2920 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Discussion
This method controls whether an existing marker aMarker can be moved. The receiver checks for permission
to make the change by invoking shouldChangeTextInRange:replacementString: (page 2949) and
returning the return value of that message. If the change is allowed, the receiver is then sent a
rulerView:didMoveMarker: (page 2918) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rulerView:shouldAddMarker: (page 2920)
– rulerView:shouldRemoveMarker: (page 2921)

Declared In
NSTextView.h

rulerView:shouldRemoveMarker:
Returns whether the marker should be removed.

- (BOOL)rulerView:(NSRulerView *)aRulerView shouldRemoveMarker:(NSRulerMarker
*)aMarker

Parameters
aRulerView

The ruler view sending the message.

aMarker
The marker to be removed.

Return Value
YES if aMarker can be removed, NO otherwise.

Discussion
Only markers that represent tab stops can be removed. This method returns YES if aMarker represents an
NSTextTab object, NO otherwise. Because this method can be invoked repeatedly as the user drags a ruler
marker, it returns that value immediately. If the change is allowed and the user actually removes the marker,
the receiver is also sent a rulerView:didRemoveMarker: (page 2919) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rulerView:shouldAddMarker: (page 2920)
– rulerView:shouldMoveMarker: (page 2920)

Declared In
NSTextView.h

rulerView:willAddMarker:atLocation:
Returns a potentially modified location to which the marker should be added.

Instance Methods 2921
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

- (CGFloat)rulerView:(NSRulerView *)aRulerView willAddMarker:(NSRulerMarker *)aMarker
atLocation:(CGFloat)location

Parameters
aRulerView

The ruler view sending the message.

aMarker
The marker to be added.

location
The new location for the marker.

Return Value
The modified location to which the marker should be added.

Discussion
This method ensures that the proposed location of aMarker lies within the appropriate bounds for the
receiver’s text container, returning the modified location.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rulerView:didAddMarker: (page 2917)

Declared In
NSTextView.h

rulerView:willMoveMarker:toLocation:
Returns a potentially modified location to which the marker should be moved.

- (CGFloat)rulerView:(NSRulerView *)aRulerView willMoveMarker:(NSRulerMarker
*)aMarker toLocation:(CGFloat)location

Parameters
aRulerView

The ruler view sending the message.

aMarker
The marker to be moved.

location
The new location for the marker.

Return Value
The modified location to which the marker should be moved.

Discussion
This method ensures that the proposed location of aMarker lies within the appropriate bounds for the
receiver’s text container.

Availability
Available in Mac OS X v10.0 and later.

2922 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

See Also
– rulerView:didMoveMarker: (page 2918)

Declared In
NSTextView.h

selectedRanges
Returns an array containing the ranges of characters selected in the receiver’s layout manager.

- (NSArray *)selectedRanges

Return Value
A non-nil, non-empty array of objects responding to the NSValue rangeValue method. In addition, the
objects in the array are sorted, non-overlapping, non-contiguous, and (except for the case of a single range)
have non-zero-length.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setSelectedRanges: (page 2942)

Declared In
NSTextView.h

selectedTextAttributes
Returns the attributes used to indicate the selection.

- (NSDictionary *)selectedTextAttributes

Return Value
A dictionary of attributes used to indicate the selection. Text color, background color, and underline are the
only supported attributes for selected text. Typically only the text background color is used.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedRange (page 3866) (NSTextInput)
– setSelectedTextAttributes: (page 2943)

Declared In
NSTextView.h

selectionAffinity
Returns the preferred direction of selection.

- (NSSelectionAffinity)selectionAffinity

Instance Methods 2923
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Return Value
The preferred direction of selection.

Discussion
Selection affinity determines whether, for example, the insertion point appears after the last character on a
line or before the first character on the following line in cases where text wraps across line boundaries.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectedRange:affinity:stillSelecting: (page 2941)

Declared In
NSTextView.h

selectionGranularity
Returns the current selection granularity, used during mouse tracking to modify the range of the selection.

- (NSSelectionGranularity)selectionGranularity

Return Value
The current selection granularity.

Discussion
SeesetSelectionGranularity: (page 2944) for a discussion of how selection granularity affects the behavior
of selection extension.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectionRangeForProposedRange:granularity: (page 2924)
– setSelectionGranularity: (page 2944)

Declared In
NSTextView.h

selectionRangeForProposedRange:granularity:
Returns an adjusted selected range based on the selection granularity.

- (NSRange)selectionRangeForProposedRange:(NSRange)proposedSelRange
granularity:(NSSelectionGranularity)granularity

Parameters
proposedSelRange

The proposed selected range.

granularity
The selection granularity.

2924 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Return Value
The adjusted selected range, taking into account the selection granularity.

Discussion
This method is invoked repeatedly during mouse tracking to modify the range of the selection. Override this
method to specialize selection behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectionGranularity: (page 2944)

Declared In
NSTextView.h

setAcceptsGlyphInfo:
Sets whether the receiver accepts the glyph info attribute.

- (void)setAcceptsGlyphInfo:(BOOL)flag

Parameters
flag

YES if the receiver should accept the NSGlyphInfoAttributeName attribute from text input sources
such as input methods and the pasteboard, NO otherwise.

Availability
Available in Mac OS X v10.2 and later.

See Also
– acceptsGlyphInfo (page 2880)

Declared In
NSTextView.h

setAlignment:range:
Sets the alignment of the paragraphs containing characters in the specified range.

- (void)setAlignment:(NSTextAlignment)alignment range:(NSRange)aRange

Parameters
alignment

The new alignment.

aRange
The range of characters whose paragraphs will have their alignment set.

Discussion
This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

Instance Methods 2925
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– rangeForUserParagraphAttributeChange (page 2912)

Declared In
NSTextView.h

setAllowedInputSourceLocales:
Sets an array of locale identifiers representing input sources that are allowed to be enabled when the receiver
has the keyboard focus.

- (void)setAllowedInputSourceLocales:(NSArray *)localeIdentifiers

Parameters
localeIdentifiers

The new locale identifiers of allowed input sources.

Discussion
You can use the meta-locale identifier,NSAllRomanInputSourcesLocaleIdentifier (page 2972), to specify
input sources that are limited for Roman script editing.

Availability
Available in Mac OS X v10.5 and later.

See Also
– allowedInputSourceLocales (page 2881)

Declared In
NSTextView.h

setAllowsDocumentBackgroundColorChange:
Sets whether the receiver allows its background color to change.

- (void)setAllowsDocumentBackgroundColorChange:(BOOL)flag

Parameters
flag

YES if the receiver allows the background color to change, otherwise NO.

Discussion
This corresponds to the background color of the entirety of the text view, not just to a selected range of text.

Availability
Available in Mac OS X v10.3 and later.

See Also
– allowsDocumentBackgroundColorChange (page 2881)
– changeDocumentBackgroundColor: (page 2884)

2926 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Related Sample Code
CIAnnotation
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextView.h

setAllowsImageEditing:
Specifies whether image attachments should permit editing of their images.

- (void)setAllowsImageEditing:(BOOL)flag

Parameters
flag

If YES, image editing is allowed; if NO, it is not allowed.

Discussion
For image editing to be allowed, the text view must be editable and the text attachment cell must support
image editing.

Availability
Available in Mac OS X v10.5 and later.

See Also
– allowsImageEditing (page 2881)

Declared In
NSTextView.h

setAllowsUndo:
Sets whether undo support is enabled.

- (void)setAllowsUndo:(BOOL)flag

Parameters
flag

YES to enable undo support, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsUndo (page 2882)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112
TextSizingExample

Instance Methods 2927
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Declared In
NSTextView.h

setAutomaticDashSubstitutionEnabled:
Sets whether automatic dash substitution is enabled.

- (void)setAutomaticDashSubstitutionEnabled:(BOOL)flag

Parameters
flag

YES if it should be enabled, otherwise NO.

Discussion
Turning on automatic dash substitution enables automatic conversion of sequences of ASCII hyphen (-)
characters to typographic dashes.

Availability
Available in Mac OS X v10.6 and later.

See Also
– isAutomaticDashSubstitutionEnabled (page 2899)
– toggleAutomaticDashSubstitution: (page 2957)

Declared In
NSTextView.h

setAutomaticDataDetectionEnabled:
Sets whether automatic data detection is enabled.

- (void)setAutomaticDataDetectionEnabled:(BOOL)flag

Parameters
flag

YES if it should be enabled, otherwise NO.

Discussion
Automatic data detection enables detection of dates, addresses, and phone numbers.

Availability
Available in Mac OS X v10.6 and later.

See Also
– isAutomaticDataDetectionEnabled (page 2899)
– toggleAutomaticDataDetection: (page 2958)

Declared In
NSTextView.h

2928 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

setAutomaticLinkDetectionEnabled:
Enables or disables automatic link detection.

- (void)setAutomaticLinkDetectionEnabled:(BOOL)flag

Parameters
flag

If YES, automatic link detection is enabled; if NO, it is disabled.

Discussion
Automatic link detection causes strings representing URLs typed in the view to be automatically made into
links to those URLs.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isAutomaticLinkDetectionEnabled (page 2899)
– toggleAutomaticLinkDetection: (page 2958)
URLAtIndex:effectiveRange: (page 270) (NSAttributedString)

Declared In
NSTextView.h

setAutomaticQuoteSubstitutionEnabled:
Enables and disables automatic quotation mark substitution.

- (void)setAutomaticQuoteSubstitutionEnabled:(BOOL)flag

Parameters
flag

If YES, automatic quotation mark substitution is enabled; if NO, it is disabled.

Discussion
Automatic quote substitution causes ASCII quotation marks and apostrophes to be automatically replaced,
on a context-dependent basis, with more typographically accurate symbols.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isAutomaticQuoteSubstitutionEnabled (page 2900)
– toggleAutomaticQuoteSubstitution: (page 2959)

Declared In
NSTextView.h

setAutomaticSpellingCorrectionEnabled:
Sets whether automatic spelling correction is enabled.

- (void)setAutomaticSpellingCorrectionEnabled:(BOOL)flag

Instance Methods 2929
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Parameters
flag

YES if it should be enabled, otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

See Also
– isAutomaticSpellingCorrectionEnabled (page 2900)
– toggleAutomaticSpellingCorrection: (page 2959)

Declared In
NSTextView.h

setAutomaticTextReplacementEnabled:
Sets whether automatic text replacement is enabled.

- (void)setAutomaticTextReplacementEnabled:(BOOL)flag

Parameters
flag

YES if it should be enabled, otherwise NO.

Discussion
Turning on automatic text replacement enables automatic substitution of a variety of static text items based
on user preferences.

Availability
Available in Mac OS X v10.6 and later.

See Also
– isAutomaticTextReplacementEnabled (page 2901)
– toggleAutomaticTextReplacement: (page 2960)

Declared In
NSTextView.h

setBackgroundColor:
Sets the receiver’s background color.

- (void)setBackgroundColor:(NSColor *)aColor

Parameters
aColor

The new background color.

Special Considerations

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

2930 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDrawsBackground: (page 2934)
– backgroundColor (page 2882)

Related Sample Code
CIAnnotation
OpenCL NBody Simulation Example
Quartz Composer WWDC 2005 TextEdit
TextSizingExample

Declared In
NSTextView.h

setBaseWritingDirection:range:
Sets the base writing direction of a range of text.

- (void)setBaseWritingDirection:(NSWritingDirection)writingDirection
range:(NSRange)range

Parameters
writingDirection

The new writing direction for the text in range.

range
The range of text that will have the new writing direction.

Discussion
Invoke this method to change the base writing direction from left-to-right to right-to-left for languages like
Hebrew and Arabic, for example.

This method does not include undo support by default. Clients must invoke
shouldChangeTextInRanges:replacementStrings: (page 2950) or
shouldChangeTextInRange:replacementString: (page 2949) to include this method in an undoable
action.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTextView.h

setConstrainedFrameSize:
Attempts to set the frame size as if by user action.

- (void)setConstrainedFrameSize:(NSSize)desiredSize

Instance Methods 2931
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Parameters
desiredSize

The new desired size.

Discussion
This method respects the receiver’s existing minimum and maximum sizes and by whether resizing is
permitted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minSize (page 2727) (NSText)
– maxSize (page 2727) (NSText)
– isHorizontallyResizable (page 2725) (NSText)
– isVerticallyResizable (page 2727) (NSText)

Related Sample Code
CIAnnotation

Declared In
NSTextView.h

setContinuousSpellCheckingEnabled:
Enables or disables continuous spell checking.

- (void)setContinuousSpellCheckingEnabled:(BOOL)flag

Parameters
flag

If YES, enables continuous spell checking; if NO, disables it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isContinuousSpellCheckingEnabled (page 2902)
– toggleContinuousSpellChecking: (page 2960)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextView.h

setDefaultParagraphStyle:
Sets the receiver’s default paragraph style.

- (void)setDefaultParagraphStyle:(NSParagraphStyle *)paragraphStyle

2932 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Parameters
paragraphStyle

The new default paragraph style.

Availability
Available in Mac OS X v10.3 and later.

See Also
– defaultParagraphStyle (page 2889)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextView.h

setDelegate:
Sets the delegate for all text views sharing the receiver’s layout manager.

- (void)setDelegate:(id < NSTextViewDelegate >)anObject

Parameters
anObject

The new delegate object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 2889)

Related Sample Code
CIAnnotation
FunHouse
Quartz Composer WWDC 2005 TextEdit
Sketch-112
TextSizingExample

Declared In
NSTextView.h

setDisplaysLinkToolTips:
Enables or disables automatic display of link tooltips.

- (void)setDisplaysLinkToolTips:(BOOL)flag

Parameters
flag

If YES, automatic link tooltip display is enabled; if NO, it is disabled.

Instance Methods 2933
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Discussion
The default value for this feature is YES; clients who do not wish tooltips to be displayed automatically must
explicitly disable it.

Availability
Available in Mac OS X v10.5 and later.

See Also
– displaysLinkToolTips (page 2890)

Declared In
NSTextView.h

setDrawsBackground:
Sets whether the receiver draws its background.

- (void)setDrawsBackground:(BOOL)flag

Parameters
flag

YES to cause the receiver to fill its background with the background color, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundColor: (page 2930)
– drawsBackground (page 2893)

Related Sample Code
CIAnnotation
QuickLookSketch
Sketch+Accessibility
Sketch-112
TextSizingExample

Declared In
NSTextView.h

setEditable:
Controls whether the text views sharing the receiver’s layout manager allow the user to edit text.

- (void)setEditable:(BOOL)flag

Parameters
flag

YES to allow the user to edit text and attributes of all text views sharing the receiver's layout manager,
NO otherwise.

Discussion
If a text view is made editable, it’s also made selectable. Text views are editable by default.

2934 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectable: (page 2940)
– isEditable (page 2902)

Related Sample Code
FunHouse
GLUT
LSMSmartCategorizer
Quartz Composer WWDC 2005 TextEdit
TextSizingExample

Declared In
NSTextView.h

setEnabledTextCheckingTypes:
Sets the default text checking types.

- (void)setEnabledTextCheckingTypes:(NSTextCheckingTypes)checkingTypes

Parameters
checkingTypes

The types of text checking to perform by default. See NSTextCheckingTypes for possible values.

Availability
Available in Mac OS X v10.6 and later.

See Also
– enabledTextCheckingTypes (page 2894)

Declared In
NSTextView.h

setFieldEditor:
Controls whether the text views sharing the receiver’s layout manager behave as field editors.

- (void)setFieldEditor:(BOOL)flag

Parameters
flag

YES to cause the text views sharing the receiver's layout manager to behave as field editors, NO
otherwise.

Discussion
Field editors interpret Tab, Shift-Tab, and Return (Enter) as cues to end editing and possibly to change the
first responder. Non-field editors instead accept these characters as text input. See Text Fields, Text Views,
and the Field Editor for more information on field editors. By default, text views don’t behave as field editors.

Instance Methods 2935
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– isFieldEditor (page 2902)

Related Sample Code
CIAnnotation
TextSizingExample

Declared In
NSTextView.h

setGrammarCheckingEnabled:
Enables and disables grammar checking.

- (void)setGrammarCheckingEnabled:(BOOL)flag

Parameters
flag

If YES, grammar checking is enabled; if NO, it is disabled.

Discussion
If grammar checking is enabled, then it is performed alongside spell checking, whenever the text view checks
spelling, whether continuously or manually.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isGrammarCheckingEnabled (page 2903)
– toggleGrammarChecking: (page 2961)
– setSpellingState:range: (page 2945)

Declared In
NSTextView.h

setImportsGraphics:
Controls whether the text views sharing the receiver’s layout manager allow the user to import files by
dragging.

- (void)setImportsGraphics:(BOOL)flag

Parameters
flag

YES to allow the user to import files by dragging onto the text views sharing the receiver’s layout
manager, NO otherwise.

Discussion
Text views that are set to accept dragged files are also set to allow rich text. By default, text views don’t
accept dragged files but do allow rich text.

2936 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– textStorage (page 2957)
– setRichText: (page 2939)
– importsGraphics (page 2895)

Related Sample Code
CIAnnotation
FunHouse
GLUT
Quartz Composer WWDC 2005 TextEdit
TextSizingExample

Declared In
NSTextView.h

setInsertionPointColor:
Sets the color of the insertion point

- (void)setInsertionPointColor:(NSColor *)aColor

Parameters
aColor

The new color.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawInsertionPointInRect:color:turnedOn: (page 2892)
– shouldDrawInsertionPoint (page 2950)
– insertionPointColor (page 2897)

Declared In
NSTextView.h

setLinkTextAttributes:
Sets the attributes used to draw the onscreen presentation of link text.

- (void)setLinkTextAttributes:(NSDictionary *)attributeDictionary

Parameters
attributeDictionary

A dictionary of attributes corresponding to the onscreen presentation of link text.

Discussion
Link text attributes are applied as temporary attributes to any text with a link attribute. Candidates include
those attributes that do not affect layout.

Instance Methods 2937
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

In applications created prior to Mac OS X v10.3, the default value is an empty dictionary. In applications
created with Mac OS X v10.3 or greater, the default attributes specify blue text with a single underline and
the pointing hand cursor.

Availability
Available in Mac OS X v10.3 and later.

See Also
– linkTextAttributes (page 2905)

Declared In
NSTextView.h

setMarkedTextAttributes:
Sets the attributes used to draw marked text.

- (void)setMarkedTextAttributes:(NSDictionary *)attributes

Parameters
attributes

A dictionary of attributes used to draw marked text. Text color, background color, and underline are
the only supported attributes for marked text.

Availability
Available in Mac OS X v10.0 and later.

See Also
– markedTextAttributes (page 2906)
– markedRange (page 3865) (NSTextInput)

Declared In
NSTextView.h

setNeedsDisplayInRect:avoidAdditionalLayout:
Marks the receiver as requiring display.

- (void)setNeedsDisplayInRect:(NSRect)aRect avoidAdditionalLayout:(BOOL)flag

Parameters
aRect

The rectangle in which display is required.

flag
A value of YES causes the receiver to not perform any layout, even if this means that portions of the
text view remain empty. Otherwise the receiver performs at least as much layout as needed to display
aRect.

Discussion
NSTextView overrides the NSViewsetNeedsDisplayInRect: (page 3225) method to invoke this method
with a flag argument of NO.

2938 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

setRichText:
Controls whether the text views sharing the receiver’s layout manager allow the user to apply attributes to
specific ranges of text.

- (void)setRichText:(BOOL)flag

Parameters
flag

YES to allow the user to apply attributes to specific ranges of text in text views sharing the receiver’s
layout manager, NO otherwise.

Discussion
Text fields that don't allow rich text also don't accept dragged files. By default, text views let the user apply
multiple attributes to text, but don’t accept dragged files.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textStorage (page 2957)
– isRichText (page 2903)
– setImportsGraphics: (page 2936)

Related Sample Code
CIAnnotation
FunHouse
Quartz Composer WWDC 2005 TextEdit
TextSizingExample
TipWrapper

Declared In
NSTextView.h

setRulerVisible:
Controls whether the scroll view enclosing text views sharing the receiver’s layout manager displays the
ruler.

- (void)setRulerVisible:(BOOL)flag

Parameters
flag

YES to show the ruler, NO to hide the ruler. By default, the ruler is hidden.

Instance Methods 2939
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setUsesRuler: (page 2948)
– isRulerVisible (page 2904)
– toggleRuler: (page 2745) (NSText)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextView.h

setSelectable:
Controls whether the text views sharing the receiver’s layout manager allow the user to select text.

- (void)setSelectable:(BOOL)flag

Parameters
flag

YES to allow the user to select text of all text views sharing the receiver's layout manager; otherwise,
NO.

Discussion
If a text view is made not selectable, it’s also made not editable, and buttons on the Find panel are dimmed.
Text views are by default both editable and selectable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEditable: (page 2934)
– isSelectable (page 2904)

Related Sample Code
CIAnnotation
FunHouse
GLUT
TextSizingExample

Declared In
NSTextView.h

setSelectedRange:
Sets the selection to the characters in a single range.

- (void)setSelectedRange:(NSRange)charRange

2940 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Parameters
charRange

The range of characters to select. This range must begin and end on glyph boundaries and not split
base glyphs and their nonspacing marks.

Discussion
This method sets the selection to the characters in charRange, resets the selection granularity to
NSSelectByCharacter, and posts an NSTextViewDidChangeSelectionNotification (page 2974) to
the default notification center. It also removes the marking from marked text if the new selection is greater
than the marked region.

Special Considerations

In Mac OS X version 10.4 and later, if there are multiple selections, this method acts on the first selected
subrange.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectedRange:affinity:stillSelecting: (page 2941)
– selectionAffinity (page 2923)
– selectionGranularity (page 2924)
– selectedRange (page 3866) (NSTextInput)

Related Sample Code
CocoaSpeechSynthesisExample
Quartz Composer WWDC 2005 TextEdit
SBSetFinderComment
Sketch-112
TextSizingExample

Declared In
NSTextView.h

setSelectedRange:affinity:stillSelecting:
Sets the selection to a range of characters in response to user action.

- (void)setSelectedRange:(NSRange)charRange affinity:(NSSelectionAffinity)affinity
stillSelecting:(BOOL)flag

Parameters
charRange

The range of characters to select. This range must begin and end on glyph boundaries and not split
base glyphs and their nonspacing marks.

affinity
The selection affinity for the selection. See selectionAffinity (page 2923) for more information
about how affinities work.

Instance Methods 2941
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

flag
YES to behave appropriately for a continuing selection where the user is still dragging the mouse,
NO otherwise. If YES, the receiver doesn’t send notifications or remove the marking from its marked
text. If NO, the receiver posts an NSTextViewDidChangeSelectionNotification (page 2974) to
the default notification center and removes the marking from marked text if the new selection is
greater than the marked region.

Discussion
This method resets the selection granularity to NSSelectByCharacter.

Special Considerations

In Mac OS X version 10.4 and later, if there are multiple selections, this method acts on the first selected
subrange.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setSelectedRange: (page 2940)
– selectionAffinity (page 2923)
– selectionGranularity (page 2924)
– selectedRange (page 3866) (NSTextInput)

Declared In
NSTextView.h

setSelectedRanges:
Sets the selection to the characters in an array of ranges.

- (void)setSelectedRanges:(NSArray *)ranges

Parameters
ranges

A non-nil, non-empty array of objects responding to the NSValue rangeValue method. The ranges
in the ranges array must begin and end on glyph boundaries and not split base glyphs and their
nonspacing marks.

Discussion
Sets the selection to the characters in the ranges array, resets the selection granularity to
NSSelectByCharacter, and posts an NSTextViewDidChangeSelectionNotification (page 2974) to
the default notification center. Also removes the marking from marked text if the new selection is greater
than the marked region.

Availability
Available in Mac OS X v10.4 and later.

See Also
– selectedRanges (page 2923)
– setSelectedRanges:affinity:stillSelecting: (page 2943)
– selectionAffinity (page 2923)
– selectionGranularity (page 2924)

2942 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Declared In
NSTextView.h

setSelectedRanges:affinity:stillSelecting:
Sets the selection to the characters in an array of ranges in response to user action.

- (void)setSelectedRanges:(NSArray *)ranges affinity:(NSSelectionAffinity)affinity
stillSelecting:(BOOL)stillSelectingFlag

Parameters
ranges

A non-nil, non-empty array of objects responding to the NSValue rangeValue method. The ranges
in the ranges array must begin and end on glyph boundaries and not split base glyphs and their
nonspacing marks.

affinity
The selection affinity for the selection. See selectionAffinity (page 2923) for more information
about how affinities work.

stillSelectingFlag
YES to behave appropriately for a continuing selection where the user is still dragging the mouse,
NO otherwise. If YES, the receiver doesn’t send notifications or remove the marking from its marked
text. If NO, the receiver posts an NSTextViewDidChangeSelectionNotification (page 2974) to
the default notification center and removes the marking from marked text if the new selection is
greater than the marked region.

Discussion
This method also resets the selection granularity to NSSelectByCharacter.

Availability
Available in Mac OS X v10.4 and later.

See Also
– selectedRanges (page 2923)
– setSelectedRanges: (page 2942)
– selectionAffinity (page 2923)
– selectionGranularity (page 2924)

Declared In
NSTextView.h

setSelectedTextAttributes:
Sets the attributes used to indicate the selection.

- (void)setSelectedTextAttributes:(NSDictionary *)attributes

Parameters
attributes

A dictionary of attributes used to indicate the selection. Text color, background color, and underline
are the only supported attributes for selected text.

Instance Methods 2943
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedRange (page 3866) (NSTextInput)
– selectedTextAttributes (page 2923)

Related Sample Code
TextSizingExample

Declared In
NSTextView.h

setSelectionGranularity:
Sets the selection granularity for subsequent extension of a selection.

- (void)setSelectionGranularity:(NSSelectionGranularity)granularity

Parameters
granularity

The new granularity for selection extension.

Discussion
Selection granularity is used to determine how the selection is modified when the user Shift-clicks or drags
the mouse after a double or triple click. For example, if the user selects a word by double-clicking, the selection
granularity is set to NSSelectByWord. Subsequent Shift-clicks then extend the selection by words.

Selection granularity is reset to NSSelectByCharacter whenever the selection is set. You should always
set the selection granularity after setting the selection.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectionGranularity (page 2924)
– setSelectedRange: (page 2940)

Declared In
NSTextView.h

setSmartInsertDeleteEnabled:
Controls whether the receiver inserts or deletes space around selected words so as to preserve proper spacing
and punctuation.

- (void)setSmartInsertDeleteEnabled:(BOOL)flag

Parameters
flag

YES if the receiver should insert or delete space around selected words so as to preserve proper
spacing and punctuation, NO if it should insert and delete exactly what’s selected.

2944 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– smartInsertForString:replacingRange:beforeString:afterString: (page 2953)
– smartDeleteRangeForProposedRange: (page 2951)
– smartInsertDeleteEnabled (page 2953)

Declared In
NSTextView.h

setSpellingState:range:
Sets the spelling state, which controls the display of the spelling and grammar indicators on the given text
range.

- (void)setSpellingState:(NSInteger)value range:(NSRange)charRange

Parameters
value

The spelling state value to set. Possible values, for the temporary attribute on the layout manager
using the key NSSpellingStateAttributeName, are:

NSSpellingStateSpellingFlag (page 287) to highlight spelling issues.
NSSpellingStateGrammarFlag (page 287) to highlight grammar issues.

charRange
The character range over which to set the given spelling state.

Discussion
May be called or overridden to control setting of spelling and grammar indicators on text, used to highlight
portions of the text that are flagged for spelling or grammar issues.

Calls the method setEnabledTextCheckingTypes: (page 2935).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTextView.h

setTextContainer:
Sets the receiver’s text container.

- (void)setTextContainer:(NSTextContainer *)aTextContainer

Parameters
aTextContainer

The new text container.

Discussion
The receiver uses the layout manager and text storage of aTextContainer.

Instance Methods 2945
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Special Considerations

This method is invoked automatically when you create a text view; you should never invoke it directly, but
might want to override it. To change the text view for an established group of text system objects, send
setTextView: (page 2788) to the text container. To replace the text container for a text view and maintain
the view’s association with the existing layout manager and text storage, use replaceTextContainer: (page
2916).

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainer (page 2955)

Declared In
NSTextView.h

setTextContainerInset:
Sets the empty space the receiver leaves around its associated text container.

- (void)setTextContainerInset:(NSSize)inset

Parameters
inset

The empty space to leave around the text view's text container.

Discussion
It is possible to set the text container and view sizes and resizing behavior so that the inset cannot be
maintained exactly, although the text system tries to maintain the inset wherever possible. In any case, the
textContainerOrigin (page 2956) and size of the text container are authoritative as to the location of the
text container within the view.

The text itself can have an additional inset, inside the text container, specified by the
setLineFragmentPadding: (page 2788) method of NSTextContainer.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainerOrigin (page 2956)
– invalidateTextContainerOrigin (page 2898)
– textContainerInset (page 2956)

Related Sample Code
Sketch-112
TextSizingExample

Declared In
NSTextView.h

2946 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

setTypingAttributes:
Sets the receiver’s typing attributes.

- (void)setTypingAttributes:(NSDictionary *)attributes

Parameters
attributes

A dictionary of the new typing attributes.

Discussion
Typing attributes are reset automatically whenever the selection changes. However, if you add any user
actions that change text attributes, the action should use this method to apply those attributes afterwards.
User actions that change attributes should always set the typing attributes because there might not be a
subsequent change in selection before the next typing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– typingAttributes (page 2963)

Related Sample Code
OpenCL NBody Simulation Example
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextView.h

setUsesFindPanel:
Specifies whether the receiver allows for a find panel.

- (void)setUsesFindPanel:(BOOL)flag

Parameters
flag

YES to allow the use of a find panel, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

See Also
– usesFindPanel (page 2965)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextView.h

setUsesFontPanel:
Controls whether the text views sharing the receiver’s layout manager use the Font panel and Font menu.

Instance Methods 2947
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

- (void)setUsesFontPanel:(BOOL)flag

Parameters
flag

YES to make the text views sharing the receiver’s layout manager respond to messages from the Font
panel and from the Font menu, and update the Font panel with the selection font whenever it changes,
NO to disallow character attribute changes.

Discussion
By default, text view objects use the Font panel and menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rangeForUserCharacterAttributeChange (page 2911)
– usesFontPanel (page 2966)

Related Sample Code
FunHouse
GLUT
Quartz Composer WWDC 2005 TextEdit
TextSizingExample

Declared In
NSTextView.h

setUsesRuler:
Controls whether the text views sharing the receiver’s layout manager use a ruler.

- (void)setUsesRuler:(BOOL)flag

Parameters
flag

YES to cause text views sharing the receiver's layout manager to respond to NSRulerView client
messages and to paragraph-related menu actions, and update the ruler (when visible) as the selection
changes with its paragraph and tab attributes, otherwise NO.

Discussion
Text views must use a ruler to respond to Format menu commands. If a set of text views don't use the ruler,
the ruler is hidden, and the text views disallow paragraph attribute changes. By default, text view objects
use the ruler.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRulerVisible: (page 2939)
– rangeForUserParagraphAttributeChange (page 2912)
– usesRuler (page 2966)

Related Sample Code
FunHouse

2948 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Quartz Composer WWDC 2005 TextEdit
TextSizingExample

Declared In
NSTextView.h

shouldChangeTextInRange:replacementString:
Initiates a series of delegate messages (and general notifications) to determine whether modifications can
be made to the characters and attributes of the receiver’s text.

- (BOOL)shouldChangeTextInRange:(NSRange)affectedCharRange
replacementString:(NSString *)replacementString

Parameters
affectedCharRange

The range of characters affected by the proposed change.

replacementString
The characters that will replace those in affectedCharRange. If only text attributes are being
changed, replacementString is nil.

Return Value
YES to allow the change, NO to prohibit it.

Discussion
This method checks with the delegate as needed using textShouldBeginEditing: (page 3857) and
textView:shouldChangeTextInRange:replacementString: (page 3889).

This method must be invoked at the start of any sequence of user-initiated editing changes. If your subclass
of NSTextView implements new methods that modify the text, make sure to invoke this method to determine
whether the change should be made. If the change is allowed, complete the change by invoking the
didChangeText (page 2890) method. If you can’t determine the affected range or replacement string before
beginning changes, pass (NSNotFound, 0) and nil for these values.

Special Considerations

If the receiver is not editable, this method automatically returns NO. This result prevents instances in which
a text view could be changed by user actions even though it had been set to be non-editable.

In Mac OS X version 10.4 and later, if there are multiple selections, this method acts on the first selected
subrange.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEditable (page 2902)
– shouldChangeTextInRanges:replacementStrings: (page 2950)

Declared In
NSTextView.h

Instance Methods 2949
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

shouldChangeTextInRanges:replacementStrings:
Initiates a series of delegate messages (and general notifications) to determine whether modifications can
be made to the characters and attributes of the receiver’s text.

- (BOOL)shouldChangeTextInRanges:(NSArray *)affectedRanges
replacementStrings:(NSArray *)replacementStrings

Parameters
affectedRanges

An array of ranges to change.

replacementStrings
An array of strings containing the characters that replace those in affectedRanges, one for each
range. If only text attributes are being changed, replacementStrings is nil.

Return Value
YES to allow the change, NO to prohibit it.

Discussion
This method checks with the delegate as needed using textShouldBeginEditing: and
textView:shouldChangeTextInRanges:replacementStrings: (page 3889).

This method must be invoked at the start of any sequence of user-initiated editing changes. If your subclass
of NSTextView implements new methods that modify the text, make sure to invoke this method to determine
whether the change should be made. If the change is allowed, complete the change by invoking the
didChangeText (page 2890) method. If you can’t determine the affected range or replacement string before
beginning changes, pass nil for these values.

Special Considerations

If the receiver is not editable, this method automatically returns NO. This result prevents instances in which
a text view could be changed by user actions even though it had been set to be non-editable.

Availability
Available in Mac OS X v10.4 and later.

See Also
– isEditable (page 2902)

Declared In
NSTextView.h

shouldDrawInsertionPoint
Returns whether the receiver should draw its insertion point.

- (BOOL)shouldDrawInsertionPoint

Return Value
YES if the receiver should draw its insertion point, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

2950 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

See Also
– drawInsertionPointInRect:color:turnedOn: (page 2892)

Declared In
NSTextView.h

showFindIndicatorForRange:
Causes a temporary highlighting effect to appear around the visible portion (or portions) of the specified
range.

- (void)showFindIndicatorForRange:(NSRange)charRange

Parameters
charRange

The character range around which indicators appear.

Discussion
This method supports lozenge-style indication of find results. The indicators automatically disappear after a
certain period of time, or when the method is called again, or when any of a number of changes occur to
the view (such as changes to text, view size, or view position).

This method does not itself scroll the specified range to be visible; any desired scrolling should be done
before this method is called, first, because the method acts only on the visible portion of the specified range,
and, second, because scrolling causes the indicators to disappear. Calling this method with a zero-length
range always removes any existing indicators.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTextView.h

smartDeleteRangeForProposedRange:
Returns an extended range that includes adjacent whitespace that should be deleted along with the proposed
range in order to preserve proper spacing and punctuation.

- (NSRange)smartDeleteRangeForProposedRange:(NSRange)proposedCharRange

Parameters
proposedCharRange

The proposed character range for deleting.

Return Value
An extended range that includes adjacent whitespace that should be deleted along with the proposed range
in order to preserve proper spacing and punctuation of the text surrounding the deletion.

Discussion
NSTextView uses this method as necessary; you can also use it in implementing your own methods that
delete text, typically when the selection granularity is NSSelectByWord. To do so, invoke this method with
the proposed range to delete, then actually delete the range returned. If placing text on the pasteboard,
however, you should put only the characters from the proposed range onto the pasteboard.

Instance Methods 2951
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– smartInsertForString:replacingRange:beforeString:afterString: (page 2953)
– selectionGranularity (page 2924)
– smartInsertDeleteEnabled (page 2953)

Declared In
NSTextView.h

smartInsertAfterStringForString:replacingRange:
Returns any whitespace that needs to be added after the string to preserve proper spacing and punctuation
when the string replaces the characters in the specified range.

- (NSString *)smartInsertAfterStringForString:(NSString *)aString
replacingRange:(NSRange)charRange

Parameters
aString

The string that is replacing the characters in charRange.

charRange
The range of characters which aString is replacing.

Return Value
Any whitespace that needs to be added after aString to preserve proper spacing and punctuation when
the characters in charRange are replaced by aString. If aString is nil or if smart insertion and deletion
are disabled, this method returns nil.

Discussion
Don’t invoke this method directly. Instead, use
smartInsertForString:replacingRange:beforeString:afterString: (page 2953), which calls this
method as part of its implementation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

smartInsertBeforeStringForString:replacingRange:
Returns any whitespace that needs to be added before the string to preserve proper spacing and punctuation
when the string replaces the characters in the specified range.

- (NSString *)smartInsertBeforeStringForString:(NSString *)aString
replacingRange:(NSRange)charRange

Parameters
aString

The string that is replacing the characters in charRange.

2952 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

charRange
The range of characters which aString is replacing.

Return Value
Any whitespace that needs to be added before aString to preserve proper spacing and punctuation when
the characters in charRange are replaced by aString. If aString is nil or if smart insertion and deletion
are disabled, this method returns nil.

Discussion
Don’t invoke this method directly. Instead, use
smartInsertForString:replacingRange:beforeString:afterString: (page 2953), which calls this
method as part of its implementation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

smartInsertDeleteEnabled
Returns whether the receiver inserts or deletes space around selected words so as to preserve proper spacing
and punctuation.

- (BOOL)smartInsertDeleteEnabled

Return Value
YES if the receiver inserts or deletes space around selected words so as to preserve proper spacing and
punctuation, NO if it inserts and deletes exactly what’s selected.

Availability
Available in Mac OS X v10.0 and later.

See Also
– smartInsertForString:replacingRange:beforeString:afterString: (page 2953)
– smartDeleteRangeForProposedRange: (page 2951)
– setSmartInsertDeleteEnabled: (page 2944)

Declared In
NSTextView.h

smartInsertForString:replacingRange:beforeString:afterString:
Determines whether whitespace needs to be added around the string to preserve proper spacing and
punctuation when it replaces the characters in the specified range.

- (void)smartInsertForString:(NSString *)aString replacingRange:(NSRange)charRange
beforeString:(NSString **)beforeString afterString:(NSString **)afterString

Parameters
aString

The string that is replacing the characters in charRange.

Instance Methods 2953
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

charRange
The range of characters which aString is replacing.

beforeString
On return, a pointer to the string with the characters that should be added before aString; nil if
there are no characters to add, if aString is nil, or if smart insertion and deletion are disabled.

afterString
On return, a pointer to the string with the characters that should be added after aString; nil if
there are no characters to add, if aString is nil, or if smart insertion and deletion are disabled.

Discussion
As part of its implementation, this method calls
smartInsertAfterStringForString:replacingRange: (page 2952) and
smartInsertBeforeStringForString:replacingRange: (page 2952). To change this method’s behavior,
override those two methods instead of this one.

NSTextView uses this method as necessary. You can also use it in implementing your own methods that
insert text. To do so, invoke this method with the proper arguments, then insert beforeString, aString,
and afterString in order over charRange.

Availability
Available in Mac OS X v10.0 and later.

See Also
– smartDeleteRangeForProposedRange: (page 2951)
– smartInsertDeleteEnabled (page 2953)

Declared In
NSTextView.h

spellCheckerDocumentTag
Returns a tag identifying the text view's text as a document for the spell checker server.

- (NSInteger)spellCheckerDocumentTag

Return Value
A tag identifying the text view's text as a document for the spell checker server.

Discussion
The document tag is obtained by sending a uniqueSpellDocumentTag (page 2519) message to the spell
server the first time this method is invoked for a particular group of text views. See the NSSpellCheckerand
NSSpellServerclass specifications for more information on how this tag is used.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

startSpeaking:
Speaks the selected text, or all text if no selection.

2954 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

- (void)startSpeaking:(id)sender

Parameters
sender

The control sending the message; can be nil.

Availability
Available in Mac OS X v10.1 and later.

See Also
– stopSpeaking: (page 2955)

Declared In
NSTextView.h

stopSpeaking:
Stops the speaking of text.

- (void)stopSpeaking:(id)sender

Parameters
sender

The control sending the message; can be nil.

Availability
Available in Mac OS X v10.1 and later.

See Also
– startSpeaking: (page 2954)

Declared In
NSTextView.h

textContainer
Returns the receiver’s text container.

- (NSTextContainer *)textContainer

Return Value
The receiver's text container.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTextContainer: (page 2945)

Related Sample Code
CIAnnotation
LayoutManagerDemo
Sketch-112

Instance Methods 2955
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

TextSizingExample
TipWrapper

Declared In
NSTextView.h

textContainerInset
Returns the empty space the receiver leaves around its text container.

- (NSSize)textContainerInset

Return Value
The empty space the receiver leaves around its text container.

Availability
Available in Mac OS X v10.0 and later.

See Also
– textContainerOrigin (page 2956)
– invalidateTextContainerOrigin (page 2898)
– setTextContainerInset: (page 2946)

Declared In
NSTextView.h

textContainerOrigin
Returns the origin of the receiver’s text container.

- (NSPoint)textContainerOrigin

Return Value
The origin of the receiver’s text container, which is calculated from the receiver’s bounds rectangle, container
inset, and the container’s used rect.

Availability
Available in Mac OS X v10.0 and later.

See Also
– invalidateTextContainerOrigin (page 2898)
– textContainerInset (page 2956)
– usedRectForTextContainer: (page 1524) (NSLayoutManager)

Related Sample Code
LayoutManagerDemo

Declared In
NSTextView.h

2956 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

textStorage
Returns the receiver’s text storage object.

- (NSTextStorage *)textStorage

Return Value
The receiver’s text storage object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BackgroundExporter
CIAnnotation
FunHouse
SBSetFinderComment
VertexPerformanceTest

Declared In
NSTextView.h

tightenKerning:
Decreases the space between glyphs in the receiver’s selection, or for all glyphs if the receiver is a plain text
view.

- (void)tightenKerning:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Discussion
Kerning values are determined by the point size of the fonts in the selection.

Availability
Available in Mac OS X v10.0 and later.

See Also
– loosenKerning: (page 2905)
– useStandardKerning: (page 2966)
– turnOffKerning: (page 2962)

Declared In
NSTextView.h

toggleAutomaticDashSubstitution:
Toggles the state of the automatic dash substitution.

- (void)toggleAutomaticDashSubstitution:(id)sender

Instance Methods 2957
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Parameters
sender

The control sending the message. May be nil.

Discussion
Turning on automatic dash substitution enables automatic conversion of sequences of ASCII hyphen (-)
characters to typographic dashes.

Availability
Available in Mac OS X v10.6 and later.

See Also
– isAutomaticDashSubstitutionEnabled (page 2899)
– setAutomaticDashSubstitutionEnabled: (page 2928)

Declared In
NSTextView.h

toggleAutomaticDataDetection:
Toggles the state of the automatic data detection.

- (void)toggleAutomaticDataDetection:(id)sender

Parameters
sender

The control sending the message. May be nil.

Discussion
Automatic data detection enables detection of dates, addresses, and phone numbers.

Availability
Available in Mac OS X v10.6 and later.

See Also
– isAutomaticDataDetectionEnabled (page 2899)
– setAutomaticDataDetectionEnabled: (page 2928)

Declared In
NSTextView.h

toggleAutomaticLinkDetection:
Changes the state of automatic link detection from enabled to disabled and vice versa.

- (void)toggleAutomaticLinkDetection:(id)sender

Parameters
sender

The control sending the message; may be nil.

Discussion
Automatic link detection causes strings representing URLs typed in the view to be automatically made into
links to those URLs.

2958 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAutomaticLinkDetectionEnabled: (page 2929)
– isAutomaticLinkDetectionEnabled (page 2899)
URLAtIndex:effectiveRange: (page 270) (NSAttributedString)

Declared In
NSTextView.h

toggleAutomaticQuoteSubstitution:
Changes the state of automatic quotation mark substitution from enabled to disabled and vice versa.

- (void)toggleAutomaticQuoteSubstitution:(id)sender

Parameters
sender

The control sending the message; may be nil.

Discussion
Automatic quote substitution causes ASCII quotation marks and apostrophes to be automatically replaced,
on a context-dependent basis, with more typographically accurate symbols.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isAutomaticQuoteSubstitutionEnabled (page 2900)
– setAutomaticQuoteSubstitutionEnabled: (page 2929)

Declared In
NSTextView.h

toggleAutomaticSpellingCorrection:
Toggles the state of the automatic spelling correction.

- (void)toggleAutomaticSpellingCorrection:(id)sender

Parameters
sender

The control sending the message. May be nil.

Availability
Available in Mac OS X v10.6 and later.

See Also
– isAutomaticSpellingCorrectionEnabled (page 2900)
– setAutomaticSpellingCorrectionEnabled: (page 2929)

Instance Methods 2959
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Declared In
NSTextView.h

toggleAutomaticTextReplacement:
Toggles the state of the automatic text replacement.

- (void)toggleAutomaticTextReplacement:(id)sender

Parameters
sender

The control sending the message. May be nil.

Discussion
Turning on automatic text replacement enables automatic substitution of a variety of static text items based
on user preferences.

Availability
Available in Mac OS X v10.6 and later.

See Also
– isAutomaticTextReplacementEnabled (page 2901)
– setAutomaticTextReplacementEnabled: (page 2930)

Declared In
NSTextView.h

toggleBaseWritingDirection:
Changes the base writing direction of a paragraph between left-to-right and right-to-left. (Deprecated in
Mac OS X v10.6.)

- (void)toggleBaseWritingDirection:(id)sender

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSTextView.h

toggleContinuousSpellChecking:
Toggles whether continuous spell checking is enabled for the receiver.

- (void)toggleContinuousSpellChecking:(id)sender

Parameters
sender

The control sending the message; may be nil.

2960 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– isContinuousSpellCheckingEnabled (page 2902)
– setContinuousSpellCheckingEnabled: (page 2932)

Declared In
NSTextView.h

toggleGrammarChecking:
Changes the state of grammar checking from enabled to disabled and vice versa.

- (void)toggleGrammarChecking:(id)sender

Parameters
sender

The control sending the message; may be nil.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setGrammarCheckingEnabled: (page 2936)
– isGrammarCheckingEnabled (page 2903)

Declared In
NSTextView.h

toggleSmartInsertDelete:
Changes the state of smart insert and delete from enabled to disabled and vice versa.

- (void)toggleSmartInsertDelete:(id)sender

Parameters
sender

The control sending the message; may be nil.

Discussion
Controls whether the receiver inserts or deletes space around selected words so as to preserve proper spacing
and punctuation.

Availability
Available in Mac OS X v10.5 and later.

See Also
– smartInsertDeleteEnabled (page 2953)
– setSmartInsertDeleteEnabled: (page 2944)

Declared In
NSTextView.h

Instance Methods 2961
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

toggleTraditionalCharacterShape:
Toggles the NSCharacterShapeAttributeName attribute at the current selection.

- (void)toggleTraditionalCharacterShape:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Discussion
The NSCharacterShapeAttributeName constant is defined in NSAttributedString Application Kit Additions
Reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

turnOffKerning:
Sets the receiver to use nominal glyph spacing for the glyphs in its selection, or for all glyphs if the receiver
is a plain text view.

- (void)turnOffKerning:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– useStandardKerning: (page 2966)
– loosenKerning: (page 2905)
– tightenKerning: (page 2957)
– isRichText (page 2903)

Declared In
NSTextView.h

turnOffLigatures:
Sets the receiver to use only required ligatures when setting text, for the glyphs in the selection if the receiver
is a rich text view, or for all glyphs if it’s a plain text view.

- (void)turnOffLigatures:(id)sender

Parameters
sender

The control that sent the message; may be nil.

2962 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– useAllLigatures: (page 2965)
– isRichText (page 2903)
– useStandardLigatures: (page 2967)

Declared In
NSTextView.h

typingAttributes
Returns the current typing attributes.

- (NSDictionary *)typingAttributes

Return Value
A dictionary of the current typing attributes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTypingAttributes: (page 2947)

Declared In
NSTextView.h

updateDragTypeRegistration
Updates the acceptable drag types of all text views associated with the receiver's layout manager.

- (void)updateDragTypeRegistration

Discussion
If the receiver is editable and is a rich text view, causes all text views associated with the receiver’s layout
manager to register their acceptable drag types. If the text view isn’t editable or isn’t rich text, causes those
text views to unregister their dragged types.

Subclasses can override this method to change the conditions for registering and unregistering drag types,
whether as a group or individually based on the current state of the text view. They should invoke this method
when that state changes to perform the necessary update.

Availability
Available in Mac OS X v10.0 and later.

See Also
– acceptableDragTypes (page 2879)
– registerForDraggedTypes: (page 3201) (NSView)
– unregisterDraggedTypes (page 3239) (NSView)
– isEditable (page 2902)

Instance Methods 2963
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

– importsGraphics (page 2895)
– isRichText (page 2903)

Declared In
NSTextView.h

updateFontPanel
Updates the Font panel to contain the font attributes of the selection.

- (void)updateFontPanel

Discussion
Does nothing if the receiver doesn’t use the Font panel. You should never need to invoke this method directly,
but you can override it if needed to handle additional font attributes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesFontPanel (page 2966)

Declared In
NSTextView.h

updateInsertionPointStateAndRestartTimer:
Updates the insertion point’s location and optionally restarts the blinking cursor timer.

- (void)updateInsertionPointStateAndRestartTimer:(BOOL)flag

Parameters
flag

YES to restart the blinking cursor timer, NO otherwise.

Discussion
This method is invoked automatically whenever the insertion point needs to be moved; you should never
need to invoke it directly, but you can override it to modify insertion point behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– shouldDrawInsertionPoint (page 2950)
– drawInsertionPointInRect:color:turnedOn: (page 2892)

Declared In
NSTextView.h

2964 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

updateRuler
Updates the ruler view in the receiver’s enclosing scroll view to reflect the selection’s paragraph and marker
attributes.

- (void)updateRuler

Discussion
Does nothing if the ruler isn’t visible or if the receiver doesn’t use the ruler. You should never need to invoke
this method directly, but you can override this method if needed to handle additional ruler attributes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– usesRuler (page 2966)

Declared In
NSTextView.h

useAllLigatures:
Sets the receiver to use all ligatures available for the fonts and languages used when setting text, for the
glyphs in the selection if the receiver is a rich text view, or for all glyphs if it’s a plain text view.

- (void)useAllLigatures:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– turnOffLigatures: (page 2962)
– useStandardLigatures: (page 2967)

Declared In
NSTextView.h

usesFindPanel
Returns whether the receiver allows for a find panel.

- (BOOL)usesFindPanel

Return Value
YES if the receiver allows the use of a find panel, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 2965
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

See Also
– setUsesFindPanel: (page 2947)

Declared In
NSTextView.h

usesFontPanel
Returns whether the text views sharing the receiver’s layout manager use the Font panel.

- (BOOL)usesFontPanel

Return Value
YES if the text views sharing the receiver’s layout manager use the Font panel, NO otherwise.

Discussion
SeesetUsesFontPanel: (page 2947) andrangeForUserCharacterAttributeChange (page 2911) for the
effect this method has on a text view's behavior.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

usesRuler
Returns whether the text views sharing the receiver’s layout manager use a ruler.

- (BOOL)usesRuler

Return Value
YES if the text views sharing the receiver’s layout manager use a ruler, NO otherwise.

Discussion
SeesetUsesRuler: (page 2948) andrangeForUserParagraphAttributeChange (page 2912) for the effect
this has on a text view's behavior. By default, text view objects use the ruler.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setUsesRuler: (page 2948)

Declared In
NSTextView.h

useStandardKerning:
Set the receiver to use pair kerning data for the glyphs in its selection, or for all glyphs if the receiver is a
plain text view.

2966 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

- (void)useStandardKerning:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Discussion
This data is taken from a font’s AFM file

Availability
Available in Mac OS X v10.0 and later.

See Also
– isRichText (page 2903)
– loosenKerning: (page 2905)
– tightenKerning: (page 2957)
– turnOffKerning: (page 2962)

Declared In
NSTextView.h

useStandardLigatures:
Sets the receiver to use the standard ligatures available for the fonts and languages used when setting text,
for the glyphs in the selection if the receiver is a rich text view, or for all glyphs if it’s a plain text view.

- (void)useStandardLigatures:(id)sender

Parameters
sender

The control that sent the message; may be nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– turnOffLigatures: (page 2962)
– useAllLigatures: (page 2965)

Declared In
NSTextView.h

validRequestorForSendType:returnType:
Returns self if the text view can provide and accept the specified data types, or nil if it can't.

- (id)validRequestorForSendType:(NSString *)sendType returnType:(NSString
*)returnType

Parameters
sendType

The type of data requested.

Instance Methods 2967
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

returnType
The type of data that will be returned.

Return Value
self if sendType specifies a type of data the text view can put on the pasteboard and returnType contains
a type of data the text view can read from the pasteboard; otherwise nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– validRequestorForSendType:returnType: (page 2204) (NSResponder)

Declared In
NSTextView.h

writablePasteboardTypes
Returns the pasteboard types that can be provided from the current selection.

- (NSArray *)writablePasteboardTypes

Return Value
An array of strings describing the types that can be written to the pasteboard immediately, or an array with
no members if the text view has no text or no selection.

Discussion
Overriders can copy the result from super and add their own new types.

Availability
Available in Mac OS X v10.0 and later.

See Also
– readablePasteboardTypes (page 2915)

Declared In
NSTextView.h

writeSelectionToPasteboard:type:
Writes the current selection to the specified pasteboard using the given type.

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard type:(NSString *)type

Parameters
pboard

The pasteboard to write to.

type
The type of data to write.

Return Value
YES if the data was successfully written, NO otherwise.

2968 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Discussion
The complete set of data types being written to pboard should be declared before invoking this method.

This method should be invoked only from writeSelectionToPasteboard:types: (page 2969). You can
override this method to add support for writing new types of data to the pasteboard. You should invoke
super’s implementation of the method to handle any types of data your overridden version does not.

Availability
Available in Mac OS X v10.0 and later.

See Also
– readSelectionFromPasteboard:type: (page 2916)

Declared In
NSTextView.h

writeSelectionToPasteboard:types:
Writes the current selection to the specified pasteboard under each given type.

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard types:(NSArray *)types

Parameters
pboard

The pasteboard to write to.

types
An array of strings describing the types of data to write.

Return Value
YES if the data for any single type was successfully written, NO otherwise.

Discussion
This method declares the data types on pboard and then invokes
writeSelectionToPasteboard:type: (page 2968) or the delegate method
textView:writeCell:atIndex:toPasteboard:type: (page 3895) for each type in the types array.

You should not need to override this method. You might need to invoke this method if you are implementing
a new type of pasteboard to handle services other than copy/paste or dragging.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

Instance Methods 2969
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Constants

NSSelectionGranularity
These constants specify how much the text view extends the selection when the user drags the mouse.
They’re used by selectionGranularity (page 2924), setSelectionGranularity: (page 2944), and
selectionRangeForProposedRange:granularity: (page 2924):

typedef enum _NSSelectionGranularity {
 NSSelectByCharacter = 0,
 NSSelectByWord = 1,
 NSSelectByParagraph = 2
} NSSelectionGranularity;

Constants
NSSelectByCharacter

Extends the selection character by character.

Available in Mac OS X v10.0 and later.

Declared in NSTextView.h.

NSSelectByWord
Extends the selection word by word.

Available in Mac OS X v10.0 and later.

Declared in NSTextView.h.

NSSelectByParagraph
Extends the selection paragraph by paragraph.

Available in Mac OS X v10.0 and later.

Declared in NSTextView.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

NSSelectionAffinity
These constants specify the preferred direction of selection. They’re used by selectionAffinity (page
2923) and setSelectedRange:affinity:stillSelecting: (page 2941).

typedef enum _NSSelectionAffinity {
 NSSelectionAffinityUpstream = 0,
 NSSelectionAffinityDownstream = 1
} NSSelectionAffinity;

Constants
NSSelectionAffinityUpstream

The selection is moving toward the top of the document.

Available in Mac OS X v10.0 and later.

Declared in NSTextView.h.

2970 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

NSSelectionAffinityDownstream
The selection is moving toward the bottom of the document.

Available in Mac OS X v10.0 and later.

Declared in NSTextView.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

NSFindPanelAction
These constants define the tags for performFindPanelAction: (page 2910).

typedef enum {
 NSFindPanelActionShowFindPanel = 1,
 NSFindPanelActionNext = 2,
 NSFindPanelActionPrevious = 3,
 NSFindPanelActionReplaceAll = 4,
 NSFindPanelActionReplace = 5,
 NSFindPanelActionReplaceAndFind = 6,
 NSFindPanelActionSetFindString = 7,
 NSFindPanelActionReplaceAllInSelection = 8
} NSFindPanelAction;

Constants
NSFindPanelActionShowFindPanel

Displays the find panel.

Available in Mac OS X v10.3 and later.

Declared in NSTextView.h.

NSFindPanelActionNext
Finds the next instance of the queried text.

Available in Mac OS X v10.3 and later.

Declared in NSTextView.h.

NSFindPanelActionPrevious
Finds the previous instance of the queried text.

Available in Mac OS X v10.3 and later.

Declared in NSTextView.h.

NSFindPanelActionReplaceAll
Replaces all query instances within the text view.

Available in Mac OS X v10.3 and later.

Declared in NSTextView.h.

NSFindPanelActionReplace
Replaces a single query instance within the text view.

Available in Mac OS X v10.3 and later.

Declared in NSTextView.h.

Constants 2971
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

NSFindPanelActionReplaceAndFind
Replaces a single query instance and finds the next.

Available in Mac OS X v10.3 and later.

Declared in NSTextView.h.

NSFindPanelActionSetFindString
Sets the query string to the current selection.

Available in Mac OS X v10.3 and later.

Declared in NSTextView.h.

NSFindPanelActionReplaceAllInSelection
Replaces all query instances within the selection.

Available in Mac OS X v10.3 and later.

Declared in NSTextView.h.

NSFindPanelActionSelectAll
Selects all query instances in the text view.

Available in Mac OS X v10.4 and later.

Declared in NSTextView.h.

NSFindPanelActionSelectAllInSelection
Selects all query instances within the selection.

Available in Mac OS X v10.4 and later.

Declared in NSTextView.h.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTextView.h

Input Sources Locale Identifiers
Locale identifiers represent the input sources available.

NSString *NSAllRomanInputSourcesLocaleIdentifier

Constants
NSAllRomanInputSourcesLocaleIdentifier

A meta-locale identifier representing the set of Roman input sources available. You can pass [NSArray
arrayWithObject: NSAllRomanInputSourcesLocaleIdentifier] to the
setAllowedInputSourceLocales: (page 2926) method to restrict allowed input sources to Roman
only.

Available in Mac OS X v10.5 and later.

Declared in NSTextView.h.

Declared In
NSTextView.h

2972 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Find Panel Search Metadata
In addition to communicating search strings via the find pasteboard, the standard Find panel for NSTextView
also communicates search option metadata, including case sensitivity and substring matching options. This
metadata is stored in a property list as the NSFindPanelSearchOptionsPboardType (page 2973) value on
the global find pasteboard. As such, third party applications may store additional keys in this property list to
communicate additional metadata as desired to support the various search options common to many
third-party applications' Find panels.

NSString *NSFindPanelSearchOptionsPboardType
NSString *NSFindPanelCaseInsensitiveSearch
NSString *NSFindPanelSubstringMatch

Constants
NSFindPanelSearchOptionsPboardType

Type for NSFindPanel metadata property list. Used with the NSPasteBoard method
propertyListForType: (page 1895).

Available in Mac OS X v10.5 and later.

Declared in NSTextView.h.

NSFindPanelCaseInsensitiveSearch
Boolean value specifying whether the search is case-insensitive. YES specifies a case-insensitive search;
otherwise, NO.

Available in Mac OS X v10.5 and later.

Declared in NSTextView.h.

NSFindPanelSubstringMatch
NSNumber object containing one of the values defined in “NSFindPanelSubstringMatchType” (page
2973).

Available in Mac OS X v10.5 and later.

Declared in NSTextView.h.

Declared In
NSTextView.h

NSFindPanelSubstringMatchType
The type of substring matching used by the Find panel.

enum {
 NSFindPanelSubstringMatchTypeContains = 0,
 NSFindPanelSubstringMatchTypeStartsWith = 1,
 NSFindPanelSubstringMatchTypeFullWord = 2,
 NSFindPanelSubstringMatchTypeEndsWith = 3
};
typedef NSUInteger NSFindPanelSubstringMatchType;

Constants
NSFindPanelSubstringMatchTypeContains

Finds a word containing the search string.

Available in Mac OS X v10.5 and later.

Declared in NSTextView.h.

Constants 2973
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

NSFindPanelSubstringMatchTypeStartsWith
Finds a word starting with the search string.

Available in Mac OS X v10.5 and later.

Declared in NSTextView.h.

NSFindPanelSubstringMatchTypeFullWord
Finds a word exactly matching the search string.

Available in Mac OS X v10.5 and later.

Declared in NSTextView.h.

NSFindPanelSubstringMatchTypeEndsWith
Finds a word ending with the search string.

Available in Mac OS X v10.5 and later.

Declared in NSTextView.h.

Declared In
NSTextView.h

Notifications

NSTextView posts the following notifications as well as those declared by its superclasses, particularly
NSText. See the “Notifications” (page 2752) section in theNSText class specification for those other notifications.

NSTextViewDidChangeSelectionNotification
Posted when the selected range of characters changes.

NSTextView posts this notification whenever setSelectedRange:affinity:stillSelecting: (page
2941) is invoked, either directly or through the many methods (mouseDown: (page 2164), selectAll: (page
2194), and so on) that invoke it indirectly. When the user is selecting text, this notification is posted only once,
at the end of the selection operation. The text view's delegate receives a
textViewDidChangeSelection: (page 3895) message when this notification is posted.

The notification object is the notifying text view. The userInfo dictionary contains the following information:

ValueKey

An NSValue object containing an NSRange structure
with the originally selected range.

@"NSOldSelectedCharacterRange"

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextView.h

NSTextViewWillChangeNotifyingTextViewNotification
Posted when a new text view is established as the text view that sends notifications.

2974 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

This notification allows observers to reregister themselves for the new text view. Methods such as
removeTextContainerAtIndex: (page 1495), textContainerChangedTextView: (page 1518), and
insertTextContainer:atIndex: (page 1480) cause this notification to be posted.

The notification object is the old notifying text view, or nil. The userInfo dictionary contains the following
information:

ValueKey

The old NSTextView, if one exists, otherwise nil.@"NSOldNotifyingTextView"

The new NSTextView, if one exists, otherwise nil.@"NSNewNotifyingTextView"

There’s no delegate method associated with this notification. The text-handling system ensures that when
a new text view replaces an old one as the notifying text view, the existing delegate becomes the delegate
of the new text view, and the delegate is registered to receive text view notifications from the new notifying
text view. All other observers are responsible for registering themselves on receiving this notification.

Availability
Available in Mac OS X v10.0 and later.

See Also
removeObserver: (NSNotificationCenter)
addObserver:selector:name:object: (NSNotificationCenter)

Declared In
NSTextView.h

NSTextViewDidChangeTypingAttributesNotification
Posted when there is a change in the typing attributes within a text view. This notification is posted, via the
textViewDidChangeTypingAttributes: (page 3896) delegate method, whether or not text has changed
as a result of the attribute change.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSTextView.h

Notifications 2975
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

2976 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 154

NSTextView Class Reference

Inherits from NSTextField : NSControl : NSView : NSResponder : NSObject

Conforms to NSUserInterfaceValidations (NSTextField)
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSTokenField.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Token Field Programming Guide

Overview

NSTokenField is a subclass of NSTextField that provides tokenized editing similar to the address field in
the Mail application.

NSTokenFielduses anNSTokenFieldCell to implement much of the control’s functionality.NSTokenField
provides cover methods for most methods of NSTokenFieldCell, which invoke the corresponding cell
method.

Overview 2977
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 155

NSTokenField Class Reference

Notes: In Mac OS X v10.4 and earlier, represented objects associated with token fields had to conform to
NSCoding. Starting with Mac OS X v10.5, they no longer need to.

In Mac OS X v10.4, NSTokenField trims whitespace around tokens but it does not trim whitespace in Mac
OS X versions 10.5.0 and 10.5.1. In Mac OS X v10.5.2, you get whitespace-trimming behavior by either linking
against the v10.4 binary or linking against the v10.5 binary and not implementing the
tokenField:representedObjectForEditingString: (page 3909) method. If you do not want the
whitespace-trimming behavior, link against the v10.5 binary and implement this method, returning the
editing string if you have no represented object.

Tasks

Configuring the Token Style

– setTokenStyle: (page 2981)
Returns the token style of the receiver.

– tokenStyle (page 2982)
Returns the receiver’s token style.

Configuring the Tokenizing Character Set

– setTokenizingCharacterSet: (page 2981)
Sets the recevier’s tokenizing character set to characterSet.

– tokenizingCharacterSet (page 2981)
Returns the receiver’s tokenizing character set.

+ defaultTokenizingCharacterSet (page 2979)
Returns the default tokenizing character set.

Configuring the Completion Delay

– setCompletionDelay: (page 2980)
Sets the receiver’s completion delay.

– completionDelay (page 2979)
Returns the receiver’s completion delay.

+ defaultCompletionDelay (page 2979)
Returns the default completion delay.

Getting and Setting the Delegate

– delegate (page 2980)
Returns the token field’s delegate.

2978 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 155

NSTokenField Class Reference

– setDelegate: (page 2980)
Sets the token field’s delegate

Class Methods

defaultCompletionDelay
Returns the default completion delay.

+ (NSTimeInterval)defaultCompletionDelay

Discussion
The default completion delay is 0.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTokenField.h

defaultTokenizingCharacterSet
Returns the default tokenizing character set.

+ (NSCharacterSet *)defaultTokenizingCharacterSet

Discussion
The default tokenizing character set is “,”.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTokenField.h

Instance Methods

completionDelay
Returns the receiver’s completion delay.

- (NSTimeInterval)completionDelay

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCompletionDelay: (page 2980)

Class Methods 2979
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 155

NSTokenField Class Reference

+ defaultCompletionDelay (page 2979)

Declared In
NSTokenField.h

delegate
Returns the token field’s delegate.

- (id < NSTokenFieldDelegate >)delegate

Return Value
The token field’s delegate

Availability
Available in Mac OS X v10.6 and later.

See Also
– setDelegate: (page 2980)

Declared In
NSTokenField.h

setCompletionDelay:
Sets the receiver’s completion delay.

- (void)setCompletionDelay:(NSTimeInterval)delay

Availability
Available in Mac OS X v10.4 and later.

See Also
– completionDelay (page 2979)

Declared In
NSTokenField.h

setDelegate:
Sets the token field’s delegate

- (void)setDelegate:(id < NSTokenFieldDelegate >)anObject

Parameters
anObject

The delegate for the receiver. The delegate must conform to the NSTokenFieldDelegate Protocol
protocol.

Availability
Available in Mac OS X v10.6 and later.

2980 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 155

NSTokenField Class Reference

See Also
– delegate (page 2980)

Declared In
NSTokenField.h

setTokenizingCharacterSet:
Sets the recevier’s tokenizing character set to characterSet.

- (void)setTokenizingCharacterSet:(NSCharacterSet *)characterSet

Availability
Available in Mac OS X v10.4 and later.

See Also
– tokenizingCharacterSet (page 2981)

Declared In
NSTokenField.h

setTokenStyle:
Returns the token style of the receiver.

- (void)setTokenStyle:(NSTokenStyle)style

Availability
Available in Mac OS X v10.4 and later.

See Also
– tokenStyle (page 2982)

Declared In
NSTokenField.h

tokenizingCharacterSet
Returns the receiver’s tokenizing character set.

- (NSCharacterSet *)tokenizingCharacterSet

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTokenizingCharacterSet: (page 2981)
+ defaultTokenizingCharacterSet (page 2979)

Declared In
NSTokenField.h

Instance Methods 2981
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 155

NSTokenField Class Reference

tokenStyle
Returns the receiver’s token style.

- (NSTokenStyle)tokenStyle

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTokenStyle: (page 2981)

Declared In
NSTokenField.h

2982 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 155

NSTokenField Class Reference

Inherits from NSTextFieldCell : NSActionCell : NSCell : NSObject

Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSTokenFieldCell.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Token Field Programming Guide

Overview

NSTokenFieldCell is a subclass of NSTextFieldCell that provides tokenized editing of an array of objects
similar to the address field in the Mail application. The objects may be strings or objects that can be represented
as strings. A single token field cell can be presented in an NSTokenField control.

Tasks

Managing the Token Style

– setTokenStyle: (page 2987)
Sets the token style of the receiver.

– tokenStyle (page 2988)
Returns the receiver’s token style.

Managing the Tokenizing Character Set

+ defaultTokenizingCharacterSet (page 2985)
Returns the default tokenizing character set.

– setTokenizingCharacterSet: (page 2986)
Sets the receiver’s tokenizing character set to a given character set.

Overview 2983
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 156

NSTokenFieldCell Class Reference

– tokenizingCharacterSet (page 2987)
Returns the receiver’s tokenizing character set.

Configuring the Completion Delay

– setCompletionDelay: (page 2986)
Sets the receiver’s completion delay to a given delay.

– completionDelay (page 2985)
Returns the receiver’s completion delay.

+ defaultCompletionDelay (page 2984)
Returns the default completion delay.

Managing the Delegate

– delegate (page 2985)
Returns the receiver’s delegate.

– setDelegate: (page 2986)
Sets the receiver’s delegate.

Class Methods

defaultCompletionDelay
Returns the default completion delay.

+ (NSTimeInterval)defaultCompletionDelay

Return Value
The default completion delay.

Discussion
The default completion delay is 0.

Availability
Available in Mac OS X v10.4 and later.

See Also
– completionDelay (page 2985)
– setCompletionDelay: (page 2986)

Declared In
NSTokenFieldCell.h

2984 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 156

NSTokenFieldCell Class Reference

defaultTokenizingCharacterSet
Returns the default tokenizing character set.

+ (NSCharacterSet *)defaultTokenizingCharacterSet

Return Value
The default tokenizing character set.

Discussion
The default tokenizing character set contains the single character “,”.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTokenizingCharacterSet: (page 2986)
– tokenizingCharacterSet (page 2987)

Declared In
NSTokenFieldCell.h

Instance Methods

completionDelay
Returns the receiver’s completion delay.

- (NSTimeInterval)completionDelay

Return Value
The receiver’s completion delay.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCompletionDelay: (page 2986)
+ defaultCompletionDelay (page 2984)

Declared In
NSTokenFieldCell.h

delegate
Returns the receiver’s delegate.

- (id < NSTokenFieldCellDelegate >)delegate

Return Value
The receiver’s delegate.

Instance Methods 2985
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 156

NSTokenFieldCell Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDelegate: (page 2986)

Declared In
NSTokenFieldCell.h

setCompletionDelay:
Sets the receiver’s completion delay to a given delay.

- (void)setCompletionDelay:(NSTimeInterval)delay

Parameters
delay

The delay for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– completionDelay (page 2985)
+ defaultCompletionDelay (page 2984)

Declared In
NSTokenFieldCell.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSTokenFieldCellDelegate >)anObject

Parameters
anObject

The delegate for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– delegate (page 2985)

Declared In
NSTokenFieldCell.h

setTokenizingCharacterSet:
Sets the receiver’s tokenizing character set to a given character set.

2986 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 156

NSTokenFieldCell Class Reference

- (void)setTokenizingCharacterSet:(NSCharacterSet *)characterSet

Parameters
characterSet

The tokenizing character set for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
– tokenizingCharacterSet (page 2987)
+ defaultTokenizingCharacterSet (page 2985)

Declared In
NSTokenFieldCell.h

setTokenStyle:
Sets the token style of the receiver.

- (void)setTokenStyle:(NSTokenStyle)style

Parameters
style

The token style for the receiver. The valid values are described in “NSTokenStyle” (page 2988).

Availability
Available in Mac OS X v10.4 and later.

See Also
– tokenStyle (page 2988)

Declared In
NSTokenFieldCell.h

tokenizingCharacterSet
Returns the receiver’s tokenizing character set.

- (NSCharacterSet *)tokenizingCharacterSet

Return Value
The receiver’s tokenizing character set.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTokenizingCharacterSet: (page 2986)
+ defaultTokenizingCharacterSet (page 2985)

Declared In
NSTokenFieldCell.h

Instance Methods 2987
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 156

NSTokenFieldCell Class Reference

tokenStyle
Returns the receiver’s token style.

- (NSTokenStyle)tokenStyle

Return Value
The receiver’s token style. The valid values are described in “NSTokenStyle” (page 2988).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTokenStyle: (page 2987)

Declared In
NSTokenFieldCell.h

Constants

NSTokenStyle
The NSTokenStyle constants define how tokens are displayed and editable in the NSTokenFieldCell. These
values are used by tokenStyle (page 2988), setTokenStyle: (page 2987) and the delegate method
tokenFieldCell:styleForRepresentedObject: (page 3903).

enum {
 NSDefaultTokenStyle,
 NSPlainTextTokenStyle,
 NSRoundedTokenStyle
};
typedef NSUInteger NSTokenStyle;

Constants
NSDefaultTokenStyle

Style best used for keyword type tokens.

Available in Mac OS X v10.4 and later.

Declared in NSTokenFieldCell.h.

NSPlainTextTokenStyle
Style to use for data you want represented as plain-text and without any token background.

Available in Mac OS X v10.4 and later.

Declared in NSTokenFieldCell.h.

NSRoundedTokenStyle
Style best used for address type tokens.

Available in Mac OS X v10.4 and later.

Declared in NSTokenFieldCell.h.

2988 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 156

NSTokenFieldCell Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSToolbar.h

Companion guide Toolbar Programming Topics for Cocoa

Related sample code GridCalendar
iSpend
Quartz Composer QCTV
SimpleToolbar
ToolbarSample

Overview

NSToolbar and NSToolbarItem provide the mechanism for a titled window to display a toolbar just below
its title bar, as shown below:

Overview 2989
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

Tasks

Creating an NSToolbar Object

– initWithIdentifier: (page 2995)
Initializes a newly allocated toolbar with the specified identifier.

Toolbar Attributes

– displayMode (page 2994)
Returns the receiver’s display mode.

– setDisplayMode: (page 3000)
Sets the receiver’s display mode.

– showsBaselineSeparator (page 3002)
Returns a Boolean value that indicates whether the toolbar shows the separator between the toolbar
and the main window contents.

– setShowsBaselineSeparator: (page 3001)
Sets whether the toolbar shows the separator between the toolbar and the main window contents.

– allowsUserCustomization (page 2992)
Returns a Boolean value that indicates whether users are allowed to modify the toolbar.

– setAllowsUserCustomization: (page 2997)
Sets whether users are allowed to modify the toolbar.

– identifier (page 2994)
Returns the receiver’s identifier.

– items (page 2996)
Returns the receiver's current items, in order.

– visibleItems (page 3003)
Returns the receiver’s currently visible items.

– sizeMode (page 3002)
Returns the receiver’s size mode.

– setSizeMode: (page 3001)
Sets the receiver’s size mode.

Getting and Setting the Delegate

– delegate (page 2993)
Returns the receiver’s delegate.

– setDelegate: (page 2999)
Sets the receiver’s delegate.

2990 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

Managing Items on the Toolbar

– insertItemWithItemIdentifier:atIndex: (page 2995)
Inserts the specified item at the specified index.

– removeItemAtIndex: (page 2996)
Removes the specified item.

– setSelectedItemIdentifier: (page 3000)
Sets the receiver's selected item to the specified toolbar item.

– selectedItemIdentifier (page 2997)
Returns the identifier of the receiver’s currently selected item, or nil if there is no selection.

Displaying the Toolbar

– isVisible (page 2996)
Returns a Boolean value that indicates whether the receiver is visible.

– setVisible: (page 3002)
Sets whether the receiver is visible or hidden.

Toolbar Customization

– runCustomizationPalette: (page 2997)
Runs the receiver’s customization palette.

– customizationPaletteIsRunning (page 2993)
Returns a Boolean value that indicates whether the receiver’s customization palette is running (in
use).

Autosaving the Configuration

– autosavesConfiguration (page 2992)
Returns a Boolean value that indicates whether the receiver autosaves its configuration.

– setAutosavesConfiguration: (page 2998)
Sets whether the receiver autosaves its configuration.

– configurationDictionary (page 2993)
Returns the receiver’s configuration as a dictionary.

– setConfigurationFromDictionary: (page 2999)
Sets the receiver’s configuration using configDict.

Validating Visible Items

– validateVisibleItems (page 3003)
Called on window updates to validate the visible items.

Tasks 2991
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

Instance Methods

allowsUserCustomization
Returns a Boolean value that indicates whether users are allowed to modify the toolbar.

- (BOOL)allowsUserCustomization

Return Value
YES if users are allowed to modify the toolbar, NO otherwise. The default is NO.

Discussion
If the value is NO, then the Customize Toolbar… menu item is disabled and other modification is disabled.
This attribute does not affect the user’s ability to show or hide the toolbar.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAllowsUserCustomization: (page 2997)
– autosavesConfiguration (page 2992)

Declared In
NSToolbar.h

autosavesConfiguration
Returns a Boolean value that indicates whether the receiver autosaves its configuration.

- (BOOL)autosavesConfiguration

Return Value
YES if the receiver autosaves its configuration, otherwise NO. The default is NO.

Discussion
When autosaving is enabled, the receiver will automatically write the toolbar settings to user defaults if the
toolbar configuration changes. The toolbar's configuration is identified in user defaults by the toolbar identifier.
If there are multiple toolbars active with the same identifier, they all share the same configuration.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutosavesConfiguration: (page 2998)
– configurationDictionary (page 2993)

Declared In
NSToolbar.h

2992 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

configurationDictionary
Returns the receiver’s configuration as a dictionary.

- (NSDictionary *)configurationDictionary

Return Value
A dictionary containing configuration information for the toolbar.

Discussion
Contains displayMode, isVisible, and a list of the item identifiers currently in the toolbar.

Special Considerations

Do not depend on any details of the normal contents of a configuration dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setConfigurationFromDictionary: (page 2999)

Declared In
NSToolbar.h

customizationPaletteIsRunning
Returns a Boolean value that indicates whether the receiver’s customization palette is running (in use).

- (BOOL)customizationPaletteIsRunning

Return Value
YES if the receiver's customization palette is running, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– runCustomizationPalette: (page 2997)

Declared In
NSToolbar.h

delegate
Returns the receiver’s delegate.

- (id < NSToolbarDelegate >)delegate

Return Value
The receiver's delegate.

Discussion
Every toolbar must have a delegate, which must implement the required delegate methods.

Instance Methods 2993
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDelegate: (page 2999)

Declared In
NSToolbar.h

displayMode
Returns the receiver’s display mode.

- (NSToolbarDisplayMode)displayMode

Return Value
The receiver's display mode.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDisplayMode: (page 3000)

Declared In
NSToolbar.h

identifier
Returns the receiver’s identifier.

- (NSString *)identifier

Return Value
The receiver's identifier, a string used by the class to identify the kind of toolbar.

Discussion
Within the application all toolbars with the same identifier are synchronized to maintain the same state,
including for example, the display mode and item order. The identifier is used as the autosave name for
toolbars that save their configuration.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutosavesConfiguration:

Declared In
NSToolbar.h

2994 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

initWithIdentifier:
Initializes a newly allocated toolbar with the specified identifier.

- (id)initWithIdentifier:(NSString *)identifier

Parameters
identifier

A string used by the class to identify the kind of the toolbar.

Return Value
The initialized toolbar object.

Discussion
identifier is never seen by users and should not be localized. See identifier (page 2994) for important
information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– identifier (page 2994)

Declared In
NSToolbar.h

insertItemWithItemIdentifier:atIndex:
Inserts the specified item at the specified index.

- (void)insertItemWithItemIdentifier:(NSString *)itemIdentifier
atIndex:(NSInteger)index

Parameters
itemIdentifier

The identifier of the item to insert.

index
The index at which to insert the item.

Discussion
If the toolbar needs a new instance, it will get it from
toolbar:itemForItemIdentifier:willBeInsertedIntoToolbar: (page 3914). Typically, you should
not call this method; you should let the user reconfigure the toolbar. Seeidentifier (page 2994) for important
information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeItemAtIndex: (page 2996)

Declared In
NSToolbar.h

Instance Methods 2995
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

isVisible
Returns a Boolean value that indicates whether the receiver is visible.

- (BOOL)isVisible

Return Value
YES if the receiver is visible, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setVisible: (page 3002)

Declared In
NSToolbar.h

items
Returns the receiver's current items, in order.

- (NSArray *)items

Return Value
An array of the items in the toolbar.

Availability
Available in Mac OS X v10.0 and later.

See Also
– visibleItems (page 3003)

Declared In
NSToolbar.h

removeItemAtIndex:
Removes the specified item.

- (void)removeItemAtIndex:(NSInteger)index

Parameters
index

The index of the item to remove.

Discussion
Typically, you should not call this method; you should let the user reconfigure the toolbar. See
identifier (page 2994) for important information.

Availability
Available in Mac OS X v10.0 and later.

2996 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

See Also
– insertItemWithItemIdentifier:atIndex: (page 2995)

Declared In
NSToolbar.h

runCustomizationPalette:
Runs the receiver’s customization palette.

- (void)runCustomizationPalette:(id)sender

Parameters
sender

The control sending the message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– customizationPaletteIsRunning (page 2993)

Declared In
NSToolbar.h

selectedItemIdentifier
Returns the identifier of the receiver’s currently selected item, or nil if there is no selection.

- (NSString *)selectedItemIdentifier

Return Value
The identifier of the receiver’s currently selected item, or nil if there is no selection.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setSelectedItemIdentifier: (page 3000)

Declared In
NSToolbar.h

setAllowsUserCustomization:
Sets whether users are allowed to modify the toolbar.

- (void)setAllowsUserCustomization:(BOOL)allowsCustomization

Parameters
allowsCustomization

YES to allow users to modify the toolbar, NO otherwise.

Instance Methods 2997
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

Discussion
This value can be changed at any time. For instance, you may not want users to be able to customize the
toolbar while some event is being processed. This attribute does not affect the user’s ability to show or hide
the toolbar.

If you set the toolbar to allow customization, be sure to also set the toolbar to autosave its configuration so
the user’s changes persist.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsUserCustomization (page 2992)
– setAutosavesConfiguration: (page 2998)

Related Sample Code
iSpend
PDFKitLinker2
Quartz Composer QCTV
SimpleToolbar
ToolbarSample

Declared In
NSToolbar.h

setAutosavesConfiguration:
Sets whether the receiver autosaves its configuration.

- (void)setAutosavesConfiguration:(BOOL)flag

Parameters
flag

YES to indicate that the receiver should autosave its configuration, NO otherwise.

Discussion
Customizable toolbars should generally supporting autosaving. If you need to customize the saving behavior,
you can use the configurationDictionary (page 2993) to access the settings that should be saved.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allowsUserCustomization (page 2992)
– autosavesConfiguration (page 2992)

Related Sample Code
EnhancedDataBurn
iSpend
PDFKitLinker2
SimpleToolbar
ToolbarSample

2998 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

Declared In
NSToolbar.h

setConfigurationFromDictionary:
Sets the receiver’s configuration using configDict.

- (void)setConfigurationFromDictionary:(NSDictionary *)configDict

Parameters
configDict

A dictionary with the toolbar's configuration information. If you want to provide a custom dictionary,
you should first get the receiver's current configuration dictionary, then create a modified copy, rather
than trying to construct one yourself.

Discussion
This method immediately affects toolbars with the same identifier in all windows of your application.

Special Considerations

Do not depend on any details of the normal contents of a configuration dictionary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– configurationDictionary (page 2993)

Declared In
NSToolbar.h

setDelegate:
Sets the receiver’s delegate.

- (void)setDelegate:(id < NSToolbarDelegate >)delegate

Parameters
delegate

The new delegate object.

Discussion
Every toolbar must have a delegate, which must implement the required delegate methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 2993)

Related Sample Code
iSpend
PDFKitLinker2
Quartz Composer QCTV

Instance Methods 2999
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

SimpleToolbar
ToolbarSample

Declared In
NSToolbar.h

setDisplayMode:
Sets the receiver’s display mode.

- (void)setDisplayMode:(NSToolbarDisplayMode)displayMode

Parameters
displayMode

The new display mode.

Availability
Available in Mac OS X v10.0 and later.

See Also
– displayMode (page 2994)

Related Sample Code
EnhancedDataBurn
iSpend
PDFKitLinker2
Quartz Composer QCTV
ToolbarSample

Declared In
NSToolbar.h

setSelectedItemIdentifier:
Sets the receiver's selected item to the specified toolbar item.

- (void)setSelectedItemIdentifier:(NSString *)itemIdentifier

Parameters
itemIdentifier

The identifier of the item to select. itemIdentifier may be any identifier returned by
toolbarSelectableItemIdentifiers: (page 3916), even if it is not currently in the toolbar.

Discussion
Typically, a toolbar will manage the selection of items automatically. This method can be used to select
identifiers of custom view items, or to force a selection change. See
toolbarSelectableItemIdentifiers: (page 3916) for more details. IfitemIdentifier is not recognized
by the receiver, the current selected item identifier does not change.

Availability
Available in Mac OS X v10.3 and later.

3000 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

See Also
– selectedItemIdentifier (page 2997)
– toolbarSelectableItemIdentifiers: (page 3916) (NSToolbarDelegate)

Declared In
NSToolbar.h

setShowsBaselineSeparator:
Sets whether the toolbar shows the separator between the toolbar and the main window contents.

- (void)setShowsBaselineSeparator:(BOOL)flag

Parameters
flag

YES if the toolbar should show the separator between the toolbar and the main window contents,
otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– showsBaselineSeparator (page 3002)

Declared In
NSToolbar.h

setSizeMode:
Sets the receiver’s size mode.

- (void)setSizeMode:(NSToolbarSizeMode)sizeMode

Parameters
sizeMode

The new size mode.

Discussion
If there is no icon of the given size for a toolbar item, the toolbar item creates one by scaling an icon of
another size.

Availability
Available in Mac OS X v10.2 and later.

See Also
– sizeMode (page 3002)

Declared In
NSToolbar.h

Instance Methods 3001
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

setVisible:
Sets whether the receiver is visible or hidden.

- (void)setVisible:(BOOL)shown

Parameters
shown

YES to indicate the receiver should be made visible, NO to indicate it should be hidden.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isVisible (page 2996)

Declared In
NSToolbar.h

showsBaselineSeparator
Returns a Boolean value that indicates whether the toolbar shows the separator between the toolbar and
the main window contents.

- (BOOL)showsBaselineSeparator

Return Value
YES if the toolbar shows the separator between the toolbar and the main window contents, otherwise NO.
The default is YES.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setShowsBaselineSeparator: (page 3001)

Declared In
NSToolbar.h

sizeMode
Returns the receiver’s size mode.

- (NSToolbarSizeMode)sizeMode

Return Value
The receiver's size mode.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setSizeMode: (page 3001)

3002 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

Declared In
NSToolbar.h

validateVisibleItems
Called on window updates to validate the visible items.

- (void)validateVisibleItems

Discussion
You typically use this method by overriding it in a subclass. The default implementation of this method
iterates through the list of visible items, sending each a validate message. Override it and call super if
you want to know when this method is called.

In Mac OS X v 10.6 and later toolbars no longer automatically validate for some events, including:
NSLeftMouseDragged (page 1094),NSRightMouseDragged (page 1094),NSOtherMouseDragged (page 1094),
NSMouseEntered (page 1094),NSMouseExited (page 1094),NSScrollWheel (page 1095),NSCursorUpdate (page
1094),NSKeyDown (page 1094). In addition, validation forNSKeyUp (page 1095) andNSFlagsChanged (page 1095)
events is deferred with the timer restarting for every new deferrable event. So a sequence of key events will
not trigger any validation at all, until either a pause of .85 seconds, or an event other than NSKeyUp (page
1095) or NSFlagsChanged (page 1095) is processed. This change was made as an optimization.

To trigger validation for a single toolbar manually, send the toolbar a validateVisibleItems (page 3003)
message. To trigger validation for all toolbars, invoke NSApplication’s setWindowsNeedUpdate: (page 172)
passing YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSToolbar.h

visibleItems
Returns the receiver’s currently visible items.

- (NSArray *)visibleItems

Return Value
An array of the toolbar's visible items.

Discussion
Items in the overflow menu are not considered visible.

Availability
Available in Mac OS X v10.0 and later.

See Also
– items (page 2996)

Declared In
NSToolbar.h

Instance Methods 3003
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

Constants

NSToolbarDisplayMode
These constants specify toolbar display modes and are used by displayMode (page 2994) and
setDisplayMode: (page 3000).

enum {
 NSToolbarDisplayModeDefault,
 NSToolbarDisplayModeIconAndLabel,
 NSToolbarDisplayModeIconOnly,
 NSToolbarDisplayModeLabelOnly
};
typedef NSUInteger NSToolbarDisplayMode;

Constants
NSToolbarDisplayModeDefault

The default display mode.

Available in Mac OS X v10.0 and later.

Declared in NSToolbar.h.

NSToolbarDisplayModeIconAndLabel
The toolbar will display icons and labels.

Available in Mac OS X v10.0 and later.

Declared in NSToolbar.h.

NSToolbarDisplayModeIconOnly
The toolbar will display only icons.

Available in Mac OS X v10.0 and later.

Declared in NSToolbar.h.

NSToolbarDisplayModeLabelOnly
The toolbar will display only labels.

Available in Mac OS X v10.0 and later.

Declared in NSToolbar.h.

Declared In
NSToolbar.h

NSToolbarSizeMode
These constants specify toolbar display modes and are used bysizeMode (page 3002) andsetSizeMode: (page
3001).

3004 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

enum {
 NSToolbarSizeModeDefault,
 NSToolbarSizeModeRegular,
 NSToolbarSizeModeSmall
};
typedef NSUInteger NSToolbarSizeMode;

Constants
NSToolbarSizeModeDefault

The toolbar uses the system-defined default size, which is NSToolbarSizeModeRegular.

Available in Mac OS X v10.2 and later.

Declared in NSToolbar.h.

NSToolbarSizeModeRegular
The toolbar uses regular-sized controls and 32 by 32 pixel icons.

Available in Mac OS X v10.2 and later.

Declared in NSToolbar.h.

NSToolbarSizeModeSmall
The toolbar uses small-sized controls and 24 by 24 pixel icons.

Available in Mac OS X v10.2 and later.

Declared in NSToolbar.h.

Notifications

NSToolbarDidRemoveItemNotification
Posted after an item is removed from a toolbar. The notification item is the NSToolbar object that had an
item removed from it. The userInfo dictionary contains the following information:

ValueKey

The NSToolbarItem object that was removed.@"item"

Availability
Available in Mac OS X v10.0 and later.

See Also
– toolbarDidRemoveItem: (page 3916) (NSToolbarDelegate)

Declared In
NSToolbar.h

NSToolbarWillAddItemNotification
Posted before a new item is added to the toolbar. The notification item is the NSToolbar object having an
item added to it. The userInfo dictionary contains the following information:

Notifications 3005
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

ValueKey

The NSToolbarItem object being added.@"item"

Availability
Available in Mac OS X v10.0 and later.

See Also
– toolbarWillAddItem: (page 3917) (NSToolbarDelegate)

Declared In
NSToolbar.h

3006 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 157

NSToolbar Class Reference

Inherits from NSObject

Conforms to NSValidatedUserInterfaceItem
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSToolbarItem.h

Companion guide Toolbar Programming Topics for Cocoa

Related sample code From A View to A Movie
From A View to A Picture
PDFKitLinker2
SimpleToolbar
ToolbarSample

Overview

Each item in an NSToolbar is an instance of NSToolbarItem.

Adopted Protocols

NSCopying
– copyWithZone:

NSValidatedUserInterfaceItem
– action (page 3925)
– tag (page 3926)

Overview 3007
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

Tasks

Creating a Toolbar Item

– initWithItemIdentifier: (page 3011)
Initialize the receiver with a given identifier.

Managing Attributes

– itemIdentifier (page 3012)
Returns the receiver’s identifier.

– toolbar (page 3023)
Returns the toolbar that is using the receiver.

– label (page 3013)
Returns the receiver’s label.

– setLabel: (page 3017)
Sets the receiver’s label that appears in the toolbar.

– paletteLabel (page 3014)
Returns the label that appears when the receiver is in the customization palette.

– setPaletteLabel: (page 3019)
Sets the receiver’s label that appears when it is in the customization palette.

– toolTip (page 3023)
Returns the tooltip used when the receiver is displayed in the toolbar.

– setToolTip: (page 3021)
Sets the tooltip to be used when the receiver is displayed in the toolbar.

– menuFormRepresentation (page 3014)
Returns the receiver’s menu form representation.

– setMenuFormRepresentation: (page 3018)
Sets the receiver’s menu form.

– tag (page 3022)
Returns the receiver’s tag.

– setTag: (page 3020)
Sets the receiver’s tag.

– target (page 3023)
Returns the receiver’s target.

– setTarget: (page 3020)
Sets the receiver’s target.

– action (page 3010)
Returns the receiver’s action.

– setAction: (page 3015)
Sets the receiver’s action.

3008 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

– isEnabled (page 3012)
Returns a Boolean value that indicates whether the receiver is enabled.

– setEnabled: (page 3016)
Sets the receiver’s enabled flag.

– image (page 3011)
Returns the image of the receiver.

– setImage: (page 3016)
Sets the image for the receiver or of the view.

– view (page 3024)
Returns the receiver’s view.

– setView: (page 3021)
Use this method to make the receiver into a view item.

– minSize (page 3014)
Returns the receiver’s minimum size.

– setMinSize: (page 3019)
Sets the receiver’s minimum size to a given size.

– maxSize (page 3013)
Returns the receiver’s maximum size.

– setMaxSize: (page 3018)
Sets the receiver’s maximum size to a given size.

Visibility Priority

– visibilityPriority (page 3025)
Returns the receiver’s visibility priority.

– setVisibilityPriority: (page 3022)
Sets the receiver’s visibility priority.

Validation

– validate (page 3024)
This method is called by the receiver’s toolbar during validation.

– autovalidates (page 3010)
Returns a Boolean value that indicates whether the receiver is automatically validated by the toolbar.

– setAutovalidates: (page 3016)
Sets the receiver’s auto validation flag.

Controlling Duplicates

– allowsDuplicatesInToolbar (page 3010)
Returns a Boolean value that indicates whether the receiver can be represented in the toolbar at more
than one position.

Tasks 3009
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

Instance Methods

action
Returns the receiver’s action.

- (SEL)action

Return Value
The receiver’s action.

Discussion
For custom view items, this method sends action to the view if it responds and returns the result.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAction: (page 3015)

Related Sample Code
EnhancedDataBurn
ToolbarSample

Declared In
NSToolbarItem.h

allowsDuplicatesInToolbar
Returns a Boolean value that indicates whether the receiver can be represented in the toolbar at more than
one position.

- (BOOL)allowsDuplicatesInToolbar

Return Value
YES to allow dragging the receiver into the toolbar at more than one position, otherwise NO.

Discussion
You use this method by overriding it in a subclass to always return YES; typically, you wouldn’t call it. By
default, if an item with the same identifier is already in the toolbar, dragging it in again will effectively move
it to the new position.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSToolbarItem.h

autovalidates
Returns a Boolean value that indicates whether the receiver is automatically validated by the toolbar.

3010 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

- (BOOL)autovalidates

Return Value
YES if the receiver is automatically validated by the toolbar, otherwise NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAutovalidates: (page 3016)

Declared In
NSToolbarItem.h

image
Returns the image of the receiver.

- (NSImage *)image

Return Value
The image of the receiver.

Discussion
For an image item this method returns the result of the most recent setImage: (page 3016). For view items,
this method calls image on the view if it responds and returns the result.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImage: (page 3016)

Related Sample Code
ToolbarSample

Declared In
NSToolbarItem.h

initWithItemIdentifier:
Initialize the receiver with a given identifier.

- (id)initWithItemIdentifier:(NSString *)itemIdentifier

Parameters
itemIdentifier

The identifier for the receiver. itemIdentifier is never seen by users and should not be localized.

Discussion
The identifier is used by the toolbar and its delegate to identify the kind of the toolbar item.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3011
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

Related Sample Code
iSpend
PDFKitLinker2
Quartz Composer QCTV
SimpleToolbar
ToolbarSample

Declared In
NSToolbarItem.h

isEnabled
Returns a Boolean value that indicates whether the receiver is enabled.

- (BOOL)isEnabled

Return Value
YES if the receiver is enabled, otherwise NO.

Discussion
For a view item, this method calls isEnabled on the view if it responds and returns the result.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEnabled: (page 3016)
– view (page 3024)

Declared In
NSToolbarItem.h

itemIdentifier
Returns the receiver’s identifier.

- (NSString *)itemIdentifier

Return Value
The receiver’s identifier, which was provided in the initializer.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithItemIdentifier: (page 3011)

Declared In
NSToolbarItem.h

3012 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

label
Returns the receiver’s label.

- (NSString *)label

Return Value
The receiver’s label, which normally appears in the toolbar and in the overflow menu.

Discussion
For a discussion on labels, see “Setting a Toolbar Item’s Representation”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLabel: (page 3017)
– menuFormRepresentation (page 3014)

Related Sample Code
PDFKitLinker2
Quartz Composer QCTV
SimpleToolbar
ToolbarSample

Declared In
NSToolbarItem.h

maxSize
Returns the receiver’s maximum size.

- (NSSize)maxSize

Return Value
The receiver’s maximum size.

Discussion
See “Setting a Toolbar Item’s Size” for a discussion on item sizes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaxSize: (page 3018)

Related Sample Code
Quartz Composer QCTV

Declared In
NSToolbarItem.h

Instance Methods 3013
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

menuFormRepresentation
Returns the receiver’s menu form representation.

- (NSMenuItem *)menuFormRepresentation

Return Value
The receiver’s menu form representation.

Discussion
By default, this method returns nil, even though there is a default menu form representation.

For a discussion on menu forms, see “Setting a Toolbar Item’s Representation”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMenuFormRepresentation: (page 3018)

Related Sample Code
ToolbarSample

Declared In
NSToolbarItem.h

minSize
Returns the receiver’s minimum size.

- (NSSize)minSize

Return Value
The receiver’s minimum size.

Discussion
See “Setting a Toolbar Item’s Size” for a discussion on item sizes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMinSize: (page 3019)

Declared In
NSToolbarItem.h

paletteLabel
Returns the label that appears when the receiver is in the customization palette.

- (NSString *)paletteLabel

3014 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

Return Value
The label that appears when the receiver is in the customization palette.

Discussion
An item must have a palette label if the customization palette is to be used, and for most items it is reasonable
to setpaletteLabel to be the same value aslabel (page 3013). One reason forpaletteLabel to be different
from label (page 3013) would be if it’s more descriptive; another might be if there is no label (page 3013).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setPaletteLabel: (page 3019)

Related Sample Code
ToolbarSample

Declared In
NSToolbarItem.h

setAction:
Sets the receiver’s action.

- (void)setAction:(SEL)action

Parameters
action

The action for the receiver.

Discussion
For a custom view item, this method calls setAction: on the view if it responds.

See Action Messages for additional information on action messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– action (page 3010)
– setTarget: (page 3020)

Related Sample Code
EnhancedDataBurn
GridCalendar
iSpend
PDFKitLinker2
SimpleToolbar

Declared In
NSToolbarItem.h

Instance Methods 3015
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

setAutovalidates:
Sets the receiver’s auto validation flag.

- (void)setAutovalidates:(BOOL)resistance

Parameters
resistance

YES to set the receiver to be automatically validated by the toolbar, otherwise NO.

Discussion
By default NSToolbar automatically invokes the receiver’s validate method on a regular basis. If your validate
method is time consuming, you can disable auto validation on a per toolbar item basis.

Availability
Available in Mac OS X v10.4 and later.

See Also
– autovalidates (page 3010)

Declared In
NSToolbarItem.h

setEnabled:
Sets the receiver’s enabled flag.

- (void)setEnabled:(BOOL)enabled

Parameters
enabled

YES to enable the receiver, otherwise NO.

Discussion
For a custom view item, this method calls setEnabled: on the view if it responds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isEnabled (page 3012)

Declared In
NSToolbarItem.h

setImage:
Sets the image for the receiver or of the view.

- (void)setImage:(NSImage *)image

Parameters
image

The image for the receiver, or of the view if it has already been set for the receiver.

3016 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

Discussion
For a custom view item (one whose view has already been set), this method calls setImage: on the view if
it responds. If image contains multiple representations, NSToolbarItem chooses the most appropriately
sized representation when displaying.

Availability
Available in Mac OS X v10.0 and later.

See Also
– image (page 3011)
– view (page 3024)

Related Sample Code
EnhancedDataBurn
GridCalendar
iSpend
PDFKitLinker2
SimpleToolbar

Declared In
NSToolbarItem.h

setLabel:
Sets the receiver’s label that appears in the toolbar.

- (void)setLabel:(NSString *)label

Parameters
label

The receiver’s label that appears in the toolbar. The length of the label should be appropriate and
not too long. The label may be empty.

Discussion
The implication is that the toolbar will draw the label for the receiver, and a redraw is triggered by this
method. The toolbar is in charge of the label area. For a discussion on labels, see “Setting a Toolbar Item’s
Representation”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– label (page 3013)
– paletteLabel (page 3014)

Related Sample Code
EnhancedDataBurn
GridCalendar
iSpend
PDFKitLinker2
Quartz Composer QCTV

Instance Methods 3017
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

Declared In
NSToolbarItem.h

setMaxSize:
Sets the receiver’s maximum size to a given size.

- (void)setMaxSize:(NSSize)size

Parameters
size

The maximum size for the receiver.

Discussion
See “Setting a Toolbar Item’s Size” for a discussion on item sizes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxSize (page 3013)

Related Sample Code
iSpend
PDFKitLinker2
Quartz Composer QCTV
SimpleToolbar
ToolbarSample

Declared In
NSToolbarItem.h

setMenuFormRepresentation:
Sets the receiver’s menu form.

- (void)setMenuFormRepresentation:(NSMenuItem *)menuItem

Parameters
menuItem

The menu form for the receiver.

Discussion
For a discussion on menu forms see “Setting a Toolbar Item’s Representation”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– menuFormRepresentation (page 3014)

Related Sample Code
PDFKitLinker2

3018 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

SimpleToolbar
ToolbarSample

Declared In
NSToolbarItem.h

setMinSize:
Sets the receiver’s minimum size to a given size.

- (void)setMinSize:(NSSize)size

Parameters
size

The minimum size for the receiver.

Discussion
See “Setting a Toolbar Item’s Size” for a discussion on item sizes.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minSize (page 3014)

Related Sample Code
iSpend
PDFKitLinker2
Quartz Composer QCTV
SimpleToolbar
ToolbarSample

Declared In
NSToolbarItem.h

setPaletteLabel:
Sets the receiver’s label that appears when it is in the customization palette.

- (void)setPaletteLabel:(NSString *)paletteLabel

Parameters
paletteLabel

The label that appears when the receiver is in the customization palette.

Discussion
An item must have a palette label if the customization palette is to be used, and for most items it is reasonable
to set paletteLabel (page 3014) to be the same value as label (page 3013). One reason for
paletteLabel (page 3014) to be different from label (page 3013) would be if it’s more descriptive; another
might be if there is no label (page 3013).

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3019
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

See Also
– paletteLabel (page 3014)
– setLabel: (page 3017)

Related Sample Code
EnhancedDataBurn
GridCalendar
iSpend
PDFKitLinker2
ToolbarSample

Declared In
NSToolbarItem.h

setTag:
Sets the receiver’s tag.

- (void)setTag:(NSInteger)tag

Parameters
tag

The tag for the receiver.

Discussion
You can use the tag for your own custom purpose.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tag (page 3022)

Declared In
NSToolbarItem.h

setTarget:
Sets the receiver’s target.

- (void)setTarget:(id)target

Parameters
target

The target for the receiver.

Discussion
If target is nil, the toolbar will call action on the first responder that implements it (see About the
Responder Chain).

Availability
Available in Mac OS X v10.0 and later.

3020 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

See Also
– target (page 3023)
– setAction: (page 3015)
– validateToolbarItem: (page 3919) (NSToolbarValidation)

Related Sample Code
EnhancedDataBurn
iSpend
PDFKitLinker2
SimpleToolbar
ToolbarSample

Declared In
NSToolbarItem.h

setToolTip:
Sets the tooltip to be used when the receiver is displayed in the toolbar.

- (void)setToolTip:(NSString *)toolTip

Parameters
toolTip

A string representing the tooltip to be used when the receiver is displayed in the toolbar.

Availability
Available in Mac OS X v10.0 and later.

See Also
– toolTip (page 3023)

Related Sample Code
EnhancedDataBurn
GridCalendar
iSpend
PDFKitLinker2
ToolbarSample

Declared In
NSToolbarItem.h

setView:
Use this method to make the receiver into a view item.

- (void)setView:(NSView *)view

Parameters
view

The view for the receiver. The view and all of its contents must conform to the NSCoding protocol if
the toolbar supports customization.

Instance Methods 3021
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

Discussion
Note that many of the set/get methods are implemented by calls forwarded to view, if it responds to it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– view (page 3024)
– setMaxSize: (page 3018)
– setMinSize: (page 3019)

Related Sample Code
iSpend
PDFKitLinker2
Quartz Composer QCTV
SimpleToolbar
ToolbarSample

Declared In
NSToolbarItem.h

setVisibilityPriority:
Sets the receiver’s visibility priority.

- (void)setVisibilityPriority:(NSInteger)visibilityPriority

Parameters
visibilityPriority

The visibility priority for the receiver. The values for visibilityPriority are described in Item
Priority (page 3026).

Availability
Available in Mac OS X v10.4 and later.

See Also
– visibilityPriority (page 3025)

Declared In
NSToolbarItem.h

tag
Returns the receiver’s tag.

- (NSInteger)tag

Return Value
The receiver’s tag.

Discussion
You can use the tag for your own custom purpose.

3022 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTag: (page 3020)

Declared In
NSToolbarItem.h

target
Returns the receiver’s target.

- (id)target

Return Value
The receiver’s target.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTarget: (page 3020)

Related Sample Code
EnhancedDataBurn
SimpleToolbar
ToolbarSample

Declared In
NSToolbarItem.h

toolbar
Returns the toolbar that is using the receiver.

- (NSToolbar *)toolbar

Return Value
The toolbar that is using the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSToolbarItem.h

toolTip
Returns the tooltip used when the receiver is displayed in the toolbar.

- (NSString *)toolTip

Instance Methods 3023
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

Return Value
The tooltip used when the receiver is displayed in the toolbar.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setToolTip: (page 3021)

Related Sample Code
ToolbarSample

Declared In
NSToolbarItem.h

validate
This method is called by the receiver’s toolbar during validation.

- (void)validate

Discussion
You may invoke this method directly if you have disabled automatic validation for an item—typically you
do this for performance reasons if your validation code is slow. For further discussion, see “Validating Toolbar
Items”.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setEnabled: (page 3016)

Related Sample Code
SimpleToolbar

Declared In
NSToolbarItem.h

view
Returns the receiver’s view.

- (NSView *)view

Return Value
The receiver’s view.

Discussion
Note that many of the set/get methods are implemented by calls forwarded to the NSView object referenced
by this attribute, if the object responds to it.

Availability
Available in Mac OS X v10.0 and later.

3024 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

See Also
– setView: (page 3021)

Related Sample Code
PDFKitLinker2
Quartz Composer QCTV
SimpleToolbar
ToolbarSample

Declared In
NSToolbarItem.h

visibilityPriority
Returns the receiver’s visibility priority.

- (NSInteger)visibilityPriority

Return Value
The receiver’s visibility priority. Possible values are described in Item Priority (page 3026).

Availability
Available in Mac OS X v10.4 and later.

See Also
– setVisibilityPriority: (page 3022)

Declared In
NSToolbarItem.h

Constants

Standard Identifiers
NSToolbarItem defines the following standard toolbar item identifiers.

NSString *NSToolbarSeparatorItemIdentifier;
NSString *NSToolbarSpaceItemIdentifier;
NSString *NSToolbarFlexibleSpaceItemIdentifier;
NSString *NSToolbarShowColorsItemIdentifier;
NSString *NSToolbarShowFontsItemIdentifier;
NSString *NSToolbarCustomizeToolbarItemIdentifier;
NSString *NSToolbarPrintItemIdentifier;

Constants
NSToolbarSeparatorItemIdentifier

The Separator item.

Available in Mac OS X v10.0 and later.

Declared in NSToolbarItem.h.

Constants 3025
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

NSToolbarSpaceItemIdentifier
The Space item.

Available in Mac OS X v10.0 and later.

Declared in NSToolbarItem.h.

NSToolbarFlexibleSpaceItemIdentifier
The Flexible Space item.

Available in Mac OS X v10.0 and later.

Declared in NSToolbarItem.h.

NSToolbarShowColorsItemIdentifier
The Colors item. Shows the color panel.

Available in Mac OS X v10.0 and later.

Declared in NSToolbarItem.h.

NSToolbarShowFontsItemIdentifier
The Fonts item. Shows the font panel.

Available in Mac OS X v10.0 and later.

Declared in NSToolbarItem.h.

NSToolbarCustomizeToolbarItemIdentifier
The Customize item. Shows the customization palette.

Available in Mac OS X v10.0 and later.

Declared in NSToolbarItem.h.

NSToolbarPrintItemIdentifier
The Print item. Sends printDocument: to firstResponder, but you can change this in
toolbarWillAddItem: if you need to do so.

Available in Mac OS X v10.0 and later.

Declared in NSToolbarItem.h.

Discussion
The following figure illustrates the items in the order in which they are described above.

Declared In
NSToolbarItem.h

Item Priority
When a toolbar does not have enough space to fit all its items, it must push some items into the overflow
menu. These values allow you to suggest a priority for a toolbar item.

3026 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

enum {
 NSToolbarItemVisibilityPriorityStandard = 0,
 NSToolbarItemVisibilityPriorityLow = -1000,
 NSToolbarItemVisibilityPriorityHigh = 1000,
 NSToolbarItemVisibilityPriorityUser = 2000
};

Constants
NSToolbarItemVisibilityPriorityStandard

The default visibility priority.

Available in Mac OS X v10.4 and later.

Declared in NSToolbarItem.h.

NSToolbarItemVisibilityPriorityLow
Items with this priority will be the first items to be pushed to the overflow menu.

Available in Mac OS X v10.4 and later.

Declared in NSToolbarItem.h.

NSToolbarItemVisibilityPriorityHigh
Items with this priority are less inclined to be pushed to the overflow menu.

Available in Mac OS X v10.4 and later.

Declared in NSToolbarItem.h.

NSToolbarItemVisibilityPriorityUser
Items with this priority are the last to be pushed to the overflow menu. Only the user should set items
to this priority.

Available in Mac OS X v10.4 and later.

Declared in NSToolbarItem.h.

Discussion
To suggest that an item always remain visible, give it a value greater than
NSToolbarItemVisibilityPriorityStandard, but less thanNSToolbarItemVisibilityPriorityUser.
In configurable toolbars, users can control the priority of an item and the priority is autosaved by the NSToolbar.
These values are used by thesetVisibilityPriority: (page 3022) andvisibilityPriority (page 3025)
methods:

Declared In
NSToolbarItem.h

Constants 3027
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

3028 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 158

NSToolbarItem Class Reference

Inherits from NSToolbarItem : NSObject

Conforms to NSValidatedUserInterfaceItem (NSToolbarItem)
NSCopying (NSToolbarItem)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in NSToolbarItemGroup.h

Companion guide Toolbar Programming Topics for Cocoa

Overview

NSToolbarItemGroup is a subclass of NSToolbarItem which contains subitems. The views and labels of
the subitems are used, but the parent's attributes take precedence.

To configure an instance of NSToolbarItemGroup, you first create the individual toolbar items that will be
the subitems:

NSToolbarItem *item1 = [[[NSToolbarItem alloc] initWithItemIdentifier:@"Item1"]
 autorelease];
NSToolbarItem *item2 = [[[NSToolbarItem alloc] initWithItemIdentifier:@"Item2"]
 autorelease];
[item1 setImage:[NSImage imageNamed:@"LeftArrow"]];
[item2 setImage:[NSImage imageNamed:@"RightArrow"]];
[item1 setLabel:@"Prev"];
[item2 setLabel:@"Next"];

and then put them in a grouped item:

NSToolbarItemGroup *group = [[[NSToolbarItemGroup alloc]
initWithItemIdentifier:@"GroupItem"] autorelease];
[group setSubitems:[NSArray arrayWithObjects:item1, item2, nil]];

In this configuration, you get two grouped items, and two labels. This differs from ordinary NSToolbarItem
objects because they are attached—the user drags them together as a single item rather than separately.

If you set a label on the parent item:

[group setLabel:@"Navigate"];

you get two grouped items with one shared label.

Overview 3029
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 159

NSToolbarItemGroup Class Reference

If instead you set a view on the parent item, you get two labels with one shared view:

[group setView:someSegmentedControl];

Tasks

Working with Subitems

– subitems (page 3030)
Returns the subitems for the receiver.

– setSubitems: (page 3030)
Sets the subitems for the receiver.

Instance Methods

setSubitems:
Sets the subitems for the receiver.

- (void)setSubitems:(NSArray *)subitems

Parameters
subitems

An array of instances of NSToolbarItem objects that form the subitems for the receiver.

Discussion
You should call this method to set the subitems before returning the item to the toolbar.
NSToolbarItemGroup objects cannot contain other NSToolbarItemGroup objects as subitems.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSToolbarItemGroup.h

subitems
Returns the subitems for the receiver.

- (NSArray *)subitems

Return Value
The subitems for the receiver.

Discussion
By default, an NSToolbarItemGroup instance has an empty array of subitems.

3030 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 159

NSToolbarItemGroup Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSToolbarItemGroup.h

Instance Methods 3031
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 159

NSToolbarItemGroup Class Reference

3032 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 159

NSToolbarItemGroup Class Reference

Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in NSTouch.h

Related sample code LightTable

Overview

An instance of the NSTouch class is a snapshot of a particular touch at an instant in time.

A touch event is not persistent throughout the touch, new instances are created as the touch progresses.
The identity property is used to follow a specific touch across its lifetime.

Touches do not have a corresponding screen location. The first touch of a touch collection is latched to the
view underlying the cursor using the same hit detection as mouse events. Additional touches on the same
device are also latched to the same view as any other touching touches. A touch remains latched to its view
until the touch has either ended or is cancelled.

Tasks

Properties of This Touch

 identity (page 3034) property
Use this property to track changes to a particular touch during the touch's life. (read-only)

 phase (page 3036) property
The current phase of the touch. (read-only)

 normalizedPosition (page 3035) property
The normalized position of the touch. (read-only)

 isResting (page 3035) property
Returns whether the touch is a resting touch. (read-only)

Overview 3033
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 160

NSTouch Class Reference

Properties of Touch Device

 device (page 3034) property
The digitizer that generated the touch. Useful to distinguish touches emanating from multiple-device
scenario. (read-only)

 deviceSize (page 3034) property
The range of the touch device in points (72ppi). (read-only)

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

device
The digitizer that generated the touch. Useful to distinguish touches emanating from multiple-device scenario.
(read-only)

@property(readonly, retain) id device

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTouch.h

deviceSize
The range of the touch device in points (72ppi). (read-only)

@property(readonly) NSSize deviceSize

Discussion
The lower-left corner of the surface is considered (0,0).

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTouch.h

identity
Use this property to track changes to a particular touch during the touch's life. (read-only)

3034 Properties
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 160

NSTouch Class Reference

@property(readonly, retain) id<NSObject, NSCopying> identity

Discussion
While touch identities may be re-used, they are unique during the life of the touch, even when multiple
devices are present.

Identity objects implement the NSCopying protocol so that they may be used as keys in an NSDictionary.
Use isEqual: to compare two touch identities.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
LightTable

Declared In
NSTouch.h

isResting
Returns whether the touch is a resting touch. (read-only)

@property(readonly) BOOL isResting

Discussion
Resting touches occur when a user simply rests their thumb on the trackpad device.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTouch.h

normalizedPosition
The normalized position of the touch. (read-only)

@property(readonly) NSPoint normalizedPosition

Discussion
The normalized position is a scaled value between (0.0) and (1.0,1.0), where (0.0,0.0) is the lower-left position
on the touch device.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
LightTable

Declared In
NSTouch.h

Properties 3035
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 160

NSTouch Class Reference

phase
The current phase of the touch. (read-only)

@property(readonly) NSTouchPhase phase

Discussion
See “NSTouchPhase” (page 3036) for possible values.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTouch.h

Constants

NSTouchPhase
The possible phases of a touch. These constants are used by phase (page 3036).

enum {
 NSTouchPhaseBegan = 1U << 0,
 NSTouchPhaseMoved = 1U << 1,
 NSTouchPhaseStationary = 1U << 2,
 NSTouchPhaseEnded = 1U << 3,
 NSTouchPhaseCancelled = 1U << 4,
 NSTouchPhaseTouching = NSTouchPhaseBegan | NSTouchPhaseMoved |
NSTouchPhaseStationary,
 NSTouchPhaseAny = NSUIntegerMax
};
typedef NSUInteger NSTouchPhase;

Constants
NSTouchPhaseBegan

A finger touched the device. Or, a resting touch transitioned to an active touch and resting touches
are not wanted by the view hierarchy.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

NSTouchPhaseMoved
A finger moved on the device.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

NSTouchPhaseStationary
A finger is touching the device, but hasn't moved since the previous event.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

3036 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 160

NSTouch Class Reference

NSTouchPhaseEnded
A finger was lifted from the screen. Or, an active touch transitioned to a resting touch and resting
touches are not wanted by the view hierarchy.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

NSTouchPhaseCancelled
The system cancelled tracking for the touch, as when (for example) the window associated with the
touch resigns key or is deactivated.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

NSTouchPhaseTouching
Matches the NSTouchPhaseBegan (page 3036), NSTouchPhaseMoved (page 3036), or
NSTouchPhaseStationary (page 3036) phases of a touch.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

NSTouchPhaseAny
Matches any phase of a touch.

Available in Mac OS X v10.6 and later.

Declared in NSTouch.h.

Constants 3037
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 160

NSTouch Class Reference

3038 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 160

NSTouch Class Reference

Inherits from NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSTrackingArea.h

Availability Available in Mac OS X v10.5 and later.

Companion guide Cocoa Event-Handling Guide

Related sample code BasicCocoaAnimations
MenuItemView
PhotoSearch
TrackIt

Overview

An NSTrackingArea object defines a region of view that generates mouse-tracking and cursor-update
events when the mouse is over that region.

When creating a tracking-area object, you specify a rectangle (in the view’s coordinate system), an owning
object, and one or more options, along with (optionally) a dictionary of data. Once it’s created, you add the
tracking-area object to a view using the addTrackingArea: (page 3142) method. Depending on the options
specified, the owner of the tracking area receives mouseEntered: (page 2165), mouseExited: (page 2165),
mouseMoved: (page 2166), and cursorUpdate: (page 2147) messages when the mouse cursor enters, moves
within, and leaves the tracking area. Currently the tracking area is restricted to rectangles.

An NSTrackingArea object belongs to its view rather than to its window. Consequently, you can add and
remove tracking rectangles without needing to worry if the view has been added to a window. In addition,
this design makes it possible for the Application Kit to compute the geometry of tracking areas automatically
when a view moves and, in some cases, when a view changes size.

With NSTrackingArea, you can configure the scope of activity for mouse tracking. There are four options:

 ■ The tracking area is active only when the view is first responder.

 ■ The tracking area is active when the view is in the key window.

 ■ The tracking area is active when the application is active.

Overview 3039
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 161

NSTrackingArea Class Reference

 ■ The tracking area is active always (even when the application is inactive).

Other options for NSTrackingArea objects include specifying that the tracking area should be synchronized
with the visible rectangle of the view (visibleRect (page 3245)) and for generating mouseEntered: and
mouseExited: events when the mouse is dragged.

Other NSView methods related to NSTrackingArea objects (in addition to addTrackingArea:) include
removeTrackingArea: (page 3204) and updateTrackingAreas (page 3239). Views can override the latter
method to recompute and replace their NSTrackingArea objects in certain situations, such as a change in
the size of the visibleRect.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

NSCopying
– copyWithZone:

Tasks

Initializing the Tracking-Area Object

– initWithRect:options:owner:userInfo: (page 3041)
Initializes and returns an object defining a region of a view to receive mouse-tracking events,
mouse-moved events, cursor-update events, or possibly all these events.

Getting Object Attributes

– options (page 3042)
Returns the options specified for the receiver.

– owner (page 3042)
Returns the object owning the receiver, which is the recipient of mouse-tracking, mouse-movement,
and cursor-update messages.

– rect (page 3042)
Returns the rectangle defining the area encompassed by the receiver.

– userInfo (page 3043)
Returns the dictionary containing the data associated with the receiver when it was created.

3040 Adopted Protocols
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 161

NSTrackingArea Class Reference

Instance Methods

initWithRect:options:owner:userInfo:
Initializes and returns an object defining a region of a view to receive mouse-tracking events, mouse-moved
events, cursor-update events, or possibly all these events.

- (id)initWithRect:(NSRect)rect options:(NSTrackingAreaOptions)options
owner:(id)owner userInfo:(NSDictionary *)userInfo

Parameters
rect

A rectangle that defines a region of a target view, in the view’s coordinate system, for tracking events
related to mouse tracking and cursor updating. The specified rectangle should not exceed the view’s
bounds rectangle.

options
One or more constants that specify the type of tracking area, the situations when the area is active,
and special behaviors of the tracking area. See the description of NSTrackingAreaOptions (page
3043) and related constants for details. You must specify one or more options for the initialized object,
in particular the type of tracking area; zero is not a valid value.

owner
The object to receive the requested mouse-tracking, mouse-moved, or cursor-update messages. It
does not necessarily have to be the view associated with the created NSTrackingArea object, but
should be an object capable of responding to the NSResponder methods mouseEntered: (page
2165), mouseExited: (page 2165), mouseMoved: (page 2166), and cursorUpdate: (page 2147).

userInfo
A dictionary containing arbitrary data for each mouse-entered, mouse-exited, and cursor-update
event. When handling such an event you can obtain the dictionary by sending userData (page 1089)
to the NSEvent object. (The dictionary is not available for mouse-moved events.) This parameter may
be nil.

Return Value
The newly-initialized tracking area object.

Discussion
After creating and initializing an NSTrackingArea object with this method, you must add it to a target view
using theaddTrackingArea: (page 3142) method. When changes in the view require changes in the geometry
of its tracking areas, the Application Kit invokes updateTrackingAreas (page 3239). The view should
implement this method to replace the current NSTrackingArea object with one with a recomputed area.

Special Considerations

Beginning with Mac OS X v10.5, the initWithRect:options:owner:userInfo:, along with the
addTrackingArea: (page 3142) method of NSView, replace the NSView method
addTrackingRect:owner:userData:assumeInside: (page 3142).

Availability
Available in Mac OS X v10.5 and later.

See Also
– options (page 3042)
– owner (page 3042)

Instance Methods 3041
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 161

NSTrackingArea Class Reference

– rect (page 3042)
– userInfo (page 3043)

Related Sample Code
BasicCocoaAnimations
MenuItemView
PhotoSearch
TrackIt

Declared In
NSTrackingArea.h

options
Returns the options specified for the receiver.

- (NSTrackingAreaOptions)options

Discussion
The options for an NSTrackingArea object are specified when the object is created. To determine if a
particular option is in effect, perform a bitwise-AND operation with an NSTrackingAreaOptions (page 3043)
constant and the value returned from this method, for example:

if ([trackingAreaObj options] & NSTrackingInVisibleRect != 0) {
 // do something appropriate
}

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTrackingArea.h

owner
Returns the object owning the receiver, which is the recipient of mouse-tracking, mouse-movement, and
cursor-update messages.

- (id)owner

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTrackingArea.h

rect
Returns the rectangle defining the area encompassed by the receiver.

- (NSRect)rect

3042 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 161

NSTrackingArea Class Reference

Discussion
The rectangle is specified in the local coordinate system of the associated view. if the
NSTrackingInVisibleRect (page 3045) option is specified, the receiver is automatically synchronized with
changes in the view’s visible area (visibleRect (page 3245)) and the value returned from this method is
ignored.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTrackingArea.h

userInfo
Returns the dictionary containing the data associated with the receiver when it was created.

- (NSDictionary *)userInfo

Discussion
Returns nil if no data was specified when the receiver was initialized. You can obtain this dictionary per
event in eachmouseEntered: (page 2165) andmouseExited: (page 2165) method by querying the passed-in
NSEvent object with [[event trackingArea] userData (page 1089)].

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTrackingArea.h

Constants

NSTrackingAreaOptions
The data type defined for the constants specified in the options parameter of
initWithRect:options:owner:userInfo: (page 3041). These constants are described below; you may
specify multiple constants by performing a bitwise-OR operation with them.

typedef NSUInteger NSTrackingAreaOptions;

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTrackingArea.h

The following constants specify the type of the tracking area defined by an NSTrackingArea object. They
request the type of messages the owning object should receive.

Constants 3043
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 161

NSTrackingArea Class Reference

DescriptionConstant

The owner of the tracking area receives mouseEntered: (page 2165) when
the mouse cursor enters the area andmouseExited: (page 2165) events when
the mouse leaves the area.
Available in Mac OS X v10.5 and later.

Declared in NSTrackingArea.h.

NSTrackingMouse-
EnteredAndExited

The owner of the tracking area receives mouseMoved: (page 2166) messages
while the mouse cursor is within the area.
Available in Mac OS X v10.5 and later.

Declared in NSTrackingArea.h.

NSTrackingMouseMoved

The owner of the tracking area receivescursorUpdate: (page 2147) messages
when the mouse cursor enters the area; when the mouse leaves the area, the
cursor is appropriately reset.
Available in Mac OS X v10.5 and later.

Declared in NSTrackingArea.h.

NSTrackingCursor-
Update

The following constants specify when the tracking area defined by an NSTrackingArea object is active. The
owner receives all requested messages—which can includemouseEntered: (page 2165),mouseExited: (page
2165), mouseMoved: (page 2166), and cursorUpdate: (page 2147)—unless otherwise noted.

DescriptionConstant

The owner receives messages when the view is the first responder.
Available in Mac OS X v10.5 and later.

Declared in NSTrackingArea.h.

NSTrackingActiveWhen-
FirstResponder

The owner receives messages when the view is in the key window.
Available in Mac OS X v10.5 and later.

Declared in NSTrackingArea.h.

NSTrackingActive-
InKeyWindow

The owner receives messages when the application is active.
Available in Mac OS X v10.5 and later.

Declared in NSTrackingArea.h.

NSTrackingActive-
InActiveApp

The owner receives messages regardless of first-responder status, window
status, or application status. The cursorUpdate: (page 2147) message is
not sent when the NSTrackingCursorUpdate (page 3044) option is
specified along with this constant.
Available in Mac OS X v10.5 and later.

Declared in NSTrackingArea.h.

NSTrackingActiveAlways

The following constants specify various behaviors of the tracking defined by an NSTrackingArea object.

3044 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 161

NSTrackingArea Class Reference

DescriptionConstant

The first event is generated when the cursor leaves the tracking area, regardless
if the cursor is inside the area when the NSTrackingArea is added to a view. If
this option is not specified, the first event is generated when the cursor leaves the
tracking area if the cursor is initially inside the area, or when the cursor enters the
area if the cursor is initially outside it. Generally, you do not want to request this
behavior.
Available in Mac OS X v10.5 and later.

Declared in NSTrackingArea.h.

NSTrackingAssume-
Inside

Mouse tracking occurs only in the visible rectangle of the view—in other words,
that region of the tracking rectangle that is unobscured. Otherwise, the entire
tracking area is active regardless of overlapping views. The NSTrackingArea
object is automatically synchronized with changes in the view’s visible area
(visibleRect (page 3245)) and the value returned fromrect (page 3042) is ignored.
Available in Mac OS X v10.5 and later.

Declared in NSTrackingArea.h.

NSTrackingIn-
VisibleRect

The owner receives NSMouseEntered (page 1094) events when the mouse cursor
is dragged into the tracking area. If this option is not specified, the owner receives
mouse-entered events when the mouse is moved (no buttons pressed) into the
tracking area and on NSLeftMouseUp (page 1093) events after a mouse drag.
NSMouseExited (page 1094) and NSMouseEntered (page 1094) events are paired
so their delivery is indirectly affected. That is, if a NSMouseEntered event is
generated and the mouse cursor subsequently moves out of the tracking area, a
NSMouseExited event is generated regardless if the mouse is moved or dragged,
independent of this constant.
Available in Mac OS X v10.5 and later.

Declared in NSTrackingArea.h.

NSTrackingEnabled-
DuringMouseDrag

Constants 3045
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 161

NSTrackingArea Class Reference

3046 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 161

NSTrackingArea Class Reference

Inherits from NSObjectController : NSController : NSObject

Conforms to NSCoding (NSController)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.4 and later.

Declared in AppKit/NSTreeController.h

Companion guide Cocoa Bindings Programming Topics

Related sample code AbstractTree
CoreRecipes
ImageApp
QTMetadataEditor
SourceView

Overview

The NSTreeController is a bindings compatible controller that manages a tree of objects. It provides
selection and sort management. Its primary purpose is to act as the controller when binding NSOutlineView
and NSBrowser instances to a hierarchical collection of objects. The root content object of the tree can be a
single object, or an array of objects.

An NSTreeController requires that you describe how the tree of objects is traversed by specifying the
key-path for child objects specified by setChildrenKeyPath: (page 3064). All child objects for the tree must
be key-value coding compliant for the same child key-path. If necessary, you should implement accessor
methods in your model classes, that map the child key name to the appropriate class-specific method name.

Child objects can implement a count method (specified to the tree controller using setCountKeyPath: (page
3065)) that, if provided, returns the number of child objects available. Your model objects are expected to
update the value of the count key-path in a key-value observing compliant method. You can also, optionally,
provide a leaf key-path using setLeafKeyPath: (page 3065) that specifies a key in your model object that
returns YES if the object is a leaf node, and NO if it is not. Changes to the leaf node value of the child object
should be made in a key-value observing compliant manner. Providing the leaf node key-path prevents the
NSTreeController from having to determine if a child object is a leaf node by examining the child object
and as a result improves performance.

Overview 3047
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

NSCopying
– copyWithZone:

Tasks

Managing Sort Descriptors

– setSortDescriptors: (page 3067)
Sets the sort descriptors used to arrange the receiver's contents.

– sortDescriptors (page 3067)
Returns an array containing the sort descriptors used to arrange the receiver's content.

Setting the Content

– setContent: (page 3064)
Sets the receiver’s content.

– content (page 3055)
Returns the receiver’s content object.

Arranging Objects

– arrangedObjects (page 3052)
Returns the tree controller’s sorted content objects.

– rearrangeObjects (page 3060)
Use this method to trigger reordering of the receiver’s content.

Getting the Current Selection

– setSelectionIndexPath: (page 3066)
Sets the receiver’s current selection.

– selectionIndexPath (page 3062)
Returns the index path of the first selected object.

– setSelectionIndexPaths: (page 3066)
Sets the receiver’s current selection to the specified index paths.

3048 Adopted Protocols
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

– selectionIndexPaths (page 3062)
Returns an array containing the index paths of the currently selected objects.

– selectedObjects (page 3062)
Returns an array containing the currently selected objects.

– selectedNodes (page 3061)
Returns an array of the receiver’s selected tree nodes.

Managing Selections

– setSelectsInsertedObjects: (page 3067)
Sets whether the receiver will automatically select objects as they are inserted.

– selectsInsertedObjects (page 3063)
Returns whether the receiver selects inserted objects automatically.

– addSelectionIndexPaths: (page 3052)
Adds the objects at the specified indexPaths in the receiver’s content to the current selection.

– removeSelectionIndexPaths: (page 3061)
Removes the objects at the specified indexPaths from the receiver’s current selection, returning YES
if the selection was changed.

– setAvoidsEmptySelection: (page 3064)
Sets whether the receiver will attempt to avoid an empty selection.

– avoidsEmptySelection (page 3053)
Returns whether the receiver requires that the content array attempt to maintain a selection at all
times.

– setPreservesSelection: (page 3065)
Sets whether the receiver will attempt to preserve selection when the content changes.

– preservesSelection (page 3059)
Returns whether the receiver will attempt to preserve the current selection when the content changes.

– setAlwaysUsesMultipleValuesMarker: (page 3063)
Sets whether the receiver always returns the multiple values marker when multiple objects are selected,
even if they have the same value.

– alwaysUsesMultipleValuesMarker (page 3052)
Returns whether the receiver always returns the multiple values marker when multiple objects are
selected, even if the selected items have the same value.

Adding, Inserting and Removing Objects

– add: (page 3051)
Adds an object to the receiver after the current selection.

– addChild: (page 3051)
Adds a child object to the currently selected item.

– canAddChild (page 3053)
Returns YES if a child object can be added to the receiver’s content.

– canInsert (page 3054)
Returns YES if an object can be inserted into the receiver’s content.

Tasks 3049
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

– canInsertChild (page 3054)
Returns YES if a child object can be inserted into the receiver’s content.

– insert: (page 3056)
Creates a new object of the class specified by objectClass and inserts it into the receiver’s content.

– insertChild: (page 3057)
Creates a new object of the class specified by objectClass and inserts it into the receiver’s content
as a child of the current selection.

– insertObject:atArrangedObjectIndexPath: (page 3057)
Inserts object into the receiver’s arranged objects array at the location specified by indexPath, and
adds it to the receiver’s content.

– insertObjects:atArrangedObjectIndexPaths: (page 3057)
Inserts objects into the receiver’s arranged objects array at the locations specified in indexPaths,
and adds them to the receiver’s content.

– remove: (page 3060)
Removes the receiver’s selected objects from the content.

– removeObjectAtArrangedObjectIndexPath: (page 3060)
Removes the object at the specified indexPath in the receiver’s arranged objects from the receiver’s
content.

– removeObjectsAtArrangedObjectIndexPaths: (page 3061)
Removes the objects at the specified indexPaths in the receiver’s arranged objects from the receiver’s
content.

– moveNode:toIndexPath: (page 3058)
Moves the specified tree node to the new index path.

– moveNodes:toIndexPath: (page 3059)
Moves the specified tree nodes to the new index path.

Specifying Model Attributes

– setChildrenKeyPath: (page 3064)
Sets the key path used by the receiver to access child objects to key.

– childrenKeyPath (page 3054)
Returns the key path used to find the children in the receiver’s objects.

– setCountKeyPath: (page 3065)
Sets the key path used by the receiver to determine the number of objects at a node to key.

– childrenKeyPathForNode: (page 3055)
Returns the key path used to find the children in the specified tree node.

– countKeyPath (page 3055)
Returns the key path used to find the number of children for a node.

– countKeyPathForNode: (page 3056)
Returns the key path that provides the number of children for a specified node.

– setLeafKeyPath: (page 3065)
Sets the key path used by the receiver to determine if an object is a leaf node to key.

– leafKeyPath (page 3058)
Returns the key path used by the receiver to determine if a node is a leaf key.

3050 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

– leafKeyPathForNode: (page 3058)
Returns the key path that specifies whether the node is a leaf node.

Instance Methods

add:
Adds an object to the receiver after the current selection.

- (void)add:(id)sender

Discussion
The sender is typically the object that invoked this method.

If the receiver is in object mode newObject is called and the returned object is added to the collection. If
the receiver is in entity mode a new object is created that is appropriate as specified by the entity, and
newObject is not used.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Availability
Available in Mac OS X v10.4 and later.

See Also
– remove: (page 3060)

Declared In
NSTreeController.h

addChild:
Adds a child object to the currently selected item.

- (void)addChild:(id)sender

Discussion
The sender is typically the object that invoked this method.

If the receiver is in object mode newObject is called and the returned object is added as a child. If the receiver
is in entity mode a new object is created that is appropriate for the relationship as specified by the entity,
and newObject is not used.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 3051
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

See Also
– remove: (page 3060)

Declared In
NSTreeController.h

addSelectionIndexPaths:
Adds the objects at the specified indexPaths in the receiver’s content to the current selection.

- (BOOL)addSelectionIndexPaths:(NSArray *)indexPaths

Discussion
Attempting to change the selection may cause a commitEditing message which fails, thus denying the
selection change.

Availability
Available in Mac OS X v10.4 and later.

See Also
– removeSelectionIndexPaths: (page 3061)

Declared In
NSTreeController.h

alwaysUsesMultipleValuesMarker
Returns whether the receiver always returns the multiple values marker when multiple objects are selected,
even if the selected items have the same value.

- (BOOL)alwaysUsesMultipleValuesMarker

Discussion
The default is NO.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAlwaysUsesMultipleValuesMarker: (page 3063)

Declared In
NSTreeController.h

arrangedObjects
Returns the tree controller’s sorted content objects.

- (id)arrangedObjects

3052 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

Return Value
A proxy root tree note containing the receiver’s sorted content objects. The proxy object responds to
childNodes (page 3071) and descendantNodeAtIndexPath: (page 3071) messages.

Discussion
This property is observable using key-value observing.

Special Considerations

Prior to Mac OS X v10.5 this method returned an opaque root node object representing all the currently
displayed objects. That return value was only suitable for use with Cocoa bindings, and no assumption should
be made about what methods that opaque object supports.

Availability
Available in Mac OS X v10.4 and later.

See Also
– rearrangeObjects (page 3060)

Declared In
NSTreeController.h

avoidsEmptySelection
Returns whether the receiver requires that the content array attempt to maintain a selection at all times.

- (BOOL)avoidsEmptySelection

Discussion
The default is YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAvoidsEmptySelection: (page 3064)

Declared In
NSTreeController.h

canAddChild
Returns YES if a child object can be added to the receiver’s content.

- (BOOL)canAddChild

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 3053
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

See Also
– canInsertChild (page 3054)

Declared In
NSTreeController.h

canInsert
Returns YES if an object can be inserted into the receiver’s content.

- (BOOL)canInsert

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– canInsertChild (page 3054)

Declared In
NSTreeController.h

canInsertChild
Returns YES if a child object can be inserted into the receiver’s content.

- (BOOL)canInsertChild

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertChild: (page 3057)

Declared In
NSTreeController.h

childrenKeyPath
Returns the key path used to find the children in the receiver’s objects.

- (NSString *)childrenKeyPath

Availability
Available in Mac OS X v10.4 and later.

3054 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

See Also
– setChildrenKeyPath: (page 3064)

Declared In
NSTreeController.h

childrenKeyPathForNode:
Returns the key path used to find the children in the specified tree node.

- (NSString *)childrenKeyPathForNode:(NSTreeNode *)node

Parameters
node

A tree node in the receiver.

Return Value
A string containing the key path in node that provides the child nodes.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTreeController.h

content
Returns the receiver’s content object.

- (id)content

Return Value
The receiver’s content object.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setContent: (page 3064)

Declared In
NSTreeController.h

countKeyPath
Returns the key path used to find the number of children for a node.

- (NSString *)countKeyPath

Instance Methods 3055
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCountKeyPath: (page 3065)

Declared In
NSTreeController.h

countKeyPathForNode:
Returns the key path that provides the number of children for a specified node.

- (NSString *)countKeyPathForNode:(NSTreeNode *)node

Parameters
node

A tree node in the receiver.

Return Value
A string containing the key path in node that provides the number of children.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTreeController.h

insert:
Creates a new object of the class specified by objectClass and inserts it into the receiver’s content.

- (void)insert:(id)sender

Discussion
The sender is typically the object that invoked this method.

If the receiver is in object mode newObject is called and the returned object is inserted into the collection.
If the receiver is in entity mode a new object is created that is appropriate as specified by the entity, and
newObject is not used.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Availability
Available in Mac OS X v10.4 and later.

See Also
– add: (page 3051)

Declared In
NSTreeController.h

3056 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

insertChild:
Creates a new object of the class specified by objectClass and inserts it into the receiver’s content as a
child of the current selection.

- (void)insertChild:(id)sender

Discussion
The sender is typically the object that invoked this method.

If the receiver is in object mode newObject is called and the returned object is inserted as a child. If the
receiver is in entity mode a new object is created that is appropriate for the relationship as specified by the
entity, and newObject is not used.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Availability
Available in Mac OS X v10.4 and later.

See Also
– add: (page 3051)

Declared In
NSTreeController.h

insertObject:atArrangedObjectIndexPath:
Inserts object into the receiver’s arranged objects array at the location specified by indexPath, and adds
it to the receiver’s content.

- (void)insertObject:(id)object atArrangedObjectIndexPath:(NSIndexPath *)indexPath

Availability
Available in Mac OS X v10.4 and later.

See Also
– insertObjects:atArrangedObjectIndexPaths: (page 3057)

Related Sample Code
SourceView

Declared In
NSTreeController.h

insertObjects:atArrangedObjectIndexPaths:
Inserts objects into the receiver’s arranged objects array at the locations specified in indexPaths, and
adds them to the receiver’s content.

- (void)insertObjects:(NSArray *)objects atArrangedObjectIndexPaths:(NSArray
*)indexPaths

Instance Methods 3057
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– removeObjectAtArrangedObjectIndexPath: (page 3060)

Declared In
NSTreeController.h

leafKeyPath
Returns the key path used by the receiver to determine if a node is a leaf key.

- (NSString *)leafKeyPath

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLeafKeyPath: (page 3065)

Declared In
NSTreeController.h

leafKeyPathForNode:
Returns the key path that specifies whether the node is a leaf node.

- (NSString *)leafKeyPathForNode:(NSTreeNode *)node

Parameters
node

A tree node in the receiver.

Return Value
A string containing the key path in node that specifies that the node is a leaf node.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTreeController.h

moveNode:toIndexPath:
Moves the specified tree node to the new index path.

- (void)moveNode:(NSTreeNode *)node toIndexPath:(NSIndexPath *)indexPath

Parameters
node

A tree node.

3058 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

indexPath
An index path specifying the new position in the receiver’s content.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
SourceView

Declared In
NSTreeController.h

moveNodes:toIndexPath:
Moves the specified tree nodes to the new index path.

- (void)moveNodes:(NSArray *)nodes toIndexPath:(NSIndexPath *)startingIndexPath

Parameters
nodes

An array of tree nodes.

startingIndexPath
An index path specifying the starting position to move the tree nodes to in the receiver’s content.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTreeController.h

preservesSelection
Returns whether the receiver will attempt to preserve the current selection when the content changes.

- (BOOL)preservesSelection

Discussion
The default is YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPreservesSelection: (page 3065)

Declared In
NSTreeController.h

Instance Methods 3059
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

rearrangeObjects
Use this method to trigger reordering of the receiver’s content.

- (void)rearrangeObjects

Discussion
Subclasses should invoke this method if any parameter that affects the arranged objects changes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– arrangedObjects (page 3052)

Declared In
NSTreeController.h

remove:
Removes the receiver’s selected objects from the content.

- (void)remove:(id)sender

Discussion
The sender is typically the object that invoked this method.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Availability
Available in Mac OS X v10.4 and later.

See Also
– add: (page 3051)

Related Sample Code
SourceView

Declared In
NSTreeController.h

removeObjectAtArrangedObjectIndexPath:
Removes the object at the specified indexPath in the receiver’s arranged objects from the receiver’s content.

- (void)removeObjectAtArrangedObjectIndexPath:(NSIndexPath *)indexPath

Availability
Available in Mac OS X v10.4 and later.

See Also
– removeObjectsAtArrangedObjectIndexPaths: (page 3061)

3060 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

Declared In
NSTreeController.h

removeObjectsAtArrangedObjectIndexPaths:
Removes the objects at the specified indexPaths in the receiver’s arranged objects from the receiver’s
content.

- (void)removeObjectsAtArrangedObjectIndexPaths:(NSArray *)indexPaths

Availability
Available in Mac OS X v10.4 and later.

See Also
– removeObjectAtArrangedObjectIndexPath: (page 3060)

Declared In
NSTreeController.h

removeSelectionIndexPaths:
Removes the objects at the specified indexPaths from the receiver’s current selection, returning YES if the
selection was changed.

- (BOOL)removeSelectionIndexPaths:(NSArray *)indexPaths

Discussion
Attempting to change the selection may cause a commitEditing message which fails, thus denying the
selection change.

Availability
Available in Mac OS X v10.4 and later.

See Also
– addSelectionIndexPaths: (page 3052)

Declared In
NSTreeController.h

selectedNodes
Returns an array of the receiver’s selected tree nodes.

- (NSArray *)selectedNodes

Return Value
An array containing the receiver’s selected tree nodes

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 3061
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

Declared In
NSTreeController.h

selectedObjects
Returns an array containing the currently selected objects.

- (NSArray *)selectedObjects

Return Value
An array containing the currently selected objects in the tree controller content.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QTMetadataEditor

Declared In
NSTreeController.h

selectionIndexPath
Returns the index path of the first selected object.

- (NSIndexPath *)selectionIndexPath

Return Value
Returns an index path of the first object in the tree controller’s selection. Returns nil if there is no selection.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– selectionIndexPaths (page 3062)

Related Sample Code
SourceView

Declared In
NSTreeController.h

selectionIndexPaths
Returns an array containing the index paths of the currently selected objects.

3062 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

- (NSArray *)selectionIndexPaths

Return Value
An array containing NSIndexPath objects for each of the selected objects in the tree controller’s content.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– selectionIndexPath (page 3062)

Declared In
NSTreeController.h

selectsInsertedObjects
Returns whether the receiver selects inserted objects automatically.

- (BOOL)selectsInsertedObjects

Discussion
The default is YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setSelectsInsertedObjects: (page 3067)

Declared In
NSTreeController.h

setAlwaysUsesMultipleValuesMarker:
Sets whether the receiver always returns the multiple values marker when multiple objects are selected, even
if they have the same value.

- (void)setAlwaysUsesMultipleValuesMarker:(BOOL)flag

Discussion
Setting flag to YES can increase performance if your application doesn’t allow editing multiple values. The
default is NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– alwaysUsesMultipleValuesMarker (page 3052)

Instance Methods 3063
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

Declared In
NSTreeController.h

setAvoidsEmptySelection:
Sets whether the receiver will attempt to avoid an empty selection.

- (void)setAvoidsEmptySelection:(BOOL)flag

Discussion
If flag is YES then the receiver will maintain a selection unless there are no objects in the content. The
default is YES.

Availability
Available in Mac OS X v10.4 and later.

See Also
– avoidsEmptySelection (page 3053)

Declared In
NSTreeController.h

setChildrenKeyPath:
Sets the key path used by the receiver to access child objects to key.

- (void)setChildrenKeyPath:(NSString *)key

Availability
Available in Mac OS X v10.4 and later.

See Also
– childrenKeyPath (page 3054)

Declared In
NSTreeController.h

setContent:
Sets the receiver’s content.

- (void)setContent:(id)content

Parameters
content

The content. The content can be an array of objects, or a single root object.

Availability
Available in Mac OS X v10.4 and later.

See Also
– content (page 3055)

3064 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

Related Sample Code
ImageApp

Declared In
NSTreeController.h

setCountKeyPath:
Sets the key path used by the receiver to determine the number of objects at a node to key.

- (void)setCountKeyPath:(NSString *)key

Discussion
Specifying this key path, if the data is available in the model object, can increase performance, but disables
insert and remove functionality.

Availability
Available in Mac OS X v10.4 and later.

See Also
– countKeyPath (page 3055)

Declared In
NSTreeController.h

setLeafKeyPath:
Sets the key path used by the receiver to determine if an object is a leaf node to key.

- (void)setLeafKeyPath:(NSString *)key

Discussion
Specifying this key path is optional. If the receiver is able to determine that a node is a leaf node, it can disable
inserting or adding children to those nodes.

Availability
Available in Mac OS X v10.4 and later.

See Also
– leafKeyPath (page 3058)

Declared In
NSTreeController.h

setPreservesSelection:
Sets whether the receiver will attempt to preserve selection when the content changes.

- (void)setPreservesSelection:(BOOL)flag

Discussion
If flag is YES then the selection will be preserved, if possible. The default is YES.

Instance Methods 3065
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– preservesSelection (page 3059)

Declared In
NSTreeController.h

setSelectionIndexPath:
Sets the receiver’s current selection.

- (BOOL)setSelectionIndexPath:(NSIndexPath *)indexPath

Parameters
indexPath

The proposed new selection.

Return Value
Return YES if the selection has changed, otherwise NO.

Discussion
Attempting to change the selection may cause a commitEditing message which fails, thus denying the
selection change.

Availability
Available in Mac OS X v10.4 and later.

See Also
– selectionIndexPaths (page 3062)

Declared In
NSTreeController.h

setSelectionIndexPaths:
Sets the receiver’s current selection to the specified index paths.

- (BOOL)setSelectionIndexPaths:(NSArray *)indexPaths

Parameters
indexPaths

An array of NSIndexpath objects specifying the selected objects.

Return Value
Return YES if the selection has changed, otherwise NO.

Discussion
Attempting to change the selection may cause a commitEditing message which fails, thus denying the
selection change.

Availability
Available in Mac OS X v10.4 and later.

3066 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

See Also
– setSelectionIndexPath: (page 3066)

Declared In
NSTreeController.h

setSelectsInsertedObjects:
Sets whether the receiver will automatically select objects as they are inserted.

- (void)setSelectsInsertedObjects:(BOOL)flag

Discussion
If flag is YES then items will be selected upon insertion. The default is YES.

Availability
Available in Mac OS X v10.4 and later.

See Also
– selectsInsertedObjects (page 3063)

Declared In
NSTreeController.h

setSortDescriptors:
Sets the sort descriptors used to arrange the receiver's contents.

- (void)setSortDescriptors:(NSArray *)sortDescriptors

Parameters
sortDescriptors

An array of NSSortDescriptor objects. Passing nil causes the contents to be arranged in their
natural order.

Availability
Available in Mac OS X v10.4 and later.

See Also
– sortDescriptors (page 3067)

Declared In
NSTreeController.h

sortDescriptors
Returns an array containing the sort descriptors used to arrange the receiver's content.

- (NSArray *)sortDescriptors

Instance Methods 3067
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

Return Value
Returns an array containing the tree controller’s sort descriptors. Returns nil if the receiver has no sort
descriptors configured.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setSortDescriptors: (page 3067)

Declared In
NSTreeController.h

3068 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 162

NSTreeController Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSTreeNode.h

Companion guide Cocoa Bindings Programming Topics

Related sample code AbstractTree
DragNDropOutlineView
SourceView

Overview

NSTreeNode simplifies the creation and management of trees of objects. Each tree node represents a model
object. A tree node with nil as its parent node is considered the root of the tree.

Tasks

Creating Tree Nodes

+ treeNodeWithRepresentedObject: (page 3070)
Creates and returns a tree node that represents the specified object.

– initWithRepresentedObject: (page 3072)
Initializes a newly allocated tree node that represents the specified object.

Getting Information About a Node

– representedObject (page 3073)
Returns the object the tree node represents.

– indexPath (page 3071)
Returns the position of the receiver relative to its root parent.

Overview 3069
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTreeNode Class Reference

– isLeaf (page 3072)
Returns whether the receiver is a leaf node.

– childNodes (page 3071)
Returns an array containing receiver’s child nodes.

– mutableChildNodes (page 3072)
Returns a mutable array that provides read-write access to the receiver’s child nodes.

– descendantNodeAtIndexPath: (page 3071)
Returns the receiver’s descendent at the specified index path.

– parentNode (page 3073)
Returns the receiver’s parent node.

Sorting the Subtree

– sortWithSortDescriptors:recursively: (page 3074)
Sorts the receiver’s subtree using the values of the represented objects with the specified sort
descriptors.

Class Methods

treeNodeWithRepresentedObject:
Creates and returns a tree node that represents the specified object.

+ (id)treeNodeWithRepresentedObject:(id)modelObject

Parameters
modelObject

The object the tree node represents.

Return Value
An initialized tree node that represents modelObject.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
DragNDropOutlineView

Declared In
NSTreeNode.h

3070 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTreeNode Class Reference

Instance Methods

childNodes
Returns an array containing receiver’s child nodes.

- (NSArray *)childNodes

Return Value
An array containing the receiver’s child nodes.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
DragNDropOutlineView

Declared In
NSTreeNode.h

descendantNodeAtIndexPath:
Returns the receiver’s descendent at the specified index path.

- (NSTreeNode *)descendantNodeAtIndexPath:(NSIndexPath *)indexPath

Parameters
indexPath

An index path specifying a descendent of the receiver.

Return Value
A tree node, or nil if the node does not exist.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTreeNode.h

indexPath
Returns the position of the receiver relative to its root parent.

- (NSIndexPath *)indexPath

Return Value
An index path that represents the receiver’s position relative to the tree’s root node.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 3071
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTreeNode Class Reference

Related Sample Code
AbstractTree
SourceView

Declared In
NSTreeNode.h

initWithRepresentedObject:
Initializes a newly allocated tree node that represents the specified object.

- (id)initWithRepresentedObject:(id)modelObject

Parameters
modelObject

The object the tree node represents.

Return Value
An initialized tree node that represents modelObject.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTreeNode.h

isLeaf
Returns whether the receiver is a leaf node.

- (BOOL)isLeaf

Return Value
YES if the receiver is a leaf node (has no child nodes), otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTreeNode.h

mutableChildNodes
Returns a mutable array that provides read-write access to the receiver’s child nodes.

- (NSMutableArray *)mutableChildNodes

Return Value
A mutable array that provides read-write access to the receiver’s child nodes.

3072 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTreeNode Class Reference

Discussion
Nodes that are inserted into this array have their parent nodes set to the receiver. Nodes that are removed
from this array automatically have their parent node set to nil. The array that is returned is observable using
key-value observing.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
DragNDropOutlineView

Declared In
NSTreeNode.h

parentNode
Returns the receiver’s parent node.

- (NSTreeNode *)parentNode

Return Value
The receiver’s parent node.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AbstractTree
DragNDropOutlineView
SourceView

Declared In
NSTreeNode.h

representedObject
Returns the object the tree node represents.

- (id)representedObject

Return Value
The object the tree node represents.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
DragNDropOutlineView

Declared In
NSTreeNode.h

Instance Methods 3073
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTreeNode Class Reference

sortWithSortDescriptors:recursively:
Sorts the receiver’s subtree using the values of the represented objects with the specified sort descriptors.

- (void)sortWithSortDescriptors:(NSArray *)sortDescriptors
recursively:(BOOL)recursively

Parameters
sortDescriptors

Array of sort descriptors specifying how to sort the represented objects.

recursively
A Boolean that specifies whether the child nodes should be sorted recursively.

Discussion
All the represented objects in the child nodes must be key-value coding compliant for the keys specified in
the sort descriptors.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
DragNDropOutlineView

Declared In
NSTreeNode.h

3074 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 163

NSTreeNode Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTypesetter.h

Companion guides Text System Overview
Text Layout Programming Guide

Overview

NSLayoutManager uses concrete subclasses of this abstract class, NSTypesetter, to perform line layout,
which includes word wrapping, hyphenation, and line breaking in either vertical or horizontal rectangles. By
default, the text system uses the concrete subclass NSATSTypesetter.

Subclassing Notes

NSTypesetter provides concrete subclasses with default implementation interfacing with the Cocoa text
system. By subclassing NSTypesetter, an application can override the layoutParagraphAtPoint: (page
3094) method to integrate a custom typesetting engine into the Cocoa text system. On the other hand, an
application can subclass NSATSTypesetter and override the glyph storage interface to integrate the concrete
subclass into its own custom layout system.

NSTypesettermethods belong to three categories: glyph storage interface methods, layout phase interface
methods, and core typesetter methods. The glyph storage interface methods map to NSLayoutManager
methods. The typesetter itself calls these methods, and their default implementations call the Cocoa layout
manager. An NSTypesetter subclass can override these methods to call its own glyph storage facility, in
which case it should override all of them. (This does not preclude the overridden method calling its superclass
implementation if appropriate.)

The layout phase interface provides control points similar to delegate methods; if implemented, the system
invokes these methods to notify an NSTypesetter subclass of events in the layout process so it can intervene
as needed.

Overview 3075
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

The remainder of the NSTypesetter methods are primitive, core typesetter methods. The core typesetter
methods correlate with typesetting state attributes; the layout manager calls these methods to store its
values before starting the layout process. If you subclass NSTypesetter and override the glyph storage
interface methods, you can call the core methods to control the typesetter directly.

Glyph Storage Interface

Override these methods to use NSTypesetter’s built-in concrete subclass, NSATSTypesetter, with a custom
glyph storage and layout system other than the Cocoa layout manager and text container mechanism.

characterRangeForGlyphRange:actualGlyphRange: (page 3086)
glyphRangeForCharacterRange:actualCharacterRange: (page 3091)
getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
bidiLevels: (page 3088)
getLineFragmentRect:usedRect:remainingRect:forStartingGlyphAtIndex:proposedRect:
lineSpacing:paragraphSpacingBefore:paragraphSpacingAfter: (page 3090)
setLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 3102)
substituteGlyphsInRange:withGlyphs: (page 3107)
insertGlyph:atGlyphIndex:characterIndex: (page 3092)
deleteGlyphsInRange: (page 3087)
setNotShownAttribute:forGlyphRange: (page 3104)
setDrawsOutsideLineFragment:forGlyphRange: (page 3101)
setLocation:withAdvancements:forStartOfGlyphRange: (page 3103)
setAttachmentSize:forGlyphRange: (page 3099)
setBidiLevels:forGlyphRange: (page 3100)

Layout Phase Interface

Override these methods to customize the text layout process, including modifying line fragments, controlling
line breaking and hyphenation, and controlling the behavior of tabs and other control glyphs.

willSetLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 3109)
shouldBreakLineByWordBeforeCharacterAtIndex: (page 3106)
shouldBreakLineByHyphenatingBeforeCharacterAtIndex: (page 3105)
hyphenationFactorForGlyphAtIndex: (page 3091)
hyphenCharacterForGlyphAtIndex: (page 3092)
boundingBoxForControlGlyphAtIndex:forTextContainer:proposedLineFragment:
glyphPosition:characterIndex: (page 3085)

Tasks

Getting a Typesetter

+ sharedSystemTypesetter (page 3082)
Returns a shared instance of a reentrant typesetter.

3076 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

+ sharedSystemTypesetterForBehavior: (page 3082)
Returns a shared instance of a reentrant typesetter that implements typesetting with the specified
behavior.

Getting Information About a Typesetter

+ defaultTypesetterBehavior (page 3081)
Returns the default typesetter behavior.

Getting Information About Glyphs

+ printingAdjustmentInLayoutManager:forNominallySpacedGlyphRange:packedGlyphs:count: (page
3081)

Returns the interglyph spacing in the specified range when sent to a printer.

– baselineOffsetInLayoutManager:glyphIndex: (page 3084)
Returns the distance from the bottom of the bounding box of a specified glyph to its baseline.

Managing the Layout Manager

– layoutManager (page 3094)
Returns the layout manager for the text being typeset.

– setUsesFontLeading: (page 3105)
Sets whether the typesetter uses the leading (or line gap) value specified in the font metric information.

– usesFontLeading (page 3108)
Returns whether the typesetter uses the leading (or line gap) value specified in the font metric
information of the current font.

– setTypesetterBehavior: (page 3104)
Sets the default typesetter behavior, which affects glyph spacing and line height.

– typesetterBehavior (page 3108)
Returns the current typesetter behavior.

– setHyphenationFactor: (page 3101)
Sets the threshold controlling when hyphenation is attempted.

– hyphenationFactor (page 3091)
Returns the current hyphenation factor.

Managing Text Containers

– currentTextContainer (page 3087)
Returns the text container for the text being typeset.

– textContainers (page 3107)
Returns an array containing the text containers belonging to the current layout manager.

– setLineFragmentPadding: (page 3102)
Sets the amount (in points) by which text is inset within line fragment rectangles.

Tasks 3077
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

– lineFragmentPadding (page 3095)
Returns the current line fragment padding, in points.

Mapping Screen and Printer Fonts

– substituteFontForFont: (page 3106)
Returns a screen font suitable for use in place of a given font.

Handling Control Characters

– textTabForGlyphLocation:writingDirection:maxLocation: (page 3108)
Returns the text tab next closest to a given glyph location within the given parameters.

– actionForControlCharacterAtIndex: (page 3083)
Returns the action associated with a control character.

Bidirectional Text Processing

– setBidiProcessingEnabled: (page 3100)
Controls whether the typesetter performs bidirectional text processing.

– bidiProcessingEnabled (page 3085)
Returns whether bidirectional text processing is enabled.

Accessing Paragraph Typesetting Information

– currentParagraphStyle (page 3087)
Returns the paragraph style object for the text being typeset.

– setAttributedString: (page 3099)
Sets the text backing store on which this typesetter operates.

– attributedString (page 3083)
Returns the text backing store, usually an instance of NSTextStorage.

– setParagraphGlyphRange:separatorGlyphRange: (page 3104)
Sets the current glyph range being processed.

– paragraphGlyphRange (page 3096)
Returns the glyph range currently being processed.

– paragraphSeparatorGlyphRange (page 3097)
Returns the current paragraph separator range.

– paragraphCharacterRange (page 3096)
Returns the character range currently being processed.

– paragraphSeparatorCharacterRange (page 3097)
Returns the current paragraph separator character range.

– attributesForExtraLineFragment (page 3083)
Returns the attributes used to lay out the extra line fragment.

3078 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Paragraph Layout

– layoutParagraphAtPoint: (page 3094)
Lays out glyphs in the current glyph range until the next paragraph separator is reached.

– beginParagraph (page 3085)
Sets up layout parameters at the beginning of a paragraph.

– endParagraph (page 3088)
Sets up layout parameters at the end of a paragraph.

– beginLineWithGlyphAtIndex: (page 3084)
Sets up layout parameters at the beginning of a line during typesetting.

– endLineWithGlyphRange: (page 3088)
Sets up layout parameters at the end of a line during typesetting.

Character Layout

– layoutCharactersInRange:forLayoutManager:maximumNumberOfLineFragments: (page 3093)
Lays out characters in the given character range for the specified layout manager.

Line and Paragraph Spacing

– lineSpacingAfterGlyphAtIndex:withProposedLineFragmentRect: (page 3095)
Returns the line spacing in effect following the specified glyph.

– paragraphSpacingAfterGlyphAtIndex:withProposedLineFragmentRect: (page 3098)
Returns the paragraph spacing that is in effect after the specified glyph.

– paragraphSpacingBeforeGlyphAtIndex:withProposedLineFragmentRect: (page 3098)
Returns the number of points of space—added before a paragraph—that is in effect before the
specified glyph.

Glyph Caching

– setHardInvalidation:forGlyphRange: (page 3101)
Sets whether to force the layout manager to invalidate the specified portion of the glyph cache when
invalidating layout.

Laying out Glyphs

– layoutGlyphsInLayoutManager:startingAtGlyphIndex:maxNumberOfLineFragments:nextGlyphIndex: (page
3094)

Lays out glyphs in the specified layout manager starting at a specified glyph.

– boundingBoxForControlGlyphAtIndex:forTextContainer:proposedLineFragment:glyphPosition:characterIndex: (page
3085)

Returns the bounding rectangle for the specified control glyph with the specified parameters.

Tasks 3079
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

– getLineFragmentRect:usedRect:forParagraphSeparatorGlyphRange:atProposedOrigin: (page
3089)

Calculates the line fragment rectangle and line fragment used rectangle for blank lines.

– getLineFragmentRect:usedRect:remainingRect:forStartingGlyphAtIndex:proposedRect:lineSpacing:paragraphSpacingBefore:paragraphSpacingAfter: (page
3090)

Calculates line fragment rectangle, line fragment used rectangle, and remaining rectangle for a line
fragment.

– hyphenCharacterForGlyphAtIndex: (page 3092)
Returns the hyphen character to be inserted after the specified glyph.

– hyphenationFactorForGlyphAtIndex: (page 3091)
Returns the hyphenation factor in effect at a specified location.

– shouldBreakLineByHyphenatingBeforeCharacterAtIndex: (page 3105)
Returns whether the line being laid out should be broken by hyphenating at the specified character.

– shouldBreakLineByWordBeforeCharacterAtIndex: (page 3106)
Returns whether the line being laid out should be broken by a word break at the specified character.

– willSetLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 3109)
Called by the typesetter just prior to storing the actual line fragment rectangle location in the layout
manager.

Interfacing with Glyph Storage

– characterRangeForGlyphRange:actualGlyphRange: (page 3086)
Returns the range for the characters in the receiver’s text store that are mapped to the specified
glyphs.

– deleteGlyphsInRange: (page 3087)
Deletes the specified glyphs from the glyph cache maintained by the layout manager.

– substituteGlyphsInRange:withGlyphs: (page 3107)
Replaces the specified glyphs with specified replacement glyphs.

– getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:bidiLevels: (page
3088)

Extracts the information needed to lay out the provided glyphs from the provided range.

– glyphRangeForCharacterRange:actualCharacterRange: (page 3091)
Returns the range for the glyphs mapped to the characters of the text store in the specified range.

– setAttachmentSize:forGlyphRange: (page 3099)
Sets the size the specified glyphs (assumed to be attachments) will be asked to draw themselves at.

– setBidiLevels:forGlyphRange: (page 3100)
Sets the direction of the specified glyphs for bidirectional text.

– setDrawsOutsideLineFragment:forGlyphRange: (page 3101)
Sets whether the specified glyphs exceed the bounds of the line fragment in which they are laid out.

– setLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 3102)
Sets the line fragment rectangle where the specified glyphs are laid out.

– setLocation:withAdvancements:forStartOfGlyphRange: (page 3103)
Sets the location where the specified glyphs are laid out.

– setNotShownAttribute:forGlyphRange: (page 3104)
Sets whether the specified glyphs are not shown.

3080 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

– insertGlyph:atGlyphIndex:characterIndex: (page 3092) Available in Mac OS X v10.3 through Mac
OS X v10.3

Enables the typesetter to insert a new glyph into the stream.

Class Methods

defaultTypesetterBehavior
Returns the default typesetter behavior.

+ (NSTypesetterBehavior)defaultTypesetterBehavior

Return Value
The default typesetter behavior.

Discussion
Possible return values are described in theNSTypesetterBehavior (page 1527) section forNSLayoutManager.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSTypesetter.h

printingAdjustmentInLayoutManager:forNominallySpacedGlyphRange:packedGlyphs:
count:
Returns the interglyph spacing in the specified range when sent to a printer.

+ (NSSize)printingAdjustmentInLayoutManager:(NSLayoutManager *)layoutMgr
forNominallySpacedGlyphRange:(NSRange)nominallySpacedGlyphsRange
packedGlyphs:(const unsigned char *)packedGlyphs
count:(NSUInteger)packedGlyphsCount

Parameters
layoutMgr

The layout manager that will do the drawing.

nominallySpacedGlyphsRange
The range of the glyphs whose spacing is desired.

packedGlyphs
The glyphs as they are packed for sending to be drawn in layoutMgr.

packedGlyphsCount
The number of glyphs in packedGlyphs.

Return Value
The interglyph spacing in the specified range when sent to a printer. If the font metrics of the font used for
displaying text on the screen is different from the font metrics of the font used in printing, then this interglyph
spacing may need to be adjusted slightly to match that used on the screen.

Class Methods 3081
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTypesetter.h

sharedSystemTypesetter
Returns a shared instance of a reentrant typesetter.

+ (id)sharedSystemTypesetter

Return Value
The shared system typesetter. This typesetter is reentrant.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTypesetter.h

sharedSystemTypesetterForBehavior:
Returns a shared instance of a reentrant typesetter that implements typesetting with the specified behavior.

+ (id)sharedSystemTypesetterForBehavior:(NSTypesetterBehavior)theBehavior

Parameters
theBehavior

The desired behavior.

Return Value
A shared instance of a reentrant typesetter that implements typesetting with the specified behavior.

Discussion
Possible return values are described in theNSTypesetterBehavior (page 1527) section forNSLayoutManager.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setTypesetterBehavior: (page 3104)
– typesetterBehavior (page 3108)

Declared In
NSTypesetter.h

3082 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Instance Methods

actionForControlCharacterAtIndex:
Returns the action associated with a control character.

-
(NSTypesetterControlCharacterAction)actionForControlCharacterAtIndex:(NSUInteger)charIndex

Parameters
charIndex

The index of the control character.

Return Value
The action associated with the control character at charIndex.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

attributedString
Returns the text backing store, usually an instance of NSTextStorage.

- (NSAttributedString *)attributedString

Return Value
The text backing store.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setAttributedString: (page 3099)

Declared In
NSTypesetter.h

attributesForExtraLineFragment
Returns the attributes used to lay out the extra line fragment.

- (NSDictionary *)attributesForExtraLineFragment

Return Value
A dictionary of attributes used to lay out the extra line fragment.

Discussion
The default implementation tries to use the NSTextViewmethod typingAttributes (page 2963) if possible;
otherwise, it uses the attributes for the last character.

Instance Methods 3083
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

baselineOffsetInLayoutManager:glyphIndex:
Returns the distance from the bottom of the bounding box of a specified glyph to its baseline.

- (CGFloat)baselineOffsetInLayoutManager:(NSLayoutManager *)layoutMgr
glyphIndex:(NSUInteger)glyphIndex

Parameters
layoutMgr

The layout manager used for the drawing.

glyphIndex
The index of the glyph in question.

Return Value
The distance from the bottom of the bounding box of the glyph in layoutMgr specified by glyphIndex to
its baseline.

Discussion
The text system uses this value to calculate the vertical position of underlines.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTypesetter.h

beginLineWithGlyphAtIndex:
Sets up layout parameters at the beginning of a line during typesetting.

- (void)beginLineWithGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

The index of the first glyph to be laid out in the line.

Discussion
Concrete subclass implementations of layoutParagraphAtPoint: (page 3094) should invoke this method
at the beginning of each line.

Availability
Available in Mac OS X v10.4 and later.

See Also
– endLineWithGlyphRange: (page 3088)

Declared In
NSTypesetter.h

3084 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

beginParagraph
Sets up layout parameters at the beginning of a paragraph.

- (void)beginParagraph

Discussion
Concrete subclasses should invoke this method at the beginning of their layoutParagraphAtPoint: (page
3094) implementation.

Availability
Available in Mac OS X v10.4 and later.

See Also
– endParagraph (page 3088)

Declared In
NSTypesetter.h

bidiProcessingEnabled
Returns whether bidirectional text processing is enabled.

- (BOOL)bidiProcessingEnabled

Return Value
YES if bidirectional text processing is enabled, NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setBidiProcessingEnabled: (page 3100)

Declared In
NSTypesetter.h

boundingBoxForControlGlyphAtIndex:forTextContainer:proposedLineFragment:
glyphPosition:characterIndex:
Returns the bounding rectangle for the specified control glyph with the specified parameters.

- (NSRect)boundingBoxForControlGlyphAtIndex:(NSUInteger)glyphIndex
forTextContainer:(NSTextContainer *)textContainer
proposedLineFragment:(NSRect)proposedRect glyphPosition:(NSPoint)glyphPosition
characterIndex:(NSUInteger)charIndex

Parameters
glyphIndex

The index of the control glyph in question.

textContainer
The text container to use to calculate the position.

Instance Methods 3085
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

proposedRect
The proposed line fragment rectangle.

glyphPosition
The position of the glyph in textContainer.

charIndex
The character index in textContainer.

Return Value
The bounding rectangle of the control glyph at glyphIndex, at the given glyphPosition and character
index charIndex, in textContainer.

Discussion
The typesetter calls this method when it encounters a control glyph. The default behavior is to return zero
width for control glyphs. A subclass can override this method to do something different, such as implement
a way to display control characters.

NSGlyphGenerator can choose whether or not to map control characters to NSControlGlyph. Tab
characters, for example, do not use this facility.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

characterRangeForGlyphRange:actualGlyphRange:
Returns the range for the characters in the receiver’s text store that are mapped to the specified glyphs.

- (NSRange)characterRangeForGlyphRange:(NSRange)glyphRange
actualGlyphRange:(NSRangePointer)actualGlyphRange

Parameters
glyphRange

The range of glyphs.

actualGlyphRange
On return, the range of all glyphs mapped to the characters in the receiver’s text store. May be NULL.

Return Value
The range for the characters in the receiver’s text store that are mapped to the glyphs in glyphRange.

Discussion
A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

See Also
– glyphRangeForCharacterRange:actualCharacterRange: (page 3091)

Declared In
NSTypesetter.h

3086 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

currentParagraphStyle
Returns the paragraph style object for the text being typeset.

- (NSParagraphStyle *)currentParagraphStyle

Return Value
The paragraph style object for the text being typeset. This value is valid only while the typesetter is performing
layout. More specifically, it’s valid only when called inside
layoutGlyphsInLayoutManager:startingAtGlyphIndex:maxNumberOfLineFragments:
nextGlyphIndex: (page 3094).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

currentTextContainer
Returns the text container for the text being typeset.

- (NSTextContainer *)currentTextContainer

Return Value
The text container for the text being typeset. This value is valid only while the typesetter is performing layout.
More specifically, it’s valid only when called inside
layoutGlyphsInLayoutManager:startingAtGlyphIndex:maxNumberOfLineFragments:
nextGlyphIndex: (page 3094).

Availability
Available in Mac OS X v10.4 and later.

See Also
– textContainers (page 3107)

Declared In
NSTypesetter.h

deleteGlyphsInRange:
Deletes the specified glyphs from the glyph cache maintained by the layout manager.

- (void)deleteGlyphsInRange:(NSRange)glyphRange

Parameters
glyphRange

The range of glyphs to be deleted.

Discussion
A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 3087
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

See Also
insertGlyph:atGlyphIndex:characterIndex: (page 3092)

Declared In
NSTypesetter.h

endLineWithGlyphRange:
Sets up layout parameters at the end of a line during typesetting.

- (void)endLineWithGlyphRange:(NSRange)lineGlyphRange

Parameters
lineGlyphRange

The range of glyphs laid out in the line.

Discussion
Concrete subclass implementations of layoutParagraphAtPoint: (page 3094) should invoke this method
at the end of each line.

Availability
Available in Mac OS X v10.4 and later.

See Also
– beginLineWithGlyphAtIndex: (page 3084)

Declared In
NSTypesetter.h

endParagraph
Sets up layout parameters at the end of a paragraph.

- (void)endParagraph

Discussion
Concrete subclasses should invoke this method at the end of their layoutParagraphAtPoint: (page 3094)
implementation.

Availability
Available in Mac OS X v10.4 and later.

See Also
– beginParagraph (page 3085)

Declared In
NSTypesetter.h

getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
bidiLevels:
Extracts the information needed to lay out the provided glyphs from the provided range.

3088 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

- (NSUInteger)getGlyphsInRange:(NSRange)glyphsRange glyphs:(NSGlyph *)glyphBuffer
characterIndexes:(NSUInteger *)charIndexBuffer
glyphInscriptions:(NSGlyphInscription *)inscribeBuffer elasticBits:(BOOL
*)elasticBuffer bidiLevels:(unsigned char *)bidiLevelBuffer

Parameters
glyphsRange

The range of glyphs.

glyphBuffer
The glyphs to lay out.

charIndexBuffer
The original characters for the glyphs. Note that a glyph at index 1 is not necessarily mapped to the
character at index 1, because a glyph may be for a ligature or accent.

inscribeBuffer
The inscription attributes for each glyph, which are used to layout characters that are combined
together.

elasticBuffer
Contains a Boolean value indicating whether a glyph is elastic for each glyph. An elastic glyph can
be made longer at the end of a line or when needed for justification.

bidiLevelBuffer
Contains the bidirectional level value generated by NSGlyphGenerator, in case a subclass chooses
to use this value.

Discussion
A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

getLineFragmentRect:usedRect:forParagraphSeparatorGlyphRange:atProposedOrigin:
Calculates the line fragment rectangle and line fragment used rectangle for blank lines.

- (void)getLineFragmentRect:(NSRectPointer)lineFragmentRect
usedRect:(NSRectPointer)lineFragmentUsedRect
forParagraphSeparatorGlyphRange:(NSRange)paragraphSeparatorGlyphRange
atProposedOrigin:(NSPoint)lineOrigin

Parameters
lineFragmentRect

On return, the calculated line fragment rectangle.

lineFragmentUsedRect
On return, the used rectangle (the portion of the line fragment rectangle that actually contains marks).

paragraphSeparatorGlyphRange
The range of glyphs under consideration. AparagraphSeparatorGlyphRangewith length 0 indicates
an extra line fragment (which occurs if the last character in the paragraph is a line separator).

Instance Methods 3089
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

lineOrigin
The origin point of the line fragment rectangle.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

getLineFragmentRect:usedRect:remainingRect:forStartingGlyphAtIndex:proposedRect:
lineSpacing:paragraphSpacingBefore:paragraphSpacingAfter:
Calculates line fragment rectangle, line fragment used rectangle, and remaining rectangle for a line fragment.

- (void)getLineFragmentRect:(NSRectPointer)lineFragmentRect
usedRect:(NSRectPointer)lineFragmentUsedRect
remainingRect:(NSRectPointer)remainingRect
forStartingGlyphAtIndex:(NSUInteger)startingGlyphIndex
proposedRect:(NSRect)proposedRect lineSpacing:(CGFloat)lineSpacing
paragraphSpacingBefore:(CGFloat)paragraphSpacingBefore
paragraphSpacingAfter:(CGFloat)paragraphSpacingAfter

Parameters
lineFragmentRect

On return, the calculated line fragment rectangle.

lineFragmentUsedRect
On return, the used rectangle (the portion of the line fragment rectangle that actually contains marks).

remainingRect
On return, the remaining rectangle of proposedRect.

startingGlyphIndex
The glyph index where the line fragment starts.

proposedRect
The proposed rectangle of the line fragment.

lineSpacing
The line spacing.

paragraphSpacingBefore
The spacing before the paragraph.

paragraphSpacingAfter
The spacing after the paragraph.

Discussion
The height of the line fragment is determined using lineSpacing, paragraphSpacingBefore, and
paragraphSpacingAfter as well as proposedRect. The width for lineFragmentUsedRect is set to the
lineFragmentRect width. In the standard implementation, paragraph spacing is included in the line
fragment rectangle but not the line fragment used rectangle; line spacing is included in both.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

3090 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

glyphRangeForCharacterRange:actualCharacterRange:
Returns the range for the glyphs mapped to the characters of the text store in the specified range.

- (NSRange)glyphRangeForCharacterRange:(NSRange)charRange
actualCharacterRange:(NSRangePointer)actualCharRange

Parameters
charRange

The range of the characters whose glyph range is desired.

actualCharRange
On return, all characters mapped to those glyphs; may be NULL.

Return Value
The range for the glyphs mapped to the characters of the text store in charRange.

Discussion
A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

See Also
– characterRangeForGlyphRange:actualGlyphRange: (page 3086)

Declared In
NSTypesetter.h

hyphenationFactor
Returns the current hyphenation factor.

- (float)hyphenationFactor

Return Value
The hyphenation factor, a value ranging from 0.0 to 1.0 that controls when hyphenation is attempted. By
default, the value is 0.0, meaning hyphenation is off. A factor of 1.0 causes hyphenation to be attempted
always.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setHyphenationFactor: (page 3101)

Declared In
NSTypesetter.h

hyphenationFactorForGlyphAtIndex:
Returns the hyphenation factor in effect at a specified location.

- (float)hyphenationFactorForGlyphAtIndex:(NSUInteger)glyphIndex

Instance Methods 3091
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Parameters
glyphIndex

The index of the glyph position to examine.

Return Value
The hyphenation factor in effect at glyphIndex. The hyphenation factor is a value ranging from 0.0 to 1.0
that controls when hyphenation is attempted. By default, the value is 0.0, meaning hyphenation is off. A
factor of 1.0 causes hyphenation to be attempted always.

Discussion
The typesetter calls this method with a proposed hyphenation point for a line break to find the hyphenation
factor in effect at that time. A subclass can override this method to customize the text layout process.

Availability
Available in Mac OS X v10.4 and later.

See Also
– hyphenCharacterForGlyphAtIndex: (page 3092)

Declared In
NSTypesetter.h

hyphenCharacterForGlyphAtIndex:
Returns the hyphen character to be inserted after the specified glyph.

- (UTF32Char)hyphenCharacterForGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
glyphIndex

The index of the glyph in question.

Return Value
The hyphen character to be inserted after the glyph at glyphIndex.

Discussion
The typesetter calls this method before hyphenating. A subclass can override this method to return a different
hyphen glyph.

Availability
Available in Mac OS X v10.4 and later.

See Also
– hyphenationFactorForGlyphAtIndex: (page 3091)

Declared In
NSTypesetter.h

insertGlyph:atGlyphIndex:characterIndex:
Enables the typesetter to insert a new glyph into the stream.

- (void)insertGlyph:(NSGlyph)glyph atGlyphIndex:(NSUInteger)glyphIndex
characterIndex:(NSUInteger)charIndex

3092 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Parameters
glyph

The glyph to insert into the glyph cache.

glyphIndex
The index at which to insert glyph.

charIndex
The index of the character that glyphmaps to. If the glyph is mapped to several characters, charIndex
should indicate the first character to which it’s mapped.

Discussion
The standard typesetter uses this method for inserting hyphenation glyphs. Because this method keeps the
glyph caches synchronized, subclasses should always use this method to insert glyphs instead of calling
layoutManager (page 3094) directly.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

layoutCharactersInRange:forLayoutManager:maximumNumberOfLineFragments:
Lays out characters in the given character range for the specified layout manager.

- (NSRange)layoutCharactersInRange:(NSRange)characterRange
forLayoutManager:(NSLayoutManager *)layoutManager
maximumNumberOfLineFragments:(NSUInteger)maxNumLines

Parameters
characterRange

The range of the characters to lay out.

layoutManager
The layout manager that does the drawing.

maxNumLines
The maximum number of line fragments to lay out. Specify NSUIntegerMax for unlimited number
of line fragments.

Return Value
The method returns the actual character range that the receiving NSTypesetter processed.

Discussion
The layout process can be interrupted when the number of line fragments exceeds maxNumLines.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTypesetter.h

Instance Methods 3093
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

layoutGlyphsInLayoutManager:startingAtGlyphIndex:maxNumberOfLineFragments:
nextGlyphIndex:
Lays out glyphs in the specified layout manager starting at a specified glyph.

- (void)layoutGlyphsInLayoutManager:(NSLayoutManager *)layoutMgr
startingAtGlyphIndex:(NSUInteger)startGlyphIndex
maxNumberOfLineFragments:(NSUInteger)maxNumLines nextGlyphIndex:(NSUInteger
*)nextGlyph

Parameters
layoutMgr

The layout manager in which to lay out glyphs.

startGlyphIndex
The index of the starting glyph.

maxNumLines
The maximum number of lines to generate. Fewer lines may be laid out if the glyph storage runs out
of glyphs.

nextGlyph
On return, set to the index of the next glyph that needs to be laid out.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTypesetter.h

layoutManager
Returns the layout manager for the text being typeset.

- (NSLayoutManager *)layoutManager

Return Value
The layout manager for the text being typeset. This value is valid only while the typesetter is performing
layout. More specifically, it’s valid only when called inside
layoutGlyphsInLayoutManager:startingAtGlyphIndex:maxNumberOfLineFragments:
nextGlyphIndex: (page 3094).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

layoutParagraphAtPoint:
Lays out glyphs in the current glyph range until the next paragraph separator is reached.

- (NSUInteger)layoutParagraphAtPoint:(NSPointPointer)lineFragmentOrigin

3094 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Parameters
lineFragmentOrigin

The upper-left corner of line fragment rectangle. On return, lineFragmentOrigin contains the next
origin.

Return Value
The next glyph index; usually the index right after the paragraph separator, but it can be inside the paragraph
range if, for example, the end of the text container is reached before the paragraph separator.

Discussion
Concrete subclasses must implement this method. A concrete implementation must invoke
beginParagraph (page 3085),beginLineWithGlyphAtIndex: (page 3084),endLineWithGlyphRange: (page
3088), and endParagraph (page 3088).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

lineFragmentPadding
Returns the current line fragment padding, in points.

- (CGFloat)lineFragmentPadding

Return Value
The current line fragment padding, in points; that is, the portion on each end of the line fragment rectangle
left blank.

Discussion
Text is inset within the line fragment rectangle by this amount.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setLineFragmentPadding: (page 3102)

Declared In
NSTypesetter.h

lineSpacingAfterGlyphAtIndex:withProposedLineFragmentRect:
Returns the line spacing in effect following the specified glyph.

- (CGFloat)lineSpacingAfterGlyphAtIndex:(NSUInteger)glyphIndex
withProposedLineFragmentRect:(NSRect)rect

Parameters
glyphIndex

The index of the glyph in question.

Instance Methods 3095
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

rect
The proposed line fragment rectangle.

Return Value
the line spacing in effect following the glyph at glyphIndex.

Discussion
The NSATSTypesetter calls this method to determine the number of points of space to include below the
descenders in the used rectangle for the proposed line fragment rectangle rect.

Line spacing, also called leading, is an attribute of NSParagraphStyle, which you can set on an
NSMutableParagraphStyle object. A font typically includes a default minimum line spacing metric used
if none is set in the paragraph style.

If the typesetter behavior specified in the layout manager is NSTypesetterOriginalBehavior, the text
system uses the original, private typesetter NSSimpleHorizontalTypesetter, which adds the line spacing
above the ascender. Similarly, NSATSTypesetter adds the line spacing above the ascender if the value is
negative.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

paragraphCharacterRange
Returns the character range currently being processed.

- (NSRange)paragraphCharacterRange

Return Value
The character range currently being processed.

Availability
Available in Mac OS X v10.4 and later.

See Also
– paragraphSeparatorCharacterRange (page 3097)
– paragraphSeparatorGlyphRange (page 3097)
– paragraphGlyphRange (page 3096)

Declared In
NSTypesetter.h

paragraphGlyphRange
Returns the glyph range currently being processed.

- (NSRange)paragraphGlyphRange

Return Value
The glyph range currently being processed.

3096 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setParagraphGlyphRange:separatorGlyphRange: (page 3104)
– paragraphSeparatorGlyphRange (page 3097)
– paragraphCharacterRange (page 3096)
– paragraphSeparatorCharacterRange (page 3097)

Declared In
NSTypesetter.h

paragraphSeparatorCharacterRange
Returns the current paragraph separator character range.

- (NSRange)paragraphSeparatorCharacterRange

Return Value
The current paragraph separator character range, which is the full range that contains the current character
range and that extends from one paragraph separator character to the next.

Availability
Available in Mac OS X v10.4 and later.

See Also
– paragraphGlyphRange (page 3096)
– paragraphSeparatorGlyphRange (page 3097)
– paragraphCharacterRange (page 3096)

Declared In
NSTypesetter.h

paragraphSeparatorGlyphRange
Returns the current paragraph separator range.

- (NSRange)paragraphSeparatorGlyphRange

Return Value
The current paragraph separator range, which is the full range that contains the current glyph range and
that extends from one paragraph separator character to the next.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setParagraphGlyphRange:separatorGlyphRange: (page 3104)
– paragraphGlyphRange (page 3096)
– paragraphSeparatorCharacterRange (page 3097)
– paragraphCharacterRange (page 3096)

Instance Methods 3097
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Declared In
NSTypesetter.h

paragraphSpacingAfterGlyphAtIndex:withProposedLineFragmentRect:
Returns the paragraph spacing that is in effect after the specified glyph.

- (CGFloat)paragraphSpacingAfterGlyphAtIndex:(NSUInteger)glyphIndex
withProposedLineFragmentRect:(NSRect)rect

Parameters
glyphIndex

The index of the glyph in question.

rect
The line fragment rectangle of the last line in the paragraph.

Return Value
The paragraph spacing—that is, the number of points of space added following a paragraph—that is in
effect after the glyph specified by glyphIndex.

Discussion
The typesetter adds the number of points specified in the return value to the bottom of the line fragment
rectangle specified by rect (but not to the used line fragment rectangle for that line). Paragraph spacing
added after a paragraph correlates to the value returned by the paragraphSpacing (page 1875) method of
NSParagraphStyle, which you can set using the setParagraphSpacing: (page 1723) method of
NSMutableParagraphStyle.

Availability
Available in Mac OS X v10.4 and later.

See Also
– paragraphSpacingBeforeGlyphAtIndex:withProposedLineFragmentRect: (page 3098)

Declared In
NSTypesetter.h

paragraphSpacingBeforeGlyphAtIndex:withProposedLineFragmentRect:
Returns the number of points of space—added before a paragraph—that is in effect before the specified
glyph.

- (CGFloat)paragraphSpacingBeforeGlyphAtIndex:(NSUInteger)glyphIndex
withProposedLineFragmentRect:(NSRect)rect

Parameters
glyphIndex

The index of the glyph in question.

rect
The line fragment rectangle of the first line in the paragraph.

Return Value
The number of points of space—added before a paragraph—that is in effect before the glyph specified by
glyphIndex.

3098 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Discussion
The typesetter adds the number of points specified in the return value to the top of the line fragment rectangle
specified by rect (but not to the used line fragment rectangle for that line). Paragraph spacing added before
a paragraph correlates to the value returned by the paragraphSpacingBefore (page 1876) method of
NSParagraphStyle, which you can set using the setParagraphSpacingBefore: (page 1724) method of
NSMutableParagraphStyle.

Availability
Available in Mac OS X v10.4 and later.

See Also
– paragraphSpacingAfterGlyphAtIndex:withProposedLineFragmentRect: (page 3098)

Declared In
NSTypesetter.h

setAttachmentSize:forGlyphRange:
Sets the size the specified glyphs (assumed to be attachments) will be asked to draw themselves at.

- (void)setAttachmentSize:(NSSize)attachmentSize forGlyphRange:(NSRange)glyphRange

Parameters
attachmentSize

The size the glyphs in glyphRange (assumed to be attachments) will be asked to draw themselves
at.

glyphRange
The range of glyphs the attachment size applies to.

Discussion
A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

setAttributedString:
Sets the text backing store on which this typesetter operates.

- (void)setAttributedString:(NSAttributedString *)attrString

Parameters
attrString

The text backing store on which the typesetter should operate.

Special Considerations

Typesetters do not retain the text backing store on which they are operating.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 3099
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

See Also
– attributedString (page 3083)

Declared In
NSTypesetter.h

setBidiLevels:forGlyphRange:
Sets the direction of the specified glyphs for bidirectional text.

- (void)setBidiLevels:(const uint8_t *)levels forGlyphRange:(NSRange)glyphRange

Parameters
levels

Values in levels can range from 0 to 61 as defined by Unicode Standard Annex #9.

glyphRange
The range of glyphs for which the bidirectional text levels are desired.

Discussion
A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

setBidiProcessingEnabled:
Controls whether the typesetter performs bidirectional text processing.

- (void)setBidiProcessingEnabled:(BOOL)flag

Parameters
flag

YES to enable bidirectional text processing, NO to disable it.

Discussion
You can use this method to disable the bidirectional layout stage if you know the paragraph does not need
this stage; that is, if the characters in the backing store are in display order.

Availability
Available in Mac OS X v10.4 and later.

See Also
– bidiProcessingEnabled (page 3085)

Declared In
NSTypesetter.h

3100 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

setDrawsOutsideLineFragment:forGlyphRange:
Sets whether the specified glyphs exceed the bounds of the line fragment in which they are laid out.

- (void)setDrawsOutsideLineFragment:(BOOL)flag forGlyphRange:(NSRange)glyphRange

Parameters
flag

YES if the glyphs in glyphRange exceed the bounds of the line fragment in which they are laid out,
NO otherwise.

glyphRange
The range of the glyphs in question.

Discussion
This can happen when text is set at a fixed line height. For example, if the user specifies a fixed line height
of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

setHardInvalidation:forGlyphRange:
Sets whether to force the layout manager to invalidate the specified portion of the glyph cache when
invalidating layout.

- (void)setHardInvalidation:(BOOL)flag forGlyphRange:(NSRange)glyphRange

Parameters
flag

YES if the layout manager should invalidate the specified portion of the glyph cache, NO otherwise.

glyphRange
The range of glyphs in the cache to be marked for hard invalidation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

setHyphenationFactor:
Sets the threshold controlling when hyphenation is attempted.

- (void)setHyphenationFactor:(float)factor

Instance Methods 3101
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Parameters
factor

A frequency factor in the range of 0.0 to 1.0. By default, the value is 0.0, meaning hyphenation is off.
A factor of 1.0 causes hyphenation to be attempted always.

Availability
Available in Mac OS X v10.4 and later.

See Also
– hyphenationFactor (page 3091)

Declared In
NSTypesetter.h

setLineFragmentPadding:
Sets the amount (in points) by which text is inset within line fragment rectangles.

- (void)setLineFragmentPadding:(CGFloat)padding

Parameters
padding

The amount (in points) by which text is inset within line fragment rectangles.

Special Considerations

Line fragment padding isn’t a suitable means for expressing margins; you should set the text view's position
and size for document margins or the paragraph margin attributes for text margins.

Availability
Available in Mac OS X v10.4 and later.

See Also
– lineFragmentPadding (page 3095)

Declared In
NSTypesetter.h

setLineFragmentRect:forGlyphRange:usedRect:baselineOffset:
Sets the line fragment rectangle where the specified glyphs are laid out.

- (void)setLineFragmentRect:(NSRect)fragmentRect forGlyphRange:(NSRange)glyphRange
usedRect:(NSRect)usedRect baselineOffset:(CGFloat)baselineOffset

Parameters
fragmentRect

The line fragment rectangle where the glyphs in glyphRange are laid out.

glyphRange
The range of the specified glyphs.

3102 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

usedRect
The portion of fragmentRect, in the NSTextContainer object’s coordinate system, that actually
contains glyphs or other marks that are drawn (including the text container’s line fragment padding).
The usedRect must be equal to or contained within fragmentRect.

baselineOffset
The vertical distance in pixels from the line fragment origin to the baseline on which the glyphs align.

Discussion
The exact positions of the glyphs must be set after the line fragment rectangle with
setLocation:forStartOfGlyphRange:.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

setLocation:withAdvancements:forStartOfGlyphRange:
Sets the location where the specified glyphs are laid out.

- (void)setLocation:(NSPoint)location withAdvancements:(const CGFloat *)advancements
forStartOfGlyphRange:(NSRange)glyphRange

Parameters
location

The location where the glyphs in glyphRange are laid out. The x-coordinate of location is expressed
relative to the line fragment rectangle origin, and the y-coordinate is expressed relative to the baseline
previously specified by
setLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 3102).

advancements
The nominal glyph advance width specified in the font metric information.

glyphRange
The range of glyphs whose layout location is being set. This series of glyphs can be displayed with a
single PostScript show operation (a nominal range).

Discussion
Setting the location for a series of glyphs implies that the glyphs preceding it can’t be included in a single
show operation.

Before setting the location for a glyph range, you must specify line fragment rectangle with
setLineFragmentRect:forGlyphRange:usedRect:baselineOffset:.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

Instance Methods 3103
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

setNotShownAttribute:forGlyphRange:
Sets whether the specified glyphs are not shown.

- (void)setNotShownAttribute:(BOOL)flag forGlyphRange:(NSRange)glyphRange

Parameters
flag

YES if the glyphs in glyphRange are not shown, NO if they are shown.

glyphRange
The range of glyphs in question.

Discussion
For example, a tab or newline character doesn’t leave any marks; it just indicates where following glyphs are
laid out.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

setParagraphGlyphRange:separatorGlyphRange:
Sets the current glyph range being processed.

- (void)setParagraphGlyphRange:(NSRange)paragraphRange
separatorGlyphRange:(NSRange)paragraphSeparatorRange

Parameters
paragraphRange

The current glyph range being processed.

paragraphSeparatorRange
The range of the paragraph separator character or characters.

Availability
Available in Mac OS X v10.4 and later.

See Also
– paragraphGlyphRange (page 3096)
– paragraphSeparatorGlyphRange (page 3097)

Declared In
NSTypesetter.h

setTypesetterBehavior:
Sets the default typesetter behavior, which affects glyph spacing and line height.

- (void)setTypesetterBehavior:(NSTypesetterBehavior)behavior

3104 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Parameters
behavior

The new behavior.

Availability
Available in Mac OS X v10.4 and later.

See Also
– typesetterBehavior (page 3108)

Declared In
NSTypesetter.h

setUsesFontLeading:
Sets whether the typesetter uses the leading (or line gap) value specified in the font metric information.

- (void)setUsesFontLeading:(BOOL)flag

Parameters
flag

YES to use the information in the font metrics, NO to ignore it.

Availability
Available in Mac OS X v10.4 and later.

See Also
– usesFontLeading (page 3108)

Declared In
NSTypesetter.h

shouldBreakLineByHyphenatingBeforeCharacterAtIndex:
Returns whether the line being laid out should be broken by hyphenating at the specified character.

- (BOOL)shouldBreakLineByHyphenatingBeforeCharacterAtIndex:(NSUInteger)charIndex

Parameters
charIndex

The index of the character just after the proposed hyphenation would occur.

Return Value
YES if the line should be broken by hyphenating, NO otherwise.

Discussion
The typesetter calls this method, if implemented by a subclass, before breaking a line by hyphenating before
the character at charIndex, enabling the subclass to control line breaking.

A subclass can override this method to customize the text layout process. If the method returns NO, the
typesetter continues looking for a break point.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 3105
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

See Also
– shouldBreakLineByWordBeforeCharacterAtIndex: (page 3106)

Declared In
NSTypesetter.h

shouldBreakLineByWordBeforeCharacterAtIndex:
Returns whether the line being laid out should be broken by a word break at the specified character.

- (BOOL)shouldBreakLineByWordBeforeCharacterAtIndex:(NSUInteger)charIndex

Parameters
charIndex

The index of the character just after the proposed word break would occur.

Return Value
YES if the line should be broken by a word break, NO otherwise.

Discussion
The typesetter calls this method, if implemented by a subclass, before breaking a line by word wrapping
before the character at charIndex, enabling the subclass to control line breaking.

A subclass can override this method to customize the text layout process. If the method returns NO, the
typesetter continues looking for a break point.

Availability
Available in Mac OS X v10.4 and later.

See Also
– shouldBreakLineByHyphenatingBeforeCharacterAtIndex: (page 3105)

Declared In
NSTypesetter.h

substituteFontForFont:
Returns a screen font suitable for use in place of a given font.

- (NSFont *)substituteFontForFont:(NSFont *)originalFont

Parameters
originalFont

The original font.

Return Value
A screen font suitable for use in place of originalFont. This method returns originalFont if a screen
font can’t be used or isn’t available.

Discussion
A screen font can only be substituted if the receiver is set to use screen fonts and if no text view associated
with the receiver is scaled or rotated.

3106 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

substituteGlyphsInRange:withGlyphs:
Replaces the specified glyphs with specified replacement glyphs.

- (void)substituteGlyphsInRange:(NSRange)glyphRange withGlyphs:(NSGlyph *)glyphs

Parameters
glyphRange

The range of glyphs to be substituted.

glyphs
The glyphs to substitute for the glyphs in glyphRange.

Discussion
This method does not alter the glyph-to-character mapping or invalidate layout information.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

textContainers
Returns an array containing the text containers belonging to the current layout manager.

- (NSArray *)textContainers

Return Value
An array containing the text containers belonging to the current layout manager. This value is valid only
while the typesetter is performing layout. More specifically, it’s valid only when called inside
layoutGlyphsInLayoutManager:startingAtGlyphIndex:maxNumberOfLineFragments:
nextGlyphIndex: (page 3094).

Availability
Available in Mac OS X v10.4 and later.

See Also
– layoutManager (page 3094)
– currentTextContainer (page 3087)

Declared In
NSTypesetter.h

Instance Methods 3107
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

textTabForGlyphLocation:writingDirection:maxLocation:
Returns the text tab next closest to a given glyph location within the given parameters.

- (NSTextTab *)textTabForGlyphLocation:(CGFloat)glyphLocation
writingDirection:(NSWritingDirection)direction maxLocation:(CGFloat)maxLocation

Parameters
glyphLocation

The location at which to start searching.

direction
The direction in which to search.

maxLocation
The maximum location for the search.

Return Value
The text tab next closest to glyphLocation, indexing in direction but not beyond maxLocation.

Discussion
The typesetter calls this method whenever it finds a tab character. To determine the width to advance the
next glyph, the typesetter examines the NSParagraphStyle object's tab array and the default tab interval.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

typesetterBehavior
Returns the current typesetter behavior.

- (NSTypesetterBehavior)typesetterBehavior

Return Value
The current typesetter behavior.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setTypesetterBehavior: (page 3104)

Declared In
NSTypesetter.h

usesFontLeading
Returns whether the typesetter uses the leading (or line gap) value specified in the font metric information
of the current font.

- (BOOL)usesFontLeading

3108 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Return Value
YES if it uses the information in the font metrics, NO otherwise.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setUsesFontLeading: (page 3105)

Declared In
NSTypesetter.h

willSetLineFragmentRect:forGlyphRange:usedRect:baselineOffset:
Called by the typesetter just prior to storing the actual line fragment rectangle location in the layout manager.

- (void)willSetLineFragmentRect:(NSRectPointer)lineRect
forGlyphRange:(NSRange)glyphRange usedRect:(NSRectPointer)usedRect
baselineOffset:(CGFloat *)baselineOffset

Parameters
lineRect

The rectangle in which the glyphs in glyphRange are laid out.

glyphRange
The range of the glyphs to lay out.

usedRect
The portion of lineRect, in the NSTextContainer object’s coordinate system, that actually contains
glyphs or other marks that are drawn (including the text container’s line fragment padding). The
usedRect must be equal to or contained within lineRect.

baselineOffset
The vertical distance in pixels from the line fragment origin to the baseline on which the glyphs align.

Discussion
Called by the typesetter just prior to calling
setLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 3102) which stores the
actual line fragment rectangle location in the layout manager.

A subclass can override this method to customize the text layout process. For example, it could change the
shape of the line fragment rectangle. The subclass is responsible for ensuring that the modified rectangle
remains valid (for example, that it lies within the text container).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSTypesetter.h

Instance Methods 3109
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Constants

NSTypesetterControlCharacterAction
The following constants are possible values returned by the actionForControlCharacterAtIndex: (page
3083) method to determine the action associated with a control character.

enum {
 NSTypesetterZeroAdvancementAction = (1 << 0),
 NSTypesetterWhitespaceAction = (1 << 1),
 NSTypesetterHorizontalTabAction = (1 << 2),
 NSTypesetterLineBreakAction = (1 << 3),
 NSTypesetterParagraphBreakAction = (1 << 4),
 NSTypesetterContainerBreakAction = (1 << 5)
};
typedef NSUInteger NSTypesetterControlCharacterAction;

Constants
NSTypesetterZeroAdvancementAction

Glyphs with this action are filtered out from layout (notShownAttribute == YES).

Available in Mac OS X v10.4 and later.

Declared in NSTypesetter.h.

NSTypesetterWhitespaceAction
The width for glyphs with this action are determined by
boundingBoxForControlGlyphAtIndex:forTextContainer:proposedLineFragment:
glyphPosition:characterIndex: (page 3085), if the method is implemented; otherwise, same as
NSTypesetterZeroAdvancementAction.

Available in Mac OS X v10.4 and later.

Declared in NSTypesetter.h.

NSTypesetterHorizontalTabAction
Treated as tab character.

Available in Mac OS X v10.4 and later.

Declared in NSTypesetter.h.

NSTypesetterLineBreakAction
Causes line break.

Available in Mac OS X v10.4 and later.

Declared in NSTypesetter.h.

NSTypesetterParagraphBreakAction
Causes paragraph break; the value returned byfirstLineHeadIndent (page 1872) is the advancement
used for the following glyph.

Available in Mac OS X v10.4 and later.

Declared in NSTypesetter.h.

NSTypesetterContainerBreakAction
Causes container break.

Available in Mac OS X v10.4 and later.

Declared in NSTypesetter.h.

3110 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 164

NSTypesetter Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSPasteboard.h

Overview

The Application Kit extends Foundation’s NSURL class by adding support for pasteboards. NSWorkspace
provides openURL: (page 3473) to open a location specified by a URL.

Tasks

Working with Pasteboards

+ URLFromPasteboard: (page 3111)
Reads an NSURL object off of pasteboard. Returns nil if pasteboard does not contain data of type
NSURLPboardType.

– writeToPasteboard: (page 3112)
Writes the receiver to pasteboard. You must declare an NSURLPboardTypedata type for pasteboard
before invoking this method; otherwise it returns without doing anything.

Class Methods

URLFromPasteboard:
Reads an NSURL object off of pasteboard. Returns nil if pasteboard does not contain data of type
NSURLPboardType.

+ (NSURL *)URLFromPasteboard:(NSPasteboard *)pasteboard

Availability
Available in Mac OS X v10.0 and later.

Overview 3111
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 165

NSURL Additions Reference

See Also
– writeToPasteboard: (page 3112)

Related Sample Code
CocoaDragAndDrop
NineSlice
QTMetadataEditor
SourceView
With and Without Bindings

Declared In
NSPasteboard.h

Instance Methods

writeToPasteboard:
Writes the receiver to pasteboard. You must declare an NSURLPboardType data type for pasteboard
before invoking this method; otherwise it returns without doing anything.

- (void)writeToPasteboard:(NSPasteboard *)pasteboard

Availability
Available in Mac OS X v10.0 and later.

See Also
+ URLFromPasteboard: (page 3111)
– declareTypes:owner: (page 1893) (NSPasteboard)

Related Sample Code
With and Without Bindings

Declared In
NSPasteboard.h

3112 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 165

NSURL Additions Reference

Inherits from NSController : NSObject

Conforms to NSCoding (NSController)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSUserDefaultsController.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Bindings Programming Topics

Related sample code DemoMonkey
Dicey
ImageApp
Sketch+Accessibility
TemperatureConverter

Overview

NSUserDefaultsController is a Cocoa bindings compatible controller class. Properties of the shared instance
of this class can be bound to user interface elements to access and modify values stored in NSUserDefaults.

Tasks

Obtaining the Shared Instance

+ sharedUserDefaultsController (page 3114)
Returns the shared instance of NSUserDefaultsController, creating it if necessary.

Initializing a User Defaults Controller

– initWithDefaults:initialValues: (page 3116)
Returns an initialized NSUserDefaultsController object using the NSUserDefaults instance specified
in defaults and the initial default values contained in the initialValues dictionary.

Overview 3113
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 166

NSUserDefaultsController Class Reference

Managing User Defaults Values

– defaults (page 3115)
Returns the instance of NSUserDefaults in use by the receiver.

– setInitialValues: (page 3118)
Sets the receiver’s initial values to initialValues.

– hasUnappliedChanges (page 3115)
Returns whether the receiver has user default values that have not been saved to NSUserDefaults.

– initialValues (page 3116)
Returns a dictionary containing the receiver’s initial default values.

– setAppliesImmediately: (page 3118)
Sets whether any changes made to the receiver’s user default properties are saved immediately.

– appliesImmediately (page 3115)
Returns whether any changes made to bound user default properties are saved immediately.

– values (page 3119)
Returns a key value coding compliant object that is used to access the user default properties.

– revert: (page 3117)
Causes the receiver to discard any unsaved changes to bound user default properties, restoring their
previous values.

– revertToInitialValues: (page 3117)
Causes the receiver to discard all edits and replace the values of all the user default properties with
any corresponding values in the initialValues (page 3116) dictionary.

– save: (page 3117)
Saves the values of the receiver’s user default properties.

Class Methods

sharedUserDefaultsController
Returns the shared instance of NSUserDefaultsController, creating it if necessary.

+ (id)sharedUserDefaultsController

Discussion
This instance has no initial values, and uses [NSUserDefaults standardUserDefaults] to create the
defaults. An application can get this object when an application launches and configure it as required.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
DemoMonkey
Dicey
ImageApp
Sketch+Accessibility

3114 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 166

NSUserDefaultsController Class Reference

Declared In
NSUserDefaultsController.h

Instance Methods

appliesImmediately
Returns whether any changes made to bound user default properties are saved immediately.

- (BOOL)appliesImmediately

Discussion
Default is YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAppliesImmediately: (page 3118)

Declared In
NSUserDefaultsController.h

defaults
Returns the instance of NSUserDefaults in use by the receiver.

- (NSUserDefaults *)defaults

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ImageApp

Declared In
NSUserDefaultsController.h

hasUnappliedChanges
Returns whether the receiver has user default values that have not been saved to NSUserDefaults.

- (BOOL)hasUnappliedChanges

Instance Methods 3115
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 166

NSUserDefaultsController Class Reference

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
– appliesImmediately (page 3115)
– setAppliesImmediately: (page 3118)

Declared In
NSUserDefaultsController.h

initialValues
Returns a dictionary containing the receiver’s initial default values.

- (NSDictionary *)initialValues

Discussion
These values are used when is no value found for the bound property in defaults (page 3115).

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setInitialValues: (page 3118)
– revertToInitialValues: (page 3117)

Declared In
NSUserDefaultsController.h

initWithDefaults:initialValues:
Returns an initialized NSUserDefaultsController object using the NSUserDefaults instance specified in defaults
and the initial default values contained in the initialValues dictionary.

- (id)initWithDefaults:(NSUserDefaults *)defaults initialValues:(NSDictionary
*)initialValues

Discussion
If defaults is nil, the receiver uses [NSUserDefaults standardUserDefaults].

This method is the designated initializer.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSUserDefaultsController.h

3116 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 166

NSUserDefaultsController Class Reference

revert:
Causes the receiver to discard any unsaved changes to bound user default properties, restoring their previous
values.

- (void)revert:(id)sender

Discussion
The receiver invokes discardEditing (page 3679) on any currently registered editors. The sender is typically
the object that invoked this method.

If appliesImmediately (page 3115) is YES, this method only causes any bound editors with uncommitted
changes to discard their edits.

Availability
Available in Mac OS X v10.3 and later.

See Also
– revertToInitialValues: (page 3117)

Declared In
NSUserDefaultsController.h

revertToInitialValues:
Causes the receiver to discard all edits and replace the values of all the user default properties with any
corresponding values in the initialValues (page 3116) dictionary.

- (void)revertToInitialValues:(id)sender

Discussion
This effectively sets the preferences that a user can change to their “out-of-the-box” values. This method has
no effect if initial values were not specified. The sender is typically the object that invoked this method.

Availability
Available in Mac OS X v10.3 and later.

See Also
– initialValues (page 3116)
– revert: (page 3117)

Declared In
NSUserDefaultsController.h

save:
Saves the values of the receiver’s user default properties.

- (void)save:(id)sender

Discussion
This method has no effect if appliesImmediately (page 3115) returns YES.

Instance Methods 3117
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 166

NSUserDefaultsController Class Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSUserDefaultsController.h

setAppliesImmediately:
Sets whether any changes made to the receiver’s user default properties are saved immediately.

- (void)setAppliesImmediately:(BOOL)flag

Discussion
The default is YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
– appliesImmediately (page 3115)

Declared In
NSUserDefaultsController.h

setInitialValues:
Sets the receiver’s initial values to initialValues.

- (void)setInitialValues:(NSDictionary *)initialValues

Discussion
These values are used when a user default properties has no value in NSUserDefaults and by
revertToInitialValues: (page 3117).

The initial values must be set before loading a nib that uses the receiver, as those values may be referenced
at load time. It is good practice to set the initial values–along with registering any defaults for the
applications–in theinitialize class method of your preference dialog controller, or the application delegate.

Availability
Available in Mac OS X v10.3 and later.

See Also
– defaults (page 3115)
– initialValues (page 3116)

Related Sample Code
DemoMonkey
Sketch+Accessibility

Declared In
NSUserDefaultsController.h

3118 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 166

NSUserDefaultsController Class Reference

values
Returns a key value coding compliant object that is used to access the user default properties.

- (id)values

Discussion
If present the value for the property in defaults (page 3115) is returned, otherwise a corresponding value in
initialValues (page 3116) is returned.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSUserDefaultsController.h

Instance Methods 3119
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 166

NSUserDefaultsController Class Reference

3120 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 166

NSUserDefaultsController Class Reference

Inherits from NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSView.h
AppKit/NSClipView.h

Companion guides View Programming Guide
Cocoa Drawing Guide
Cocoa Event-Handling Guide
Drag and Drop Programming Topics for Cocoa
Printing Programming Topics for Cocoa

Related sample code MatrixMixerTest
Quartz Composer WWDC 2005 TextEdit
QuickLookSketch
Sketch+Accessibility
Sketch-112

Class at a Glance

NSView is a class that defines the basic drawing, event-handling, and printing architecture of an application.
You typically don’t interact with the NSView API directly; rather, your custom view classes inherit from NSView
and override many of its methods, which are invoked automatically by the Application Kit. If you’re not
creating a custom view class, there are few methods you need to use.

Principal Attributes

 ■ Event handling

 ■ Integrated display to screen and printer

 ■ Flexible coordinate systems

 ■ Icon dragging

Class at a Glance 3121
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Commonly Used Methods

frame (page 3175)
Returns the location and size of the NSView object.

bounds (page 3150)
Returns the internal origin and size of the NSView object.

setNeedsDisplay: (page 3225)
Marks the NSView object as needing to be redrawn

window (page 3248)
Returns the NSWindow object that contains the NSView object.

drawRect: (page 3170)
Draws the NSView object. (All subclasses must implement this method, but it’s rarely invoked explicitly.)

Overview

The NSView class that provides a structure for drawing, printing, and handling events.

NSView objects (also know, simply, as view objects or views) are arranged within an NSWindow object, in a
nested hierarchy of subviews. A view object claims a rectangular region of its enclosing superview, is
responsible for all drawing within that region, and is eligible to receive mouse events occurring in it as well.
In addition to these major responsibilities, NSView handles dragging of icons and works with the
NSScrollView class to support efficient scrolling.

Most of the functionality of NSView either is automatically invoked by the Application Kit, or is available in
Interface Builder. Unless you’re implementing a concrete subclass of NSView or working intimately with the
content of the view hierarchy at runtime, you don’t need to know much about this class’s interface. See
“Commonly Used Methods” (page 3122) for methods you might use regardless.

For more information on how NSView instances handle event and action messages, see Cocoa Event-Handling
Guide. For more information on displaying tooltips and contextual menus, see “Displaying Contextual
Menus” (page 1605) and “Managing Tooltips” (page 3286).

Subclassing Notes

NSView is perhaps the most important class in the Application Kit when it comes to subclassing and
inheritance. Most user-interface objects you see in a Cocoa application are objects that inherit from NSView.
If you want to create an object that draws itself in a special way, or that responds to mouse clicks in a special
way, you would create a custom subclass of NSView (or of a class that inherits from NSView). Subclassing
NSView is such a common and important procedure that several technical documents describe how to both
draw in custom subclasses and respond to events in custom subclasses. See Cocoa Drawing Guide and Cocoa
Event-Handling Guide (especially "“Handling Mouse Events”" and "“Mouse Events” in Cocoa Event-Handling
Guide").

3122 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Tasks

Creating Instances

– initWithFrame: (page 3179)
Initializes and returns a newly allocated NSView object with a specified frame rectangle.

Managing the View Hierarchy

– superview (page 3235)
Returns the receiver’s superview, or nil if it has none.

– setSubviews: (page 3228)
Sets the receiver’s subviews to the specified subviews.

– subviews (page 3235)
Return the receiver’s immediate subviews.

– window (page 3248)
Returns the receiver’s window object, or nil if it has none.

– addSubview: (page 3139)
Adds a view to the receiver’s subviews so it’s displayed above its siblings.

– addSubview:positioned:relativeTo: (page 3140)
Inserts a view among the receiver’s subviews so it’s displayed immediately above or below another
view.

– didAddSubview: (page 3163)
Overridden by subclasses to perform additional actions when subviews are added to the receiver.

– removeFromSuperview (page 3202)
Unlinks the receiver from its superview and its window, removes it from the responder chain, and
invalidates its cursor rectangles.

– removeFromSuperviewWithoutNeedingDisplay (page 3203)
Unlinks the receiver from its superview and its window and removes it from the responder chain, but
does not invalidate its cursor rectangles to cause redrawing.

– replaceSubview:with: (page 3205)
Replaces one of the receiver’s subviews with another view.

– isDescendantOf: (page 3181)
Returns YES if the receiver is a subview of a given view or if it’s identical to that view; otherwise, it
returns NO.

– opaqueAncestor (page 3193)
Returns the receiver’s closest opaque ancestor (including the receiver itself).

– ancestorSharedWithView: (page 3147)
Returns the closest ancestor shared by the receiver and a given view.

– sortSubviewsUsingFunction:context: (page 3234)
Orders the receiver's immediate subviews using the specified comparator function.

– viewDidMoveToSuperview (page 3241)
Informs the receiver that its superview has changed (possibly to nil).

Tasks 3123
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– viewDidMoveToWindow (page 3241)
Informs the receiver that it has been added to a new view hierarchy.

– viewWillMoveToSuperview: (page 3243)
Informs the receiver that its superview is about to change to the specified superview (which may be
nil).

– viewWillMoveToWindow: (page 3243)
Informs the receiver that it’s being added to the view hierarchy of the specified window object (which
may be nil).

– willRemoveSubview: (page 3247)
Overridden by subclasses to perform additional actions before subviews are removed from the receiver.

– enclosingMenuItem (page 3172)
Returns the menu item containing the receiver or any of its superviews in the view hierarchy.

Searching by Tag

– viewWithTag: (page 3245)
Returns the receiver’s nearest descendant (including itself) with a specific tag, or nil if no subview
has that tag.

– tag (page 3236)
Returns the receiver’s tag, an integer that you can use to identify view objects in your application.

Modifying the Frame Rectangle

– setFrame: (page 3218)
Sets the receiver’s frame rectangle to the specified rectangle.

– frame (page 3175)
Returns the receiver’s frame rectangle, which defines its position in its superview.

– setFrameOrigin: (page 3220)
Sets the origin of the receiver’s frame rectangle to the specified point, effectively repositioning it
within its superview.

– setFrameSize: (page 3221)
Sets the size of the receiver’s frame rectangle to the specified dimensions, resizing it within its
superview without affecting its coordinate system.

– setFrameRotation: (page 3221)
Sets the rotation of the receiver’s frame rectangle to a specified degree value, rotating it within its
superview without affecting its coordinate system.

– frameRotation (page 3176)
Returns the angle, in degrees, of the receiver’s frame relative to its superview’s coordinate system.

Modifying the Bounds Rectangle

– setBounds: (page 3214)
Sets the receiver’s bounds rectangle.

3124 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– bounds (page 3150)
Returns the receiver’s bounds rectangle, which expresses its location and size in its own coordinate
system.

– setBoundsOrigin: (page 3214)
Sets the origin of the receiver’s bounds rectangle to a specified point,

– setBoundsSize: (page 3216)
Sets the size of the receiver’s bounds rectangle to specified dimensions, inversely scaling its coordinate
system relative to its frame rectangle.

– setBoundsRotation: (page 3215)
Sets the rotation of the receiver’s bounds rectangle to a specific degree value.

– boundsRotation (page 3151)
Returns the angle, in degrees, of the receiver’s bounds rectangle relative to its frame rectangle.

Modifying the Coordinate System

– translateOriginToPoint: (page 3237)
Translates the receiver’s coordinate system so that its origin moves to a new location.

– scaleUnitSquareToSize: (page 3208)
Scales the receiver’s coordinate system so that the unit square scales to the specified dimensions.

– rotateByAngle: (page 3208)
Rotates the receiver’s bounds rectangle by a specified degree value around the origin of the coordinate
system, (0.0, 0.0).

Examining Coordinate System Modifications

– isFlipped (page 3181)
Returns YES if the receiver uses flipped drawing coordinates or NO if it uses native coordinates.

– isRotatedFromBase (page 3184)
Returns YES if the receiver or any of its ancestors has ever received a setFrameRotation: (page
3221) or setBoundsRotation: (page 3215) message; otherwise returns NO.

– isRotatedOrScaledFromBase (page 3184)
Returns YES if the receiver or any of its ancestors has ever had a nonzero frame or bounds rotation,
or has been scaled from the window’s base coordinate system; otherwise returns NO.

Base Coordinate Conversion

– convertPointToBase: (page 3157)
Converts the point from the receiver’s coordinate system to the base coordinate system.

– convertPointFromBase: (page 3156)
Converts the point from the base coordinate system to the receiver’s coordinate system.

– convertSizeToBase: (page 3161)
Converts the size from the receiver’s coordinate system to the base coordinate system.

– convertSizeFromBase: (page 3161)
Converts the size from the base coordinate system to the receiver’s coordinate system.

Tasks 3125
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– convertRectToBase: (page 3159)
Converts the rectangle from the receiver’s coordinate system to the base coordinate system.

– convertRectFromBase: (page 3158)
Converts the rectangle from the base coordinate system to the receiver’s coordinate system.

Converting Coordinates

– convertPoint:fromView: (page 3155)
Converts a point from the coordinate system of a given view to that of the receiver.

– convertPoint:toView: (page 3155)
Converts a point from the receiver’s coordinate system to that of a given view.

– convertSize:fromView: (page 3159)
Converts a size from another view’s coordinate system to that of the receiver.

– convertSize:toView: (page 3160)
Converts a size from the receiver’s coordinate system to that of another view.

– convertRect:fromView: (page 3157)
Converts a rectangle from the coordinate system of another view to that of the receiver.

– convertRect:toView: (page 3158)
Converts a rectangle from the receiver’s coordinate system to that of another view.

– centerScanRect: (page 3153)
Converts the corners of a specified rectangle to lie on the center of device pixels, which is useful in
compensating for rendering overscanning when the coordinate system has been scaled.

Controlling Notifications

– setPostsFrameChangedNotifications: (page 3227)
Controls whether the receiver informs observers when its frame rectangle changes.

– postsFrameChangedNotifications (page 3196)
Returns YES if the receiver posts notifications to the default notification center whenever its frame
rectangle changes; returns NO otherwise.

– setPostsBoundsChangedNotifications: (page 3226)
Controls whether the receiver informs observers when its bounds rectangle changes.

– postsBoundsChangedNotifications (page 3196)
Returns YES if the receiver posts notifications to the default notification center whenever its bounds
rectangle changes; returns NO otherwise.

Resizing Subviews

– resizeSubviewsWithOldSize: (page 3206)
Informs the receiver’s subviews that the receiver’s bounds rectangle size has changed.

– resizeWithOldSuperviewSize: (page 3207)
Informs the receiver that the bounds size of its superview has changed.

3126 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– setAutoresizesSubviews: (page 3212)
Determines whether the receiver automatically resizes its subviews when its frame size changes.

– autoresizesSubviews (page 3147)
Returns YES if the receiver automatically resizes its subviews using
resizeSubviewsWithOldSize: (page 3206) whenever its frame size changes, NO otherwise.

– setAutoresizingMask: (page 3212)
Determines how the receiver’s resizeWithOldSuperviewSize: (page 3207) method changes its
frame rectangle.

– autoresizingMask (page 3147)
Returns the receiver’s autoresizing mask, which determines how it’s resized by the
resizeWithOldSuperviewSize: (page 3207) method.

Focusing

– lockFocus (page 3187)
Locks the focus on the receiver, so subsequent commands take effect in the receiver’s window and
coordinate system.

– lockFocusIfCanDraw (page 3188)
Locks the focus to the receiver atomically if the canDraw method returns YES and returns the value
of canDraw.

– lockFocusIfCanDrawInContext: (page 3188)
Locks the focus to the receiver atomically if drawing can occur in the specified graphics context.

– unlockFocus (page 3239)
Balances an earlier lockFocus (page 3187) or lockFocusIfCanDraw (page 3188) message; restoring
the focus to the previously focused view is necessary.

+ focusView (page 3137)
Returns the currently focused NSView object, or nil if there is none.

Displaying

– setNeedsDisplay: (page 3225)
Controls whether the receiver's entire bounds is marked as needing display.

– setNeedsDisplayInRect: (page 3225)
Marks the region of the receiver within the specified rectangle as needing display, increasing the
receiver’s existing invalid region to include it.

– needsDisplay (page 3191)
Returns YES if the receiver needs to be displayed, as indicated using setNeedsDisplay: (page 3225)
and setNeedsDisplayInRect: (page 3225); returns NO otherwise.

– display (page 3163)
Displays the receiver and all its subviews if possible, invoking each the NSView methods
lockFocus (page 3187), drawRect: (page 3170), and unlockFocus (page 3239) as necessary.

– displayRect: (page 3166)
Acts as display (page 3163), but confining drawing to a rectangular region of the receiver.

Tasks 3127
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– displayRectIgnoringOpacity: (page 3166)
Displays the receiver but confines drawing to a specified region and does not back up to the first
opaque ancestor—it simply causes the receiver and its descendants to execute their drawing code.

– displayRectIgnoringOpacity:inContext: (page 3166)
Causes the receiver and its descendants to be redrawn to the specified graphics context.

– displayIfNeeded (page 3164)
Displays the receiver and all its subviews if any part of the receiver has been marked as needing
display with a setNeedsDisplay: (page 3225) or setNeedsDisplayInRect: (page 3225) message.

– displayIfNeededInRect: (page 3165)
Acts as displayIfNeeded (page 3164), confining drawing to a specified region of the receiver..

– displayIfNeededIgnoringOpacity (page 3165)
Acts as displayIfNeeded (page 3164), except that this method doesn’t back up to the first opaque
ancestor—it simply causes the receiver and its descendants to execute their drawing code.

– displayIfNeededInRectIgnoringOpacity: (page 3165)
Acts as displayIfNeeded (page 3164), but confining drawing to aRect and not backing up to the
first opaque ancestor—it simply causes the receiver and its descendants to execute their drawing
code.

– translateRectsNeedingDisplayInRect:by: (page 3238)
Translates the display rectangles by the specified delta.

– isOpaque (page 3183)
Overridden by subclasses to return YES if the receiver is opaque, NO otherwise.

– viewWillDraw (page 3242)
Informs the receiver that it will be required to draw content.

Focus Ring Drawing

– setKeyboardFocusRingNeedsDisplayInRect: (page 3223)
Invalidates the area around the focus ring.

+ defaultFocusRingType (page 3137)
Returns the default focus ring type.

– setFocusRingType: (page 3218)
Sets the type of focus ring to be drawn around the receiver.

– focusRingType (page 3175)
Returns the type of focus ring drawn around the receiver.

Fullscreen Mode

– enterFullScreenMode:withOptions: (page 3173)
Sets the receiver to full screen mode.

– exitFullScreenModeWithOptions: (page 3174)
Instructs the receiver to exit full screen mode.

– isInFullScreenMode (page 3183)
Returns whether the view is in full screen mode.

3128 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Hiding Views

– setHidden: (page 3222)
Sets whether the view is hidden.

– isHidden (page 3182)
Returns whether the receiver is marked as hidden.

– isHiddenOrHasHiddenAncestor (page 3182)
Returns YES if the receiver is marked as hidden or has an ancestor in the view hierarchy that is marked
as hidden; returns NO otherwise.

– viewDidHide (page 3240)
Invoked when the receiver is hidden, either directly, or in response to an ancestor being hidden.

– viewDidUnhide (page 3242)
Invoked when the receiver is unhidden, either directly, or in response to an ancestor being unhidden

Drawing

– canDrawConcurrently (page 3153)
Returns whether the view’s drawRect: method can be invoked on a background thread.

– setCanDrawConcurrently: (page 3217)
Sets whether the view’s drawRect: method can be invoked on a background thread.

– drawRect: (page 3170)
Overridden by subclasses to draw the receiver’s image within the passed-in rectangle.

– visibleRect (page 3245)
Returns the portion of the receiver not clipped by its superviews.

– canDraw (page 3152)
Returns YES if drawing commands will produce any result, NO otherwise.

– shouldDrawColor (page 3232)
Returns NO if the receiver is being drawn in an NSWindow object (as opposed, for example, to being
printed) and the window object can’t store color; otherwise returns YES.

– getRectsBeingDrawn:count: (page 3176)
Returns by indirection a list of non-overlapping rectangles that define the area the receiver is being
asked to draw in drawRect: (page 3170).

– needsToDrawRect: (page 3192)
Returns whether the specified rectangle intersects any part of the area that the receiver is being asked
to draw.

– wantsDefaultClipping (page 3246)
Returns whether the Application Kit’s default clipping provided to drawRect: (page 3170)
implementations is in effect.

– bitmapImageRepForCachingDisplayInRect: (page 3150)
Returns a bitmap-representation object suitable for caching the specified portion of the receiver.

– cacheDisplayInRect:toBitmapImageRep: (page 3151)
Draws the specified area of the receiver, and its descendants, into a provided bitmap-representation
object.

Tasks 3129
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Managing Live Resize

– inLiveResize (page 3180)
A convenience method, expected to be called from drawRect: (page 3170), to assist in decisions about
optimized drawing.

– preservesContentDuringLiveResize (page 3196)
Returns YES if the view supports the optimization of live-resize operations by preserving content that
has not moved; otherwise, returns NO.

– getRectsExposedDuringLiveResize:count: (page 3177)
Returns a list of rectangles indicating the newly exposed areas of the receiver.

– rectPreservedDuringLiveResize (page 3199)
Returns the rectangle identifying the portion of your view that did not change during a live resize
operation.

– viewWillStartLiveResize (page 3244)
Informs the receiver of the start of a live resize.

– viewDidEndLiveResize (page 3240)
Informs the receiver of the end of a live resize.

Managing the Graphics State

– allocateGState (page 3146)
Causes the receiver to maintain a private graphics state object, which encapsulates all parameters of
the graphics environment.

– gState (page 3178)
Returns the identifier for the receiver’s graphics state object, or 0 if the receiver doesn’t have a graphics
state object.

– setUpGState (page 3229)
Overridden by subclasses to (re)initialize the receiver’s graphics state object.

– renewGState (page 3205)
Invalidates the receiver’s graphics state object, if it has one.

– releaseGState (page 3201)
Frees the receiver’s graphics state object, if it has one.

Event Handling

– acceptsFirstMouse: (page 3138)
Overridden by subclasses to return YES if the receiver should be sent a mouseDown: (page 2164)
message for an initial mouse-down event, NO if not.

– hitTest: (page 3179)
Returns the farthest descendant of the receiver in the view hierarchy (including itself) that contains
a specified point, or nil if that point lies completely outside the receiver.

– mouse:inRect: (page 3189)
Returns whether a region of the receiver contains a specified point, accounting for whether the
receiver is flipped or not.

3130 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– performKeyEquivalent: (page 3195)
Implemented by subclasses to respond to key equivalents (also known as keyboard shortcuts).

– rightMouseDown: (page 3207)
Informs the receiver that the user has pressed the right mouse button.

– performMnemonic: (page 3195)
Implemented by subclasses to respond to mnemonics.

– mouseDownCanMoveWindow (page 3190)
Returns YES if the receiver does not need to handle a mouse down and can pass it through to
superviews; NO if it needs to handle the mouse down.

– inputContext (page 3181)
Returns the text input context object for the receiver.

Dragging Operations

– dragImage:at:offset:event:pasteboard:source:slideBack: (page 3168)
Initiates a dragging operation from the receiver, allowing the user to drag arbitrary data with a specified
icon into any application that has window or view objects that accept dragged data.

– dragFile:fromRect:slideBack:event: (page 3167)
Initiates a dragging operation from the receiver, allowing the user to drag a file icon to any application
that has window or view objects that accept files.

– registerForDraggedTypes: (page 3201)
Registers the pasteboard types that the receiver will accept as the destination of an image-dragging
session.

– registeredDraggedTypes (page 3200)
Returns the array of pasteboard drag types that the view can accept.

– unregisterDraggedTypes (page 3239)
Unregisters the receiver as a possible destination in a dragging session.

– shouldDelayWindowOrderingForEvent: (page 3231)
Overridden by subclasses to allow the user to drag images from the receiver without its window
moving forward and possibly obscuring the destination and without activating the application.

– dragPromisedFilesOfTypes:fromRect:source:slideBack:event: (page 3169)
Initiates a dragging operation from the receiver, allowing the user to drag one or more promised files
(or directories) into any application that has window or view objects that accept promised file data.

Tool Tips

– addToolTipRect:owner:userData: (page 3141)
Creates a tool tip for a defined area the receiver and returns a tag that identifies the tool tip rectangle.

– removeAllToolTips (page 3201)
Removes all tool tips assigned to the receiver.

– removeToolTip: (page 3203)
Removes the tool tip identified by specified tag.

– setToolTip: (page 3229)
Sets the tool tip text for the view to string.

Tasks 3131
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– toolTip (page 3236)
Returns the text for the view’s tool tip.

Managing Tracking Rectangles

– addTrackingRect:owner:userData:assumeInside: (page 3142)
Establishes an area for tracking mouse-entered and mouse-exited events within the receiver and
returns a tag that identifies the tracking rectangle.

– removeTrackingRect: (page 3204)
Removes the tracking rectangle identified by a tag.

Managing Tracking Areas

– addTrackingArea: (page 3142)
Adds a given tracking area to the receiver.

– removeTrackingArea: (page 3204)
Removes a given tracking area from the receiver.

– trackingAreas (page 3237)
Returns an array of the receiver’s tracking areas.

– updateTrackingAreas (page 3239)
Invoked automatically when the view’s geometry changes such that its tracking areas need to be
recalculated.

Managing Cursor Tracking

– addCursorRect:cursor: (page 3139)
Establishes the cursor to be used when the mouse pointer lies within a specified region.

– removeCursorRect:cursor: (page 3202)
Completely removes a cursor rectangle from the receiver.

– discardCursorRects (page 3163)
Invalidates all cursor rectangles set up using addCursorRect:cursor: (page 3139).

– resetCursorRects (page 3206)
Overridden by subclasses to define their default cursor rectangles.

Scrolling

– scrollPoint: (page 3209)
Scrolls the receiver’s closest ancestor NSClipView object so a point in the receiver lies at the origin
of the clip view's bounds rectangle.

– scrollRectToVisible: (page 3210)
Scrolls the receiver’s closest ancestor NSClipView object the minimum distance needed so a specified
region of the receiver becomes visible in the clip view.

3132 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– autoscroll: (page 3148)
Scrolls the receiver’s closest ancestor NSClipView object proportionally to the distance of an event
that occurs outside of it.

– adjustScroll: (page 3145)
Overridden by subclasses to modify a given rectangle, returning the altered rectangle.

– scrollRect:by: (page 3210)
Copies the visible portion of the receiver’s rendered image within a region and lays that portion down
again at a specified offset .

– enclosingScrollView (page 3172)
Returns the nearest ancestor NSScrollView object containing the receiver (not including the receiver
itself); otherwise returns nil.

– scrollClipView:toPoint: (page 3209)
Notifies the superview of a clip view that the clip view needs to reset the origin of its bounds rectangle.

– reflectScrolledClipView: (page 3200)
Notifies a clip view’s superview that either the clip view’s bounds rectangle or the document view’s
frame rectangle has changed, and that any indicators of the scroll position need to be adjusted.

Contextual Menus

– menuForEvent: (page 3189)
Overridden by subclasses to return a context-sensitive pop-up menu for a given mouse-down event.

+ defaultMenu (page 3137)
Overridden by subclasses to return the default pop-up menu for instances of the receiving class.

Key-view Loop Management

– canBecomeKeyView (page 3152)
Returns whether the receiver can become key view.

– needsPanelToBecomeKey (page 3191)
Overridden by subclasses to determine if the receiver requires its panel, which might otherwise avoid
becoming key, to become the key window so that it can handle keyboard input and navigation.

– setNextKeyView: (page 3226)
Inserts a specified view object after the receiver in the key view loop of the receiver’s window.

– nextKeyView (page 3192)
Returns the view object following the receiver in the key view loop.

– nextValidKeyView (page 3193)
Returns the closest view object in the key view loop that follows the receiver and accepts first responder
status.

– previousKeyView (page 3197)
Returns the view object preceding the receiver in the key view loop.

– previousValidKeyView (page 3197)
Returns the closest view object in the key view loop that precedes the receiver and accepts first
responder status.

Tasks 3133
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Printing

– print: (page 3198)
This action method opens the Print panel, and if the user chooses an option other than canceling,
prints the receiver and all its subviews to the device specified in the Print panel.

– beginPageInRect:atPlacement: (page 3149)
Called at the beginning of each page, this method sets up the coordinate system so that a region
inside the receiver’s bounds is translated to a specified location..

– dataWithEPSInsideRect: (page 3162)
Returns EPS data that draws the region of the receiver within a specified rectangle.

– dataWithPDFInsideRect: (page 3162)
Returns PDF data that draws the region of the receiver within a specified rectangle.

– printJobTitle (page 3198)
Returns the receiver’s print job title.

– pageFooter (page 3194)
Returns a default footer string that includes the current page number and page count.

– pageHeader (page 3194)
Returns a default header string that includes the print job title and date.

– writeEPSInsideRect:toPasteboard: (page 3248)
Writes EPS data that draws the region of the receiver within a specified rectangle onto a pasteboard.

– writePDFInsideRect:toPasteboard: (page 3249)
Writes PDF data that draws the region of the receiver within a specified rectangle onto a pasteboard.

– drawPageBorderWithSize: (page 3170)
Allows applications that use the Application Kit pagination facility to draw additional marks on each
logical page.

– drawSheetBorderWithSize: (page 3171)
Allows applications that use the Application Kit pagination facility to draw additional marks on each
printed sheet.

Pagination

– heightAdjustLimit (page 3178)
Returns the fraction (from 0.0 to 1.0) of the page that can be pushed onto the next page during
automatic pagination to prevent items such as lines of text from being divided across pages.

– widthAdjustLimit (page 3247)
Returns the fraction (from 0.0 to 1.0) of the page that can be pushed onto the next page during
automatic pagination to prevent items such as small images or text columns from being divided
across pages.

– adjustPageWidthNew:left:right:limit: (page 3144)
Overridden by subclasses to adjust page width during automatic pagination.

– adjustPageHeightNew:top:bottom:limit: (page 3143)
Overridden by subclasses to adjust page height during automatic pagination.

– knowsPageRange: (page 3185)
Returns YES if the receiver handles page boundaries, NO otherwise.

3134 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– rectForPage: (page 3199)
Implemented by subclasses to determine the portion of the receiver to be printed for the page number
page.

– locationOfPrintRect: (page 3186)
Invoked by print: (page 3198) to determine the location of the region of the receiver being printed
on the physical page.

Writing Conforming Rendering Instructions

– beginDocument (page 3149)
Invoked at the beginning of the printing session, this method sets up the current graphics context.

– endDocument (page 3173)
This method is invoked at the end of the printing session.

– endPage (page 3173)
Writes the end of a conforming page.

Core Animation Layer-Backing

– layer (page 3185)
Returns the Core Animation layer that the receiver uses as its backing store.

– setLayer: (page 3223)
Sets the Core Animation layer that the receiver uses for layer-backing to the specified layer.

– wantsLayer (page 3246)
Returns a Boolean value that indicates whether the receiver is using a layer as its backing store.

– setWantsLayer: (page 3230)
Specifies whether the receiver and its subviews use a Core Animation layer as a backing store.

– makeBackingLayer (page 3189)
Creates the view’s backing layer.

– layerContentsPlacement (page 3186)
Returns the current layer contents placement policy.

– setLayerContentsPlacement: (page 3223)
Sets the view’s layer contents placement policy.

– layerContentsRedrawPolicy (page 3186)
Returns the view’s layer contents redraw policy.

– setLayerContentsRedrawPolicy: (page 3224)
Sets the receiver layer contents redraw policy.

Core Animation Layer Properties

– setFrameCenterRotation: (page 3219)
Rotates the frame of the receiver about the layer’s position.

– frameCenterRotation (page 3176)
Returns the receiver’s rotation about the layer’s position.

Tasks 3135
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– setAlphaValue: (page 3211)
Sets the opacity of the receiver.

– alphaValue (page 3146)
Returns the opacity of the receiver

– setBackgroundFilters: (page 3213)
An array of CoreImage filters that are applied to the receiver’s background.

– backgroundFilters (page 3149)
Returns the array of CoreImage filters that are applied to the receiver’s background

– setCompositingFilter: (page 3217)
Sets a CoreImage filter that is used to composite the receiver’s contents with the background.

– compositingFilter (page 3154)
Returns the CoreImage filter that is used to composite the receiver’s contents with the background

– setContentFilters: (page 3218)
Sets the array of CoreImage filters that are applied to the contents of the receiver and its sublayers.

– contentFilters (page 3154)
Returns the array of CoreImage filters that are applied to the contents of the receiver and its sublayers.

– setShadow: (page 3228)
Sets the shadow drawn by the receiver.

– shadow (page 3231)
Returns the shadow drawn by the receiver

Displaying Definition Windows

– showDefinitionForAttributedString:atPoint: (page 3232)
Shows a window displaying the definition of the of the attributed string at the specified point.

– showDefinitionForAttributedString:range:options:baselineOriginProvider: (page 3233)
Shows a window displaying the definition of the specified range of the attributed string.

Touch Event Handling

– acceptsTouchEvents (page 3138)
Returns whether the view will accept touch events.

– setAcceptsTouchEvents: (page 3211)
Sets whether the view should accept touch events.

– wantsRestingTouches (page 3247)
Returns whether the view wants resting touches.

– setWantsRestingTouches: (page 3230)
Sets whether the view wants to receive resting touch events.

3136 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Class Methods

defaultFocusRingType
Returns the default focus ring type.

+ (NSFocusRingType)defaultFocusRingType

Return Value
The default type of focus ring for objects of the receiver’s class. Possible return values are listed in
NSFocusRingType (page 4009).

Discussion
IfNSFocusRingTypeDefault is returned from the instance methodfocusRingType (page 3175), the receiver
can invoke this class method to find out what type of focus ring is the default. The receiver is free to ignore
the default setting.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSView.h

defaultMenu
Overridden by subclasses to return the default pop-up menu for instances of the receiving class.

+ (NSMenu *)defaultMenu

Discussion
The default implementation returns nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– menuForEvent: (page 3189)
menu (page 2163) (NSResponder)

Declared In
NSView.h

focusView
Returns the currently focused NSView object, or nil if there is none.

+ (NSView *)focusView

Availability
Available in Mac OS X v10.0 and later.

Class Methods 3137
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

See Also
– lockFocus (page 3187)
– unlockFocus (page 3239)

Declared In
NSView.h

Instance Methods

acceptsFirstMouse:
Overridden by subclasses to return YES if the receiver should be sent a mouseDown: (page 2164) message for
an initial mouse-down event, NO if not.

- (BOOL)acceptsFirstMouse:(NSEvent *)theEvent

Parameters
theEvent

The initial mouse-down event, which must be over the receiver in its window.

Discussion
The receiver can either return a value unconditionally or use the location of theEvent to determine whether
or not it wants the event. The default implementation ignores theEvent and returns NO.

Override this method in a subclass to allow instances to respond to click-through. This allows the user to
click on a view in an inactive window, activating the view with one click, instead of clicking first to make the
window active and then clicking the view. Most view objects refuse a click-through attempt, so the event
simply activates the window. Many control objects, however, such as instances of NSButton and NSSlider,
do accept them, so the user can immediately manipulate the control without having to release the mouse
button.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hitTest: (page 3179)

Declared In
NSView.h

acceptsTouchEvents
Returns whether the view will accept touch events.

- (BOOL)acceptsTouchEvents

Return Value
YES if the view accepts touch events, otherwise NO.

Discussion
The default is NO.

3138 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Availability
Available in Mac OS X v10.6 and later.

See Also
– setAcceptsTouchEvents: (page 3211)

Declared In
NSView.h

addCursorRect:cursor:
Establishes the cursor to be used when the mouse pointer lies within a specified region.

- (void)addCursorRect:(NSRect)aRect
cursor:(NSCursor *)aCursor

Parameters
aRect

A rectangle defining a region of the receiver.

aCursor
An object representing a cursor.

Discussion
Cursor rectangles aren’t subject to clipping by superviews, nor are they intended for use with rotated views.
You should explicitly confine a cursor rectangle to the view's visible rectangle to prevent improper behavior.

This method is intended to be invoked only by the resetCursorRects (page 3206) method. If invoked in
any other way, the resulting cursor rectangle will be discarded the next time the view's cursor rectangles are
rebuilt.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeCursorRect:cursor: (page 3202)
– discardCursorRects (page 3163)
– resetCursorRects (page 3206)
– visibleRect (page 3245)

Related Sample Code
DragItemAround

Declared In
NSView.h

addSubview:
Adds a view to the receiver’s subviews so it’s displayed above its siblings.

- (void)addSubview:(NSView *)aView

Instance Methods 3139
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
aView

The view to add to the receiver as a subview.

Discussion
This method also sets the receiver as the next responder of aView.

The receiver retains aView. If you use removeFromSuperview (page 3202) to remove aView from the view
hierarchy, aView is released. If you want to keep using aView after removing it from the view hierarchy (if,
for example, you are swapping through a number of views), you must retain it before invoking
removeFromSuperview (page 3202).

Availability
Available in Mac OS X v10.0 and later.

See Also
– addSubview:positioned:relativeTo: (page 3140)
– subviews (page 3235)
– removeFromSuperview (page 3202)
setNextResponder: (page 2197) (NSResponder)
– viewWillMoveToSuperview: (page 3243)
– viewWillMoveToWindow: (page 3243)

Related Sample Code
FunHouse
GLUT
MenuMadness
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSView.h

addSubview:positioned:relativeTo:
Inserts a view among the receiver’s subviews so it’s displayed immediately above or below another view.

- (void)addSubview:(NSView *)aView
positioned:(NSWindowOrderingMode)place
relativeTo:(NSView *)otherView

Parameters
aView

The view object to add to the receiver as a subview.

place
An enum constant specifying the position of the aView relative to otherView. Valid values are
NSWindowAbove or NSWindowBelow.

otherView
The other view aView is to be positioned relative to. If otherView is nil (or isn’t a subview of the
receiver), aView is added above or below all of its new siblings.

3140 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
This method also sets the receiver as the next responder of aView.

The receiver retains aView. If you use removeFromSuperview (page 3202) to remove aView from the view
hierarchy, aView is released. If you want to keep using aView after removing it from the view hierarchy (if,
for example, you are swapping through a number of views), you must retain it before invoking
removeFromSuperview (page 3202).

Availability
Available in Mac OS X v10.0 and later.

See Also
– addSubview: (page 3139)
– subviews (page 3235)
– removeFromSuperview (page 3202)
setNextResponder: (page 2197) (NSResponder)

Related Sample Code
GLUT

Declared In
NSView.h

addToolTipRect:owner:userData:
Creates a tool tip for a defined area the receiver and returns a tag that identifies the tool tip rectangle.

- (NSToolTipTag)addToolTipRect:(NSRect)aRect
owner:(id)anObject
userData:(void *)userData

Parameters
aRect

A rectangle defining the region of the receiver to associate the tool tip with.

anObject
An object from which to obtain the tool tip string. The object should either implement
view:stringForToolTip:point:userData: (page 3921), or return a suitable string from its
description method. (It can therefore simply be an NSString object.)

Important: The receiver maintains a weak reference to anObject. You are responsible for ensuring that
anObject remains valid for as long as it may be needed.

userData
Any additional information you want to pass to view:stringForToolTip:point:userData: (page
3921); it is not used if anObject does not implement this method.

Return Value
An integer tag identifying the tool tip; you can use this tag to remove the tool tip.

Instance Methods 3141
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
The tool tip string is obtained dynamically from anObject by invoking either the NSToolTipOwner informal
protocol methodview:stringForToolTip:point:userData: (page 3921), if implemented, or theNSObject
protocol method description.

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeToolTip: (page 3203)
– removeAllToolTips (page 3201)

Declared In
NSView.h

addTrackingArea:
Adds a given tracking area to the receiver.

- (void)addTrackingArea:(NSTrackingArea *)trackingArea

Parameters
trackingArea

The tracking area to add to the receiver.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
BasicCocoaAnimations
MenuItemView
PhotoSearch
TrackIt

Declared In
NSView.h

addTrackingRect:owner:userData:assumeInside:
Establishes an area for tracking mouse-entered and mouse-exited events within the receiver and returns a
tag that identifies the tracking rectangle.

- (NSTrackingRectTag)addTrackingRect:(NSRect)aRect
owner:(id)userObject
userData:(void *)userData
assumeInside:(BOOL)flag

Parameters
aRect

A rectangle that defines a region of the receiver for tracking mouse-entered and mouse-exited events.

3142 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

userObject
The object that gets sent the event messages. It can be the receiver itself or some other object (such
as an NSCursor or a custom drawing tool object), as long as it responds to both mouseEntered: (page
2165) and mouseExited: (page 2165).

userData
Data stored in the NSEvent object for each tracking event.

flag
If YES, the first event will be generated when the cursor leaves aRect, regardless if the cursor is inside
aRect when the tracking rectangle is added. If NO the first event will be generated when the cursor
leaves aRect if the cursor is initially inside aRect, or when the cursor enters aRect if the cursor is
initially outside aRect. You usually want to set this flag to NO.

Return Value
A tag that identifies the tracking rectangle. It is stored in the associated NSEvent objects and can be used
to remove the tracking rectangle.

Discussion
Tracking rectangles provide a general mechanism that can be used to trigger actions based on the cursor
location (for example, a status bar or hint field that provides information on the item the cursor lies over).
To simply change the cursor over a particular area, use addCursorRect:cursor: (page 3139). If you must
use tracking rectangles to change the cursor, the NSCursor class specification describes the additional
methods that must be invoked to change cursors by using tracking rectangles.

On Mac OS X v10.5 and later, tracking areas provide a greater range of functionality (see
addTrackingArea: (page 3142)).

Availability
Available in Mac OS X v10.0 and later.

See Also
– removeTrackingRect: (page 3204)
– addTrackingArea: (page 3142)
userData (page 1089) (NSEvent)

Related Sample Code
FunHouse
FunkyOverlayWindow
GLUT

Declared In
NSView.h

adjustPageHeightNew:top:bottom:limit:
Overridden by subclasses to adjust page height during automatic pagination.

- (void)adjustPageHeightNew:(CGFloat *)newBottom
top:(CGFloat)top
bottom:(CGFloat)proposedBottom
limit:(CGFloat)bottomLimit

Instance Methods 3143
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
newBottom

Returns by indirection a new float value for the bottom edge of the pending page rectangle in the
receiver's coordinate system.

top
A float value that sets the top edge of the pending page rectangle in the receiver’s coordinate
system.

proposedBottom
A float value that sets the bottom edge of the pending page rectangle in the receiver’s coordinate
system.

bottomLimit
The topmost float value newBottom can be set to, as calculated using the return value of
heightAdjustLimit (page 3178).

Discussion
This method is invoked by print: (page 3198). The receiver can raise the bottom edge and return the new
value in newBottom, allowing it to prevent items such as lines of text from being divided across pages. If
bottomLimit is exceeded, the pagination mechanism simply uses bottomLimit for the bottom edge.

The default implementation of this method propagates the message to its subviews, allowing nested views
to adjust page height for their drawing as well. An NSButton object or other small view, for example, will
nudge the bottom edge up if necessary to prevent itself from being cut in two (thereby pushing it onto an
adjacent page). Subclasses should invoke super’s implementation, if desired, after first making their own
adjustments.

Availability
Available in Mac OS X v10.0 and later.

See Also
– adjustPageWidthNew:left:right:limit: (page 3144)

Declared In
NSView.h

adjustPageWidthNew:left:right:limit:
Overridden by subclasses to adjust page width during automatic pagination.

- (void)adjustPageWidthNew:(CGFloat *)newRight
left:(CGFloat)left
right:(CGFloat)proposedRight
limit:(CGFloat)rightLimit

Parameters
newRight

Returns by indirection a new float value for the right edge of the pending page rectangle in the
receiver's coordinate system.

left
A float value that sets the left edge of the pending page rectangle in the receiver’s coordinate
system.

3144 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

proposedRight
A float value that sets the right edge of the pending page rectangle in the receiver’s coordinate
system.

rightLimit
The leftmost float value newRight can be set to, as calculated using the return value of
widthAdjustLimit (page 3247).

Discussion
This method is invoked by print: (page 3198). The receiver can pull in the right edge and return the new
value in newRight, allowing it to prevent items such as small images or text columns from being divided
across pages. If rightLimit is exceeded, the pagination mechanism simply uses rightLimit for the right
edge.

The default implementation of this method propagates the message to its subviews, allowing nested views
to adjust page width for their drawing as well. An NSButton object or other small view, for example, will
nudge the right edge out if necessary to prevent itself from being cut in two (thereby pushing it onto an
adjacent page). Subclasses should invoke super’s implementation, if desired, after first making their own
adjustments.

Availability
Available in Mac OS X v10.0 and later.

See Also
– adjustPageHeightNew:top:bottom:limit: (page 3143)

Declared In
NSView.h

adjustScroll:
Overridden by subclasses to modify a given rectangle, returning the altered rectangle.

- (NSRect)adjustScroll:(NSRect)proposedVisibleRect

Parameters
proposedVisibleRect

A rectangle defining a region of the receiver.

Discussion
NSClipView invokes this method to allow its document view to adjust its position during scrolling. For
example, a custom view object that displays a table of data can adjust the origin of proposedVisibleRect
so rows or columns aren’t cut off by the edge of the enclosing NSClipView. NSView’s implementation simply
returns proposedVisibleRect.

NSClipView only invokes this method during automatic or user controlled scrolling. Its
scrollToPoint: (page 635) method doesn’t invoke this method, so you can still force a scroll to an arbitrary
point.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

Instance Methods 3145
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

allocateGState
Causes the receiver to maintain a private graphics state object, which encapsulates all parameters of the
graphics environment.

- (void)allocateGState

Discussion
If you do not invoke allocateGState, a graphics state object is constructed from scratch each time the
NSView is focused.

The receiver builds the graphics state parameters using setUpGState (page 3229), then automatically
establishes this graphics state each time the focus is locked on it. A graphics state may improve performance
for view objects that are focused often and need to set many parameters, but use of standard rendering
operators is normally efficient enough.

Because graphics states occupy a fair amount of memory, they can actually degrade performance. Be sure
to test application performance with and without the private graphics state before committing to its use.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setUpGState (page 3229)
– gState (page 3178)
– renewGState (page 3205)
– releaseGState (page 3201)
– lockFocus (page 3187)

Related Sample Code
GLUT

Declared In
NSView.h

alphaValue
Returns the opacity of the receiver

- (CGFloat)alphaValue

Return Value
The current opacity of the receiver

Discussion
This method returns the value of the opacity property of the receiver’s layer. Possible values are between
0.0 (transparent) and 1.0 (opaque). The default is 1.0.

Sending this message to a view that is not managing a Core Animation layer causes an exception.

Availability
Available in Mac OS X v10.5 and later.

3146 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Related Sample Code
RoundTransparentWindow

Declared In
NSView.h

ancestorSharedWithView:
Returns the closest ancestor shared by the receiver and a given view.

- (NSView *)ancestorSharedWithView:(NSView *)aView

Parameters
aView

The view to test (along with the receiver) for closest shared ancestor.

Return Value
The closest ancestor or nil if there’s no such object. Returns self if aView is identical to the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isDescendantOf: (page 3181)

Declared In
NSView.h

autoresizesSubviews
Returns YES if the receiver automatically resizes its subviews using resizeSubviewsWithOldSize: (page
3206) whenever its frame size changes, NO otherwise.

- (BOOL)autoresizesSubviews

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutoresizesSubviews: (page 3212)

Declared In
NSView.h

autoresizingMask
Returns the receiver’s autoresizing mask, which determines how it’s resized by the
resizeWithOldSuperviewSize: (page 3207) method.

- (NSUInteger)autoresizingMask

Instance Methods 3147
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Return Value
An integer bit mask specified by combining using the C bitwise OR operator any of the options described in
“Resizing masks” (page 3250).

Discussion
If the autoresizing mask is equal to NSViewNotSizable (that is, if none of the options are set), then the
receiver doesn’t resize at all in resizeWithOldSuperviewSize: (page 3207).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
PhotoSearch
PredicateEditorSample

Declared In
NSView.h

autoscroll:
Scrolls the receiver’s closest ancestor NSClipView object proportionally to the distance of an event that
occurs outside of it.

- (BOOL)autoscroll:(NSEvent *)theEvent

Parameters
theEvent

An event object whose location should be expressed in the window’s base coordinate system (which
it normally is), not the receiving view's.

Return Value
Returns YES if any scrolling is performed; otherwise returns NO.

Discussion
View objects that track mouse-dragged events can use this method to scroll automatically when the cursor
is dragged outside of the NSClipView object. Repeated invocations of this method (with an appropriate
delay) result in continual scrolling, even when the mouse doesn’t move.

Availability
Available in Mac OS X v10.0 and later.

See Also
autoscroll: (page 632) (NSClipView)
– scrollPoint: (page 3209)
– isDescendantOf: (page 3181)

Related Sample Code
DragItemAround
Rulers

Declared In
NSView.h

3148 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

backgroundFilters
Returns the array of CoreImage filters that are applied to the receiver’s background

- (NSArray *)backgroundFilters

Return Value
An array of CoreImage filters.

Discussion
This method returns the value of the backgroundFilters property of the receiver’s layer.

Sending this message to a view that is not managing a Core Animation layer causes an exception.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

beginDocument
Invoked at the beginning of the printing session, this method sets up the current graphics context.

- (void)beginDocument

Discussion
Note that this method may be invoked in a subthread.

Override it to configure printing related settings. You should store your settings in the object returned by
NSPrintInfo‘s sharedPrintInfo (page 2048) class method, which is guaranteed to return an instance
specific to the thread in which you invoke this method. If you override this method, call the superclass
implementation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

beginPageInRect:atPlacement:
Called at the beginning of each page, this method sets up the coordinate system so that a region inside the
receiver’s bounds is translated to a specified location..

- (void)beginPageInRect:(NSRect)aRect
atPlacement:(NSPoint)location

Parameters
aRect

A rectangle defining the region to be translated.

location
A point that is the end-point of translation.

Instance Methods 3149
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
If you override this method, be sure to call the superclass implementation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

bitmapImageRepForCachingDisplayInRect:
Returns a bitmap-representation object suitable for caching the specified portion of the receiver.

- (NSBitmapImageRep *)bitmapImageRepForCachingDisplayInRect:(NSRect)aRect

Parameters
aRect

A rectangle defining the area of the receiver to be cached.

Return Value
An autoreleased NSBitmapImageRep object or nil if the object could not be created.

Discussion
Passing the visible rectangle of the receiver ([self visibleRect]) returns a bitmap suitable for caching
the current contents of the view, including all of its descendants.

Availability
Available in Mac OS X v10.4 and later.

See Also
– cacheDisplayInRect:toBitmapImageRep: (page 3151)

Related Sample Code
AnimatedTableView
Reducer

Declared In
NSView.h

bounds
Returns the receiver’s bounds rectangle, which expresses its location and size in its own coordinate system.

- (NSRect)bounds

Discussion
By default, the origin of the returned rectangle is (0, 0) and its size matches the size of the receiver’s frame
rectangle (measured in points). In Mac OS X v10.5 and later, if the receiver is being rendered into an OpenGL
graphics context (using an NSOpenGLContext object), the default bounds origin is still (0, 0) but the default
bounds size is measured in pixels instead of points. Thus, for user space scale factors other than 1.0, the
default size of the bounds rectangle may be bigger or smaller than the default size of the frame rectangle
when drawing with OpenGL.

3150 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Important: Developers of OpenGL applications should not rely on this method converting coordinates to
pixels automatically in future releases. Instead, you should convert coordinates to device space explicitly
using the convertPointToBase: (page 3157), convertSizeToBase: (page 3161), or
convertRectToBase: (page 3159) methods or their earlier counterparts convertPoint:toView: (page
3155), convertSize:toView: (page 3160), or convertRect:toView: (page 3158).

If you explicitly change the origin or size of the bounds rectangle, this method does not return the default
rectangle and instead returns the rectangle you set. If you add a rotation factor to the view, however, that
factor is also reflected in the returned bounds rectangle. You can determine if a rotation factor is in effect by
calling the boundsRotation (page 3151) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– frame (page 3175)
– setBounds: (page 3214)

Related Sample Code
From A View to A Movie
FunHouse
GLUT
TargetGallery
WhackedTV

Declared In
NSView.h

boundsRotation
Returns the angle, in degrees, of the receiver’s bounds rectangle relative to its frame rectangle.

- (CGFloat)boundsRotation

Discussion
See the setBoundsRotation: (page 3215) method description for more information on bounds rotation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rotateByAngle: (page 3208)
– setBoundsRotation: (page 3215)

Declared In
NSView.h

cacheDisplayInRect:toBitmapImageRep:
Draws the specified area of the receiver, and its descendants, into a provided bitmap-representation object.

Instance Methods 3151
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

- (void)cacheDisplayInRect:(NSRect)rect
toBitmapImageRep:(NSBitmapImageRep *)bitmapImageRep

Parameters
rect

A rectangle defining the region to be drawn into bimapImageRep.

bitmapImageRep
An NSBitmapImageRep object. For pixel-format compatibility, bitmapImageRep should have been
obtained from bitmapImageRepForCachingDisplayInRect: (page 3150).

Discussion
You are responsible for initializing the bitmap to the desired configuration before calling this method.
However, once initialized, you can reuse the same bitmap multiple times to refresh the cached copy of your
view’s contents.

The bitmap produced by this method is transparent (that is, has an alpha value of 0) wherever the receiver
and its descendants do not draw any content.

Availability
Available in Mac OS X v10.4 and later.

See Also
– bitmapImageRepForCachingDisplayInRect: (page 3150)

Related Sample Code
AnimatedTableView
Reducer

Declared In
NSView.h

canBecomeKeyView
Returns whether the receiver can become key view.

- (BOOL)canBecomeKeyView

Return Value
Returns YES if the receiver can become key view, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSView.h

canDraw
Returns YES if drawing commands will produce any result, NO otherwise.

- (BOOL)canDraw

3152 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
Use this method when invoking a draw method directly along with lockFocus (page 3187) and
unlockFocus (page 3239), bypassing the display... methods (which test drawing ability and perform
locking for you). If this method returns NO, you shouldn’t invoke lockFocus (page 3187) or perform any
drawing.

A view object can draw on-screen if it is not hidden, it is attached to a view hierarchy in a window (NSWindow),
and the window has a corresponding window device. A view object can draw during printing if it is a
descendant of the view being printed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHidden: (page 3222)

Declared In
NSView.h

canDrawConcurrently
Returns whether the view’s drawRect: method can be invoked on a background thread.

- (BOOL)canDrawConcurrently

Return Value
YES if drawRect: (page 3170) can be invoked from a background thread, otherwise NO. The default is NO.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setCanDrawConcurrently: (page 3217)

Declared In
NSView.h

centerScanRect:
Converts the corners of a specified rectangle to lie on the center of device pixels, which is useful in
compensating for rendering overscanning when the coordinate system has been scaled.

- (NSRect)centerScanRect:(NSRect)aRect

Parameters
aRect

The rectangle whose corners are to be converted.

Return Value
The adjusted rectangle.

Instance Methods 3153
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
This method converts the given rectangle to device coordinates, adjusts the rectangle to lie in the center of
the pixels, and converts the resulting rectangle back to the receiver’s coordinate system. Note that this
method does not take into account any transformations performed using the NSAffineTransform class or
Quartz 2D routines.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isRotatedOrScaledFromBase (page 3184)

Related Sample Code
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSView.h

compositingFilter
Returns the CoreImage filter that is used to composite the receiver’s contents with the background

- (CIFilter *)compositingFilter

Return Value
The CoreImage filter.

Discussion
This method returns the value of the filters property of the receiver’s layer.

Sending this message to a view that is not managing a Core Animation layer causes an exception.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

contentFilters
Returns the array of CoreImage filters that are applied to the contents of the receiver and its sublayers.

- (NSArray *)contentFilters

Return Value
An array of CoreImage filters

Discussion
This method returns the value of the filters property of the receiver’s layer.

Sending this message to a view that is not managing a Core Animation layer causes an exception.

3154 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

convertPoint:fromView:
Converts a point from the coordinate system of a given view to that of the receiver.

- (NSPoint)convertPoint:(NSPoint)aPoint
fromView:(NSView *)aView

Parameters
aPoint

A point specifying a location in the coordinate system of aView.

aView
The view with aPoint in its coordinate system. If aView is nil, this method instead converts from
window base coordinates. Otherwise, both aView and the receiver must belong to the same NSWindow
object.

Return Value
The point converted to the coordinate system of the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertRect:fromView: (page 3157)
– convertSize:fromView: (page 3159)
– ancestorSharedWithView: (page 3147)
contentView (page 3313) (NSWindow)

Related Sample Code
CIAnnotation
CircleView
Cocoa OpenGL
GLUT
Sketch-112

Declared In
NSView.h

convertPoint:toView:
Converts a point from the receiver’s coordinate system to that of a given view.

- (NSPoint)convertPoint:(NSPoint)aPoint
toView:(NSView *)aView

Instance Methods 3155
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
aPoint

A point specifying a location in the coordinate system of the receiver.

aView
The view into whose coordinate system aPoint is to be converted. If aView is nil, this method
instead converts to window base coordinates. Otherwise, both aView and the receiver must belong
to the same NSWindow object.

Return Value
The point converted to the coordinate system of aView.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertRect:toView: (page 3158)
– convertSize:toView: (page 3160)
– ancestorSharedWithView: (page 3147)
contentView (page 3313) (NSWindow)

Related Sample Code
GLUT

Declared In
NSView.h

convertPointFromBase:
Converts the point from the base coordinate system to the receiver’s coordinate system.

- (NSPoint)convertPointFromBase:(NSPoint)aPoint

Parameters
aPoint

A point specifying a location in the base coordinate system.

Return Value
The point converted to the receiver’s base coordinate system.

Discussion
See “The View Coordinate System” in View Programming Guide for a description of view coordinate to base
coordinate conversion.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Sketch+Accessibility

Declared In
NSView.h

3156 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

convertPointToBase:
Converts the point from the receiver’s coordinate system to the base coordinate system.

- (NSPoint)convertPointToBase:(NSPoint)aPoint

Parameters
aPoint

A point specifying a location in the coordinate system of the receiver.

Return Value
The point converted to the base coordinate system.

Discussion
See “The View Coordinate System” in View Programming Guide for a description of view coordinate to base
coordinate conversion.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Sketch+Accessibility
ZipBrowser

Declared In
NSView.h

convertRect:fromView:
Converts a rectangle from the coordinate system of another view to that of the receiver.

- (NSRect)convertRect:(NSRect)aRect
fromView:(NSView *)aView

Parameters
aRect

The rectangle in aView's coordinate system.

aView
The view with aRect in its coordinate system. If aView is nil, this method instead converts from
window base coordinates. Otherwise, both aView and the receiver must belong to the same NSWindow
object.

Return Value
The converted rectangle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertPoint:fromView: (page 3155)
– convertSize:fromView: (page 3159)
– ancestorSharedWithView: (page 3147)
contentView (page 3313) (NSWindow)

Instance Methods 3157
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Related Sample Code
VideoViewer

Declared In
NSView.h

convertRect:toView:
Converts a rectangle from the receiver’s coordinate system to that of another view.

- (NSRect)convertRect:(NSRect)aRect
toView:(NSView *)aView

Parameters
aRect

A rectangle in the receiver's coordinate system.

aView
The view that is the target of the conversion operation. If aView is nil, this method instead converts
from window base coordinates. Otherwise, both aView and the receiver must belong to the same
NSWindow object.

Return Value
The converted rectangle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertPoint:toView: (page 3155)
– convertSize:toView: (page 3160)
– ancestorSharedWithView: (page 3147)
contentView (page 3313) (NSWindow)

Related Sample Code
CocoaAUHost
GLUT
Rulers
Sketch-112
VideoViewer

Declared In
NSView.h

convertRectFromBase:
Converts the rectangle from the base coordinate system to the receiver’s coordinate system.

- (NSRect)convertRectFromBase:(NSRect)aRect

3158 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
aRect

A rectangle in the base coordinate system

Return Value
A rectangle in the receiver’s coordinate system

Discussion
See “The View Coordinate System” in View Programming Guide for a description of view coordinate to base
coordinate conversion.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Cocoa Tips and Tricks

Declared In
NSView.h

convertRectToBase:
Converts the rectangle from the receiver’s coordinate system to the base coordinate system.

- (NSRect)convertRectToBase:(NSRect)aRect

Parameters
aRect

A rectangle in the receiver’s coordinate system

Return Value
A rectangle in the base coordinate system

Discussion
See “The View Coordinate System” in View Programming Guide for a description of view coordinate to base
coordinate conversion.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AnimatedTableView
Cocoa Tips and Tricks

Declared In
NSView.h

convertSize:fromView:
Converts a size from another view’s coordinate system to that of the receiver.

- (NSSize)convertSize:(NSSize)aSize
fromView:(NSView *)aView

Instance Methods 3159
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
aSize

The size (width and height) in aView's coordinate system.

aView
The view with aSize in its coordinate system. If aView is nil, this method instead converts from
window base coordinates. Otherwise, both aView and the receiver must belong to the same NSWindow
object.

Return Value
The converted size, as an NSSize structure.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertPoint:fromView: (page 3155)
– convertRect:fromView: (page 3157)
– ancestorSharedWithView: (page 3147)
contentView (page 3313) (NSWindow)

Declared In
NSView.h

convertSize:toView:
Converts a size from the receiver’s coordinate system to that of another view.

- (NSSize)convertSize:(NSSize)aSize
toView:(NSView *)aView

Parameters
aSize

The size (width and height) in the receiver's coordinate system.

aView
The view that is the target of the conversion operation. If aView is nil, this method instead converts
from window base coordinates. Otherwise, both aView and the receiver must belong to the same
NSWindow object.

Return Value
The converted size, as an NSSize structure.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertPoint:toView: (page 3155)
– convertRect:toView: (page 3158)
– ancestorSharedWithView: (page 3147)
contentView (page 3313) (NSWindow)

Related Sample Code
PhotoSearch

3160 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

PredicateEditorSample

Declared In
NSView.h

convertSizeFromBase:
Converts the size from the base coordinate system to the receiver’s coordinate system.

- (NSSize)convertSizeFromBase:(NSSize)aSize

Parameters
aSize

A size in the base coordinate system

Return Value
The size converted to the receiver’s coordinate system.

Discussion
See “The View Coordinate System” in View Programming Guide for a description of view coordinate to base
coordinate conversion.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Sketch+Accessibility

Declared In
NSView.h

convertSizeToBase:
Converts the size from the receiver’s coordinate system to the base coordinate system.

- (NSSize)convertSizeToBase:(NSSize)aSize

Parameters
aSize

A size in the receiver’s coordinate system

Return Value
The size converted to the base coordinate system.

Discussion
See “The View Coordinate System” in View Programming Guide for a description of view coordinate to base
coordinate conversion.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
Sketch+Accessibility
ZipBrowser

Instance Methods 3161
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Declared In
NSView.h

dataWithEPSInsideRect:
Returns EPS data that draws the region of the receiver within a specified rectangle.

- (NSData *)dataWithEPSInsideRect:(NSRect)aRect

Parameters
aRect

A rectangle defining the region.

Discussion
This data can be placed on an NSPasteboard object, written to a file, or used to create an NSImage object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– writeEPSInsideRect:toPasteboard: (page 3248)

Declared In
NSView.h

dataWithPDFInsideRect:
Returns PDF data that draws the region of the receiver within a specified rectangle.

- (NSData *)dataWithPDFInsideRect:(NSRect)aRect

Parameters
aRect

A rectangle defining the region.

Discussion
This data can be placed on an NSPasteboard object, written to a file, or used to create an NSImage object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– writePDFInsideRect:toPasteboard: (page 3249)

Related Sample Code
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSView.h

3162 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

didAddSubview:
Overridden by subclasses to perform additional actions when subviews are added to the receiver.

- (void)didAddSubview:(NSView *)subview

Parameters
subview

The view that was added as a subview.

Discussion
This method is invoked by addSubview: (page 3139).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

discardCursorRects
Invalidates all cursor rectangles set up using addCursorRect:cursor: (page 3139).

- (void)discardCursorRects

Discussion
You need never invoke this method directly; neither is it typically invoked during the invalidation of cursor
rectangles. NSWindow automatically invalidates cursor rectangles in response to
invalidateCursorRectsForView: (page 3335) and before the receiver's cursor rectangles are reestablished
using resetCursorRects (page 3206). This method is invoked just before the receiver is removed from a
window and when the receiver is deallocated.

Availability
Available in Mac OS X v10.0 and later.

See Also
discardCursorRects (page 3320) (NSWindow)

Related Sample Code
DragItemAround

Declared In
NSView.h

display
Displays the receiver and all its subviews if possible, invoking each the NSView methods lockFocus (page
3187), drawRect: (page 3170), and unlockFocus (page 3239) as necessary.

- (void)display

Discussion
If the receiver isn’t opaque, this method backs up the view hierarchy to the first opaque ancestor, calculates
the portion of the opaque ancestor covered by the receiver, and begins displaying from there.

Instance Methods 3163
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– canDraw (page 3152)
– opaqueAncestor (page 3193)
– visibleRect (page 3245)
– displayIfNeededIgnoringOpacity (page 3165)

Related Sample Code
CIVideoDemoGL
CocoaSpeechSynthesisExample
EnhancedAudioBurn
GLUT
QTGraphicsImport

Declared In
NSView.h

displayIfNeeded
Displays the receiver and all its subviews if any part of the receiver has been marked as needing display with
a setNeedsDisplay: (page 3225) or setNeedsDisplayInRect: (page 3225) message.

- (void)displayIfNeeded

Discussion
This method invokes the NSView methods lockFocus (page 3187), drawRect: (page 3170), and
unlockFocus (page 3239) as necessary. If the receiver isn’t opaque, this method backs up the view hierarchy
to the first opaque ancestor, calculates the portion of the opaque ancestor covered by the receiver, and
begins displaying from there.

Availability
Available in Mac OS X v10.0 and later.

See Also
– display (page 3163)
– needsDisplay (page 3191)
– displayIfNeededIgnoringOpacity (page 3165)

Related Sample Code
ButtonMadness
CompositeLab
MixMash
Rulers

Declared In
NSView.h

3164 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

displayIfNeededIgnoringOpacity
Acts asdisplayIfNeeded (page 3164), except that this method doesn’t back up to the first opaque ancestor—it
simply causes the receiver and its descendants to execute their drawing code.

- (void)displayIfNeededIgnoringOpacity

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DispatchFractal

Declared In
NSView.h

displayIfNeededInRect:
Acts as displayIfNeeded (page 3164), confining drawing to a specified region of the receiver..

- (void)displayIfNeededInRect:(NSRect)aRect

Parameters
aRect

A rectangle defining the region to be redrawn. It should be specified in the coordinate system of the
receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

displayIfNeededInRectIgnoringOpacity:
Acts asdisplayIfNeeded (page 3164), but confining drawing toaRect and not backing up to the first opaque
ancestor—it simply causes the receiver and its descendants to execute their drawing code.

- (void)displayIfNeededInRectIgnoringOpacity:(NSRect)aRect

Parameters
aRect

A rectangle defining the region to be redrawn. It should be specified in the coordinate system of the
receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

Instance Methods 3165
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

displayRect:
Acts as display (page 3163), but confining drawing to a rectangular region of the receiver.

- (void)displayRect:(NSRect)aRect

Parameters
aRect

A rectangle defining the region of the receiver to be redrawn; should be specified in the coordinate
system of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

displayRectIgnoringOpacity:
Displays the receiver but confines drawing to a specified region and does not back up to the first opaque
ancestor—it simply causes the receiver and its descendants to execute their drawing code.

- (void)displayRectIgnoringOpacity:(NSRect)aRect

Parameters
aRect

A rectangle defining the region of the receiver to be redrawn; should be specified in the coordinate
system of the receiver.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

displayRectIgnoringOpacity:inContext:
Causes the receiver and its descendants to be redrawn to the specified graphics context.

- (void)displayRectIgnoringOpacity:(NSRect)aRect
inContext:(NSGraphicsContext *)context

Parameters
aRect

A rectangle defining the region of the receiver to be redrawn. It should be specified in the coordinate
system of the receiver.

context
The graphics context in which drawing will occur. See the discussion below for more about this
parameter.

Discussion
Acts as display (page 3163), but confines drawing to aRect. This method initiates drawing with the receiver,
even if the receiver is not opaque. Appropriate scaling factors for the view are obtained from context.

3166 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

If the context parameter represents the context for the window containing the view, then all of the necessary
transformations are applied. This includes the application of the receiver’s bounds and frame transforms
along with any transforms it inherited from its ancestors. In this situation, the view is also marked as no longer
needing an update for the specified rectangle.

If context specifies any other graphics context, then only the receiver’s bounds transform is applied. This
means that drawing is not constrained to the view’s visible rectangle. It also means that any dirty rectangles
are not cleared, since they are not being redrawn to the window.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QuickLookSketch

Declared In
NSView.h

dragFile:fromRect:slideBack:event:
Initiates a dragging operation from the receiver, allowing the user to drag a file icon to any application that
has window or view objects that accept files.

- (BOOL)dragFile:(NSString *)fullPath fromRect:(NSRect)aRect
slideBack:(BOOL)slideBack event:(NSEvent *)theEvent

Parameters
fullPath

A string that specifies the absolute path for the file that is dragged.

aRect
A rectangle that describes the position of the icon in the receiver’s coordinate system.

slideBack
A Boolean that indicates whether the icon being dragged should slide back to its position in the
receiver if the file isn’t accepted. The icon slides back to aRect if slideBack is YES, the file is not
accepted by the dragging destination, and the user has not disabled icon animation; otherwise it
simply disappears.

theEvent
The mouse-down event object from which to initiate the drag operation. In particular, its mouse
location is used for the offset of the icon being dragged.

Return Value
YES if the receiver successfully initiates the dragging operation (which doesn’t necessarily mean the dragging
operation concluded successfully). Otherwise returns NO.

Discussion
This method must be invoked only within an implementation of the mouseDown: (page 2164) method.

See the NSDraggingSource, NSDraggingInfo, and NSDraggingDestination protocol specifications for
more information on dragging operations.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3167
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

See Also
– dragImage:at:offset:event:pasteboard:source:slideBack: (page 3168)
– shouldDelayWindowOrderingForEvent: (page 3231)

Declared In
NSView.h

dragImage:at:offset:event:pasteboard:source:slideBack:
Initiates a dragging operation from the receiver, allowing the user to drag arbitrary data with a specified icon
into any application that has window or view objects that accept dragged data.

- (void)dragImage:(NSImage *)anImage at:(NSPoint)imageLoc offset:(NSSize)mouseOffset
event:(NSEvent *)theEvent pasteboard:(NSPasteboard *)pboard
source:(id)sourceObject slideBack:(BOOL)slideBack

Parameters
anImage

The NSImage object to be dragged.

imageLoc
The location of the image’s lower-left corner, in the receiver’s coordinate system. It determines the
placement of the dragged image under the cursor. When determining the image location you should
use the mouse down coordinate, provided in theEvent, rather than the current mouse location.

mouseOffset
This parameter is ignored.

theEvent
The left mouse-down event that triggered the dragging operation (see discussion below).

pboard
The pasteboard that holds the data to be transferred to the destination (see discussion below).

sourceObject
An object that serves as the controller of the dragging operation. It must conform to the
NSDraggingSource informal protocol and is typically the receiver itself or its NSWindow object.

slideBack
A Boolean that determines whether the drag image should slide back if it’s rejected. The image slides
back to imageLoc if slideBack is YES and the image isn’t accepted by the dragging destination. If
NO the image doesn't slide back.

Discussion
This method must be invoked only within an implementation of the mouseDown: (page 2164) or
mouseDragged: (page 2164) methods.

Before invoking this method, you must place the data to be transferred on pboard. To do this, get the drag
pasteboard object (NSDragPboard), declare the types of the data, and then put the data on the pasteboard.
This code fragment initiates a dragging operation on an image itself (that is, the image is the data to be
transferred):

- (void)mouseDown:(NSEvent *)theEvent
{
 NSSize dragOffset = NSMakeSize(0.0, 0.0);
 NSPasteboard *pboard;

3168 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

 pboard = [NSPasteboard pasteboardWithName:NSDragPboard];
 [pboard declareTypes:[NSArray arrayWithObject:NSTIFFPboardType] owner:self];
 [pboard setData:[[self image] TIFFRepresentation] forType:NSTIFFPboardType];

 [self dragImage:[self image] at:[self imageLocation] offset:dragOffset
 event:theEvent pasteboard:pboard source:self slideBack:YES];

 return;
}

See the NSDraggingSource, NSDraggingInfo, and NSDraggingDestination protocol specifications for
more information on dragging operations.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dragFile:fromRect:slideBack:event: (page 3167)
– shouldDelayWindowOrderingForEvent: (page 3231)

Declared In
NSView.h

dragPromisedFilesOfTypes:fromRect:source:slideBack:event:
Initiates a dragging operation from the receiver, allowing the user to drag one or more promised files (or
directories) into any application that has window or view objects that accept promised file data.

- (BOOL)dragPromisedFilesOfTypes:(NSArray *)typeArray fromRect:(NSRect)aRect
source:(id)sourceObject slideBack:(BOOL)slideBack event:(NSEvent *)theEvent

Parameters
typeArray

An array of file types being promised. The array elements can consist of file extensions and HFS types
encoded with the NSFileTypeForHFSTypeCode function. If promising a directory of files, only
include the top directory in the array.

aRect
A rectangle that describes the position of the icon in the receiver’s coordinate system.

sourceObject
An object that serves as the controller of the dragging operation. It must conform to the
NSDraggingSource informal protocol, and is typically the receiver itself or its NSWindow object.

slideBack
A Boolean that indicates whether the icon being dragged should slide back to its position in the
receiver if the file isn’t accepted. The icon slides back to aRect if slideBack is YES, the promised
files are not accepted by the dragging destination, and the user has not disabled icon animation;
otherwise it simply disappears.

theEvent
The mouse-down event object from which to initiate the drag operation. In particular, its mouse
location is used for the offset of the icon being dragged.

Return Value
YES if the drag operation is initiated successfully, NO otherwise.

Instance Methods 3169
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
This method must be invoked only within an implementation of the mouseDown: (page 2164) method. As part
of its implementation, this method invokes
dragImage:at:offset:event:pasteboard:source:slideBack: (page 3168).

Promised files are files that do not exist, yet, but that the drag source, sourceObject, promises to create at
a file system location specified by the drag destination when the drag is successfully dropped.

See Drag and Drop Programming Topics for Cocoa for more information on dragging operations.

Availability
Available in Mac OS X v10.2 and later.

See Also
– dragImage:at:offset:event:pasteboard:source:slideBack: (page 3168)
– shouldDelayWindowOrderingForEvent: (page 3231)

Declared In
NSView.h

drawPageBorderWithSize:
Allows applications that use the Application Kit pagination facility to draw additional marks on each logical
page.

- (void)drawPageBorderWithSize:(NSSize)borderSize

Parameters
borderSize

An NSSize structure that defines a logical page.

Discussion
The marks can be such things as alignment marks or a virtual sheet border of size borderSize. The default
implementation doesn’t draw anything.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawSheetBorderWithSize: (page 3171)

Declared In
NSView.h

drawRect:
Overridden by subclasses to draw the receiver’s image within the passed-in rectangle.

- (void)drawRect:(NSRect)dirtyRect

Parameters
dirtyRect

A rectangle defining the dirty area of the view that requires redrawing.

3170 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
The receiver can assume the focus has been locked and the coordinate transformations of its frame and
bounds rectangles have been applied; all it needs to do is invoke rendering client functions.

You can avoid unnecessary drawing by paying attention to the dirtyRect parameter which defines the
area that must be redrawn. The bounds of the entire view, as opposed to the dirty region, is given by [self
bounds].

On Mac OS X version 10.2 and earlier, the Application Kit automatically clips any drawing you perform in this
method to this rectangle. On Mac OS X version 10.3 and later, the Application Kit automatically clips drawing
to a list of non-overlapping rectangles that more rigorously specify the area needing drawing. You can invoke
the getRectsBeingDrawn:count: (page 3176) method to retrieve this list of rectangles and use them to
constrain your drawing more tightly, if you wish. Moreover, the needsToDrawRect: (page 3192) method
gives you a convenient way to test individual objects for intersection with the rectangles in the list. See Cocoa
Drawing Guide for information and references on drawing.

The default implementation does nothing. If your custom view is a direct NSView subclass you do not need
to call super's implementation.

Note: If a subclass returns YES upon receiving an isOpaque (page 3183) message, it must completely fill
dirtyRect with opaque content.

Availability
Available in Mac OS X v10.0 and later.

See Also
– display (page 3163)
– getRectsBeingDrawn:count: (page 3176)
– isFlipped (page 3181)
– needsToDrawRect: (page 3192)
– setNeedsDisplayInRect: (page 3225)
– shouldDrawColor (page 3232)

Related Sample Code
QTCoreImage101
QTCoreVideo101
QTCoreVideo103
QTCoreVideo202
Transformed Image

Declared In
NSView.h

drawSheetBorderWithSize:
Allows applications that use the Application Kit pagination facility to draw additional marks on each printed
sheet.

- (void)drawSheetBorderWithSize:(NSSize)borderSize

Instance Methods 3171
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
borderSize

An NSSize structure that defines a printed sheet.

Discussion
The marks can be such things as crop marks or fold lines of size borderSize. This method has been
deprecated.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawPageBorderWithSize: (page 3170)

Declared In
NSView.h

enclosingMenuItem
Returns the menu item containing the receiver or any of its superviews in the view hierarchy.

- (NSMenuItem *)enclosingMenuItem

Return Value
Returns the menu item containing the receiver or any of its superviews in the view hierarchy, or nil if the
receiver's view hierarchy is not in a menu item

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSMenuItem.h

enclosingScrollView
Returns the nearest ancestor NSScrollView object containing the receiver (not including the receiver itself);
otherwise returns nil.

- (NSScrollView *)enclosingScrollView

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
PhotoSearch
PredicateEditorSample
Rulers
Sketch+Accessibility
Sketch-112

Declared In
NSView.h

3172 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

endDocument
This method is invoked at the end of the printing session.

- (void)endDocument

Discussion
If you override this method, call the superclass implementation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

endPage
Writes the end of a conforming page.

- (void)endPage

Discussion
This method is invoked after each page is printed. It invokes unlockFocus (page 3239). This method also
generates comments for the bounding box and page fonts, if they were specified as being at the end of the
page.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

enterFullScreenMode:withOptions:
Sets the receiver to full screen mode.

- (BOOL)enterFullScreenMode:(NSScreen *)screen
withOptions:(NSDictionary *)options

Parameters
screen

The screen the receiver should cover.

options
A dictionary of options for the mode. For possible keys, see “Full Screen Mode Options” (page
3252).

Return Value
YES if the receiver was able to enter full screen mode, otherwise NO.

Discussion
When theNSFullScreenModeApplicationPresentationOptions (page 3252) is contained in the options
dictionary, the presentation options that were in effect when this method is invoked are not altered, and no
displays are captured.

Instance Methods 3173
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

If you do not wish to capture the screen when going to full screen mode, you can add
NSFullScreenModeApplicationPresentationOptions (page 3252) to the options dictionary with the
value returned by the presentationOptions (page 158).

When theNSFullScreenModeApplicationPresentationOptions (page 3252) options is specified, exiting
full screen mode using exitFullScreenModeWithOptions: (page 3174) will restore the previously active
presentationOptions (page 158).

Special Considerations

On Mac OS X v 10.5 invoking this method when the receiver was not in a window would cause an exception.
On Mac OS X v 10.6 and later, you can now send this message to a view not in a window. For applications
that must also run on Mac OS X v 10.5, a simple workaround is to place the view in an offscreen dummy
window.

Availability
Available in Mac OS X v10.5 and later.

See Also
– exitFullScreenModeWithOptions: (page 3174)
– isInFullScreenMode (page 3183)

Related Sample Code
CoreAnimationKioskStyleMenu
From A View to A Movie
From A View to A Picture
GeekGameBoard

Declared In
NSView.h

exitFullScreenModeWithOptions:
Instructs the receiver to exit full screen mode.

- (void)exitFullScreenModeWithOptions:(NSDictionary *)options

Parameters
options

A dictionary of options for the mode. For possible keys, see “Full Screen Mode Options” (page
3252).

Discussion
When the NSFullScreenModeApplicationPresentationOptions (page 3252) options is specified when
enterFullScreenMode:withOptions: (page 3173) is invoked, exiting full screen mode will restore the
previously active presentationOptions (page 158).

Availability
Available in Mac OS X v10.5 and later.

See Also
– enterFullScreenMode:withOptions: (page 3173)
– isInFullScreenMode (page 3183)

3174 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Related Sample Code
From A View to A Movie
From A View to A Picture
GeekGameBoard

Declared In
NSView.h

focusRingType
Returns the type of focus ring drawn around the receiver.

- (NSFocusRingType)focusRingType

Return Value
An enum constant identifying a type of focus ring. Possible values are listed in NSFocusRingType (page 4009).

Discussion
You can disable a view’s drawing of its focus ring by overriding this method to return NSFocusRingTypeNone,
or by invoking setFocusRingType: (page 3218) with and argument of NSFocusRingTypeNone. You should
only disable the default drawing of a view’s focus ring if you want it to draw its own focus ring (for example,
setting the background color of the view), or if the view does not have sufficient space to display a focus
ring.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setFocusRingType: (page 3218)

Declared In
NSView.h

frame
Returns the receiver’s frame rectangle, which defines its position in its superview.

- (NSRect)frame

Discussion
The frame rectangle may be rotated; use the frameRotation (page 3176) method to check this.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bounds (page 3150)
– setFrame: (page 3218)

Related Sample Code
FunHouse
MyPhoto

Instance Methods 3175
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Quartz Composer QCTV
Quartz Composer WWDC 2005 TextEdit
TextSizingExample

Declared In
NSView.h

frameCenterRotation
Returns the receiver’s rotation about the layer’s position.

- (CGFloat)frameCenterRotation

Return Value
The angle of rotation of the frame around the center of the receiver.

Discussion
If the application has altered the layer’s anchorPoint property, the behavior is undefined. Sending this
message to a view that is not managing a Core Animation layer causes an exception.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

frameRotation
Returns the angle, in degrees, of the receiver’s frame relative to its superview’s coordinate system.

- (CGFloat)frameRotation

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameRotation: (page 3221)
– boundsRotation (page 3151)

Declared In
NSView.h

getRectsBeingDrawn:count:
Returns by indirection a list of non-overlapping rectangles that define the area the receiver is being asked
to draw in drawRect: (page 3170).

- (void)getRectsBeingDrawn:(const NSRect **)rects
count:(NSInteger *)count

3176 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
rects

On return, contains a list of non-overlapping rectangles defining areas to be drawn in. The rectangles
returned in rects are in the coordinate space of the receiver.

count
On return, the number of rectangles in the rects list.

Discussion
An implementation of drawRect: can use this information to test whether objects or regions within the
view intersect with the rectangles in the list, and thereby avoid unnecessary drawing that would be completely
clipped away.

The needsToDrawRect: (page 3192) method gives you a convenient way to test individual objects for
intersection with the area being drawn in drawRect: (page 3170). However, you may want to retrieve and
directly inspect the rectangle list if this is a more efficient way to perform intersection testing.

You should send this message only from within adrawRect: (page 3170) implementation. TheaRectparameter
of drawRect: is the rectangle enclosing the returned list of rectangles; you can use it in an initial pass to
reject objects that are clearly outside the area to be drawn.

Availability
Available in Mac OS X v10.3 and later.

See Also
– wantsDefaultClipping (page 3246)

Declared In
NSView.h

getRectsExposedDuringLiveResize:count:
Returns a list of rectangles indicating the newly exposed areas of the receiver.

- (void)getRectsExposedDuringLiveResize:(NSRect)exposedRects
count:(NSInteger *)count

Parameters
exposedRects

On return, contains the list of rectangles. The returned rectangles are in the coordinate space of the
receiver.

count
Contains the number of rectangles in exposedRects; this value may be 0 and is guaranteed to be
no more than 4.

Discussion
If your view does not support content preservation during live resizing, the entire area of your view is returned
in the exposedRects parameter. To support content preservation, override
preservesContentDuringLiveResize (page 3196) in your view and have your implementation return YES.

Instance Methods 3177
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Note: The window containing your view must also support content preservation. To enable support for this
feature in your window, use the setPreservesContentDuringLiveResize: (page 3393) method of
NSWindow.

If the view decreased in both height and width, the list of returned rectangles will be empty. If the view
increased in both height and width and its upper-left corner stayed anchored in the same position, the list
of returned rectangles will contain a vertical and horizontal component indicating the exposed area.

Availability
Available in Mac OS X v10.4 and later.

See Also
– preservesContentDuringLiveResize (page 3196)
– rectPreservedDuringLiveResize (page 3199)

Declared In
NSView.h

gState
Returns the identifier for the receiver’s graphics state object, or 0 if the receiver doesn’t have a graphics state
object.

- (NSInteger)gState

Discussion
A view object’s graphics state object is recreated from scratch whenever the view is focused, unless the
allocateGState (page 3146) method has been invoked. So if the receiver hasn’t been focused or hasn’t
received the allocateGState (page 3146) message, this method returns 0.

Although applications rarely need to use the value returned by gState (page 3178), it can be passed to the
few methods that take an object identifier as a parameter.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allocateGState (page 3146)
– setUpGState (page 3229)
– renewGState (page 3205)
– releaseGState (page 3201)
– lockFocus (page 3187)

Declared In
NSView.h

heightAdjustLimit
Returns the fraction (from 0.0 to 1.0) of the page that can be pushed onto the next page during automatic
pagination to prevent items such as lines of text from being divided across pages.

3178 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

- (CGFloat)heightAdjustLimit

Discussion
This fraction is used to calculate the bottom edge limit for an
adjustPageHeightNew:top:bottom:limit: (page 3143) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– widthAdjustLimit (page 3247)

Declared In
NSView.h

hitTest:
Returns the farthest descendant of the receiver in the view hierarchy (including itself) that contains a specified
point, or nil if that point lies completely outside the receiver.

- (NSView *)hitTest:(NSPoint)aPoint

Parameters
aPoint

A point that is in the coordinate system of the receiver’s superview, not of the receiver itself.

Return Value
A view object that is the farthest descendent of aPoint.

Discussion
This method is used primarily by an NSWindow object to determine which view should receive a mouse-down
event. You’d rarely need to invoke this method, but you might want to override it to have a view object hide
mouse-down events from its subviews. This method ignores hidden views.

Availability
Available in Mac OS X v10.0 and later.

See Also
– mouse:inRect: (page 3189)
– convertPoint:toView: (page 3155)
– setHidden: (page 3222)

Related Sample Code
TargetGallery

Declared In
NSView.h

initWithFrame:
Initializes and returns a newly allocated NSView object with a specified frame rectangle.

- (id)initWithFrame:(NSRect)frameRect

Instance Methods 3179
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
frameRect

The frame rectangle for the created view object.

Return Value
An initialized NSView object or nil if the object couldn't be created.

Discussion
The new view object must be inserted into the view hierarchy of a window before it can be used. This method
is the designated initializer for the NSView class. Returns an initialized object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addSubview: (page 3139)
– addSubview:positioned:relativeTo: (page 3140)
– setFrame: (page 3218)

Related Sample Code
CocoaSlides
DotViewUndo
DragItemAround
Movie Overlay
Rulers

Declared In
NSView.h

inLiveResize
A convenience method, expected to be called from drawRect: (page 3170), to assist in decisions about
optimized drawing.

- (BOOL)inLiveResize

Return Value
YES if the receiver is in a live-resize operation, NO otherwise.

Availability
Available in Mac OS X v10.1 and later.

See Also
– viewDidEndLiveResize (page 3240)
– viewWillStartLiveResize (page 3244)

Related Sample Code
Cocoa OpenGL
MatrixMixerTest
WhackedTV

Declared In
NSView.h

3180 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

inputContext
Returns the text input context object for the receiver.

- (NSTextInputContext *)inputContext

Return Value
The text input context object, or nil the receiver doesn't conform to NSTextInputClient protocol.

Availability
Available in Mac OS X v10.6 and later.

Related Sample Code
TextInputView

Declared In
NSView.h

isDescendantOf:
Returns YES if the receiver is a subview of a given view or if it’s identical to that view; otherwise, it returns
NO.

- (BOOL)isDescendantOf:(NSView *)aView

Parameters
aView

The view to test for subview relationship within the view hierarchy.

Discussion
The method returns YES if the receiver is either an immediate or distant subview of aView.

Availability
Available in Mac OS X v10.0 and later.

See Also
– superview (page 3235)
– subviews (page 3235)
– ancestorSharedWithView: (page 3147)

Declared In
NSView.h

isFlipped
Returns YES if the receiver uses flipped drawing coordinates or NO if it uses native coordinates.

- (BOOL)isFlipped

Discussion
The default implementation returns NO; subclasses that use flipped coordinates should override this method
to return YES.

Instance Methods 3181
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageMap
ImageMapExample
Quartz Composer WWDC 2005 TextEdit
Rulers
Sketch-112

Declared In
NSView.h

isHidden
Returns whether the receiver is marked as hidden.

- (BOOL)isHidden

Discussion
The return value reflects the state of the receiver only, as set in Interface Builder or through the most recent
setHidden: (page 3222) message, and does not account for the state of the receiver’s ancestors in the view
hierarchy, Thus this method returns NO when the receiver is effectively hidden because it has a hidden
ancestor. See setHidden: for a discussion of the mechanics and implications of hidden views.

If you want to determine whether a view is effectively hidden, for whatever reason, send the
isHiddenOrHasHiddenAncestor (page 3182) to the view instead.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
GLSLShowpiece

Declared In
NSView.h

isHiddenOrHasHiddenAncestor
Returns YES if the receiver is marked as hidden or has an ancestor in the view hierarchy that is marked as
hidden; returns NO otherwise.

- (BOOL)isHiddenOrHasHiddenAncestor

Discussion
The return value reflects state set through the setHidden: (page 3222) method in the receiver of one of its
ancestors in the view hierarchy. It does not account for other reasons why a view might be considered hidden,
such as being positioned outside its superview’s bounds, not having a window, or residing in a window that
is offscreen or overlapped by another window.

Availability
Available in Mac OS X v10.3 and later.

3182 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

See Also
– isHidden (page 3182)

Declared In
NSView.h

isInFullScreenMode
Returns whether the view is in full screen mode.

- (BOOL)isInFullScreenMode

Return Value
YES if the receiver is in full screen mode, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– enterFullScreenMode:withOptions: (page 3173)
– exitFullScreenModeWithOptions: (page 3174)

Related Sample Code
Denoise
From A View to A Movie
GeekGameBoard
OpenCL NBody Simulation Example
QTCoreVideo201

Declared In
NSView.h

isOpaque
Overridden by subclasses to return YES if the receiver is opaque, NO otherwise.

- (BOOL)isOpaque

Discussion
A view object is opaque if it completely covers its frame rectangle when drawing itself. The default
implementation performs no drawing at all and so returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– opaqueAncestor (page 3193)
– displayRectIgnoringOpacity: (page 3166)
– displayIfNeededIgnoringOpacity (page 3165)
– displayIfNeededInRectIgnoringOpacity: (page 3165)

Instance Methods 3183
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Related Sample Code
ImageApp
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility
Sketch-112
WhackedTV

Declared In
NSView.h

isRotatedFromBase
Returns YES if the receiver or any of its ancestors has ever received a setFrameRotation: (page 3221) or
setBoundsRotation: (page 3215) message; otherwise returns NO.

- (BOOL)isRotatedFromBase

Discussion
The intent of this information is to optimize drawing and coordinate calculation, not necessarily to reflect
the exact state of the receiver’s coordinate system, so it may not reflect the actual rotation. For example, if
an NSView object is rotated to 45 degrees and later back to 0, this method still returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– frameRotation (page 3176)
– boundsRotation (page 3151)

Declared In
NSView.h

isRotatedOrScaledFromBase
Returns YES if the receiver or any of its ancestors has ever had a nonzero frame or bounds rotation, or has
been scaled from the window’s base coordinate system; otherwise returns NO.

- (BOOL)isRotatedOrScaledFromBase

Discussion
The intent of this information is to optimize drawing and coordinate calculation, not necessarily to reflect
the exact state of the receiver’s coordinate system, so it may not reflect the actual rotation or scaling. For
example, if an NSView object is rotated to 45 degrees and later back to 0, this method still returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– frameRotation (page 3176)
– boundsRotation (page 3151)
– centerScanRect: (page 3153)

3184 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– setBounds: (page 3214)
– setBoundsSize: (page 3216)
– scaleUnitSquareToSize: (page 3208)

Declared In
NSView.h

knowsPageRange:
Returns YES if the receiver handles page boundaries, NO otherwise.

- (BOOL)knowsPageRange:(NSRangePointer)aRange

Parameters
aRange

On return, holds the page range if YES is returned directly. Page numbers are one-based—that is
pages run from one to N.

Discussion
Returns NO if the receiver uses the default auto-pagination mechanism. The default implementation returns
NO. Override this method if your class handles page boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

layer
Returns the Core Animation layer that the receiver uses as its backing store.

- (CALayer *)layer

Return Value
The Core Animation layer the receiver is using as its backing store.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AnimatedTableView
CALayerEssentials
FunHouse
GeekGameBoard
Quartz2DBasics

Declared In
NSView.h

Instance Methods 3185
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

layerContentsPlacement
Returns the current layer contents placement policy.

- (NSViewLayerContentsPlacement)layerContentsPlacement

Return Value
The placement policy. See “NSViewLayerContentsPlacement” (page 3253) for supported values.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setLayerContentsPlacement: (page 3223)

Declared In
NSView.h

layerContentsRedrawPolicy
Returns the view’s layer contents redraw policy.

- (NSViewLayerContentsRedrawPolicy)layerContentsRedrawPolicy

Return Value
The current redraw policy. See “NSViewLayerContentsRedrawPolicy” (page 3252) for supported values.

Discussion
ThelayerContentsRedrawPolicy (page 3186) andlayerContentsPlacement (page 3186) settings can
have significant impacts on performance. See setLayerContentsRedrawPolicy: (page 3224) and
setLayerContentsPlacement: (page 3223) for more information.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setLayerContentsRedrawPolicy: (page 3224)

Declared In
NSView.h

locationOfPrintRect:
Invoked by print: (page 3198) to determine the location of the region of the receiver being printed on the
physical page.

- (NSPoint)locationOfPrintRect:(NSRect)aRect

Parameters
aRect

A rectangle defining a region of the receiver; it is expressed in the default coordinate system of the
page.

3186 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Return Value
A point to be used for setting the origin for aRect, whose size the receiver can examine in order to properly
place it. It is expressed in the default coordinate system of the page.

Discussion
The default implementation places aRect according to the status of the NSPrintInfo object for the print
job. By default it places the image in the upper-left corner of the page, but if the NSPrintInfo methods
isHorizontallyCentered (page 2051) or isVerticallyCentered (page 2052) return YES, it centers a
single-page image along the appropriate axis. A multiple-page document, however, is always placed so the
divided pieces can be assembled at their edges.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

lockFocus
Locks the focus on the receiver, so subsequent commands take effect in the receiver’s window and coordinate
system.

- (void)lockFocus

Discussion
If you don’t use a display... method to draw an NSView object, you must invoke lockFocus before
invoking methods that send commands to the window server, and must balance it with an unlockFocus (page
3239) message when finished.

Hiding or miniaturizing a one-shot window causes the backing store for that window to be released. If you
don’t use the standard display mechanism to draw, you should use lockFocusIfCanDraw (page 3188) rather
than lockFocus if there is a chance of drawing while the window is either miniaturized or hidden.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ focusView (page 3137)
– display (page 3163)
– drawRect: (page 3170)
– lockFocusIfCanDraw (page 3188)

Related Sample Code
CocoaAUHost
Color Sampler
GLUT
QTKitFrameStepper
VideoViewer

Declared In
NSView.h

Instance Methods 3187
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

lockFocusIfCanDraw
Locks the focus to the receiver atomically if the canDraw method returns YES and returns the value of
canDraw.

- (BOOL)lockFocusIfCanDraw

Discussion
Your thread will not be preempted by other threads between the canDrawmethod and the lock. This method
fails to lock focus and returns NO, when the receiver is hidden and the current context is drawing to the
screen (as opposed to a printing context).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLUT
VideoViewer

Declared In
NSView.h

lockFocusIfCanDrawInContext:
Locks the focus to the receiver atomically if drawing can occur in the specified graphics context.

- (BOOL)lockFocusIfCanDrawInContext:(NSGraphicsContext *)context

Parameters
context

The graphics context in which drawing might occur. See the discussion for the implications of the
type of context.

Return Value
YES if successful; otherwise, returns NO.

Discussion
Your thread will not be preempted by other threads between the canDraw method and the lock.

If the context parameter represents the context for the window containing the view, then all of the necessary
transformations are applied. This includes the application of the receiver’s bounds and frame transforms
along with any transforms it inherited from its ancestors. If context specifies any other graphics context,
then only the receiver’s bounds transform is applied.

Special Considerations

Important: This method was declared in Mac OS X v10.4, but is not used in that release. It currently does
nothing and returns NO. However, it might be implemented in a future release.

Availability
Available in Mac OS X v10.4 and later.

See Also
– lockFocus (page 3187)

3188 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– lockFocusIfCanDraw (page 3188)

Declared In
NSView.h

makeBackingLayer
Creates the view’s backing layer.

- (CALayer *)makeBackingLayer

Return Value
A layer to use as the view’s backing layer.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSView.h

menuForEvent:
Overridden by subclasses to return a context-sensitive pop-up menu for a given mouse-down event.

- (NSMenu *)menuForEvent:(NSEvent *)theEvent

Parameters
theEvent

An object representing a mouse-down event.

Discussion
The receiver can use information in the mouse event, such as its location over a particular element of the
receiver, to determine what kind of menu to return. For example, a text object might display a text-editing
menu when the cursor lies over text and a menu for changing graphics attributes when the cursor lies over
an embedded image.

The default implementation returns the receiver’s normal menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultMenu (page 3137)
menu (page 2163) (NSResponder)

Declared In
NSView.h

mouse:inRect:
Returns whether a region of the receiver contains a specified point, accounting for whether the receiver is
flipped or not.

Instance Methods 3189
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

- (BOOL)mouse:(NSPoint)aPoint
inRect:(NSRect)aRect

Parameters
aPoint

A point that is expressed in the receiver's coordinate system. This point generally represents the hot
spot of the mouse cursor.

aRect
A rectangle that is expressed in the receiver’s coordinate system.

Return Value
YES if aRect contains aPoint, NO otherwise.

Discussion
Point-in-rectangle functions generally assume that the bottom edge of a rectangle is outside of the rectangle
boundaries, while the upper edge is inside the boundaries. This method views aRect from the point of view
of the user—that is, this method always treats the bottom edge of the rectangle as the one closest to the
bottom edge of the user’s screen. By making this adjustment, this function ensures consistent mouse-detection
behavior from the user’s perspective.

Never use the Foundation’s NSPointInRect function as a substitute for this method. It doesn’t account for
flipped coordinate systems.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hitTest: (page 3179)
– isFlipped (page 3181)
NSMouseInRect (Foundation functions)
– convertPoint:fromView: (page 3155)

Declared In
NSView.h

mouseDownCanMoveWindow
Returns YES if the receiver does not need to handle a mouse down and can pass it through to superviews;
NO if it needs to handle the mouse down.

- (BOOL)mouseDownCanMoveWindow

Discussion
This allows iApp-type applications to determine the region by which a window can be moved. By default,
this method returns NO if the view is opaque; otherwise, it returns YES. Subclasses can override this method
to return a different value.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
DockTile
SpeedometerView

3190 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSView.h

needsDisplay
Returns YES if the receiver needs to be displayed, as indicated using setNeedsDisplay: (page 3225) and
setNeedsDisplayInRect: (page 3225); returns NO otherwise.

- (BOOL)needsDisplay

Discussion
The displayIfNeeded...methods check this status to avoid unnecessary drawing, and all display methods
clear this status to indicate that the view object is up to date.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

needsPanelToBecomeKey
Overridden by subclasses to determine if the receiver requires its panel, which might otherwise avoid becoming
key, to become the key window so that it can handle keyboard input and navigation.

- (BOOL)needsPanelToBecomeKey

Return Value
Returns YES if it should be come key, NO otherwise.

Discussion
Such a subclass should also override acceptsFirstResponder (page 2143) to return YES.

This method is also used in keyboard navigation. It determines if a mouse click should give focus to a view
(make it first responder). Some views will want to get keyboard focus when you click in them, for example
text fields. Other views should only get focus if you tab to them, for example, buttons. You wouldn't want
focus to shift from a textfield that has editing in progress simply because you clicked on a check box.

The default implementation returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
becomesKeyOnlyIfNeeded (page 1860) (NSPanel)

Related Sample Code
ClockControl

Instance Methods 3191
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Declared In
NSView.h

needsToDrawRect:
Returns whether the specified rectangle intersects any part of the area that the receiver is being asked to
draw.

- (BOOL)needsToDrawRect:(NSRect)aRect

Parameters
aRect

A rectangle defining a region of the receiver.

Discussion
You typically send this message from within adrawRect: (page 3170) implementation. It gives you a convenient
way to determine whether any part of a given graphical entity might need to be drawn. It is optimized to
efficiently reject any rectangle that lies outside the bounding box of the area the receiver is being asked to
draw in drawRect:.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSView.h

nextKeyView
Returns the view object following the receiver in the key view loop.

- (NSView *)nextKeyView

Return Value
Returns the view object following the receiver in the key view loop, or nil if there is none.

Discussion
This view should, if possible, be made first responder when the user navigates forward from the receiver
using keyboard interface control.

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextValidKeyView (page 3193)
– setNextKeyView: (page 3226)
– previousKeyView (page 3197)
– previousValidKeyView (page 3197)
selectNextKeyView: (page 3364) (NSWindow)
selectKeyViewFollowingView: (page 3364) (NSWindow)
selectPreviousKeyView: (page 3365) (NSWindow)
selectKeyViewPrecedingView: (page 3364) (NSWindow)

3192 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Related Sample Code
TrackBall

Declared In
NSView.h

nextValidKeyView
Returns the closest view object in the key view loop that follows the receiver and accepts first responder
status.

- (NSView *)nextValidKeyView

Return Value
The closest view object in the key view loop that follows the receiver and accepts first responder status, or
nil if there is none.

Discussion
This method ignores hidden views when it determines the next valid key view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextKeyView (page 3192)
– setNextKeyView: (page 3226)
– previousKeyView (page 3197)
– previousValidKeyView (page 3197)
selectNextKeyView: (page 3364) (NSWindow)
selectKeyViewFollowingView: (page 3364) (NSWindow)
selectPreviousKeyView: (page 3365) (NSWindow)
selectKeyViewPrecedingView: (page 3364) (NSWindow)
– setHidden: (page 3222)

Related Sample Code
Dicey

Declared In
NSView.h

opaqueAncestor
Returns the receiver’s closest opaque ancestor (including the receiver itself).

- (NSView *)opaqueAncestor

Availability
Available in Mac OS X v10.0 and later.

See Also
– isOpaque (page 3183)

Instance Methods 3193
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– displayRectIgnoringOpacity: (page 3166)
– displayIfNeededIgnoringOpacity (page 3165)
– displayIfNeededInRectIgnoringOpacity: (page 3165)

Declared In
NSView.h

pageFooter
Returns a default footer string that includes the current page number and page count.

- (NSAttributedString *)pageFooter

Discussion
A printable view class can override this method to substitute its own content in place of the default value.
You should not need to call this method directly. The printing system calls it once per page during printing.

Footers are generated only if the user defaults contain the key NSPrintHeaderAndFooter with the value
YES.

Availability
Available in Mac OS X v10.4 and later.

See Also
– pageHeader (page 3194)

Declared In
NSView.h

pageHeader
Returns a default header string that includes the print job title and date.

- (NSAttributedString *)pageHeader

Discussion
Typically, the print job title is the same as the window title. A printable view class can override this method
to substitute its own content in place of the default value. You should not need to call this method directly.
The printing system calls it once per page during printing.

Headers are generated only if the user defaults contain the key NSPrintHeaderAndFooter with the value
YES.

Availability
Available in Mac OS X v10.4 and later.

See Also
– pageFooter (page 3194)

Declared In
NSView.h

3194 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

performKeyEquivalent:
Implemented by subclasses to respond to key equivalents (also known as keyboard shortcuts).

- (BOOL)performKeyEquivalent:(NSEvent *)theEvent

Parameters
theEvent

The key-down event object representing a key equivalent.

Return Value
YES if theEvent is a key equivalent that the receiver handled, NO if it is not a key equivalent that it should
handle.

Discussion
If the receiver’s key equivalent is the same as the characters of the key-down event theEvent, as returned
by charactersIgnoringModifiers (page 1074), the receiver should take the appropriate action and return
YES. Otherwise, it should return the result of invoking super’s implementation. The default implementation
of this method simply passes the message down the view hierarchy (from superviews to subviews) and
returns NO if none of the receiver’s subviews responds YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– performMnemonic: (page 3195)
keyDown: (page 3343) (NSWindow)

Declared In
NSView.h

performMnemonic:
Implemented by subclasses to respond to mnemonics.

- (BOOL)performMnemonic:(NSString *)aString

Parameters
aString

A string representing the mnemonic to handle.

Discussion
If the receiver’s mnemonic is the same as the characters of the string aString, the receiver should take the
appropriate action and return YES. Otherwise, it should return the result of invoking super’s implementation.
The default implementation of this method simply passes the message down the view hierarchy (from
superviews to subviews) and returns NO if none of the receiver’s subviews responds YES. Mnemonics are not
supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
– performKeyEquivalent: (page 3195)
keyDown: (page 3343) (NSWindow)

Instance Methods 3195
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Declared In
NSView.h

postsBoundsChangedNotifications
Returns YES if the receiver posts notifications to the default notification center whenever its bounds rectangle
changes; returns NO otherwise.

- (BOOL)postsBoundsChangedNotifications

Discussion
See setPostsBoundsChangedNotifications: (page 3226) for a list of methods that result in notifications.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

postsFrameChangedNotifications
Returns YES if the receiver posts notifications to the default notification center whenever its frame rectangle
changes; returns NO otherwise.

- (BOOL)postsFrameChangedNotifications

Discussion
See setPostsBoundsChangedNotifications: (page 3226) for a list of methods that result in notifications.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

preservesContentDuringLiveResize
Returns YES if the view supports the optimization of live-resize operations by preserving content that has
not moved; otherwise, returns NO.

- (BOOL)preservesContentDuringLiveResize

Discussion
The default is NO. If your view supports the content preservation feature, you should override this method
and have your implementation return YES.

Content preservation lets your view decide what to redraw during a live resize operation. If your view supports
this feature, you should also provide a custom implementation of setFrameSize: (page 3221) that invalidates
the portions of your view that actually need to be redrawn.

For information on how to implement this feature in your views, see Cocoa Performance Guidelines.

3196 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– setFrameSize: (page 3221)

Declared In
NSView.h

previousKeyView
Returns the view object preceding the receiver in the key view loop.

- (NSView *)previousKeyView

Return Value
The view object preceding the receiver in the key view loop, or nil if there is none.

Discussion
This view should, if possible, be made first responder when the user navigates backward from the receiver
using keyboard interface control.

Availability
Available in Mac OS X v10.0 and later.

See Also
– previousValidKeyView (page 3197)
– nextKeyView (page 3192)
– nextValidKeyView (page 3193)
– setNextKeyView: (page 3226)
selectNextKeyView: (page 3364) (NSWindow)
selectKeyViewFollowingView: (page 3364) (NSWindow)
selectPreviousKeyView: (page 3365) (NSWindow)
selectKeyViewPrecedingView: (page 3364) (NSWindow)

Declared In
NSView.h

previousValidKeyView
Returns the closest view object in the key view loop that precedes the receiver and accepts first responder
status.

- (NSView *)previousValidKeyView

Return Value
The closest view object in the key view loop that precedes the receiver and accepts first responder status,
or nil if there is none.

Discussion
This method ignores hidden views when it determines the previous valid key view.

Instance Methods 3197
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– previousKeyView (page 3197)
– nextValidKeyView (page 3193)
– nextKeyView (page 3192)
– setNextKeyView: (page 3226)
selectNextKeyView: (page 3364) (NSWindow)
selectKeyViewFollowingView: (page 3364) (NSWindow)
selectPreviousKeyView: (page 3365) (NSWindow)
selectKeyViewPrecedingView: (page 3364) (NSWindow)
– setHidden: (page 3222)

Declared In
NSView.h

print:
This action method opens the Print panel, and if the user chooses an option other than canceling, prints the
receiver and all its subviews to the device specified in the Print panel.

- (void)print:(id)sender

Parameters
sender

The object that sent the message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataWithEPSInsideRect: (page 3162)
– writeEPSInsideRect:toPasteboard: (page 3248)

Declared In
NSView.h

printJobTitle
Returns the receiver’s print job title.

- (NSString *)printJobTitle

Discussion
The default implementation first tries the window’s NSDocument display name (displayName (page 945)),
then the window’s title.

Availability
Available in Mac OS X v10.0 and later.

3198 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Related Sample Code
ImageApp

Declared In
NSView.h

rectForPage:
Implemented by subclasses to determine the portion of the receiver to be printed for the page number page.

- (NSRect)rectForPage:(NSInteger)pageNumber

Parameters
pageNumber

An integer indicating a page number. Page numbers are one-based—that is pages run from one to
N.

Return Value
A rectangle defining the region of the receiver to be printed for pageNumber. This method returns NSZeroRect
if pageNumber is outside the receiver’s bounds.

Discussion
If the receiver responded YES to an earlier knowsPageRange: (page 3185) message, this method is invoked
for each page it specified in the out parameters of that message. The receiver is later made to display this
rectangle in order to generate the image for this page.

If an NSView object responds NO to knowsPageRange: (page 3185), this method isn’t invoked by the printing
mechanism.

Availability
Available in Mac OS X v10.0 and later.

See Also
– adjustPageHeightNew:top:bottom:limit: (page 3143)
– adjustPageWidthNew:left:right:limit: (page 3144)

Declared In
NSView.h

rectPreservedDuringLiveResize
Returns the rectangle identifying the portion of your view that did not change during a live resize operation.

- (NSRect)rectPreservedDuringLiveResize

Discussion
The returned rectangle is in the coordinate system of your view and reflects the space your view previously
occupied. This rectangle may be smaller or the same size as your view’s current bounds, depending on
whether the view grew or shrunk.

If your view does not support content preservation during live resizing, the returned rectangle will be empty.
To support content preservation, override preservesContentDuringLiveResize (page 3196) in your view
and have your implementation return YES.

Instance Methods 3199
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Note: The window containing your view must also support content preservation. To enable support for this
feature in your window, use the setPreservesContentDuringLiveResize: (page 3393) method of
NSWindow.

Availability
Available in Mac OS X v10.4 and later.

See Also
– getRectsExposedDuringLiveResize:count: (page 3177)
– preservesContentDuringLiveResize (page 3196)

Declared In
NSView.h

reflectScrolledClipView:
Notifies a clip view’s superview that either the clip view’s bounds rectangle or the document view’s frame
rectangle has changed, and that any indicators of the scroll position need to be adjusted.

- (void)reflectScrolledClipView:(NSClipView *)aClipView

Parameters
aClipView

The NSClipView object whose superview is to be notified.

Discussion
NSScrollView implements this method to update its NSScroller objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSClipView.h

registeredDraggedTypes
Returns the array of pasteboard drag types that the view can accept.

- (NSArray *)registeredDraggedTypes

Discussion
This method returns the types registered by calling registerForDraggedTypes: (page 3201). Each element
of the array is a uniform type identifier. The returned elements are in no particular order, but the array is
guaranteed not to contain duplicate entries.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSView.h

3200 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

registerForDraggedTypes:
Registers the pasteboard types that the receiver will accept as the destination of an image-dragging session.

- (void)registerForDraggedTypes:(NSArray *)newTypes

Parameters
newTypes

An array of uniform type identifiers. See Types for Standard Data (Mac OS X 10.6 and
later) (page 1904) for descriptions of the pasteboard type identifiers.

Discussion
Registering an NSView object for dragged types automatically makes it a candidate destination object for a
dragging session. As such, it must properly implement some or all of the NSDraggingDestination protocol
methods. As a convenience, NSView provides default implementations of these methods. See the
NSDraggingDestination protocol specification for details.

Availability
Available in Mac OS X v10.0 and later.

See Also
– registeredDraggedTypes (page 3200)
– unregisterDraggedTypes (page 3239)

Related Sample Code
CocoaDragAndDrop
CompositeLab
QTKitMovieShuffler

Declared In
NSView.h

releaseGState
Frees the receiver’s graphics state object, if it has one.

- (void)releaseGState

Availability
Available in Mac OS X v10.0 and later.

See Also
– allocateGState (page 3146)

Declared In
NSView.h

removeAllToolTips
Removes all tool tips assigned to the receiver.

- (void)removeAllToolTips

Instance Methods 3201
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
This method operates on tool tips created using either addToolTipRect:owner:userData: (page 3141) or
setToolTip: (page 3229).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

removeCursorRect:cursor:
Completely removes a cursor rectangle from the receiver.

- (void)removeCursorRect:(NSRect)aRect
cursor:(NSCursor *)aCursor

Parameters
aRect

A rectangle defining a region of the receiver. Must match a value previously specified using
addCursorRect:cursor: (page 3139).

aCursor
An object representing a cursor. Must match a value previously specified using
addCursorRect:cursor: (page 3139).

Discussion
You should rarely need to use this method. resetCursorRects (page 3206), which is invoked any time cursor
rectangles need to be rebuilt, should establish only the cursor rectangles needed. If you implement
resetCursorRects (page 3206) in this way, you can then simply modify the state that
resetCursorRects (page 3206) uses to build its cursor rectangles and then invoke the NSWindow method
invalidateCursorRectsForView: (page 3335).

Availability
Available in Mac OS X v10.0 and later.

See Also
– discardCursorRects (page 3163)

Declared In
NSView.h

removeFromSuperview
Unlinks the receiver from its superview and its window, removes it from the responder chain, and invalidates
its cursor rectangles.

- (void)removeFromSuperview

Discussion
The receiver is also released; if you plan to reuse it, be sure to retain it before sending this message and to
release it as appropriate when adding it as a subview of another NSView.

Never invoke this method during display.

3202 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– addSubview: (page 3139)
– addSubview:positioned:relativeTo: (page 3140)
– removeFromSuperviewWithoutNeedingDisplay (page 3203)

Related Sample Code
CocoaSlides
GLUT
Quartz Composer WWDC 2005 TextEdit
Sketch-112
SourceView

Declared In
NSView.h

removeFromSuperviewWithoutNeedingDisplay
Unlinks the receiver from its superview and its window and removes it from the responder chain, but does
not invalidate its cursor rectangles to cause redrawing.

- (void)removeFromSuperviewWithoutNeedingDisplay

Discussion
The receiver is also released; if you plan to reuse it, be sure to retain it before sending this message and to
release it as appropriate when adding it as a subview of another view.

Unlike its counterpart, removeFromSuperview (page 3202), this method can be safely invoked during display.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addSubview: (page 3139)
– addSubview:positioned:relativeTo: (page 3140)

Related Sample Code
CoreRecipes

Declared In
NSView.h

removeToolTip:
Removes the tool tip identified by specified tag.

- (void)removeToolTip:(NSToolTipTag)tag

Instance Methods 3203
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
tag

An integer tag that is the value returned by a previous addToolTipRect:owner:userData: (page
3141) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

removeTrackingArea:
Removes a given tracking area from the receiver.

- (void)removeTrackingArea:(NSTrackingArea *)trackingArea

Parameters
trackingArea

The tracking area to remove from the receiver.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
TrackIt

Declared In
NSView.h

removeTrackingRect:
Removes the tracking rectangle identified by a tag.

- (void)removeTrackingRect:(NSTrackingRectTag)aTag

Parameters
aTag

An integer value identifying a tracking rectangle. It was returned by a previously sent
addTrackingRect:owner:userData:assumeInside: (page 3142) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addTrackingRect:owner:userData:assumeInside: (page 3142)
– removeTrackingArea: (page 3204)

Related Sample Code
GLUT
ImageMap
ImageMapExample

3204 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Declared In
NSView.h

renewGState
Invalidates the receiver’s graphics state object, if it has one.

- (void)renewGState

Discussion
The receiver's graphics state object will be regenerated using setUpGState (page 3229) the next time the
receiver is focused for drawing

Availability
Available in Mac OS X v10.0 and later.

See Also
– lockFocus (page 3187)

Related Sample Code
GLSLShowpiece
VideoViewer

Declared In
NSView.h

replaceSubview:with:
Replaces one of the receiver’s subviews with another view.

- (void)replaceSubview:(NSView *)oldView
with:(NSView *)newView

Parameters
oldView

The view to be replaced by newView. May not be nil.

newView
The view to replace oldView. May not be nil.

Discussion
This method does nothing if oldView is not a subview of the receiver.

Neither oldView nor newView may be nil, and the behavior is undefined if either of these parameters is
nil.

This method causes oldView to be released; if you plan to reuse it, be sure to retain it before sending this
message and to release it as appropriate when adding it as a subview of another NSView.

Availability
Available in Mac OS X v10.0 and later.

See Also
– addSubview: (page 3139)

Instance Methods 3205
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– addSubview:positioned:relativeTo: (page 3140)

Related Sample Code
BasicCocoaAnimations
CocoaSlides
MatrixMixerTest

Declared In
NSView.h

resetCursorRects
Overridden by subclasses to define their default cursor rectangles.

- (void)resetCursorRects

Discussion
A subclass’s implementation must invoke addCursorRect:cursor: (page 3139) for each cursor rectangle it
wants to establish. The default implementation does nothing.

Application code should never invoke this method directly; it’s invoked automatically as described in
"“Responding to User Events and Actions” in View Programming Guide." Use the
invalidateCursorRectsForView: (page 3335) method instead to explicitly rebuild cursor rectangles.

Availability
Available in Mac OS X v10.0 and later.

See Also
– visibleRect (page 3245)

Related Sample Code
GeekGameBoard
GLUT
TextLinks

Declared In
NSView.h

resizeSubviewsWithOldSize:
Informs the receiver’s subviews that the receiver’s bounds rectangle size has changed.

- (void)resizeSubviewsWithOldSize:(NSSize)oldBoundsSize

Parameters
oldBoundsSize

The previous size of the receiver's bounds rectangle.

Discussion
If the receiver is configured to autoresize its subviews, this method is automatically invoked by any method
that changes the receiver’s frame size.

3206 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

The default implementation sends resizeWithOldSuperviewSize: (page 3207) to the receiver’s subviews
with oldBoundsSize as the argument. You shouldn’t invoke this method directly, but you can override it
to define a specific retiling behavior.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutoresizesSubviews: (page 3212)

Declared In
NSView.h

resizeWithOldSuperviewSize:
Informs the receiver that the bounds size of its superview has changed.

- (void)resizeWithOldSuperviewSize:(NSSize)oldBoundsSize

Parameters
oldBoundsSize

The previous size of the superview's bounds rectangle.

Discussion
This method is normally invoked automatically from resizeSubviewsWithOldSize: (page 3206).

The default implementation resizes the receiver according to the autoresizing options listed under the
setAutoresizingMask: (page 3212) method description. You shouldn’t invoke this method directly, but
you can override it to define a specific resizing behavior.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

rightMouseDown:
Informs the receiver that the user has pressed the right mouse button.

- (void)rightMouseDown:(NSEvent *)theEvent

Parameters
theEvent

An object encapsulating information about the mouse-down event.

Discussion
The default implementation calls menuForEvent: (page 3189) and, if non nil, presents the contextual menu.

This behavior differs from other mouse events as the event is not passed up the responder chain.

See Also
– rightMouseDown: (page 2189) (NSResponder)

Instance Methods 3207
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

rotateByAngle:
Rotates the receiver’s bounds rectangle by a specified degree value around the origin of the coordinate
system, (0.0, 0.0).

- (void)rotateByAngle:(CGFloat)angle

Parameters
angle

A float value specifying the angle of rotation, in degrees.

Discussion
See the setBoundsRotation: (page 3215) method description for more information. This method neither
redisplays the receiver nor marks it as needing display. You must do this yourself with display (page 3163)
or setNeedsDisplay: (page 3225).

This method posts anNSViewBoundsDidChangeNotification (page 3256) to the default notification center
if the receiver is configured to do so.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameRotation: (page 3221)
– setPostsBoundsChangedNotifications: (page 3226)

Declared In
NSView.h

scaleUnitSquareToSize:
Scales the receiver’s coordinate system so that the unit square scales to the specified dimensions.

- (void)scaleUnitSquareToSize:(NSSize)newUnitSize

Parameters
newUnitSize

An NSSize structure specifying the new unit size.

Discussion
For example, a newUnitSize of (0.5, 1.0) causes the receiver’s horizontal coordinates to be halved, in turn
doubling the width of its bounds rectangle. Note that scaling is performed from the origin of the coordinate
system, (0.0, 0.0), not the origin of the bounds rectangle; as a result, both the origin and size of the bounds
rectangle are changed. The frame rectangle remains unchanged.

This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display (page 3163) or setNeedsDisplay: (page 3225).

This method posts anNSViewBoundsDidChangeNotification (page 3256) to the default notification center
if the receiver is configured to do so.

Availability
Available in Mac OS X v10.0 and later.

3208 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

See Also
– setBoundsSize: (page 3216)
– setPostsBoundsChangedNotifications: (page 3226)

Declared In
NSView.h

scrollClipView:toPoint:
Notifies the superview of a clip view that the clip view needs to reset the origin of its bounds rectangle.

- (void)scrollClipView:(NSClipView *)aClipView
toPoint:(NSPoint)newOrigin

Parameters
aClipView

The NSClipView object whose superview is to be notified.

newOrigin
A point that specifies the new origin of the clip view's bounds rectangle.

Discussion
The superview of aClipView should then send a scrollToPoint: (page 635) message to aClipViewwith
newOrigin as the argument. This mechanism is provided so the NSClipView object's superview can
coordinate scrolling of multiple tiled clip views.

Availability
Available in Mac OS X v10.0 and later.

See Also
scrollToPoint: (page 635) (NSClipView)

Declared In
NSClipView.h

scrollPoint:
Scrolls the receiver’s closest ancestor NSClipView object so a point in the receiver lies at the origin of the
clip view's bounds rectangle.

- (void)scrollPoint:(NSPoint)aPoint

Parameters
aPoint

The point in the receiver to scroll to.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autoscroll: (page 3148)
scrollToPoint: (page 635) (NSClipView)
– isDescendantOf: (page 3181)

Instance Methods 3209
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Related Sample Code
GLUT

Declared In
NSView.h

scrollRect:by:
Copies the visible portion of the receiver’s rendered image within a region and lays that portion down again
at a specified offset .

- (void)scrollRect:(NSRect)aRect
by:(NSSize)offset

Parameters
aRect

A rectangle defining a region of the receiver.

offset
A NSSize structure that specifies an offset from from aRect’s origin.

Discussion
This method is useful during scrolling or translation of the coordinate system to efficiently move as much of
the receiver’s rendered image as possible without requiring it to be redrawn, following these steps:

1. Invoke scrollRect:by: (page 3210) to copy the rendered image.

2. Move the view object’s origin or scroll it within its superview.

3. Calculate the newly exposed rectangles and invoke either setNeedsDisplay: (page 3225) or
setNeedsDisplayInRect: (page 3225) to draw them.

You should rarely need to use this method, however. The scrollPoint: (page 3209),
scrollRectToVisible: (page 3210), andautoscroll: (page 3148) methods automatically perform optimized
scrolling.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBoundsOrigin: (page 3214)
– translateOriginToPoint: (page 3237)

Declared In
NSView.h

scrollRectToVisible:
Scrolls the receiver’s closest ancestor NSClipView object the minimum distance needed so a specified region
of the receiver becomes visible in the clip view.

- (BOOL)scrollRectToVisible:(NSRect)aRect

3210 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
aRect

The rectangle to be made visible in the clip view.

Discussion
YES if any scrolling is performed; otherwise returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autoscroll: (page 3148)
scrollToPoint: (page 635) (NSClipView)
– isDescendantOf: (page 3181)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSView.h

setAcceptsTouchEvents:
Sets whether the view should accept touch events.

- (void)setAcceptsTouchEvents:(BOOL)flag

Parameters
flag

YES if the view should accept touch events, otherwise NO.

Discussion
By default views do not accept touch events.

Availability
Available in Mac OS X v10.6 and later.

See Also
– acceptsTouchEvents (page 3138)

Declared In
NSView.h

setAlphaValue:
Sets the opacity of the receiver.

- (void)setAlphaValue:(CGFloat)viewAlpha

Parameters
viewAlpha

The desired opacity of the receiver.

Instance Methods 3211
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
This method sets the value of the opacity property of the receiver’s layer. Possible values are between 0.0
(transparent) and 1.0 (opaque). The default is 1.0.

Sending this message to a view that is not managing a Core Animation layer causes an exception.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
LayerBackedOpenGLView

Declared In
NSView.h

setAutoresizesSubviews:
Determines whether the receiver automatically resizes its subviews when its frame size changes.

- (void)setAutoresizesSubviews:(BOOL)flag

Parameters
flag

If YES, the receiver invokes resizeSubviewsWithOldSize: (page 3206) whenever its frame size
changes; if NO, it doesn’t.

Discussion
View objects do autoresize their subviews by default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autoresizesSubviews (page 3147)

Related Sample Code
FunHouse
GLUT
Sproing
TextSizingExample

Declared In
NSView.h

setAutoresizingMask:
Determines how the receiver’s resizeWithOldSuperviewSize: (page 3207) method changes its frame
rectangle.

- (void)setAutoresizingMask:(NSUInteger)mask

3212 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
mask

An integer bit mask. mask can be specified by combining using the C bitwise OR operator any of the
options described in “Resizing masks” (page 3250).

Discussion
Where more than one option along an axis is set, resizeWithOldSuperviewSize: (page 3207) by default
distributes the size difference as evenly as possible among the flexible portions. For example, if
NSViewWidthSizable and NSViewMaxXMargin are set and the superview’s width has increased by 10.0
units, the receiver’s frame and right margin are each widened by 5.0 units.

Availability
Available in Mac OS X v10.0 and later.

See Also
– autoresizingMask (page 3147)
– resizeSubviewsWithOldSize: (page 3206)
– setAutoresizesSubviews: (page 3212)

Related Sample Code
FunHouse
PhotoSearch
PredicateEditorSample
Quartz Composer QCTV
TextSizingExample

Declared In
NSView.h

setBackgroundFilters:
An array of CoreImage filters that are applied to the receiver’s background.

- (void)setBackgroundFilters:(NSArray *)filters

Parameters
filters

An array of CoreImage filters.

Discussion
This method sets the value of the backgroundFilters property of the receiver’s layer.

Sending this message to a view that is not managing a Core Animation layer causes an exception.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
LayerBackedOpenGLView

Declared In
NSView.h

Instance Methods 3213
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

setBounds:
Sets the receiver’s bounds rectangle.

- (void)setBounds:(NSRect)boundsRect

Parameters
boundsRect

A rectangle defining the new bounds of the receiver.

Discussion
The bounds rectangle determines the origin and scale of the receiver’s coordinate system within its frame
rectangle. This method neither redisplays the receiver nor marks it as needing display. You must do this
yourself with display (page 3163) or setNeedsDisplay: (page 3225).

This method posts anNSViewBoundsDidChangeNotification (page 3256) to the default notification center
if the receiver is configured to do so.

After calling this method, NSView creates an internal transform (or appends these changes to an existing
internal transform) to convert from frame coordinates to bounds coordinates in your view. As long as the
width-to-height ratio of the two coordinate systems remains the same, your content appears normal. If the
ratios differ, your content may appear skewed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bounds (page 3150)
– setBoundsRotation: (page 3215)
– setBoundsOrigin: (page 3214)
– setBoundsSize: (page 3216)
– setFrame: (page 3218)
– setPostsBoundsChangedNotifications: (page 3226)

Related Sample Code
CIAnnotation

Declared In
NSView.h

setBoundsOrigin:
Sets the origin of the receiver’s bounds rectangle to a specified point,

- (void)setBoundsOrigin:(NSPoint)newOrigin

Parameters
newOrigin

A point specifying the new bounds origin of the receiver.

Discussion
In setting the new bounds origin, this method effectively shifts the receiver's coordinate system so newOrigin
lies at the origin of the receiver’s frame rectangle. It neither redisplays the receiver nor marks it as needing
display. You must do this yourself with display or setNeedsDisplay: (page 3225).

3214 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

This method posts anNSViewBoundsDidChangeNotification (page 3256) to the default notification center
if the receiver is configured to do so.

After calling this method, NSView creates an internal transform (or appends these changes to an existing
internal transform) to convert from frame coordinates to bounds coordinates in your view. As long as the
width-to-height ratio of the two coordinate systems remains the same, your content appears normal. If the
ratios differ, your content may appear skewed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– translateOriginToPoint: (page 3237)
– bounds (page 3150)
– setBoundsRotation: (page 3215)
– setBounds: (page 3214)
– setBoundsSize: (page 3216)
– setPostsBoundsChangedNotifications: (page 3226)

Related Sample Code
Polygons
Rulers

Declared In
NSView.h

setBoundsRotation:
Sets the rotation of the receiver’s bounds rectangle to a specific degree value.

- (void)setBoundsRotation:(CGFloat)angle

Parameters
angle

A float value specifying the angle of rotation, in degrees.

Discussion
Positive values indicate counterclockwise rotation, negative clockwise. Rotation is performed around the
coordinate system origin, (0.0, 0.0), which need not coincide with that of the frame rectangle or the bounds
rectangle. This method neither redisplays the receiver nor marks it as needing display. You must do this
yourself with display (page 3163) or setNeedsDisplay: (page 3225).

This method posts anNSViewBoundsDidChangeNotification (page 3256) to the default notification center
if the receiver is configured to do so.

Bounds rotation affects the orientation of the drawing within the view object’s frame rectangle, but not the
orientation of the frame rectangle itself. Also, for a rotated bounds rectangle to enclose all the visible areas
of its view object—that is, to guarantee coverage over the frame rectangle—it must also contain some areas
that aren’t visible. This can cause unnecessary drawing to be requested, which may affect performance. It
may be better in many cases to rotate the coordinate system in the drawRect: (page 3170) method rather
than use this method.

Instance Methods 3215
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

After calling this method, NSView creates an internal transform (or appends these changes to an existing
internal transform) to convert from frame coordinates to bounds coordinates in your view. As long as the
width-to-height ratio of the two coordinate systems remains the same, your content appears normal. If the
ratios differ, your content may appear skewed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– rotateByAngle: (page 3208)
– boundsRotation (page 3151)
– setFrameRotation: (page 3221)
– setPostsBoundsChangedNotifications: (page 3226)

Related Sample Code
TrackIt

Declared In
NSView.h

setBoundsSize:
Sets the size of the receiver’s bounds rectangle to specified dimensions, inversely scaling its coordinate
system relative to its frame rectangle.

- (void)setBoundsSize:(NSSize)newSize

Parameters
newSize

An NSSize structure specifying the new width and height of the receiver's bounds rectangle.

Discussion
For example, a view object with a frame size of (100.0, 100.0) and a bounds size of (200.0, 100.0) draws half
as wide along the x axis. This method neither redisplays the receiver nor marks it as needing display. You
must do this yourself with display (page 3163) or setNeedsDisplay: (page 3225).

This method posts anNSViewBoundsDidChangeNotification (page 3256) to the default notification center
if the receiver is configured to do so.

After calling this method, NSView creates an internal transform (or appends these changes to an existing
internal transform) to convert from frame coordinates to bounds coordinates in your view. As long as the
width-to-height ratio of the two coordinate systems remains the same, your content appears normal. If the
ratios differ, your content may appear skewed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– bounds (page 3150)
– setBoundsRotation: (page 3215)
– setBounds: (page 3214)
– setBoundsOrigin: (page 3214)
– setPostsBoundsChangedNotifications: (page 3226)

3216 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Related Sample Code
ObjectPath
Polygons
Quartz Composer WWDC 2005 TextEdit
Rulers
Sketch+Accessibility

Declared In
NSView.h

setCanDrawConcurrently:
Sets whether the view’s drawRect: method can be invoked on a background thread.

- (void)setCanDrawConcurrently:(BOOL)flag

Parameters
flag

YES if drawRect: (page 3170) can be invoked from a background thread, otherwise NO. The default is
NO for most types of views..

Discussion
The view's window must also have its allowsConcurrentViewDrawing (page 3298) property set to YES (the
default) for threading of view drawing to actually take place.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setCanDrawConcurrently: (page 3217)
allowsConcurrentViewDrawing (page 3298) (NSWindow)

Declared In
NSView.h

setCompositingFilter:
Sets a CoreImage filter that is used to composite the receiver’s contents with the background.

- (void)setCompositingFilter:(CIFilter *)filter

Parameters
filter

A CoreImage filter.

Discussion
This method sets the value of the compositingFilter (page 3154) property of the receiver’s layer.

Sending this message to a view that is not managing a Core Animation layer causes an exception.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 3217
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Declared In
NSView.h

setContentFilters:
Sets the array of CoreImage filters that are applied to the contents of the receiver and its sublayers.

- (void)setContentFilters:(NSArray *)filters

Parameters
filters

An array of CoreImage filters.

Discussion
This method sets the value of the filters property of the receiver’s layer.

Sending this message to a view that is not managing a Core Animation layer causes an exception.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

setFocusRingType:
Sets the type of focus ring to be drawn around the receiver.

- (void)setFocusRingType:(NSFocusRingType)focusRingType

Parameters
focusRingType

An enum constant identifying a type of focus ring. Possible values are listed in NSFocusRingType (page
4009). You can specify NSFocusRingTypeNone to indicate you do not want your view to have a focus
ring.

Discussion
This method only sets the desired focus ring type and does not cause the view to draw the actual focus ring.
You are responsible for drawing the focus ring in your view’s drawRect: (page 3170) method whenever your
view is made the first responder.

Availability
Available in Mac OS X v10.3 and later.

See Also
– focusRingType (page 3175)

Declared In
NSView.h

setFrame:
Sets the receiver’s frame rectangle to the specified rectangle.

3218 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

- (void)setFrame:(NSRect)frameRect

Parameters
frameRect

The new frame rectangle for the view.

Discussion
This method, in setting the frame rectangle, repositions and resizes the receiver within the coordinate system
of its superview. It neither redisplays the receiver nor marks it as needing display. You must do this yourself
with display (page 3163) or setNeedsDisplay: (page 3225).

This method posts an NSViewFrameDidChangeNotification (page 3257) to the default notification center
if the receiver is configured to do so.

If your view does not use a custom bounds rectangle, this method also sets your view bounds to match the
size of the new frame. You specify a custom bounds rectangle by calling setBounds: (page 3214),
setBoundsOrigin: (page 3214),setBoundsRotation: (page 3215), orsetBoundsSize: (page 3216)explicitly.
Once set, NSView creates an internal transform to convert from frame coordinates to bounds coordinates.
As long as the width-to-height ratio of the two coordinate systems remains the same, your content appears
normal. If the ratios differ, your content may appear skewed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– frame (page 3175)
– setFrameRotation: (page 3221)
– setFrameOrigin: (page 3220)
– setFrameSize: (page 3221)
– setPostsFrameChangedNotifications: (page 3227)

Related Sample Code
FunHouse
Quartz Composer WWDC 2005 TextEdit
Rulers
Sproing
TipWrapper

Declared In
NSView.h

setFrameCenterRotation:
Rotates the frame of the receiver about the layer’s position.

- (void)setFrameCenterRotation:(CGFloat)angle

Parameters
angle

The angle to rotate the frame around the center of the receiver.

Instance Methods 3219
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
If the application has altered the layer’s anchorPoint property, the behavior is undefined. Sending this
message to a view that is not managing a Core Animation layer causes an exception.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

setFrameOrigin:
Sets the origin of the receiver’s frame rectangle to the specified point, effectively repositioning it within its
superview.

- (void)setFrameOrigin:(NSPoint)newOrigin

Parameters
newOrigin

The point that is the new origin of the receiver's frame.

Discussion
This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display (page 3163) or setNeedsDisplay: (page 3225).

This method posts an NSViewFrameDidChangeNotification (page 3257) to the default notification center
if the receiver is configured to do so.

Availability
Available in Mac OS X v10.0 and later.

See Also
– frame (page 3175)
– setFrameSize: (page 3221)
– setFrame: (page 3218)
– setFrameRotation: (page 3221)
– setPostsFrameChangedNotifications: (page 3227)

Related Sample Code
CocoaCreateMovie
CoreRecipes
Reducer
TextSizingExample
WhackedTV

Declared In
NSView.h

3220 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

setFrameRotation:
Sets the rotation of the receiver’s frame rectangle to a specified degree value, rotating it within its superview
without affecting its coordinate system.

- (void)setFrameRotation:(CGFloat)angle

Parameters
angle

A float value indicating the degree of rotation.

Discussion
Positive values indicate counterclockwise rotation, negative clockwise. Rotation is performed around the
origin of the frame rectangle.

This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display (page 3163) or setNeedsDisplay: (page 3225).

This method posts an NSViewFrameDidChangeNotification (page 3257) to the default notification center
if the receiver is configured to do so.

Availability
Available in Mac OS X v10.0 and later.

See Also
– frameRotation (page 3176)
– setBoundsRotation: (page 3215)

Declared In
NSView.h

setFrameSize:
Sets the size of the receiver’s frame rectangle to the specified dimensions, resizing it within its superview
without affecting its coordinate system.

- (void)setFrameSize:(NSSize)newSize

Parameters
newSize

An NSSize structure specifying the new height and width of the frame rectangle.

Discussion
This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display (page 3163) or setNeedsDisplay: (page 3225).

This method posts an NSViewFrameDidChangeNotification (page 3257) to the default notification center
if the receiver is configured to do so.

In Mac OS X version 10.4 and later, you can override this method to support content preservation during live
resizing. In your overridden implementation, include some conditional code to be executed only during a
live resize operation. Your code must invalidate any portions of your view that need to be redrawn.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3221
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

See Also
– frame (page 3175)
– setFrameOrigin: (page 3220)
– setFrame: (page 3218)
– setFrameRotation: (page 3221)
– setPostsFrameChangedNotifications: (page 3227)

Related Sample Code
CocoaCreateMovie
GLUT
MyPhoto
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSView.h

setHidden:
Sets whether the view is hidden.

- (void)setHidden:(BOOL)flag

Parameters
flag

YES if the receiver is to be hidden, NO otherwise.

Discussion
A hidden view disappears from its window and does not receive input events. It remains in its superview’s
list of subviews, however, and participates in autoresizing as usual. The Application Kit also disables any
cursor rectangle, tool-tip rectangle, or tracking rectangle associated with a hidden view. Hiding a view with
subviews has the effect of hiding those subviews and any view descendants they might have. This effect is
implicit and does not alter the hidden state of the receiver’s descendants as reported by isHidden (page
3182).

Hiding the view that is the window’s current first responder causes the view’s next valid key view
(nextValidKeyView (page 3193)) to become the new first responder. A hidden view remains in the
nextKeyView (page 3192) chain of views it was previously part of, but is ignored during keyboard navigation.

Availability
Available in Mac OS X v10.3 and later.

See Also
– isHidden (page 3182)
– isHiddenOrHasHiddenAncestor (page 3182)

Related Sample Code
DatePicker
FinalCutPro_AppleEvents
IdentitySample
ImageClient
Quartz 2D Transformer

3222 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Declared In
NSView.h

setKeyboardFocusRingNeedsDisplayInRect:
Invalidates the area around the focus ring.

- (void)setKeyboardFocusRingNeedsDisplayInRect:(NSRect)rect

Parameters
rect

The rectangle of the control or cell defining the area around the focus ring. rect will be expanded
to include the focus ring for invalidation.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSView.h

setLayer:
Sets the Core Animation layer that the receiver uses for layer-backing to the specified layer.

- (void)setLayer:(CALayer *)newLayer

Parameters
newLayer

A Core Animation layer to use as the receiver’s backing store.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CocoaSlides
CoreAnimationKioskStyleMenu

Declared In
NSView.h

setLayerContentsPlacement:
Sets the view’s layer contents placement policy.

- (void)setLayerContentsPlacement:(NSViewLayerContentsPlacement)newPlacement

Parameters
newPlacement

The placement policy. See “NSViewLayerContentsPlacement” (page 3253) for supported values.

Instance Methods 3223
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
The content placement determines how the backing layer’s existing cached content image will be mapped
into the layer as the layer is resized. It is analogous to, and underpinned by, the CALayer class
contentsGravity property. See setLayerContentsRedrawPolicy: (page 3224) for more information.

Availability
Available in Mac OS X v10.6 and later.

See Also
– layerContentsPlacement (page 3186)

Declared In
NSView.h

setLayerContentsRedrawPolicy:
Sets the receiver layer contents redraw policy.

- (void)setLayerContentsRedrawPolicy:(NSViewLayerContentsRedrawPolicy)newPolicy

Parameters
newPolicy

The redraw policy. See “NSViewLayerContentsRedrawPolicy” (page 3252) for supported values.

Discussion
If you know that redrawing at each animation frame is not necessary to produce correctly rendered results
for a particular view, or are willing to accept an approximation of the view’s intermediate appearance during
potentially brief animations in exchange for an animation performance and smoothness benefit, you can
change the view’s layerContentsRedrawPolicy (page 3186) to one of the modes that does not require
constant redrawing.

When doing this, you must also specify the desired layer content placement for the view. The content
placement determines how the backing layer’s existing cached content image will be mapped into the layer
as the layer is resized. It is analogous to, and underpinned by, the CALayer class contentsGravity property.

For a view that has no associated layer, or that has been assigned a developer-provided layer (a layer-hosting
view) using the NSView setLayer: (page 3223) method, the default contents redraw policy is is
NSViewLayerContentsRedrawNever (page 3253), with an accompanyinglayerContentsPlacement (page
3186) of NSViewLayerContentsPlacementScaleAxesIndependently (page 3254). This instructs AppKit
that it is not allowed to replace the layer’s content, and provides the same content placement as CALayer’s
default contentsGravity setting of kCAGravityResize. For a view that has acquired an AppKit-generated
backing layer (a layer-backed view), AppKit sets the contents redraw policy to a default of
NSViewLayerContentsRedrawDuringViewResize (page 3253), forcing the view’s content to be continually
redrawn into the view’s backing layer during animated resizing of the view, which produces strictly correct
but not optimally performance results.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSView.h

3224 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

setNeedsDisplay:
Controls whether the receiver's entire bounds is marked as needing display.

- (void)setNeedsDisplay:(BOOL)flag

Parameters
flag

If YES, marks the receiver’s entire bounds as needing display; if NO, marks it as not needing display.

Discussion
Whenever the data or state used for drawing a view object changes, the view should be sent a setNeedsDisplay:
message. NSView objects marked as needing display are automatically redisplayed on each pass through
the application’s event loop. (View objects that need to redisplay before the event loop comes around can
of course immediately be sent the appropriate display... method.)

Availability
Available in Mac OS X v10.0 and later.

See Also
– setNeedsDisplayInRect: (page 3225)
– needsDisplay (page 3191)

Related Sample Code
FunHouse
OpenALExample
Quartz 2D Shadings
VertexPerformanceTest
WhackedTV

Declared In
NSView.h

setNeedsDisplayInRect:
Marks the region of the receiver within the specified rectangle as needing display, increasing the receiver’s
existing invalid region to include it.

- (void)setNeedsDisplayInRect:(NSRect)invalidRect

Parameters
invalidRect

The rectangular region of the receiver to mark as invalid; it should be specified in the coordinate
system of the receiver.

Discussion
A later displayIfNeeded...method will then perform drawing only within the invalid region. View objects
marked as needing display are automatically redisplayed on each pass through the application’s event loop.
(View objects that need to redisplay before the event loop comes around can of course immediately be sent
the appropriate display... method.)

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3225
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

See Also
– setNeedsDisplay: (page 3225)
– needsDisplay (page 3191)

Related Sample Code
DragItemAround
JSPong
Rulers
Sketch-112
TextSizingExample

Declared In
NSView.h

setNextKeyView:
Inserts a specified view object after the receiver in the key view loop of the receiver’s window.

- (void)setNextKeyView:(NSView *)aView

Parameters
aView

The NSView object to insert.

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextKeyView (page 3192)
– nextValidKeyView (page 3193)
– previousKeyView (page 3197)
– previousValidKeyView (page 3197)

Declared In
NSView.h

setPostsBoundsChangedNotifications:
Controls whether the receiver informs observers when its bounds rectangle changes.

- (void)setPostsBoundsChangedNotifications:(BOOL)flag

Parameters
flag

If YES, the receiver will post notifications to the default notification center whenever its bounds
rectangle changes; if flag is NO it won’t.

Discussion
Note that if flag is YES and bounds notifications are suppressed, when the bounds change notification is
reenabled the view will immediately post a single such notification if its bounds changed during this time.
This will happen even if there has been no net change in the view's bounds.

3226 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

The following methods can result in notification posting:

setBounds: (page 3214)
setBoundsOrigin: (page 3214)
setBoundsRotation: (page 3215)
setBoundsSize: (page 3216)
translateOriginToPoint: (page 3237)
scaleUnitSquareToSize: (page 3208)
rotateByAngle: (page 3208)

Availability
Available in Mac OS X v10.0 and later.

See Also
– postsBoundsChangedNotifications (page 3196)

Related Sample Code
GLUT

Declared In
NSView.h

setPostsFrameChangedNotifications:
Controls whether the receiver informs observers when its frame rectangle changes.

- (void)setPostsFrameChangedNotifications:(BOOL)flag

Parameters
flag

If YES, the receiver will post notifications to the default notification center whenever its frame rectangle
changes; if flag is NO it won’t.

Discussion
Note that if flag is YES and frame notifications are suppressed, when the frame change notification is
reenabled the view will immediately post a single such notification if its frame changed during this time. This
will happen even if there has been no net change in the view's frame.

The following methods can result in notification posting:

setFrame: (page 3218)
setFrameOrigin: (page 3220)
setFrameRotation: (page 3221)
setFrameSize: (page 3221)

Availability
Available in Mac OS X v10.0 and later.

See Also
– postsFrameChangedNotifications (page 3196)

Instance Methods 3227
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Related Sample Code
GLUT

Declared In
NSView.h

setShadow:
Sets the shadow drawn by the receiver.

- (void)setShadow:(NSShadow *)shadow

Parameters
shadow

An instance of NSShadow.

Discussion
This method sets the shadowColor,shadowOffset, shadowOpacity and shadowRadius properties of the
receiver’s layer.

Sending this message to a view that is not managing a Core Animation layer causes an exception.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

setSubviews:
Sets the receiver’s subviews to the specified subviews.

- (void)setSubviews:(NSArray *)newSubviews

Parameters
newSubviews

An array of subviews. The newSubviews array can consist of existing subviews of the receiver or other
views that have nil as their superview. If newSubviews is nil, or contains duplicated views, or if
any of its members have a superview other than nil or the receiver, an invalid argument exception
is thrown.

Discussion
Using this method you can: reorder the receiver’s existing subviews, add or remove subviews en masse,
replace all of the receiver’s subviews with a new set of subviews, or remove all the receiver’s subviews.

Given a valid array of views in newSubviews, setSubviews: (page 3228) performs any required sorting of
the subviews array, as well as sending anyaddSubview: (page 3139) andremoveFromSuperview (page 3202)
messages as necessary to leave the receiver with the requested new array of subviews. Any member of
newSubviews that isn't already a subview of the receiver is added. Any member of the view's existing
subviews array that isn't in newSubviews is removed. And any views that are in both subviews (page 3235)
and newSubviews are moved in the subviews array as needed, without being removed and re-added.

This method marks the affected view and window areas as needing display.

3228 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CocoaSlides

Declared In
NSView.h

setToolTip:
Sets the tool tip text for the view to string.

- (void)setToolTip:(NSString *)string

Parameters
string

A string that contains the text to use for the tool tip. If nil, it cancels tool tip display for the view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– toolTip (page 3236)

Related Sample Code
EnhancedAudioBurn

Declared In
NSView.h

setUpGState
Overridden by subclasses to (re)initialize the receiver’s graphics state object.

- (void)setUpGState

Discussion
This method is automatically invoked when the graphics state object created using allocateGState (page
3146) needs to be initialized. The default implementation does nothing. Your subclass can override it to set
the current font, line width, or any other graphics state parameter except coordinate transformations and
the clipping path—these are established by the frame and bounds rectangles and by methods such as
scaleUnitSquareToSize: (page 3208) andtranslateOriginToPoint: (page 3237). Note thatdrawRect:
can further transform the coordinate system and clipping path for whatever temporary effects it needs.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allocateGState (page 3146)
– renewGState (page 3205)

Instance Methods 3229
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Declared In
NSView.h

setWantsLayer:
Specifies whether the receiver and its subviews use a Core Animation layer as a backing store.

- (void)setWantsLayer:(BOOL)flag

Parameters
flag

YES if the receiver and its subviews should use a Core Animation layer as its backing store, otherwise
NO.

Discussion
The order that setWantsLayer: and setLayer: are called is important, it makes the distinction between a
layer-backed view, and a layer-hosting view.

A layer-backed view is a view that is backed by a Core Animation layer. Any drawing done by the view is the
cached in the backing layer. You configured a layer-backed view by simply invoking setWantsLayer: (page
3230) with a value of YES. The view class will automatically create the a backing layer for you, and you use the
view class’s drawing mechanisms. When using layer-backed views you should never interact directly with
the layer.

A layer-hosting view is a view that contains a Core Animation layer that you intend to manipulate directly.
You create a layer-hosting view by instantiating an instance of a Core Animation layer class and setting that
layer using the view’ssetLayer: (page 3223) method. After doing so, you then invokesetWantsLayer: (page
3230) with a value of YES. When using a layer-hosting view you should not rely on the view for drawing,
nor should you add subviews to the layer-hosting view.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AnimatedTableView
CocoaSlides
CoreAnimationKioskStyleMenu
LayerBackedOpenGLView

Declared In
NSView.h

setWantsRestingTouches:
Sets whether the view wants to receive resting touch events.

- (void)setWantsRestingTouches:(BOOL)flag

Parameters
flag

YES if the view wants resting touches, otherwise NO. The default is NO.

3230 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
A resting touch occurs when a user rests their thumb on a device (for example, the glass trackpad of a
MacBook).

By default, these touches are not delivered and are not included in the event's set of touches. Touches may
transition in and out of resting at any time. Unless the view wants restingTouches, began / ended events are
simulated as touches transition from resting to active and vice versa.

In general resting touches should be ignored.

Availability
Available in Mac OS X v10.6 and later.

See Also
– wantsRestingTouches (page 3247)

Declared In
NSView.h

shadow
Returns the shadow drawn by the receiver

- (NSShadow *)shadow

Return Value
An instance of NSShadow that is created using the shadowColor,shadowOffset, shadowOpacity and
shadowRadius properties of the receiver’s layer.

Discussion
Sending this message to a view that is not managing a Core Animation layer causes an exception.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CocoaSlides

Declared In
NSView.h

shouldDelayWindowOrderingForEvent:
Overridden by subclasses to allow the user to drag images from the receiver without its window moving
forward and possibly obscuring the destination and without activating the application.

- (BOOL)shouldDelayWindowOrderingForEvent:(NSEvent *)theEvent

Parameters
theEvent

An object representing an initial mouse-down event.

Instance Methods 3231
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Return Value
If this method returns YES, the normal window-ordering and activation mechanism is delayed (not necessarily
prevented) until the next mouse-up event. If it returns NO, then normal ordering and activation occur.

Discussion
Never invoke this method directly; it’s invoked automatically for each mouse-down event directed at the
NSView.

An NSView subclass that allows dragging should implement this method to return YES if theEvent is
potentially the beginning of a dragging session or of some other context where window ordering isn’t
appropriate. This method is invoked before a mouseDown: (page 2164) message for theEvent is sent. The
default implementation returns NO.

If, after delaying window ordering, the receiver actually initiates a dragging session or similar operation, it
should also send a preventWindowOrdering (page 158) message to NSApp, which completely prevents the
window from ordering forward and the activation from becoming active. preventWindowOrdering (page
158) is sent automatically by the NSViewdragImage:... and dragFile:... methods.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

shouldDrawColor
Returns NO if the receiver is being drawn in an NSWindow object (as opposed, for example, to being printed)
and the window object can’t store color; otherwise returns YES.

- (BOOL)shouldDrawColor

Discussion
A view object can base its drawing behavior on the return value of this method to improve its appearance
in grayscale windows.

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawRect: (page 3170)
canStoreColor (page 3306) (NSWindow)

Declared In
NSView.h

showDefinitionForAttributedString:atPoint:
Shows a window displaying the definition of the of the attributed string at the specified point.

- (void)showDefinitionForAttributedString:(NSAttributedString *)attrString
atPoint:(NSPoint)textBaselineOrigin

3232 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
attrString

The attributed string for which to show the definition. If the receiver is an instance of NSTextView,
the attrString can be nil, in which case the text view will automatically supply values suitable for
displaying definitions for the specified range within its text content.

textBaselineOrigin
Specifies the baseline origin of attrString in the receiver's view coordinate system.

Discussion
Shows a window that displays the definition (or other subject depending on available dictionaries) of the
specified attributed string.

This method can be used for implementing the same functionality as the NSTextView “Look Up in Dictionary”
contextual menu on a custom view.

Availability
Available in Mac OS X v10.6 and later.

See Also
– showDefinitionForAttributedString:range:options:baselineOriginProvider: (page 3233)

Declared In
NSView.h

showDefinitionForAttributedString:range:options:baselineOriginProvider:
Shows a window displaying the definition of the specified range of the attributed string.

- (void)showDefinitionForAttributedString:(NSAttributedString *)attrString
range:(NSRange)targetRange
options:(NSDictionary *)options
baselineOriginProvider:(NSPoint (^)(NSRange adjustedRange))originProvider

Parameters
attrString

The attributed string for which to show the definition. If the receiver is an instance of NSTextView,
the attrString can be nil, in which case the text view will automatically supply values suitable for
displaying definitions for the specified range within its text content.

range
The range of the attributed string to define. You can pass a zero-length range and the appropriate
range will be auto-detected around the range's offset. That's the recommended approach when there
is no selection.

options
An optional dictionary that specifies how the definition is displayed. See “NSDefinition Presentation
Constants” (page 3255) for the key and it’s possible values.

Instance Methods 3233
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

originProvider
The originProvider block object should return the baseline origin for the first character at the adjusted
range.

If the receiver is an instance of NSTextView, the originProvider can be NULL, in which case the text
view will automatically supply values suitable for displaying definitions for the specified range within
its text content.

The block object takes a single argument:

adjustedRange

The adjusted range.

The block object returns an NSPoint to be used as the baseline origin of the first character, in the
receiver view coordinate system.

Discussion
This method does not cause scrolling, so clients should perform any necessary scrolling before calling this
method.

Availability
Available in Mac OS X v10.6 and later.

See Also
– showDefinitionForAttributedString:atPoint: (page 3232)

Declared In
NSView.h

sortSubviewsUsingFunction:context:
Orders the receiver's immediate subviews using the specified comparator function.

- (void)sortSubviewsUsingFunction:(NSComparisonResult (*)(id, id, void *))compare
context:(void *)context

Parameters
compare

A pointer to the comparator function. This function must take as arguments two subviews to be
ordered and contextual data (supplied in context which may be arbitrary data used to help in the
comparison. The comparator function should return NSOrderedAscending if the first subview should
be ordered lower, NSOrderedDescending if the second subview should be ordered lower, and
NSOrderedSame if their ordering isn’t important.

context
Arbitrary data that might help the comparator function compare in its decisions.

Availability
Available in Mac OS X v10.0 and later.

See Also
sortedArrayUsingFunction:context: (NSArray)

Declared In
NSView.h

3234 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

subviews
Return the receiver’s immediate subviews.

- (NSArray *)subviews

Return Value
Returns an array containing the receiver’s subviews.

Discussion
The order of the subviews may be considered as being back-to-front, but this does not imply invalidation
and drawing behavior. The order is based on the order of the receiver's subviews as specified in the nib file
from which they were unarchived or the programmatic interface for modifying the receiver's subview list.
This ordering is also the reverse of the order in which hit-testing is done.

Note: The contents of this array may change at any time. If you intend to manipulate this array you should
copy it rather than simply retain.

Availability
Available in Mac OS X v10.0 and later.

See Also
– superview (page 3235)
– addSubview: (page 3139)
– addSubview:positioned:relativeTo: (page 3140)
– removeFromSuperview (page 3202)

Related Sample Code
AnimatingViews
EnhancedDataBurn
MenuItemView
MyPhoto
WhackedTV

Declared In
NSView.h

superview
Returns the receiver’s superview, or nil if it has none.

- (NSView *)superview

Discussion
When applying this method iteratively or recursively, be sure to compare the returned view object to the
content view of the window to avoid proceeding out of the view hierarchy.

Availability
Available in Mac OS X v10.0 and later.

See Also
– window (page 3248)

Instance Methods 3235
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– subviews (page 3235)
– removeFromSuperview (page 3202)

Related Sample Code
GLUT
MatrixMixerTest
Quartz Composer WWDC 2005 TextEdit
Reducer
TextSizingExample

Declared In
NSView.h

tag
Returns the receiver’s tag, an integer that you can use to identify view objects in your application.

- (NSInteger)tag

Discussion
The default implementation returns –1. Subclasses can override this method to provide individual tags,
possibly adding storage and a setTag: method (which NSView doesn’t define).

Availability
Available in Mac OS X v10.0 and later.

See Also
– viewWithTag: (page 3245)

Related Sample Code
CIVideoDemoGL
FunHouse
PDF Annotation Editor
Quartz2DBasics
Sketch+Accessibility

Declared In
NSView.h

toolTip
Returns the text for the view’s tool tip.

- (NSString *)toolTip

Return Value
The tool tip text or nil if the view doesn’t currently display tool tip text

Availability
Available in Mac OS X v10.0 and later.

3236 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

See Also
– setToolTip: (page 3229)

Declared In
NSView.h

trackingAreas
Returns an array of the receiver’s tracking areas.

- (NSArray *)trackingAreas

Return Value
An array of the receiver’s tracking areas (instances of NSTrackingArea). If the receiver has no tracking areas,
returns an empty array.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
MenuItemView
PhotoSearch

Declared In
NSView.h

translateOriginToPoint:
Translates the receiver’s coordinate system so that its origin moves to a new location.

- (void)translateOriginToPoint:(NSPoint)newOrigin

Parameters
newOrigin

A point that specifies the new origin.

Discussion
In the process, the origin of the receiver’s bounds rectangle is shifted by (–newOrigin.x, –newOrigin.y).
This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display (page 3163) or setNeedsDisplay: (page 3225).

Note the difference between this method and setting the bounds origin. Translation effectively moves the
image inside the bounds rectangle, while setting the bounds origin effectively moves the rectangle over the
image. The two are in a sense inverse, although translation is cumulative, and setting the bounds origin is
absolute.

This method posts anNSViewBoundsDidChangeNotification (page 3256) to the default notification center
if the receiver is configured to do so.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3237
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

See Also
– setBoundsOrigin: (page 3214)
– setBounds: (page 3214)
– setPostsBoundsChangedNotifications: (page 3226)

Related Sample Code
Polygons

Declared In
NSView.h

translateRectsNeedingDisplayInRect:by:
Translates the display rectangles by the specified delta.

- (void)translateRectsNeedingDisplayInRect:(NSRect)clipRect
by:(NSSize)delta

Parameters
clipRect

A rectangle defining the region of the receiver, typically the receiver’s bounds.

delta
A NSSize structure that specifies an offset from from aRect’s origin.

Discussion
This method performs the shifting of dirty rectangles that an equivalentscrollRect:by: (page 3210) operation
would cause, without performing the actual scroll operation. It is only useful in very rare cases where a view
implements its own low-level scrolling mechanics.

This method:

1. Collects the receiving view's dirty rectangles.

2. Clears all dirty rectangles in the intersection of clipRect and the view's bounds.

3. Shifts the retrieved rectangles by the delta offset.

4. Clips the result to the intersection of clipRect and the view's bounds

5. Marks the resultant rectangles as needing display.

The developer must ensure that clipRect and delta are pixel-aligned in order to guarantee correct drawing.
See “The View Coordinate System” in View Programming Guide for a description of how to pixel-align view
coordinates.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

3238 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

unlockFocus
Balances an earlierlockFocus (page 3187) orlockFocusIfCanDraw (page 3188) message; restoring the focus
to the previously focused view is necessary.

- (void)unlockFocus

Discussion
Raises an NSInvalidArgumentException if invoked on the wrong view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– allocateGState (page 3146)

Related Sample Code
CocoaAUHost
Color Sampler
GLUT
QTKitFrameStepper
VideoViewer

Declared In
NSView.h

unregisterDraggedTypes
Unregisters the receiver as a possible destination in a dragging session.

- (void)unregisterDraggedTypes

Availability
Available in Mac OS X v10.0 and later.

See Also
– registerForDraggedTypes: (page 3201)

Declared In
NSView.h

updateTrackingAreas
Invoked automatically when the view’s geometry changes such that its tracking areas need to be recalculated.

- (void)updateTrackingAreas

Discussion
You should override this method to remove out of date tracking areas and add recomputed tracking areas;
your implementation should call super.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 3239
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Related Sample Code
PhotoSearch

Declared In
NSView.h

viewDidEndLiveResize
Informs the receiver of the end of a live resize.

- (void)viewDidEndLiveResize

Discussion
In the simple case, a view is sent viewWillStartLiveResize (page 3244) before the first resize operation
on the containing window and viewDidEndLiveResize after the last resize operation. A view that is
repeatedly added and removed from a window during live resize will receive only one
viewWillStartLiveResize (on the first time it is added to the window) and one viewDidEndLiveResize
(when the window has completed the live resize operation). This allows a superview such as NSBrowser
object to add and remove its NSMatrix subviews during live resize without the NSMatrix receiving multiple
calls to these methods.

A view might allocate data structures to cache-drawing information in viewWillStartLiveResize (page
3244) and should clean up these data structures in viewDidEndLiveResize. In addition, a view that does
optimized drawing during live resize might want to do full drawing after viewDidEndLiveResize, although
a view should not assume that it has a drawing context in viewDidEndLiveResize (since it may have been
removed from the window during live resize). A view that wants to redraw itself after live resize should call
[self setNeedsDisplay:YES] in viewDidEndLiveResize.

A view subclass should call super from these methods.

Availability
Available in Mac OS X v10.1 and later.

See Also
– viewWillStartLiveResize (page 3244)
– inLiveResize (page 3180)

Related Sample Code
GLUT
ImageApp
MyPhoto

Declared In
NSView.h

viewDidHide
Invoked when the receiver is hidden, either directly, or in response to an ancestor being hidden.

- (void)viewDidHide

3240 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
The receiver receives this message when its isHiddenOrHasHiddenAncestor (page 3182) state goes from
NO to YES. This will happen when the view or an ancestor is marked as hidden, or when the view or an
ancestor is inserted into a new view hierarchy.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

viewDidMoveToSuperview
Informs the receiver that its superview has changed (possibly to nil).

- (void)viewDidMoveToSuperview

Discussion
The default implementation does nothing; subclasses can override this method to perform whatever actions
are necessary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– viewDidMoveToWindow (page 3241)
– viewWillMoveToSuperview: (page 3243)
– viewWillMoveToWindow: (page 3243)

Declared In
NSView.h

viewDidMoveToWindow
Informs the receiver that it has been added to a new view hierarchy.

- (void)viewDidMoveToWindow

Discussion
The default implementation does nothing; subclasses can override this method to perform whatever actions
are necessary.

window (page 3248) may returnnilwhen this method is invoked, indicating that the receiver does not currently
reside in any window. This occurs when the receiver has just been removed from its superview or when the
receiver has just been added to a superview that does not itself have a window. Overrides of this method
may choose to ignore such cases if they are not of interest.

Availability
Available in Mac OS X v10.0 and later.

See Also
– viewDidMoveToSuperview (page 3241)
– viewWillMoveToSuperview: (page 3243)

Instance Methods 3241
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

– viewWillMoveToWindow: (page 3243)

Related Sample Code
ClockControl
DispatchFractal
iChatTheater
SpotlightAPI
WhackedTV

Declared In
NSView.h

viewDidUnhide
Invoked when the receiver is unhidden, either directly, or in response to an ancestor being unhidden

- (void)viewDidUnhide

Discussion
The receiver receives this message when its isHiddenOrHasHiddenAncestor state goes from YES to NO. This
can happen when the view or an ancestor is marked as not hidden, or when the view or an ancestor is
removed from its containing view hierarchy.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

viewWillDraw
Informs the receiver that it will be required to draw content.

- (void)viewWillDraw

Discussion
In response to receiving one of the display... messages the receiver will recurse down the view hierarchy,
sending this message to each of the views that may be involved in the display operation.

Subclasses can override this method to move or resize views, mark additional areas as requiring display, or
other actions that can best be deferred until they are required for drawing. During the recursion, sending of
setNeedsDisplay: (page 3225) andsetNeedsDisplayInRect: (page 3225) messages to views in the hierarchy
that's about to be drawn is valid and supported, and will affect the assessment of the total area to be rendered
in that drawing pass.

A subclass’s implementation of viewWillDraw can use the existing NSView
getRectsBeingDrawn:count: (page 3176) method to obtain a list of rectangles that bound the affected
area, enabling it to restrict its efforts to that area.

The following is an example of a generic subclass implementation:

- (void)viewWillDraw {

3242 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

 // Perform some operations before recursing for descendants.

 // Now recurse to handle all our descendants.
 // Overrides must call up to super like this.
 [super viewWillDraw];

 // Perform some operations that might depend on descendants
 // already having had a chance to update.
}

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AnimatedTableView

Declared In
NSView.h

viewWillMoveToSuperview:
Informs the receiver that its superview is about to change to the specified superview (which may be nil).

- (void)viewWillMoveToSuperview:(NSView *)newSuperview

Parameters
newSuperview

A view object that will be the new superview of the receiver.

Discussion
Subclasses can override this method to perform whatever actions are necessary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– viewDidMoveToSuperview (page 3241)
– viewDidMoveToWindow (page 3241)
– viewWillMoveToWindow: (page 3243)

Declared In
NSView.h

viewWillMoveToWindow:
Informs the receiver that it’s being added to the view hierarchy of the specified window object (which may
be nil).

- (void)viewWillMoveToWindow:(NSWindow *)newWindow

Parameters
newWindow

A window object that will be at the root of the receiver's new view hierarchy.

Instance Methods 3243
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Discussion
Subclasses can override this method to perform whatever actions are necessary.

Availability
Available in Mac OS X v10.0 and later.

See Also
– viewDidMoveToSuperview (page 3241)
– viewDidMoveToWindow (page 3241)
– viewWillMoveToSuperview: (page 3243)

Declared In
NSView.h

viewWillStartLiveResize
Informs the receiver of the start of a live resize.

- (void)viewWillStartLiveResize

Discussion
In the simple case, a view is sent viewWillStartLiveResize before the first resize operation on the
containing window and viewDidEndLiveResize (page 3240) after the last resize operation. A view that is
repeatedly added and removed from a window during live resize will receive only one
viewWillStartLiveResize (on the first time it is added to the window) and one viewDidEndLiveResize
(when the window has completed the live resize operation). This allows a superview such as NSBrowser
object to add and remove its NSMatrix subviews during live resize without the NSMatrix object receiving
multiple calls to these methods.

A view might allocate data structures to cache-drawing information in viewWillStartLiveResize and
should clean up these data structures in viewDidEndLiveResize (page 3240). In addition, a view that does
optimized drawing during live resize might want to do full drawing after viewDidEndLiveResize, although
a view should not assume that it has a drawing context in viewDidEndLiveResize (since it may have been
removed from the window during live resize). A view that wants to redraw itself after live resize should call
[self setNeedsDisplay:YES] in viewDidEndLiveResize.

A view subclass should call super from these methods.

Availability
Available in Mac OS X v10.1 and later.

See Also
– viewDidEndLiveResize (page 3240)
– inLiveResize (page 3180)

Related Sample Code
GLUT
MyPhoto

Declared In
NSView.h

3244 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

viewWithTag:
Returns the receiver’s nearest descendant (including itself) with a specific tag, or nil if no subview has that
tag.

- (id)viewWithTag:(NSInteger)aTag

Parameters
aTag

An integer identifier associated with a view object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– tag (page 3236)

Related Sample Code
AnimatedTableView
EnhancedDataBurn
PrefsPane

Declared In
NSView.h

visibleRect
Returns the portion of the receiver not clipped by its superviews.

- (NSRect)visibleRect

Return Value
A rectangle defining the unclipped portion of the receiver.

Discussion
Visibility for this method is defined quite simply and doesn’t account for whether other NSView objects (or
windows) overlap the receiver or whether the receiver has a window at all. This method returns NSZeroRect
if the receiver is effectively hidden.

During a printing operation the visible rectangle is further clipped to the page being imaged.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHidden: (page 3222)
isVisible (page 3342) (NSWindow)
documentVisibleRect (page 2346) (NSScrollView)
documentVisibleRect (page 634) (NSClipView)

Related Sample Code
CIAnnotation
ImageKitDemo
Quartz Composer WWDC 2005 TextEdit

Instance Methods 3245
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Rulers
TextLinks

Declared In
NSView.h

wantsDefaultClipping
Returns whether the Application Kit’s default clipping provided to drawRect: (page 3170) implementations
is in effect.

- (BOOL)wantsDefaultClipping

Return Value
YES if the default clipping is in effect, NO otherwise. By default, this method returns YES.

Discussion
Subclasses may override this method to return NO if they want to suppress the default clipping. They may
want to do this in situations where drawing performance is critical to avoid the cost of setting up, enforcing,
and cleaning up the clip path

A view that overrides this method to refuse the default clipping must either set up whatever clipping it
requires or constrain its drawing exactly to the list of rectangles returned by
getRectsBeingDrawn:count: (page 3176). Failing to do so could result in corruption of other drawing in
the view’s window.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
VideoViewer

Declared In
NSView.h

wantsLayer
Returns a Boolean value that indicates whether the receiver is using a layer as its backing store.

- (BOOL)wantsLayer

Return Value
YES if the receiver is using a Core Animation layer as its backing store, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

3246 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

wantsRestingTouches
Returns whether the view wants resting touches.

- (BOOL)wantsRestingTouches

Return Value
YES if the view wants resting touches, otherwise NO. The default is NO.

Discussion
A resting touch occurs when a user rests their thumb on a device (for example, the glass trackpad of a
MacBook).

By default, these touches are not delivered and are not included in the event's set of touches. Touches may
transition in and out of resting at any time. Unless the view wants restingTouches, began / ended events are
simulated as touches transition from resting to active and vice versa.

In general resting touches should be ignored.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setWantsRestingTouches: (page 3230)

Declared In
NSView.h

widthAdjustLimit
Returns the fraction (from 0.0 to 1.0) of the page that can be pushed onto the next page during automatic
pagination to prevent items such as small images or text columns from being divided across pages.

- (CGFloat)widthAdjustLimit

Discussion
This fraction is used to calculate the right edge limit for a adjustPageWidthNew:left:right:limit: (page
3144) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– heightAdjustLimit (page 3178)

Declared In
NSView.h

willRemoveSubview:
Overridden by subclasses to perform additional actions before subviews are removed from the receiver.

- (void)willRemoveSubview:(NSView *)subview

Instance Methods 3247
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Parameters
subview

The subview that will be removed.

Discussion
This method is invoked when subview receives a removeFromSuperview (page 3202) message or subview
is removed from the receiver due to it being added to another view with addSubview: (page 3139).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

window
Returns the receiver’s window object, or nil if it has none.

- (NSWindow *)window

Availability
Available in Mac OS X v10.0 and later.

See Also
– superview (page 3235)

Related Sample Code
CIAnnotation
CIVideoDemoGL
GLUT
Quartz Composer WWDC 2005 TextEdit
Sketch-112

Declared In
NSView.h

writeEPSInsideRect:toPasteboard:
Writes EPS data that draws the region of the receiver within a specified rectangle onto a pasteboard.

- (void)writeEPSInsideRect:(NSRect)aRect
toPasteboard:(NSPasteboard *)pboard

Parameters
aRect

A rectangle defining the region.

pboard
An object representing a pasteboard.

Availability
Available in Mac OS X v10.0 and later.

3248 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

See Also
– dataWithEPSInsideRect: (page 3162)

Declared In
NSView.h

writePDFInsideRect:toPasteboard:
Writes PDF data that draws the region of the receiver within a specified rectangle onto a pasteboard.

- (void)writePDFInsideRect:(NSRect)aRect
toPasteboard:(NSPasteboard *)pboard

Parameters
aRect

A rectangle defining the region.

pboard
An object representing a pasteboard.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataWithPDFInsideRect: (page 3162)

Declared In
NSView.h

Constants

NSBorderType
These constants specify the type of a view’s border.

enum {
 NSNoBorder = 0,
 NSLineBorder = 1,
 NSBezelBorder = 2,
 NSGrooveBorder = 3
};
typedef NSUInteger NSBorderType;

Constants
NSBezelBorder

A concave border that makes the view look sunken.

Available in Mac OS X v10.0 and later.

Declared in NSView.h.

Constants 3249
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

NSGrooveBorder
A thin border that looks etched around the image.

Available in Mac OS X v10.0 and later.

Declared in NSView.h.

NSLineBorder
A black line border around the view.

Available in Mac OS X v10.0 and later.

Declared in NSView.h.

NSNoBorder
No border.

Available in Mac OS X v10.0 and later.

Declared in NSView.h.

Declared In
NSView.h

Resizing masks
These constants are used by setAutoresizingMask: (page 3212).

enum {
 NSViewNotSizable = 0,
 NSViewMinXMargin = 1,
 NSViewWidthSizable = 2,
 NSViewMaxXMargin = 4,
 NSViewMinYMargin = 8,
 NSViewHeightSizable = 16,
 NSViewMaxYMargin = 32
};

Constants
NSViewNotSizable

The receiver cannot be resized.

Available in Mac OS X v10.0 and later.

Declared in NSView.h.

NSViewMinXMargin
The left margin between the receiver and its superview is flexible.

Available in Mac OS X v10.0 and later.

Declared in NSView.h.

NSViewWidthSizable
The receiver’s width is flexible.

Available in Mac OS X v10.0 and later.

Declared in NSView.h.

NSViewMaxXMargin
The right margin between the receiver and its superview is flexible.

Available in Mac OS X v10.0 and later.

Declared in NSView.h.

3250 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

NSViewMinYMargin
The bottom margin between the receiver and its superview is flexible.

Available in Mac OS X v10.0 and later.

Declared in NSView.h.

NSViewHeightSizable
The receiver’s height is flexible.

Available in Mac OS X v10.0 and later.

Declared in NSView.h.

NSViewMaxYMargin
The top margin between the receiver and its superview is flexible.

Available in Mac OS X v10.0 and later.

Declared in NSView.h.

Declared In
NSView.h

NSToolTipTag
This type describes the rectangle used to identify a tool tip rectangle.

typedef NSInteger NSToolTipTag;

Discussion
See the methods addToolTipRect:owner:userData: (page 3141) andremoveToolTip: (page 3203).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

NSTrackingRectTag
This type describes the rectangle used to track the mouse.

typedef NSInteger NSTrackingRectTag;

Discussion
See the methods addTrackingRect:owner:userData:assumeInside: (page 3142) and
removeTrackingRect: (page 3204).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

Constants 3251
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Full Screen Mode Options
These constants are keys that you can use in the options dictionary in
enterFullScreenMode:withOptions: (page 3173) andexitFullScreenModeWithOptions: (page 3174).

NSString * const NSFullScreenModeAllScreens;
NSString * const NSFullScreenModeSetting;
NSString * const NSFullScreenModeWindowLevel;
NSString * const NSFullScreenModeApplicationPresentationOptions;

Constants
NSFullScreenModeAllScreens

Key whose corresponding value specifies whether the view should take over all screens.

The corresponding value is an instance of NSNumber containing a Boolean value.

Available in Mac OS X v10.5 and later.

Declared in NSView.h.

NSFullScreenModeSetting
Key whose corresponding value specifies the the full screen mode setting.

The corresponding value is an instance of NSDictionary that contains keys specified in Display
Mode Standard Properties and Display Mode Optional Properties in Quartz Display
Services Reference.

When the NSFullScreenModeApplicationPresentationOptions (page 3252) is specified in the
options dictionary specifying this option as well will cause an exception.

Available in Mac OS X v10.5 and later.

Declared in NSView.h.

NSFullScreenModeWindowLevel
Key whose corresponding value specifies the screen mode window level.

The corresponding value is an instance of NSNumber containing an integer value.

Available in Mac OS X v10.5 and later.

Declared in NSView.h.

NSFullScreenModeApplicationPresentationOptions
Key whose corresponding value specifies the application presentation options..

The corresponding value is an instance of NSNumber containing an unsigned integer value of
NSApplicationPresentationOptions (page 187). Those options can be combined using the C
bit-wise OR operator before created the NSNumber instance. See NSApplication Class Reference constants
section NSApplicationPresentationOptions (page 187) for more information on these options.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

Declared In
NSView.h

NSViewLayerContentsRedrawPolicy
These constants specify how layer resizing is handled when a view is layer-backed or layer-hosting. See
layerContentsRedrawPolicy (page 3186) andsetLayerContentsRedrawPolicy: (page 3224) for more
information.

3252 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

enum {
 NSViewLayerContentsRedrawNever = 0,
 NSViewLayerContentsRedrawOnSetNeedsDisplay = 1,
 NSViewLayerContentsRedrawDuringViewResize = 2,
 NSViewLayerContentsRedrawBeforeViewResize = 3
};
typedef NSInteger NSViewLayerContentsRedrawPolicy;

Constants
NSViewLayerContentsRedrawNever

Leave the layer's contents alone. Never mark the layer as needing display, or draw the view's contents
to the layer. This is how developer created layers (layer-hosting views) are treated.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsRedrawOnSetNeedsDisplay
Any of the setNeedsDisplay... methods sent to the view will cause the view redraw the affected
layer parts by invoking the view's drawRect: (page 3170), but neither the layer or the view are marked
as needing display when the view's size changes.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsRedrawDuringViewResize
Resize the view’s backing-layer and redraw the view to the layer when the view's size changes. If the
resize is animated, AppKit will drive the resize animation itself and will do this resize and redraw at
each step of the animation. Affected parts of the layer will also be redrawn when the view is marked
as needing display. This mode is a superset of
NSViewLayerContentsRedrawOnSetNeedsDisplay (page 3253). This is the way that layer-backed
views are currently treated.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsRedrawBeforeViewResize
Resize the layer and redraw the view to the layer when the view's size changes. This will be done just
once at the beginning of a resize animation, not at each frame of the animation. Affected parts of the
layer will also be redrawn when the view is marked as needing display. This mode is a superset of
NSViewLayerContentsRedrawOnSetNeedsDisplay (page 3253).

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsPlacement
These constants specify the location of the layer content when the content is not re-rendered in response
to view resizing. See setLayerContentsPlacement: (page 3223) for more information.

Constants 3253
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

enum {
 NSViewLayerContentsPlacementScaleAxesIndependently = 0,
 NSViewLayerContentsPlacementScaleProportionallyToFit = 1,
 NSViewLayerContentsPlacementScaleProportionallyToFill = 2,
 NSViewLayerContentsPlacementCenter = 3,
 NSViewLayerContentsPlacementTop = 4,
 NSViewLayerContentsPlacementTopRight = 5,
 NSViewLayerContentsPlacementRight = 6,
 NSViewLayerContentsPlacementBottomRight = 7,
 NSViewLayerContentsPlacementBottom = 8,
 NSViewLayerContentsPlacementBottomLeft = 9,
 NSViewLayerContentsPlacementLeft = 10,
 NSViewLayerContentsPlacementTopLeft = 11
};
typedef NSInteger NSViewLayerContentsPlacement;

Constants
NSViewLayerContentsPlacementScaleAxesIndependently

The content is resized to fit the entire bounds rectangle.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsPlacementScaleProportionallyToFit
The content is resized to fit the bounds rectangle, preserving the aspect of the content. If the content
does not completely fill the bounds rectangle, the content is centered in the partial axis.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsPlacementScaleProportionallyToFill
The content is resized to completely fill the bounds rectangle, while still preserving the aspect of the
content. The content is centered in the axis it exceeds.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsPlacementCenter
The content is horizontally and vertically centered in the bounds rectangle.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsPlacementTop
The content is horizontally centered at the top-edge of the bounds rectangle.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsPlacementTopRight
The content is positioned in the top-right corner of the bounds rectangle.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsPlacementRight
The content is vertically centered at the right-edge of the bounds rectangle.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

3254 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

NSViewLayerContentsPlacementBottomRight
The content is positioned in the bottom-right corner of the bounds rectangle.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsPlacementBottom
The content is horizontally centered at the bottom-edge of the bounds rectangle.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsPlacementBottomLeft
The content is positioned in the bottom-left corner of the bounds rectangle.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsPlacementLeft
The content is vertically centered at the left-edge of the bounds rectangle.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSViewLayerContentsPlacementTopLeft
The content is positioned in the top-left corner of the bounds rectangle.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSDefinition Presentation Constants
These constants are used to control how definition windows are displayed by
showDefinitionForAttributedString:range:options:baselineOriginProvider: (page 3233). If
this option is unspecified, the definition will be shown in either of those presentation forms depending on
the 'Contextual Menu:' setting in Dictionary application preferences.

NSString * const NSDefinitionPresentationTypeKey;
NSString * const NSDefinitionPresentationTypeOverlay;
NSString * const NSDefinitionPresentationTypeDictionaryApplication;

Constants
NSDefinitionPresentationTypeKey

An optional key in the options dictionary that specifies the presentation type of the definition display.
It can have a value of NSDefinitionPresentationTypeOverlay (page 3255) or
NSDefinitionPresentationTypeDictionaryApplication (page 3256).

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

NSDefinitionPresentationTypeOverlay
A possible value of theNSDefinitionPresentationTypeKey (page 3255) dictionary key that produces
a small overlay window at the string location,

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

Constants 3255
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

NSDefinitionPresentationTypeDictionaryApplication
A possible value of theNSDefinitionPresentationTypeKey (page 3255) dictionary key that invokes
Dictionary application to display the definition.

Available in Mac OS X v10.6 and later.

Declared in NSView.h.

Notifications

NSViewBoundsDidChangeNotification
Posted whenever the NSView’s bounds rectangle changes independently of the frame rectangle, if the
NSView is configured usingsetPostsBoundsChangedNotifications: (page 3226) to post such notifications.

The notification object is the NSView object whose bounds rectangle has changed. This notification does
not contain a userInfo dictionary.

The following methods can result in notification posting:

setBounds: (page 3214)
setBoundsOrigin: (page 3214)
setBoundsRotation: (page 3215)
setBoundsSize: (page 3216)
translateOriginToPoint: (page 3237)
scaleUnitSquareToSize: (page 3208)
rotateByAngle: (page 3208)

Note that the bounds rectangle resizes automatically to track the frame rectangle. Because the primary
change is that of the frame rectangle, however,setFrame: (page 3218) andsetFrameSize: (page 3221) don’t
result in a bounds-changed notification.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

NSViewFocusDidChangeNotification
Deprecated notification that was posted for an NSView object and each of its descendants (recursively)
whenever the frame or bounds geometry of the view changed.

In Mac OS X v10.4 and later, this notification is no longer posted. In earlier version of Mac OS X, use
NSViewBoundsDidChangeNotification and NSViewFrameDidChangeNotification instead to get
the same information provided by this notification.

The notification object is the view whose geometry changed. This notification does not contain a userInfo
dictionary.

Availability
Deprecated in Mac OS X v10.4 and later.

3256 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

See Also
NSViewBoundsDidChangeNotification (page 3256)
NSViewFrameDidChangeNotification (page 3257)

Declared In
NSView.h

NSViewFrameDidChangeNotification
Posted whenever the view’s frame rectangle changes, if the view is configured using
setPostsFrameChangedNotifications: (page 3227) to post such notifications.

The notification object is the NSView object whose frame rectangle has changed. This notification does not
contain a userInfo dictionary.

The following methods can result in notification posting:

setFrame: (page 3218)
setFrameOrigin: (page 3220)
setFrameRotation: (page 3221)
setFrameSize: (page 3221)

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSView.h

NSViewDidUpdateTrackingAreasNotification
Posted whenever an NSView object recalculates its tracking areas. It is sent after the view receives
updateTrackingAreas (page 3239).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSView.h

NSViewGlobalFrameDidChangeNotification
Posted whenever an NSView object that has attached surfaces (that is, NSOpenGLContext objects) moves
to a different screen, or other cases where the NSOpenGLContext object needs to be updated. The notification
object is the surface’s view. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSView.h

Notifications 3257
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

3258 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 167

NSView Class Reference

Inherits from NSAnimation : NSObject

Conforms to NSCoding (NSAnimation)
NSCopying (NSAnimation)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSAnimation.h

Availability Available in Mac OS X v10.4 and later.

Companion guide Cocoa Drawing Guide

Related sample code From A View to A Movie
iSpend
QTCoreVideo301
Reducer

Overview

The NSViewAnimation class, a public subclass of NSAnimation, offers a convenient way to animate multiple
views and windows. The animation effects you can achieve are limited to changes in frame location and size,
and to fade-in and fade-out effects.

An NSViewAnimation object takes an array of dictionaries from which it determines the objects to animate
and the effects to apply to them. Each dictionary must have a target object and, optionally, properties that
specify beginning and ending frame and whether to fade in or fade out. (See “View Animation Dictionary
Keys” (page 3261) for further information.) Animations with NSViewAnimation are, by default, in non-blocking
mode over a duration of 0.5 seconds using the ease in-out animation curve. But you can configure the
animation to have any duration, curve, frame rate, and blocking mode. You may also set progress marks,
assign a delegate, and implement delegation methods in order to animate view and windows concurrent
with the ones specified as targets in the view-animation dictionary.

Invoking the NSAnimation stopAnimation (page 112) method on a running NSViewAnimation object
moves the animation to the end frame.

Overview 3259
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 168

NSViewAnimation Class Reference

Tasks

Initializing an NSViewAnimation Object

– initWithViewAnimations: (page 3260)
Returns an NSViewAnimation object initialized with the supplied information.

Getting and Setting View-animation Dictionaries

– setViewAnimations: (page 3261)
Sets the dictionaries defining the objects to animate.

– viewAnimations (page 3261)
Returns the array of dictionaries defining the objects to animate.

Instance Methods

initWithViewAnimations:
Returns an NSViewAnimation object initialized with the supplied information.

- (id)initWithViewAnimations:(NSArray *)viewAnimations

Parameters
viewAnimations

An array of NSDictionary objects. Each dictionary specifies a view or window to animate and the
effect to apply. viewAnimations can be nil, but you must later set the required array of dictionaries
with setViewAnimations: (page 3261) if you want to use the capabilities of the NSViewAnimation
class. See“View Animation Dictionary Keys” (page 3261) for a description of valid keys and values for
dictionaries in viewAnimations.

Return Value
The created NSViewAnimation object or nil if there was a problem initializing the object.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
From A View to A Movie
iSpend
QTCoreVideo301
Reducer

Declared In
NSAnimation.h

3260 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 168

NSViewAnimation Class Reference

setViewAnimations:
Sets the dictionaries defining the objects to animate.

- (void)setViewAnimations:(NSArray *)viewAnimations

Parameters
viewAnimations

An array of NSDictionary objects. Each dictionary specifies a view or window to animate and the
effect to apply. Pass in nil to remove the current list of dictionaries. See “View Animation Dictionary
Keys” (page 3261) for a description of valid keys and values for dictionaries in viewAnimations.

Availability
Available in Mac OS X v10.4 and later.

See Also
– viewAnimations (page 3261)

Related Sample Code
From A View to A Movie

Declared In
NSAnimation.h

viewAnimations
Returns the array of dictionaries defining the objects to animate.

- (NSArray *)viewAnimations

Discussion
Each dictionary in the returned array specifies a view or window to animate and the effect to apply.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setViewAnimations: (page 3261)

Declared In
NSAnimation.h

Constants

View Animation Dictionary Keys
The following string constants are keys for the dictionaries in the array passed into
initWithViewAnimations: (page 3260) and setViewAnimations: (page 3261).

Constants 3261
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 168

NSViewAnimation Class Reference

NSString *NSViewAnimationTargetKey;
NSString *NSViewAnimationStartFrameKey;
NSString *NSViewAnimationEndFrameKey;
NSString *NSViewAnimationEffectKey;

Constants
NSViewAnimationTargetKey

The target of the animation.

The target can be either an NSView object or an NSWindow object. This property is required.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

NSViewAnimationStartFrameKey
The size and location of the window or view at the start of the animation.

The size and location are specified by an NSRect structure encoded in an NSValue object. This
property is optional. If it is not specified, NSViewAnimation uses the frame of the window or view
at the start of the animation.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

NSViewAnimationEndFrameKey
The size and location of the window or view at the end of the animation.

The size and location are specified by an NSRect structure encoded in an NSValue object. This
property is optional. If it is not specified, NSViewAnimation uses the frame of the window or view
at the start of the animation. If the target is a view and the end frame is empty, the view is hidden at
the end.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

NSViewAnimationEffectKey
An effect to apply to the animation.

Takes a string constant specifying fade-in or fade-out effects for the target:
NSViewAnimationFadeInEffect and NSViewAnimationFadeOutEffect. If the target is a view
and the effect is to fade out, the view is hidden at the end. If the effect is to fade in an initially hidden
view and the end frame is non-empty, the view is unhidden at the end. If the target is a window, the
window is ordered in or out as appropriate to the effect. This property is optional.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

Declared In
NSAnimation.h

Values for NSViewAnimationEffectKey
The following constants specify the animation effect to apply and are used as values for the animation effect
property of the animation view. See the description of NSViewAnimationEffectKey for usage details.

3262 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 168

NSViewAnimation Class Reference

NSString *NSViewAnimationFadeInEffect;
NSString *NSViewAnimationFadeOutEffect;

Constants
NSViewAnimationFadeInEffect

Specifies a fade-in type of effect.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

NSViewAnimationFadeOutEffect
Specifies a fade-out type of effect.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

Availability
Available in Mac OS X v10.4 and later

Declared In
NSAnimation.h

Constants 3263
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 168

NSViewAnimation Class Reference

3264 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 168

NSViewAnimation Class Reference

Inherits from NSResponder : NSObject

Conforms to NSCoding
NSCoding (NSResponder)
NSObject (NSObject)
NSEditor (Informal Protocol)
NSEditorRegistration (Informal Protocol)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSViewController.h

Related sample code AnimatedTableView
ComplexBrowser
SourceView
ViewController
ZipBrowser

Overview

An NSViewController object manages a view, typically loaded from a nib file.

This management includes:

 ■ Memory management of top-level objects similar to that of the NSWindowController class, taking the
same care to prevent reference cycles when controls are bound to the nib file's owner that
NSWindowController began taking in Mac OS v 10.4.

 ■ Declaring a generic representedObject (page 3271) property, to make it easy to establish bindings in
the nib to an object that isn't yet known at nib-loading time or readily available to the code that's doing
the nib loading.

 ■ Implementing the key-value binding NSEditor informal protocol, so that applications using
NSViewController can easily make bound controls in the views commit or discard the changes the
user is making.

NSViewController is meant to be highly reusable. For example, the NSPageLayout and NSPrintPanel
addAccessoryController: (page 1854) methods take an NSViewController instance as the argument,
and set the representedObject (page 3271) to the NSPrintInfo that is to be shown to the user. This allows
a developer to easily create new printing accessory views using bindings and the NSPrintInfo class' new
key-value coding and key-value observing compliance. When the user dismisses a printing panel,

Overview 3265
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 169

NSViewController Class Reference

NSPageLayout and NSPrintPanel each send NSEditor messages to each accessory view controller to
ensure that the user's changes have been committed or discarded properly. The titles of the accessories are
retrieved from the view controllers and shown to the user in pulldown menus that the user can choose from.
If your application needs to dynamically associate relatively complex views with the objects that they present
to the user, you might be able to reuse NSViewController in similar ways.

Tasks

Creating A View Controller

– initWithNibName:bundle: (page 3269)
Returns an NSViewController object initialized to the nib file in the specified bundle.

– loadView (page 3269)
Instantiate the receiver’s view and set it.

Represented Object

– setRepresentedObject: (page 3271)
Sets the object whose value is being presented in the receiver’s view.

– representedObject (page 3271)
Returns the object whose value is being presented in the receiver’s view.

Nib Properties

– nibBundle (page 3270)
Return the name of the nib bundle to be loaded to instantiate the receivers view.

– nibName (page 3270)
Return the name of the nib to be loaded to instantiate the receivers view

View Properties

– view (page 3273)
Returns the receiver’s view.

– setView: (page 3272)
Sets the receivers view to the specified object.

– title (page 3272)
Returns the localized title of the receiver’s view.

– setTitle: (page 3271)
Sets the localized title of the receiver’s view to the specified string.

3266 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 169

NSViewController Class Reference

NSEditor Conformance

– commitEditingWithDelegate:didCommitSelector:contextInfo: (page 3267)
Attempt to commit any currently edited results of the receiver.

– commitEditing (page 3267)
Returns whether the receiver was able to commit any pending edits.

– discardEditing (page 3268)
Causes the receiver to discard any changes, restoring the previous values.

Instance Methods

commitEditing
Returns whether the receiver was able to commit any pending edits.

- (BOOL)commitEditing

Return Value
Returns YES if the changes were successfully applied to the model, NO otherwise.

Discussion
A commit is denied if the receiver fails to apply the changes to the model object, perhaps due to a validation
error.

Availability
Available in Mac OS X v10.5 and later.

See Also
– commitEditingWithDelegate:didCommitSelector:contextInfo: (page 3267)
– discardEditing (page 3268)

Declared In
NSViewController.h

commitEditingWithDelegate:didCommitSelector:contextInfo:
Attempt to commit any currently edited results of the receiver.

- (void)commitEditingWithDelegate:(id)delegate
didCommitSelector:(SEL)didCommitSelector contextInfo:(void *)contextInfo

Parameters
delegate

An object that can serve as the receiver's delegate. It should implement the method specified by
didCommitSelector.

didCommitSelector
A selector that is invoked on delegate.

Instance Methods 3267
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 169

NSViewController Class Reference

contextInfo
Contextual information that is sent as the contextInfo argument to delegate when
didCommitSelector is invoked.

Discussion
The receiver must have been registered as the editor of an object using objectDidBeginEditing: (page
3682), and has not yet been unregistered by a subsequent invocation ofobjectDidEndEditing: (page 3682).
When the committing has either succeeded or failed, send the delegate the message specified by
didCommitSelector.

The didCommitSelector method must have the following method signature:.

- (void)editor:(id)editor didCommit:(BOOL)didCommit contextInfo:(void
*)contextInfo

If an error occurs while attempting to commit, for example if key-value coding validation fails, an
implementation of this method should typically send the receiver’s view
apresentError:modalForWindow:delegate:didPresentSelector:contextInfo: (page 2187) message,
specifying the view's containing window.

You may find this method useful in some situations when you want to ensure that pending changes are
applied before a change in user interface state. For example, you may need to ensure that changes pending
in a text field are applied before a window is closed. See also commitEditing (page 3267) which performs a
similar function but which allows you to handle any errors directly, although it provides no information
beyond simple success/failure.

Availability
Available in Mac OS X v10.5 and later.

See Also
– commitEditing (page 3267)
– discardEditing (page 3268)

Declared In
NSViewController.h

discardEditing
Causes the receiver to discard any changes, restoring the previous values.

- (void)discardEditing

Availability
Available in Mac OS X v10.5 and later.

See Also
– commitEditing (page 3267)

Declared In
NSViewController.h

3268 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 169

NSViewController Class Reference

initWithNibName:bundle:
Returns an NSViewController object initialized to the nib file in the specified bundle.

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil

Parameters
nibNameOrNil

The name of the nib file, without any leading path information.

nibBundleOrNil
The bundle in which to search for the nib file. If you specify nil, this method looks for the nib file in
the main bundle.

Return Value
The initialized NSViewController object or nil if there were errors during initialization or the nib file could
not be located.

Discussion
The NSViewController object looks for the nib file in the bundle's language-specific project directories
first, followed by the Resources directory.

The specified nib should typically have the class of the file's owner set to NSViewController, or a custom
subclass, with the view outlet connected to a view.

If you pass in a nil for nibNameOrNil then nibName (page 3270) will return nil and loadView (page 3269)
will throw an exception; in this case you must invokesetView: (page 3272) beforeview (page 3273) is invoked,
or override loadView (page 3269).

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AnimatedTableView
ComplexBrowser
SourceView
ViewController
ZipBrowser

Declared In
NSViewController.h

loadView
Instantiate the receiver’s view and set it.

- (void)loadView

Discussion
The default implementation of this method invokesnibName (page 3270) andnibBundle (page 3270) and then
uses the NSNib class to load the nib with the receiver as the file's owner. If the view outlet of the file's owner
in the nib is properly connected, the regular nib loading machinery will send the receiver a setView: (page
3272) message.

Instance Methods 3269
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 169

NSViewController Class Reference

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AnimatedTableView

Declared In
NSViewController.h

nibBundle
Return the name of the nib bundle to be loaded to instantiate the receivers view.

- (NSBundle *)nibBundle

Return Value
The name of the nib bundle.

Discussion
The default implementation returns whatever value was passed to the initializer.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithNibName:bundle: (page 3269)
– nibName (page 3270)

Declared In
NSViewController.h

nibName
Return the name of the nib to be loaded to instantiate the receivers view

- (NSString *)nibName

Return Value
The name of the nib.

Discussion
The default implementation returns whatever value was passed to the initializer.

Availability
Available in Mac OS X v10.5 and later.

See Also
– initWithNibName:bundle: (page 3269)
– nibBundle (page 3270)

Declared In
NSViewController.h

3270 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 169

NSViewController Class Reference

representedObject
Returns the object whose value is being presented in the receiver’s view.

- (id)representedObject

Return Value
The object whose value is presented in the receiver’s view.

Discussion
This class is key-value coding and key-value observing compliant for representedObject (page 3271) so
when you use it as the file's owner of a view's nib you can bind controls to the file's owner using key paths
that start with representedObject.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setRepresentedObject: (page 3271)

Declared In
NSViewController.h

setRepresentedObject:
Sets the object whose value is being presented in the receiver’s view.

- (void)setRepresentedObject:(id)representedObject

Parameters
representedObject

The object whose value is presented in the receiver’s view.

Discussion
The default implementation of this method doesn't copy the passed-in object, it retains it. In another words,
representedObject is a to-one relationship, not an attribute.

This class is key-value coding and key-value observing compliant for representedObject (page 3271) so
when you use it as the file's owner of a view's nib you can bind controls to the file's owner using key paths
that start with representedObject.

Availability
Available in Mac OS X v10.5 and later.

See Also
– representedObject (page 3271)

Declared In
NSViewController.h

setTitle:
Sets the localized title of the receiver’s view to the specified string.

Instance Methods 3271
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 169

NSViewController Class Reference

- (void)setTitle:(NSString *)title

Parameters
title

The localized title of the receiver view.

Discussion
NSViewController does not use the title property directly. This property is here because so many anticipated
uses of this class will involve letting the user choose among multiple named views using a pulldown menu
or some other user interface.

This class is key value coding and key value compliant for this property.

Availability
Available in Mac OS X v10.5 and later.

See Also
– title (page 3272)

Declared In
NSViewController.h

setView:
Sets the receivers view to the specified object.

- (void)setView:(NSView *)view

Parameters
view

The view the receiver should manage.

Discussion
You can invoke this method immediately after creating the object to specify a view that's created in a different
manner than the receiver's default implementation would provide.

Availability
Available in Mac OS X v10.5 and later.

See Also
– view (page 3273)

Declared In
NSViewController.h

title
Returns the localized title of the receiver’s view.

- (NSString *)title

Return Value
The localized title of the receiver’s view

3272 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 169

NSViewController Class Reference

Discussion
NSViewController does not use the title property directly. This property is here because so many anticipated
uses of this class will involve letting the user choose among multiple named views using a pulldown menu
or some other user interface.

This class is key value coding and key value compliant for this property.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setTitle: (page 3271)

Declared In
NSViewController.h

view
Returns the receiver’s view.

- (NSView *)view

Return Value
The receiver’s view object.

Discussion
The default implementation of this method first invokes loadView (page 3269) if the view hasn't been set yet.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setView: (page 3272)
– loadView (page 3269)

Related Sample Code
AnimatedTableView
ViewController

Declared In
NSViewController.h

Instance Methods 3273
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 169

NSViewController Class Reference

3274 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 169

NSViewController Class Reference

Inherits from NSResponder : NSObject

Conforms to NSUserInterfaceValidations
NSAnimatablePropertyContainer
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSWindow.h
AppKit/NSDrawer.h
AppKit/NSGraphics.h

Companion guide Window Programming Guide

Related sample code Cocoa Tips and Tricks
GLUT
ImageClient
MyPhoto
Quartz Composer WWDC 2005 TextEdit

Overview

The NSWindow class defines objects (known as windows) that manage and coordinate the windows an
application displays on the screen. A single NSWindow object corresponds to at most one onscreen window.
The two principal functions of a window are to provide an area in which views can be placed and to accept
and distribute, to the appropriate views, events the user instigates through actions with the mouse and
keyboard.

Overview 3275
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Note: Although the NSWindow class inherits the NSCoding protocol from NSResponder, the class does not
support coding. Legacy support for archivers exists but its use is deprecated and may not work. Any attempt
to archive or unarchive an NSWindow object using a keyed coding object raises an
NSInvalidArgumentException exception.

Tasks

Creating Windows

– initWithContentRect:styleMask:backing:defer: (page 3332)
Initializes the window with the specified values.

– initWithContentRect:styleMask:backing:defer:screen: (page 3333)
Initializes an allocated window with the specified values.

Configuring Windows

– styleMask (page 3402)
Returns the window’s style mask, indicating what kinds of control items it displays.

– setStyleMask: (page 3398)
Sets the window’s style mask to the given value.

– worksWhenModal (page 3409)
Indicates whether the window is able to receive keyboard and mouse events even when some other
window is being run modally.

– alphaValue (page 3298)
Returns the window’s alpha value.

– setAlphaValue: (page 3367)
Applies a given alpha value to the entire window.

– backgroundColor (page 3301)
Returns the color of the window’s background.

– setBackgroundColor: (page 3370)
Sets the window’s background color to the given color.

– colorSpace (page 3309)
Returns the window’s color space.

– setColorSpace: (page 3373)
Sets the window’s color space.

– contentView (page 3313)
Returns the window’s content view, the highest accessible NSView object in the window’s view
hierarchy.

– setContentView: (page 3376)
Makes a given view the window’s content view.

3276 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

– canHide (page 3306)
Indicates whether the window can be hidden when its application becomes hidden (during execution
of the NSApplication hide: (page 148) method).

– setCanHide: (page 3372)
Specifies whether the window can be hidden when its application becomes hidden (during execution
of the NSApplication hide: (page 148) method).

– isOnActiveSpace (page 3340)
Indicates whether the window is on the currently active space.

– hidesOnDeactivate (page 3331)
Indicates whether the window is removed from the screen when its application becomes inactive.

– setHidesOnDeactivate: (page 3386)
Specifies whether the window is removed from the screen when the application is inactive.

– collectionBehavior (page 3309)
Identifies the window’s behavior in window collections.

– setCollectionBehavior: (page 3372)
Specifies the window’s behavior in window collections.

– isOpaque (page 3340)
Indicates whether the window is opaque.

– setOpaque: (page 3392)
Specifies whether the window is opaque.

– hasShadow (page 3331)
Indicates whether the window has a shadow.

– setHasShadow: (page 3385)
Specifies whether the window has a shadow.

– invalidateShadow (page 3336)
Invalidates the window shadow so that it is recomputed based on the current window shape.

– autorecalculatesContentBorderThicknessForEdge: (page 3300)
Indicates whether the window calculates the thickness of a given border automatically.

– setAutorecalculatesContentBorderThickness:forEdge: (page 3369)
Specifies whether the window calculates the thickness of a given border automatically.

– contentBorderThicknessForEdge: (page 3310)
Indicates the thickness of a given border of the window.

– setContentBorderThickness:forEdge: (page 3373)
Specifies the thickness of a given border of the window.

– delegate (page 3316)
Returns the window’s delegate.

– setDelegate: (page 3377)
Sets the window’s delegate to a given object or removes an existing delegate.

– preventsApplicationTerminationWhenModal (page 3357)
Indicates whether the window prevents application termination when modal.

– setPreventsApplicationTerminationWhenModal: (page 3394)
Specifies whether the window prevents application termination when modal.

Tasks 3277
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

– canBeVisibleOnAllSpaces (page 3305) Deprecated in Mac OS X v10.5
Indicates whether the window can be visible on all spaces or on only one space at a time. (Deprecated.
Use setCollectionBehavior: (page 3372) instead.)

– setCanBeVisibleOnAllSpaces: (page 3371) Deprecated in Mac OS X v10.5
Specifies whether the window can be visible on all spaces or on only one space at a time. (Deprecated.
Use collectionBehavior (page 3309) instead.)

Accessing Window Information

+ defaultDepthLimit (page 3292)
Returns the default depth limit for instances of NSWindow.

– windowNumber (page 3408)
Provides the window number of the window’s window device.

+ windowNumbersWithOptions: (page 3296)
Returns the window numbers for all visible windows satisfying the specified options.

– gState (page 3330)
Returns the window’s graphics state object.

– canStoreColor (page 3306)
Indicates whether the window has a depth limit that allows it to store color values.

– deviceDescription (page 3318)
Returns a dictionary containing information about the window’s resolution.

– canBecomeVisibleWithoutLogin (page 3305)
Indicates whether the window can be displayed at the login window. Default: NO.

– setCanBecomeVisibleWithoutLogin: (page 3371)
Specifies whether the window can be displayed at the login window.

– sharingType (page 3401)
Indicates the level of access other processes have to the window’s content.

– setSharingType: (page 3396)
Specifies the level of access other processes have to the window’s content.

– backingType (page 3302)
Returns the window’s backing store type.

– setBackingType: (page 3370)
Sets the window’s backing store type to a given type.

– backingLocation (page 3302)
Indicates the window’s backing store location.

– preferredBackingLocation (page 3356)
Indicates the preferred location for the window’s backing store.

– setPreferredBackingLocation: (page 3393)
Specifies the preferred location for the window’s backing store.

– isOneShot (page 3340)
Indicates whether the window device the window manages is freed when it’s removed from the
screen list.

3278 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

– setOneShot: (page 3391)
Sets whether the window device that the window manages should be freed when it’s removed from
the screen list.

– depthLimit (page 3317)
Returns the depth limit of the window.

– setDepthLimit: (page 3378)
Sets the depth limit of the window to a given limit.

– hasDynamicDepthLimit (page 3330)
Indicates whether the window’s depth limit can change to match the depth of the screen it’s on.

– setDynamicDepthLimit: (page 3380)
Sets whether the window changes its depth to match the depth of the screen it’s on, or the depth of
the deepest screen when it spans multiple screens.

Getting Layout Information

+ contentRectForFrameRect:styleMask: (page 3292)
Returns the content rectangle used by a window with a given frame rectangle and window style.

+ frameRectForContentRect:styleMask: (page 3293)
Returns the frame rectangle used by a window with a given content rectangle and window style.

+ minFrameWidthWithTitle:styleMask: (page 3294)
Returns the minimum width a window’s frame rectangle must have for it to display a title, with a
given window style.

– contentRectForFrameRect: (page 3312)
Returns the window’s content rectangle with a given frame rectangle.

– frameRectForContentRect: (page 3329)
Returns the window’s frame rectangle with a given content rectangle.

Managing Windows

– drawers (page 3324)
Returns the collection of drawers associated with the window.

– windowController (page 3407)
Returns the window’s window controller.

– setWindowController: (page 3400)
Sets the window’s window controller.

Managing Sheets

– attachedSheet (page 3300)
Returns the sheet attached to the window.

– isSheet (page 3341)
Indicates whether the window has ever run as a modal sheet.

Tasks 3279
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Sizing Windows

– frame (page 3328)
Returns the window’s frame rectangle.

– setFrameOrigin: (page 3383)
Positions the bottom-left corner of the window’s frame rectangle at a given point in screen coordinates.

– setFrameTopLeftPoint: (page 3384)
Positions the top-left corner of the window’s frame rectangle at a given point in screen coordinates.

– constrainFrameRect:toScreen: (page 3309)
Modifies and returns a frame rectangle so that its top edge lies on a specific screen.

– cascadeTopLeftFromPoint: (page 3306)
Positions the window's top left to a given point.

– setFrame:display: (page 3381)
Sets the origin and size of the window’s frame rectangle according to a given frame rectangle, thereby
setting its position and size onscreen.

– setFrame:display:animate: (page 3381)
Sets the origin and size of the window’s frame rectangle, with optional animation, according to a
given frame rectangle, thereby setting its position and size onscreen.

– animationResizeTime: (page 3299)
Specifies the duration of a smooth frame-size change.

– aspectRatio (page 3300)
Returns the window’s aspect ratio, which constrains the size of its frame rectangle to integral multiples
of this ratio when the user resizes it.

– setAspectRatio: (page 3368)
Sets the window’s aspect ratio, which constrains the size of its frame rectangle to integral multiples
of this ratio when the user resizes it.

– minSize (page 3348)
Returns the minimum size to which the window’s frame (including its title bar) can be sized.

– setMinSize: (page 3390)
Sets the minimum size to which the window’s frame (including its title bar) can be sized to aSize.

– maxSize (page 3346)
Returns the maximum size to which the window’s frame (including its title bar) can be sized.

– setMaxSize: (page 3388)
Sets the maximum size to which the window’s frame (including its title bar) can be sized.

– isZoomed (page 3342)
Returns a Boolean value that indicates whether the window is in a zoomed state.

– performZoom: (page 3355)
This action method simulates the user clicking the zoom box by momentarily highlighting the button
and then zooming the window.

– zoom: (page 3409)
This action method toggles the size and location of the window between its standard state (provided
by the application as the “best” size to display the window’s data) and its user state (a new size and
location the user may have set by moving or resizing the window).

– resizeFlags (page 3361)
Returns the flags field of the event record for the mouse-down event that initiated the resizing session.

3280 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

– showsResizeIndicator (page 3401)
Returns a Boolean value that indicates whether the window’s resize indicator is visible.

– setShowsResizeIndicator: (page 3397)
Specifies whether the window’s resize indicator is visible

– resizeIncrements (page 3361)
Returns the window’s resizing increments.

– setResizeIncrements: (page 3396)
Restricts the user’s ability to resize the window so the width and height change by multiples of width
and height increments.

– preservesContentDuringLiveResize (page 3356)
Returns whether the window tries to optimize user-initiated resize operations by preserving the
content of views that have not changed.

– setPreservesContentDuringLiveResize: (page 3393)
Specifies whether the window tries to optimize live resize operations by preserving the content of
views that have not changed.

– inLiveResize (page 3335)
Indicates whether the window is being resized by the user.

Sizing Content

– contentAspectRatio (page 3310)
Returns the window’s content aspect ratio.

– setContentAspectRatio: (page 3373)
Sets the aspect ratio (height in relation to width) of the window’s content view, constraining the
dimensions of its content rectangle to integral multiples of that ratio when the user resizes it.

– contentMinSize (page 3311)
Returns the minimum size of the window’s content view.

– setContentMinSize: (page 3374)
Sets the minimum size of the window’s content view in the window’s base coordinate system.

– setContentSize: (page 3375)
Sets the size of the window’s content view to a given size, which is expressed in the window’s base
coordinate system.

– contentMaxSize (page 3311)
Returns the maximum size of the window’s content view.

– setContentMaxSize: (page 3374)
Sets the maximum size of the window’s content view in the window’s base coordinate system.

– contentResizeIncrements (page 3312)
Returns the window’s content-view resizing increments.

– setContentResizeIncrements: (page 3375)
Restricts the user’s ability to resize the window so the width and height of its content view change
by multiples of width and height increments.

Tasks 3281
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Managing Window Layers

– isVisible (page 3342)
Indicates whether the window is visible onscreen (even when It’s obscured by other windows).

– orderOut: (page 3352)
Removes the window from the screen list, which hides the window.

– orderBack: (page 3350)
Moves the window to the back of its level in the screen list, without changing either the key window
or the main window.

– orderFront: (page 3351)
Moves the window to the front of its level in the screen list, without changing either the key window
or the main window.

– orderFrontRegardless (page 3351)
Moves the window to the front of its level, even if its application isn’t active, without changing either
the key window or the main window.

– orderWindow:relativeTo: (page 3352)
Repositions the window’s window device in the window server’s screen list.

– level (page 3343)
Returns the window level of the window.

– setLevel: (page 3387)
Sets the window’s window level to a given level.

Managing Window Frames in User Defaults

+ removeFrameUsingName: (page 3294)
Removes the frame data stored under a given name from the application’s user defaults.

– setFrameUsingName: (page 3384)
Sets the window’s frame rectangle by reading the rectangle data stored under a given name from
the defaults system.

– setFrameUsingName:force: (page 3385)
Sets the window’s frame rectangle by reading the rectangle data stored under a given name from
the defaults system. Can operate on nonresizable windows.

– saveFrameUsingName: (page 3363)
Saves the window’s frame rectangle in the user defaults system under a given name.

– frameAutosaveName (page 3329)
Returns the name used to automatically save the window’s frame rectangle data in the defaults system,
as set through setFrameAutosaveName: (page 3382).

– setFrameAutosaveName: (page 3382)
Sets the name used to automatically save the window’s frame rectangle in the defaults system to a
given name.

– stringWithSavedFrame (page 3402)
Returns a string representation of the window’s frame rectangle.

– setFrameFromString: (page 3383)
Sets the window’s frame rectangle from a given string representation.

3282 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Managing Key Status

– isKeyWindow (page 3338)
Indicates whether the window is the key window for the application.

– canBecomeKeyWindow (page 3304)
Indicates whether the window can become the key window.

– makeKeyWindow (page 3345)
Makes the window the key window.

– makeKeyAndOrderFront: (page 3345)
Moves the window to the front of the screen list, within its level, and makes it the key window; that
is, it shows the window.

– becomeKeyWindow (page 3302)
Invoked automatically to inform the window that it has become the key window; never invoke this
method directly.

– resignKeyWindow (page 3360)
Invoked automatically when the window resigns key window status; never invoke this method directly.

Managing Main Status

– isMainWindow (page 3338)
Indicates whether the window is the application’s main window.

– canBecomeMainWindow (page 3304)
Indicates whether the window can become the application’s main window.

– makeMainWindow (page 3346)
Makes the window the main window.

– becomeMainWindow (page 3303)
Invoked automatically to inform the window that it has become the main window; never invoke this
method directly.

– resignMainWindow (page 3361)
Invoked automatically when the window resigns main window status; never invoke this method
directly.

Managing Toolbars

– toolbar (page 3404)
Returns the window’s toolbar.

– setToolbar: (page 3399)
Sets the window’s toolbar.

– toggleToolbarShown: (page 3403)
The action method for the “Hide Toolbar” menu item (which alternates with “Show Toolbar”).

– runToolbarCustomizationPalette: (page 3362)
The action method for the “Customize Toolbar…” menu item.

Tasks 3283
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Managing Attached Windows

– childWindows (page 3308)
Returns an array of the window’s attached child windows.

– addChildWindow:ordered: (page 3297)
Adds a given window as a child window of the window.

– removeChildWindow: (page 3358)
Detaches a given child window from the window.

– parentWindow (page 3353)
Returns the parent window to which the window is attached as a child.

– setParentWindow: (page 3392)
Adds the window as a child of a given window. For use by subclasses when setting the parent window
in the window.

Managing Window Buffers

– isFlushWindowDisabled (page 3337)
Indicates whether the window’s flushing ability is disabled.

– enableFlushWindow (page 3324)
Reenables the flushWindow (page 3327) method for the window after it was disabled through a
previous disableFlushWindow (page 3319) message.

– disableFlushWindow (page 3319)
Disables the flushWindow (page 3327) method for the window.

– flushWindow (page 3327)
Flushes the window’s offscreen buffer to the screen if the window is buffered and flushing is enabled.

– flushWindowIfNeeded (page 3328)
Flushes the window’s offscreen buffer to the screen if flushing is enabled and if the last
flushWindow (page 3327) message had no effect because flushing was disabled.

Managing Default Buttons

– defaultButtonCell (page 3316)
Returns the button cell that performs as if clicked when the window receives a Return (or Enter) key
event.

– setDefaultButtonCell: (page 3377)
Makes the key equivalent of button cell the Return (or Enter) key, so when the user presses Return
that button performs as if clicked.

– enableKeyEquivalentForDefaultButtonCell (page 3324)
Reenables the default button cell’s key equivalent, so it performs a click when the user presses Return
(or Enter).

– disableKeyEquivalentForDefaultButtonCell (page 3319)
Disables the default button cell’s key equivalent, so it doesn’t perform a click when the user presses
Return (or Enter).

3284 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Managing Field Editors

– fieldEditor:forObject: (page 3325)
Returns the window’s field editor, creating it if requested.

– endEditingFor: (page 3325)
Forces the field editor to give up its first responder status and prepares it for its next assignment.

Managing the Window Menu

– isExcludedFromWindowsMenu (page 3337)
Indicates whether the window is excluded from the application’s Windows menu.

– setExcludedFromWindowsMenu: (page 3380)
Specifies whether the window’s title is omitted from the application’s Windows menu.

Managing Cursor Rectangles

– areCursorRectsEnabled (page 3299)
Indicates whether the window’s cursor rectangles are enabled.

– enableCursorRects (page 3324)
Reenables cursor rectangle management within the window after a disableCursorRects (page
3318) message.

– disableCursorRects (page 3318)
Disables all cursor rectangle management within the window.

– discardCursorRects (page 3320)
Invalidates all cursor rectangles in the window.

– invalidateCursorRectsForView: (page 3335)
Marks as invalid the cursor rectangles of a given NSView object in the window’s view hierarchy, so
they’ll be set up again when the window becomes key (or immediately if the window is key).

– resetCursorRects (page 3360)
Clears the window’s cursor rectangles and the cursor rectangles of the NSView objects in its view
hierarchy.

Managing Title Bars

+ standardWindowButton:forStyleMask: (page 3295)
Returns a new instance of a given standard window button, sized appropriately for a given window
style.

– standardWindowButton: (page 3402)
Returns the window button of a given window button kind in the window’s view hierarchy.

– showsToolbarButton (page 3401)
Indicates whether the toolbar control button is currently displayed.

– setShowsToolbarButton: (page 3397)
Specifies whether the window shows the toolbar control button.

Tasks 3285
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Managing Tooltips

– allowsToolTipsWhenApplicationIsInactive (page 3298)
Indicates whether the window can display tooltips even when the application is in the background.

– setAllowsToolTipsWhenApplicationIsInactive: (page 3367)
Specifies whether the window can display tooltips even when the application is in the background.

Handling Events

+ menuChanged: (page 3294)
This method does nothing; it is here for backward compatibility.

– currentEvent (page 3314)
Returns the event currently being processed by the application, by invoking NSApplication’s
currentEvent (page 142) method.

– nextEventMatchingMask: (page 3349)
Returns the next event matching a given mask.

– nextEventMatchingMask:untilDate:inMode:dequeue: (page 3349)
Forwards the message to the global NSApplication object, NSApp.

– discardEventsMatchingMask:beforeEvent: (page 3321)
Forwards the message to the NSApplication object, NSApp.

– postEvent:atStart: (page 3355)
Forwards the message to the global NSApplication object, NSApp.

– sendEvent: (page 3366)
This action method dispatches mouse and keyboard events sent to the window by the NSApplication
object.

– tryToPerform:with: (page 3404)
Dispatches action messages with a given argument.

Managing Responders

– initialFirstResponder (page 3332)
Returns view that’s made first responder the first time the window is placed onscreen.

– firstResponder (page 3327)
Returns the window’s first responder.

– setInitialFirstResponder: (page 3387)
Sets a given view as the one that’s made first responder (also called the key view) the first time the
window is placed onscreen.

– makeFirstResponder: (page 3344)
Attempts to make a given responder the first responder for the window.

3286 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Managing the Key View Loop

– selectKeyViewPrecedingView: (page 3364)
Makes key the view that precedes the given view.

– selectKeyViewFollowingView: (page 3364)
Makes key the view that follows the given view.

– selectPreviousKeyView: (page 3365)
This action method searches for a candidate previous key view and, if it finds one, invokes
makeFirstResponder: (page 3344) to establish it as the first responder.

– selectNextKeyView: (page 3364)
This action method searches for a candidate next key view and, if it finds one, invokes
makeFirstResponder: (page 3344) to establish it as the first responder.

– keyViewSelectionDirection (page 3343)
Returns the direction the window is currently using to change the key view.

– autorecalculatesKeyViewLoop (page 3301)
Indicates whether the window automatically recalculates the key view loop when views are added.

– recalculateKeyViewLoop (page 3357)
Marks the key view loop as dirty and in need of recalculation.

– setAutorecalculatesKeyViewLoop: (page 3370)
Specifies whether to recalculate the key view loop automatically when views are added or removed.

Handling Keyboard Events

– keyDown: (page 3343)
Handles a given keyboard event that may need to be interpreted as changing the key view or triggering
a keyboard equivalent.

Handling Mouse Events

– acceptsMouseMovedEvents (page 3296)
Indicates whether the window accepts mouse-moved events.

– ignoresMouseEvents (page 3331)
Indicates whether the window is transparent to mouse events.

– setIgnoresMouseEvents: (page 3387)
Specifies whether the window is transparent to mouse clicks and other mouse events, allowing overlay
windows.

– mouseLocationOutsideOfEventStream (page 3348)
Returns the current location of the pointer reckoned in the window’s base coordinate system.

– setAcceptsMouseMovedEvents: (page 3366)
Specifies whether the window is to accept mouse-moved events.

+ windowNumberAtPoint:belowWindowWithWindowNumber: (page 3295)
Returns the number of the frontmost window that would be hit by a mouse-down at the specified
screen location.

Tasks 3287
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Bracketing Drawing Operations

– cacheImageInRect: (page 3303)
Stores the window’s raster image from a given rectangle expressed in the window’s base coordinate
system.

– restoreCachedImage (page 3362)
Splices the window’s cached image rectangles, if any, back into its raster image (and buffer if it has
one), undoing the effect of any drawing performed within those areas since they were established
using cacheImageInRect: (page 3303).

– discardCachedImage (page 3320)
Discards all of the window’s cached image rectangles.

Drawing Windows

– display (page 3321)
Passes a display message down the window’s view hierarchy, thus redrawing all views within the
window, including the frame view that draws the border, title bar, and other peripheral elements.

– displayIfNeeded (page 3321)
Passes a displayIfNeeded message down the window’s view hierarchy, thus redrawing all views
that need to be displayed, including the frame view that draws the border, title bar, and other
peripheral elements.

– viewsNeedDisplay (page 3407)
Indicates whether any of the window’s views need to be displayed.

– setViewsNeedDisplay: (page 3400)
Specifies whether the window’s views need to be displayed..

– isAutodisplay (page 3336)
Indicates whether the window automatically displays views that need to be displayed.

– setAutodisplay: (page 3368)
Specifies whether the window is to automatically display the views that are marked as needing it.

– useOptimizedDrawing: (page 3405)
Specifies whether the window is to optimize focusing and drawing when displaying its views.

– graphicsContext (page 3330)
Provides the graphics context associated with the window for the current thread.

– allowsConcurrentViewDrawing (page 3298)
Indicates whether the window allows multithreaded view drawing.

– setAllowsConcurrentViewDrawing: (page 3366)
Specifies whether the window allows its views to be drawn concurrently.

Updating Windows

– disableScreenUpdatesUntilFlush (page 3319)
Disables the window’s screen updates until the window is flushed.

– update (page 3405)
Updates the window.

3288 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Dragging Items

– dragImage:at:offset:event:pasteboard:source:slideBack: (page 3323)
Begins a dragging session.

– registerForDraggedTypes: (page 3358)
Registers a give set of pasteboard types as the pasteboard types the window will accept as the
destination of an image-dragging session.

– unregisterDraggedTypes (page 3405)
Unregisters the window as a possible destination for dragging operations.

Converting Coordinates

– convertBaseToScreen: (page 3313)
Converts a given point from the window’s base coordinate system to the screen coordinate system.

– convertScreenToBase: (page 3314)
Converts a given point from the screen coordinate system to the window’s base coordinate system.

– userSpaceScaleFactor (page 3406)
Returns the scale factor applied to the window.

Accessing Edited Status

– isDocumentEdited (page 3336)
Indicates whether the window’s document has been edited.

– setDocumentEdited: (page 3379)
Specifies whether the window’s document has been edited.

Managing Titles

– title (page 3403)
Returns either the string that appears in the title bar of the window, or the path to the represented
file.

– setTitle: (page 3398)
Sets the string that appears in the window’s title bar (if it has one) to a given string and displays the
title.

– setTitleWithRepresentedFilename: (page 3399)
Sets a given path as the window’s title, formatting it as a file-system path, and records this path as
the window’s associated filename using setRepresentedFilename: (page 3395).

– representedFilename (page 3359)
Returns the pathname of the file the window represents.

– setRepresentedFilename: (page 3395)
Sets the pathname of the file the window represents.

– representedURL (page 3359)
Provides the URL of the file the window represents.

Tasks 3289
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

– setRepresentedURL: (page 3395)
Specifies the URL of the file the window represents.

Accessing Screen Information

– screen (page 3363)
Returns the screen the window is on.

– deepestScreen (page 3315)
Returns the deepest screen the window is on (it may be split over several screens).

– displaysWhenScreenProfileChanges (page 3322)
Indicates whether the window context should be updated when the screen profile changes or when
the window moves to a different screen.

– setDisplaysWhenScreenProfileChanges: (page 3378)
Specifies whether the window context should be updated when the screen profile changes.

Moving Windows

– isMovableByWindowBackground (page 3339)
Indicates whether the window is movable by clicking and dragging anywhere in its background.

– setMovableByWindowBackground: (page 3391)
Sets whether the window is movable by clicking and dragging anywhere in its background.

– isMovable (page 3339)
Indicates whether the window can be moved by clicking in its title bar or background.

– setMovable: (page 3391)
Specifies whether the window can be dragged by clicking in its title bar or background.

– center (page 3307)
Sets the window’s location to the center of the screen.

Closing Windows

– performClose: (page 3354)
This action method simulates the user clicking the close button by momentarily highlighting the
button and then closing the window.

– close (page 3308)
Removes the window from the screen.

– isReleasedWhenClosed (page 3341)
Indicates whether the window is released when it receives the close message.

– setReleasedWhenClosed: (page 3394)
Specifies whether the window is released when it receives the close message.

3290 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Minimizing Windows

– isMiniaturized (page 3338)
Indicates whether the window is minimized.

– performMiniaturize: (page 3354)
Simulates the user clicking the minimize button by momentarily highlighting the button, then
minimizing the window.

– miniaturize: (page 3347)
Removes the window from the screen list and displays the minimized window in the Dock.

– deminiaturize: (page 3317)
Deminimizes the window.

– miniwindowImage (page 3347)
Returns the custom miniaturized window image of the window.

– setMiniwindowImage: (page 3389)
Sets the window’s custom minimized window image to a given image.

– miniwindowTitle (page 3347)
Returns the title displayed in the window’s minimized window.

– setMiniwindowTitle: (page 3390)
Sets the title of the window’s miniaturized counterpart to a given string and redisplays it.

Getting the Dock Tile

– dockTile (page 3322)
Provides the application’s Dock tile.

Printing Windows

– print: (page 3357)
This action method runs the Print panel, and if the user chooses an option other than canceling, prints
the window (its frame view and all subviews).

– dataWithEPSInsideRect: (page 3314)
Returns EPS data that draws the region of the window within a given rectangle.

– dataWithPDFInsideRect: (page 3315)
Returns PDF data that draws the region of the window within a given rectangle.

Providing Services

– validRequestorForSendType:returnType: (page 3406)
Searches for an object that responds to a Services request.

Tasks 3291
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Working with Carbon

– initWithWindowRef: (page 3334)
Returns a Cocoa window created from a Carbon window.

– windowRef (page 3408)
Returns the Carbon WindowRef associated with the window, creating one if necessary.

Class Methods

contentRectForFrameRect:styleMask:
Returns the content rectangle used by a window with a given frame rectangle and window style.

+ (NSRect)contentRectForFrameRect:(NSRect)windowFrame
styleMask:(NSUInteger)windowStyle

Parameters
windowFrame

The frame rectangle for the window expressed in screen coordinates.

windowStyle
The window style for the window. See “Constants” (page 3411) for a list of style mask values.

Return Value
The content rectangle, expressed in screen coordinates, used by the window with windowFrame and
windowStyle.

Discussion
When a NSWindow instance is available, you should use contentRectForFrameRect: (page 3312) instead
of this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ frameRectForContentRect:styleMask: (page 3293)

Related Sample Code
GLUT

Declared In
NSWindow.h

defaultDepthLimit
Returns the default depth limit for instances of NSWindow.

+ (NSWindowDepth)defaultDepthLimit

3292 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Return Value
The default depth limit for instances of NSWindow, determined by the depth of the deepest screen level
available to the window server.

Discussion
The value returned can be examined with the Application Kit functions NSPlanarFromDepth (page 3990),
NSColorSpaceFromDepth (page 3966), NSBitsPerSampleFromDepth (page 3966), and
NSBitsPerPixelFromDepth (page 3966).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDepthLimit: (page 3378)
– setDynamicDepthLimit: (page 3380)
– canStoreColor (page 3306)

Declared In
NSWindow.h

frameRectForContentRect:styleMask:
Returns the frame rectangle used by a window with a given content rectangle and window style.

+ (NSRect)frameRectForContentRect:(NSRect)windowContentRect
styleMask:(NSUInteger)windowStyle

Parameters
windowContentRect

The content rectangle for a window expressed in screen coordinates.

windowStyle
The window style for the window. See “Window Style Masks” (page 3411) for a list of style mask values.

Return Value
The frame rectangle, expressed in screen coordinates, used by the window with windowContentRect and
windowStyle.

Discussion
When a NSWindow instance is available, you should use frameRectForContentRect: (page 3329) instead
of this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ contentRectForFrameRect:styleMask: (page 3292)

Related Sample Code
CocoaDragAndDrop
FunHouse
GLUT
OpenCL NBody Simulation Example

Class Methods 3293
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

menuChanged:
This method does nothing; it is here for backward compatibility.

+ (void)menuChanged:(NSMenu *)menu

Parameters
menu

The menu object that changed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– menu (page 2163) (NSResponder)

Declared In
NSWindow.h

minFrameWidthWithTitle:styleMask:
Returns the minimum width a window’s frame rectangle must have for it to display a title, with a given
window style.

+ (CGFloat)minFrameWidthWithTitle:(NSString *)windowTitle
styleMask:(NSUInteger)windowStyle

Parameters
windowTitle

The title for the window.

windowStyle
The window style for the window. See “Window Style Masks” (page 3411) for a list of style mask values.

Return Value
The minimum width of the window’s frame, using windowStyle, in order to display windowTitle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

removeFrameUsingName:
Removes the frame data stored under a given name from the application’s user defaults.

+ (void)removeFrameUsingName:(NSString *)frameName

3294 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
frameName

The name of the frame to remove.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameUsingName: (page 3384)
– setFrameAutosaveName: (page 3382)

Declared In
NSWindow.h

standardWindowButton:forStyleMask:
Returns a new instance of a given standard window button, sized appropriately for a given window style.

+ (NSButton *)standardWindowButton:(NSWindowButton)windowButtonKind
forStyleMask:(NSUInteger)windowStyle

Parameters
windowButtonKind

The kind of standard window button to return.

windowStyle
The window style for which windowButtonKind is to be sized. See “Window Style Masks” (page 3411)
for the list of allowable values.

Return Value
The new window button of the kind identified by windowButtonKind; nilwhen no such button kind exists.

Discussion
The caller is responsible for adding the button to the view hierarchy and for setting the target to be the
window.

Availability
Available in Mac OS X v10.2 and later.

See Also
– standardWindowButton: (page 3402)

Declared In
NSWindow.h

windowNumberAtPoint:belowWindowWithWindowNumber:
Returns the number of the frontmost window that would be hit by a mouse-down at the specified screen
location.

+ (NSInteger)windowNumberAtPoint:(NSPoint)point
belowWindowWithWindowNumber:(NSInteger)windowNumber

Class Methods 3295
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
point

The location of the mouse-down in screen coordinates.

windowNumber
If non-0, the search will start below windowNumber window in z-order.

Return Value
The window number of the window under the point. The window number returned may correspond to a
window in another application.

Discussion
Because this method uses the same rules as mouse-down hit-testing, windows with transparency at the
given point, and windows that ignore mouse events, will not be returned.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWindow.h

windowNumbersWithOptions:
Returns the window numbers for all visible windows satisfying the specified options.

+ (NSArray *)windowNumbersWithOptions:(NSWindowNumberListOptions)options

Parameters
options

The possible options are specified in “NSWindowNumberListOptions” (page 3420).

Return Value
An array of window numbers for all visible windows satisfying the specified options.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWindow.h

Instance Methods

acceptsMouseMovedEvents
Indicates whether the window accepts mouse-moved events.

- (BOOL)acceptsMouseMovedEvents

Return Value
YES when the window accepts (and distributes) mouse-moved events; otherwise, NO.

3296 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Discussion
The NSWindow default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAcceptsMouseMovedEvents: (page 3366)

Declared In
NSWindow.h

addChildWindow:ordered:
Adds a given window as a child window of the window.

- (void)addChildWindow:(NSWindow *)childWindow
ordered:(NSWindowOrderingMode)orderingMode

Parameters
childWindow

The child window to order.

orderingMode
NSWindowAbove: childWindow is ordered immediately in front of the window.
NSWindowBelow: childWindow is ordered immediately behind the window.

Discussion
After the childWindow is added as a child of the window, it is maintained in relative position indicated by
orderingMode for subsequent ordering operations involving either window. While this attachment is active,
moving childWindow will not cause the window to move (as in sliding a drawer in or out), but moving the
window will cause childWindow to move.

Note that you should not create cycles between parent and child windows. For example, you should not add
window B as child of window A, then add window A as a child of window B.

Availability
Available in Mac OS X v10.2 and later.

See Also
– removeChildWindow: (page 3358)
– childWindows (page 3308)
– parentWindow (page 3353)
– setParentWindow: (page 3392)

Related Sample Code
CIAnnotation
MyMediaPlayer
TrackBall

Declared In
NSWindow.h

Instance Methods 3297
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

allowsConcurrentViewDrawing
Indicates whether the window allows multithreaded view drawing.

- (BOOL)allowsConcurrentViewDrawing

Return Value
YES if the window allows multithreaded view drawing; otherwise, NO.

Discussion
The default value is YES.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setAllowsConcurrentViewDrawing: (page 3366)

Declared In
NSWindow.h

allowsToolTipsWhenApplicationIsInactive
Indicates whether the window can display tooltips even when the application is in the background.

- (BOOL)allowsToolTipsWhenApplicationIsInactive

Return Value
YES if the window can display tooltips even when the application is in the background; otherwise, NO.

Discussion
The default is NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setAllowsToolTipsWhenApplicationIsInactive: (page 3367)

Declared In
NSWindow.h

alphaValue
Returns the window’s alpha value.

- (CGFloat)alphaValue

Return Value
The window’s alpha value.

Availability
Available in Mac OS X v10.0 and later.

3298 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

See Also
– setAlphaValue: (page 3367)

Related Sample Code
From A View to A Movie
FunkyOverlayWindow

Declared In
NSWindow.h

animationResizeTime:
Specifies the duration of a smooth frame-size change.

- (NSTimeInterval)animationResizeTime:(NSRect)newWindowFrame

Parameters
newWindowFrame

The frame rectangle specified in setFrame:display:animate: (page 3381).

Return Value
The duration of the frame size change.

Discussion
Subclasses can override this method to control the total time for the frame change.

The NSWindow implementation uses the value from the NSWindowResizeTime user default as the time in
seconds to resize by 150 pixels. If this value is unspecified, NSWindowResizeTime is 0.20 seconds (this default
value may be different in different releases of Mac OS X).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

areCursorRectsEnabled
Indicates whether the window’s cursor rectangles are enabled.

- (BOOL)areCursorRectsEnabled

Return Value
YES when cursor rectangles are enabled; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableCursorRects (page 3324)
– addCursorRect:cursor: (page 3139) (NSView)

Instance Methods 3299
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

aspectRatio
Returns the window’s aspect ratio, which constrains the size of its frame rectangle to integral multiples of
this ratio when the user resizes it.

- (NSSize)aspectRatio

Return Value
The window’s aspect ratio.

Discussion
The size of the window’s frame rectangle is constrained to integral multiples of this ratio when the user
resizes it. You can set an NSWindow object’s size to any ratio programmatically.

Availability
Available in Mac OS X v10.0 and later.

See Also
– resizeIncrements (page 3361)
– setAspectRatio: (page 3368)
– setFrame:display: (page 3381)

Declared In
NSWindow.h

attachedSheet
Returns the sheet attached to the window.

- (NSWindow *)attachedSheet

Return Value
The sheet attached to the window; nil when the window doesn’t have a sheet attached.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSWindow.h

autorecalculatesContentBorderThicknessForEdge:
Indicates whether the window calculates the thickness of a given border automatically.

- (BOOL)autorecalculatesContentBorderThicknessForEdge:(NSRectEdge)edge

3300 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
edge

Border whose thickness autorecalculation status to set:

 ■ NSMaxYEdge: Top border.

 ■ NSMinYEdge: Bottom border.

Return Value
YES when the window auto-recalculates the given border’s thickness; otherwise, NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setAutorecalculatesContentBorderThickness:forEdge: (page 3369)

Declared In
NSWindow.h

autorecalculatesKeyViewLoop
Indicates whether the window automatically recalculates the key view loop when views are added.

- (BOOL)autorecalculatesKeyViewLoop

Return Value
YES if the window automatically recalculates the key view loop when views are added; otherwise, NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– recalculateKeyViewLoop (page 3357)
– setAutorecalculatesKeyViewLoop: (page 3370)

Declared In
NSWindow.h

backgroundColor
Returns the color of the window’s background.

- (NSColor *)backgroundColor

Return Value
The window’s background color.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackgroundColor: (page 3370)

Instance Methods 3301
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

backingLocation
Indicates the window’s backing store location.

- (NSWindowBackingLocation)backingLocation

Return Value
The location of the window’s backing store. See “NSWindowBackingLocation” (page 3420) for possible values.

Availability
Available in Mac OS X v10.5 and later.

See Also
– preferredBackingLocation (page 3356)

Declared In
NSWindow.h

backingType
Returns the window’s backing store type.

- (NSBackingStoreType)backingType

Return Value
The backing store type.

Discussion
The possible return values are described in “NSBackingStoreType—Buffered Window Drawing” (page 3417).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setBackingType: (page 3370)

Related Sample Code
StickiesWithCoreData

Declared In
NSWindow.h

becomeKeyWindow
Invoked automatically to inform the window that it has become the key window; never invoke this method
directly.

- (void)becomeKeyWindow

3302 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Discussion
This method reestablishes the window’s first responder, sends the becomeKeyWindowmessage to that object
if it responds, and posts an NSWindowDidBecomeKeyNotification (page 3422) to the default notification
center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeKeyWindow (page 3345)
– makeKeyAndOrderFront: (page 3345)
– becomeMainWindow (page 3303)

Declared In
NSWindow.h

becomeMainWindow
Invoked automatically to inform the window that it has become the main window; never invoke this method
directly.

- (void)becomeMainWindow

Discussion
This method posts anNSWindowDidBecomeMainNotification (page 3423) to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeMainWindow (page 3346)
– becomeKeyWindow (page 3302)

Declared In
NSWindow.h

cacheImageInRect:
Stores the window’s raster image from a given rectangle expressed in the window’s base coordinate system.

- (void)cacheImageInRect:(NSRect)rectangle

Parameters
rectangle

The rectangle representing the image to cache.

Discussion
This method allows the window to perform temporary drawing, such as a band around the selection as the
user drags the mouse, and to quickly restore the previous image by invoking restoreCachedImage (page
3362) andflushWindowIfNeeded (page 3328). The next time the window displays, it discards its cached image
rectangles. You can also explicitly use discardCachedImage (page 3320) to free the memory occupied by
cached image rectangles. aRect is made integral before caching the image to avoid antialiasing artifacts.

Instance Methods 3303
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Only the last cached rectangle is remembered and can be restored.

Availability
Available in Mac OS X v10.0 and later.

See Also
– display (page 3321)

Declared In
NSWindow.h

canBecomeKeyWindow
Indicates whether the window can become the key window.

- (BOOL)canBecomeKeyWindow

Return Value
YES if the window can become the key window, otherwise, NO.

Discussion
Attempts to make the window the key window are abandoned if this method returns NO. The NSWindow (page
3275) implementation returns YES if the window has a title bar or a resize bar, or NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isKeyWindow (page 3338)
– makeKeyWindow (page 3345)

Related Sample Code
CIAnnotation
FancyAbout
FunkyOverlayWindow
GLUT
RoundTransparentWindow

Declared In
NSWindow.h

canBecomeMainWindow
Indicates whether the window can become the application’s main window.

- (BOOL)canBecomeMainWindow

Return Value
YES when the window can become the main window; otherwise, NO.

3304 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Discussion
Attempts to make the window the main window are abandoned if this method returns NO. The NSWindow
implementation returns YES if the window is visible, is not an NSPanel object, and has a title bar or a resize
mechanism. Otherwise it returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isMainWindow (page 3338)
– makeMainWindow (page 3346)

Related Sample Code
FancyAbout

Declared In
NSWindow.h

canBecomeVisibleWithoutLogin
Indicates whether the window can be displayed at the login window. Default: NO.

- (BOOL)canBecomeVisibleWithoutLogin

Return Value
YES when the window can be displayed at the login window; otherwise, NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setCanBecomeVisibleWithoutLogin: (page 3371)

Declared In
NSWindow.h

canBeVisibleOnAllSpaces
Indicates whether the window can be visible on all spaces or on only one space at a time. (Deprecated in
Mac OS X v10.5. Use setCollectionBehavior: (page 3372) instead.)

- (BOOL)canBeVisibleOnAllSpaces

Return Value
YES when the window can be visible on all spaces; NO when it can be visible on only one space at a time.

Discussion
The default is NO.

Availability
Available in Mac OS X v10.5 and later.
Deprecated in Mac OS X v10.5.

Instance Methods 3305
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

canHide
Indicates whether the window can be hidden when its application becomes hidden (during execution of the
NSApplication hide: (page 148) method).

- (BOOL)canHide

Return Value
YES if the window can be hidden when its application becomes hidden; otherwise, NO.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setCanHide: (page 3372)

Declared In
NSWindow.h

canStoreColor
Indicates whether the window has a depth limit that allows it to store color values.

- (BOOL)canStoreColor

Return Value
YES when the window’s depth limit allows it to store color values; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– depthLimit (page 3317)
– shouldDrawColor (page 3232) (NSView)

Declared In
NSWindow.h

cascadeTopLeftFromPoint:
Positions the window's top left to a given point.

- (NSPoint)cascadeTopLeftFromPoint:(NSPoint)topLeft

3306 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
topLeft

The new top-left point, in screen coordinates, for the window. When NSZeroPoint, the window is
not moved, except as needed to constrain to the visible screen

Return Value
The point shifted from top left of the window in screen coordinates.

Discussion
The returned point can be passed to a subsequent invocation of cascadeTopLeftFromPoint: to position
the next window so the title bars of both windows are fully visible.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameTopLeftPoint: (page 3384)

Related Sample Code
EnhancedDataBurn

Declared In
NSWindow.h

center
Sets the window’s location to the center of the screen.

- (void)center

Discussion
The window is placed exactly in the center horizontally and somewhat above center vertically. Such a
placement carries a certain visual immediacy and importance. This method doesn’t put the window onscreen,
however; use makeKeyAndOrderFront: (page 3345) to do that.

You typically use this method to place a window—most likely an alert dialog—where the user can’t miss it.
This method is invoked automatically when a panel is placed on the screen by the
runModalForWindow: (page 163) method of the NSApplication class.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaVideoFrameToGWorld
From A View to A Movie
NewsReader
Sketch+Accessibility
ThreadsImportMovie

Declared In
NSWindow.h

Instance Methods 3307
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

childWindows
Returns an array of the window’s attached child windows.

- (NSArray *)childWindows

Return Value
An array containing the window’s child windows.

Availability
Available in Mac OS X v10.2 and later.

See Also
– removeChildWindow: (page 3358)
– addChildWindow:ordered: (page 3297)
– parentWindow (page 3353)
– setParentWindow: (page 3392)

Declared In
NSWindow.h

close
Removes the window from the screen.

- (void)close

Discussion
If the window is set to be released when closed, a release message is sent to the object after the current
event is completed. For an NSWindow object, the default is to be released on closing, while for an NSPanel
object, the default is not to be released. You can use the setReleasedWhenClosed: (page 3394) method to
change the default behavior.

A window doesn’t have to be visible to receive the close message. For example, when the application
terminates, it sends the close message to all windows in its window list, even those that are not currently
visible.

The close method posts an NSWindowWillCloseNotification (page 3426) notification to the default
notification center.

The close method differs in two important ways from the performClose: (page 3354) method:

 ■ It does not attempt to send a windowShouldClose: (page 3937) message to the window or its delegate.

 ■ It does not simulate the user clicking the close button by momentarily highlighting the button.

Use performClose: (page 3354) if you need these features.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderOut: (page 3352)

3308 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Related Sample Code
ExtractMovieAudioToAIFF
From A View to A Movie
QTAudioContextInsert
QTAudioExtractionPanel
ThreadsImportMovie

Declared In
NSWindow.h

collectionBehavior
Identifies the window’s behavior in window collections.

- (NSWindowCollectionBehavior)collectionBehavior

Return Value
The collection behavior identifier.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setCollectionBehavior: (page 3372)

Declared In
NSWindow.h

colorSpace
Returns the window’s color space.

- (NSColorSpace *)colorSpace

Return Value
The color space. Will return nil If the window does not have a backing store, and is off-screen.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setColorSpace: (page 3373)

Declared In
NSWindow.h

constrainFrameRect:toScreen:
Modifies and returns a frame rectangle so that its top edge lies on a specific screen.

- (NSRect)constrainFrameRect:(NSRect)frameRect toScreen:(NSScreen *)screen

Instance Methods 3309
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
frameRect

The proposed frame rectangle to adjust.

screen
The screen on which the top edge of the window’s frame is to lie.

Return Value
The adjusted frame rectangle.

Discussion
If the window is resizable and the window’s height is greater than the screen height, the rectangle’s height
is adjusted to fit within the screen as well. The rectangle’s width and horizontal location are unaffected. You
shouldn’t need to invoke this method yourself; it’s invoked automatically (and the modified frame is used to
locate and set the size of the window) whenever a titled NSWindow object is placed onscreen and whenever
its size is changed.

Subclasses can override this method to prevent their instances from being constrained or to constrain them
differently.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend

Declared In
NSWindow.h

contentAspectRatio
Returns the window’s content aspect ratio.

- (NSSize)contentAspectRatio

Return Value
The window’s content aspect ratio.

Discussion
The default content aspect ratio is (0, 0).

Availability
Available in Mac OS X v10.3 and later.

See Also
– setContentAspectRatio: (page 3373)

Declared In
NSWindow.h

contentBorderThicknessForEdge:
Indicates the thickness of a given border of the window.

3310 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

- (CGFloat)contentBorderThicknessForEdge:(NSRectEdge)edge

Parameters
edge

The border whose thickness to get:

 ■ NSMaxYEdge: Top border.

 ■ NSMinYEdge: Bottom border.

Return Value
Thickness of the given border, in points.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setContentBorderThickness:forEdge: (page 3373)

Declared In
NSWindow.h

contentMaxSize
Returns the maximum size of the window’s content view.

- (NSSize)contentMaxSize

Return Value
The maximum size of the window’s content view.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setContentMaxSize: (page 3374)
– contentMinSize (page 3311)

Declared In
NSWindow.h

contentMinSize
Returns the minimum size of the window’s content view.

- (NSSize)contentMinSize

Return Value
The minimum size of the window’s content view.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 3311
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

See Also
– setContentMinSize: (page 3374)
– contentMaxSize (page 3311)

Declared In
NSWindow.h

contentRectForFrameRect:
Returns the window’s content rectangle with a given frame rectangle.

- (NSRect)contentRectForFrameRect:(NSRect)windowFrame

Parameters
windowFrame

The frame rectangle for the window expressed in screen coordinates.

Return Value
The window’s content rectangle, expressed in screen coordinates, with windowFrame.

Discussion
The window uses its current style mask in computing the content rectangle. See “Window Style Masks” (page
3411) for a list of style mask values. The main advantage of this instance-method counterpart to
contentRectForFrameRect:styleMask: (page 3292) is that it allows you to take toolbars into account
when converting between content and frame rectangles. (The toolbar is not included in the content rectangle.)

Availability
Available in Mac OS X v10.3 and later.

See Also
– frameRectForContentRect: (page 3329)
+ contentRectForFrameRect:styleMask: (page 3292)

Related Sample Code
SampleRaster

Declared In
NSWindow.h

contentResizeIncrements
Returns the window’s content-view resizing increments.

- (NSSize)contentResizeIncrements

Return Value
The window’s content-view resizing increments.

Availability
Available in Mac OS X v10.3 and later.

See Also
– setContentResizeIncrements: (page 3375)

3312 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

contentView
Returns the window’s content view, the highest accessible NSView object in the window’s view hierarchy.

- (id)contentView

Return Value
The content view.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setContentView: (page 3376)

Related Sample Code
FunHouse
FunkyOverlayWindow
GLUT
MyMediaPlayer
VBL

Declared In
NSWindow.h

convertBaseToScreen:
Converts a given point from the window’s base coordinate system to the screen coordinate system.

- (NSPoint)convertBaseToScreen:(NSPoint)point

Parameters
point

The point expressed in the window’s base coordinate system.

Return Value
point expressed in screen coordinates.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertScreenToBase: (page 3314)
– convertPoint:toView: (page 3155) (NSView)

Related Sample Code
GLUT
Sketch+Accessibility
ZipBrowser

Instance Methods 3313
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

convertScreenToBase:
Converts a given point from the screen coordinate system to the window’s base coordinate system.

- (NSPoint)convertScreenToBase:(NSPoint)aPoint

Parameters
point

The point expressed in screen coordinates.

Return Value
point expressed in the window’s base coordinate system.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertBaseToScreen: (page 3313)
– convertRect:fromView: (page 3157) (NSView)

Related Sample Code
GLUT
Sketch+Accessibility

Declared In
NSWindow.h

currentEvent
Returns the event currently being processed by the application, by invoking NSApplication’s
currentEvent (page 142) method.

- (NSEvent *)currentEvent

Return Value
The event being processed by the application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

dataWithEPSInsideRect:
Returns EPS data that draws the region of the window within a given rectangle.

- (NSData *)dataWithEPSInsideRect:(NSRect)rect

3314 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
rect

A rectangle (expressed in the window’s coordinate system) that identifies the region to be expressed
as EPS data.

Return Value
The region in the window (identified by rect) as EPS data.

Discussion
This data can be placed on a pasteboard, written to a file, or used to create an NSImage object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataWithEPSInsideRect: (page 3162) (NSView)
– writeEPSInsideRect:toPasteboard: (page 3248) (NSView)

Declared In
NSWindow.h

dataWithPDFInsideRect:
Returns PDF data that draws the region of the window within a given rectangle.

- (NSData *)dataWithPDFInsideRect:(NSRect)rect

Parameters
rect

A rectangle (expressed in the window’s coordinate system) that identifies the region to be expressed
as PDF data.

Return Value
The region in the window (identified by rect) as PDF data.

Discussion
This data can be placed on a pasteboard, written to a file, or used to create an NSImage object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dataWithPDFInsideRect: (page 3162) (NSView)
– writePDFInsideRect:toPasteboard: (page 3249) (NSView)

Declared In
NSWindow.h

deepestScreen
Returns the deepest screen the window is on (it may be split over several screens).

- (NSScreen *)deepestScreen

Instance Methods 3315
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Return Value
The deepest screen the window is on; nil when the window is offscreen.

Availability
Available in Mac OS X v10.0 and later.

See Also
– screen (page 3363)
+ deepestScreen (page 2314) (NSScreen)

Declared In
NSWindow.h

defaultButtonCell
Returns the button cell that performs as if clicked when the window receives a Return (or Enter) key event.

- (NSButtonCell *)defaultButtonCell

Return Value
The button cell.

Discussion
This cell draws itself as the focal element for keyboard interface control, unless another button cell is focused
on, in which case the default button cell temporarily draws itself as normal and disables its key equivalent.

The window receives a Return key event if no responder in its responder chain claims it, or if the user presses
the Control key along with the Return key.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDefaultButtonCell: (page 3377)
– disableKeyEquivalentForDefaultButtonCell (page 3319)
– enableKeyEquivalentForDefaultButtonCell (page 3324)

Declared In
NSWindow.h

delegate
Returns the window’s delegate.

- (id < NSWindowDelegate >)delegate

Return Value
The window’s delegate, or nil if it doesn’t have a delegate.

Availability
Available in Mac OS X v10.0 and later.

3316 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

See Also
– setDelegate: (page 3377)

Related Sample Code
FancyAbout
Quartz Composer WWDC 2005 TextEdit

Declared In
NSWindow.h

deminiaturize:
Deminimizes the window.

- (void)deminiaturize:(id)sender

Parameters
sender

The message’s sender.

Discussion
Invoke this method to programmatically deminimize a minimized window in the Dock.

Availability
Available in Mac OS X v10.0 and later.

See Also
– miniaturize: (page 3347)
– styleMask (page 3402)

Related Sample Code
GLUT

Declared In
NSWindow.h

depthLimit
Returns the depth limit of the window.

- (NSWindowDepth)depthLimit

Return Value
Depth limit of the window.

Discussion
The value returned can be examined with the Application Kit functions NSPlanarFromDepth (page 3990),
NSColorSpaceFromDepth (page 3966), NSBitsPerSampleFromDepth (page 3966), and
NSBitsPerPixelFromDepth (page 3966).

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3317
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

See Also
+ defaultDepthLimit (page 3292)
– setDepthLimit: (page 3378)
– setDynamicDepthLimit: (page 3380)

Declared In
NSWindow.h

deviceDescription
Returns a dictionary containing information about the window’s resolution.

- (NSDictionary *)deviceDescription

Return Value
A dictionary containing resolution information about the window, such as color, depth, and so on.

Discussion
This information is useful for tuning images and colors to the window’s display capabilities. The contents of
the dictionary are described in “Display Device—Descriptions” (page 3413).

Availability
Available in Mac OS X v10.0 and later.

See Also
– deviceDescription (page 2317) (NSScreen)
– bestRepresentationForDevice: (page 1337) (NSImage)
– colorUsingColorSpaceName: (page 700) (NSColor)

Related Sample Code
CocoaDVDPlayer

Declared In
NSWindow.h

disableCursorRects
Disables all cursor rectangle management within the window.

- (void)disableCursorRects

Discussion
Use this method when you need to do some special cursor manipulation and you don’t want the Application
Kit interfering.

Availability
Available in Mac OS X v10.0 and later.

See Also
– enableCursorRects (page 3324)

3318 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

disableFlushWindow
Disables the flushWindow (page 3327) method for the window.

- (void)disableFlushWindow

Discussion
If the window is buffered, disabling flushWindow (page 3327) prevents drawing from being automatically
flushed by the NSView display... methods from the window’s backing store to the screen. This method
permits several views to be drawn before the results are shown to the user.

Flushing should be disabled only temporarily, while the window’s display is being updated. Each
disableFlushWindowmessage must be paired with a subsequentenableFlushWindow (page 3324) message.
Invocations of these methods can be nested; flushing isn’t reenabled until the last (unnested)
enableFlushWindow (page 3324) message is sent.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaDVDPlayer

Declared In
NSWindow.h

disableKeyEquivalentForDefaultButtonCell
Disables the default button cell’s key equivalent, so it doesn’t perform a click when the user presses Return
(or Enter).

- (void)disableKeyEquivalentForDefaultButtonCell

Availability
Available in Mac OS X v10.0 and later.

See Also
– defaultButtonCell (page 3316)
– enableKeyEquivalentForDefaultButtonCell (page 3324)

Declared In
NSWindow.h

disableScreenUpdatesUntilFlush
Disables the window’s screen updates until the window is flushed.

- (void)disableScreenUpdatesUntilFlush

Instance Methods 3319
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Discussion
This method can be invoked to synchronize hardware surface flushes with the window’s flushes. The window
immediately disables screen updates using theNSDisableScreenUpdates (page 3969) function and reenables
screen updates when the window flushes. Sending this message multiple times during a window update
cycle has no effect.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CocoaSlides
GLSLShowpiece

Declared In
NSWindow.h

discardCachedImage
Discards all of the window’s cached image rectangles.

- (void)discardCachedImage

Discussion
An NSWindow object automatically discards its cached image rectangles when it displays.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cacheImageInRect: (page 3303)
– restoreCachedImage (page 3362)
– display (page 3321)

Declared In
NSWindow.h

discardCursorRects
Invalidates all cursor rectangles in the window.

- (void)discardCursorRects

Discussion
This method is invoked by resetCursorRects (page 3360) to clear out existing cursor rectangles before
resetting them. You shouldn’t invoke it in the code you write, but you might want to override it to change
its behavior.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

3320 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

discardEventsMatchingMask:beforeEvent:
Forwards the message to the NSApplication object, NSApp.

- (void)discardEventsMatchingMask:(NSUInteger)eventMask beforeEvent:(NSEvent
*)lastEvent

Parameters
eventMask

The mask of the events to discard.

lastEvent
The event up to which queued events are discarded from the queue.

Availability
Available in Mac OS X v10.0 and later.

See Also
– discardEventsMatchingMask:beforeEvent: (page 144) (NSApplication)

Declared In
NSWindow.h

display
Passes a display message down the window’s view hierarchy, thus redrawing all views within the window,
including the frame view that draws the border, title bar, and other peripheral elements.

- (void)display

Discussion
You rarely need to invoke this method. NSWindow objects normally record which of their views need display
and display them automatically on each pass through the event loop.

Availability
Available in Mac OS X v10.0 and later.

See Also
– display (page 3163) (NSView)
– displayIfNeeded (page 3321)
– isAutodisplay (page 3336)

Related Sample Code
GLUT

Declared In
NSWindow.h

displayIfNeeded
Passes a displayIfNeeded message down the window’s view hierarchy, thus redrawing all views that need
to be displayed, including the frame view that draws the border, title bar, and other peripheral elements.

- (void)displayIfNeeded

Instance Methods 3321
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Discussion
This method is useful when you want to modify some number of views and then display only the ones that
were modified.

You rarely need to invoke this method. NSWindow objects normally record which of their views need display
and display them automatically on each pass through the event loop.

Availability
Available in Mac OS X v10.0 and later.

See Also
– display (page 3321)
– displayIfNeeded (page 3164) (NSView)
– setNeedsDisplay: (page 3225) (NSView)
– isAutodisplay (page 3336)

Related Sample Code
AnimatedTableView

Declared In
NSWindow.h

displaysWhenScreenProfileChanges
Indicates whether the window context should be updated when the screen profile changes or when the
window moves to a different screen.

- (BOOL)displaysWhenScreenProfileChanges

Return Value
YES when the window context should be updated when the screen profile changes or when the window
moves to a different screen; otherwise, NO.

Discussion
The default value is NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setDisplaysWhenScreenProfileChanges: (page 3378)

Related Sample Code
VideoViewer

Declared In
NSWindow.h

dockTile
Provides the application’s Dock tile.

- (NSDockTile *)dockTile

3322 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Return Value
The application’s Dock tile.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSWindow.h

dragImage:at:offset:event:pasteboard:source:slideBack:
Begins a dragging session.

- (void)dragImage:(NSImage *)image at:(NSPoint)imageLocation
offset:(NSSize)pointerOffset event:(NSEvent *)event pasteboard:(NSPasteboard
*)pasteboard source:(id)sourceObject slideBack:(BOOL)slideBack

Parameters
image

The object to be dragged.

imageLocation
Location of the image’s bottom-left corner in the window’s coordinate system. It determines the
placement of the dragged image under the pointer.

initialOffset
The pointer’s location relative to the mouse-down location. Not used in Mac OS X v10.4 and later.

event
The left-mouse down event that triggered the dragging operation.

pasteboard
The pasteboard that holds the data to be transfered to the destination.

sourceObject
The object serving as the controller of the dragging operation. It must conform to the
NSDraggingSource informal protocol.

slideBack
Specifies whether the drag image should slide back to imageLocation if it's rejected by the drag
destination. Pass YES to specify slideback behavior or NO to specify that it should not.

Discussion
This method should be invoked only from within a view’s implementation of the mouseDown: (page 2164) or
mouseDragged: (page 2164) methods (which overrides the version defined in NSResponder class). Essentially
the same as the NSView method of the same name, except that imageLocation is given in the NSWindow
object’s base coordinate system.

Availability
Available in Mac OS X v10.0 and later.

See Also
– dragImage:at:offset:event:pasteboard:source:slideBack: (page 3168) (NSView)

Declared In
NSWindow.h

Instance Methods 3323
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

drawers
Returns the collection of drawers associated with the window.

- (NSArray *)drawers

Return Value
The collection of drawers associated with the window.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDrawer.h

enableCursorRects
Reenables cursor rectangle management within the window after a disableCursorRects (page 3318)
message.

- (void)enableCursorRects

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

enableFlushWindow
Reenables the flushWindow (page 3327) method for the window after it was disabled through a previous
disableFlushWindow (page 3319) message.

- (void)enableFlushWindow

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaDVDPlayer

Declared In
NSWindow.h

enableKeyEquivalentForDefaultButtonCell
Reenables the default button cell’s key equivalent, so it performs a click when the user presses Return (or
Enter).

- (void)enableKeyEquivalentForDefaultButtonCell

Availability
Available in Mac OS X v10.0 and later.

3324 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

See Also
– defaultButtonCell (page 3316)
– disableKeyEquivalentForDefaultButtonCell (page 3319)

Declared In
NSWindow.h

endEditingFor:
Forces the field editor to give up its first responder status and prepares it for its next assignment.

- (void)endEditingFor:(id)object

Parameters
object

The object that is using the window’s field editor.

Discussion
If the field editor is the first responder, it’s made to resign that status even if its resignFirstResponder (page
2189) method returns NO. This registration forces the field editor to send a textDidEndEditing: message
to its delegate. The field editor is then removed from the view hierarchy, its delegate is set to nil, and it’s
emptied of any text it may contain.

This method is typically invoked by the object using the field editor when it’s finished. Other objects normally
change the first responder by simply using makeFirstResponder: (page 3344), which allows a field editor
or other object to retain its first responder status if, for example, the user has entered an invalid value. The
endEditingFor: (page 3325) method should be used only as a last resort if the field editor refuses to resign
first responder status. Even in this case, you should always allow the field editor a chance to validate its text
and take whatever other action it needs first. You can do this by first trying to make the NSWindow object
the first responder:

if ([myWindow makeFirstResponder:myWindow]) {
 /* All fields are now valid; it’s safe to use fieldEditor:forObject:
 to claim the field editor. */
}
else {
 /* Force first responder to resign. */
 [myWindow endEditingFor:nil];
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– fieldEditor:forObject: (page 3325)
– windowWillReturnFieldEditor:toObject: (page 3940) (NSWindowDelegate)

Declared In
NSWindow.h

fieldEditor:forObject:
Returns the window’s field editor, creating it if requested.

Instance Methods 3325
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

- (NSText *)fieldEditor:(BOOL)createWhenNeeded forObject:(id)anObject

Parameters
createWhenNeeded

If YES, creates a field editor if one doesn’t exist; if NO, does not create a field editor.

A freshly created NSWindow object doesn’t have a field editor. After a field editor has been created
for a window, the createWhenNeeded argument is ignored. By passing NO for createWhenNeeded
and testing the return value, however, you can predicate an action on the existence of the field editor.

anObject
A text-displaying object for which the delegate (in
windowWillReturnFieldEditor:toObject: (page 3940)) assigns a custom field editor. Pass nil
to get the default field editor, which can be the NSWindow field editor or a custom field editor returned
by the delegate.

Return Value
Returns the field editor for the designated object (anObject) or, if anObject is nil, the default field editor.
Returns nil if createFlag is NO and if the field editor doesn’t exist.

Discussion
The field editor is a single NSTextView object that is shared among all the controls in a window for light
text-editing needs. It is automatically instantiated when needed, and it can be used however your application
sees fit. Typically, the field editor is used by simple text-bearing objects—for example, an NSTextField
object uses its window’s field editor to display and manipulate text. The field editor can be shared by any
number of objects, and so its state may be constantly changing. Therefore, it shouldn’t be used to display
text that demands sophisticated layout (for this you should create a dedicated NSTextView object).

The field editor may be in use by some view object, so be sure to properly dissociate it from that object
before actually using it yourself (the appropriate way to do this is illustrated in the description of
endEditingFor: (page 3325)). Once you retrieve the field editor, you can insert it in the view hierarchy, set
a delegate to interpret text events, and have it perform whatever editing is needed. Then, when it sends a
textDidEndEditing:message to the delegate, you can get its text to display or store and remove the field
editor using endEditingFor: (page 3325).

The window’s delegate can substitute a custom field editor in place of the window’s field editor by
implementing windowWillReturnFieldEditor:toObject: (page 3940). The custom field editor can
become the default editor (common to all text-displaying objects) or specific to a particular text-displaying
object (anObject). The window sends this message to its delegate with itself and anObject as the arguments;
if the delegate returns a non-nil value, the window returns that object instead of its field editor in
fieldEditor:forObject:. However, note the following:

 ■ If the window’s delegate is identical to anObject, windowWillReturnFieldEditor:toObject: (page
3940) isn’t sent to the delegate.

 ■ The object returned by the delegate method, though it may become first responder, does not become
the window's default field editor. Other objects continue to use the window's default field editor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

3326 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

firstResponder
Returns the window’s first responder.

- (NSResponder *)firstResponder

Return Value
The first responder.

Discussion
The first responder is usually the first object in a responder chain to receive an event or action message. In
most cases, the first responder is a view object in that the user selects or activates with the mouse or keyboard.

You can use the firstResponder method in custom subclasses of responder classes (NSWindow,
NSApplication, NSView, and subclasses) to determine if an instance of the subclass is currently the first
responder. You can also use it to help locate a text field that currently has first-responder status. For more
on this subject, see “Event Handling Basics.“

In Mac OS X v10.6 and later, firstResponder is key-value observing compliant.

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeFirstResponder: (page 3344)
– acceptsFirstResponder (page 2143) (NSResponder)

Related Sample Code
AnimatedTableView
GLUT

Declared In
NSWindow.h

flushWindow
Flushes the window’s offscreen buffer to the screen if the window is buffered and flushing is enabled.

- (void)flushWindow

Discussion
Does nothing for other display devices, such as a printer. This method is automatically invoked by the
NSWindowdisplay (page 3321) anddisplayIfNeeded (page 3321) methods and the correspondingNSView
display (page 3163) and displayIfNeeded (page 3164) methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
– flushWindowIfNeeded (page 3328)
– disableFlushWindow (page 3319)
– enableFlushWindow (page 3324)

Instance Methods 3327
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Related Sample Code
QTKitFrameStepper

Declared In
NSWindow.h

flushWindowIfNeeded
Flushes the window’s offscreen buffer to the screen if flushing is enabled and if the last flushWindow (page
3327) message had no effect because flushing was disabled.

- (void)flushWindowIfNeeded

Discussion
To avoid unnecessary flushing, use this method rather than flushWindow (page 3327) to flush an NSWindow
object after flushing has been reenabled.

Availability
Available in Mac OS X v10.0 and later.

See Also
– disableFlushWindow (page 3319)
– enableFlushWindow (page 3324)

Declared In
NSWindow.h

frame
Returns the window’s frame rectangle.

- (NSRect)frame

Return Value
The frame rectangle of the window in screen coordinates, including the title bar.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrame:display: (page 3381)
– setFrame:display:animate: (page 3381)

Related Sample Code
CIAnnotation
FunHouse
FunkyOverlayWindow
GLUT
Quartz Composer WWDC 2005 TextEdit

Declared In
NSWindow.h

3328 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

frameAutosaveName
Returns the name used to automatically save the window’s frame rectangle data in the defaults system, as
set through setFrameAutosaveName: (page 3382).

- (NSString *)frameAutosaveName

Return Value
The name used to save the window’s frame rectangle automatically in the defaults system.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameUsingName: (page 3384)

Declared In
NSWindow.h

frameRectForContentRect:
Returns the window’s frame rectangle with a given content rectangle.

- (NSRect)frameRectForContentRect:(NSRect)windowContent

Parameters
windowContent

The content rectangle for the window expressed in screen coordinates.

Return Value
The window’s frame rectangle, expressed in screen coordinates, with windowContent.

Discussion
The window uses its current style mask in computing the frame rectangle. See “Window Style Masks” (page
3411) for a list of style mask values. The major advantage of this instance-method counterpart to
frameRectForContentRect:styleMask: (page 3293) is that it allows you to take toolbars into account
when converting between content and frame rectangles. (The toolbar is included in the frame rectangle but
not the content rectangle.)

Availability
Available in Mac OS X v10.3 and later.

See Also
– contentRectForFrameRect: (page 3312)
+ frameRectForContentRect:styleMask: (page 3293)

Related Sample Code
BasicCocoaAnimations
FunHouse

Declared In
NSWindow.h

Instance Methods 3329
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

graphicsContext
Provides the graphics context associated with the window for the current thread.

- (NSGraphicsContext *)graphicsContext

Return Value
The graphics context associated with the window for the current thread.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation
FunHouse

Declared In
NSWindow.h

gState
Returns the window’s graphics state object.

- (NSInteger)gState

Return Value
The graphics state object associated with the window.

Discussion
This graphics state is used by default for all NSView objects in the window’s view hierarchy, but individual
views can be made to use their own with the NSView method allocateGState (page 3146).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

hasDynamicDepthLimit
Indicates whether the window’s depth limit can change to match the depth of the screen it’s on.

- (BOOL)hasDynamicDepthLimit

Return Value
YES when the window has a dynamic depth limit; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDynamicDepthLimit: (page 3380)

3330 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

hasShadow
Indicates whether the window has a shadow.

- (BOOL)hasShadow

Return Value
YES when the window has a shadow; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHasShadow: (page 3385)
– invalidateShadow (page 3336)

Declared In
NSWindow.h

hidesOnDeactivate
Indicates whether the window is removed from the screen when its application becomes inactive.

- (BOOL)hidesOnDeactivate

Return Value
YES if the window is removed from the screen when its application is deactivated; NO if it remains onscreen.

Discussion
The default for NSWindow is NO; the default for NSPanel is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setHidesOnDeactivate: (page 3386)

Declared In
NSWindow.h

ignoresMouseEvents
Indicates whether the window is transparent to mouse events.

- (BOOL)ignoresMouseEvents

Return Value
YES when the window is transparent to mouse events; otherwise, NO.

Instance Methods 3331
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
– setIgnoresMouseEvents: (page 3387)

Declared In
NSWindow.h

initialFirstResponder
Returns view that’s made first responder the first time the window is placed onscreen.

- (NSView *)initialFirstResponder

Return Value
The view that’s made first responder the first time the window is placed onscreen.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setInitialFirstResponder: (page 3387)
– setNextKeyView: (page 3226) (NSView)

Declared In
NSWindow.h

initWithContentRect:styleMask:backing:defer:
Initializes the window with the specified values.

- (id)initWithContentRect:(NSRect)contentRect styleMask:(NSUInteger)windowStyle
backing:(NSBackingStoreType)bufferingType defer:(BOOL)deferCreation

Parameters
contentRect

Location and size of the window’s content area in screen coordinates. Note that the window server
limits window position coordinates to ±16,000 and sizes to 10,000.

windowStyle
The window’s style. It can be NSBorderlessWindowMask, or it can contain any of the options
described in “Window Style Masks” (page 3411), combined using the C bitwise OR operator. Borderless
windows display none of the usual peripheral elements and are generally useful only for display or
caching purposes; you should normally not need to create them. Also, note that a window’s style
mask should include NSTitledWindowMask if it includes any of the others.

bufferingType
Specifies how the drawing done in the window is buffered by the window device, and possible values
are described in “NSBackingStoreType—Buffered Window Drawing” (page 3417).

3332 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

deferCreation
Specifies whether the window server creates a window device for the window immediately. When
YES, the window server defers creating the window device until the window is moved onscreen. All
display messages sent to the window or its views are postponed until the window is created, just
before it’s moved onscreen.

Return Value
The initialized window.

Discussion
This method is the designated initializer for the NSWindow class.

Deferring the creation of the window improves launch time and minimizes the virtual memory load on the
window server.

The new window creates a view to be its default content view. You can replace it with your own object by
using the setContentView: (page 3376) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 3351)
– setTitle: (page 3398)
– setOneShot: (page 3391)
– initWithContentRect:styleMask:backing:defer:screen: (page 3333)

Related Sample Code
AnimatedTableView
FunkyOverlayWindow
LiveVideoMixer2
OpenCL NBody Simulation Example
VBL

Declared In
NSWindow.h

initWithContentRect:styleMask:backing:defer:screen:
Initializes an allocated window with the specified values.

- (id)initWithContentRect:(NSRect)contentRect styleMask:(NSUInteger)windowStyle
backing:(NSBackingStoreType)bufferingType defer:(BOOL)deferCreation
screen:(NSScreen *)screen

Parameters
contentRect

Location and size of the window’s content area in screen coordinates. Note that the window server
limits window position coordinates to ±16,000 and sizes to 10,000.

Instance Methods 3333
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

windowStyle
The window’s style. It can be either NSBorderlessWindowMask, or it can contain any of the options
described in “Window Style Masks” (page 3411), combined using the C bitwise OR operator. Borderless
windows display none of the usual peripheral elements and are generally useful only for display or
caching purposes; you should normally not need to create them. Also, note that a window’s style
mask should include NSTitledWindowMask if it includes any of the others.

bufferingType
Specifies how the drawing done in the window is buffered by the window device; possible values are
described in “NSBackingStoreType—Buffered Window Drawing” (page 3417).

deferCreation
Specifies whether the window server creates a window device for the window immediately. When
YES, the window server defers creating the window device until the window is moved onscreen. All
display messages sent to the window or its views are postponed until the window is created, just
before it’s moved onscreen.

screen
Specifies where the window’s content rectangle is drawn if the window is to be drawn in a screen
other than the main screen. The content rectangle is drawn relative to the bottom-left corner of
screen. When nil, the content rectangle is drawn on the main screen.

Return Value
The initialized window.

Discussion
The main screen is the one that contains the current key window or, if there is no key window, the one that
contains the main menu. If there’s neither a key window nor a main menu (if there’s no active application),
the main screen is the one where the origin of the screen coordinate system is located.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 3351)
– setTitle: (page 3398)
– setOneShot: (page 3391)

Related Sample Code
WhackedTV

Declared In
NSWindow.h

initWithWindowRef:
Returns a Cocoa window created from a Carbon window.

- (NSWindow *)initWithWindowRef:(void *)carbonWindowRef

Parameters
carbonWindowRef

The Carbon WindowRef object to use to create the Cocoa window.

Return Value
A Cocoa window created from carbonWindowRef.

3334 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Discussion
For more information on Carbon-Cocoa integration, see Using a Carbon User Interface in a Cocoa Application
in Carbon-Cocoa Integration Guide.

Special Considerations

For historical reasons, contrary to normal memory management policy initWithWindowRef: does not
retain windowRef. It is therefore recommended that you make sure you retain windowRef before calling
this method. If windowRef is still valid when the Cocoa window is deallocated, the Cocoa window will release
it.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowRef (page 3408)

Related Sample Code
CarbonCocoaTempConverter

Declared In
NSWindow.h

inLiveResize
Indicates whether the window is being resized by the user.

- (BOOL)inLiveResize

Return Value
YES if the window is being live resized; otherwise, NO.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWindow.h

invalidateCursorRectsForView:
Marks as invalid the cursor rectangles of a given NSView object in the window’s view hierarchy, so they’ll be
set up again when the window becomes key (or immediately if the window is key).

- (void)invalidateCursorRectsForView:(NSView *)view

Parameters
view

The view in the window’s view hierarchy.

Availability
Available in Mac OS X v10.0 and later.

See Also
– resetCursorRects (page 3360)

Instance Methods 3335
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

– resetCursorRects (page 3206) (NSView)

Related Sample Code
DragItemAround
GLUT

Declared In
NSWindow.h

invalidateShadow
Invalidates the window shadow so that it is recomputed based on the current window shape.

- (void)invalidateShadow

Availability
Available in Mac OS X v10.2 and later.

See Also
– hasShadow (page 3331)
– setHasShadow: (page 3385)

Declared In
NSWindow.h

isAutodisplay
Indicates whether the window automatically displays views that need to be displayed.

- (BOOL)isAutodisplay

Return Value
YES when the window automatically displays views that need to be displayed; otherwise, NO.

Discussion
Automatic display typically occurs on each pass through the event loop.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAutodisplay: (page 3368)
– displayIfNeeded (page 3321)
– setNeedsDisplay: (page 3225) (NSView)

Declared In
NSWindow.h

isDocumentEdited
Indicates whether the window’s document has been edited.

3336 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

- (BOOL)isDocumentEdited

Return Value
YES when the window’s document has been edited; otherwise, NO.

Discussion
Initially, by default, NSWindow objects are in the “not edited” state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

isExcludedFromWindowsMenu
Indicates whether the window is excluded from the application’s Windows menu.

- (BOOL)isExcludedFromWindowsMenu

Return Value
YES when the window is excluded from the Windows menu; otherwise, NO.

Discussion
The default initial setting is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setExcludedFromWindowsMenu: (page 3380)

Declared In
NSWindow.h

isFlushWindowDisabled
Indicates whether the window’s flushing ability is disabled.

- (BOOL)isFlushWindowDisabled

Return Value
YES when the window’s flushing ability has been disabled; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– disableFlushWindow (page 3319)
– enableFlushWindow (page 3324)

Declared In
NSWindow.h

Instance Methods 3337
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

isKeyWindow
Indicates whether the window is the key window for the application.

- (BOOL)isKeyWindow

Return Value
YES if the window is the key window for the application; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isMainWindow (page 3338)
– makeKeyWindow (page 3345)

Related Sample Code
AnimatedTableView

Declared In
NSWindow.h

isMainWindow
Indicates whether the window is the application’s main window.

- (BOOL)isMainWindow

Return Value
YES when the window is the main window for the application; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isKeyWindow (page 3338)
– makeMainWindow (page 3346)

Declared In
NSWindow.h

isMiniaturized
Indicates whether the window is minimized.

- (BOOL)isMiniaturized

Return Value
YES if the window is minimized; otherwise, NO.

Discussion
A minimized window is removed from the screen and replaced by a image, icon, or button that represents
it, called the counterpart.

3338 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– miniaturize: (page 3347)

Declared In
NSWindow.h

isMovable
Indicates whether the window can be moved by clicking in its title bar or background.

- (BOOL)isMovable

Return Value
YES if the window can be moved by the user; otherwise, NO.

Discussion
setMovableByWindowBackground: (page 3391), called with the argument YES, is ignored by a window that
returns NO from isMovable. If a window returns NO, that means it can only be dragged between spaces in
F8 mode, and its relative screen position is always preserved. Note that a resizable window may still be resized,
and the window frame may be changed programmatically. A non-movable window will not be moved or
resized by the system in response to a display reconfiguration. Applications may choose to enable
application-controlled window dragging after disabling user-initiating dragging by handling the
mouseDown: (page 2164)/mouseDragged: (page 2164)/mouseUp: (page 2166) sequence insendEvent: (page
3366) in an NSWindow subclass.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setMovable: (page 3391)

Declared In
NSWindow.h

isMovableByWindowBackground
Indicates whether the window is movable by clicking and dragging anywhere in its background.

- (BOOL)isMovableByWindowBackground

Return Value
YES when the window is movable by clicking and dragging anywhere in its background; otherwise, NO.

Discussion
A window with a style mask of NSTexturedBackgroundWindowMask is movable by background by default.
Sheets and drawers cannot be movable by window background.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 3339
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

See Also
– setMovableByWindowBackground: (page 3391)

Declared In
NSWindow.h

isOnActiveSpace
Indicates whether the window is on the currently active space.

- (BOOL)isOnActiveSpace

Return Value
YES if the window is on the currently active space; otherwise, NO.

Discussion
For visible windows, this method indicates whether the window is currently visible on the active space. For
offscreen windows, it indicates whether ordering the window onscreen would cause it to be on the active
space.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWindow.h

isOneShot
Indicates whether the window device the window manages is freed when it’s removed from the screen list.

- (BOOL)isOneShot

Return Value
YES when the window’s window device is freed when it’s removed from the screen list; otherwise, NO.

Discussion
The default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOneShot: (page 3391)

Declared In
NSWindow.h

isOpaque
Indicates whether the window is opaque.

- (BOOL)isOpaque

3340 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Return Value
YES when the window is opaque; otherwise, NO.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setOpaque: (page 3392)

Declared In
NSWindow.h

isReleasedWhenClosed
Indicates whether the window is released when it receives the close message.

- (BOOL)isReleasedWhenClosed

Return Value
YES if the window is automatically released after being closed; NO if it’s simply removed from the screen.

Discussion
The default for NSWindow is YES; the default for NSPanel is NO. Release when closed, however, is ignored
for windows owned by window controllers.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setReleasedWhenClosed: (page 3394)

Declared In
NSWindow.h

isSheet
Indicates whether the window has ever run as a modal sheet.

- (BOOL)isSheet

Return Value
YES if the window has ever run as a modal sheet; otherwise, NO.

Discussion
Sheets are created using the NSPanel subclass.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSWindow.h

Instance Methods 3341
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

isVisible
Indicates whether the window is visible onscreen (even when It’s obscured by other windows).

- (BOOL)isVisible

Return Value
YES when the window is onscreen (even if it’s obscured by other windows); otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– visibleRect (page 3245) (NSView)

Related Sample Code
AnimatedTableView
GLUT
QTAudioExtractionPanel
Sketch+Accessibility

Declared In
NSWindow.h

isZoomed
Returns a Boolean value that indicates whether the window is in a zoomed state.

- (BOOL)isZoomed

Return Value
YES if the window is in a zoomed state; otherwise, NO.

Discussion
The zoomed state of the window is determined using the following steps:

1. If the delegate or the window class implementswindowWillUseStandardFrame:defaultFrame: (page
3942), it is invoked to obtain the zoomed frame of the window. The result of isZoomed is then determined
by whether or not the current window frame is equal to the zoomed frame.

2. If the neither the delegate nor the window class implements
windowWillUseStandardFrame:defaultFrame:, a default frame that nearly fits the screen is chosen.
If the delegate or window class implements , it is invoked to validate the proposed zoomed frame. Once
the zoomed frame is validated, the result of isZoomed is determined by whether or not the current
window frame is equal to the zoomed frame.

Availability
Available in Mac OS X v10.0 and later.

See Also
– zoom: (page 3409)

3342 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

keyDown:
Handles a given keyboard event that may need to be interpreted as changing the key view or triggering a
keyboard equivalent.

- (void)keyDown:(NSEvent *)event

Parameters
event

The keyboard event to process.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectNextKeyView: (page 3364)
– nextKeyView (page 3192) (NSView)
– performMnemonic: (page 3195) (NSView)

Declared In
NSWindow.h

keyViewSelectionDirection
Returns the direction the window is currently using to change the key view.

- (NSSelectionDirection)keyViewSelectionDirection

Return Value
The direction the window is using to change the key view.

Discussion
This direction can be one of the values described in “NSSelectionDirection—Direction of Key View
Change” (page 3415).

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectNextKeyView: (page 3364)
– selectPreviousKeyView: (page 3365)

Declared In
NSWindow.h

level
Returns the window level of the window.

Instance Methods 3343
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

- (NSInteger)level

Return Value
The window level.

Discussion
See “Window Levels” (page 3412) for a list of possible values.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setLevel: (page 3387)

Declared In
NSWindow.h

makeFirstResponder:
Attempts to make a given responder the first responder for the window.

- (BOOL)makeFirstResponder:(NSResponder *)responder

Parameters
responder

The responder to set as the window’s first responder. nil makes the window its first responder.

Return Value
YES when the operation is successful; otherwise, NO.

Discussion
If responder isn’t already the first responder, this method first sends a resignFirstResponder (page 2189)
message to the object that is the first responder. If that object refuses to resign, it remains the first responder,
and this method immediately returns NO. If the current first responder resigns, this method sends a
becomeFirstResponder (page 2144) message to responder. If responder does not accept first responder
status, the NSWindow object becomes first responder; in this case, the method returns YES even if responder
refuses first responder status.

Ifresponder isnil, this method still sendsresignFirstResponder (page 2189) to the current first responder.
If the current first responder refuses to resign, it remains the first responder and this method immediately
returns NO. If the current first responder returns YES from resignFirstResponder, the window is made
its own first responder and this method returns YES.

The Application Kit framework uses this method to alter the first responder in response to mouse-down
events; you can also use it to explicitly set the first responder from within your program. The responder
object is typically an NSView object in the window’s view hierarchy. If this method is called explicitly, first
send acceptsFirstResponder (page 2143) to responder, and do not call makeFirstResponder: if
acceptsFirstResponder returns NO.

Use setInitialFirstResponder: (page 3387) to the set the first responder to be used when the window
is brought onscreen for the first time.

Availability
Available in Mac OS X v10.0 and later.

3344 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

See Also
– becomeFirstResponder (page 2144) (NSResponder)
– resignFirstResponder (page 2189) (NSResponder)

Related Sample Code
CocoaSpeechSynthesisExample
IdentitySample
ObjectPath
Sketch-112
WhackedTV

Declared In
NSWindow.h

makeKeyAndOrderFront:
Moves the window to the front of the screen list, within its level, and makes it the key window; that is, it
shows the window.

- (void)makeKeyAndOrderFront:(id)sender

Parameters
sender

The message’s sender.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 3351)
– orderBack: (page 3350)
– orderOut: (page 3352)
– orderWindow:relativeTo: (page 3352)
– setLevel: (page 3387)

Related Sample Code
GLUT
GridCalendar
QTAudioExtractionPanel
QTKitPlayer
Quartz Composer WWDC 2005 TextEdit

Declared In
NSWindow.h

makeKeyWindow
Makes the window the key window.

- (void)makeKeyWindow

Instance Methods 3345
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeMainWindow (page 3346)
– becomeKeyWindow (page 3302)
– isKeyWindow (page 3338)

Declared In
NSWindow.h

makeMainWindow
Makes the window the main window.

- (void)makeMainWindow

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeKeyWindow (page 3345)
– becomeMainWindow (page 3303)
– isMainWindow (page 3338)

Declared In
NSWindow.h

maxSize
Returns the maximum size to which the window’s frame (including its title bar) can be sized.

- (NSSize)maxSize

Return Value
The maximum size to which the window’s frame (including its title bar) can be sized either by the user or by
the setFrame... methods other than setFrame:display: (page 3381) and
setFrame:display:animate: (page 3381).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMaxSize: (page 3388)
– minSize (page 3348)
– aspectRatio (page 3300)
– resizeIncrements (page 3361)

Declared In
NSWindow.h

3346 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

miniaturize:
Removes the window from the screen list and displays the minimized window in the Dock.

- (void)miniaturize:(id)sender

Parameters
sender

The message’s sender.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deminiaturize: (page 3317)

Related Sample Code
GLUT
StickiesWithCoreData

Declared In
NSWindow.h

miniwindowImage
Returns the custom miniaturized window image of the window.

- (NSImage *)miniwindowImage

Return Value
The custom miniaturized window image.

Discussion
The miniaturized window image is the image displayed in the Dock when the window is minimized. If you
did not assign a custom image to the window, this method returns nil.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMiniwindowImage: (page 3389)
– miniwindowTitle (page 3347)

Declared In
NSWindow.h

miniwindowTitle
Returns the title displayed in the window’s minimized window.

- (NSString *)miniwindowTitle

Return Value
The title displayed in the window’s minimized window.

Instance Methods 3347
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMiniwindowTitle: (page 3390)
– miniwindowImage (page 3347)

Declared In
NSWindow.h

minSize
Returns the minimum size to which the window’s frame (including its title bar) can be sized.

- (NSSize)minSize

Return Value
The minimum size to which the window’s frame (including its title bar) can be sized either by the user or by
the setFrame... methods other than setFrame:display: (page 3381) and
setFrame:display:animate: (page 3381).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMinSize: (page 3390)
– maxSize (page 3346)
– aspectRatio (page 3300)
– resizeIncrements (page 3361)

Related Sample Code
CIVideoDemoGL
StickiesWithCoreData

Declared In
NSWindow.h

mouseLocationOutsideOfEventStream
Returns the current location of the pointer reckoned in the window’s base coordinate system.

- (NSPoint)mouseLocationOutsideOfEventStream

Return Value
The current location of the pointer reckoned in the window’s base coordinate system, regardless of the
current event being handled or of any events pending.

Discussion
For the same information in screen coordinates, use NSEvent's mouseLocation (page 1067).

Availability
Available in Mac OS X v10.0 and later.

3348 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

See Also
– currentEvent (page 142) (NSApplication)

Related Sample Code
GLUT

Declared In
NSWindow.h

nextEventMatchingMask:
Returns the next event matching a given mask.

- (NSEvent *)nextEventMatchingMask:(NSUInteger)eventMask

Parameters
eventMask

The mask that the event to return must match. Events with nonmatching masks are removed from
the queue. See discardEventsMatchingMask:beforeEvent: (page 144) in NSApplication for
the list of mask values.

Return Value
The next event whose mask matches eventMask; nil when no matching event was found.

Discussion
This method sends the message nextEventMatchingMask:eventMask untilDate:[NSDate
distantFuture] inMode:NSEventTrackingRunLoopMode dequeue:YES to the application (NSApp).

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextEventMatchingMask:untilDate:inMode:dequeue: (page 153) (NSApplication)

Related Sample Code
PhotoSearch
Sketch-112

Declared In
NSWindow.h

nextEventMatchingMask:untilDate:inMode:dequeue:
Forwards the message to the global NSApplication object, NSApp.

- (NSEvent *)nextEventMatchingMask:(NSUInteger)eventMask untilDate:(NSDate
*)expirationDate inMode:(NSString *)runLoopMode dequeue:(BOOL)dequeue

Parameters
eventMask

The mask that the event to return must match.

Instance Methods 3349
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

expirationDate
The date until which to wait for events.

runLoopMode
The run loop mode to use while waiting for events

dequeue
YES to remove the returned event from the event queue; NO to leave the returned event in the queue.

Return Value
The next event whose mask matches eventMask; nil when no matching event was found.

Availability
Available in Mac OS X v10.0 and later.

See Also
– nextEventMatchingMask:untilDate:inMode:dequeue: (page 153) (NSApplication)

Related Sample Code
CIAnnotation
LiveVideoMixer
LiveVideoMixer2
LiveVideoMixer3
ThreadsExportMovie

Declared In
NSWindow.h

orderBack:
Moves the window to the back of its level in the screen list, without changing either the key window or the
main window.

- (void)orderBack:(id)sender

Parameters
sender

Message originator.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 3351)
– orderOut: (page 3352)
– orderWindow:relativeTo: (page 3352)
– makeKeyAndOrderFront: (page 3345)
– level (page 3343)

Related Sample Code
GLUT

Declared In
NSWindow.h

3350 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

orderFront:
Moves the window to the front of its level in the screen list, without changing either the key window or the
main window.

- (void)orderFront:(id)sender

Parameters
sender

The message’s sender.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderBack: (page 3350)
– orderOut: (page 3352)
– orderWindow:relativeTo: (page 3352)
– makeKeyAndOrderFront: (page 3345)
– level (page 3343)

Related Sample Code
AnimatedTableView
EnhancedDataBurn
FunkyOverlayWindow
PreLoginAgents
QTQuartzPlayer

Declared In
NSWindow.h

orderFrontRegardless
Moves the window to the front of its level, even if its application isn’t active, without changing either the
key window or the main window.

- (void)orderFrontRegardless

Parameters
sender

The message’s sender.

Discussion
Normally an NSWindow object can’t be moved in front of the key window unless it and the key window are
in the same application. You should rarely need to invoke this method; it’s designed to be used when
applications are cooperating in such a way that an active application (with the key window) is using another
application to display data.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 3351)

Instance Methods 3351
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

– level (page 3343)

Related Sample Code
PreLoginAgents

Declared In
NSWindow.h

orderOut:
Removes the window from the screen list, which hides the window.

- (void)orderOut:(id)sender

Parameters
sender

The message’s sender.

Discussion
If the window is the key or main window, the NSWindow object immediately behind it is made key or main
in its place. Calling the orderOut: (page 3352) method causes the window to be removed from the screen,
but does not cause it to be released. See the close (page 3308) method for information on when a window
is released.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 3351)
– orderBack: (page 3350)
– orderWindow:relativeTo: (page 3352)
– setReleasedWhenClosed: (page 3394)

Related Sample Code
EnhancedAudioBurn
EnhancedDataBurn
GridCalendar
ImageClient
Quartz Composer WWDC 2005 TextEdit

Declared In
NSWindow.h

orderWindow:relativeTo:
Repositions the window’s window device in the window server’s screen list.

- (void)orderWindow:(NSWindowOrderingMode)orderingMode
relativeTo:(NSInteger)otherWindowNumber

3352 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
orderingMode

NSWindowOut (page 3419): The window is removed from the screen list and otherWindowNumber
is ignored.
NSWindowAbove (page 3419): The window is ordered immediately in front of the window whose
window number is otherWindowNumber
NSWindowBelow (page 3419): The window is placed immediately behind the window represented by
otherWindowNumber.

otherWindowNumber
The number of the window the window is to be placed in front of or behind. Pass 0 to place the
window in front of (when orderingMode is NSWindowAbove) or behind (when orderingMode is
NSWindowBelow) all other windows in its level.

Availability
Available in Mac OS X v10.0 and later.

See Also
– orderFront: (page 3351)
– orderBack: (page 3350)
– orderOut: (page 3352)
– makeKeyAndOrderFront: (page 3345)
– level (page 3343)
– windowNumber (page 3408)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSWindow.h

parentWindow
Returns the parent window to which the window is attached as a child.

- (NSWindow *)parentWindow

Return Value
The window to which the window is attached as a child.

Availability
Available in Mac OS X v10.2 and later.

See Also
– removeChildWindow: (page 3358)
– childWindows (page 3308)
– addChildWindow:ordered: (page 3297)
– setParentWindow: (page 3392)

Related Sample Code
FunkyOverlayWindow

Instance Methods 3353
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

performClose:
This action method simulates the user clicking the close button by momentarily highlighting the button and
then closing the window.

- (void)performClose:(id)sender

Parameters
sender

The message’s sender.

Discussion
If the window’s delegate or the window itself implements windowShouldClose: (page 3937), that message
is sent with the window as the argument. (Only one such message is sent; if both the delegate and the
NSWindow object implement the method, only the delegate receives the message.) If the
windowShouldClose: (page 3937) method returns NO, the window isn’t closed. If it returns YES, or if it isn’t
implemented, performClose: (page 3354) invokes the close (page 3308) method to close the window.

If the window doesn’t have a close button or can’t be closed (for example, if the delegate replies NO to a
windowShouldClose: (page 3937) message), the system emits the alert sound.

Availability
Available in Mac OS X v10.0 and later.

See Also
– styleMask (page 3402)
– performMiniaturize: (page 3354)

Related Sample Code
GLUT
QTMetadataEditor

Declared In
NSWindow.h

performMiniaturize:
Simulates the user clicking the minimize button by momentarily highlighting the button, then minimizing
the window.

- (void)performMiniaturize:(id)sender

Parameters
sender

The message’s sender.

Discussion
If the window doesn’t have a minimize button or can’t be minimized for some reason, the system emits the
alert sound.

3354 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– close (page 3308)
– styleMask (page 3402)
– performClose: (page 3354)

Declared In
NSWindow.h

performZoom:
This action method simulates the user clicking the zoom box by momentarily highlighting the button and
then zooming the window.

- (void)performZoom:(id)sender

Parameters
sender

The object sending the message.

Discussion
If the window doesn’t have a zoom box or can’t be zoomed for some reason, the computer beeps.

Availability
Available in Mac OS X v10.0 and later.

See Also
– styleMask (page 3402)
– zoom: (page 3409)

Declared In
NSWindow.h

postEvent:atStart:
Forwards the message to the global NSApplication object, NSApp.

- (void)postEvent:(NSEvent *)event atStart:(BOOL)atStart

Parameters
event

The event to add to the window’s event queue.

atStart
YES to place the event in the front of the queue; NO to place it in the back.

Availability
Available in Mac OS X v10.0 and later.

See Also
– postEvent:atStart: (page 157)

Instance Methods 3355
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

preferredBackingLocation
Indicates the preferred location for the window’s backing store.

- (NSWindowBackingLocation)preferredBackingLocation

Return Value
The preferred location for the window’s backing store. See “Constants” (page 3411) for possible values.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setPreferredBackingLocation: (page 3393)
– backingLocation (page 3302)

Declared In
NSWindow.h

preservesContentDuringLiveResize
Returns whether the window tries to optimize user-initiated resize operations by preserving the content of
views that have not changed.

- (BOOL)preservesContentDuringLiveResize

Return Value
YES if the window tries to optimize live resize operations by preserving the content of views that have not
moved; otherwise, NO.

Discussion
When live-resize optimization is active, the window redraws only those views that moved (or do not support
this optimization) during a live resize operation.

See preservesContentDuringLiveResize (page 3196) in NSView for additional information on how to
support this optimization.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setPreservesContentDuringLiveResize: (page 3393)
– preservesContentDuringLiveResize (page 3196) (NSView)

Declared In
NSWindow.h

3356 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

preventsApplicationTerminationWhenModal
Indicates whether the window prevents application termination when modal.

- (BOOL)preventsApplicationTerminationWhenModal

Return Value
YES if the window prevents application termination when modal; otherwise, NO.

Discussion
The default value is YES.

Availability
Available in Mac OS X v10.6 and later.

See Also
– setPreventsApplicationTerminationWhenModal: (page 3394)

Declared In
NSWindow.h

print:
This action method runs the Print panel, and if the user chooses an option other than canceling, prints the
window (its frame view and all subviews).

- (void)print:(id)sender

Parameters
sender

The message’s sender.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

recalculateKeyViewLoop
Marks the key view loop as dirty and in need of recalculation.

- (void)recalculateKeyViewLoop

Discussion
The key view loop is actually recalculated the next time someone requests the next or previous key view of
the window. The recalculated loop is based on the geometric order of the views in the window.

If you do not want to maintain the key view loop of your window manually, you can use this method to do
it for you. When it is first loaded, NSWindow calls this method automatically if your window does not have a
key view loop already established. If you add or remove views later, you can call this method manually to
update the window’s key view loop. You can also call setAutorecalculatesKeyViewLoop: (page 3370) to
have the window recalculate the loop automatically.

Instance Methods 3357
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– selectKeyViewFollowingView: (page 3364)
– selectKeyViewPrecedingView: (page 3364)
– setAutorecalculatesKeyViewLoop: (page 3370)

Declared In
NSWindow.h

registerForDraggedTypes:
Registers a give set of pasteboard types as the pasteboard types the window will accept as the destination
of an image-dragging session.

- (void)registerForDraggedTypes:(NSArray *)pasteboardTypes

Parameters
pasteboardTypes

An array of the pasteboard types the window will accept as the destination of an image-dragging
session.

Discussion
Registering an NSWindow object for dragged types automatically makes it a candidate destination object for
a dragging session. NSWindow has a default implementation for many of the methods in the
NSDraggingDestination informal protocol. The default implementation forwards each message to the
delegate if the delegate responds to the selector of the message. The messages forwarded this way are
draggingEntered: (page 3655), draggingUpdated: (page 3656), draggingExited: (page 3655),
prepareForDragOperation: (page 3657), performDragOperation: (page 3657), and
concludeDragOperation: (page 3654).

Availability
Available in Mac OS X v10.0 and later.

See Also
– unregisterDraggedTypes (page 3405)

Declared In
NSWindow.h

removeChildWindow:
Detaches a given child window from the window.

- (void)removeChildWindow:(NSWindow *)childWindow

Parameters
childWindow

The child window to detach.

Availability
Available in Mac OS X v10.2 and later.

3358 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

See Also
– addChildWindow:ordered: (page 3297)
– childWindows (page 3308)
– parentWindow (page 3353)
– setParentWindow: (page 3392)

Declared In
NSWindow.h

representedFilename
Returns the pathname of the file the window represents.

- (NSString *)representedFilename

Return Value
The path to the file of the window’s represented file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setRepresentedFilename: (page 3395)

Declared In
NSWindow.h

representedURL
Provides the URL of the file the window represents.

- (NSURL *)representedURL

Return Value
The URL for the file the window represents.

Discussion
When the URL specifies a path, the window shows an icon in its title bar, as described in Table 170-1.

Table 170-1 Title bar document icon display

Document iconFilepath

None.Empty

Generic.Specifies a nonexistent file

Specific for the file’s type.Specifies an existent file

You can customize the file icon in the tile bar with the following code:

[[<window> standardWindowButton:NSWindowDocumentIconButton] setImage:<image>]

Instance Methods 3359
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

When the URL identifies an existing file, the window’s title offers a pop-up menu showing the path components
of the URL. (The user displays this menu by Command-clicking the title.) The behavior and contents of this
menu can be controlled with window:shouldPopUpDocumentPathMenu: (page 3931).

Availability
Available in Mac OS X v10.5 and later.

See Also
– setRepresentedURL: (page 3395)
– window:shouldDragDocumentWithEvent:from:withPasteboard: (page 3930) (NSWindowDelegate)

Declared In
NSWindow.h

resetCursorRects
Clears the window’s cursor rectangles and the cursor rectangles of the NSView objects in its view hierarchy.

- (void)resetCursorRects

Discussion
Invokes discardCursorRects (page 3320) to clear the window’s cursor rectangles, then sends
resetCursorRects (page 3360) to every NSView object in the window’s view hierarchy.

This method is typically invoked by the NSApplication object when it detects that the key window’s cursor
rectangles are invalid. In program code, it’s more efficient to invoke
invalidateCursorRectsForView: (page 3335).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
TextLinks

Declared In
NSWindow.h

resignKeyWindow
Invoked automatically when the window resigns key window status; never invoke this method directly.

- (void)resignKeyWindow

Discussion
This method sends resignKeyWindow (page 3360) to the window’s first responder, sends
windowDidResignKey: (page 3936) to the window’s delegate, and posts an
NSWindowDidResignKeyNotification (page 3425) to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– becomeKeyWindow (page 3302)

3360 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

– resignMainWindow (page 3361)

Declared In
NSWindow.h

resignMainWindow
Invoked automatically when the window resigns main window status; never invoke this method directly.

- (void)resignMainWindow

Discussion
This method sends windowDidResignMain: (page 3936) to the window’s delegate and posts an
NSWindowDidResignMainNotification (page 3425) to the default notification center.

Availability
Available in Mac OS X v10.0 and later.

See Also
– becomeMainWindow (page 3303)
– resignKeyWindow (page 3360)

Declared In
NSWindow.h

resizeFlags
Returns the flags field of the event record for the mouse-down event that initiated the resizing session.

- (NSInteger)resizeFlags

Return Value
A mask indicating which of the modifier keys was held down when the mouse-down event occurred. The
flags are listed in NSEvent object’s modifierFlags (page 1082) method description.

Discussion
This method is valid only while the window is being resized

You can use this method to constrain the direction or amount of resizing. Because of its limited validity, this
method should only be invoked from within an implementation of the delegate method
windowWillResize:toSize: (page 3940).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

resizeIncrements
Returns the window’s resizing increments.

Instance Methods 3361
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

- (NSSize)resizeIncrements

Return Value
The window’s resizing increments.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setResizeIncrements: (page 3396)
– setAspectRatio: (page 3368)
– setFrame:display: (page 3381)

Declared In
NSWindow.h

restoreCachedImage
Splices the window’s cached image rectangles, if any, back into its raster image (and buffer if it has one),
undoing the effect of any drawing performed within those areas since they were established using
cacheImageInRect: (page 3303).

- (void)restoreCachedImage

Discussion
You must invoke flushWindow (page 3327) after this method to guarantee proper redisplay. An NSWindow
object automatically discards its cached image rectangles when it displays.

Availability
Available in Mac OS X v10.0 and later.

See Also
– discardCachedImage (page 3320)
– display (page 3321)

Declared In
NSWindow.h

runToolbarCustomizationPalette:
The action method for the “Customize Toolbar…” menu item.

- (void)runToolbarCustomizationPalette:(id)sender

Parameters
sender

The message’s sender.

Discussion
See the NSToolbar class description for additional information.

Availability
Available in Mac OS X v10.0 and later.

3362 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

saveFrameUsingName:
Saves the window’s frame rectangle in the user defaults system under a given name.

- (void)saveFrameUsingName:(NSString *)frameName

Parameters
frameName

The name under which the frame is to be saved.

Discussion
With the companion methodsetFrameUsingName: (page 3384), you can save and reset anNSWindowobject’s
frame over various launches of an application. The default is owned by the application and stored under the
name "NSWindow Frame frameName". See NSUserDefaults for more information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– stringWithSavedFrame (page 3402)

Declared In
NSWindow.h

screen
Returns the screen the window is on.

- (NSScreen *)screen

Return Value
The screen where most of the window is on; nil when the window is offscreen.

Discussion
When the window is partly on one screen and partly on another, the screen where most of it lies is returned.

Availability
Available in Mac OS X v10.0 and later.

See Also
– deepestScreen (page 3315)

Related Sample Code
CocoaDVDPlayer
GLUT
iSpend
QTQuartzPlayer

Declared In
NSWindow.h

Instance Methods 3363
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

selectKeyViewFollowingView:
Makes key the view that follows the given view.

- (void)selectKeyViewFollowingView:(NSView *)referenceView

Parameters
referenceView

The view whose following view in the key view loop is sought.

Discussion
Sends the nextValidKeyView (page 3193) message to referenceView and, if that message returns an
NSView object, invokes makeFirstResponder: (page 3344) with the returned object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectKeyViewPrecedingView: (page 3364)

Declared In
NSWindow.h

selectKeyViewPrecedingView:
Makes key the view that precedes the given view.

- (void)selectKeyViewPrecedingView:(NSView *)referenceView

Parameters
referenceView

The view whose preceding view in the key view loop is sought.

Discussion
Sends the previousValidKeyView (page 3197) message to referenceView and, if that message returns
an NSView object, invokes makeFirstResponder: (page 3344) with the returned object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectKeyViewFollowingView: (page 3364)

Declared In
NSWindow.h

selectNextKeyView:
This action method searches for a candidate next key view and, if it finds one, invokes
makeFirstResponder: (page 3344) to establish it as the first responder.

- (void)selectNextKeyView:(id)sender

3364 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
sender

The message’s sender.

Discussion
The candidate is one of the following (searched for in this order):

 ■ The current first responder’s next valid key view, as returned by the nextValidKeyView (page 3193)
method of NSView

 ■ The object designated as the window’s initial first responder (using setInitialFirstResponder: (page
3387)) if it returns YES to an acceptsFirstResponder (page 2143) message

 ■ Otherwise, the initial first responder’s next valid key view, which may end up being nil

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectPreviousKeyView: (page 3365)
– selectKeyViewFollowingView: (page 3364)

Declared In
NSWindow.h

selectPreviousKeyView:
This action method searches for a candidate previous key view and, if it finds one, invokes
makeFirstResponder: (page 3344) to establish it as the first responder.

- (void)selectPreviousKeyView:(id)sender

Parameters
sender

The message’s sender.

Discussion
The candidate is one of the following (searched for in this order):

 ■ The current first responder’s previous valid key view, as returned by the previousValidKeyView (page
3197) method of NSView

 ■ The object designated as the window’s initial first responder (using setInitialFirstResponder: (page
3387)) if it returns YES to an acceptsFirstResponder (page 2143) message

 ■ Otherwise, the initial first responder’s previous valid key view, which may end up being nil

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectNextKeyView: (page 3364)
– selectKeyViewPrecedingView: (page 3364)

Instance Methods 3365
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

sendEvent:
This action method dispatches mouse and keyboard events sent to the window by the NSApplication
object.

- (void)sendEvent:(NSEvent *)event

Parameters
event

The mouse or keyboard event to process.

Discussion
Never invoke this method directly. A right mouse-down event in a window of an inactive application is not
delivered to the corresponding NSWindow object. It is instead delivered to the NSApplication object
through a sendEvent: (page 167) message with a window number of 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

setAcceptsMouseMovedEvents:
Specifies whether the window is to accept mouse-moved events.

- (void)setAcceptsMouseMovedEvents:(BOOL)acceptMouseMovedEvents

Parameters
acceptMouseMovedEvents

YES to have the window accept mouse-moved events (and to distribute them to its responders); NO
to not accept such events.

Availability
Available in Mac OS X v10.0 and later.

See Also
– acceptsMouseMovedEvents (page 3296)

Related Sample Code
GLUT

Declared In
NSWindow.h

setAllowsConcurrentViewDrawing:
Specifies whether the window allows its views to be drawn concurrently.

3366 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

- (void)setAllowsConcurrentViewDrawing:(BOOL)flag

Parameters
flag

If YES, the window allows its views to be drawn concurrently; if NO, it does not.

Availability
Available in Mac OS X v10.6 and later.

See Also
– allowsConcurrentViewDrawing (page 3298)

Related Sample Code
DispatchFractal

Declared In
NSWindow.h

setAllowsToolTipsWhenApplicationIsInactive:
Specifies whether the window can display tooltips even when the application is in the background.

- (void)setAllowsToolTipsWhenApplicationIsInactive:(BOOL)allowTooltipsWhenAppInactive

Parameters
allowTooltipsWhenAppInactive

YES to have the window display tooltips even when its application is inactive; NO to suppress tooltip
display when inactive.

Discussion
The message does not take effect until the window changes to an active state.

Note: Enabling tooltips in an inactive application will cause the application to do work any time the pointer
passes over the window, thus degrading system performance.

Availability
Available in Mac OS X v10.3 and later.

See Also
– allowsToolTipsWhenApplicationIsInactive (page 3298)

Declared In
NSWindow.h

setAlphaValue:
Applies a given alpha value to the entire window.

- (void)setAlphaValue:(CGFloat)windowAlpha

Instance Methods 3367
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
windowAlpha

The alpha value to apply.

Availability
Available in Mac OS X v10.0 and later.

See Also
– alphaValue (page 3298)

Related Sample Code
From A View to A Movie
FunkyOverlayWindow
MyMediaPlayer
UIElementInspector

Declared In
NSWindow.h

setAspectRatio:
Sets the window’s aspect ratio, which constrains the size of its frame rectangle to integral multiples of this
ratio when the user resizes it.

- (void)setAspectRatio:(NSSize)aspectRatio

Parameters
aspectRatio

The aspect ratio to be maintained during resizing actions.

Discussion
An NSWindow object’s aspect ratio and its resize increments are mutually exclusive attributes. In fact, setting
one attribute cancels the setting of the other. For example, to cancel an established aspect ratio setting for
an NSWindow object, you send it a setResizeIncrements: (page 3396) message with the width and height
set to 1.0:

[myWindow setResizeIncrements:NSMakeSize(1.0,1.0)];

The setContentAspectRatio: (page 3373) method takes precedence over this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– aspectRatio (page 3300)
– setFrame:display: (page 3381)

Declared In
NSWindow.h

setAutodisplay:
Specifies whether the window is to automatically display the views that are marked as needing it.

3368 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

- (void)setAutodisplay:(BOOL)autodisplay

Parameters
autodisplay

If YES, the window will automatically display views that need to be displayed; if NO, it will not.

Discussion
If autodisplay is NO, the window or its views must be explicitly displayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isAutodisplay (page 3336)
– displayIfNeeded (page 3321)
– displayIfNeeded (page 3164) (NSView)

Declared In
NSWindow.h

setAutorecalculatesContentBorderThickness:forEdge:
Specifies whether the window calculates the thickness of a given border automatically.

- (void)setAutorecalculatesContentBorderThickness:(BOOL)flag forEdge:(NSRectEdge)edge

Parameters
autorecalculateContentBorderThickness

If YES, the window calculates the thickness of the edge automatically; if NO, it does not.

edge
The border whose thickness auto-recalculation status to set:

 ■ NSMaxYEdge: Top border.

 ■ NSMinYEdge: Bottom border.

Special Considerations

Turning off a border’s auto-recalculation status sets its border thickness to 0.0.

In a non-textured window calling setAutorecalculatesContentBorderThickness:forEdge: passing
NSMaxYEdge will raise an exception. It is only valid to set the content border thickness of the top edge in a
textured window.

Availability
Available in Mac OS X v10.5 and later.

See Also
– autorecalculatesContentBorderThicknessForEdge: (page 3300)
– contentBorderThicknessForEdge: (page 3310)

Declared In
NSWindow.h

Instance Methods 3369
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

setAutorecalculatesKeyViewLoop:
Specifies whether to recalculate the key view loop automatically when views are added or removed.

- (void)setAutorecalculatesKeyViewLoop:(BOOL)autorecalculateKeyViewLoop

Parameters
autorecalculateKeyViewLoop

If YES,the window recalculates the key view loop automatically; if NO, it does not.

Discussion
If autorecalculateKeyViewLoop is NO, the client code must update the key view loop manually or call
recalculateKeyViewLoop (page 3357) to have the window recalculate it.

Availability
Available in Mac OS X v10.4 and later.

See Also
– autorecalculatesKeyViewLoop (page 3301)
– recalculateKeyViewLoop (page 3357)

Declared In
NSWindow.h

setBackgroundColor:
Sets the window’s background color to the given color.

- (void)setBackgroundColor:(NSColor *)color

Parameters
color

Color to set as the window’s background color.

Availability
Available in Mac OS X v10.0 and later.

See Also
– backgroundColor (page 3301)

Related Sample Code
CIAnnotation
MyMediaPlayer
UIElementInspector

Declared In
NSWindow.h

setBackingType:
Sets the window’s backing store type to a given type.

- (void)setBackingType:(NSBackingStoreType)backingType

3370 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
backingType

The backing store type to set.

Discussion
The valid backing store types are described in “Constants” (page 3411).

This method can be used only to switch a buffered window to retained or vice versa; you can’t change the
backing type to or from nonretained after initializing an NSWindow object (an error is generated if you attempt
to do so).

Availability
Available in Mac OS X v10.0 and later.

See Also
– backingType (page 3302)
– initWithContentRect:styleMask:backing:defer: (page 3332)
– initWithContentRect:styleMask:backing:defer:screen: (page 3333)

Declared In
NSWindow.h

setCanBecomeVisibleWithoutLogin:
Specifies whether the window can be displayed at the login window.

- (void)setCanBecomeVisibleWithoutLogin:(BOOL)flag

Parameters
flag

YES to allow the window to be displayed at the login window; NO to prevent this behavior.

Availability
Available in Mac OS X v10.5 and later.

See Also
– canBecomeVisibleWithoutLogin (page 3305)

Related Sample Code
PreLoginAgents

Declared In
NSWindow.h

setCanBeVisibleOnAllSpaces:
Specifies whether the window can be visible on all spaces or on only one space at a time. (Deprecated in
Mac OS X v10.5. Use collectionBehavior (page 3309) instead.)

- (void)setCanBeVisibleOnAllSpaces:(BOOL)flag

Instance Methods 3371
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
flag

YES specifies that the window can be visible on all spaces; NO specifies that the window can be visible
on only one space at a time.

Availability
Available in Mac OS X v10.5 and later.
Deprecated in Mac OS X v10.5.

Declared In
NSWindow.h

setCanHide:
Specifies whether the window can be hidden when its application becomes hidden (during execution of the
NSApplication hide: (page 148) method).

- (void)setCanHide:(BOOL)canHide

Parameters
canHide

If YES, the window can be hidden when its application becomes hidden; if NO, it cannot.

Availability
Available in Mac OS X v10.0 and later.

See Also
– canHide (page 3306)

Declared In
NSWindow.h

setCollectionBehavior:
Specifies the window’s behavior in window collections.

- (void)setCollectionBehavior:(NSWindowCollectionBehavior)behavior

Parameters
collectionBehavior

The collection behavior identifier to set.

Availability
Available in Mac OS X v10.5 and later.

See Also
– collectionBehavior (page 3309)

Declared In
NSWindow.h

3372 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

setColorSpace:
Sets the window’s color space.

- (void)setColorSpace:(NSColorSpace *)colorSpace

Parameters
colorSpace

The color space to set.

Availability
Available in Mac OS X v10.6 and later.

See Also
– colorSpace (page 3309)

Declared In
NSWindow.h

setContentAspectRatio:
Sets the aspect ratio (height in relation to width) of the window’s content view, constraining the dimensions
of its content rectangle to integral multiples of that ratio when the user resizes it.

- (void)setContentAspectRatio:(NSSize)contentAspectRatio

Parameters
contentAspectRatio

The aspect ratio of the window’s content view.

Discussion
You can set a window’s content view to any size programmatically, regardless of its aspect ratio. This method
takes precedence over setAspectRatio: (page 3368).

Availability
Available in Mac OS X v10.3 and later.

See Also
– contentAspectRatio (page 3310)

Declared In
NSWindow.h

setContentBorderThickness:forEdge:
Specifies the thickness of a given border of the window.

- (void)setContentBorderThickness:(CGFloat)thickness forEdge:(NSRectEdge)edge

Parameters
borderThickness

The thickness for edge, in points.

Instance Methods 3373
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

edge
The border whose thickness to set:

 ■ NSMaxYEdge: Top border.

 ■ NSMinYEdge: Bottom border.

Discussion
In a non-textured window calling setContentBorderThickness:forEdge: passing NSMaxYEdge will
raise an exception. It is only valid to set the content border thickness of the top edge in a textured window.

The contentBorder does not include the titlebar or toolbar, so a textured window that just wants the
gradient in the titlebar and toolbar should have a contentBorderThickness of 0 for NSMaxYEdge.

Availability
Available in Mac OS X v10.5 and later.

See Also
– contentBorderThicknessForEdge: (page 3310)

Declared In
NSWindow.h

setContentMaxSize:
Sets the maximum size of the window’s content view in the window’s base coordinate system.

- (void)setContentMaxSize:(NSSize)contentMaxSize

Parameters
contentMaxSize

The maximum size of the window’s content view in the window’s base coordinate system.

Discussion
The maximum size constraint is enforced for resizing by the user as well as for the setContentSize: (page
3375) method and the setFrame... methods other than setFrame:display: (page 3381) and
setFrame:display:animate: (page 3381). This method takes precedence over setMaxSize: (page 3388).

Availability
Available in Mac OS X v10.3 and later.

See Also
– contentMaxSize (page 3311)
– setContentMinSize: (page 3374)

Declared In
NSWindow.h

setContentMinSize:
Sets the minimum size of the window’s content view in the window’s base coordinate system.

- (void)setContentMinSize:(NSSize)contentMinSize

3374 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
contentMinSize

The minimum size of the window’s content view in the window’s base coordinate system.

Discussion
The minimum size constraint is enforced for resizing by the user as well as for the setContentSize: (page
3375) method and the setFrame... methods other than setFrame:display: (page 3381) and
setFrame:display:animate: (page 3381). This method takes precedence over setMinSize: (page 3390).

Availability
Available in Mac OS X v10.3 and later.

See Also
– contentMinSize (page 3311)
– setContentMaxSize: (page 3374)

Declared In
NSWindow.h

setContentResizeIncrements:
Restricts the user’s ability to resize the window so the width and height of its content view change by multiples
of width and height increments.

- (void)setContentResizeIncrements:(NSSize)contentResizeIncrements

Parameters
contentResizeIncrements

The content-view resizing increments to set.

Discussion
As the user resizes the window, the size of its content view changes by integral multiples of
contentResizeIncrements.width and contentResizeIncrements.height. However, you can set a
window’s size to any width and height programmatically. This method takes precedence over
setResizeIncrements: (page 3396).

Availability
Available in Mac OS X v10.3 and later.

See Also
– contentResizeIncrements (page 3312)

Declared In
NSWindow.h

setContentSize:
Sets the size of the window’s content view to a given size, which is expressed in the window’s base coordinate
system.

- (void)setContentSize:(NSSize)size

Instance Methods 3375
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
size

The new size of the window’s content view in the window’s base coordinate system.

Discussion
This size in turn alters the size of the NSWindow object itself. Note that the window server limits window sizes
to 10,000; if necessary, be sure to limit aSize relative to the frame rectangle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrame:display: (page 3381)
+ contentRectForFrameRect:styleMask: (page 3292)
+ frameRectForContentRect:styleMask: (page 3293)

Related Sample Code
CocoaVideoFrameToGWorld
QTAudioExtractionPanel
QTKitPlayer
Quartz Composer WWDC 2005 TextEdit
VideoViewer

Declared In
NSWindow.h

setContentView:
Makes a given view the window’s content view.

- (void)setContentView:(NSView *)view

Parameters
view

View that is to become the window’s content view.

Discussion
The window retains the new content view and owns it thereafter. The view object is resized to fit precisely
within the content area of the window. You can modify the content view’s coordinate system through its
bounds rectangle, but can’t alter its frame rectangle (that is, its size or location) directly.

This method causes the old content view to be released; if you plan to reuse it, be sure to retain it before
sending this message and to release it as appropriate when adding it to another NSWindow object or NSView.

Availability
Available in Mac OS X v10.0 and later.

See Also
– contentView (page 3313)
– setContentSize: (page 3375)

Related Sample Code
CIFilterGeneratorTest

3376 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

CustomSave
FunkyOverlayWindow
GLUT
OpenCL NBody Simulation Example

Declared In
NSWindow.h

setDefaultButtonCell:
Makes the key equivalent of button cell the Return (or Enter) key, so when the user presses Return that button
performs as if clicked.

- (void)setDefaultButtonCell:(NSButtonCell *)defaultButtonCell

Parameters
defaultButtonCell

The button cell to perform as if clicked when the window receives a Return (or Enter) key event.

Availability
Available in Mac OS X v10.0 and later.

See Also
– defaultButtonCell (page 3316)
– disableKeyEquivalentForDefaultButtonCell (page 3319)
– enableKeyEquivalentForDefaultButtonCell (page 3324)

Related Sample Code
BackgroundExporter

Declared In
NSWindow.h

setDelegate:
Sets the window’s delegate to a given object or removes an existing delegate.

- (void)setDelegate:(id < NSWindowDelegate >)delegate

Parameters
delegate

The delegate for the window. Pass nil to remove an existing delegate.

Discussion
An NSWindow object’s delegate is inserted in the responder chain after the window itself and is informed of
various actions by the window through delegation messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– delegate (page 3316)

Instance Methods 3377
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

– tryToPerform:with: (page 3404)
– sendAction:to:from: (page 166) (NSApplication)

Related Sample Code
AudioBurn
DataBurn
Eraser
Quartz Composer WWDC 2005 TextEdit
Verification

Declared In
NSWindow.h

setDepthLimit:
Sets the depth limit of the window to a given limit.

- (void)setDepthLimit:(NSWindowDepth)depthLimit

Parameters
depthLimit

The depth limit to set.

Discussion
The NSBestDepth (page 3965) function provides the best depth limit based on a set of parameters.

Passing a value of 0 for depthLimit sets the depth limit to the window’s default depth limit. A depth limit
of 0 can be useful for reverting an NSWindow object to its initial depth.

On Mac OS X 10.6 and later, you can pass one of the explicit bit depths defined in “Explicit Window Depth
Limits” (page 3417)NSWindowDepthTwentyfourBitRGB (page 3417) is the default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– depthLimit (page 3317)
+ defaultDepthLimit (page 3292)
– setDynamicDepthLimit: (page 3380)

Declared In
NSWindow.h

setDisplaysWhenScreenProfileChanges:
Specifies whether the window context should be updated when the screen profile changes.

- (void)setDisplaysWhenScreenProfileChanges:(BOOL)displaysWhenScreenProfileChanges

3378 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
displaysWhenScreenProfileChanges

 ■ YES specifies that the window context should be changed in these situations:

 ❏ A majority of the window is moved to a different screen whose profile is different than the
previous screen.

 ❏ The ColorSync profile of the current screen changes.

 ■ NO specifies that the screen profile information for the window context doesn’t change.

Discussion
After the window context is updated, the window is told to display itself. If you need to update offscreen
caches for the window, you should register to receive the
NSWindowDidChangeScreenProfileNotification (page 3423) notification.

Availability
Available in Mac OS X v10.4 and later.

See Also
– displaysWhenScreenProfileChanges (page 3322)

Related Sample Code
ImageApp

Declared In
NSWindow.h

setDocumentEdited:
Specifies whether the window’s document has been edited.

- (void)setDocumentEdited:(BOOL)documentEdited

Parameters
documentEdited

If YES, the window’s document is marked as having been edited; if NO, it is marked as not having
been edited.

Discussion
You should send setDocumentEdited:YES to an NSWindow object every time the window’s document
changes in such a way that it needs to be saved. Conversely, when the document is saved, you should send
setDocumentEdited:NO. Then, before closing the window you can use isDocumentEdited (page 3336) to
determine whether to allow the user a chance to save the document.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLUT
PDF Annotation Editor
PDFKitLinker2
Quartz Composer WWDC 2005 TextEdit

Instance Methods 3379
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

setDynamicDepthLimit:
Sets whether the window changes its depth to match the depth of the screen it’s on, or the depth of the
deepest screen when it spans multiple screens.

- (void)setDynamicDepthLimit:(BOOL)dynamicDepthLimit

Parameters
dynamicDepthLimit

If YES, the window has a dynamic depth limit; if NO, it does not.

Discussion
When dynamicDepthLimit is NO, the window uses either its preset depth limit or the default depth limit.
A different, and nondynamic, depth limit can be set with the setDepthLimit: (page 3378) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasDynamicDepthLimit (page 3330)
+ defaultDepthLimit (page 3292)

Declared In
NSWindow.h

setExcludedFromWindowsMenu:
Specifies whether the window’s title is omitted from the application’s Windows menu.

- (void)setExcludedFromWindowsMenu:(BOOL)excludedFromWindowsMenu

Parameters
excludedFromWindowsMenu

If YES, the window will be omitted from the application’s Windows menu; if NO, it will not be omitted.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isExcludedFromWindowsMenu (page 3337)

Related Sample Code
From A View to A Movie
From A View to A Picture
VertexPerformanceTest

Declared In
NSWindow.h

3380 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

setFrame:display:
Sets the origin and size of the window’s frame rectangle according to a given frame rectangle, thereby setting
its position and size onscreen.

- (void)setFrame:(NSRect)windowFrame display:(BOOL)displayViews

Parameters
windowFrame

The frame rectangle for the window, including the title bar.

displayViews
Specifies whether the window redraws the views that need to be displayed. When YES the window
sends a displayIfNeeded (page 3321) message down its view hierarchy, thus redrawing all views.

Discussion
Note that the window server limits window position coordinates to ±16,000 and sizes to 10,000.

Availability
Available in Mac OS X v10.0 and later.

See Also
– frame (page 3328)
– setFrameFromString: (page 3383)
– setFrameOrigin: (page 3383)
– setFrameTopLeftPoint: (page 3384)
– setFrameUsingName: (page 3384)
+ frameRectForContentRect:styleMask: (page 3293)

Related Sample Code
AnimatedTableView
BasicCocoaAnimations
CocoaCreateMovie
FunkyOverlayWindow
StickiesWithCoreData

Declared In
NSWindow.h

setFrame:display:animate:
Sets the origin and size of the window’s frame rectangle, with optional animation, according to a given frame
rectangle, thereby setting its position and size onscreen.

- (void)setFrame:(NSRect)windowFrame display:(BOOL)displayViews
animate:(BOOL)performAnimation

Parameters
windowFrame

The frame rectangle for the window, including the title bar.

displayViews
Specifies whether the window redraws the views that need to be displayed. When YES the window
sends a displayIfNeeded (page 3321) message down its view hierarchy, thus redrawing all views.

Instance Methods 3381
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

performAnimation
Specifies whether the window performs a smooth resize. YES to perform the animation, whose
duration is specified by animationResizeTime: (page 3299).

Availability
Available in Mac OS X v10.0 and later.

See Also
– frame (page 3328)
+ frameRectForContentRect:styleMask: (page 3293)

Related Sample Code
CIVideoDemoGL
DatePicker
FunHouse
iSpend
PredicateEditorSample

Declared In
NSWindow.h

setFrameAutosaveName:
Sets the name used to automatically save the window’s frame rectangle in the defaults system to a given
name.

- (BOOL)setFrameAutosaveName:(NSString *)frameName

Parameters
frameName

The name under which the frame is to be saved.

Return Value
YES when the frame name is set successfully; NO when frameName is being used as an autosave name by
another NSWindow object in the application (in which case the window’s old name remains in effect).

Discussion
If frameName isn’t the empty string (@""), the window’s frame is saved as a user default (as described in
saveFrameUsingName: (page 3363)) each time the frame changes.

When the window has an autosave name, its frame data is written whenever the frame rectangle changes.

If there is a frame rectangle previously stored for frameName in the user defaults, the window’s frame is set
to this frame rectangle. That is, when you call this method with a previously used frameName, the window
picks up the previously saved setting. For example, if you call setFrameAutosaveName: for a window that
is already onscreen, this method could cause the window to move to a different screen location. For this
reason, it is generally better to call this method before the window is visible on screen.

Keep in mind that a window controller may change the window’s position when it displays it if window
cascading is turned on. To preclude the window controller from changing a window’s position from the one
saved in the defaults system, you must send setShouldCascadeWindows:NO to the window controller.

Availability
Available in Mac OS X v10.0 and later.

3382 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

See Also
+ removeFrameUsingName: (page 3294)
– stringWithSavedFrame (page 3402)
– setFrameFromString: (page 3383)

Related Sample Code
CIRAWFilterSample

Declared In
NSWindow.h

setFrameFromString:
Sets the window’s frame rectangle from a given string representation.

- (void)setFrameFromString:(NSString *)frameString

Parameters
frameString

A string representation of a frame rectangle, previously creating using stringWithSavedFrame (page
3402).

Discussion
If the window is not resizable, this method will not resize the window. The frame is constrained according
to the window’s minimum and maximum size settings. This method causes a
windowWillResize:toSize: (page 3940) message to be sent to the delegate.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

setFrameOrigin:
Positions the bottom-left corner of the window’s frame rectangle at a given point in screen coordinates.

- (void)setFrameOrigin:(NSPoint)point

Parameters
point

The new position of the window’s bottom-left corner in screen coordinates.

Discussion
Note that the window server limits window position coordinates to ±16,000.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrame:display: (page 3381)
– setFrameTopLeftPoint: (page 3384)

Instance Methods 3383
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Related Sample Code
BoingX
FunkyOverlayWindow
GLUT
MyMediaPlayer
StickiesWithCoreData

Declared In
NSWindow.h

setFrameTopLeftPoint:
Positions the top-left corner of the window’s frame rectangle at a given point in screen coordinates.

- (void)setFrameTopLeftPoint:(NSPoint)point

Parameters
point

The new position of the window’s top-left corner in screen coordinates.

Discussion
Note that the window server limits window position coordinates to ±16,000; if necessary, adjust aPoint
relative to the window’s lower-left corner to account for this limit.

Availability
Available in Mac OS X v10.0 and later.

See Also
– cascadeTopLeftFromPoint: (page 3306)
– setFrame:display: (page 3381)
– setFrameOrigin: (page 3383)

Related Sample Code
CocoaCreateMovie
CocoaDVDPlayer
DemoMonkey
QTAudioContextInsert
Quartz Composer WWDC 2005 TextEdit

Declared In
NSWindow.h

setFrameUsingName:
Sets the window’s frame rectangle by reading the rectangle data stored under a given name from the defaults
system.

- (BOOL)setFrameUsingName:(NSString *)frameName

3384 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
frameName

The name of the frame to read.

Return Value
YES when frameName is read and the frame is set successfully; otherwise, NO.

Discussion
The frame is constrained according to the window’s minimum and maximum size settings. This method
causes a windowWillResize:toSize: (page 3940) message to be sent to the delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setFrameAutosaveName: (page 3382)
+ removeFrameUsingName: (page 3294)
– stringWithSavedFrame (page 3402)
– setFrameFromString: (page 3383)

Declared In
NSWindow.h

setFrameUsingName:force:
Sets the window’s frame rectangle by reading the rectangle data stored under a given name from the defaults
system. Can operate on nonresizable windows.

- (BOOL)setFrameUsingName:(NSString *)frameName force:(BOOL)force

Parameters
frameName

The name of the frame to read.

force
YES to use setFrameUsingName: (page 3384) on a nonresizable window; NO to fail on a nonresizable
window.

Return Value
YES when frameName is read and the frame is set successfully; otherwise,NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

setHasShadow:
Specifies whether the window has a shadow.

- (void)setHasShadow:(BOOL)hasShadow

Instance Methods 3385
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
hasShadow

If YES, the window has a shadow; if NO, it does not.

Discussion
If the shadow setting changes, the window shadow is invalidated, forcing the window shadow to be
recomputed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hasShadow (page 3331)
– invalidateShadow (page 3336)

Related Sample Code
FunkyOverlayWindow

Declared In
NSWindow.h

setHidesOnDeactivate:
Specifies whether the window is removed from the screen when the application is inactive.

- (void)setHidesOnDeactivate:(BOOL)hideOnDeactivate

Parameters
hideOnDeactivate

 ■ YES specifies that the window is to be hidden (taken out of the screen list) when the application
stops being the active application

 ■ NO specifies that the window is to remain onscreen when the application becomes inactive.

Availability
Available in Mac OS X v10.0 and later.

See Also
– hidesOnDeactivate (page 3331)

Related Sample Code
From A View to A Movie
From A View to A Picture
GLFullScreen
PreLoginAgents

Declared In
NSWindow.h

3386 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

setIgnoresMouseEvents:
Specifies whether the window is transparent to mouse clicks and other mouse events, allowing overlay
windows.

- (void)setIgnoresMouseEvents:(BOOL)ignoreMouseEvents

Parameters
ignoreMouseEvents

If YES, the window will ignore mouse events; if NO, it will not.

Availability
Available in Mac OS X v10.2 and later.

See Also
– ignoresMouseEvents (page 3331)

Related Sample Code
FunkyOverlayWindow
UIElementInspector

Declared In
NSWindow.h

setInitialFirstResponder:
Sets a given view as the one that’s made first responder (also called the key view) the first time the window
is placed onscreen.

- (void)setInitialFirstResponder:(NSView *)view

Parameters
view

The view to make first responder the first time the window is placed onscreen.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initialFirstResponder (page 3332)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSWindow.h

setLevel:
Sets the window’s window level to a given level.

- (void)setLevel:(NSInteger)windowLevel

Instance Methods 3387
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
windowLevel

The window level to set.

Discussion
Some useful predefined values, ordered from lowest to highest, are described in “Window Levels” (page 3412).

Each level in the list groups windows within it in front of those in all preceding groups. Floating windows,
for example, appear in front of all normal-level windows. When a window enters a new level, it’s ordered in
front of all its peers in that level.

The constant NSTornOffMenuWindowLevel is preferable to its synonym, NSSubmenuWindowLevel.

Availability
Available in Mac OS X v10.0 and later.

See Also
– level (page 3343)
– orderWindow:relativeTo: (page 3352)
– orderFront: (page 3351)
– orderBack: (page 3350)

Related Sample Code
FunkyOverlayWindow
GLFullScreen
GLUT
Quartz Composer WWDC 2005 TextEdit
UIElementInspector

Declared In
NSWindow.h

setMaxSize:
Sets the maximum size to which the window’s frame (including its title bar) can be sized.

- (void)setMaxSize:(NSSize)maxFrameSize

Parameters
maxFrameSize

The maximum size of the window’s frame.

Discussion
The maximum size constraint is enforced for resizing by the user as well as for the setFrame... methods
other thansetFrame:display: (page 3381) andsetFrame:display:animate: (page 3381). Note that the
window server limits window sizes to 10,000.

The default maximum size of a window is {FLT_MAX, FLT_MAX} (FLT_MAX is defined in
/usr/include/float.h). Once the maximum size of a window has been set, there is no way to reset it
other than specifying this default maximum size.

The setContentMaxSize: (page 3374) method takes precedence over this method.

3388 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– maxSize (page 3346)
– setMinSize: (page 3390)
– setAspectRatio: (page 3368)
– setResizeIncrements: (page 3396)

Related Sample Code
CIAnnotation

Declared In
NSWindow.h

setMiniwindowImage:
Sets the window’s custom minimized window image to a given image.

- (void)setMiniwindowImage:(NSImage *)miniwindowImage

Parameters
miniwindowImage

Image to set as the window’s minimized window image.

Discussion
When the user minimizes the window, the Dock displays miniwindowImage in the corresponding Dock tile,
scaling it as needed to fit in the tile. If you do not specify a custom image using this method, the Dock creates
one for you automatically.

You can also call this method as needed to change the minimized window image. Typically, you would specify
a custom image immediately prior to a window being minimized—when the system posts an
NSWindowWillMiniaturizeNotification (page 3427). You can call this method while the window is
minimized to update the current image in the Dock. However, this method is not recommended for creating
complex animations in the Dock.

Support for custom images is disabled by default. To enable support, set the AppleDockIconEnabled key
to YES when first registering your application’s user defaults. You must set this key prior to calling the init
method of NSApplication, which reads the current value of the key.

Availability
Available in Mac OS X v10.0 and later.

See Also
– miniwindowImage (page 3347)
– isMiniaturized (page 3338)

Declared In
NSWindow.h

Instance Methods 3389
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

setMiniwindowTitle:
Sets the title of the window’s miniaturized counterpart to a given string and redisplays it.

- (void)setMiniwindowTitle:(NSString *)miniwindowTitle

Parameters
miniwindowTitle

The string to set as the title of the minimized window.

Discussion
A minimized window’s title normally reflects that of its full-size counterpart, abbreviated to fit if necessary.
Although this method allows you to set the minimized window’s title explicitly, changing the full-size
NSWindow object’s title (through setTitle: (page 3398) or setTitleWithRepresentedFilename: (page
3399)) automatically changes the minimized window’s title as well.

Availability
Available in Mac OS X v10.0 and later.

See Also
– miniwindowTitle (page 3347)

Related Sample Code
GLUT

Declared In
NSWindow.h

setMinSize:
Sets the minimum size to which the window’s frame (including its title bar) can be sized to aSize.

- (void)setMinSize:(NSSize)minFrameSize

Parameters
minFrameSize

The minimum size of the window’s frame.

Discussion
The minimum size constraint is enforced for resizing by the user as well as for the setFrame... methods
other than setFrame:display: (page 3381) and setFrame:display:animate: (page 3381).

The setContentMinSize: (page 3374) method takes precedence over this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– minSize (page 3348)
– setMaxSize: (page 3388)
– setAspectRatio: (page 3368)
– setResizeIncrements: (page 3396)

Declared In
NSWindow.h

3390 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

setMovable:
Specifies whether the window can be dragged by clicking in its title bar or background.

- (void)setMovable:(BOOL)flag

Parameters
flag

If YES, dragging is enabled; if NO, it is disabled.

Availability
Available in Mac OS X v10.6 and later.

See Also
– isMovable (page 3339)

Declared In
NSWindow.h

setMovableByWindowBackground:
Sets whether the window is movable by clicking and dragging anywhere in its background.

- (void)setMovableByWindowBackground:(BOOL)movableByWindowBackground

Parameters
movableByWindowBackground

YES to specify that the window is movable by background, NO to specify that the window is not
movable by background.

Availability
Available in Mac OS X v10.2 and later.

See Also
– isMovableByWindowBackground (page 3339)

Related Sample Code
MyMediaPlayer

Declared In
NSWindow.h

setOneShot:
Sets whether the window device that the window manages should be freed when it’s removed from the
screen list.

- (void)setOneShot:(BOOL)oneShot

Parameters
oneShot

YES to free the window’s window device when it’s removed from the screen list (hidden) and to create
another one when it’s returned to the screen; NO to reuse the window device.

Instance Methods 3391
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Discussion
Freeing the window device when it’s removed from the screen list can result in memory savings and
performance improvement for NSWindow objects that don’t take long to display. It’s particularly appropriate
for NSWindow objects the user might use once or twice but not display continually.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isOneShot (page 3340)

Related Sample Code
CIBevelSample
CIFilterGeneratorTest
CIMicroPaint
FunHouse
VideoViewer

Declared In
NSWindow.h

setOpaque:
Specifies whether the window is opaque.

- (void)setOpaque:(BOOL)opaque

Parameters
opaque

If YES, the window is opaque; if NO, it is not.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isOpaque (page 3340)

Related Sample Code
CIAnnotation
FunkyOverlayWindow
GLFullScreen
UIElementInspector

Declared In
NSWindow.h

setParentWindow:
Adds the window as a child of a given window. For use by subclasses when setting the parent window in
the window.

- (void)setParentWindow:(NSWindow *)parentWindow

3392 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
parentWindow

The window to be a child of the given window.

Discussion
This method should be called from a subclass when it is overridden by a subclass’s implementation. It should
not be called otherwise.

Availability
Available in Mac OS X v10.2 and later.

See Also
– removeChildWindow: (page 3358)
– childWindows (page 3308)
– parentWindow (page 3353)
– addChildWindow:ordered: (page 3297)

Related Sample Code
CIAnnotation

Declared In
NSWindow.h

setPreferredBackingLocation:
Specifies the preferred location for the window’s backing store.

- (void)setPreferredBackingLocation:(NSWindowBackingLocation)backingLocation

Parameters
preferredBackingLocation

The preferred location for the window’s backing store. See “NSWindowBackingLocation” (page 3420)
for possible values.

Discussion
Use only when optimizing for performance.

Availability
Available in Mac OS X v10.5 and later.

See Also
– preferredBackingLocation (page 3356)

Related Sample Code
DispatchFractal

Declared In
NSWindow.h

setPreservesContentDuringLiveResize:
Specifies whether the window tries to optimize live resize operations by preserving the content of views that
have not changed.

Instance Methods 3393
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

- (void)setPreservesContentDuringLiveResize:(BOOL)preservesContentDuringLiveResize

Parameters
preservesContentDuringLiveResize

YES turns on live-resize optimization; NO turns it off for the window and all of its contained views.

Discussion
By default, live-resize optimization is turned on.

You might consider disabling this optimization for the window if none of the window’s contained views can
take advantage of it. Disabling the optimization for the window prevents it from checking each view to see
if the optimization is supported.

Availability
Available in Mac OS X v10.4 and later.

See Also
– preservesContentDuringLiveResize (page 3356)

Declared In
NSWindow.h

setPreventsApplicationTerminationWhenModal:
Specifies whether the window prevents application termination when modal.

- (void)setPreventsApplicationTerminationWhenModal:(BOOL)flag

Parameters
flag

If YES, the window will prevent application termination when modal; if NO, it will not.

Discussion
Normally, application termination is prevented when a modal window or sheet is open, without consulting
the application delegate. Some windows may wish not to prevent termination, however. Calling this method
with an argument of NO overrides the default behavior and allows termination to proceed even if the window
is open, either through the sudden termination path if enabled, or after consulting the application delegate.

Availability
Available in Mac OS X v10.6 and later.

See Also
– preventsApplicationTerminationWhenModal (page 3357)

Declared In
NSWindow.h

setReleasedWhenClosed:
Specifies whether the window is released when it receives the close message.

- (void)setReleasedWhenClosed:(BOOL)releasedWhenClosed

3394 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
releasedWhenClosed

YES to specify that the window is to be hidden and released when it receives a close message; NO to
specify that the window is only hidden, not released.

Discussion
Another strategy for releasing an NSWindow object is to have its delegate autorelease it on receiving a
windowShouldClose: (page 3937) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– close (page 3308)
– isReleasedWhenClosed (page 3341)

Related Sample Code
CIAnnotation
Fiendishthngs
From A View to A Movie
GLUT
WhackedTV

Declared In
NSWindow.h

setRepresentedFilename:
Sets the pathname of the file the window represents.

- (void)setRepresentedFilename:(NSString *)filePath

Parameters
filePath

The path to the file to set as the window’s represented file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– representedFilename (page 3359)
– setTitleWithRepresentedFilename: (page 3399)

Declared In
NSWindow.h

setRepresentedURL:
Specifies the URL of the file the window represents.

- (void)setRepresentedURL:(NSURL *)url

Instance Methods 3395
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
representedURL

The URL of the file the window is to represent.

Availability
Available in Mac OS X v10.5 and later.

See Also
– representedURL (page 3359)

Declared In
NSWindow.h

setResizeIncrements:
Restricts the user’s ability to resize the window so the width and height change by multiples of width and
height increments.

- (void)setResizeIncrements:(NSSize)resizeIncrements

Parameters
resizeIncrements

The resizing increments to set.

Discussion
As the user resizes the window, its size changes by multiples of increments.width and
increments.height, which should be whole numbers, 1.0 or greater. Whatever the current resizing
increments, you can set an NSWindow object’s size to any height and width programmatically.

Resize increments and aspect ratio are mutually exclusive attributes. For more information, see
setAspectRatio: (page 3368).

The setContentResizeIncrements: (page 3375) method takes precedence over this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– resizeIncrements (page 3361)
– setFrame:display: (page 3381)

Declared In
NSWindow.h

setSharingType:
Specifies the level of access other processes have to the window’s content.

- (void)setSharingType:(NSWindowSharingType)type

Parameters
sharingType

The sharing level of the window’s content. See “NSWindowSharingType” (page 3419) for possible values.

3396 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– sharingType (page 3401)

Declared In
NSWindow.h

setShowsResizeIndicator:
Specifies whether the window’s resize indicator is visible

- (void)setShowsResizeIndicator:(BOOL)showResizeIndicator

Parameters
showResizeIndicator

Specifies the resize indicator state. YES to show it, NO to hide it.

Discussion
This method does not affect whether the window is resizable.

Availability
Available in Mac OS X v10.0 and later.

See Also
– showsResizeIndicator (page 3401)

Related Sample Code
QTKitPlayer

Declared In
NSWindow.h

setShowsToolbarButton:
Specifies whether the window shows the toolbar control button.

- (void)setShowsToolbarButton:(BOOL)showsToolbarButton

Parameters
showsToolbarButton

YES to display the toolbar control button; NO to hide the button.

Discussion
If the window does not have a toolbar, this method has no effect.

Availability
Available in Mac OS X v10.4 and later.

See Also
– showsToolbarButton (page 3401)

Instance Methods 3397
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

setStyleMask:
Sets the window’s style mask to the given value.

- (void)setStyleMask:(NSUInteger)styleMask

Parameters
styleMask

The new style mask value.

Discussion
The valid style mask values are the same values acceptable for use in
initWithContentRect:styleMask:backing:defer: (page 3332). Some style mask changes cause the
view hierarchy to be rebuilt.

Availability
Available in Mac OS X v10.6 and later.

See Also
– styleMask (page 3402)

Related Sample Code
MyMediaPlayer

Declared In
NSWindow.h

setTitle:
Sets the string that appears in the window’s title bar (if it has one) to a given string and displays the title.

- (void)setTitle:(NSString *)title

Parameters
title

The string to set as the window’s title.

Discussion
Also sets the title of the window’s miniaturized window.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 3403)
– setTitleWithRepresentedFilename: (page 3399)
– setMiniwindowTitle: (page 3390)

Related Sample Code
BackgroundExporter

3398 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

GLUT
OpenCL NBody Simulation Example
UIElementInspector
WhackedTV

Declared In
NSWindow.h

setTitleWithRepresentedFilename:
Sets a given path as the window’s title, formatting it as a file-system path, and records this path as the
window’s associated filename using setRepresentedFilename: (page 3395).

- (void)setTitleWithRepresentedFilename:(NSString *)filePath

Parameters
filePath

The file path to set as the window’s title.

Discussion
The filename—not the pathname—is displayed in the window’s title bar.

Availability
Available in Mac OS X v10.0 and later.

See Also
– title (page 3403)
– setTitle: (page 3398)
– setMiniwindowTitle: (page 3390)

Declared In
NSWindow.h

setToolbar:
Sets the window’s toolbar.

- (void)setToolbar:(NSToolbar *)toolbar

Parameters
toolbar

The toolbar for the window.

Discussion
See the NSToolbar class description for additional information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– toolbar (page 3404)

Instance Methods 3399
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Related Sample Code
EnhancedDataBurn
iSpend
PDFKitLinker2
QTAudioExtractionPanel
QTKitPlayer

Declared In
NSWindow.h

setViewsNeedDisplay:
Specifies whether the window’s views need to be displayed..

- (void)setViewsNeedDisplay:(BOOL)viewsNeedDisplay

Parameters
viewsNeedDisplay

If YES, the window’s views are set to need to be displayed; if NO, they are not.

Discussion
You should rarely need to invoke this method; the NSView method setNeedsDisplay: (page 3225) and
similar methods invoke it automatically.

Availability
Available in Mac OS X v10.0 and later.

See Also
– viewsNeedDisplay (page 3407)

Declared In
NSWindow.h

setWindowController:
Sets the window’s window controller.

- (void)setWindowController:(NSWindowController *)windowController

Parameters
windowController

Window controller to set.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowController (page 3407)

Declared In
NSWindow.h

3400 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

sharingType
Indicates the level of access other processes have to the window’s content.

- (NSWindowSharingType)sharingType

Return Value
The sharing level of the window’s content. See “NSWindowSharingType” (page 3419) for possible values.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setSharingType: (page 3396)

Declared In
NSWindow.h

showsResizeIndicator
Returns a Boolean value that indicates whether the window’s resize indicator is visible.

- (BOOL)showsResizeIndicator

Return Value
YES when the window’s resize indicator is visible; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShowsResizeIndicator: (page 3397)

Declared In
NSWindow.h

showsToolbarButton
Indicates whether the toolbar control button is currently displayed.

- (BOOL)showsToolbarButton

Return Value
YES if the standard toolbar button is currently displayed; otherwise, NO.

Discussion
When clicked, the toolbar control button shows or hides a window’s toolbar. The toolbar control button
appears in a window’s title bar.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setShowsToolbarButton: (page 3397)

Instance Methods 3401
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

standardWindowButton:
Returns the window button of a given window button kind in the window’s view hierarchy.

- (NSButton *)standardWindowButton:(NSWindowButton)windowButtonKind

Parameters
windowButtonKind

The kind of standard window button to return.

Return Value
Window button in the window’s view hierarchy of the kind identified by windowButtonKind; nil when
such button is not in the window’s view hierarchy.

Availability
Available in Mac OS X v10.2 and later.

See Also
+ standardWindowButton:forStyleMask: (page 3295)

Related Sample Code
GLUT

Declared In
NSWindow.h

stringWithSavedFrame
Returns a string representation of the window’s frame rectangle.

- (NSString *)stringWithSavedFrame

Return Value
A string representation of the window’s frame rectangle in a format that can be used with a later
setFrameFromString: (page 3383) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

styleMask
Returns the window’s style mask, indicating what kinds of control items it displays.

- (NSUInteger)styleMask

Return Value
The window’s style mask.

3402 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Discussion
See the information about the style mask in “Window Style Masks” (page 3411).

Availability
Available in Mac OS X v10.0 and later.

See Also
– setStyleMask: (page 3398)

Related Sample Code
CocoaDragAndDrop
GLUT
Quartz Composer WWDC 2005 TextEdit
StickiesWithCoreData

Declared In
NSWindow.h

title
Returns either the string that appears in the title bar of the window, or the path to the represented file.

- (NSString *)title

Return Value
The window’s title or the path to the represented file.

Discussion
If the title has been set using setTitleWithRepresentedFilename: (page 3399), this method returns the
file’s path.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setTitle: (page 3398)

Related Sample Code
QTAudioExtractionPanel

Declared In
NSWindow.h

toggleToolbarShown:
The action method for the “Hide Toolbar” menu item (which alternates with “Show Toolbar”).

- (void)toggleToolbarShown:(id)sender

Parameters
sender

The message’s sender.

Instance Methods 3403
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Discussion
See the NSToolbar class description for additional information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

toolbar
Returns the window’s toolbar.

- (NSToolbar *)toolbar

Return Value
The window’s toolbar.

Discussion
See the NSToolbar class description for additional information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setToolbar: (page 3399)

Declared In
NSWindow.h

tryToPerform:with:
Dispatches action messages with a given argument.

- (BOOL)tryToPerform:(SEL)selector with:(id)object

Parameters
selector

The selector to attempt to execute.

object
The message’s argument.

Return Value
YES when the window or its delegate perform selector with object; otherwise, NO.

Discussion
The window tries to perform the method selector using its inherited NSResponder method
tryToPerform:with: (page 2202). If the window doesn’t perform selector, the delegate is given the
opportunity to perform it using its inherited NSObject method performSelector:withObject:.

Availability
Available in Mac OS X v10.0 and later.

3404 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

unregisterDraggedTypes
Unregisters the window as a possible destination for dragging operations.

- (void)unregisterDraggedTypes

Availability
Available in Mac OS X v10.0 and later.

See Also
– registerForDraggedTypes: (page 3358)

Declared In
NSWindow.h

update
Updates the window.

- (void)update

Discussion
The NSWindow implementation of this method does nothing more than post an
NSWindowDidUpdateNotification (page 3426) notification to the default notification center. A subclass
can override this method to perform specialized operations, but it should send an update message to super
just before returning. For example, the NSMenu class implements this method to disable and enable menu
commands.

An NSWindow object is automatically sent an update message on every pass through the event loop and
before it’s displayed onscreen. You can manually cause an updatemessage to be sent to all visible NSWindow
objects through the NSApplication updateWindows (page 179) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWindowsNeedUpdate: (page 172) (NSApplication)

Related Sample Code
FunHouse

Declared In
NSWindow.h

useOptimizedDrawing:
Specifies whether the window is to optimize focusing and drawing when displaying its views.

- (void)useOptimizedDrawing:(BOOL)optimizedDrawing

Instance Methods 3405
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
optimizedDrawing

If YES, the window will optimize focusing and drawing for its views; if NO, it will not, in which case,
the window does not preserve the Z-ordering of overlapping views when an object explicitly sends
lockFocus (page 3187) to a view and draws directly to it, instead of using the AppKit standard display
mechanism.

Discussion
The optimizations may prevent sibling subviews from being displayed in the correct order—which matters
only if the subviews overlap. You should always set optimizedDrawing to YESwhen there are no overlapping
subviews within the window. The default is NO.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DispatchFractal

Declared In
NSWindow.h

userSpaceScaleFactor
Returns the scale factor applied to the window.

- (CGFloat)userSpaceScaleFactor

Return Value
The scale factor applied to the window.

Discussion
Clients can multiply view coordinates by the returned scale factor to get a set of new coordinates that are
scaled to the resolution of the target screen. For example, if the scale factor is 1.25 and the view frame size
is 80 x 80, the actual size of the view frame is 100 x 100 pixels on the target screen.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
VideoViewer

Declared In
NSWindow.h

validRequestorForSendType:returnType:
Searches for an object that responds to a Services request.

- (id)validRequestorForSendType:(NSString *)sendType returnType:(NSString
*)returnType

3406 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
sendType

The input type of the Services request.

returnType
The return type of the Services request.

Return Value
The object that responds to the services request; nil when none is found.

Discussion
Messages to perform this method are initiated by the Services menu. It’s part of the mechanism that passes
validRequestorForSendType:returnType: messages up the responder chain.

This method works by forwarding the message to the window’s delegate if it responds (and provided it isn’t
an NSResponder object with its own next responder). If the delegate doesn’t respond to the message or
returns nil when sent it, this method forwards the message to the NSApplication object. If the
NSApplication object returns nil, this method also returns nil. Otherwise this method returns the object
returned by the delegate or the NSApplication object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– validRequestorForSendType:returnType: (page 2204) (NSResponder)
– validRequestorForSendType:returnType: (page 180) (NSApplication)

Declared In
NSWindow.h

viewsNeedDisplay
Indicates whether any of the window’s views need to be displayed.

- (BOOL)viewsNeedDisplay

Return Value
YES when any of the window’s views need to be displayed; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setViewsNeedDisplay: (page 3400)

Declared In
NSWindow.h

windowController
Returns the window’s window controller.

- (id)windowController

Instance Methods 3407
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Return Value
The window’s window controller.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWindowController: (page 3400)

Related Sample Code
FunHouse
PDFKitLinker2
QTAudioContextInsert
Sketch-112

Declared In
NSWindow.h

windowNumber
Provides the window number of the window’s window device.

- (NSInteger)windowNumber

Return Value
The window number of the window’s window device.

Discussion
Each window device in an application is given a unique window number—note that this isn’t the same as
the global window number assigned by the window server. This number can be used to identify the window
device with the orderWindow:relativeTo: (page 3352) method and in the Application Kit function
NSWindowList (page 4003). .

If the window doesn’t have a window device, the value returned will be equal to or less than 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithContentRect:styleMask:backing:defer: (page 3332)
– setOneShot: (page 3391)

Related Sample Code
CocoaDVDPlayer
Quartz Composer WWDC 2005 TextEdit

Declared In
NSWindow.h

windowRef
Returns the Carbon WindowRef associated with the window, creating one if necessary.

3408 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

- (void *)windowRef

Discussion
This method can be used to create a WindowRef for a window containing a Carbon control. Subsequent calls
to this method return the existing WindowRef. You use a WindowRef to create a Carbon window reference
for a Cocoa window; this assists the integration of Carbon and Cocoa code and objects.

For more information see MacWindows.h. For more information on Carbon-Cocoa integration, see
Carbon-Cocoa Integration Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
– initWithWindowRef: (page 3334)

Declared In
NSWindow.h

worksWhenModal
Indicates whether the window is able to receive keyboard and mouse events even when some other window
is being run modally.

- (BOOL)worksWhenModal

Return Value
YES if the window is able to receive keyboard and mouse events even when some other window is being
run modally; otherwise, NO.

Discussion
The NSWindow implementation of this method returns NO. Only subclasses of NSPanel should override this
default.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWorksWhenModal: (page 1862) (NSPanel)

Declared In
NSWindow.h

zoom:
This action method toggles the size and location of the window between its standard state (provided by the
application as the “best” size to display the window’s data) and its user state (a new size and location the
user may have set by moving or resizing the window).

- (void)zoom:(id)sender

Instance Methods 3409
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Parameters
sender

The object sending the message.

Discussion
For more information on the standard and user states, see
windowWillUseStandardFrame:defaultFrame: (page 3942).

The zoom: method is typically invoked after a user clicks the window’s zoom box but may also be invoked
programmatically from the performZoom: (page 3355) method. It performs the following steps:

1. Invokes the windowWillUseStandardFrame:defaultFrame: (page 3942) method, if the delegate or
the window class implements it, to obtain a “best fit” frame for the window. If neither the delegate nor
the window class implements the method, uses a default frame that nearly fills the current screen, which
is defined to be the screen containing the largest part of the window’s current frame.

2. Adjusts the resulting frame, if necessary, to fit on the current screen.

3. Compares the resulting frame to the current frame to determine whether the window’s standard frame
is currently displayed. If the current frame is within a few pixels of the standard frame in size and location,
it is considered a match.

4. Determines a new frame. If the window is currently in the standard state, the new frame represents the
user state, saved during a previous zoom. If the window is currently in the user state, the new frame
represents the standard state, computed in step 1 above. If there is no saved user state because there
has been no previous zoom, the size and location of the window do not change.

5. Determines whether the window currently allows zooming. By default, zooming is allowed. If the window’s
delegate implements the windowShouldZoom:toFrame: (page 3938) method, zoom: invokes that
method. If the delegate doesn’t implement the method but the window does, zoom: invokes the window’s
version. windowShouldZoom:toFrame: returns NO if zooming is not currently allowed.

6. If the window currently allows zooming, sets the new frame.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isZoomed (page 3342)

Related Sample Code
CIAnnotation

Declared In
NSWindow.h

3410 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Constants

Window Style Masks
These constants specify the presence of a title and various buttons in a window’s border. It can be
NSBorderlessWindowMask, or it can contain any of the following options, combined using the C bitwise
OR operator:

enum {
 NSBorderlessWindowMask = 0,
 NSTitledWindowMask = 1 << 0,
 NSClosableWindowMask = 1 << 1,
 NSMiniaturizableWindowMask = 1 << 2,
 NSResizableWindowMask = 1 << 3,
 NSTexturedBackgroundWindowMask = 1 << 8
};

Constants
NSBorderlessWindowMask

The window displays none of the usual peripheral elements. Useful only for display or caching purposes.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSTitledWindowMask
The window displays a title bar.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSClosableWindowMask
The window displays a close button.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSMiniaturizableWindowMask
The window displays a minimize button.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSResizableWindowMask
The window displays a resize control.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSTexturedBackgroundWindowMask
The window displays with a metal-textured background. Additionally, the window may be moved by
clicking and dragging anywhere in the window background. A bordered window with this mask gets
rounded bottom corners.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

Declared In
NSWindow.h

Constants 3411
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Window Levels
The standard window levels in Mac OS X.

#define NSNormalWindowLevel kCGNormalWindowLevel
#define NSFloatingWindowLevel kCGFloatingWindowLevel
#define NSSubmenuWindowLevel kCGTornOffMenuWindowLevel
#define NSTornOffMenuWindowLevel kCGTornOffMenuWindowLevel
#define NSMainMenuWindowLevel kCGMainMenuWindowLevel
#define NSStatusWindowLevel kCGStatusWindowLevel
#define NSModalPanelWindowLevel kCGModalPanelWindowLevel
#define NSPopUpMenuWindowLevel kCGPopUpMenuWindowLevel
#define NSScreenSaverWindowLevel kCGScreenSaverWindowLevel
#define NSDockWindowLevel kCGDockWindowLevel

Constants
NSNormalWindowLevel

The default level for NSWindow objects.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSFloatingWindowLevel
Useful for floating palettes.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSSubmenuWindowLevel
Reserved for submenus. Synonymous with NSTornOffMenuWindowLevel, which is preferred.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSTornOffMenuWindowLevel
The level for a torn-off menu. Synonymous with NSSubmenuWindowLevel.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSModalPanelWindowLevel
The level for a modal panel.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSMainMenuWindowLevel
Reserved for the application’s main menu.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSStatusWindowLevel
The level for a status window.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

3412 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

NSPopUpMenuWindowLevel
The level for a pop-up menu.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSScreenSaverWindowLevel
The level for a screen saver.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSDockWindowLevel

The level for the doc.. (Deprecated. Deprecated. There is no replacement.)

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

Discussion
The stacking of levels takes precedence over the stacking of windows within each level. That is, even the
bottom window in a level will obscure the top window of the next level down. Levels are listed in order from
lowest to highest. These constants are mapped (using #define statements) to corresponding elements in
Window Level Keys.

Display Device—Descriptions
These constants are the keys for device description dictionaries used by deviceDescription (page 3318).

NSString *NSDeviceResolution;
NSString *NSDeviceColorSpaceName;
NSString *NSDeviceBitsPerSample;
NSString *NSDeviceIsScreen;
NSString *NSDeviceIsPrinter;
NSString *NSDeviceSize;

Constants
NSDeviceResolution

The corresponding value is an NSValue object containing a value of type NSSize that describes the
window’s raster resolution in dots per inch (dpi).

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSDeviceColorSpaceName
The corresponding value is an NSString object giving the name of the window’s color space.

See Color_Space_Names (page 4017) in Application Kit Constants Reference for a list of possible values.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSDeviceBitsPerSample
The corresponding value is an NSNumber object containing an integer that gives the bit depth of the
window’s raster image (2-bit, 8-bit, and so forth).

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

Constants 3413
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

NSDeviceIsScreen
If there is a corresponding value, this indicates that the display device is a screen.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSDeviceIsPrinter
If there is a corresponding value, this indicates that the display device is a printer.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSDeviceSize
The corresponding value is an NSValue object containing a value of type NSSize that gives the size
of the window’s frame rectangle.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

Declared In
NSGraphics.h

Managing Scaling Factors
This constant provides a way to manage scaling factors:

enum {
 NSUnscaledWindowMask = 1 << 11
};

Constants
NSUnscaledWindowMask

Specifies that the window is created without any scaling factors applied.

The client is responsible for all scaling operations in the window. Such a window returns 1.0 from
its userSpaceScaleFactor method.

Currently restricted to borderless windows (NSBorderlessWindowMask).

Available in Mac OS X v10.4 and later.

Declared in NSWindow.h.

Controlling the Look of a Window and Its Toolbar
This constant controls the look of a window and its toolbar.

enum {
 NSUnifiedTitleAndToolbarWindowMask = 1 << 12
};

Constants
NSUnifiedTitleAndToolbarWindowMask

Specifies a window whose toolbar and title bar are rendered on a single continuous background.

Available in Mac OS X v10.4 and later.

Declared in NSWindow.h.

3414 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

NSSelectionDirection—Direction of Key View Change
These constants specify the direction a window is currently using to change the key view. They’re used by
keyViewSelectionDirection (page 3343).

enum {
 NSDirectSelection = 0,
 NSSelectingNext,
 NSSelectingPrevious
};
typedef NSUInteger NSSelectionDirection;

Constants
NSDirectSelection

The window isn’t traversing the key view loop.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSSelectingNext
The window is proceeding to the next valid key view.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSSelectingPrevious
The window is proceeding to the previous valid key view.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSWindowButton—Accessing Standard Title Bar Buttons
These constants provide a way to access standard title bar buttons:

enum {
 NSWindowCloseButton,
 NSWindowMiniaturizeButton,
 NSWindowZoomButton,
 NSWindowToolbarButton,
 NSWindowDocumentIconButton
};
typedef NSUInteger NSWindowButton;

Constants
NSWindowCloseButton

The close button.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

NSWindowMiniaturizeButton
The minimize button.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

Constants 3415
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

NSWindowZoomButton
The zoom button.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

NSWindowToolbarButton
The toolbar button.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

NSWindowDocumentIconButton
The document icon button.

Available in Mac OS X v10.2 and later.

Declared in NSWindow.h.

NSRunLoop—Ordering Modes for NSWindow
These constants are passed to NSRunLoop's performSelector:target:argument:order:modes:.

enum {
 NSDisplayWindowRunLoopOrdering,
 NSResetCursorRectsRunLoopOrdering
};

Constants
NSDisplayWindowRunLoopOrdering

The priority at which windows are displayed.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSResetCursorRectsRunLoopOrdering
The priority at which cursor rects are reset.

Available in Mac OS X v10.0 and later.

Declared in NSWindow.h.

NSWindowDepth—Window Depth
This type represents the depth, or amount of memory, devoted to a single pixel in a window or screen. A
depth of 0 indicates default depth. Window depths should not be made persistent as they will not be the
same across systems.

typedef int NSWindowDepth;

Discussion
Use the functions NSColorSpaceFromDepth (page 3966), NSBitsPerPixelFromDepth (page 3966), and
NSPlanarFromDepth (page 3990) to extract info from an NSWindowDepth value. Use NSBestDepth (page
3965) to compute window depths. NSBestDepth (page 3965) tries to accommodate all the parameters (match
or better); if there are multiple matches, it gives the closest, with matching color space first, then bps, then
planar, then bpp. bpp is “bits per pixel”; 0 indicates default (same as the number of bits per plane, either bps
or bps * NSNumberOfColorComponents (page 3988)); other values maybe used as hints to provide backing
stores of different configuration: for instance, 8-bit color.

3416 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

On Mac OS X 10.6 and later, you can pass one of the explicit bit depths defined in “Explicit Window Depth
Limits” (page 3417) to the NSWindow method setDepthLimit: (page 3378).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

Explicit Window Depth Limits
These constants define explicit window depths that can be used with setDepthLimit: (page 3378).

enum {
 NSWindowDepthTwentyfourBitRGB = 0x208,
 NSWindowDepthSixtyfourBitRGB = 0x210,
 NSWindowDepthOnehundredtwentyeightBitRGB = 0x220
};

Constants
NSWindowDepthTwentyfourBitRGB

Twenty four bit RGB depth limit.

Available in Mac OS X v10.6 and later.

Declared in NSGraphics.h.

NSWindowDepthSixtyfourBitRGB
Sixty four bit RGB depth limit.

Available in Mac OS X v10.6 and later.

Declared in NSGraphics.h.

NSWindowDepthOnehundredtwentyeightBitRGB
One hundred and twenty eight bit RGB depth limit.

Available in Mac OS X v10.6 and later.

Declared in NSGraphics.h.

NSBackingStoreType—Buffered Window Drawing
These constants specify how the drawing done in a window is buffered by the window device.

Constants 3417
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

enum {
 NSBackingStoreRetained = 0,
 NSBackingStoreNonretained = 1,
 NSBackingStoreBuffered = 2
};
typedef NSUInteger NSBackingStoreType;

Constants
NSBackingStoreRetained

The window uses a buffer, but draws directly to the screen where possible and to the buffer for
obscured portions.

You should not use this mode. It combines the limitations of NSBackingStoreNonretained with
the memory use of NSBackingStoreBuffered. The original NeXTSTEP implementation was an
interesting compromise that worked well with fast memory mapped framebuffers on the CPU
bus—something that hasn't been in general use since around 1994. These tend to have performance
problems.

In Mac OS X 10.5 and later, requests for retained windows will result in the window system creating
a buffered window, as that better matches actual use.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSBackingStoreNonretained
The window draws directly to the screen without using any buffer.

You should not use this mode. It exists primarily for use in the original Classic Blue Box. It does not
support Quartz drawing, alpha blending, or opacity. Moreover, it does not support hardware
acceleration, and interferes with system-wide display acceleration. If you use this mode, your application
must manage visibility region clipping itself, and manage repainting on visibility changes.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSBackingStoreBuffered
The window renders all drawing into a display buffer and then flushes it to the screen.

You should use this mode. It supports hardware acceleration, Quartz drawing, and takes advantage
of the GPU when possible. It also supports alpha channel drawing, opacity controls, using the
compositor.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSWindowOrderingMode
These constants let you specify how a window is ordered relative to another window. For more information,
see orderWindow:relativeTo: (page 3352).

3418 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

enum {
 NSWindowAbove = 1,
 NSWindowBelow = -1,
 NSWindowOut = 0
};
typedef NSInteger NSWindowOrderingMode;

Constants
NSWindowAbove

Moves the window above the indicated window.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSWindowBelow
Moves the window below the indicated window.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSWindowOut
Moves the window off the screen.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSWindowSharingType
The following constants and the related data type represent the access levels other processes can have to a
window’s content.

enum {
 NSWindowSharingNone = 0,
 NSWindowSharingReadOnly = 1,
 NSWindowSharingReadWrite = 2
};
typedef NSUInteger NSWindowSharingType;

Constants
NSWindowSharingNone

The window’s contents cannot be read by another process.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowSharingReadOnly
The window’s contents can be read but not modified by another process.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowSharingReadWrite
The window’s contents can be read and modified by another process.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

Constants 3419
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

NSWindowBackingLocation
The following constants and the related data type represent a window’s possible backing locations.

enum {
 NSWindowBackingLocationDefault = 0,
 NSWindowBackingLocationVideoMemory = 1,
 NSWindowBackingLocationMainMemory = 2
};
typedef NSUInteger NSWindowBackingLocation;

Constants
NSWindowBackingLocationDefault

Determined by the operating system.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowBackingLocationVideoMemory
Video memory.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowBackingLocationMainMemory
Physical memory.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowNumberListOptions
The options that may be passed to the windowNumbersWithOptions: (page 3296) method.

enum {
 NSWindowNumberListAllApplications = 1 << 0,
 NSWindowNumberListAllSpaces = 1 << 4
};
typedef NSUInteger NSWindowNumberListOptions;

Constants
NSWindowNumberListAllApplications

The window numbers of windows visible on any space and belonging to any application.

Available in Mac OS X v10.6 and later.

Declared in NSWindow.h.

NSWindowNumberListAllSpaces
The window numbers of windows visible on any space and belonging to the calling application.

Available in Mac OS X v10.6 and later.

Declared in NSWindow.h.

Discussion
If the value 0 is passed instead, then the list returned from the method contains window numbers for visible
windows on the active space belonging to the calling application.

3420 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Managing Window Collections
Window collection behaviors related to Exposé and Spaces.

enum {
 NSWindowCollectionBehaviorDefault = 0,
 NSWindowCollectionBehaviorCanJoinAllSpaces = 1 << 0,
 NSWindowCollectionBehaviorMoveToActiveSpace = 1 << 1
};
enum {
 NSWindowCollectionBehaviorManaged = 1 << 2,
 NSWindowCollectionBehaviorTransient = 1 << 3,
 NSWindowCollectionBehaviorStationary = 1 << 4,
};
enum {
 NSWindowCollectionBehaviorParticipatesInCycle = 1 << 5,
 NSWindowCollectionBehaviorIgnoresCycle = 1 << 6
};
typedef NSUInteger NSWindowCollectionBehavior;

Constants
NSWindowCollectionBehaviorDefault

The window can be associated to one space at a time.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowCollectionBehaviorCanJoinAllSpaces
The window appears in all spaces. The menu bar behaves this way.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowCollectionBehaviorMoveToActiveSpace
Making the window active does not cause a space switch; the window switches to the active space.

Available in Mac OS X v10.5 and later.

Declared in NSWindow.h.

NSWindowCollectionBehaviorManaged
The window participates in Spaces and Exposé. This is the default behavior if windowLevel is equal
to NSNormalWindowLevel (page 3412).

Available in Mac OS X v10.6 and later.

Declared in NSWindow.h.

NSWindowCollectionBehaviorTransient
The window floats in Spaces and is hidden by Exposé. This is the default behavior if windowLevel is
not equal to NSNormalWindowLevel (page 3412).

Available in Mac OS X v10.6 and later.

Declared in NSWindow.h.

NSWindowCollectionBehaviorStationary
The window is unaffected by Exposé; it stays visible and stationary, like the desktop window.

Available in Mac OS X v10.6 and later.

Declared in NSWindow.h.

Constants 3421
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

NSWindowCollectionBehaviorParticipatesInCycle
The window participates in the window cycle for use with the Cycle Through Windows Window menu
item.

Available in Mac OS X v10.6 and later.

Declared in NSWindow.h.

NSWindowCollectionBehaviorIgnoresCycle
The window is not part of the window cycle for use with the Cycle Through Windows Window menu
item.

Available in Mac OS X v10.6 and later.

Declared in NSWindow.h.

Application Kit Version for Deferred Window Display Support
The version of the AppKit.framework containing a specific bug fix or capability.

#define NSAppKitVersionNumberWithDeferredWindowDisplaySupport 1019.0

Constants
NSAppKitVersionNumberWithDeferredWindowDisplaySupport

The specific version of the AppKit framework that introduced for custom sheet positioning. Developers
should not need to use this constant unless they are writing applications for Mac OS X v10.5 and
earlier.

Available in Mac OS X v10.6 and later.

Declared in NSWindow.h.

Application Kit Version for Custom Sheet Position
The version of the AppKit.framework containing a specific bug fix or capability.

#define NSAppKitVersionNumberWithCustomSheetPosition 686.0

Constants
NSAppKitVersionNumberWithCustomSheetPosition

The specific version of the AppKit framework that introduced for custom sheet positioning. Developers
should not need to use this constant unless they are writing applications for Mac OS X v10.2 and
earlier.

Available in Mac OS X v10.3 and later.

Declared in NSWindow.h.

Notifications

NSWindowDidBecomeKeyNotification
Posted whenever an NSWindow object becomes the key window.

The notification object is the NSWindow object that has become key. This notification does not contain a
userInfo dictionary.

3422 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidBecomeMainNotification
Posted whenever an NSWindow object becomes the main window.

The notification object is the NSWindow object that has become main. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidChangeScreenNotification
Posted whenever a portion of an NSWindow object’s frame moves onto or off of a screen.

The notification object is the NSWindow object that has changed screens. This notification does not contain
a userInfo dictionary.

This notification is not sent in Mac OS X versions earlier than 10.4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidChangeScreenProfileNotification
Posted whenever the display profile for the screen containing the window changes.

This notification is sent only if the window returns YES from displaysWhenScreenProfileChanges (page
3322). This notification may be sent when a majority of the window is moved to a different screen (whose
profile is also different from the previous screen) or when the ColorSync profile for the current screen changes.

The notification object is the NSWindow object whose profile changed. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSWindow.h

NSWindowDidDeminiaturizeNotification
Posted whenever an NSWindow object is deminimized.

Notifications 3423
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

The notification object is the NSWindow object that has been deminimized. This notification does not contain
a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidEndSheetNotification
Posted whenever an NSWindow object closes an attached sheet.

The notification object is the NSWindow object that contained the sheet. This notification does not contain
a userInfo dictionary.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSWindow.h

NSWindowDidEndLiveResizeNotification
Posted after the user resizes a window.

This notification is sent only once for a series of window resize operations.

The notification object is the NSWindow object that was resized. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWindow.h

NSWindowDidExposeNotification
Posted whenever a portion of a nonretained NSWindow object is exposed, whether by being ordered in front
of other windows or by other windows being removed from in front of it.

The notification object is the NSWindow object that has been exposed. The userInfo dictionary contains
the following information:

ValueKey

The rectangle that has been exposed (an NSValue
object containing an NSRect).

@"NSExposedRect"

Availability
Available in Mac OS X v10.0 and later.

3424 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

NSWindowDidMiniaturizeNotification
Posted whenever an NSWindow object is minimized.

The notification object is the NSWindow object that has been minimized. This notification does not contain
a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidMoveNotification
Posted whenever an NSWindow object is moved.

The notification object is the NSWindow object that has moved. This notification does not contain a userInfo
dictionary.

Note: This notification is sent when the window that moved didn’t also change size. See
NSWindowDidResizeNotification (page 3426) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidResignKeyNotification
Posted whenever an NSWindow object resigns its status as key window.

The notification object is the NSWindow object that has resigned its key window status. This notification does
not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidResignMainNotification
Posted whenever an NSWindow object resigns its status as main window.

The notification object is the NSWindow object that has resigned its main window status. This notification
does not contain a userInfo dictionary.

Notifications 3425
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidResizeNotification
Posted whenever an NSWindow object’s size changes.

The notification object is the NSWindow object whose size has changed. This notification does not contain
a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowDidUpdateNotification
Posted whenever an NSWindow object receives an update (page 3405) message.

The notification object is the NSWindow object that received the update (page 3405) message. This notification
does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowWillBeginSheetNotification
Posted whenever an NSWindow object is about to open a sheet.

The notification object is the NSWindow object that is about to open the sheet. This notification does not
contain a userInfo dictionary.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSWindow.h

NSWindowWillCloseNotification
Posted whenever an NSWindow object is about to close.

The notification object is the NSWindow object that is about to close. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

3426 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Declared In
NSWindow.h

NSWindowWillMiniaturizeNotification
Posted whenever an NSWindow object is about to be minimized.

The notification object is the NSWindow object that is about to be minimized. This notification does not
contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowWillMoveNotification
Posted whenever an NSWindow object is about to move.

The notification object is the NSWindow object that is about to move. This notification does not contain a
userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindow.h

NSWindowWillStartLiveResizeNotification
Posted before the user resizes a window.

This notification is sent only once for a series of window resize operations.

The notification object is the NSWindow object that is about to be live resized. This notification does not
contain a userInfo dictionary.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWindow.h

Notifications 3427
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

3428 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 170

NSWindow Class Reference

Inherits from NSResponder : NSObject

Conforms to NSCoding
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSWindowController.h

Companion guide Document-Based Applications Overview

Related sample code BundleLoader
ImageKitDemo
QTAudioContextInsert
Sketch+Accessibility
Sketch-112

Overview

An NSWindowController object manages a window, usually a window stored in a nib file.

This management entails:

 ■ Loading and displaying the window

 ■ Closing the window when appropriate

 ■ Customizing the window’s title

 ■ Storing the window’s frame (size and location) in the defaults database

 ■ Cascading the window in relation to other document windows of the application

A window controller can manage a window by itself or as a role player in the Application Kit’s document-based
architecture, which also includes NSDocument and NSDocumentController objects. In this architecture, a
window controller is created and managed by a “document” (an instance of an NSDocument subclass) and,
in turn, keeps a reference to the document.

The relationship between a window controller and a nib file is important. Although a window controller can
manage a programmatically created window, it usually manages a window in a nib file. The nib file can
contain other top-level objects, including other windows, but the window controller’s responsibility is this

Overview 3429
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

primary window. The window controller is usually the owner of the nib file, even when it is part of a
document-based application. Regardless of who is the file’s owner, the window controller is responsible for
freeing all top-level objects in the nib file it loads.

For simple documents—that is, documents with only one nib file containing a window—you need do little
directly with NSWindowController. The Application Kit will create one for you. However, if the default
window controller is not sufficient, you can create a custom subclass of NSWindowController. For documents
with multiple windows or panels, your document must create separate instances of NSWindowController
(or of custom subclasses of NSWindowController), one for each window or panel. An example is a CAD
application that has different windows for side, top, and front views of drawn objects. What you do in your
NSDocument subclass determines whether the default NSWindowController or separately created and
configured NSWindowController objects are used.

Subclassing NSWindowController

You should create a subclass of NSWindowController when you want to augment the default behavior,
such as to give the window a custom title or to perform some setup tasks before the window is loaded. In
your class’s initialization method, be sure to invoke on super either one of the initWithWindowNibName:...
initializers or the initWithWindow: (page 3434) initializer. Which one depends on whether the window object
originates in a nib file or is programmatically created.

Three NSWindowController methods are most commonly overridden:

DescriptionMethod Name

Override to perform tasks before the window nib file
is loaded.

windowWillLoad (page 3444)

Override to perform tasks after the window nib file
is loaded.

windowDidLoad (page 3442)

Override to customize the window title.windowTitleForDocumentDisplayName: (page
3444)

You can also override loadWindow (page 3436) to get different nib-searching or nib-loading behavior, although
there is usually no need to do this.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

3430 Adopted Protocols
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

Tasks

Initializing NSWindowControllers

– initWithWindow: (page 3434)
Returns a window controller initialized with a given window.

– initWithWindowNibName: (page 3434)
Returns a window controller initialized with a nib file.

– initWithWindowNibName:owner: (page 3435)
Returns a window controller initialized with a nib file and a specified owner for that nib file.

– initWithWindowNibPath:owner: (page 3435)
Returns a window controller initialized with a nib file at an absolute path and a specified owner.

Loading and Display the Window

– loadWindow (page 3436)
Loads the receiver’s window from the nib file.

– showWindow: (page 3441)
Displays the window associated with the receiver.

– isWindowLoaded (page 3436)
Returns whether the nib file containing the receiver’s window has been loaded.

– window (page 3441)
Returns the window owned by the receiver.

– setWindow: (page 3439)
Sets the window controller’s window.

– windowDidLoad (page 3442)
Sent after the window owned by the receiver has been loaded.

– windowWillLoad (page 3444)
Sent before the window owned by the receiver is loaded.

Setting and Getting the Document

– setDocument: (page 3437)
Sets the document associated with the window managed by the receiver.

– document (page 3433)
Returns the document associated with the receiver.

– setDocumentEdited: (page 3437)
Sets the document edited flag for the window controller.

Tasks 3431
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

Closing the Window

– close (page 3432)
Closes the window if it was loaded.

– shouldCloseDocument (page 3440)
Returns whether the receiver necessarily closes the associated document when the window it manages
is closed.

– setShouldCloseDocument: (page 3438)
Sets whether the receiver should necessarily close the associated document when the window it
manages is closed.

Getting Nib File Information

– owner (page 3437)
Returns the owner of the nib file containing the window managed by the receiver.

– windowNibName (page 3443)
Returns the name of the nib file that stores the window associated with the receiver.

– windowNibPath (page 3444)
Returns the full path of the nib file that stores the window associated with the receiver.

Setting and Getting Window Attributes

– setShouldCascadeWindows: (page 3438)
Sets whether the window should cascade in relation to other document windows.

– shouldCascadeWindows (page 3440)
Returns whether the window will cascade in relation to other document windows when it is displayed.

– setWindowFrameAutosaveName: (page 3439)
Sets the name under which the window’s frame is saved in the defaults database.

– windowFrameAutosaveName (page 3443)
Returns the name under which the frame rectangle of the window owned by the receiver is stored
in the defaults database.

– synchronizeWindowTitleWithDocumentName (page 3441)
Synchronizes the displayed window title and the represented filename with the information in the
associated document.

– windowTitleForDocumentDisplayName: (page 3444)
Returns the window title to be used for a given document display name.

Instance Methods

close
Closes the window if it was loaded.

3432 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

- (void)close

Discussion
Because this method closes the window without asking the user for confirmation, you usually do not invoke
it when the Close menu command is chosen. Instead invoke NSWindow’s performClose: (page 3354) on the
receiver’s window. See “Window Closing Behavior” for an overview of deallocation behavior when a window
is closed.

Availability
Available in Mac OS X v10.0 and later.

See Also
– shouldCloseDocument (page 3440)
– setShouldCloseDocument: (page 3438)

Related Sample Code
FunHouse
GLUT
QTCompressionOptionsWindow
UIElementInspector

Declared In
NSWindowController.h

document
Returns the document associated with the receiver.

- (id)document

Return Value
The document associated with the receiver or nil if there is none.

Discussion
When a window controller is added to a document's list of window controllers, the document sets the window
controller’s document with setDocument:. The Application Kit uses this outlet to access the document for
relevant next-responder messages.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setDocument: (page 3437)

Related Sample Code
EnhancedAudioBurn
PDFKitLinker2
QTAudioContextInsert
QTKitFrameStepper
Sketch-112

Declared In
NSWindowController.h

Instance Methods 3433
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

initWithWindow:
Returns a window controller initialized with a given window.

- (id)initWithWindow:(NSWindow *)window

Parameters
window

The window object to manage; can be nil.

Return Value
A newly initialized window controller.

Discussion
This method is the designated initializer for NSWindowController.

This initializer is useful when a window has been loaded but no window controller is assigned. The default
initialization turns on cascading, sets the shouldCloseDocument (page 3440) flag to NO, and sets the window
frame autosave name to an empty string. As a side effect, the created window controller is added as an
observer of the NSWindowWillCloseNotification (page 3426)s posted by that window object (which is
handled by a private method). If you make the window controller a delegate of the window, you can implement
NSWindow’s windowShouldClose: delegate method.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FunHouse
MyMediaPlayer
UIElementInspector

Declared In
NSWindowController.h

initWithWindowNibName:
Returns a window controller initialized with a nib file.

- (id)initWithWindowNibName:(NSString *)windowNibName

Parameters
windowNibName

The name of the nib file (minus the “.nib” extension) that archives the receiver’s window; cannot be
nil.

Discussion
Sets the owner of the nib file to the receiver. The default initialization turns on cascading, sets the
shouldCloseDocument (page 3440) flag to NO, and sets the autosave name for the window’s frame to an
empty string.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BundleLoader

3434 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

DemoMonkey
QTAudioContextInsert
Sketch+Accessibility
UIElementInspector

Declared In
NSWindowController.h

initWithWindowNibName:owner:
Returns a window controller initialized with a nib file and a specified owner for that nib file.

- (id)initWithWindowNibName:(NSString *)windowNibName owner:(id)owner

Parameters
windowNibName

The name of the nib file (minus the “.nib” extension) that archives the receiver’s window; cannot be
nil.

owner
The nib file's owner; cannot be nil.

Discussion
The default initialization turns on cascading, sets the shouldCloseDocument (page 3440) flag to NO, and sets
the autosave name for the window’s frame to an empty string.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowController.h

initWithWindowNibPath:owner:
Returns a window controller initialized with a nib file at an absolute path and a specified owner.

- (id)initWithWindowNibPath:(NSString *)windowNibPath owner:(id)owner

Parameters
windowNibPath

The full path to the nib file that archives the receiver’s window; cannot be nil.

owner
The nib file's owner; cannot be nil.

Discussion
Use this method if your nib file is at a fixed location (which is not inside either the file’s owner’s class’s bundle
or in the application’s main bundle). The default initialization turns on cascading, sets the
shouldCloseDocument (page 3440) flag to NO, and sets the autosave name for the window’s frame to an
empty string.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3435
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

Declared In
NSWindowController.h

isWindowLoaded
Returns whether the nib file containing the receiver’s window has been loaded.

- (BOOL)isWindowLoaded

Return Value
YES if the nib file containing the receiver’s window has been loaded, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
– loadWindow (page 3436)
– window (page 3441)
– windowDidLoad (page 3442)
– windowWillLoad (page 3444)

Related Sample Code
GLUT
QTCompressionOptionsWindow
Sketch-112

Declared In
NSWindowController.h

loadWindow
Loads the receiver’s window from the nib file.

- (void)loadWindow

Discussion
You should never directly invoke this method. Instead, invokewindow (page 3441) so thewindowDidLoad (page
3442) and windowWillLoad (page 3444) methods are invoked. Subclasses can override this method if the way
it finds and loads the window is not adequate. It uses NSBundle’s bundleForClass: method to get the
bundle, using the class of the nib file owner as argument. It then locates the nib file within the bundle and,
if successful, loads it; if unsuccessful, it tries to find the nib file in the main bundle.

Availability
Available in Mac OS X v10.0 and later.

See Also
– isWindowLoaded (page 3436)

Declared In
NSWindowController.h

3436 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

owner
Returns the owner of the nib file containing the window managed by the receiver.

- (id)owner

Return Value
The owner of the nib file containing the window managed by the receiver; usually self, but can be the
receiver’s document or some other object.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowNibName (page 3443)

Related Sample Code
ImageKitDemo

Declared In
NSWindowController.h

setDocument:
Sets the document associated with the window managed by the receiver.

- (void)setDocument:(NSDocument *)document

Parameters
document

The new document.

Discussion
Documents automatically call this method when they add a window controller to their list of window
controllers; you should not call it directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– document (page 3433)

Declared In
NSWindowController.h

setDocumentEdited:
Sets the document edited flag for the window controller.

- (void)setDocumentEdited:(BOOL)flag

Parameters
flag

YES if the document has been edited since its last save, NO if it hasn't.

Instance Methods 3437
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

Discussion
The window controller uses this flag to control whether its associated window shows up as dirty. You should
not call this method directly for window controllers with an associated document; the document calls this
method on its window controllers as needed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowController.h

setShouldCascadeWindows:
Sets whether the window should cascade in relation to other document windows.

- (void)setShouldCascadeWindows:(BOOL)flag

Parameters
flag

YES if the window should cascade in relation to other document windows, NO otherwise.

Discussion
Cascading in relation to other document windows means having a slightly offset location so that the title
bars of previously displayed windows are still visible.

The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– shouldCascadeWindows (page 3440)

Related Sample Code
Sketch+Accessibility

Declared In
NSWindowController.h

setShouldCloseDocument:
Sets whether the receiver should necessarily close the associated document when the window it manages
is closed.

- (void)setShouldCloseDocument:(BOOL)flag

Parameters
flag

YES if the receiver necessarily closes the associated document when the window it manages is closed,
NO otherwise.

Discussion
If NO, the document is closed only when the last remaining window of the document is closed.

3438 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

The default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– shouldCloseDocument (page 3440)

Related Sample Code
DemoMonkey

Declared In
NSWindowController.h

setWindow:
Sets the window controller’s window.

- (void)setWindow:(NSWindow *)aWindow

Parameters
aWindow

The new window.

Discussion
This method releases the old window and any associated top-level objects in its nib file and assumes ownership
of the new window. You should generally create a new window controller for a new window and release the
old window controller instead of using this method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowController.h

setWindowFrameAutosaveName:
Sets the name under which the window’s frame is saved in the defaults database.

- (void)setWindowFrameAutosaveName:(NSString *)name

Parameters
name

The name under which the window’s frame is saved in the defaults database.

Discussion
By default, name is an empty string, causing no information to be stored in the defaults database.

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowFrameAutosaveName (page 3443)
– setFrameAutosaveName: (page 3382) (NSWindow)

Instance Methods 3439
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

Related Sample Code
Sketch+Accessibility

Declared In
NSWindowController.h

shouldCascadeWindows
Returns whether the window will cascade in relation to other document windows when it is displayed.

- (BOOL)shouldCascadeWindows

Return Value
YES if the window will cascade in relation to other document windows, NO otherwise.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShouldCascadeWindows: (page 3438)

Declared In
NSWindowController.h

shouldCloseDocument
Returns whether the receiver necessarily closes the associated document when the window it manages is
closed.

- (BOOL)shouldCloseDocument

Return Value
YES if the receiver necessarily closes the associated document when the window it manages is closed, NO
otherwise.

Discussion
If NO, the document is closed only when the last remaining window of the document is closed.

The default is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShouldCloseDocument: (page 3438)

Declared In
NSWindowController.h

3440 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

showWindow:
Displays the window associated with the receiver.

- (IBAction)showWindow:(id)sender

Parameters
sender

The control sending the message; can be nil.

Discussion
If the window is an NSPanel object and has its becomesKeyOnlyIfNeeded (page 1860) flag set to YES, the
window is displayed in front of all other windows but is not made key; otherwise it is displayed in front and
is made key. This method is useful for menu actions.

Availability
Available in Mac OS X v10.0 and later.

See Also
– makeKeyAndOrderFront: (page 3345) (NSWindow)
– orderFront: (page 3351) (NSWindow)

Related Sample Code
BasicCocoaAnimations
FunHouse
QTAudioContextInsert
Sketch+Accessibility
Sketch-112

Declared In
NSWindowController.h

synchronizeWindowTitleWithDocumentName
Synchronizes the displayed window title and the represented filename with the information in the associated
document.

- (void)synchronizeWindowTitleWithDocumentName

Discussion
Does nothing if the window controller has no associated document or loaded window. This method queries
the window controller’s document to get the document’s display name and full filename path, then calls
windowTitleForDocumentDisplayName: (page 3444) to get the display name to show in the window title.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowController.h

window
Returns the window owned by the receiver.

Instance Methods 3441
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

- (NSWindow *)window

Return Value
The window owned by the receiver or nil if there isn’t one.

Discussion
If the window has not yet been loaded, this method attempts to load the window’s nib file using
loadWindow (page 3436). Before it loads the window, it invokes windowWillLoad (page 3444), and if the
window controller has a document, it invokes the document's corresponding method
windowControllerWillLoadNib: (page 991) (if implemented). After loading the window, this method
invokes windowDidLoad (page 3442) and, if there is a document, the NSDocument method
windowControllerDidLoadNib: (page 990) (if implemented).

Availability
Available in Mac OS X v10.0 and later.

See Also
– windowControllerWillLoadNib: (page 991) (NSDocument)

Related Sample Code
FunHouse
GridCalendar
ObjectPath
QTAudioContextInsert
UIElementInspector

Declared In
NSWindowController.h

windowDidLoad
Sent after the window owned by the receiver has been loaded.

- (void)windowDidLoad

Discussion
The default implementation does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– loadWindow (page 3436)
– window (page 3441)
– windowWillLoad (page 3444)

Related Sample Code
FunHouse
GLUT
GridCalendar
QTAudioContextInsert
Sketch-112

3442 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

Declared In
NSWindowController.h

windowFrameAutosaveName
Returns the name under which the frame rectangle of the window owned by the receiver is stored in the
defaults database.

- (NSString *)windowFrameAutosaveName

Return Value
The name under which the frame rectangle of the window owned by the receiver is stored in the defaults
database.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setWindowFrameAutosaveName: (page 3439)

Declared In
NSWindowController.h

windowNibName
Returns the name of the nib file that stores the window associated with the receiver.

- (NSString *)windowNibName

Return Value
The name of the nib file that stores the window associated with the receiver.

Discussion
If initWithWindowNibPath:owner: (page 3435) was used to initialize the instance, windowNibName returns
the last path component with the “.nib” extension stripped off. If initWithWindowNibName: (page 3434)
or initWithWindowNibName:owner: (page 3435) was used, windowNibName returns the name without the
“.nib” extension.

Availability
Available in Mac OS X v10.0 and later.

See Also
– owner (page 3437)

Related Sample Code
ObjectPath
QTCompressionOptionsWindow
SourceView

Declared In
NSWindowController.h

Instance Methods 3443
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

windowNibPath
Returns the full path of the nib file that stores the window associated with the receiver.

- (NSString *)windowNibPath

Return Value
The full path of the nib file that stores the window associated with the receiver; nil if it cannot be located.

Discussion
If initWithWindowNibPath:owner: (page 3435) was used to initialize the instance, the path is just returned.
If initWithWindowNibName: (page 3434) or initWithWindowNibName:owner: (page 3435) was used,
windowNibPath locates the nib in the file’s owner’s class’ bundle or in the application’s main bundle and
returns the full path (or nil if it cannot be located). Subclasses can override this to augment the search
behavior, but probably ought to call super first.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowController.h

windowTitleForDocumentDisplayName:
Returns the window title to be used for a given document display name.

- (NSString *)windowTitleForDocumentDisplayName:(NSString *)displayName

Parameters
displayName

The display name for the document. This is the last path component under which the document file
is saved.

Discussion
The default implementation returns displayName. Subclasses can override this method to customize the
window title. For example, a CAD application could append “-Top” or “-Side,” depending on the view displayed
by the window.

Availability
Available in Mac OS X v10.0 and later.

See Also
synchronizeWindowTitleWithDocumentName (page 3441)

Declared In
NSWindowController.h

windowWillLoad
Sent before the window owned by the receiver is loaded.

- (void)windowWillLoad

3444 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

Discussion
The default implementation does nothing.

Availability
Available in Mac OS X v10.0 and later.

See Also
– loadWindow (page 3436)
– window (page 3441)
– windowDidLoad (page 3442)

Declared In
NSWindowController.h

Instance Methods 3445
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

3446 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 171

NSWindowController Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSWorkspace.h
AppKit/NSRunningApplication.h

Companion guide Workspace Services Programming Topics

Related sample code AppList
DesktopImage
iChatStatusFromApplication
Quartz Composer WWDC 2005 TextEdit
SourceView

Overview

An NSWorkspace object responds to application requests to perform a variety of services:

 ■ Opening, manipulating, and obtaining information about files and devices

 ■ Tracking changes to the file system, devices, and the user database

 ■ Getting and setting Finder information for files.

 ■ Launching applications

There is one shared NSWorkspace object per application. You use the class method sharedWorkspace (page
3452) to access it. For example, the following statement uses an NSWorkspace object to request that a file be
opened in the TextEdit application:

[[NSWorkspace sharedWorkspace] openFile:@"/Myfiles/README"
 withApplication:@"TextEdit"];

Overview 3447
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Tasks

Accessing the Shared NSWorkspace Instance

+ sharedWorkspace (page 3452)
Returns the shared NSWorkspace instance.

Accessing the NSWorkspace Notification Center

– notificationCenter (page 3469)
Returns the notification center for workspace notifications.

Opening Files

– openFile: (page 3469)
Opens the specified file specified using the default application associated with its type.

– openFile:withApplication: (page 3471)
Opens a file using the specified application.

– openFile:fromImage:at:inView: (page 3470)
Opens a file using the default application for its type and animates the action using a custom icon.

– openFile:withApplication:andDeactivate: (page 3471)
Opens the specified file and optionally deactivates the sending application.

– openURL: (page 3473)
Opens the location at the specified URL.

– openTempFile: (page 3472) Deprecated in Mac OS X v10.6
Opens the specified temporary file using the default application for its type.

Manipulating Applications

– launchApplication: (page 3463)
Launches the specified application.

– launchApplication:showIcon:autolaunch: (page 3463)
Launches the specified application using additional options.

– launchApplicationAtURL:options:configuration:error: (page 3464)
Launches the app at the specified URL.

– hideOtherApplications (page 3460)
Hides all applications other than the sender.

3448 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Manipulating Files

– duplicateURLs:completionHandler: (page 3455)
Duplicates the specified URLS asynchronously in the same manner as the Finder..

– recycleURLs:completionHandler: (page 3475)
Moves the specified URLs to the trash in the same manner a the Finder.

– performFileOperation:source:destination:files:tag: (page 3474)
Performs a file operation on a set of files in a particular directory.

– activateFileViewerSelectingURLs: (page 3453)
Activates the Finder, and opens one or more windows selecting the specified files.

– selectFile:inFileViewerRootedAtPath: (page 3477)
Selects the file specified by fullPath.

Manipulating Uniform Type Identifier Information

– typeOfFile:error: (page 3480)
Returns the uniform type identifier of the specified file, if it can be determined..

– localizedDescriptionForType: (page 3466)
Returns the localized description for the specified Uniform Type Identifier

– preferredFilenameExtensionForType: (page 3475)
Returns the preferred filename extension for the specified Uniform Type Identifier.

– filenameExtension:isValidForType: (page 3457)
Returns whether the specified filename extension is appropriate for the Uniform Type Identifier.

– type:conformsToType: (page 3480)
Returns a Boolean indicating that the first Uniform Type Identifier conforms to the second Uniform
Type Identifier.

– URLForApplicationWithBundleIdentifier: (page 3482)
Returns the URL for the application with the specified identifier.

Requesting Information

– iconForFile: (page 3460)
Returns an image containing the icon for the specified file.

– iconForFileType: (page 3462)
Returns an image containing the icon for files of the specified type.

– iconForFiles: (page 3461)
Returns an image containing the icon for the specified files.

– getInfoForFile:application:type: (page 3460)
Retrieves information about the specified file.

– URLForApplicationToOpenURL: (page 3482)
Returns the URL to the default application that would be used to open the given URL.

– fullPathForApplication: (page 3458)
Returns the full path for the specified application.

Tasks 3449
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

– getFileSystemInfoForPath:isRemovable:isWritable:isUnmountable:description:type: (page
3459)

Describes the file system at fullPath.

– isFilePackageAtPath: (page 3462)
Determines whether the specified path is a file package.

– activeApplication (page 3453)
Returns a dictionary with information about the current active application.

– launchedApplications (page 3465)
Returns an array of dictionaries, one entry for each running application.

Image Animation

– slideImage:from:to: (page 3479)
Animates a sliding image from one point to another.

Requesting Additional Time Before Logout

– extendPowerOffBy: (page 3456)
Requests the system wait for the specified amount of time before turning off the power or logging
out the user.

Tracking Changes to the File System

– noteFileSystemChanged: (page 3468)
Informs the NSWorkspace object that the file system changed at the specified path.

– fileSystemChanged (page 3458) Deprecated in Mac OS X v10.6
Returns a Boolean value indicating whether a change to the file system has been registered with a
noteFileSystemChanged (page 3468) message since the last fileSystemChanged (page 3458)
message.

– noteFileSystemChanged (page 3468) Deprecated in Mac OS X v10.6
Informs the NSWorkspace object that the file system has changed.

Updating Registered Services and File Types

– findApplications (page 3458) Deprecated in Mac OS X v10.6
Examines all applications and updates the records of registered services and file types.

Tracking Changes to the Defaults Database

– noteUserDefaultsChanged (page 3468) Deprecated in Mac OS X v10.6
Informs the NSWorkspace object that the defaults database has changed.

3450 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

– userDefaultsChanged (page 3483) Deprecated in Mac OS X v10.6
Returns a Boolean value indicating whether a change to the defaults database has been registered
with anoteUserDefaultsChanged (page 3468) message since the lastuserDefaultsChanged (page
3483) message.

Tracking Status Changes for Applications and Devices

– mountedRemovableMedia (page 3466)
Returns the full pathnames of all currently mounted removable disks.

– mountedLocalVolumePaths (page 3466)
Returns the mount points of all local volumes, not just the removable ones returned by
mountedRemovableMedia (page 3466).

– runningApplications (page 3476)
Returns an array of NSRunningApplication representing the running applications.

– checkForRemovableMedia (page 3454) Deprecated in Mac OS X v10.6
Polls the system’s drives for any disks that have been inserted but not yet mounted.

– mountNewRemovableMedia (page 3467) Deprecated in Mac OS X v10.6
Returns the full pathnames of any newly mounted disks.

Providing Custom Icons

– setIcon:forFile:options: (page 3478)
Sets the icon for the file or directory at the specified path.

Unmounting a Device

– unmountAndEjectDeviceAtPath: (page 3481)
Unmounts and ejects the device at the specified path.

– unmountAndEjectDeviceAtURL:error: (page 3481)
Attempts to eject the volume mounted at the given path.

Working with Bundles

– absolutePathForAppBundleWithIdentifier: (page 3453)
Returns the absolute file-system path of an application bundle.

– launchAppWithBundleIdentifier:options:additionalEventParamDescriptor:launchIdentifier: (page
3464)

Launches the application corresponding to the specified bundleIdentifier.

– openURLs:withAppBundleIdentifier:options:additionalEventParamDescriptor:launchIdentifiers: (page
3473)

Opens one or more files from an array of URLs.

Tasks 3451
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Managing the Desktop Image

– desktopImageURLForScreen: (page 3455)
Returns the URL for the desktop image for the given screen.

– setDesktopImageURL:forScreen:options:error: (page 3477)
Sets the desktop image for the given screen to the image at the specified URL.

– desktopImageOptionsForScreen: (page 3454)
Returns the desktop image options for the given screen.

Performing Finder Spotlight Searches

– showSearchResultsForQueryString: (page 3479)
Displays a Spotlight search results window in Finder for the specified query string.

Finder File Labels

– fileLabelColors (page 3457)
Returns the corresponding array of file label colors for the file labels.

– fileLabels (page 3457)
Returns the array of file labels as strings.

Class Methods

sharedWorkspace
Returns the shared NSWorkspace instance.

+ (NSWorkspace *)sharedWorkspace

Return Value
The NSWorkspace object associated with the process.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaDVDPlayer
DesktopImage
iChatStatusFromApplication
Quartz Composer WWDC 2005 TextEdit
SourceView

Declared In
NSWorkspace.h

3452 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Instance Methods

absolutePathForAppBundleWithIdentifier:
Returns the absolute file-system path of an application bundle.

- (NSString *)absolutePathForAppBundleWithIdentifier:(NSString *)bundleIdentifier

Parameters
bundleIdentifier

The bundle identifier string. This value corresponds to the value in the CFBundleIdentifier key
of the application’s Info.plist file. For example, the bundle identifier of the TextEdit application
is com.apple.TextEdit.

Return Value
The file system path to the application bundle identified by bundleIdentifier, or nil if the bundle cannot
be found.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSWorkspace.h

activateFileViewerSelectingURLs:
Activates the Finder, and opens one or more windows selecting the specified files.

- (void)activateFileViewerSelectingURLs:(NSArray *)fileURLs

Parameters
fileURLs

The files to select and display in the Finder.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

activeApplication
Returns a dictionary with information about the current active application.

- (NSDictionary *)activeApplication

Return Value
A dictionary with information about the application. The dictionary contains as many of the keys described
in Table 172-1 (page 3483) as are available.

Instance Methods 3453
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Special Considerations

It is strongly suggested that you use the NSRunningApplication classes’ currentApplication (page
2275) or activemethods to retrieve this information in applications targeted for Mac OS X v10.6 and later.

Availability
Available in Mac OS X v10.2 and later.

See Also
– runningApplications (page 3476)
– launchedApplications (page 3465)

Related Sample Code
iChatStatusFromApplication

Declared In
NSWorkspace.h

checkForRemovableMedia
Polls the system’s drives for any disks that have been inserted but not yet mounted. (Deprecated in Mac OS
X v10.6.)

- (void)checkForRemovableMedia

Discussion
This method doesn’t wait until such disks are mounted; instead, it requests that the disk be mounted
asynchronously and returns immediately. Currently has no effect.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– mountNewRemovableMedia (page 3467)
– mountedRemovableMedia (page 3466)

Declared In
NSWorkspace.h

desktopImageOptionsForScreen:
Returns the desktop image options for the given screen.

- (NSDictionary *)desktopImageOptionsForScreen:(NSScreen *)screen

Parameters
screen

The screen for which to get the desktop image options.

Return Value
A dictionary containing key-value pairs specified in “Desktop Image Dictionary Keys” (page 3487).

3454 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Availability
Available in Mac OS X v10.6 and later.

See Also
– desktopImageURLForScreen: (page 3455)
– setDesktopImageURL:forScreen:options:error: (page 3477)

Related Sample Code
DesktopImage

Declared In
NSWorkspace.h

desktopImageURLForScreen:
Returns the URL for the desktop image for the given screen.

- (NSURL *)desktopImageURLForScreen:(NSScreen *)screen

Parameters
screen

The screen for which to get the desktop image.

Return Value
The desktop image.

Availability
Available in Mac OS X v10.6 and later.

See Also
– desktopImageOptionsForScreen: (page 3454)
– setDesktopImageURL:forScreen:options:error: (page 3477)

Related Sample Code
AnimatedTableView
DesktopImage

Declared In
NSWorkspace.h

duplicateURLs:completionHandler:
Duplicates the specified URLS asynchronously in the same manner as the Finder..

- (void)duplicateURLs:(NSArray *)URLs completionHandler:(void (^)(NSDictionary
*newURLs, NSError *error))handler

Parameters
URLs

The array of URLs to duplicate.

Instance Methods 3455
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

handler
The completion handler block object. If completionHandler is not nil, it will be called when the
operation is complete, on the same dispatch queue that was used for the
duplicateURLs:completionHandler: call. The completionHandler may be nil if you are not
interested in the results.

The block takes two arguments:

newURLs

A dictionary parameter that maps the given URLs to their new URLs locations. Files that could
not be duplicated will not be present in the dictionary.

error

If the operation succeeded for every file, the error parameter will be nil. If it failed for one or
more files, the error parameter will describe the overall result of the operation in a manner
suitable for presentation to the user.

Discussion
This methods may show a progress indicator, or other user interface elements, at AppKit's discretion.

In Mac OS X 10.6, this method require that the main run loop be run in a common mode.

Availability
Available in Mac OS X v10.6 and later.

See Also
– recycleURLs:completionHandler: (page 3475)

Declared In
NSWorkspace.h

extendPowerOffBy:
Requests the system wait for the specified amount of time before turning off the power or logging out the
user.

- (NSInteger)extendPowerOffBy:(NSInteger)requested

Parameters
requested

The number of milliseconds to wait before turning off the power or logging off the user.

Return Value
The number of milliseconds granted by the system.

Discussion
Currently unimplemented.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWorkspace.h

3456 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

fileLabelColors
Returns the corresponding array of file label colors for the file labels.

- (NSArray *)fileLabelColors

Return Value
An array of NSColor objects.

Discussion
This array has the same number of elements as fileLabels (page 3457), and the color at a given index
corresponds to the label at the same index.

You can listen for notifications named NSWorkspaceDidChangeFileLabelsNotification (page 3495) to
be notified when file labels change which may result in changes to the order of the fileLabelColors.

Availability
Available in Mac OS X v10.6 and later.

See Also
– fileLabels (page 3457)

Declared In
NSWorkspace.h

fileLabels
Returns the array of file labels as strings.

- (NSArray *)fileLabels

Return Value
An array of strings.

Discussion
You can listen for notifications named NSWorkspaceDidChangeFileLabelsNotification (page 3495) to
be notified when file labels change.

Availability
Available in Mac OS X v10.6 and later.

See Also
– fileLabelColors (page 3457)

Declared In
NSWorkspace.h

filenameExtension:isValidForType:
Returns whether the specified filename extension is appropriate for the Uniform Type Identifier.

- (BOOL)filenameExtension:(NSString *)filenameExtension isValidForType:(NSString
*)typeName

Instance Methods 3457
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Parameters
filenameExtension

A string containing the filename extension.

typeName
A string containing the Uniform Type Identifier.

Return Value
YES if fileNameExtension is a valid extension for typeName, NO otherwise

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSWorkspace.h

fileSystemChanged
Returns a Boolean value indicating whether a change to the file system has been registered with a
noteFileSystemChanged (page 3468) message since the last fileSystemChanged (page 3458) message.
(Deprecated in Mac OS X v10.6.)

- (BOOL)fileSystemChanged

Return Value
Currently, this method always returns NO.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSWorkspace.h

findApplications
Examines all applications and updates the records of registered services and file types. (Deprecated in Mac
OS X v10.6.)

- (void)findApplications

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSWorkspace.h

fullPathForApplication:
Returns the full path for the specified application.

3458 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

- (NSString *)fullPathForApplication:(NSString *)appName

Parameters
appName

The name of the application.

Return Value
The full path for the application, or nil if the specified application was not found.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWorkspace.h

getFileSystemInfoForPath:isRemovable:isWritable:isUnmountable:description:type:
Describes the file system at fullPath.

- (BOOL)getFileSystemInfoForPath:(NSString *)fullPath isRemovable:(BOOL
*)removableFlag isWritable:(BOOL *)writableFlag isUnmountable:(BOOL
*)unmountableFlag description:(NSString **)description type:(NSString
**)fileSystemType

Parameters
fullPath

The path to the file-system mount point.

removableFlag
On input, a boolean variable; on return, this variable contains YES if the file system is on removable
media.

writableFlag
On input, a boolean variable; on return, this variable contains YES if the file system writable.

unmountableFlag
On input, a boolean variable; on return, this variable contains YES if the file system is unmountable.

description
On input, a pointer to a string object variable; on return, if the method was successful, this variable
contains a string object that describes the file system. You should not rely on this description for
program logic but can use it in message strings. Values can include “hard,” “nfs,” and “foreign."

fileSystemType
On input, a pointer to a string object variable; on return, if the method was successful, this variable
contains the file-system type. Values can include “HFS,” “UFS,” or other values.

Return Value
YES if the information was successfully returned, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWorkspace.h

Instance Methods 3459
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

getInfoForFile:application:type:
Retrieves information about the specified file.

- (BOOL)getInfoForFile:(NSString *)fullPath application:(NSString **)appName
type:(NSString **)type

Parameters
fullPath

The full path to the desired file.

appName
The application the system would use to open the file.

type
On input, a pointer to a string object variable; on return, if the method is successful, this variable
contains a string object with the filename extension or encoded HFS file type of the file.

Return Value
YES if the information was retrieved successfully; otherwise, NO if the file could not be found or the application
was not associated with the file.

Availability
Available in Mac OS X v10.0 and later.

See Also
– iconForFile: (page 3460)
– iconForFiles: (page 3461)

Declared In
NSWorkspace.h

hideOtherApplications
Hides all applications other than the sender.

- (void)hideOtherApplications

Discussion
The user can hide all applications except the current one by Command-Option-clicking on an application’s
Dock icon.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWorkspace.h

iconForFile:
Returns an image containing the icon for the specified file.

- (NSImage *)iconForFile:(NSString *)fullPath

3460 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Parameters
fullPath

The full path to the file.

Return Value
The icon associated with the file.

Discussion
The returned image has an initial size of 32 pixels by 32 pixels.

Availability
Available in Mac OS X v10.0 and later.

See Also
– getInfoForFile:application:type: (page 3460)
– iconForFileType: (page 3462)
– iconForFiles: (page 3461)

Related Sample Code
DesktopImage
FunHouse
iChatStatusFromApplication
SourceView
Spotlighter

Declared In
NSWorkspace.h

iconForFiles:
Returns an image containing the icon for the specified files.

- (NSImage *)iconForFiles:(NSArray *)fullPaths

Parameters
fullPaths

An array of NSString objects, each of which contains the full path to a file.

Return Value
The icon associated with the group of files.

Discussion
If fullPaths specifies one file, that file's icon is returned. If fullPaths specifies more than one file, an icon
representing the multiple selection is returned.

Availability
Available in Mac OS X v10.0 and later.

See Also
– iconForFile: (page 3460)
– iconForFileType: (page 3462)

Declared In
NSWorkspace.h

Instance Methods 3461
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

iconForFileType:
Returns an image containing the icon for files of the specified type.

- (NSImage *)iconForFileType:(NSString *)fileType

Parameters
fileType

The file type, which may be either a filename extension or an encoded HFS file type.

Return Value
The icon associated with files of the given type.

Discussion
The returned image has an initial size of 32 pixels by 32 pixels.

Availability
Available in Mac OS X v10.0 and later.

See Also
– iconForFile: (page 3460)
– iconForFiles: (page 3461)

Related Sample Code
ButtonMadness
IconCollection
MyPhoto
SourceView
ZipBrowser

Declared In
NSWorkspace.h

isFilePackageAtPath:
Determines whether the specified path is a file package.

- (BOOL)isFilePackageAtPath:(NSString *)fullPath

Parameters
fullPath

The full path to examine.

Return Value
YES if the path identifies a file package; otherwise, NO if the path does not exist, is not a directory, or is not
a file package.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWorkspace.h

3462 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

launchApplication:
Launches the specified application.

- (BOOL)launchApplication:(NSString *)appName

Parameters
appName

The name of the application to open.

Return Value
YES if the application was successfully launched or was already running; otherwise, NO.

Discussion
The appName parameter need not be specified with a full path and, in the case of an application wrapper,
may be specified with or without the .app extension, as described in “Use of .app Extension”.

Before this method begins, it posts an NSWorkspaceWillLaunchApplicationNotification (page 3491)
to the NSWorkspace object’s notification center. When the operation is complete, it posts an
NSWorkspaceDidLaunchApplicationNotification (page 3491).

Availability
Available in Mac OS X v10.0 and later.

See Also
– launchApplication:showIcon:autolaunch: (page 3463)

Related Sample Code
QTAudioExtractionPanel

Declared In
NSWorkspace.h

launchApplication:showIcon:autolaunch:
Launches the specified application using additional options.

- (BOOL)launchApplication:(NSString *)appName showIcon:(BOOL)showIcon
autolaunch:(BOOL)autolaunch

Parameters
appName

The name of the application to open.

showIcon
If NO, the application's icon is not placed on the screen. (The icon still exists, though.)

autolaunch
If YES, the autolaunch default is set as though the specified application were autolaunched at startup.

Return Value
YES if the application was successfully launched or was already running; otherwise, NO.

Discussion
This method is provided to enable daemon-like applications that lack a normal user interface. Its use is not
generally encouraged.

Instance Methods 3463
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Returns YES if the application is successfully launched or already running, and NO if it can’t be launched.

Before this method begins, it posts an NSWorkspaceWillLaunchApplicationNotification (page 3491)
to the NSWorkspace object’s notification center. When the operation is complete, it posts an
NSWorkspaceDidLaunchApplicationNotification (page 3491).

Availability
Available in Mac OS X v10.0 and later.

See Also
– launchApplication: (page 3463)

Declared In
NSWorkspace.h

launchApplicationAtURL:options:configuration:error:
Launches the app at the specified URL.

- (NSRunningApplication *)launchApplicationAtURL:(NSURL
*)urloptions:(NSWorkspaceLaunchOptions)optionsconfiguration:(NSDictionary
*)configurationerror:(NSError **)error

Parameters
url

The application URL.

options
Options to use when launching the application. See “NSWorkspaceLaunchOptions” (page 3487) for
possible values.

configuration
A dictionary containing the configuration options. Possible key-value pairs are described in “Workspace
Launch Configuration Options” (page 3484)

error

Return Value

Discussion

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

launchAppWithBundleIdentifier:options:additionalEventParamDescriptor:
launchIdentifier:
Launches the application corresponding to the specified bundleIdentifier.

3464 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

- (BOOL)launchAppWithBundleIdentifier:(NSString *)bundleIdentifier
options:(NSWorkspaceLaunchOptions)options
additionalEventParamDescriptor:(NSAppleEventDescriptor *)descriptor
launchIdentifier:(NSNumber **)identifier

Parameters
bundleIdentifier

A bundle identifier string. This value corresponds to the value in the CFBundleIdentifier key of
the application’s Info.plist file. For example, the bundle identifier of the TextEdit application is
com.apple.TextEdit.

options
Options to use when launching the application. Values for this parameter are described in
“NSWorkspaceLaunchOptions” (page 3487).

descriptor
Additional options specified in an AppleEvent-style descriptor. For example, you could use this
parameter to specify additional documents to open when the application is launched.

identifier
The launchIdentifiers are currently unused, and you should pass NULL.

Return Value
YES if the application was found and launched; otherwise, NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– openURLs:withAppBundleIdentifier:options:additionalEventParamDescriptor:launchIdentifiers: (page
3473)

Declared In
NSWorkspace.h

launchedApplications
Returns an array of dictionaries, one entry for each running application.

- (NSArray *)launchedApplications

Return Value
An array of NSDictionary objects. Each dictionary contains as many of the keys described in Table
172-1 (page 3483) as are available.

Special Considerations

It is strongly suggested that you use the NSWorkspace runningApplications (page 3476) method and the
NSRunningApplication class to retrieve this information in applications targeted for Mac OS X v10.6 and
later.

Availability
Available in Mac OS X v10.2 and later.

See Also
– runningApplications (page 3476)
– activeApplication (page 3453)

Instance Methods 3465
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Declared In
NSWorkspace.h

localizedDescriptionForType:
Returns the localized description for the specified Uniform Type Identifier

- (NSString *)localizedDescriptionForType:(NSString *)typeName

Parameters
typeName

A string containing the Uniform Type Identifier.

Return Value
An NSString containing the localized description of typeName.

Discussion
The localized description is suitable for displaying to the user.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CocoaSlides

Declared In
NSWorkspace.h

mountedLocalVolumePaths
Returns the mount points of all local volumes, not just the removable ones returned by
mountedRemovableMedia (page 3466).

- (NSArray *)mountedLocalVolumePaths

Return Value
An array of NSString objects, each of which contains the full pathname of the mount point for any local
volumes.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SourceView

Declared In
NSWorkspace.h

mountedRemovableMedia
Returns the full pathnames of all currently mounted removable disks.

- (NSArray *)mountedRemovableMedia

3466 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Return Value
An array of NSString objects, each of which contains the full pathname of a mounted removable disk.

Discussion
If the computer provides an interrupt or other notification when the user inserts a disk into a drive, the Finder
will mount the disk immediately. However, if no notification is given, the Finder won’t be aware that a disk
needs to be mounted. On such systems, an application should invoke either mountNewRemovableMedia (page
3467) orcheckForRemovableMedia (page 3454) before invokingmountedRemovableMedia (page 3466). Either
of these methods cause the Finder to poll the drives to see if a disk is present. If a disk has been inserted but
not yet mounted, these methods will cause the Finder to mount it.

The Disk button in an Open or Save panel invokes mountedRemovableMedia (page 3466) and
mountNewRemovableMedia (page 3467) as part of its operation, so most applications won’t need to invoke
these methods directly.

Availability
Available in Mac OS X v10.0 and later.

See Also
– checkForRemovableMedia (page 3454)
– mountNewRemovableMedia (page 3467)

Related Sample Code
CocoaDVDPlayer

Declared In
NSWorkspace.h

mountNewRemovableMedia
Returns the full pathnames of any newly mounted disks. (Deprecated in Mac OS X v10.6.)

- (NSArray *)mountNewRemovableMedia

Return Value
An array of NSString objects, each of which contains the full pathname to a newly mounted disk.

Discussion
This method polls the system’s drives for any disks that have been inserted but not yet mounted and waits
until the new disks have been mounted. This method posts an NSWorkspaceDidMountNotification (page
3494) to the NSWorkspace object’s notification center when it is finished. Currently provides the same
functionality as mountedRemovableMedia (page 3466).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– checkForRemovableMedia (page 3454)
– mountedRemovableMedia (page 3466)

Declared In
NSWorkspace.h

Instance Methods 3467
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

noteFileSystemChanged
Informs the NSWorkspace object that the file system has changed. (Deprecated in Mac OS X v10.6.)

- (void)noteFileSystemChanged

Discussion
The NSWorkspace object then gets the status of all the files and directories it is interested in and updates
itself appropriately. This method is used by many objects that write or delete files.

The NSDocument and NSSavePanel objects use this method when saving a file. If you create a file directly,
you should call noteFileSystemChanged (page 3468) so that the Finder can update the folder if it is open.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– fileSystemChanged (page 3458)

Declared In
NSWorkspace.h

noteFileSystemChanged:
Informs the NSWorkspace object that the file system changed at the specified path.

- (void)noteFileSystemChanged:(NSString *)path

Parameters
path

The full path that changed.

Discussion
The NSWorkspace object then gets the status of all the files and directories it is interested in and updates
itself appropriately. This method is used by many objects that write or delete files.

Availability
Available in Mac OS X v10.0 and later.

See Also
– fileSystemChanged (page 3458)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSWorkspace.h

noteUserDefaultsChanged
Informs the NSWorkspace object that the defaults database has changed. (Deprecated in Mac OS X v10.6.)

- (void)noteUserDefaultsChanged

3468 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Discussion
The NSWorkspace object then reads all the defaults it is interested in and reconfigures itself appropriately.
For example, this method is used by the Preferences application to notify the Finder whether the user prefers
to see hidden files. Currently has no effect.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– userDefaultsChanged (page 3483)

Declared In
NSWorkspace.h

notificationCenter
Returns the notification center for workspace notifications.

- (NSNotificationCenter *)notificationCenter

Return Value
The notification center object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaDVDPlayer
iChatStatusFromApplication

Declared In
NSWorkspace.h

openFile:
Opens the specified file specified using the default application associated with its type.

- (BOOL)openFile:(NSString *)fullPath

Parameters
fullPath

The full path to the file.

Return Value
YES if the file was successfully opened; otherwise, NO.

Discussion
The sending application is deactivated before the request is sent.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3469
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

See Also
– openFile:fromImage:at:inView: (page 3470)
– openFile:withApplication: (page 3471)
– openFile:withApplication:andDeactivate: (page 3471)
– openTempFile: (page 3472)

Related Sample Code
IconCollection
iSpend
QTRecorder
Quartz Composer WWDC 2005 TextEdit
SourceView

Declared In
NSWorkspace.h

openFile:fromImage:at:inView:
Opens a file using the default application for its type and animates the action using a custom icon.

- (BOOL)openFile:(NSString *)fullPath fromImage:(NSImage *)anImage at:(NSPoint)point
inView:(NSView *)aView

Parameters
fullPath

The full path to the file.

anImage
The icon for the file.

point
The point in aView at which to display the icon.

aView
The view in which to display the icon.

Return Value
YES if the file was successfully opened; otherwise, NO.

Discussion
The Finder provides an animation before opening the file to give the user feedback that the file is to be
opened. To provide this animation, anImage should contain an icon for the file, and its image should be
displayed at point, specified in the coordinates of aView. Currently provides the same functionality as
openFile: (page 3469).

The sending application is deactivated before the request is sent.

Availability
Available in Mac OS X v10.0 and later.

See Also
– openFile: (page 3469)
– openFile:withApplication: (page 3471)
– openFile:withApplication:andDeactivate: (page 3471)

3470 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

– openTempFile: (page 3472)

Declared In
NSWorkspace.h

openFile:withApplication:
Opens a file using the specified application.

- (BOOL)openFile:(NSString *)fullPath withApplication:(NSString *)appName

Parameters
fullPath

The full path to the file.

appName
The name of the application to use when opening the file.

Return Value
YES if the file was successfully opened; otherwise, NO.

Discussion
The appName parameter need not be specified with a full path and, in the case of an application wrapper,
may be specified with or without the .app extension, as described in “Use of .app Extension”. The sending
application is deactivated before the request is sent.

Availability
Available in Mac OS X v10.0 and later.

See Also
– openFile: (page 3469)
– openFile:withApplication:andDeactivate: (page 3471)

Related Sample Code
CIVideoDemoGL
ExtractMovieAudioToAIFF
QTExtractAndConvertToAIFF
Quartz Composer WWDC 2005 TextEdit
WhackedTV

Declared In
NSWorkspace.h

openFile:withApplication:andDeactivate:
Opens the specified file and optionally deactivates the sending application.

- (BOOL)openFile:(NSString *)fullPath withApplication:(NSString *)appName
andDeactivate:(BOOL)flag

Parameters
fullPath

The full path to the file.

Instance Methods 3471
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

appName
The name of the application to use when opening the file.

flag
If YES, the sending application is deactivated before the request is sent, allowing the opening
application to become the active application.

Return Value
YES if the file was successfully opened; otherwise, NO.

Discussion
The appName parameter need not be specified with a full path and, in the case of an application wrapper,
may be specified with or without the .app extension, as described in “Use of .app Extension”. If appName is
nil, the default application for the file’s type is used.

Availability
Available in Mac OS X v10.0 and later.

See Also
– openFile: (page 3469)
– openFile:withApplication: (page 3471)
application:openFile: (page 3566) (NSApplicationDelegate)

Related Sample Code
Core Data HTML Store
DispatchFractal

Declared In
NSWorkspace.h

openTempFile:
Opens the specified temporary file using the default application for its type. (Deprecated in Mac OS X v10.6.)

- (BOOL)openTempFile:(NSString *)fullPath

Parameters
fullPath

The full path to the temporary file.

Return Value
YES if the file was successfully opened; otherwise, NO.

Discussion
The sending application is deactivated before the request is sent. Using this method instead of one of the
openFile:... methods lets the receiving application know that it should delete the file when it no longer
needs it. Currently provides the same functionality as openFile: (page 3469).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

See Also
– openFile: (page 3469)
– openFile:fromImage:at:inView: (page 3470)

3472 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

– openFile:withApplication: (page 3471)
– openFile:withApplication:andDeactivate: (page 3471)

Declared In
NSWorkspace.h

openURL:
Opens the location at the specified URL.

- (BOOL)openURL:(NSURL *)url

Parameters
url

A URL specifying the location to open.

Return Value
YES if the location was successfully opened; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ObjectPath
PhotoSearch
QTCompressionOptionsWindow
UIElementInspector
VertexPerformanceTest

Declared In
NSWorkspace.h

openURLs:withAppBundleIdentifier:options:additionalEventParamDescriptor:
launchIdentifiers:
Opens one or more files from an array of URLs.

- (BOOL)openURLs:(NSArray *)urls withAppBundleIdentifier:(NSString *)bundleIdentifier
options:(NSWorkspaceLaunchOptions)options
additionalEventParamDescriptor:(NSAppleEventDescriptor *)descriptor
launchIdentifiers:(NSArray **)identifiers

Parameters
urls

An array of NSURL objects, each one identifying a URL for the application to open.

bundleIdentifier
A bundle identifier string or nil to use the default system bindings. This value corresponds to the
value in the CFBundleIdentifier key of the application’s Info.plist file. For example, the bundle
identifier of the TextEdit application is com.apple.TextEdit.

Instance Methods 3473
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

options
Options to use when launching the application. Values for this parameter are described in
“NSWorkspaceLaunchOptions” (page 3487).

descriptor
Additional options specified in an AppleEvent-style descriptor. For example, you could use this
parameter to specify additional documents to open when the application is launched.

identifiers
The launchIdentifiers are currently unused, and you should pass NULL.

Return Value
YES if the application was found and launched; otherwise, NO.

Availability
Available in Mac OS X v10.3 and later.

See Also
– launchAppWithBundleIdentifier:options:additionalEventParamDescriptor:launchIdentifier: (page
3464)

Related Sample Code
NewsReader

Declared In
NSWorkspace.h

performFileOperation:source:destination:files:tag:
Performs a file operation on a set of files in a particular directory.

- (BOOL)performFileOperation:(NSString *)operation source:(NSString *)source
destination:(NSString *)destination files:(NSArray *)files tag:(NSInteger *)tag

Parameters
operation

The file operation to perform. The possible values for this parameter are described in “File
Operations” (page 3485).

source
The full path to the directory containing the files on which to operate.

destination
The full path to the destination directory of the operation.

files
An array of NSString objects specifying the names of the files and directories to be manipulated.
Each string must not contain any path information other than the name of the file or directory. In
other words, all of the files and directories must be located in the source directory and not in one if
its subdirectories.

tag
On input, a integer variable; on return, this variable contains a negative integer if the operation fails,
0 if the operation was performed synchronously and succeeded, or a positive integer if the operation
was performed asynchronously. If the value is a positive integer, the value is a tag that identifies the
requested file operation.

3474 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Return Value
YES if the operation succeeded; otherwise, NO.

Discussion
Some operations—such as moving, copying, and linking files—require a destination directory to be specified.
If not, destination should be the empty string (@""). Before this method returns, it posts an
NSWorkspaceDidPerformFileOperationNotification (page 3494) to the NSWorkspace object's
notification center.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSWorkspace.h

preferredFilenameExtensionForType:
Returns the preferred filename extension for the specified Uniform Type Identifier.

- (NSString *)preferredFilenameExtensionForType:(NSString *)typeName

Parameters
typeName

A string containing the Uniform Type Identifier.

Return Value
The appropriate filename extension for typeName, or nil if no extension could be determined.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSWorkspace.h

recycleURLs:completionHandler:
Moves the specified URLs to the trash in the same manner a the Finder.

- (void)recycleURLs:(NSArray *)URLs completionHandler:(void (^)(NSDictionary
*newURLs, NSError *error))handler

Parameters
URLs

The array of URLs to move to the trash.

Instance Methods 3475
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

handler
The completion handler block object. If completionHandler is not nil, it will be called when the
operation is complete, on the same dispatch queue that was used for the
recycleURLs:completionHandler: call. The completionHandler may be nil if you are not interested
in the results.

The block takes two arguments:

newURLs

A dictionary parameter that maps the given URLs to their new URLs locations in the trash. Files
that could not be moved to the trash will not be present in the dictionary.

error

If the operation succeeded for every file, the error parameter will be nil. If it failed for one or
more files, the error parameter will describe the overall result of the operation in a manner
suitable for presentation to the user.

Discussion
This methods may show a progress indicator, or other user interface elements, at AppKit's discretion.

In Mac OS X 10.6, this method require that the main run loop be run in a common mode.

Availability
Available in Mac OS X v10.6 and later.

See Also
– duplicateURLs:completionHandler: (page 3455)

Declared In
NSWorkspace.h

runningApplications
Returns an array of NSRunningApplication representing the running applications.

- (NSArray *)runningApplications

Return Value
An array of NSRunningApplication instances.

Discussion
The order of the array is unspecified, but it is stable, meaning that the relative order of particular applications
will not change across multiple calls to runningApplications. See NSRunningApplication Class Reference
for more information on NSRunningApplication.

Similar to the NSRunningApplication class’s properties, this property will only change when the main run
loop is run in a common mode. Instead of polling, use key-value observing to be notified of changes to this
array property.

This property is thread safe, in that it may be called from background threads and the result is returned
atomically.

This property is observable using key-value observing.

3476 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSRunningApplication.h

selectFile:inFileViewerRootedAtPath:
Selects the file specified by fullPath.

- (BOOL)selectFile:(NSString *)fullPath inFileViewerRootedAtPath:(NSString
*)rootFullPath

Parameters
fullPath

The full path of the file to select.

rootFullPath
If a path is specified, a new file viewer is opened. If you specify an empty string (@"") for this parameter,
the file is selected in the main viewer.

Return Value
YES if the file was successfully selected; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
EnhancedAudioBurn

Declared In
NSWorkspace.h

setDesktopImageURL:forScreen:options:error:
Sets the desktop image for the given screen to the image at the specified URL.

- (BOOL)setDesktopImageURL:(NSURL *)url forScreen:(NSScreen *)screen
options:(NSDictionary *)options error:(NSError **)error

Parameters
url

A file URL to the image. The URL must not be nil.

screen
The screen to set the desktop image on.

options
The options dictionary may contain any of the “Desktop Image Dictionary Keys” (page 3487) keys, which
control how the image is scaled on the screen.

error
A error that is returned by-reference if setting the image fails.

Instance Methods 3477
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Return Value
YES if the image was set as the desktop, otherwise NO. If NO is returned, the error parameter provides
additional information.

Discussion
You should not present a user interface for picking the options. Instead, choose appropriate defaults and
allow the user to adjust them in the System Preference Pane.

Availability
Available in Mac OS X v10.6 and later.

See Also
– desktopImageOptionsForScreen: (page 3454)
– desktopImageURLForScreen: (page 3455)

Related Sample Code
AnimatedTableView
DesktopImage

Declared In
NSWorkspace.h

setIcon:forFile:options:
Sets the icon for the file or directory at the specified path.

- (BOOL)setIcon:(NSImage *)image forFile:(NSString *)fullPath
options:(NSWorkspaceIconCreationOptions)options

Parameters
image

The image to use as the icon for the file or directory.

fullPath
The full path of the file or directory.

options
The icon representations to generate from the image. You specify this value by combining the
appropriate “Workspace icon creation options” (page 3490) constants, using the C bitwise OR operator.
Specify 0 if you want to generate icons in all available icon representation formats.

Return Value
YES if the icon was set; otherwise, NO.

Discussion
The image can be an arbitrary image, with or without transparency. This image is automatically scaled (as
needed) to generate the icon representations. The file or folder must exist and be writable by the user.

It is recommended that applications include the NSExclude10_4ElementsIconCreationOption option
for compatibility with pre-Mac OS X v10.3 Finder. Icons that include the high resolution elements prevent
custom icons from being displayed on earlier systems.

Availability
Available in Mac OS X v10.4 and later.

3478 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Declared In
NSWorkspace.h

showSearchResultsForQueryString:
Displays a Spotlight search results window in Finder for the specified query string.

- (BOOL)showSearchResultsForQueryString:(NSString *)queryString

Parameters
queryString

The string to search for.

Return Value
YES if the communication with Finder was successful, otherwise NO.

Discussion
Finder becomes the active application, if possible. The user can further refine the search via the Finder user
interface.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

slideImage:from:to:
Animates a sliding image from one point to another. (Deprecated in Mac OS X v10.6.)

- (void)slideImage:(NSImage *)image from:(NSPoint)fromPoint to:(NSPoint)toPoint

Parameters
image

The image to animate.

fromPoint
The starting point, in screen coordinates.

toPoint
The ending point, in screen coordinates.

Discussion
Currently unimplemented.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSWorkspace.h

Instance Methods 3479
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

type:conformsToType:
Returns a Boolean indicating that the first Uniform Type Identifier conforms to the second Uniform Type
Identifier.

- (BOOL)type:(NSString *)firstTypeName conformsToType:(NSString *)secondTypeName

Parameters
firstTypeName

A string containing the Uniform Type Identifier that should conform to secondTypeName.

secondTypeName
A string containing a Uniform Type Identifier.

Return Value
YES if firstTypeName conforms to the uniform type identifier hierarchy of secondTypeName, NO otherwise.

Discussion
Use this method instead of comparing Uniform Identifier Types for equality. See Uniform Type Identifiers
Overview for information about Uniform Type Identifier conformance.

This method will always return YES if the two strings are equal. It is appropriate to use this method with
other type names, including those declared in CFBundleTypeName Info.plist entries.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSWorkspace.h

typeOfFile:error:
Returns the uniform type identifier of the specified file, if it can be determined..

- (NSString *)typeOfFile:(NSString *)absoluteFilePath error:(NSError **)outError

Parameters
absoluteFilePath

The absolute path of the file.

outError
If the Uniform Type Identifier of the file at absolutePath can’t be determined, outError contains an
NSError object that describes why.

Return Value
An NSString containing the uniform type identifier of the file at absoluteFilePath. If no UTI can be
determined the return value is nil.

Discussion
If the file at the specified path is a symbolic link, the type of the symbolic link is returned.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
CocoaSlides

3480 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Quartz 2D Transformer

Declared In
NSWorkspace.h

unmountAndEjectDeviceAtPath:
Unmounts and ejects the device at the specified path.

- (BOOL)unmountAndEjectDeviceAtPath:(NSString *)path

Parameters
path

The path to the device.

Return Value
YES if the device was unmounted; otherwise, NO.

Discussion
When this method begins, it posts an NSWorkspaceWillUnmountNotification (page 3494) to the
NSWorkspace object’s notification center. When it is finished, it posts an
NSWorkspaceDidUnmountNotification (page 3494).

The unmountAndEjectDeviceAtURL:error: (page 3481) is preferable as it will provide more detailed error
information.

Availability
Available in Mac OS X v10.0 and later.

See Also
– unmountAndEjectDeviceAtURL:error: (page 3481)

Related Sample Code
CocoaDVDPlayer

Declared In
NSWorkspace.h

unmountAndEjectDeviceAtURL:error:
Attempts to eject the volume mounted at the given path.

- (BOOL)unmountAndEjectDeviceAtURL:(NSURL *)url error:(NSError **)error

Parameters
url

The URL of the volume to eject.

error
If the operation fails, this error contains more information about the failure.

Return Value
YES if the volume was unmounted and ejected successfully, otherwise NO, for example, if the volume is not
ejectable.

Instance Methods 3481
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Availability
Available in Mac OS X v10.6 and later.

See Also
– unmountAndEjectDeviceAtPath: (page 3481)

Declared In
NSWorkspace.h

URLForApplicationToOpenURL:
Returns the URL to the default application that would be used to open the given URL.

- (NSURL *)URLForApplicationToOpenURL:(NSURL *)url

Parameters
url

The URL of the file to open.

Return Value
The URL of the default application that would open the specified url. Returns nil if no application is able to
open the url, or if the file url does not exist.

Discussion
This is the programmatic equivalent of double clicking a document in the Finder.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

URLForApplicationWithBundleIdentifier:
Returns the URL for the application with the specified identifier.

- (NSURL *)URLForApplicationWithBundleIdentifier:(NSString *)bundleIdentifier

Parameters
bundleIdentifier

A bundle identifier specifying an application.

Return Value
The URL of the application, or nil if no application has the bundle identifier.

Discussion
This uses various (currently unspecified) heuristics in case multiple apps have the same bundle ID.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

3482 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

userDefaultsChanged
Returns a Boolean value indicating whether a change to the defaults database has been registered with a
noteUserDefaultsChanged (page 3468) message since the lastuserDefaultsChanged (page 3483) message.
(Deprecated in Mac OS X v10.6.)

- (BOOL)userDefaultsChanged

Return Value
Currently, this method always returns NO.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.6.

Declared In
NSWorkspace.h

Constants

The following table describes keys for an NSDictionary object containing information about an application.
This dictionary is returned by activeApplication (page 3453) and launchedApplications (page 3465),
and is also provided in the userInfo of NSWorkspace notifications for application launch and termination.

Note that these constants are considered legacy.

Note: It is strongly suggested that you use the NSWorkspaceclass’s runningApplications (page 3476)
method and the NSRunningApplication class to retrieve this information in applications targeted to Mac
OS X v10.6 and later, rather than the activeApplication (page 3453) and launchedApplications (page
3465) methods.

Table 172-1 userInfo dictionary keys for activeApplication and launchedApplications and
notifications for application launch and termination.

ValueKey

The full path to the application, as a NSString object.@"NSApplicationPath"

The application's name, as an NSString object.@"NSApplicationName"

The application’s bundle identifier, as an NSString object.@"NSApplicationBundleIdentifier"

The application's process id, as an NSNumber object.@"NSApplicationProcessIdentifier"

The high long of the process serial number (PSN), as an
NSNumber object.

@"NSApplicationProcessSerialNumber-
High"

The low long of the process serial number (PSN), as an
NSNumber object.

@"NSApplicationProcessSerialNumber-
Low"

Constants 3483
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

File Types
These constants specify different types of files returned by the getInfoForFile:application:type: (page
3460) method.

NSString *NSPlainFileType;
NSString *NSDirectoryFileType;
NSString *NSApplicationFileType;
NSString *NSFilesystemFileType;
NSString *NSShellCommandFileType;

Constants
NSPlainFileType

Plain (untyped) file

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.6.

Declared in NSWorkspace.h.

NSDirectoryFileType
Directory

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.6.

Declared in NSWorkspace.h.

NSApplicationFileType
Cocoa application

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.6.

Declared in NSWorkspace.h.

NSFilesystemFileType
File-system mount point

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.6.

Declared in NSWorkspace.h.

NSShellCommandFileType
Executable shell command

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.6.

Declared in NSWorkspace.h.

Declared In
NSWorkspace.h

Workspace Launch Configuration Options
The following keys can be used in the configuration dictionary of the
launchApplicationAtURL:options:configuration:error: (page 3464) method. Each key is optional,
and if omitted, default behavior is applied.

3484 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

NSString * const NSWorkspaceLaunchConfigurationAppleEvent;
NSString * const NSWorkspaceLaunchConfigurationArguments;
NSString * const NSWorkspaceLaunchConfigurationEnvironment;
NSString * const NSWorkspaceLaunchConfigurationArchitecture;

Constants
NSWorkspaceLaunchConfigurationAppleEvent

The value is the first NSAppleEventDescriptor to send to the new application. If an instance of
the application is already running, this is sent to that application.

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchConfigurationArguments
The value is an NSArray of NSStrings, passed to the new application in the argv parameter. Ignored
if a new instance of the application is not launched.

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchConfigurationEnvironment
The value is an NSDictionary, mapping NSStrings to NSStrings, containing environment variables
to set for the new app. Ignored if a new instance of the application is not launched.

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchConfigurationArchitecture
The value is an NSNumber containing an Mach-O Architecture constant. Ignored if a new instance
of the application is not launched.

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

File Operations
These constants specify different types of file operations used by
performFileOperation:source:destination:files:tag: (page 3474).

NSString *NSWorkspaceMoveOperation;
NSString *NSWorkspaceCopyOperation;
NSString *NSWorkspaceLinkOperation;
NSString *NSWorkspaceCompressOperation;
NSString *NSWorkspaceDecompressOperation;
NSString *NSWorkspaceEncryptOperation;
NSString *NSWorkspaceDecryptOperation;
NSString *NSWorkspaceDestroyOperation;
NSString *NSWorkspaceRecycleOperation;
NSString *NSWorkspaceDuplicateOperation;

Constants
NSWorkspaceMoveOperation

Move file to destination. Behaves the same as movePath:toPath:handler:.

Available in Mac OS X v10.0 and later.

Declared in NSWorkspace.h.

Constants 3485
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

NSWorkspaceCopyOperation
Copy file to destination. Behaves the same as copyPath:toPath:handler:.

Available in Mac OS X v10.0 and later.

Declared in NSWorkspace.h.

NSWorkspaceLinkOperation
Create hard link to file in destination. Behaves the same as linkPath:toPath:handler:.

Available in Mac OS X v10.0 and later.

Declared in NSWorkspace.h.

NSWorkspaceCompressOperation
Compress file. This operation always returns an error.

Available in Mac OS X v10.0 and later.

Declared in NSWorkspace.h.

NSWorkspaceDecompressOperation
Decompress file. This operation always returns an error.

Available in Mac OS X v10.0 and later.

Declared in NSWorkspace.h.

NSWorkspaceEncryptOperation
Encrypt file. This operation always returns an error.

Available in Mac OS X v10.0 and later.

Declared in NSWorkspace.h.

NSWorkspaceDecryptOperation
Decrypt file. This operation always returns an error.

Available in Mac OS X v10.0 and later.

Declared in NSWorkspace.h.

NSWorkspaceDestroyOperation
Destroy file. Behaves the same as removeFileAtPath:handler:.

Available in Mac OS X v10.0 and later.

Declared in NSWorkspace.h.

NSWorkspaceRecycleOperation
Move file to trash. The file is moved to the trash folder on the volume containing the file using the
same semantics as NSWorkspaceMoveOperation. If a file with the same name currently exists in
the trash folder, the new file is renamed. If no trash folder exists on the volume containing the file,
the operation fails.

Available in Mac OS X v10.0 and later.

Declared in NSWorkspace.h.

NSWorkspaceDuplicateOperation
Duplicate file in source directory.

Available in Mac OS X v10.0 and later.

Declared in NSWorkspace.h.

Declared In
NSWorkspace.h

3486 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Desktop Image Dictionary Keys
The following keys may be specified or returned in the options dictionary for
setDesktopImageURL:forScreen:options:error: (page 3477).

NSString * const NSWorkspaceDesktopImageScalingKey;
NSString * const NSWorkspaceDesktopImageAllowClippingKey;
NSString * const NSWorkspaceDesktopImageFillColorKey;

Constants
NSWorkspaceDesktopImageScalingKey

The value is an NSNumber containing an NSImageScaling (page 617) constant as declared in NSCell.
If this is not specified, NSImageScaleProportionallyUpOrDown (page 617) is used.
NSImageScaleProportionallyDown (page 617) is not currently supported.

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

NSWorkspaceDesktopImageAllowClippingKey
The value is an NSNumber containing a BOOL, which affects the interpretation of Proportional scaling
types. A NO value will make the image fully visible, but there may be empty space on the sides or top
and bottom. A YES value will cause the image to fill the entire screen, but the image may be clipped.
If this is not specified, NO is assumed. Non-proportional scaling types ignore this value.

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

NSWorkspaceDesktopImageFillColorKey
The value is an NSColor, which is used to fill any empty space around the image. If not specified, a
default value is used. Currently, only colors that use or can be converted to use
NSCalibratedRGBColorSpace are supported, and any alpha value is ignored.

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchOptions
These constants define launch options you can pass to
launchAppWithBundleIdentifier:options:additionalEventParamDescriptor:
launchIdentifier: (page 3464) and
openURLs:withAppBundleIdentifier:options:additionalEventParamDescriptor:
launchIdentifiers: (page 3473).

Constants 3487
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

enum {
 NSWorkspaceLaunchAndPrint = 0x00000002,
 NSWorkspaceLaunchInhibitingBackgroundOnly = 0x00000080,
 NSWorkspaceLaunchWithoutAddingToRecents = 0x00000100,
 NSWorkspaceLaunchWithoutActivation = 0x00000200,
 NSWorkspaceLaunchAsync = 0x00010000,
 NSWorkspaceLaunchAllowingClassicStartup = 0x00020000,
 NSWorkspaceLaunchPreferringClassic = 0x00040000,
 NSWorkspaceLaunchNewInstance = 0x00080000,
 NSWorkspaceLaunchAndHide = 0x00100000,
 NSWorkspaceLaunchAndHideOthers = 0x00200000,
 NSWorkspaceLaunchDefault = NSWorkspaceLaunchAsync |
NSWorkspaceLaunchAllowingClassicStartup
};
typedef NSUInteger NSWorkspaceLaunchOptions;

Constants
NSWorkspaceLaunchAndPrint

Print items instead of opening them.

Available in Mac OS X v10.3 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchInhibitingBackgroundOnly
Causes launch to fail if the target is background-only.

Available in Mac OS X v10.3 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchWithoutAddingToRecents
Do not add the application or documents to the Recents menu.

Available in Mac OS X v10.3 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchWithoutActivation
Launch the application but do not bring it into the foreground.

Available in Mac OS X v10.3 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchAsync
Launch the application and return the results asynchronously.

Available in Mac OS X v10.3 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchAllowingClassicStartup
Start up the Classic compatibility environment, if it is required by the application.

Available in Mac OS X v10.3 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchPreferringClassic
Force the application to launch in the Classic compatibility environment.

Available in Mac OS X v10.3 and later.

Declared in NSWorkspace.h.

3488 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

NSWorkspaceLaunchNewInstance
Create a new instance of the application, even if one is already running.

Available in Mac OS X v10.3 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchAndHide
Tell the application to hide itself as soon as it has finished launching.

Available in Mac OS X v10.3 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchAndHideOthers
Hide all applications except the newly launched one.

Available in Mac OS X v10.3 and later.

Declared in NSWorkspace.h.

NSWorkspaceLaunchDefault
Launch the application asynchronously and launch it in the Classic environment, if required.

Available in Mac OS X v10.3 and later.

Declared in NSWorkspace.h.

Volume Mounting Notification User Info Keys
The following keys are available in the userInfo parameter of the notification named
NSWorkspaceDidRenameVolumeNotification (page 3493).

NSString * const NSWorkspaceVolumeLocalizedNameKey;
NSString * const NSWorkspaceVolumeURLKey;

Constants
NSWorkspaceVolumeLocalizedNameKey

NSString containing the user-visible name of the volume.

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

NSWorkspaceVolumeURLKey
NSURL containing the mount path of the volume.

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

NSWorkspaceDidRenameVolumeNotification User Info Keys
The following keys are available in the userInfo parameter of the notification named
NSWorkspaceDidRenameVolumeNotification (page 3493).

Constants 3489
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

NSString * const NSWorkspaceVolumeOldLocalizedNameKey;
NSString * const NSWorkspaceVolumeOldURLKey;

Constants
NSWorkspaceVolumeOldLocalizedNameKey

NSString containing the old user-visible name of the volume

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

NSWorkspaceVolumeOldURLKey
NSURL containing the old mount path of the volume

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

NSWorkspaceApplicationKey User Info Key
This constant is supplied in the userInfo dictionary of various notifications.

NSString * const NSWorkspaceApplicationKey;

Constants
NSWorkspaceApplicationKey

The value corresponding to this key is an instance of NSRunningApplication that reflects the
affected application.

Available in Mac OS X v10.6 and later.

Declared in NSWorkspace.h.

Workspace icon creation options
These constants describe the NSWorkspaceIconCreationOptions values used by
setIcon:forFile:options: (page 3478). You can combine these using the C bitwise OR operator.

enum {
 NSExcludeQuickDrawElementsIconCreationOption = 1 << 1,
 NSExclude10_4ElementsIconCreationOption = 1 << 2
};
typedef NSUInteger NSWorkspaceIconCreationOptions;

Constants
NSExcludeQuickDrawElementsIconCreationOption

Suppress generation of the QuickDraw format icon representations that are used in Mac OS X v10.0
through Mac OS X v10.4.

Available in Mac OS X v10.4 and later.

Declared in NSWorkspace.h.

NSExclude10_4ElementsIconCreationOption
Suppress generation of the new higher resolution icon representations that are supported in Mac OS
X v10.4.

Available in Mac OS X v10.4 and later.

Declared in NSWorkspace.h.

3490 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Notifications

All NSWorkspace notifications are posted to the NSWorkspace object’s own notification center, not the
application’s default notification center. Access this center using the NSWorkspace object’s
notificationCenter (page 3469) method.

NSWorkspaceWillLaunchApplicationNotification
Posted when the Finder is about to launch an application.

The notification object is the shared NSWorkspace instance. In Mac OS X v10.6 and later the userInfo
dictionary contains the NSWorkspaceApplicationKey (page 3490) key with a corresponding instance of
NSRunningApplication that represents the affected application.

In Mac OS X v10.5 and earlier the userInfo dictionary contains the keys and values described in Table
172-1 (page 3483).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWorkspace.h

NSWorkspaceDidLaunchApplicationNotification
Posted when a new application has started up.

The notification object is the shared NSWorkspace instance. In Mac OS X v10.6 and later the userInfo
dictionary contains the NSWorkspaceApplicationKey (page 3490) key with a corresponding instance of
NSRunningApplication that represents the affected application.

In Mac OS X v10.5 and earlier the userInfo dictionary contains the keys and values described in Table
172-1 (page 3483).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWorkspace.h

NSWorkspaceDidTerminateApplicationNotification
Posted when an application finishes executing.

The notification object is the shared NSWorkspace instance. In Mac OS X v10.6 and later the userInfo
dictionary contains the NSWorkspaceApplicationKey (page 3490) key with a corresponding instance of
NSRunningApplication that represents the affected application.

In Mac OS X v10.5 and earlier the userInfo dictionary contains the keys and values described in Table
172-1 (page 3483).

Availability
Available in Mac OS X v10.0 and later.

Notifications 3491
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Declared In
NSWorkspace.h

NSWorkspaceSessionDidBecomeActiveNotification
Posted after a user session is switched in. This allows an application to re-enable some processing when a
switched out session gets switched back in, for example.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSWorkspace.h

NSWorkspaceSessionDidResignActiveNotification
Posted before a user session is switched out. This allows an application to disable some processing when its
user session is switched out, and re-enable when that session gets switched back in, for example.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

If an application is launched in an inactive session, NSWorkspaceSessionDidResignActiveNotification
is sent after NSApplicationWillFinishLaunchingNotification (page 195) and before sending
NSApplicationDidFinishLaunchingNotification (page 194).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSWorkspace.h

NSWorkspaceDidHideApplicationNotification
Posted when the Finder hid an application.

The notification object is the shared NSWorkspace instance. In Mac OS X v10.6 and later the userInfo
dictionary contains the NSWorkspaceApplicationKey (page 3490) key with a corresponding instance of
NSRunningApplication that represents the affected application.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

NSWorkspaceDidUnhideApplicationNotification
Posted when the Finder unhid an application.

3492 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

The notification object is the shared NSWorkspace instance. In Mac OS X v10.6 and later the userInfo
dictionary contains the NSWorkspaceApplicationKey (page 3490) key with a corresponding instance of
NSRunningApplication that represents the affected application.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

NSWorkspaceDidActivateApplicationNotification
Posted when the Finder is about to activate an application.

The notification object is the shared NSWorkspace instance. In Mac OS X v10.6 and later the userInfo
dictionary contains the NSWorkspaceApplicationKey (page 3490) key with a corresponding instance of
NSRunningApplication that represents the affected application.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

NSWorkspaceDidDeactivateApplicationNotification
Posted when the Finder deactivated an application.

The notification object is the shared NSWorkspace instance. In Mac OS X v10.6 and later the userInfo
dictionary contains the NSWorkspaceApplicationKey (page 3490) key with a corresponding instance of
NSRunningApplication that represents the affected application.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

NSWorkspaceDidRenameVolumeNotification
Posted when a volume changes its name and/or mount path. These typically change simultaneously, in which
case only one notification is posted.

The notification object is the shared NSWorkspace instance. The userInfo dictionary contains keys in
“NSWorkspaceDidRenameVolumeNotification User Info Keys” (page 3489) and “Volume Mounting Notification
User Info Keys” (page 3489).

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

Notifications 3493
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

NSWorkspaceDidMountNotification
Posted when a new device has been mounted.

The notification object is the shared NSWorkspace instance.

In Mac OS X v10.5 and earlier the userInfo dictionary contains a key @"NSDevicePath" that returns the
path where the device was mounted, as a string.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWorkspace.h

NSWorkspaceWillUnmountNotification
Posted when the Finder is about to unmount a device.

This notification will not be delivered if a volume was forcibly and immediately made unavailable, such as
when a FireWire drive is simply unplugged, because there is no chance to deliver it before the volume
becomes unavailable.

The notification object is the shared NSWorkspace instance. The userInfo dictionary contains a key
@"NSDevicePath" that returns the path where the device was mounted, as a string.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWorkspace.h

NSWorkspaceDidUnmountNotification
Posted when the Finder did unmount a device.

This notification is delivered even if a volume was forcibly and immediately made unavailable, such as when
a drive is simply unplugged.

The notification object is the shared NSWorkspace instance. The userInfo dictionary contains a key
@"NSDevicePath" that returns the path where the device was mounted, as a string.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWorkspace.h

NSWorkspaceDidPerformFileOperationNotification
Posted when a file operation has been performed in the receiving application.

The notification object is the shared NSWorkspace instance. The userInfo dictionary contains a key
@"NSOperationNumber"with a NSNumber object containing an integer indicating the type of file operation

3494 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWorkspace.h

NSWorkspaceDidChangeFileLabelsNotification
Posted when the Finder file labels or colors change.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

NSWorkspaceActiveSpaceDidChangeNotification
Posted when a Spaces change has occurred.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

NSWorkspaceDidWakeNotification
Posted when the machine wakes from sleep.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSWorkspace.h

NSWorkspaceWillPowerOffNotification
Posted when the user has requested a logout or that the machine be powered off.

The notification object is the shared NSWorkspace instance. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Notifications 3495
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

Declared In
NSWorkspace.h

NSWorkspaceWillSleepNotification
Posted before the machine goes to sleep. An observer of this message can delay sleep for up to 30 seconds
while handling this notification.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSWorkspace.h

NSWorkspaceScreensDidSleepNotification
Posted when the machine’s screen goes to sleep.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

Few applications are likely to be interested in this notification, but they may be useful for certain
hardware-based drawing decisions, for example when using OpenGL.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

NSWorkspaceScreensDidWakeNotification
Posted when the machine’s screens wake.

The notification object is the shared NSWorkspace instance. The notification does not contain a userInfo
dictionary.

Few applications are likely to be interested in this notification, but they may be useful for certain
hardware-based drawing decisions, for example when using OpenGL.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWorkspace.h

3496 Notifications
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 172

NSWorkspace Class Reference

3497
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

PART II

Protocols

3498
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

PART II

Protocols

Adopted by NSObject

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSAccessibility.h
AppKit/NSErrors.h

Companion guide Accessibility Programming Guidelines for Cocoa

Overview

The NSAccessibility informal protocol defines methods that Cocoa classes must implement to make
themselves available to an external assistive application. An assistive application interacts with your application
to allow persons with disabilities to use your application. For example, a person with a visual impairment
could use an application to convert menu items and button labels into speech and then perform actions by
verbal command.

Because many Cocoa user interface classes already implement the NSAccessibility protocol, providing
reasonable default behavior in most cases, Cocoa applications built with standard objects are automatically
accessible. In general, you need to explicitly implement the NSAccessibility protocol methods only if
you subclass one of them, adding new behavior.

The Cocoa implementations of these methods raise an NSAccessibilityException when errors occur,
such as requesting the value of an unsupported attribute. In most cases, subclasses do not need to raise or
catch these exceptions, because overridden methods should invoke their inherited methods for unrecognized
attribute and action names.

An accessible object is described by a set of attributes that define characteristics such as the object type, its
value, its size and position on the screen, and its place in the accessibility hierarchy. For some objects, the
set of attributes can include parameterized attributes. Parameterized attributes behave similar to a function
by allowing you to pass a parameter when requesting an attribute value.

See “Accessibility” (page 3951) in Application Kit Functions Reference for functions related to accessibility.

Overview 3499
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference
(informal protocol)

Tasks

Accessing Attributes

– accessibilityAttributeNames (page 3503)
Returns an array of attribute names supported by the receiver.

– accessibilityAttributeValue: (page 3503)
Returns the value of the specified attribute in the receiver.

– accessibilityIsAttributeSettable: (page 3506)
Returns a Boolean value that indicates whether the value for the specified attribute in the receiver
can be set.

– accessibilitySetValue:forAttribute: (page 3508)
Sets the value of the specified attribute in the receiver to the specified value.

– accessibilitySetOverrideValue:forAttribute: (page 3508)
Overrides the specified attribute in the receiver, or adds it if it does not exist, and sets its value to the
specified value.

– accessibilityArrayAttributeCount: (page 3502)
Returns the count of the specified accessibility array attribute.

– accessibilityArrayAttributeValues:index:maxCount: (page 3502)
Returns a subarray of values of an accessibility array attribute.

– accessibilityIndexOfChild: (page 3505)
Returns the index of the specified accessibility child in the parent.

Accessing Parameterized Attributes

– accessibilityParameterizedAttributeNames (page 3507)
Returns a list of parameterized attribute names supported by the receiver.

– accessibilityAttributeValue:forParameter: (page 3504)
Returns the value of the receiver’s parameterized attribute corresponding to the specified attribute
name and parameter.

Accessing Actions

– accessibilityActionNames (page 3501)
Returns an array of action names supported by the receiver.

– accessibilityActionDescription: (page 3501)
Returns a localized description of the specified action.

– accessibilityPerformAction: (page 3507)
Performs the action associated with the specified action.

3500 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Querying Elements

– accessibilityIsIgnored (page 3506)
Returns a Boolean value indicating whether the receiver should be ignored in the parent-child
accessibility hierarchy.

– accessibilityHitTest: (page 3505)
Returns the deepest descendant of the accessibility hierarchy that contains the specified point.

– accessibilityFocusedUIElement (page 3504)
Returns the deepest descendant of the accessibility hierarchy that has the focus.

Instance Methods

accessibilityActionDescription:
Returns a localized description of the specified action.

- (NSString *)accessibilityActionDescription:(NSString *)action

Parameters
action

The action attribute.

Return Value
The description of the specified action, in a localized string.

Discussion
User interface classes must implement this method to return descriptions for all actions returned from
accessibilityActionNames (page 3501). A button, for example, might return the string "press” for the
NSAccessibilityPressAction action. Subclasses should invoke the superclass’s implementation, if it
exists, to obtain the descriptions of any inherited actions.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAccessibility.h

accessibilityActionNames
Returns an array of action names supported by the receiver.

- (NSArray *)accessibilityActionNames

Return Value
An array of action names.

Discussion
User interface classes must implement this method. Subclasses should invoke the superclass’s implementation,
if it exists, and append additional action names or remove unsupported actions. See “Constants” (page 3509)
for some common action names.

Instance Methods 3501
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Cocoa Tips and Tricks
ImageMap
ImageMapExample
Sketch+Accessibility
ZipBrowser

Declared In
NSAccessibility.h

accessibilityArrayAttributeCount:
Returns the count of the specified accessibility array attribute.

- (NSUInteger)accessibilityArrayAttributeCount:(NSString *)attribute

Parameters
attribute

The accessibility array attribute.

Return Value
The number of items in the specified array attribute.

Discussion
If attribute is not an array an exception is raised.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSAccessibility.h

accessibilityArrayAttributeValues:index:maxCount:
Returns a subarray of values of an accessibility array attribute.

- (NSArray *)accessibilityArrayAttributeValues:(NSString *)attribute
index:(NSUInteger)index maxCount:(NSUInteger)maxCount

Parameters
attribute

The accessibility array attribute.

index
The starting index.

maxCount
The maximum desired number of items requested.

Return Value
An array of values within the specified index and count.

3502 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Discussion
Note that this method does not take a range. The max count is the maximum desired number of items
requested by an accessibility client. This number may be beyond the bounds of your array.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSAccessibility.h

accessibilityAttributeNames
Returns an array of attribute names supported by the receiver.

- (NSArray *)accessibilityAttributeNames

Return Value
An array containing the attributes supported by the receiver.

Discussion
User interface classes must implement this method. Subclasses should invoke the superclass’s implementation,
if it exists, and append additional attributes or remove unsupported attributes. See “Constants” (page 3509)
for lists of attribute names.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
ImageMap
ImageMapExample
Sketch+Accessibility
TrackBall
ZipBrowser

Declared In
NSAccessibility.h

accessibilityAttributeValue:
Returns the value of the specified attribute in the receiver.

- (id)accessibilityAttributeValue:(NSString *)attribute

Parameters
attribute

The name of the attribute. See “Constants” (page 3509) for lists of attribute names.

Discussion
User interface classes must implement this method. Subclasses should invoke the superclass’s implementation,
if it exists, if attribute is not implemented in the subclass.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 3503
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Related Sample Code
ZipBrowser

Declared In
NSAccessibility.h

accessibilityAttributeValue:forParameter:
Returns the value of the receiver’s parameterized attribute corresponding to the specified attribute name
and parameter.

- (id)accessibilityAttributeValue:(NSString *)attribute forParameter:(id)parameter

Parameters
attribute

The name of the attribute. See “Constants” (page 3509) for lists of attribute names.

parameter
The parameter.

Discussion
If you implement this method you should also implement
accessibilityParameterizedAttributeNames (page 3507).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAccessibility.h

accessibilityFocusedUIElement
Returns the deepest descendant of the accessibility hierarchy that has the focus.

- (id)accessibilityFocusedUIElement

Return Value
The deepest accessibility object in the accessibility hierarchy that has focus.

Discussion
You can assume that the search for the focus has already been narrowed down to the receiver. Override this
method to do deeper searching by identifying which child element, if any, may have the focus. If a child
element does not have the focus, either return self or, if available, invoke the superclass’s implementation.
The default NSView and NSCell implementations test whether the receiver is an ignored element and, if
so, return the receiver’s first unignored parent; otherwise they return self.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Dicey
ImageMapExample
Sketch+Accessibility

3504 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

TrackBall
ZipBrowser

Declared In
NSAccessibility.h

accessibilityHitTest:
Returns the deepest descendant of the accessibility hierarchy that contains the specified point.

- (id)accessibilityHitTest:(NSPoint)point

Parameters
point

The point being hit-tested, in lower-left relative screen coordinates.

Return Value
The deepest accessibility element in the accessibility hierarchy that contains the specified point.

Discussion
You can assume that the specified point has already been determined to lie within the receiver. Override
this method to do deeper hit-testing by identifying which child element, if any, contains the point. NSMatrix,
for example, identifies which of its cells contains the point and propagates the hit-test to it.

If the specified point is not contained within one of the receiver’s children, either return self or, if available,
invoke the superclass’s implementation. The default NSView and NSCell implementations test whether the
receiver is an ignored element and, if it is, return the receiver’s first unignored parent; otherwise they return
self.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Dicey
ImageMap
ImageMapExample
Sketch+Accessibility

Declared In
NSAccessibility.h

accessibilityIndexOfChild:
Returns the index of the specified accessibility child in the parent.

- (NSUInteger)accessibilityIndexOfChild:(id)child

Parameters
child

The accessibility child of an object.

Return Value
The index of the accessibility child object in the parent. Returns NSNotFound if the child does not exist.

Instance Methods 3505
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSAccessibility.h

accessibilityIsAttributeSettable:
Returns a Boolean value that indicates whether the value for the specified attribute in the receiver can be
set.

- (BOOL)accessibilityIsAttributeSettable:(NSString *)attribute

Parameters
attribute

The name of the attribute. See “Constants” (page 3509) for lists of attribute names.

Return Value
YES if the specified attribute can be set; otherwise, NO.

Discussion
User interface classes must implement this method. Subclasses should invoke the superclass’s implementation,
if it exists, if attribute is not implemented in the subclass.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAccessibility.h

accessibilityIsIgnored
Returns a Boolean value indicating whether the receiver should be ignored in the parent-child accessibility
hierarchy.

- (BOOL)accessibilityIsIgnored

Return Value
YES if the receiver should be ignored; otherwise, NO.

Discussion
When asking for an object’s children, ignored children should not be included; instead, the ignored children
should be replaced by their own unignored children. The same applies when asking for an object’s parent:
an ignored parent should be skipped and the first unignored ancestor treated as the real parent. Likewise,
when a hit-test or focus test is satisfied by an ignored element, the element’s first unignored ancestor (or
descendant in certain cases, such as single-celled controls) should be used instead.

Ignored elements allow the accessibility hierarchy to be a simplified version of the view and object ownership
hierarchies. Intermediate objects can be bypassed and the real user interface objects accessed more quickly.
For example, NSControl objects are ignored when they are single-celled; the visible parent-child relationship
is between the control’s parent (or a higher ancestor if the parent is ignored, too) and the control’s cell.

Availability
Available in Mac OS X v10.2 and later.

3506 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Related Sample Code
Dicey
ImageMap
ImageMapExample
Sketch+Accessibility
TrackBall

Declared In
NSAccessibility.h

accessibilityParameterizedAttributeNames
Returns a list of parameterized attribute names supported by the receiver.

- (NSArray *)accessibilityParameterizedAttributeNames

Return Value
An array of parameterized attributes in the receiver.

Discussion
If you implement this method you should also implement
accessibilityAttributeValue:forParameter: (page 3504).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Sketch+Accessibility

Declared In
NSAccessibility.h

accessibilityPerformAction:
Performs the action associated with the specified action.

- (void)accessibilityPerformAction:(NSString *)action

Parameters
action

The action to perform.

Discussion
User interface classes must implement this method to handle all the actions returned from
accessibilityActionNames (page 3501). Subclasses should invoke the superclass’s implementation, if it
exists, if action is not implemented in the subclass.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAccessibility.h

Instance Methods 3507
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

accessibilitySetOverrideValue:forAttribute:
Overrides the specified attribute in the receiver, or adds it if it does not exist, and sets its value to the specified
value.

- (BOOL)accessibilitySetOverrideValue:(id)value forAttribute:(NSString *)attribute

Parameters
value

The attribute value to set.

attribute
The name of the attribute. See “Constants” (page 3509) for lists of attribute names.

Return Value
YES if the override was successful; otherwise, NO.

Discussion
This method is for changing the set of attributes on an instance, as an alternative to subclassing.

This method only works on objects whose class already implements the NSAccessibility protocol. If the
specified attribute is already supported by the object, the value specified by this method wins.

If the specified attribute does not exist, it is created. This is done outside the NSAccessibility protocol,
so accessibilityAttributeNames still returns the old list which does not contain the new attribute.
Likewise, accessibilityAttributeValue does not return attributes created by the override process nor
does it return their overridden values.

The values of overridden attributes are not settable by assistive applications.

If you need to undo the effect of using this method, call it again passing nil for the value.

Ensure that you invoke this method on the actual object that represents the user interface element. For
example, in the case of NSButton, use the underlying NSButtonCell. The NSButton itself is ignored by
accessibility.

This method works only on an object representing a single user interface element. So, for example, you
cannot use it when a single object represents multiple user interface elements, as with NSSegmentedCell,
which has only a single object but provides user interface elements for each segment.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Dicey

Declared In
NSAccessibility.h

accessibilitySetValue:forAttribute:
Sets the value of the specified attribute in the receiver to the specified value.

- (void)accessibilitySetValue:(id)value forAttribute:(NSString *)attribute

3508 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Parameters
value

The attribute value to set.

attribute
The name of the attribute. See “Constants” (page 3509) for lists of attribute names.

Discussion
User interface classes must implement this method if any of its attributes are settable. Subclasses should
invoke the superclass’s implementation, if it exists, if attribute is not implemented in the subclass.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAccessibility.h

Constants

Standard attributes
Standard attributes that can be adopted by any accessibility object.

NSString *const NSAccessibilityChildrenAttribute;
NSString *const NSAccessibilityContentsAttribute;
NSString *const NSAccessibilityDescriptionAttribute;
NSString *const NSAccessibilityEnabledAttribute;
NSString *const NSAccessibilityFocusedAttribute;
NSString *const NSAccessibilityHelpAttribute;
NSString *const NSAccessibilityMaxValueAttribute;
NSString *const NSAccessibilityMinValueAttribute;
NSString *const NSAccessibilityParentAttribute;
NSString *const NSAccessibilityPositionAttribute;
NSString *const NSAccessibilityRoleAttribute;
NSString *const NSAccessibilityRoleDescriptionAttribute;
NSString *const NSAccessibilitySelectedChildrenAttribute;
NSString *const NSAccessibilityShownMenuAttribute;
NSString *const NSAccessibilitySizeAttribute;
NSString *const NSAccessibilitySubroleAttribute;
NSString *const NSAccessibilityTitleAttribute;
NSString *const NSAccessibilityTopLevelUIElementAttribute;
NSString *const NSAccessibilityValueAttribute;
NSString *const NSAccessibilityValueDescriptionAttribute;
NSString *const NSAccessibilityVisibleChildrenAttribute;
NSString *const NSAccessibilityWindowAttribute;

Constants
NSAccessibilityChildrenAttribute

The element’s child elements in the accessibility hierarchy (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Constants 3509
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityContentsAttribute
Elements that represent the contents in the current element, such as the document view of a scroll
view (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityDescriptionAttribute
The purpose of the element, not including the role (NSString).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityEnabledAttribute
A flag that indicates the enabled state of the element (NSNumber).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityFocusedAttribute
A flag that indicates the presence of keyboard focus (NSNumber).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityHelpAttribute
The help text for the element (NSString).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityMaxValueAttribute
The element’s maximum value (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityMinValueAttribute
The element’s minimum value (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityParentAttribute
The element’s parent element in the accessibility hierarchy (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityPositionAttribute
The screen position of the element’s lower-left corner in lower-left relative screen coordinates
(NSValue).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityRoleAttribute
The element’s type, such as NSAccessibilityRadioButtonRole (NSString). See “Roles” (page
3533) for a list of available roles.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

3510 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityRoleDescriptionAttribute
A localized, human-intelligible description of the element’s role, such as "radio button” (NSString).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedChildrenAttribute
The currently selected children of the element (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityShownMenuAttribute
The menu currently being displayed (id).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilitySizeAttribute
The element’s size (NSValue).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySubroleAttribute
The element’s subrole, such as NSAccessibilityTableRowSubrole (NSString). See
“Subroles” (page 3540) for a list of available subroles.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityTitleAttribute
The title of the element, such as a button’s visible text (NSString).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityTopLevelUIElementAttribute
The top-level element that contains this element (id).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityValueAttribute
The element’s value (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityValueDescriptionAttribute
The description of the element’s value (NSString).

Available in Mac OS X v10.5 and later.

Declared in NSAccessibility.h.

NSAccessibilityVisibleChildrenAttribute
The element’s child elements that are visible (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Constants 3511
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityWindowAttribute
The window containing the current element (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Text-specific attributes
Attributes that are specific to text.

NSString *const NSAccessibilityInsertionPointLineNumberAttribute;
NSString *const NSAccessibilityNumberOfCharactersAttribute;
NSString *const NSAccessibilitySelectedTextAttribute;
NSString *const NSAccessibilitySelectedTextRangeAttribute;
NSString *const NSAccessibilitySelectedTextRangesAttribute;
NSString *const NSAccessibilitySharedCharacterRangeAttribute;
NSString *const NSAccessibilitySharedTextUIElementsAttribute;
NSString *const NSAccessibilityVisibleCharacterRangeAttribute;

Constants
NSAccessibilityInsertionPointLineNumberAttribute

The line number containing the insertion point (NSNumber).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityNumberOfCharactersAttribute
The number of characters in the text (NSNumber).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedTextAttribute
The currently selected text (NSString).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedTextRangeAttribute
The range of selected text (NSValue).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedTextRangesAttribute
An array of NSValue (rangeValue) ranges of selected text (NSArray).

Available in Mac OS X v10.5 and later.

Declared in NSAccessibility.h.

NSAccessibilitySharedCharacterRangeAttribute
The (rangeValue) part of shared text in this view (NSValue).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

3512 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilitySharedTextUIElementsAttribute
The elements with which the text of this element is shared (NSArray).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityVisibleCharacterRangeAttribute
The range of visible text (NSValue). Returns ranges for entire lines. For example, characters that are
horizontally clipped will be reported in the visible range.

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Text-specific parameterized attributes
Parameterized attributes specific to text.

NSString *const NSAccessibilityAttributedStringForRangeParameterizedAttribute;
NSString *const NSAccessibilityBoundsForRangeParameterizedAttribute;
NSString *const NSAccessibilityLineForIndexParameterizedAttribute;
NSString *const NSAccessibilityRTFForRangeParameterizedAttribute;
NSString *const NSAccessibilityRangeForIndexParameterizedAttribute;
NSString *const NSAccessibilityRangeForLineParameterizedAttribute;
NSString *const NSAccessibilityRangeForPositionParameterizedAttribute;
NSString *const NSAccessibilityStringForRangeParameterizedAttribute;
NSString *const NSAccessibilityStyleRangeForIndexParameterizedAttribute;

Constants
NSAccessibilityLineForIndexParameterizedAttribute

The line number (NSNumber) of the specified character (NSNumber).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityRangeForLineParameterizedAttribute
The range of characters (NSValue containing an NSRange) corresponding to the specified line number
(NSNumber).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityStringForRangeParameterizedAttribute
The substring (NSString) specified by the range (NSValue containing an NSRange).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityRangeForPositionParameterizedAttribute
The range of characters (NSValue containing an NSRange) composing the glyph at the specified
point (NSValue containing NSPoint).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

Constants 3513
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityRangeForIndexParameterizedAttribute
The full range of characters (NSValue containing an NSRange), including the specified character,
which compose a single glyph (NSNumber).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityBoundsForRangeParameterizedAttribute
The rectangle (NSValue containing an NSRect) enclosing the specified range of characters (NSValue
containing an NSRange). If the range crosses a line boundary, the returned rectangle will fully enclose
all the lines of characters.

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityRTFForRangeParameterizedAttribute
The RTF data (NSData) describing the specified range of characters (NSValue containing an NSRange).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityStyleRangeForIndexParameterizedAttribute
The full range of characters (NSValue containing an NSRange), including the specified character
(NSNumber), which have the same style.

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityAttributedStringForRangeParameterizedAttribute
Does not use attributes from Appkit/AttributedString.h (NSAttributedString).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Text attributed string attributes and constants
Attributes and key constants used with attributed strings.

3514 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSString *const NSAccessibilityAttachmentTextAttribute;
NSString *const NSAccessibilityBackgroundColorTextAttribute;
NSString *const NSAccessibilityFontFamilyKey;
NSString *const NSAccessibilityFontNameKey;
NSString *const NSAccessibilityFontSizeKey;
NSString *const NSAccessibilityFontTextAttribute;
NSString *const NSAccessibilityForegroundColorTextAttribute;
NSString *const NSAccessibilityLinkTextAttribute;
NSString *const NSAccessibilityMisspelledTextAttribute;
NSString *const NSAccessibilityShadowTextAttribute;
NSString *const NSAccessibilityStrikethroughColorTextAttribute;
NSString *const NSAccessibilityStrikethroughTextAttribute;
NSString *const NSAccessibilitySuperscriptTextAttribute;
NSString *const NSAccessibilityUnderlineColorTextAttribute;
NSString *const NSAccessibilityUnderlineTextAttribute;
NSString *const NSAccessibilityVisibleNameKey;

Constants
NSAccessibilityForegroundColorTextAttribute

Text foreground color (CGColorRef).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityBackgroundColorTextAttribute
Text background color (CGColorRef).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityUnderlineColorTextAttribute
Text underline color (CGColorRef).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityStrikethroughColorTextAttribute
Text strikethrough color (CGColorRef).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityUnderlineTextAttribute
Text underline style (NSNumber).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilitySuperscriptTextAttribute
Text superscript style (NSNumber). Values > 0 are superscript; values < 0 are subscript.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityStrikethroughTextAttribute
Text strikethrough (NSNumber as a Boolean value).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Constants 3515
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityShadowTextAttribute
Text shadow (NSNumber as a Boolean value).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityAttachmentTextAttribute
Text attachment (id).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityLinkTextAttribute
Text link (id).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityMisspelledTextAttribute
Misspelled text (NSNumber as a Boolean value).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityFontTextAttribute
Font keys (NSDictionary).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityFontNameKey
Required key for font name.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityFontFamilyKey
Optional key for font family.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityVisibleNameKey
Optional key for font visibility.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityFontSizeKey
Required key for font size.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Window-specific attributes
Attributes specific to windows.

3516 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSString *const NSAccessibilityCancelButtonAttribute;
NSString *const NSAccessibilityCloseButtonAttribute;
NSString *const NSAccessibilityDefaultButtonAttribute;
NSString *const NSAccessibilityGrowAreaAttribute;
NSString *const NSAccessibilityMainAttribute;
NSString *const NSAccessibilityMinimizeButtonAttribute;
NSString *const NSAccessibilityMinimizedAttribute;
NSString *const NSAccessibilityModalAttribute;
NSString *const NSAccessibilityProxyAttribute;
NSString *const NSAccessibilityToolbarButtonAttribute;
NSString *const NSAccessibilityZoomButtonAttribute;

Constants
NSAccessibilityCloseButtonAttribute

The element representing the close button (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityGrowAreaAttribute
The element representing the grow area (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityModalAttribute
A flag that indicates whether the window represented by this element is modal (NSNumber).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityDefaultButtonAttribute
The element that represents the default button (id).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityCancelButtonAttribute
The element that represents the cancel button (id).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityMainAttribute
A flag that indicates whether the window is the main window (NSNumber).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityMinimizeButtonAttribute
The element that represents the minimize button (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityMinimizedAttribute
A flag that indicates whether the window is minimized (NSNumber).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Constants 3517
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityToolbarButtonAttribute
The element that represents the toolbar button (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityProxyAttribute
The element that represents the window’s document proxy (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityZoomButtonAttribute
The element that represents the zoom button (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Orientations
Values that indicate the orientation of elements, such as scroll bars and split views. One of these values is
returned as the value for an object’s NSAccessibilityOrientationAttribute (page 3532).

NSString *const NSAccessibilityHorizontalOrientationValue;
NSString *const NSAccessibilityVerticalOrientationValue;
NSString *const NSAccessibilityUnknownOrientationValue;

Constants
NSAccessibilityHorizontalOrientationValue

The element is oriented horizontally.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityVerticalOrientationValue
The element is oriented vertically.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityUnknownOrientationValue
The element has unknown orientation.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

Application-specific attributes
Attributes that are specific to the application object.

3518 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSString *const NSAccessibilityClearButtonAttribute;
NSString *const NSAccessibilityColumnTitlesAttribute;
NSString *const NSAccessibilityFocusedUIElementAttribute;
NSString *const NSAccessibilityFocusedWindowAttribute;
NSString *const NSAccessibilityFrontmostAttribute;
NSString *const NSAccessibilityHiddenAttribute;
NSString *const NSAccessibilityMainWindowAttribute;
NSString *const NSAccessibilityMenuBarAttribute;
NSString *const NSAccessibilityOrientationAttribute;
NSString *const NSAccessibilitySearchButtonAttribute;
NSString *const NSAccessibilitySearchMenuAttribute;
NSString *const NSAccessibilityWindowsAttribute;

Constants
NSAccessibilityFocusedUIElementAttribute

The element with the current focus (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityFocusedWindowAttribute
The application’s window that has current focus (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityFrontmostAttribute
A flag that indicates whether the application is frontmost (NSNumber).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityHiddenAttribute
A flag that indicates whether the application is hidden (NSNumber).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityMainWindowAttribute
The application’s main window (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityMenuBarAttribute
The application’s menu bar (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityWindowsAttribute
The application’s windows (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Constants 3519
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Grid view attributes
Attributes that are used with grid views, such as thumbnails and media browsers that present a grid of items.
The children of a grid are ordered.

NSString *const NSAccessibilityColumnCountAttribute;
NSString *const NSAccessibilityOrderedByRowAttribute;
NSString *const NSAccessibilityRowCountAttribute;

Constants
NSAccessibilityColumnCountAttribute

The number of columns in the grid (NSNumber as intValue).

Available in Mac OS X v10.5 and later.

Declared in NSAccessibility.h.

NSAccessibilityOrderedByRowAttribute
A flag that indicates whether the grid is ordered row major (YES), or column major (NO) (NSNumber
as boolValue).

Available in Mac OS X v10.5 and later.

Declared in NSAccessibility.h.

NSAccessibilityRowCountAttribute
The number of rows in the grid (NSNumber as intValue).

Available in Mac OS X v10.5 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Table view and outline view attributes
Attributes that are specific to tables and outlines.

NSString *const NSAccessibilityColumnHeaderUIElementsAttribute;
NSString *const NSAccessibilityColumnsAttribute;
NSString *const NSAccessibilityRowHeaderUIElementsAttribute;
NSString *const NSAccessibilityRowsAttribute;
NSString *const NSAccessibilitySelectedColumnsAttribute;
NSString *const NSAccessibilitySelectedRowsAttribute;
NSString *const NSAccessibilitySortDirectionAttribute;
NSString *const NSAccessibilityVisibleColumnsAttribute;
NSString *const NSAccessibilityVisibleRowsAttribute;

Constants
NSAccessibilityColumnHeaderUIElementsAttribute

The table’s column headers (NSArray).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityColumnsAttribute
The table’s columns (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

3520 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityRowHeaderUIElementsAttribute
The table’s row headers (NSArray).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityRowsAttribute
The table’s rows (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedColumnsAttribute
The table’s selected columns (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedRowsAttribute
The table’s selected rows (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySortDirectionAttribute
The column’s sort direction (NSString). See “Column sort direction” (page 3523) for possible
values.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityVisibleColumnsAttribute
The table’s visible columns (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityVisibleRowsAttribute
The table’s visible rows (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Outline view attributes
Attributes that are used in outline views.

Constants 3521
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSString *const NSAccessibilityDisclosedByRowAttribute;
NSString *const NSAccessibilityDisclosedRowsAttribute;
NSString *const NSAccessibilityDisclosingAttribute;
NSString *const NSAccessibilityDisclosureLevelAttribute;

Constants
NSAccessibilityDisclosedByRowAttribute

The row disclosing this row (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityDisclosedRowsAttribute
The rows disclosed by this row (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityDisclosingAttribute
A flag that indicates whether a row is disclosing other rows (NSNumber).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityDisclosureLevelAttribute
The indentation level of this row (NSNumber).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Cell-based table attributes
Attributes that are specific to cell-based tables.

NSString *const NSAccessibilitySelectedCellsAttribute;
NSString *const NSAccessibilityVisibleCellsAttribute;

Constants
NSAccessibilitySelectedCellsAttribute

The table’s selected cells (NSArray). This attribute is required for cell-based tables.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityVisibleCellsAttribute
The table’s visible cells (NSArray). This attribute is required for cell-based tables.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

Cell-based table parameterized attributes
Parameterized attributes specific to cell-based tables.

3522 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSString *const NSAccessibilityCellForColumnAndRowParameterizedAttribute;

Constants
NSAccessibilityCellForColumnAndRowParameterizedAttribute

The cell at the specified row and column. The parameter is an NSArray that contains two NSNumber
objects: the first number specifies the column index and the second number specifies the row index.
This attribute is required for cell-based tables.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

Cell attributes
Attributes that are specific to individual table cells.

NSString *const NSAccessibilityRowIndexRangeAttribute;
NSString *const NSAccessibilityColumnIndexRangeAttribute;

Constants
NSAccessibilityRowIndexRangeAttribute

The row index range of the cell (an NSValue that contains the row’s starting index and index span
in the table).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityColumnIndexRangeAttribute
The column index range of the cell (an NSValue that contains the row’s starting index and index span
in the table).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

Column sort direction
Values that indicate the sort direction of a column (used with
NSAccessibilitySortDirectionAttribute (page 3521)).

NSString *const NSAccessibilityAscendingSortDirectionValue;
NSString *const NSAccessibilityDescendingSortDirectionValue;
NSString *const NSAccessibilityUnknownSortDirectionValue;

Constants
NSAccessibilityAscendingSortDirectionValue

The column is sorted in ascending values.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityDescendingSortDirectionValue
The column is sorted in descending values.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Constants 3523
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityUnknownSortDirectionValue
The sort direction is unknown.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Layout area attributes
Attributes that are specific to layout areas.

NSString *const NSAccessibilityHorizontalUnitsAttribute;
NSString *const NSAccessibilityVerticalUnitsAttribute;
NSString *const NSAccessibilityHorizontalUnitDescriptionAttribute;
NSString *const NSAccessibilityVerticalUnitDescriptionAttribute;

Constants
NSAccessibilityHorizontalUnitsAttribute

The units that the layout view uses for horizontal values (NSString). See “Ruler unit attributes” (page
3529) for possible values.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityVerticalUnitsAttribute
The units that the layout view uses for vertical values (NSString). See “Ruler unit attributes” (page
3529) for possible values.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityHorizontalUnitDescriptionAttribute
The description of the layout view’s horizontal units (NSString).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityVerticalUnitDescriptionAttribute
The description of the layout view’s vertical units (NSString).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

Layout area parameterized attributes
Parameterized attributes that are specific to layout areas.

3524 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSString *const NSAccessibilityLayoutPointForScreenPointParameterizedAttribute;
NSString *const NSAccessibilityLayoutSizeForScreenSizeParameterizedAttribute;
NSString *const NSAccessibilityScreenPointForLayoutPointParameterizedAttribute;
NSString *const NSAccessibilityScreenSizeForLayoutSizeParameterizedAttribute;

Constants
NSAccessibilityLayoutPointForScreenPointParameterizedAttribute

The point in the layout area (NSValue) corresponding to the specified point on the screen (NSValue).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityLayoutSizeForScreenSizeParameterizedAttribute
The size of the layout area (NSValue) corresponding to the specified screen size (NSValue).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityScreenPointForLayoutPointParameterizedAttribute
The screen point (NSValue) corresponding to the specified point in the layout area (NSValue).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityScreenSizeForLayoutSizeParameterizedAttribute
The size of the screen (NSValue) corresponding to the specified size of the layout area (NSValue).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

Layout item attributes
Attributes that are specific to the items in a layout area.

NSString *const NSAccessibilityHandlesAttribute;

Constants
NSAccessibilityHandlesAttribute

The drag handles of the item (NSArray).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

Slider attributes
Attributes that are specific to sliders.

Constants 3525
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSString *const NSAccessibilityAllowedValuesAttribute;
NSString *const NSAccessibilityLabelUIElementsAttribute;
NSString *const NSAccessibilityLabelValueAttribute;

Constants
NSAccessibilityAllowedValuesAttribute

The allowed values in the slider (NSArray).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityLabelUIElementsAttribute
The elements that represent the slider’s labels (NSArray).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityLabelValueAttribute
The value of the label represented by this element (NSNumber).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Screen matte attributes
Attributes that are specific to screen mattes.

NSString *const NSAccessibilityMatteContentUIElementAttribute;
NSString *const NSAccessibilityMatteHoleAttribute;

Constants
NSAccessibilityMatteHoleAttribute

The bounds of the matte hole, in screen coordinates (NSValue containing an NSRect).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityMatteContentUIElementAttribute
The element that is clipped by the matte (id).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Ruler view attributes
Attributes that are specific to ruler views.

3526 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSString *const NSAccessibilityMarkerGroupUIElementAttribute;
NSString *const NSAccessibilityMarkerTypeAttribute;
NSString *const NSAccessibilityMarkerTypeDescriptionAttribute;
NSString *const NSAccessibilityMarkerUIElementsAttribute;
NSString *const NSAccessibilityMarkerValuesAttribute;
NSString *const NSAccessibilityUnitDescriptionAttribute;
NSString *const NSAccessibilityUnitsAttribute;

Constants
NSAccessibilityMarkerGroupUIElementAttribute

Marker group user interface element (id).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityMarkerTypeAttribute
The type of the marker (NSString). See “Ruler marker type values” (page 3527) for possible
values.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityMarkerTypeDescriptionAttribute
The description of the marker type (NSString).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityMarkerUIElementsAttribute
Array of marker user interface elements (NSArray)

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityMarkerValuesAttribute
The marker values (NSArray of NSNumber).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityUnitDescriptionAttribute
The description of ruler units (NSString).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityUnitsAttribute
The ruler units (NSString). See “Ruler unit attributes” (page 3529) for possible values.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Ruler marker type values
Values that indicate the marker type of an element.

Constants 3527
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSString *const NSAccessibilityCenterTabStopMarkerTypeValue;
NSString *const NSAccessibilityDecimalTabStopMarkerTypeValue;
NSString *const NSAccessibilityFirstLineIndentMarkerTypeValue;
NSString *const NSAccessibilityHeadIndentMarkerTypeValue;
NSString *const NSAccessibilityLeftTabStopMarkerTypeValue;
NSString *const NSAccessibilityRightTabStopMarkerTypeValue;
NSString *const NSAccessibilityTailIndentMarkerTypeValue;
NSString *const NSAccessibilityUnknownMarkerTypeValue;

Constants
NSAccessibilityLeftTabStopMarkerTypeValue

Left tab stop.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityRightTabStopMarkerTypeValue
Right tab stop.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityCenterTabStopMarkerTypeValue
Center tab stop.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityDecimalTabStopMarkerTypeValue
Decimal tab stop.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityHeadIndentMarkerTypeValue
Head indent marker.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityTailIndentMarkerTypeValue
Tail indent marker.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityFirstLineIndentMarkerTypeValue
First line indent marker.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityUnknownMarkerTypeValue
Unknown marker type.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

3528 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Measurement unit attributes
Values that indicate the unit values of a ruler or layout area (used with
NSAccessibilityUnitsAttribute (page 3527)).

NSString *const NSAccessibilityCentimetersUnitValue;
NSString *const NSAccessibilityInchesUnitValue;
NSString *const NSAccessibilityPicasUnitValue;
NSString *const NSAccessibilityPointsUnitValue;
NSString *const NSAccessibilityUnknownUnitValue;

Constants
NSAccessibilityInchesUnitValue

The units are inches.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityCentimetersUnitValue
The units are centimeters.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityPointsUnitValue
The units are points.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityPicasUnitValue
The units are picas.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityUnknownUnitValue
The units are unknown.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Linkage elements
Constants that specify links between accessibility elements.

Constants 3529
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSString *const NSAccessibilityLinkedUIElementsAttribute;
NSString *const NSAccessibilityServesAsTitleForUIElementsAttribute;
NSString *const NSAccessibilityTitleUIElementAttribute;

Constants
NSAccessibilityLinkedUIElementsAttribute

The elements with which this element is related (NSArray). For example, the contents of a list item
that are displayed in another pane or window.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityTitleUIElementAttribute
An element that represents another element’s static text title (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityServesAsTitleForUIElementsAttribute
The elements for which this element serves as the title (NSArray).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Miscellaneous attributes
Miscellaneous attributes that can apply to various types of elements.

NSString *const NSAccessibilityDecrementButtonAttribute;
NSString *const NSAccessibilityDocumentAttribute;
NSString *const NSAccessibilityEditedAttribute;
NSString *const NSAccessibilityExpandedAttribute;
NSString *const NSAccessibilityFilenameAttribute;
NSString *const NSAccessibilityHeaderAttribute;
NSString *const NSAccessibilityHorizontalScrollBarAttribute;
NSString *const NSAccessibilityIncrementButtonAttribute;
NSString *const NSAccessibilityIndexAttribute;
NSString *const NSAccessibilityNextContentsAttribute;
NSString *const NSAccessibilityOverflowButtonAttribute;
NSString *const NSAccessibilityPreviousContentsAttribute;
NSString *const NSAccessibilitySelectedAttribute;
NSString *const NSAccessibilitySplittersAttribute;
NSString *const NSAccessibilityTabsAttribute;
NSString *const NSAccessibilityURLAttribute;
NSString *const NSAccessibilityVerticalScrollBarAttribute;
NSString *const NSAccessibilityWarningValueAttribute;
NSString *const NSAccessibilityCriticalValueAttribute;
NSString *const NSAccessibilityPlaceholderValueAttribute;

Constants
NSAccessibilityClearButtonAttribute

The element that represents the clear button in a search field (id).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

3530 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityColumnTitlesAttribute
The elements that represent column titles (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityDecrementButtonAttribute
The element that represents a stepper’s decrement button (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityDocumentAttribute
The URL for the file represented by the element (NSString).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityEditedAttribute
A flag that indicates whether the element has been modified (NSNumber).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityExpandedAttribute
A flag that indicates whether the element is expanded (NSNumber).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityFilenameAttribute
The filename associated with the element (NSString).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityHeaderAttribute
The element that represents a table view’s header (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityHorizontalScrollBarAttribute
The element that represents a scroll view’s horizontal scroll bar (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityIncrementButtonAttribute
The element that represents a stepper’s increment button (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityIndexAttribute
The index of the row or column represented by the element (NSValue).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Constants 3531
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityNextContentsAttribute
The contents following the current divider element, such as a subview adjacent to a split view’s splitter
element (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityOrientationAttribute
The element’s orientation, which can have the value
NSAccessibilityHorizontalOrientationValue (page 3518) or
NSAccessibilityVerticalOrientationValue (page 3518).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityOverflowButtonAttribute
The element that represents a toolbar’s overflow button (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityPreviousContentsAttribute
The contents preceding the current divider element, such as a subview adjacent to a split view’s
splitter bar element (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySearchButtonAttribute
The element that represents the search button in a search field (id).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilitySearchMenuAttribute
The element that represents the menu in a search field (id).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedAttribute
A flag that indicates whether the element is selected (NSNumber).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySplittersAttribute
The views and splitter bar in a split view (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityTabsAttribute
The tab elements in a tab view (NSArray).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

3532 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityURLAttribute
The URL associated with the element (NSURL).

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityVerticalScrollBarAttribute
The element that represents the vertical scroll bar in a scroll view (id).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityWarningValueAttribute
The warning value in a level indicator (typically, NSNumber).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityCriticalValueAttribute
The critical value in a level indicator (typically, NSNumber).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityPlaceholderValueAttribute
The placeholder value for a control, such as a text field (NSString).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Roles
Standard roles that identify the type of object an accessibility object represents. One of these values is
returned as the value for an object’s NSAccessibilityRoleAttribute (page 3510).

Constants 3533
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSString *const NSAccessibilityApplicationRole;
NSString *const NSAccessibilityBrowserRole;
NSString *const NSAccessibilityBusyIndicatorRole;
NSString *const NSAccessibilityButtonRole;
NSString *const NSAccessibilityCellRole;
NSString *const NSAccessibilityCheckBoxRole;
NSString *const NSAccessibilityColorWellRole;
NSString *const NSAccessibilityColumnRole;
NSString *const NSAccessibilityComboBoxRole;
NSString *const NSAccessibilityDisclosureTriangleRole;
NSString *const NSAccessibilityDrawerRole;
NSString *const NSAccessibilityGridRole;
NSString *const NSAccessibilityGroupRole;
NSString *const NSAccessibilityGrowAreaRole;
NSString *const NSAccessibilityHandleRole;
NSString *const NSAccessibilityHelpTagRole;
NSString *const NSAccessibilityImageRole;
NSString *const NSAccessibilityIncrementorRole;
NSString *const NSAccessibilityLayoutAreaRole;
NSString *const NSAccessibilityLayoutItemRole;
NSString *const NSAccessibilityLinkRole;
NSString *const NSAccessibilityListRole;
NSString *const NSAccessibilityMatteRole;
NSString *const NSAccessibilityMenuBarRole;
NSString *const NSAccessibilityMenuButtonRole;
NSString *const NSAccessibilityMenuItemRole;
NSString *const NSAccessibilityMenuRole;
NSString *const NSAccessibilityOutlineRole;
NSString *const NSAccessibilityPopUpButtonRole;
NSString *const NSAccessibilityProgressIndicatorRole;
NSString *const NSAccessibilityRadioButtonRole;
NSString *const NSAccessibilityRadioGroupRole;
NSString *const NSAccessibilityRelevanceIndicatorRole;
NSString *const NSAccessibilityRowRole;
NSString *const NSAccessibilityRulerMarkerRole;
NSString *const NSAccessibilityRulerRole;
NSString *const NSAccessibilityScrollAreaRole;
NSString *const NSAccessibilityScrollBarRole;
NSString *const NSAccessibilitySheetRole;
NSString *const NSAccessibilitySliderRole;
NSString *const NSAccessibilitySortButtonRole;
NSString *const NSAccessibilitySplitGroupRole;
NSString *const NSAccessibilitySplitterRole;
NSString *const NSAccessibilityStaticTextRole;
NSString *const NSAccessibilitySystemWideRole;
NSString *const NSAccessibilityTabGroupRole;
NSString *const NSAccessibilityTableRole;
NSString *const NSAccessibilityTextAreaRole;
NSString *const NSAccessibilityTextFieldRole;
NSString *const NSAccessibilityToolbarRole;
NSString *const NSAccessibilityUnknownRole;
NSString *const NSAccessibilityValueIndicatorRole;
NSString *const NSAccessibilityWindowRole;

Constants

3534 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityApplicationRole
Application.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityBrowserRole
Browser.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityBusyIndicatorRole
Busy indicator.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityButtonRole
Button.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityCellRole
Cell in a table or matrix.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityCheckBoxRole
Checkbox.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityColorWellRole
Color well.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityColumnRole
Column.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityComboBoxRole
Combo box.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityDisclosureTriangleRole
Disclosure triangle.

Available in Mac OS X v10.5 and later.

Declared in NSAccessibility.h.

Constants 3535
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityDrawerRole
Drawer.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityGridRole
Grid.

Available in Mac OS X v10.5 and later.

Declared in NSAccessibility.h.

NSAccessibilityGroupRole
Group.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityGrowAreaRole
A window’s grow (resize) area.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityHandleRole
Drag handle.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityHelpTagRole
Help tag.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityImageRole
Image.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityIncrementorRole
Stepper.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityLayoutAreaRole
Layout area (a view, such as a graphic view, that contains visual elements that may not have any
accessibility representation).

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityLayoutItemRole
An item in a layout area.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

3536 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityLinkRole
Link.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityListRole
List.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityMatteRole
Matte.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityMenuBarRole
Menu bar.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityMenuButtonRole
Menu button.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityMenuItemRole
Menu item.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityMenuRole
Menu.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityOutlineRole
Outline.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityPopUpButtonRole
Pop-up button.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityProgressIndicatorRole
Progress indicator.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Constants 3537
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityRadioButtonRole
Radio button.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityRadioGroupRole
Radio button group.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityRelevanceIndicatorRole
Relevance indicator.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityRowRole
Row.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityRulerRole
Ruler.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityRulerMarkerRole
Ruler marker.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityScrollAreaRole
Scroll view.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityScrollBarRole
Scroll bar.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySheetRole
Sheet.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySliderRole
Slider.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

3538 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilitySortButtonRole
Sort button.

Available in Mac OS X v10.4 and later.

Deprecated in Mac OS X v10.6.

Declared in NSAccessibility.h.

NSAccessibilitySplitGroupRole
Split view.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySplitterRole
Splitter bar of a split view.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityStaticTextRole
Uneditable text.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySystemWideRole
The system-wide accessibility object.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityTabGroupRole
Tab group.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityTableRole
Table.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityTextAreaRole
Text view.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityTextFieldRole
Text field.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityToolbarRole
Toolbar.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Constants 3539
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityUnknownRole
Unknown object type.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityValueIndicatorRole
Value indicator.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityWindowRole
Window.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Subroles
Subroles that identify a specialized type of object an accessibility object represents. One of these values is
returned as the value for an object’s NSAccessibilitySubroleAttribute (page 3511).

NSString *const NSAccessibilityCloseButtonSubrole;
NSString *const NSAccessibilityDecrementArrowSubrole;
NSString *const NSAccessibilityDecrementPageSubrole;
NSString *const NSAccessibilityDialogSubrole;
NSString *const NSAccessibilityFloatingWindowSubrole;
NSString *const NSAccessibilityIncrementArrowSubrole;
NSString *const NSAccessibilityIncrementPageSubrole;
NSString *const NSAccessibilityMinimizeButtonSubrole;
NSString *const NSAccessibilityOutlineRowSubrole;
NSString *const NSAccessibilitySearchFieldSubrole;
NSString *const NSAccessibilitySecureTextFieldSubrole;
NSString *const NSAccessibilityStandardWindowSubrole;
NSString *const NSAccessibilitySystemDialogSubrole;
NSString *const NSAccessibilitySystemFloatingWindowSubrole;
NSString *const NSAccessibilityTableRowSubrole;
NSString *const NSAccessibilityTextAttachmentSubrole;
NSString *const NSAccessibilityTextLinkSubrole;
NSString *const NSAccessibilityTimelineSubrole;
NSString *const NSAccessibilityToolbarButtonSubrole;
NSString *const NSAccessibilityUnknownSubrole;
NSString *const NSAccessibilityZoomButtonSubrole;
NSString *const NSAccessibilitySortButtonSubrole;
NSString *const NSAccessibilityRatingIndicatorSubrole;
NSString *const NSAccessibilityContentListSubrole;
NSString *const NSAccessibilityDefinitionListSubrole;

Constants
NSAccessibilityCloseButtonSubrole

A window’s close button.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

3540 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityDecrementArrowSubrole
Decrement arrow (the down arrow in a scroll bar).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityDecrementPageSubrole
Decrement page (the decrement area in the scroll track of a scroll bar).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityDialogSubrole
Dialog.

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityFloatingWindowSubrole
Floating window.

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityIncrementArrowSubrole
Increment arrow (the up arrow in a scroll bar).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityIncrementPageSubrole
Increment page (the increment area in the scroll track of a scroll bar).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityMinimizeButtonSubrole
A window’s minimize button.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityOutlineRowSubrole
Outline row.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilitySearchFieldSubrole
Search field.

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilitySecureTextFieldSubrole
Secure text field.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Constants 3541
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityStandardWindowSubrole
A standard window.

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilitySystemDialogSubrole
System dialog (a system-generated dialog that floats on the top layer, regardless of which application
is frontmost).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilitySystemFloatingWindowSubrole
System floating window (a system-generated panel).

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityTableRowSubrole
Table row.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityTextAttachmentSubrole
Text attachment.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityTextLinkSubrole
Text link.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityTimelineSubrole
Timeline.

Available in Mac OS X v10.5 and later.

Declared in NSAccessibility.h.

NSAccessibilityToolbarButtonSubrole
A window’s toolbar button.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityUnknownSubrole
Unknown subrole.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityZoomButtonSubrole
A window’s zoom button.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

3542 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilitySortButtonSubrole
Sort button in a table or outline view.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityRatingIndicatorSubrole
Rating indicator.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityContentListSubrole
Content that is organized in a list, but is not in a list control or table view.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityDefinitionListSubrole
A content list in a webpage.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Action values
Standard actions that accessibility objects can perform.

NSString *const NSAccessibilityCancelAction;
NSString *const NSAccessibilityConfirmAction;
NSString *const NSAccessibilityDecrementAction;
NSString *const NSAccessibilityDeleteAction;
NSString *const NSAccessibilityIncrementAction;
NSString *const NSAccessibilityPickAction;
NSString *const NSAccessibilityPressAction;
NSString *const NSAccessibilityRaiseAction;
NSString *const NSAccessibilityShowMenuAction;

Constants
NSAccessibilityConfirmAction

Simulates pressing Return in the object, such as a text field.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityDecrementAction
Decrements the value of the object.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityDeleteAction
Deletes the value of the object.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Constants 3543
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityIncrementAction
Increments the value of the object.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityPickAction
Selects the object, such as a menu item.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityPressAction
Simulates clicking an object, such as a button.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityCancelAction
Cancels the operation.

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityRaiseAction
Simulates bringing a window forward by clicking on its title bar.

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

NSAccessibilityShowMenuAction
Simulates showing a menu by clicking on it.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Focus-change notifications
Notifications that are sent to observing assistive applications when focus-change events occur. The notifications
are sent using the NSAccessibilityPostNotification (page 3956) function instead of an
NSNotificationCenter object.

NSString *const NSAccessibilityMainWindowChangedNotification;
NSString *const NSAccessibilityFocusedWindowChangedNotification;
NSString *const NSAccessibilityFocusedUIElementChangedNotification;

Constants
NSAccessibilityMainWindowChangedNotification

Posted after the main window has changed.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

3544 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityFocusedWindowChangedNotification
Posted after the key window has changed.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityFocusedUIElementChangedNotification
Posted after the element has gained focus.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Window-change notifications
Notifications that are sent to observing assistive applications when window-change events occur. The
notifications are sent using the NSAccessibilityPostNotification (page 3956) function instead of an
NSNotificationCenter object.

NSString *const NSAccessibilityWindowCreatedNotification;
NSString *const NSAccessibilityWindowDeminiaturizedNotification;
NSString *const NSAccessibilityWindowMiniaturizedNotification;
NSString *const NSAccessibilityWindowMovedNotification;
NSString *const NSAccessibilityWindowResizedNotification;

Constants
NSAccessibilityWindowCreatedNotification

Posted after a new window has appeared.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityWindowDeminiaturizedNotification
Posted after the window has been restored to full size from the Dock.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityWindowMiniaturizedNotification
Posted after the window has been put in the Dock.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityWindowMovedNotification
Posted after the window has moved.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityWindowResizedNotification
Posted after the window has changed size.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Constants 3545
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Application notifications
Notifications that are sent to observing assistive applications when application events occur. The notifications
are sent using the NSAccessibilityPostNotification (page 3956) function instead of an
NSNotificationCenter object.

NSString *const NSAccessibilityApplicationActivatedNotification;
NSString *const NSAccessibilityApplicationDeactivatedNotification;
NSString *const NSAccessibilityApplicationHiddenNotification;
NSString *const NSAccessibilityApplicationShownNotification;

Constants
NSAccessibilityApplicationActivatedNotification

Posted after the application has activated.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityApplicationDeactivatedNotification
Posted after the application has deactivated.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityApplicationHiddenNotification
Posted after the application has been hidden.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityApplicationShownNotification
Posted after the application has been shown.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Drawer and sheet notifications
Notifications that are sent to observing assistive applications when drawer and sheet events occur. The
notifications are sent using the NSAccessibilityPostNotification (page 3956) function instead of an
NSNotificationCenter object.

NSString *const NSAccessibilityDrawerCreatedNotification;
NSString *const NSAccessibilitySheetCreatedNotification;

Constants
NSAccessibilityDrawerCreatedNotification

Posted after a drawer has appeared.

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

3546 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilitySheetCreatedNotification
Posted after a sheet has appeared.

Available in Mac OS X v10.3 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Element notifications
Notifications that are sent to observing assistive applications when certain element-related events occur.
Note that these notifications are not sent from every element. The notifications are sent using the
NSAccessibilityPostNotification (page 3956) function instead of an NSNotificationCenter object.

NSString *const NSAccessibilityCreatedNotification;
NSString *const NSAccessibilityMovedNotification;
NSString *const NSAccessibilityResizedNotification;
NSString *const NSAccessibilityTitleChangedNotification;
NSString *const NSAccessibilityUIElementDestroyedNotification;
NSString *const NSAccessibilityValueChangedNotification;

Constants
NSAccessibilityCreatedNotification

Posted after the element has been created.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityMovedNotification
Posted after the element has been moved.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityResizedNotification
Posted after the element has been resized.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityTitleChangedNotification
Posted after the title has changed.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityUIElementDestroyedNotification
Posted after the element has been destroyed.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

NSAccessibilityValueChangedNotification
Posted after the element’s value has changed.

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Constants 3547
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Declared In
NSAccessibility.h

Miscellaneous notifications
Notifications that are sent to observing assistive applications when certain events occur. The notifications
are sent using the NSAccessibilityPostNotification (page 3956) function instead of an
NSNotificationCenter object.

NSString *const NSAccessibilityHelpTagCreatedNotification;
NSString *const NSAccessibilityRowCountChangedNotification;
NSString *const NSAccessibilitySelectedChildrenChangedNotification;
NSString *const NSAccessibilitySelectedColumnsChangedNotification;
NSString *const NSAccessibilitySelectedRowsChangedNotification;
NSString *const NSAccessibilitySelectedTextChangedNotification;
NSString *const NSAccessibilityRowExpandedNotification;
NSString *const NSAccessibilityRowCollapsedNotification;
NSString *const NSAccessibilitySelectedCellsChangedNotification;
NSString *const NSAccessibilityUnitsChangedNotification;
NSString *const NSAccessibilitySelectedChildrenMovedNotification;

Constants
NSAccessibilityHelpTagCreatedNotification

Posted after a help tag has appeared.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilityRowCountChangedNotification
Posted after a row has been added or deleted.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedChildrenChangedNotification
Posted after selected child elements have changed.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedColumnsChangedNotification
Posted after selected columns have changed.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedRowsChangedNotification
Posted after selected rows have changed.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedTextChangedNotification
Posted after selected text has changed.

Available in Mac OS X v10.4 and later.

Declared in NSAccessibility.h.

3548 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

NSAccessibilityRowExpandedNotification
Posted after the row has expanded.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityRowCollapsedNotification
Posted after the row has collapsed.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedCellsChangedNotification
Posted after selected cells in a cell-based table have changed.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilityUnitsChangedNotification
Posted after the units in a layout area have changed.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

NSAccessibilitySelectedChildrenMovedNotification
Posted after selected items in a layout area have moved.

Available in Mac OS X v10.6 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

UserInfo key for error codes in accessibility exceptions
This is a key used by the userInfo dictionary of an NSAccessibilityException.

NSString *const NSAccessibilityErrorCodeExceptionInfo;

Constants
NSAccessibilityErrorCodeExceptionInfo

Integer error code used for debugging (as an NSNumber).

Available in Mac OS X v10.2 and later.

Declared in NSAccessibility.h.

Declared In
NSAccessibility.h

Constants 3549
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

3550 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 173

NSAccessibility Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSAlert.h

Companion guides Dialogs and Special Panels
Sheet Programming Topics

Overview

The NSAlertDelegate protocol defines the optional methods implemented by delegates of NSAlert
objects.

Tasks

Displaying Help

– alertShowHelp: (page 3551)
Sent to the delegate when the user clicks the alert’s help button. The delegate causes help to be
displayed for an alert, directly or indirectly.

Instance Methods

alertShowHelp:
Sent to the delegate when the user clicks the alert’s help button. The delegate causes help to be displayed
for an alert, directly or indirectly.

- (BOOL)alertShowHelp:(NSAlert *)alert

Return Value
YES when the delegate displayed help directly, NO otherwise. When NO and the alert has a help anchor
(setHelpAnchor: (page 90)), the application’s help manager displays help using the help anchor.

Overview 3551
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 174

NSAlertDelegate Protocol Reference

Discussion
The delegate implements this method only to override the help-anchor lookup behavior.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– setShowsHelp: (page 92) (NSAlert)

Declared In
NSAlert.h

3552 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 174

NSAlertDelegate Protocol Reference

Adopted by NSWindow
NSView

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSAnimation.h

Overview

The NSAnimatablePropertyContainer protocol defines a way to add animation to an existing class with a
minimum of API impact. It returns a proxy object for the receiver that can be used to initiate implied animation
of property changes. An object's animator proxy should be treated as if it was the object itself, and may be
passed to any code that accepts the object as a parameter. Sending of key-value-coding compliant "set"
messages to the proxy will trigger animation for automatically animated properties of its target object.

An object's automatically animated properties are those for which NSAnimatablePropertyContainer (page
3553) finds and returns an CAAnimation instead of nil, often because animator (page 3556) specifies a default
animation for the key.

It's perfectly valid to set a new value for a property for which an animation that is currently in progress; this
simply sets a new target value for that property, with animation to the new target proceeding from whatever
current value the property has reached. An in-flight property animation can be stopped by setting a new
value for the property bracketed by an NSAnimationContext with 0.0 as the duration.

Tasks

Getting the Animator Proxy

– animator (page 3556) required method
Returns a proxy object for the receiver that can be used to initiate implied animation for property
changes. (required)

Overview 3553
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 175

NSAnimatablePropertyContainer Protocol
Reference

Managing Animations for Properties

– animations (page 3555) required method
Returns the optional dictionary that maps event trigger keys to animation objects. (required)

– setAnimations: (page 3557) required method
Sets the option dictionary that maps event trigger keys to animation objects. (required)

– animationForKey: (page 3555) required method
Returns the animation that should be performed for the specified key. (required)

+ defaultAnimationForKey: (page 3554) required method
Returns the default animation that should be performed for the specified key. (required)

Class Methods

defaultAnimationForKey:
Returns the default animation that should be performed for the specified key. (required)

+ (id)defaultAnimationForKey:(NSString *)key

Parameters
key

The action name or property specified as a string.

Return Value
The animation to perform. A subclass of CAAnimation.

Discussion
The NSAnimatablePropertyContainer (page 3553) method consults this class method when its search of
the receivers “Getting the Animator Proxy” (page 3553) dictionary fails to return an animation for key.

An animatable property container should implement this method to return a default animation to be
performed for each key that it wants to make auto-animatable, where key usually references a property of
the receiver, but can also specify a special animation trigger (NSAnimationTriggerOrderIn (page 3557) or
NSAnimationTriggerOrderOut (page 3557)).

A developer implementing a custom view subclass, can enable automatic animation for properties by
overriding this method, and having it return the desired default CAAnimation subclass to use for each of
the property keys of interest. The override should defer to super for any keys it doesn't specifically handle,
facilitating inheritance of default animation specifications. The following is an example of such an
implementation.

@implementation MyView
+ (id)defaultAnimationForKey:(NSString *)key {
 if ([key isEqualToString:@"borderColor"]) {
 // By default, animate border color changes with simple linear
interpolation to the new color value.
 return [CABasicAnimation animation];
 } else {
 // Defer to super's implementation for any keys we don't specifically
handle.

3554 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 175

NSAnimatablePropertyContainer Protocol Reference

 return [super defaultAnimationForKey:key];
 }
}
@end

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAnimation.h

Instance Methods

animationForKey:
Returns the animation that should be performed for the specified key. (required)

- (id)animationForKey:(NSString *)key

Parameters
key

The action name or property specified as a string.

Return Value
The animation to perform. A subclass of CAAnimation.

Discussion
When the action specified by key is triggered for an object, this method is consulted to find the animation,
if any, that should be performed in response.

Like its Core Animation CALayer counterpart, actionForKey:, this method is a funnel point that defines
the order in which the search for an animation proceeds.It first checks the receiver's “Getting the Animator
Proxy” (page 3553) dictionary for a value matching key, then falls back to animator (page 3556) for the
receiver's class.

Subclasses should not typically need to override this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
– animator (page 3556)
“Managing Animations for Properties” (page 3554)
“Getting the Animator Proxy” (page 3553)

Declared In
NSAnimation.h

animations
Returns the optional dictionary that maps event trigger keys to animation objects. (required)

Instance Methods 3555
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 175

NSAnimatablePropertyContainer Protocol Reference

- (NSDictionary *)animations

Return Value
The animations as a dictionary.

Discussion
When an action occurs that may trigger an animation the NSAnimatablePropertyContainer (page 3553)
method first looks in this dictionary for an animation that matches the key. Typically, the key will name a
property of the object whose value has just changed, but it may specify a special event trigger
(NSAnimationTriggerOrderIn (page 3557) or NSAnimationTriggerOrderOut (page 3557)).

Availability
Available in Mac OS X v10.5 and later.

See Also
– animator (page 3556)
“Managing Animations for Properties” (page 3554)

Declared In
NSAnimation.h

animator
Returns a proxy object for the receiver that can be used to initiate implied animation for property changes.
(required)

- (id)animator

Return Value
Returns a proxy object for the receiver that can initiate implied animations in response to property changes.

Discussion
The animator proxy object should be treated as if it was the receiver itself, and may be passed to any code
that accepts the receiver as a parameter.

Sending key-value coding compliant “set” messages to the proxy will trigger animation for automatically
animated properties of its target object, if the active NSAnimationContext in the current thread has a
duration value greater than zero, and an animation for the property key is found by the
NSAnimatablePropertyContainer (page 3553) search mechanism.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
BasicCocoaAnimations
CocoaSlides
LayerBackedOpenGLView
UIElementInspector

Declared In
NSAnimation.h

3556 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 175

NSAnimatablePropertyContainer Protocol Reference

setAnimations:
Sets the option dictionary that maps event trigger keys to animation objects. (required)

- (void)setAnimations:(NSDictionary *)dict

Parameters
dict

A dictionary containing the event trigger keys and associated animation objects.

Availability
Available in Mac OS X v10.5 and later.

See Also
NSAnimatablePropertyContainer (page 3553)
– animator (page 3556)
“Getting the Animator Proxy” (page 3553)

Declared In
NSAnimation.h

Constants

Transition Animation Keys
The following constants define the keys that reference the transitions used as views are made visible and
hidden.

NSString *NSAnimationTriggerOrderIn;
NSString *NSAnimationTriggerOrderOut;

Constants
NSAnimationTriggerOrderIn

The key that references the transition animation used when a view becomes visible, either as a result
of being inserted into the visible view hierarchy or as a result of the view no longer being set as hidden
.

Available in Mac OS X v10.5 and later.

Declared in NSAnimation.h.

NSAnimationTriggerOrderOut
The key that references the transition animation used when a view is no longer visible, either as a
result of being removed from the visible view hierarchy or as a result of the view set as hidden.

Available in Mac OS X v10.5 and later.

Declared in NSAnimation.h.

Constants 3557
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 175

NSAnimatablePropertyContainer Protocol Reference

3558 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 175

NSAnimatablePropertyContainer Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSAnimation.h

Companion guides Animation Programming Guide for Cocoa
Cocoa Drawing Guide

Related sample code iSpend

Overview

The NSAnimationDelegate protocol defines the optional methods implemented by delegates of
NSAnimation objects.

Tasks

Controlling and Monitoring an Animation

– animationDidEnd: (page 3561)
Sent to the delegate when the specified animation completes its run.

– animationDidStop: (page 3561)
Sent to the delegate when the specified animation is stopped before it completes its run.

– animationShouldStart: (page 3562)
Sent to the delegate just after an animation is started.

– animation:valueForProgress: (page 3560)
Requests a custom curve value for the current progress value.

Managing Progress Marks

– animation:didReachProgressMark: (page 3560)
Sent to the delegate when an animation reaches a specific progress mark.

Overview 3559
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 176

NSAnimationDelegate Protocol Reference

Instance Methods

animation:didReachProgressMark:
Sent to the delegate when an animation reaches a specific progress mark.

- (void)animation:(NSAnimation *)animation
didReachProgressMark:(NSAnimationProgress)progress

Parameters
animation

A running NSAnimation object that has reached a progress mark.

progress
A float value (typed as NSAnimationProgress) that indicates a progress mark of animation.

Discussion
The delegate typically implements this method to perform some animation effect for the time slice indicated
by progress, such as redrawing objects in a view with new coordinates or changing the frame location or
size of a window or view. As an alternative to this delegation message, you may choose to observe the
NSAnimationProgressMarkNotification (page 116) notification.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSAnimation.h

animation:valueForProgress:
Requests a custom curve value for the current progress value.

- (float)animation:(NSAnimation *)animation
valueForProgress:(NSAnimationProgress)progress

Parameters
animation

An NSAnimation object that is running.

progress
A float value (typed as NSAnimationProgress) that indicates a progress mark of animation. This
value is always between 0.0 and 1.0.

Return Value
A float value representing a custom curve.

Discussion
The delegate can compute and return a custom curve value for the given progress value. If the delegate does
not implement this method, NSAnimation computes the current curve value.

3560 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 176

NSAnimationDelegate Protocol Reference

The animation:valueForProgress: message is sent to the delegate when an NSAnimation object
receives a currentValue (page 104) message. The value the delegate returns is used as the value of
currentValue (page 104); if there is no delegate, or it doesn't implement animation:valueForProgress:,
NSAnimation computes and returns the current value. NSAnimation does not invoke currentValue (page
104)itself, but subclasses might.

See the description of currentValue (page 104) for more information.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– currentValue (page 104) (NSAnimation)

Declared In
NSAnimation.h

animationDidEnd:
Sent to the delegate when the specified animation completes its run.

- (void)animationDidEnd:(NSAnimation *)animation

Parameters
animation

The NSAnimation instance that completed its run.

Discussion
When an NSAnimation object reaches the end of its planned duration, it has a progress value of 1.0.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– animationDidStop: (page 3561)
– currentProgress (page 104)

Declared In
NSAnimation.h

animationDidStop:
Sent to the delegate when the specified animation is stopped before it completes its run.

- (void)animationDidStop:(NSAnimation *)animation

Parameters
animation

The NSAnimation instance that was stopped.

Instance Methods 3561
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 176

NSAnimationDelegate Protocol Reference

Discussion
An NSAnimation object stops running when it receives a stopAnimation (page 112) message.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– animationDidEnd: (page 3561)

Declared In
NSAnimation.h

animationShouldStart:
Sent to the delegate just after an animation is started.

- (BOOL)animationShouldStart:(NSAnimation *)animation

Parameters
animation

The NSAnimation object that was just started.

Return Value
NO to cancel the animation, YES to have the animation proceed.

Discussion
The delegate is sent this message just after animation receives a startAnimation (page 111) message.
The delegate can use this method to prepare objects and resources for the effect.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– animationDidEnd: (page 3561)
– animationDidStop: (page 3561)

Declared In
NSAnimation.h

3562 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 176

NSAnimationDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSApplication.h
AppKit/NSApplicationScripting.h

Companion guides Application Architecture Overview
Notification Programming Topics
Sheet Programming Topics
Services Implementation Guide

Related sample code Cocoa Tips and Tricks
Fireworks
NineSlice
QuickLookDownloader
TextSizingExample

Overview

The NSApplicationDelegate protocol defines the optional methods implemented by delegates of
NSApplication objects.

Tasks

Launching Applications

– applicationWillFinishLaunching: (page 3578)
Sent by the default notification center immediately before the application object is initialized.

– applicationDidFinishLaunching: (page 3571)
Sent by the default notification center after the application has been launched and initialized but
before it has received its first event.

Overview 3563
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Terminating Applications

– applicationShouldTerminate: (page 3576)
Sent to notify the delegate that the application is about to terminate.

– applicationShouldTerminateAfterLastWindowClosed: (page 3577)
Invoked when the user closes the last window the application has open.

– applicationWillTerminate: (page 3579)
Sent by the default notification center immediately before the application terminates.

Managing Active Status

– applicationWillBecomeActive: (page 3577)
Sent by the default notification center immediately before the application becomes active.

– applicationDidBecomeActive: (page 3570)
Sent by the default notification center immediately after the application becomes active.

– applicationWillResignActive: (page 3578)
Sent by the default notification center immediately before the application is deactivated.

– applicationDidResignActive: (page 3572)
Sent by the default notification center immediately after the application is deactivated.

Hiding Applications

– applicationWillHide: (page 3578)
Sent by the default notification center immediately before the application is hidden.

– applicationDidHide: (page 3572)
Sent by the default notification center immediately after the application is hidden.

– applicationWillUnhide: (page 3579)
Sent by the default notification center immediately after the application is unhidden.

– applicationDidUnhide: (page 3573)
Sent by the default notification center immediately after the application is made visible.

Managing Windows

– applicationWillUpdate: (page 3580)
Sent by the default notification center immediately before the application object updates its windows.

– applicationDidUpdate: (page 3573)
Sent by the default notification center immediately after the application object updates its windows.

– applicationShouldHandleReopen:hasVisibleWindows: (page 3575)
Sent by the application to the delegate prior to default behavior to reopen (rapp) AppleEvents.

3564 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Managing the Dock Menu

– applicationDockMenu: (page 3573)
Allows the delegate to supply a dock menu for the application dynamically.

Displaying Errors

– application:willPresentError: (page 3570)
Sent to the delegate before the specified application presents an error message to the user.

Managing the Screen

– applicationDidChangeScreenParameters: (page 3571)
Sent by the default notification center when the configuration of the displays attached to the computer
is changed (either programmatically or when the user changes settings in the Displays control panel).

Opening Files

– application:openFile: (page 3566)
Tells the delegate to open a single file.

– application:openFileWithoutUI: (page 3567)
Tells the delegate to open a file programmatically.

– application:openTempFile: (page 3567)
Tells the delegate to open a temporary file.

– application:openFiles: (page 3566)
Tells the delegate to open multiple files.

– applicationOpenUntitledFile: (page 3574)
Tells the delegate to open an untitled file.

– applicationShouldOpenUntitledFile: (page 3575)
Invoked immediately before opening an untitled file.

Printing

– application:printFile: (page 3568)
Sent when the user starts up the application on the command line with the -NSPrint option.

– application:printFiles:withSettings:showPrintPanels: (page 3569)
Prints a group of files.

Tasks 3565
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Instance Methods

application:openFile:
Tells the delegate to open a single file.

- (BOOL)application:(NSApplication *)theApplication openFile:(NSString *)filename

Parameters
theApplication

The application object associated with the delegate.

filename
The name of the file to open.

Return Value
YES if the file was successfully opened or NO if it was not.

Discussion
Sent directly by theApplication to the delegate. The method should open the file filename, returning
YES if the file is successfully opened, and NO otherwise. If the user started up the application by double-clicking
a file, the delegate receives the application:openFile: (page 3566) message before receiving
applicationDidFinishLaunching: (page 3571). (applicationWillFinishLaunching: (page 3578) is
sent before application:openFile: (page 3566).)

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– application:openFileWithoutUI: (page 3567)
– application:openTempFile: (page 3567)
– applicationOpenUntitledFile: (page 3574)

Related Sample Code
TextSizingExample

Declared In
NSApplication.h

application:openFiles:
Tells the delegate to open multiple files.

- (void)application:(NSApplication *)sender openFiles:(NSArray *)filenames

Parameters
sender

The application object associated with the delegate.

filenames
An array of NSString objects containing the names of the files to open..

3566 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Discussion
Identical to application:openFile: (page 3566) except that the receiver opens multiple files corresponding
to the file names in the filenames array. Delegates should invoke the replyToOpenOrPrint: (page 161)
method upon success or failure, or when the user cancels the operation.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSApplication.h

application:openFileWithoutUI:
Tells the delegate to open a file programmatically.

- (BOOL)application:(id)sender openFileWithoutUI:(NSString *)filename

Parameters
sender

The object that sent the command.

filename
The name of the file to open.

Return Value
YES if the file was successfully opened or NO if it was not.

Discussion
Sent directly by sender to the delegate to request that the file filename be opened as a linked file. The
method should open the file without bringing up its application’s user interface—that is, work with the file
is under programmatic control of sender, rather than under keyboard control of the user.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– application:openFile: (page 3566)
– application:openTempFile: (page 3567)
– applicationOpenUntitledFile: (page 3574)
– application:printFile: (page 3568)

Declared In
NSApplication.h

application:openTempFile:
Tells the delegate to open a temporary file.

- (BOOL)application:(NSApplication *)theApplication openTempFile:(NSString *)filename

Instance Methods 3567
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Parameters
theApplication

The application object associated with the delegate.

filename
The name of the temporary file to open.

Return Value
YES if the file was successfully opened or NO if it was not.

Discussion
Sent directly by theApplication to the delegate. The method should attempt to open the file filename,
returning YES if the file is successfully opened, and NO otherwise.

By design, a file opened through this method is assumed to be temporary—it’s the application’s responsibility
to remove the file at the appropriate time.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– application:openFile: (page 3566)
– application:openFileWithoutUI: (page 3567)
– applicationOpenUntitledFile: (page 3574)

Declared In
NSApplication.h

application:printFile:
Sent when the user starts up the application on the command line with the -NSPrint option.

- (BOOL)application:(NSApplication *)theApplication printFile:(NSString *)filename

Parameters
theApplication

The application object that is handling the printing.

filename
The name of the file to print.

Return Value
YES if the file was successfully printed or NO if it was not.

Discussion
This message is sent directly by theApplication to the delegate. The application terminates (using the
terminate: (page 176) method) after this method returns.

If at all possible, this method should print the file without displaying the user interface. For example, if you
pass the -NSPrint option to the TextEdit application, TextEdit assumes you want to print the entire contents
of the specified file. However, if the application opens more complex documents, you may want to display
a panel that lets the user choose exactly what they want to print.

3568 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– application:openFileWithoutUI: (page 3567)

Declared In
NSApplication.h

application:printFiles:withSettings:showPrintPanels:
Prints a group of files.

- (NSApplicationPrintReply)application:(NSApplication *)application
printFiles:(NSArray *)fileNames withSettings:(NSDictionary *)printSettings
showPrintPanels:(BOOL)showPrintPanels

Parameters
application

The application object that is handling the printing.

fileNames
An array of NSString objects, each of which contains the name of a file to print.

printSettings
A dictionary containing NSPrintInfo-compatible print job attributes.

showPrintPanels
A Boolean that specifies whether the print panel should be displayed for each file printed. Print
progress indicators will be presented even if this value is NO.

Return Value
A constant indicating whether printing was successful. For a list of possible values, see
“NSApplicationPrintReply” (page 189).

Discussion
Return NSPrintingReplyLater if the result of printing cannot be returned immediately, for example, if
printing will cause the presentation of a sheet. If your method returns NSPrintingReplyLater it must
always invoke the NSApplication method replyToOpenOrPrint: (page 161)] when the entire print
operation has been completed, successfully or not.

This delegate method replaces application:printFiles:, which is now deprecated. If your application
delegate only implements the deprecated method, it is still invoked, and NSApplication uses private
functionality to arrange for the print settings to take effect.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSApplication.h

Instance Methods 3569
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

application:willPresentError:
Sent to the delegate before the specified application presents an error message to the user.

- (NSError *)application:(NSApplication *)application willPresentError:(NSError
*)error

Parameters
application

The application object associated with the delegate.

error
The error object that is used to construct the error message. Your implementation of this method can
return a new NSError object or the same one in this parameter.

Return Value
The error object to display.

Discussion
You can implement this delegate method to customize the presentation of any error presented by your
application, as long as no code in your application overrides either of the NSResponder methods
presentError:modalForWindow:delegate:didPresentSelector:contextInfo:orpresentError:
in a way that prevents errors from being passed down the responder chain to the application object.

Your implementation of this delegate method can examine error and, if its localized description or recovery
information is unhelpfully generic, return an error object with specific localized text that is more suitable for
presentation in alert sheets and dialogs. If you do this, always use the domain and error code of the NSError
object to distinguish between errors whose presentation you want to customize and those you do not. Don’t
make decisions based on the localized description, recovery suggestion, or recovery options because parsing
localized text is problematic. If you decide not to customize the error presentation, just return the passed-in
error object.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSApplication.h

applicationDidBecomeActive:
Sent by the default notification center immediately after the application becomes active.

- (void)applicationDidBecomeActive:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSApplicationDidBecomeActiveNotification (page 193). Calling the
object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

3570 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

See Also
– applicationDidFinishLaunching: (page 3571)
– applicationDidResignActive: (page 3572)
– applicationWillBecomeActive: (page 3577)

Declared In
NSApplication.h

applicationDidChangeScreenParameters:
Sent by the default notification center when the configuration of the displays attached to the computer is
changed (either programmatically or when the user changes settings in the Displays control panel).

- (void)applicationDidChangeScreenParameters:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSApplicationDidChangeScreenParametersNotification (page 194).
Calling the object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSApplication.h

applicationDidFinishLaunching:
Sent by the default notification center after the application has been launched and initialized but before it
has received its first event.

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSApplicationDidFinishLaunchingNotification (page 194). Calling the
object method of this notification returns the NSApplication object itself.

Discussion
Delegates can implement this method to perform further initialization. This method is called after the
application’s main run loop has been started but before it has processed any events. If the application was
launched by the user opening a file, the delegate’s application:openFile: method is called before this
method. If you want to perform initialization before any files are opened, implement the
applicationWillFinishLaunching: (page 3578) method in your delegate, which is called before
application:openFile:.)

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Instance Methods 3571
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

See Also
– finishLaunching (page 147) (NSApplication)
– applicationWillFinishLaunching: (page 3578)
– applicationDidBecomeActive: (page 3570)
– application:openFile: (page 3566)

Declared In
NSApplication.h

applicationDidHide:
Sent by the default notification center immediately after the application is hidden.

- (void)applicationDidHide:(NSNotification *)aNotification

Parameters
aNotification

A notification namedNSApplicationDidHideNotification (page 194). Calling theobjectmethod
of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– applicationWillHide: (page 3578)
– applicationDidHide: (page 3572)
– unhide: (page 177) (NSApplication)

Declared In
NSApplication.h

applicationDidResignActive:
Sent by the default notification center immediately after the application is deactivated.

- (void)applicationDidResignActive:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSApplicationDidResignActiveNotification (page 194). Calling the
object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– applicationDidBecomeActive: (page 3570)
– applicationWillResignActive: (page 3578)

3572 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Declared In
NSApplication.h

applicationDidUnhide:
Sent by the default notification center immediately after the application is made visible.

- (void)applicationDidUnhide:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSApplicationDidUnhideNotification (page 195). Calling the object
method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– applicationDidHide: (page 3572)
– applicationWillUnhide: (page 3579)
– unhide: (page 177) (NSApplication)

Declared In
NSApplication.h

applicationDidUpdate:
Sent by the default notification center immediately after the application object updates its windows.

- (void)applicationDidUpdate:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSApplicationDidUpdateNotification (page 195). Calling the object
method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– applicationWillUpdate: (page 3580)
– updateWindows (page 179) (NSApplication)

Declared In
NSApplication.h

applicationDockMenu:
Allows the delegate to supply a dock menu for the application dynamically.

Instance Methods 3573
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

- (NSMenu *)applicationDockMenu:(NSApplication *)sender

Parameters
sender

The application object associated with the delegate.

Return Value
The menu to display in the dock.

Discussion
You can also connect a menu in Interface Builder to the dockMenu outlet. A third way for your application
to specify a dock menu is to provide an NSMenu in a nib.

If this method returns a menu, this menu takes precedence over the dockMenu in the nib.

The target and action for each menu item are passed to the dock. On selection of the menu item the dock
messages your application, which should invoke [NSApp sendAction:selector to:target from:nil].

To specify an NSMenu in a nib, you add the nib name to the info.plist, using the key AppleDockMenu.
The nib name is specified without an extension. You then create a connection from the file’s owner object
(which by default is NSApplication) to the menu. Connect the menu to the dockMenu outlet of
NSApplication. The menu is in its own nib file so it can be loaded lazily when the dockMenu is requested,
rather than at launch time.

Availability
Available in Mac OS X v10.1 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSApplication.h

applicationOpenUntitledFile:
Tells the delegate to open an untitled file.

- (BOOL)applicationOpenUntitledFile:(NSApplication *)theApplication

Parameters
theApplication

The application object associated with the delegate.

Return Value
YES if the file was successfully opened or NO if it was not.

Discussion
Sent directly by theApplication to the delegate to request that a new, untitled file be opened.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– application:openFile: (page 3566)
– application:openFileWithoutUI: (page 3567)
– application:openTempFile: (page 3567)

3574 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Declared In
NSApplication.h

applicationShouldHandleReopen:hasVisibleWindows:
Sent by the application to the delegate prior to default behavior to reopen (rapp) AppleEvents.

- (BOOL)applicationShouldHandleReopen:(NSApplication *)theApplication
hasVisibleWindows:(BOOL)flag

Parameters
theApplication

The application object.

flag
Indicates whether the NSApplication object found any visible windows in your application. You
can use this value as an indication of whether the application would do anything if you return YES.

Return Value
YES if you want the application to perform its normal tasks or NO if you want the application to do nothing.

Discussion
These events are sent whenever the Finder reactivates an already running application because someone
double-clicked it again or used the dock to activate it.

By default the Application Kit will handle this event by checking whether there are any visible NSWindow
(not NSPanel) objects, and, if there are none, it goes through the standard untitled document creation (the
same as it does if theApplication is launched without any document to open). For most document-based
applications, an untitled document will be created.

The application delegate will also get a chance to respond to the normal untitled document delegate methods.
If you implement this method in your application delegate, it will be called before any of the default behavior
happens. If you return YES, then NSApplication will proceed as normal. If you return NO, then
NSApplicationwill do nothing. So, you can either implement this method with a version that does nothing,
and return NO if you do not want anything to happen at all (not recommended), or you can implement this
method, handle the event yourself in some custom way, and return NO.

Miniaturized windows, windows in the Dock, are considered visible by this method, and cause flag to return
YES, despite the fact that miniaturized windows return NO when sent an isVisible (page 3342) message.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSApplication.h

applicationShouldOpenUntitledFile:
Invoked immediately before opening an untitled file.

- (BOOL)applicationShouldOpenUntitledFile:(NSApplication *)sender

Instance Methods 3575
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Parameters
sender

The application object associated with the delegate.

Return Value
YES if the application should open a new untitled file or NO if it should not.

Discussion
Use this method to decide whether the application should open a new, untitled file. Note that
applicationOpenUntitledFile: (page 3574) is invoked if this method returns YES.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSApplication.h

applicationShouldTerminate:
Sent to notify the delegate that the application is about to terminate.

- (NSApplicationTerminateReply)applicationShouldTerminate:(NSApplication *)sender

Parameters
sender

The application object that is about to be terminated.

Return Value
One of the values defined in NSApplicationTerminateReply (page 189) constants indicating whether the
application should terminate. For compatibility reasons, a return value of NO is equivalent to
NSTerminateCancel (page 189), and a return value of YES is equivalent to NSTerminateNow (page 189).

Discussion
This method is called after the application’s Quit menu item has been selected, or after the terminate: (page
176) method has been called. Generally, you should returnNSTerminateNow (page 189) to allow the termination
to complete, but you can cancel the termination process or delay it somewhat as needed. For example, you
might delay termination to finish processing some critical data but then terminate the application as soon
as you are done by calling the replyToApplicationShouldTerminate: (page 160) method.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– terminate: (page 176) (NSApplication)
– applicationShouldTerminateAfterLastWindowClosed: (page 3577)
– applicationWillTerminate: (page 3579)

Declared In
NSApplication.h

3576 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

applicationShouldTerminateAfterLastWindowClosed:
Invoked when the user closes the last window the application has open.

- (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication
*)theApplication

Parameters
theApplication

The application object whose last window was closed.

Return Value
NO if the application should not be terminated when its last window is closed; otherwise, YES to terminate
the application.

Discussion
The application sends this message to your delegate when the application’s last window is closed. It sends
this message regardless of whether there are still panels open. (A panel in this case is defined as being an
instance of NSPanel or one of its subclasses.)

If your implementation returns NO, control returns to the main event loop and the application is not terminated.
If you return YES, your delegate’s applicationShouldTerminate: method is subsequently invoked to
confirm that the application should be terminated.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– terminate: (page 176)
– applicationShouldTerminate: (page 3576)

Declared In
NSApplication.h

applicationWillBecomeActive:
Sent by the default notification center immediately before the application becomes active.

- (void)applicationWillBecomeActive:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSApplicationWillBecomeActiveNotification (page 195). Calling the
object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– applicationDidBecomeActive: (page 3570)
– applicationWillFinishLaunching: (page 3578)
– applicationWillResignActive: (page 3578)

Instance Methods 3577
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Declared In
NSApplication.h

applicationWillFinishLaunching:
Sent by the default notification center immediately before the application object is initialized.

- (void)applicationWillFinishLaunching:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSApplicationWillFinishLaunchingNotification (page 195). Calling
the object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– applicationDidFinishLaunching: (page 3571)
– applicationWillBecomeActive: (page 3577)
– finishLaunching (page 147) (NSApplication)

Declared In
NSApplication.h

applicationWillHide:
Sent by the default notification center immediately before the application is hidden.

- (void)applicationWillHide:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSApplicationWillHideNotification (page 195). Calling the object
method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– applicationDidHide: (page 3572)
– hide: (page 148) (NSApplication)

Declared In
NSApplication.h

applicationWillResignActive:
Sent by the default notification center immediately before the application is deactivated.

3578 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

- (void)applicationWillResignActive:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSApplicationWillResignActiveNotification (page 196). Calling the
object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– applicationWillBecomeActive: (page 3577)
– applicationDidResignActive: (page 3572)

Declared In
NSApplication.h

applicationWillTerminate:
Sent by the default notification center immediately before the application terminates.

- (void)applicationWillTerminate:(NSNotification *)aNotification

Parameters
aNotification

A notification namedNSApplicationWillTerminateNotification (page 196). Calling theobject
method of this notification returns the NSApplication object itself.

Discussion
Your delegate can use this method to perform any final cleanup before the application terminates.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– applicationShouldTerminate: (page 3576)
– terminate: (page 176) (NSApplication)

Declared In
NSApplication.h

applicationWillUnhide:
Sent by the default notification center immediately after the application is unhidden.

- (void)applicationWillUnhide:(NSNotification *)aNotification

Instance Methods 3579
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Parameters
aNotification

A notification named NSApplicationWillUnhideNotification (page 196). Calling the object
method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– unhide: (page 177) (NSApplication)
– applicationDidUnhide: (page 3573)
– applicationWillHide: (page 3578)

Declared In
NSApplication.h

applicationWillUpdate:
Sent by the default notification center immediately before the application object updates its windows.

- (void)applicationWillUpdate:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSApplicationWillUpdateNotification (page 196). Calling the object
method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– applicationDidUpdate: (page 3573)
– updateWindows (page 179) (NSApplication)

Declared In
NSApplication.h

3580 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 177

NSApplicationDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSBrowser.h

Companion guide Browsers

Related sample code AnimatedTableView

Overview

The NSBrowserDelegate protocol defines the method that a delegate of NSBrowser should implement.

Tasks

Getting Browser Information

– browser:isColumnValid: (page 3589)
Returns whether the contents of the specified column are valid.

– browser:numberOfRowsInColumn: (page 3591)
Returns the number of rows of data in the specified column.

– browser:numberOfChildrenOfItem: (page 3591)
Asks the delegate for the number of children the given item has.

– browser:titleOfColumn: (page 3598)
Asks the delegate for the title to display above the specified column.

Managing Selection Behavior

– browser:shouldTypeSelectForEvent:withCurrentSearchString: (page 3597)
Sent to the delegate to determine whether keyboard-based selection (type select) for a given event
and search string should proceed.

Overview 3581
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

– browser:typeSelectStringForRow:inColumn: (page 3599)
Sent to the delegate to get the keyboard-based selection (type select) string for the specified row
and column.

– browser:nextTypeSelectMatchFromRow:toRow:inColumn:forString: (page 3590)
Sent to the delegate to customize a browser’s keyboard-based selection (type select) behavior.

Managing Selection

– browser:selectCellWithString:inColumn: (page 3593)
Asks the delegate to select the cell with the given title in the specified column.

– browser:selectRow:inColumn: (page 3594)
Asks the delegate to select the cell at the specified row and column location.

– browser:selectionIndexesForProposedSelection:inColumn: (page 3594)
Asks the delegate for a set of indexes to select when the user changes the selection in the browser
with the keyboard or mouse.

Accessing Components

– browser:child:ofItem: (page 3585)
Asks the delegate to return the child of the specified item at the specified index.

– browser:isLeafItem: (page 3589)
Asks the delegate whether the specified item is a leaf item (an item that cannot be expanded).

– browser:shouldEditItem: (page 3595)
Asks the delegate whether the browser may start an editing session for the specified item.

– browser:objectValueForItem: (page 3592)
Returns the object that the specified item uses to draw its contents.

– browser:setObjectValue:forItem: (page 3595)
Sets the object that the specified item uses to draw its contents to the specified object.

– rootItemForBrowser: (page 3603)
Asks the delegate to return the root item of the browser.

– browser:previewViewControllerForLeafItem: (page 3592)
Asks the delegate for a controller that provides a preview column for the specified leaf item.

– browser:headerViewControllerForItem: (page 3587)
Asks the delegate for a controller that provides a header view for the specified column item.

Managing Columns

– browser:createRowsForColumn:inMatrix: (page 3586)
Creates a row in the given matrix for each row of data in the specified column of the browser.

– browser:willDisplayCell:atRow:column: (page 3601)
Gives the delegate the opportunity to modify the specified cell at the given row and column location
before the browser displays it.

3582 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

– browser:didChangeLastColumn:toColumn: (page 3586)
Tells the delegate that the browser’s last column changed.

Scrolling

– browserWillScroll: (page 3603)
Notifies the delegate when the browser will scroll.

– browserDidScroll: (page 3603)
Notifies the delegate when the browser has scrolled.

Dragging

– browser:canDragRowsWithIndexes:inColumn:withEvent: (page 3585)
Sent to the delegate to determine whether the browser can attempt to initiate a drag of the specified
rows for the specified event.

– browser:draggingImageForRowsWithIndexes:inColumn:withEvent:offset: (page 3587)
Sent to the delegate to obtain an image to represent dragged rows during a drag operation on a
browser.

– browser:validateDrop:proposedRow:column:dropOperation: (page 3600)
Sent to the delegate during a dragging session to determine whether a drop should be accepted and
to obtain the drop location. This method is required for a browser to be a drag destination.

– browser:acceptDrop:atRow:column:dropOperation: (page 3584)
Sent to the delegate during a dragging session to determine whether to accept the drop.

– browser:writeRowsWithIndexes:inColumn:toPasteboard: (page 3602)
Determines whether a drag operation can proceed. This method is required for a browser to be a
drag source.

– browser:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithIndexes:inColumn: (page
3589)

Implements file promise drag operations.

Sizing

– browser:shouldSizeColumn:forUserResize:toWidth: (page 3596)
Used to determine a column’s initial size.

– browser:sizeToFitWidthOfColumn: (page 3598)
Returns the ideal width for a column.

– browserColumnConfigurationDidChange: (page 3602)
Used by clients to implement their own column width persistence.

– browser:heightOfRow:inColumn: (page 3588)
Specifies the height of the specified row in the specified column.

Tasks 3583
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Displaying Cell Content

– browser:shouldShowCellExpansionForRow:column: (page 3596)
Invoked to allow the delegate to control cell expansion for a specific row and column.

Instance Methods

browser:acceptDrop:atRow:column:dropOperation:
Sent to the delegate during a dragging session to determine whether to accept the drop.

- (BOOL)browser:(NSBrowser *)browser
acceptDrop:(id <NSDraggingInfo>)info
atRow:(NSInteger)row
column:(NSInteger)column
dropOperation:(NSBrowserDropOperation)dropOperation

Parameters
browser

The browser.

info
The drag session information.

row
The drop row.

column
The drop column.

dropOperation
The drop location relative to row.

Return Value
YES to accept the drop; NO to decline it.

Discussion
This method is required for a browser to be a drag destination. It is invoked after the
browser:validateDrop:proposedRow:column:dropOperation: (page 3600) method allows the drop.

The delegate should incorporate the pasteboard data from the dragging session
(info.draggingPasteboard).

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSBrowser.h

3584 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

browser:canDragRowsWithIndexes:inColumn:withEvent:
Sent to the delegate to determine whether the browser can attempt to initiate a drag of the specified rows
for the specified event.

- (BOOL)browser:(NSBrowser *)browser
canDragRowsWithIndexes:(NSIndexSet *)rowIndexes
inColumn:(NSInteger)column
withEvent:(NSEvent *)event

Parameters
browser

The browser.

rowIndexes
The rows the user is dragging.

column
The column containing the rows the user is dragging.

event
The drag event.

Return Value
YES to allow the drag operation; NO to disallow it.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– canDragRowsWithIndexes:inColumn:withEvent: (page 407) (NSBrowser)

Declared In
NSBrowser.h

browser:child:ofItem:
Asks the delegate to return the child of the specified item at the specified index.

- (id)browser:(NSBrowser *)browser
child:(NSInteger)index
ofItem:(id)item

Parameters
browser

The browser.

index
The child’s index.

item
The item containing the child.

Return Value
The child at the specified index.

Instance Methods 3585
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

browser:createRowsForColumn:inMatrix:
Creates a row in the given matrix for each row of data in the specified column of the browser.

- (void)browser:(NSBrowser *)sender
createRowsForColumn:(NSInteger)column
inMatrix:(NSMatrix *)matrix

Parameters
sender

The browser.

column
The index of the column in which the rows are located.

matrix
The matrix in which the rows are created.

Discussion
Either this method or browser:numberOfRowsInColumn: (page 3591) must be implemented, but not both,
or an NSBrowserIllegalDelegateException will be raised.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– browser:willDisplayCell:atRow:column: (page 3601)

Declared In
NSBrowser.h

browser:didChangeLastColumn:toColumn:
Tells the delegate that the browser’s last column changed.

- (void)browser:(NSBrowser *)browser
didChangeLastColumn:(NSInteger)oldLastColumn
toColumn:(NSInteger)column

Parameters
browser

The browser.

oldLastColumn
The index of the old last column.

column
The index of the new last column.

3586 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

browser:draggingImageForRowsWithIndexes:inColumn:withEvent:offset:
Sent to the delegate to obtain an image to represent dragged rows during a drag operation on a browser.

- (NSImage *)browser:(NSBrowser *)browser
draggingImageForRowsWithIndexes:(NSIndexSet *)rowIndexes
inColumn:(NSInteger)column
withEvent:(NSEvent *)event
offset:(NSPointPointer)dragImageOffset

Parameters
browser

The browser.

rowIndexes
The indexes of the rows the user is dragging.

column
The column containing the rows the user is dragging.

event
The drag event.

dragImageOffset
The offset for the returned image:

 ■ NSZeroPoint: Centers the image under the pointer.

Return Value
An image representing the visible rows identified by rowIndexes.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– draggingImageForRowsWithIndexes:inColumn:withEvent:offset: (page 413) (NSBrowser)

Declared In
NSBrowser.h

browser:headerViewControllerForItem:
Asks the delegate for a controller that provides a header view for the specified column item.

- (NSViewController *)browser:(NSBrowser *)browser
headerViewControllerForItem:(id)item

Instance Methods 3587
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Parameters
browser

The browser.

item
The column item.

Return Value
A view controller that provides a header view, or nil to omit the header view.

Discussion
The returned controller’s represented object will be set to the column item. This method is called only if the
delegate implements the item data source methods.

Availability
Available in Mac OS X v10.6 and later.

See Also
– browser:previewViewControllerForLeafItem: (page 3592)

Declared In
NSBrowser.h

browser:heightOfRow:inColumn:
Specifies the height of the specified row in the specified column.

- (CGFloat)browser:(NSBrowser *)browser
heightOfRow:(NSInteger)row
inColumn:(NSInteger)columnIndex

Parameters
browser

The browser.

row
The index of the row.

columnIndex
The index of the column.

Return Value
The height to set for the specified row, which must be greater than 0.

Discussion
The values returned for this method may be cached. Therefore, you should call
noteHeightOfRowsWithIndexesChanged:inColumn: (page 423) to invalidate a row’s height before
changing it.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

3588 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

browser:isColumnValid:
Returns whether the contents of the specified column are valid.

- (BOOL)browser:(NSBrowser *)sender
isColumnValid:(NSInteger)column

Parameters
sender

The browser containing the column to validate.

column
The index of the column to validate.

Return Value
YES if the column’s contents are valid; otherwise, NO. If NO is returned, sender reloads the column.

Discussion
This method is invoked in response to the validateVisibleColumns (page 451)method of NSBrowser
being sent to sender.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSBrowser.h

browser:isLeafItem:
Asks the delegate whether the specified item is a leaf item (an item that cannot be expanded).

- (BOOL)browser:(NSBrowser *)browser
isLeafItem:(id)item

Parameters
browser

The browser.

item
The item to be checked.

Return Value
YES if the specified item is a leaf item; otherwise, NO.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

browser:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithIndexes:
inColumn:
Implements file promise drag operations.

Instance Methods 3589
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

- (NSArray *)browser:(NSBrowser *)browser
namesOfPromisedFilesDroppedAtDestination:(NSURL *)dropDestination
forDraggedRowsWithIndexes:(NSIndexSet *)rowIndexes
inColumn:(NSInteger)column

Parameters
browser

The browser.

dropDestination
The drop filesystem location.

rowIndexes
The indexes of the rows the user is dropping.

column
The index of the column containing the rows the user is dropping.

Return Value
Filenames (not pathnames) for the actual files represented by the rows the user is dropping.

Discussion
Note that file promise drag operation support requires adding the data type NSFilesPromisePboardType
to the pasteboard in the browser:writeRowsWithIndexes:inColumn:toPasteboard: (page 3602)
method.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– namesOfPromisedFilesDroppedAtDestination: (page 423) (NSBrowser)

Related Sample Code
ZipBrowser

Declared In
NSBrowser.h

browser:nextTypeSelectMatchFromRow:toRow:inColumn:forString:
Sent to the delegate to customize a browser’s keyboard-based selection (type select) behavior.

- (NSInteger)browser:(NSBrowser *)browser
nextTypeSelectMatchFromRow:(NSInteger)startRow
toRow:(NSInteger)endRow
inColumn:(NSInteger)column
forString:(NSString *)searchString

Parameters
browser

The browser.

startRow
The beginning of the row set to search.

3590 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

endRow
The end of the row set to search. This value can be less than startRowIndex when the search wraps
around to the beginning.

column
The column containing the rows being searched.

searchString
The keyboard-based selection string. It is nil when no keyboard-based selection has begun.

Return Value
The index of the first row that matches searchString between startRowIndex and endRowIndex - 1, or
-1 if there is no match.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– browser:shouldTypeSelectForEvent:withCurrentSearchString: (page 3597)
– browser:typeSelectStringForRow:inColumn: (page 3599)

Declared In
NSBrowser.h

browser:numberOfChildrenOfItem:
Asks the delegate for the number of children the given item has.

- (NSInteger)browser:(NSBrowser *)browser
numberOfChildrenOfItem:(id)item

Parameters
browser

The browser.

item
The item that has some number of children.

Return Value
The number of children.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

browser:numberOfRowsInColumn:
Returns the number of rows of data in the specified column.

- (NSInteger)browser:(NSBrowser *)sender
numberOfRowsInColumn:(NSInteger)column

Instance Methods 3591
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Parameters
sender

The browser.

column
The index of the column.

Return Value
The number of rows of data.

Discussion
Either this method or browser:createRowsForColumn:inMatrix: (page 3586) must be implemented, but
not both.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– browser:willDisplayCell:atRow:column: (page 3601)

Declared In
NSBrowser.h

browser:objectValueForItem:
Returns the object that the specified item uses to draw its contents.

- (id)browser:(NSBrowser *)browser
objectValueForItem:(id)item

Parameters
browser

The browser.

item
The item in question.

Return Value
The item’s object.

Availability
Available in Mac OS X v10.6 and later.

See Also
– browser:setObjectValue:forItem: (page 3595)

Declared In
NSBrowser.h

browser:previewViewControllerForLeafItem:
Asks the delegate for a controller that provides a preview column for the specified leaf item.

3592 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

- (NSViewController *)browser:(NSBrowser *)browser
previewViewControllerForLeafItem:(id)item

Parameters
browser

The browser.

item
The leaf item.

Return Value
A view controller that provides a preview column, or nil to suppress the preview column.

Discussion
The returned controller’s represented object is set to the specified leaf item. This method is called only if the
delegate implements the item data source methods.

Availability
Available in Mac OS X v10.6 and later.

See Also
– browser:headerViewControllerForItem: (page 3587)

Declared In
NSBrowser.h

browser:selectCellWithString:inColumn:
Asks the delegate to select the cell with the given title in the specified column.

- (BOOL)browser:(NSBrowser *)sender
selectCellWithString:(NSString *)title
inColumn:(NSInteger)column

Parameters
sender

The browser.

title
The title of the cell to select.

column
The index of the column containing the cell to select.

Return Value
YES if the cell was successfully selected; otherwise, NO.

Discussion
Invoked in response to the setPath: (page 443) method of NSBrowser being received by sender.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– selectedCellInColumn: (page 430) (NSBrowser)

Instance Methods 3593
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Declared In
NSBrowser.h

browser:selectionIndexesForProposedSelection:inColumn:
Asks the delegate for a set of indexes to select when the user changes the selection in the browser with the
keyboard or mouse.

- (NSIndexSet *)browser:(NSBrowser *)browser
selectionIndexesForProposedSelection:(NSIndexSet *)proposedSelectionIndexes
inColumn:(NSInteger)column

Parameters
browser

The browser.

proposedSelectionIndexes
The set of indexes of the items in the proposed selection.

column
The column index of the column containing the selection.

Return Value
The set of indexes of the items that should be selected.

Discussion
This method may be called multiple times, with one new index added to the previous selection, to see
whether a particular index can be selected when the user is extending the selection with the keyboard or
mouse. The proposedSelectionIndexes parameter contains the entire selection, and you can return the
existing selection if you do not want to change it. This method works only for item-based browsers.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

browser:selectRow:inColumn:
Asks the delegate to select the cell at the specified row and column location.

- (BOOL)browser:(NSBrowser *)sender
selectRow:(NSInteger)row
inColumn:(NSInteger)column

Parameters
sender

The browser.

row
The index of the row containing the cell to select.

column
The index of the column containing the cell to select.

3594 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Return Value
YES if the cell was selected; otherwise, NO.

Discussion
Invoked in response to selectRow:inColumn: (page 433) of NSBrowser being received by sender.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– selectedRowInColumn: (page 432) (NSBrowser)
– selectRow:inColumn: (page 433) (NSBrowser)

Declared In
NSBrowser.h

browser:setObjectValue:forItem:
Sets the object that the specified item uses to draw its contents to the specified object.

- (void)browser:(NSBrowser *)browser
setObjectValue:(id)object
forItem:(id)item

Parameters
browser

The browser.

object
The object to set.

item
The item whose object is set.

Availability
Available in Mac OS X v10.6 and later.

See Also
– browser:objectValueForItem: (page 3592)

Declared In
NSBrowser.h

browser:shouldEditItem:
Asks the delegate whether the browser may start an editing session for the specified item.

- (BOOL)browser:(NSBrowser *)browser
shouldEditItem:(id)item

Parameters
browser

The browser.

Instance Methods 3595
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

item
The item to edit.

Return Value
YES to allow the editing session to begin; NO to disallow it.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

browser:shouldShowCellExpansionForRow:column:
Invoked to allow the delegate to control cell expansion for a specific row and column.

- (BOOL)browser:(NSBrowser *)browser
shouldShowCellExpansionForRow:(NSInteger)row
column:(NSInteger)column

Parameters
browser

The browser.

row
The index of the row requesting an expansion tooltip.

column
The index of the column containing the requesting row.

Return Value
YES to allow the cell expansion tooltip; NO to disallow it.

Discussion
Cell expansion can occur when the mouse hovers over the specified cell and the cell contents are unable to
be fully displayed within the cell. If this method returns YES, the full cell contents will be shown in a special
floating tool tip view, otherwise the content is truncated.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSBrowser.h

browser:shouldSizeColumn:forUserResize:toWidth:
Used to determine a column’s initial size.

- (CGFloat)browser:(NSBrowser *)browser
shouldSizeColumn:(NSInteger)columnIndex
forUserResize:(BOOL)forUserResize
toWidth:(CGFloat)suggestedWidth

3596 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Parameters
browser

The browser.

columnIndex
The index of the column to size.

forUserResize
Currently, this is always set to NO.

suggestedWidth
The suggested width for the column.

Return Value
The delegate's desired initial width for a newly added column. If you want to accept the suggested width,
return suggestedWidth. If you return 0 or a size too small to display the resize handle and a portion of the
column, the actual size used will be larger than the size you requested.

Discussion
This method applies only to browsers with resize type NSBrowserNoColumnResizing (page 452) or
NSBrowserUserColumnResizing (page 452) (see NSBrowserColumnResizingType (page 451)).

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– setWidth:ofColumn: (page 448) (NSBrowser)

Declared In
NSBrowser.h

browser:shouldTypeSelectForEvent:withCurrentSearchString:
Sent to the delegate to determine whether keyboard-based selection (type select) for a given event and
search string should proceed.

- (BOOL)browser:(NSBrowser *)browser
shouldTypeSelectForEvent:(NSEvent *)event
withCurrentSearchString:(NSString *)searchString

Parameters
browser

The browser.

event
The keyboard event being processed.

searchString
The keyboard-based selection string. It is nil when no keyboard-based selection has begun.

Return Value
YES to allow the selection; NO to disallow it.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Instance Methods 3597
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

See Also
– allowsTypeSelect (page 405) (NSBrowser)
– browser:nextTypeSelectMatchFromRow:toRow:inColumn:forString: (page 3590)
– browser:typeSelectStringForRow:inColumn: (page 3599)

Declared In
NSBrowser.h

browser:sizeToFitWidthOfColumn:
Returns the ideal width for a column.

- (CGFloat)browser:(NSBrowser *)browser
sizeToFitWidthOfColumn:(NSInteger)columnIndex

Parameters
browser

The browser.

columnIndex
The index of the column to size. If -1, the result is used to resize all columns.

Return Value
The ideal width of the column. This method is used when performing a “right-size” operation, that is, when
sizing a column to the smallest width that contains all the content without clipping or truncating.

If columnIndex is –1, you should return a size that can be uniformly applied to all columns (that is, every
column will be set to this size).

Returning a value of -1 allows you to opt-out of providing a width for the requested column.

Discussion
This method applies only to browsers with resize type NSBrowserUserColumnResizing.

It is assumed that the implementation may be expensive, so it will be called only when necessary.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSBrowser.h

browser:titleOfColumn:
Asks the delegate for the title to display above the specified column.

- (NSString *)browser:(NSBrowser *)sender
titleOfColumn:(NSInteger)column

Parameters
sender

The browser.

3598 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

column
The index the column to be titled.

Return Value
The title of the specified column.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– setTitle:ofColumn: (page 447)
– titleOfColumn: (page 450)

Declared In
NSBrowser.h

browser:typeSelectStringForRow:inColumn:
Sent to the delegate to get the keyboard-based selection (type select) string for the specified row and column.

- (NSString *)browser:(NSBrowser *)browser
typeSelectStringForRow:(NSInteger)row
inColumn:(NSInteger)column

Parameters
browser

The browser.

row
The row index.

column
The column index.

Return Value
The keyboard-based selection string.

Discussion
Returning the empty string or nil (for example, when the cell does not contain text) specifies that the
[column, row] cell has no text to search.

If the delegate does not implement this method, all cells with text are searched, and the browser determines
the keyboard-based selection text by sending stringValue (page 605) to the cell specified by column and
row.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– browser:shouldTypeSelectForEvent:withCurrentSearchString: (page 3597)
– browser:nextTypeSelectMatchFromRow:toRow:inColumn:forString: (page 3590)

Instance Methods 3599
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Declared In
NSBrowser.h

browser:validateDrop:proposedRow:column:dropOperation:
Sent to the delegate during a dragging session to determine whether a drop should be accepted and to
obtain the drop location. This method is required for a browser to be a drag destination.

- (NSDragOperation)browser:(NSBrowser *)browser
validateDrop:(id <NSDraggingInfo>)info
proposedRow:(NSInteger *)row
column:(NSInteger *)column
dropOperation:(NSBrowserDropOperation *)dropOperation

Parameters
browser

The browser.

info
The drag session information.

row
On input, the proposed drop row. On output, the drop row.

column
On input, the proposed drop column. On output, the drop column.

dropOperation
On input, the proposed drop location. On output, the drop location.

Return Value
The drag operation that the data source is to perform. For the browser to accept the drop, it must not be
NSDragOperationNone (page 3666).

Discussion
The browser proposes a drop column, row, and row-relative location for the drop based on the pointer
position, as shown in this table:

DescriptionDrop relative location

Dragging location (dragInfo.draggingLocation) is closer to the
middle of row than to either of its vertical sides.

NSBrowserDropOn (page 452)

Dragging location is between two rows. Indicates a drop location
above row and below row - 1.

NSBrowserDropAbove (page 452)

These are a few examples of how to specify a drop location:

Row-relative locationRow index

NSBrowserDropOn (page 452)2On row 2

NSBrowserDropAbove (page 452)3Between rows 2 and 3

NSBrowserDropAbove (page 452)[sender numberOfRows]Below the last row

3600 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Row-relative locationRow index

NSBrowserDropOn (page 452)-1All rows

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– registerForDraggedTypes: (page 3201) (NSView)

Declared In
NSBrowser.h

browser:willDisplayCell:atRow:column:
Gives the delegate the opportunity to modify the specified cell at the given row and column location before
the browser displays it.

- (void)browser:(NSBrowser *)sender
willDisplayCell:(id)cell
atRow:(NSInteger)row
column:(NSInteger)column

Parameters
sender

The browser.

cell
The cell to be displayed.

row
The row index of the cell to be displayed.

column
The column index of the cell to be displayed.

Discussion
The delegate should set any state necessary for the correct display of the cell.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– browser:createRowsForColumn:inMatrix: (page 3586)
– browser:numberOfRowsInColumn: (page 3591)

Declared In
NSBrowser.h

Instance Methods 3601
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

browser:writeRowsWithIndexes:inColumn:toPasteboard:
Determines whether a drag operation can proceed. This method is required for a browser to be a drag source.

- (BOOL)browser:(NSBrowser *)browser
writeRowsWithIndexes:(NSIndexSet *)rowIndexes
inColumn:(NSInteger)column
toPasteboard:(NSPasteboard *)pasteboard

Parameters
browser

The browser.

rowIndexes
The indexes of the rows the user is dragging.

column
The index of the column containing the dragged rows.

pasteboard
The pasteboard containing the content from the dragged rows.

Return Value
YES to allow the dragging operation to proceed (see discussion for further details); NO to disallow it.

Discussion
This method is called after a drag operation has been allowed to start
(browser:canDragRowsWithIndexes:inColumn:withEvent: (page 3585) returns YES), but before it
actually begins.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSBrowser.h

browserColumnConfigurationDidChange:
Used by clients to implement their own column width persistence.

- (void)browserColumnConfigurationDidChange:(NSNotification *)notification

Parameters
notification

A notification named NSBrowserColumnConfigurationDidChangeNotification (page 453).

Discussion
This method applies only to browsers with resize type NSBrowserUserColumnResizing (page 452). It is
invoked when the setWidth:ofColumn: (page 448) method of NSBrowser is used to change the width of
any browser columns or when the user resizes any columns. If the user resizes more than one column, a
single notification is posted when the user is finished resizing.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

3602 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

See Also
– setWidth:ofColumn: (page 448) (NSBrowser)

Declared In
NSBrowser.h

browserDidScroll:
Notifies the delegate when the browser has scrolled.

- (void)browserDidScroll:(NSBrowser *)sender

Parameters
sender

The browser sending the message.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSBrowser.h

browserWillScroll:
Notifies the delegate when the browser will scroll.

- (void)browserWillScroll:(NSBrowser *)sender

Parameters
sender

The browser sending the message.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSBrowser.h

rootItemForBrowser:
Asks the delegate to return the root item of the browser.

- (id)rootItemForBrowser:(NSBrowser *)browser

Parameters
browser

The browser.

Return Value
The browser’s root item.

Instance Methods 3603
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Discussion
By default, nil identifies the root item. This method can specify a different root item. To reload the previously
set root item, call loadColumnZero (page 421), and rootItemForBrowser: will be called again.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSBrowser.h

3604 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 178

NSBrowserDelegate Protocol Reference

Adopted by NSText

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSSpellProtocol.h

Companion guide Spell Checking

Overview

This protocol is implemented by objects in the responder chain that can correct a misspelled word. See the
NSSpellChecker class description for more information.

Tasks

Changing Spellings

– changeSpelling: (page 3605) required method
Replaces the selected word in the receiver with a corrected version from the Spelling panel. (required)

Instance Methods

changeSpelling:
Replaces the selected word in the receiver with a corrected version from the Spelling panel. (required)

- (void)changeSpelling:(id)sender

Discussion
This message is sent by the NSSpellChecker to the object whose text is being checked. To get the corrected
spelling, ask sender for the string value of its selected cell (visible to the user as the text field in the Spelling
panel). This method should replace the selected portion of the text with the string that it gets from the
NSSpellChecker.

Overview 3605
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 179

NSChangeSpelling Protocol Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellProtocol.h

3606 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 179

NSChangeSpelling Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSCollectionView.h

Related sample code IconCollection

Overview

The NSCollectionViewDelegate protocol defines the optional methods implemented by delegates of
NSCollectionView objects.

The NSCollectionViewDelegate provides support for both drag and drop, and pasteboard support to
collection views.

Tasks

Drag and Drop Support

– collectionView:canDragItemsAtIndexes:withEvent: (page 3608)
Returns whether the collection view can attempt to initiate a drag for the given event and items.

– collectionView:validateDrop:proposedIndex:dropOperation: (page 3610)
Invoked to determine a valid drop target.

– collectionView:acceptDrop:index:dropOperation: (page 3608)
Invoked when the mouse is released over a collection view that previously allowed a drop.

– collectionView:draggingImageForItemsAtIndexes:withEvent:offset: (page 3609)
Sent to the delegate to allow creation of a custom image to represent collection view items during
a drag operation.

– collectionView:namesOfPromisedFilesDroppedAtDestination:forDraggedItemsAtIndexes: (page
3610)

Invoked to return an array of filenames that the receiver promises to create.

Overview 3607
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 180

NSCollectionViewDelegate Protocol Reference

Writing to the Pasteboard

– collectionView:writeItemsAtIndexes:toPasteboard: (page 3611)
Invoked after it has been determined that a drag should begin, but before the drag has been started.

Instance Methods

collectionView:acceptDrop:index:dropOperation:
Invoked when the mouse is released over a collection view that previously allowed a drop.

- (BOOL)collectionView:(NSCollectionView *)collectionView acceptDrop:(id <
NSDraggingInfo >)draggingInfo index:(NSInteger)index
dropOperation:(NSCollectionViewDropOperation)dropOperation

Parameters
collectionView

The collection view that send the message.

draggingInfo
An object that contains more information about this dragging operation.

index
The index of the proposed drop item.

dropOperation
The type of dragging operation.

Return Value
YES if the drop operation should be accepted, otherwise NO.

Discussion
This method is called when the mouse is released over a collection view that previously decied to allow a
drop via the collectionView:validateDrop:proposedIndex:dropOperation: (page 3610) method.
At this time, the delegate should incorporate the data from the dragging pasteboard and update the collection
view's contents.

You must implement this method for your collection view to be a drag destination

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

collectionView:canDragItemsAtIndexes:withEvent:
Returns whether the collection view can attempt to initiate a drag for the given event and items.

- (BOOL)collectionView:(NSCollectionView *)collectionView
canDragItemsAtIndexes:(NSIndexSet *)indexes withEvent:(NSEvent *)event

3608 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 180

NSCollectionViewDelegate Protocol Reference

Parameters
collectionView

The collection view that send the message.

indexes
The indexes of the proposed dragging items.

event
The mouse down event that initiated the drag.

Return Value
YES if the items can attempt to initiate a drag for the specified items, otherwise NO.

Discussion
If the delegate does not implement this method, the collection view will act as if it returned YES.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

collectionView:draggingImageForItemsAtIndexes:withEvent:offset:
Sent to the delegate to allow creation of a custom image to represent collection view items during a drag
operation.

- (NSImage *)collectionView:(NSCollectionView *)collectionView
draggingImageForItemsAtIndexes:(NSIndexSet *)indexes withEvent:(NSEvent *)event
offset:(NSPointPointer)dragImageOffset

Parameters
collectionView

The collection view that send the message.

indexes
The indexes of the dragging items.

event
The mouse down event that initiated the drag.

dragImageOffset
An in/out parameter that will initially be set to NSZeroPoint. it can be modified to reposition the
returned image. A dragImageOffset of NSZeroPoint will cause the image to be centered under
the mouse.

Return Value
An image containing a rendering of the visible portions of the views for each item.

Discussion
If the delegate does not implement this method, the collection view with return an image using
draggingImageForItemsAtIndexes:withEvent:offset: (page 645). You can safely invoked
draggingImageForItemsAtIndexes:withEvent:offset: (page 645) on collectionView from within
this method.

You do not need to implement this method for your collection view to be a drag source.

Instance Methods 3609
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 180

NSCollectionViewDelegate Protocol Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

collectionView:namesOfPromisedFilesDroppedAtDestination:
forDraggedItemsAtIndexes:
Invoked to return an array of filenames that the receiver promises to create.

- (NSArray *)collectionView:(NSCollectionView *)collectionView
namesOfPromisedFilesDroppedAtDestination:(NSURL *)dropURL
forDraggedItemsAtIndexes:(NSIndexSet *)indexes

Parameters
collectionView

The collection view that send the message.

dropURL
The drop location where the files are created.

indexes
The indexes of the dragging items.

Return Value
An array of filenames (not full paths) for the created files that the receiver promises to create.

Discussion
The delegate can support file promise drags by adding NSFilesPromisePboardType to the pasteboard in
collectionView:writeItemsAtIndexes:toPasteboard: (page 3611).

For more information on file promise dragging, see documentation for the NSDraggingSource protocol
and namesOfPromisedFilesDroppedAtDestination: (page 3663).

You do not need to implement this delegate method for your collection view to be a drag source.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

collectionView:validateDrop:proposedIndex:dropOperation:
Invoked to determine a valid drop target.

- (NSDragOperation)collectionView:(NSCollectionView *)collectionView validateDrop:(id
 < NSDraggingInfo >)draggingInfo proposedIndex:(NSInteger *)proposedDropIndex
dropOperation:(NSCollectionViewDropOperation *)proposedDropOperation

Parameters
collectionView

The collection view that send the message.

3610 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 180

NSCollectionViewDelegate Protocol Reference

draggingInfo
An object containing details about this dragging operation.

proposedDropIndex
The proposed drop index. This parameter is passed by-reference and can be modified retarget the
drop operation.

proposedDropOperation
The proposed drop operation. This parameter is passed by-reference and can be modified to change
the drop operation.

Return Value
A value that indicates which dragging operation the data source will perform. It must return something other
than NSDragOperationNone (page 3666) to accept the drop

Discussion
Based on the mouse position, the collection view will suggest a proposed index and drop operation. These
values are in/out parameters and can be changed by the delegate to retarget the drop operation.

The collection view will propose NSCollectionViewDropOn when the dragging location is closer to the
middle of the item than either of its edges. Otherwise, it will propose NSCollectionViewDropBefore. You
may override this default behavior by changing proposedDropOperation or proposedDropIndex.

To receive drag messages, you must first send registerForDraggedTypes: (page 3201) to the collection
view with the drag types you want to support.

You must implement this method for your collection view to be a drag destination.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

collectionView:writeItemsAtIndexes:toPasteboard:
Invoked after it has been determined that a drag should begin, but before the drag has been started.

- (BOOL)collectionView:(NSCollectionView *)collectionView
writeItemsAtIndexes:(NSIndexSet *)indexes toPasteboard:(NSPasteboard *)pasteboard

Parameters
collectionView

The collection view that send the message.

indexes
The indexes of the items to write to the pasteboard.

pasteboard
The pasteboard containing the content from the dragged items.

Return Value
YES to begin the drag, otherwise NO.

Instance Methods 3611
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 180

NSCollectionViewDelegate Protocol Reference

Discussion
To start the drag, you must first declare the pasteboard types that are supported by sending pasteboard
a declareTypes:owner: (page 1893) method. You then place the data for the items at the specified indexes
on pasteboard, and return YES from the method.

The drag image and other drag related information will be set up and provided by the view once this call
returns YES.

You need to implement this method for your collection view to be a drag source.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSCollectionView.h

3612 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 180

NSCollectionViewDelegate Protocol Reference

Adopted by NSColorPicker

Conforms to NSColorPickingDefault

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSColorPicking.h

Companion guide Color Programming Topics

Related sample code RadiantColorPicker

Overview

Together with the NSColorPickingDefault protocol, NSColorPickingCustom provides a way to add
color pickers—custom user interfaces for color selection—to an application’s NSColorPanel instance. The
NSColorPickingDefault protocol provides basic behavior for a color picker. The NSColorPicker class
adopts the NSColorPickingDefault protocol.

Note: This protocol must be implemented by a custom picker, or an error will occur.

Tasks

Configuring Color Pickers

– setColor: (page 3615) required method
Adjusts the receiver to make the specified color the currently selected color. (required)

Getting Color Picker Information

– currentMode (page 3614) required method
Returns the receiver’s current mode (or submode, if applicable). (required)

Overview 3613
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 181

NSColorPickingCustom Protocol Reference

– supportsMode: (page 3615) required method
Returns a Boolean value indicating whether or not the receiver supports the specified picking mode.
(required)

Displaying Color Pickers

– provideNewView: (page 3614) required method
Returns the view containing the receiver’s user interface. (required)

Instance Methods

currentMode
Returns the receiver’s current mode (or submode, if applicable). (required)

- (NSColorPanelMode)currentMode

Return Value
The current color picker mode. The returned value should be unique to your color picker. See this protocol
description’s list of the unique values for the standard color pickers used by the Application Kit.

Availability
Available in Mac OS X v10.0 and later.

See Also
– supportsMode: (page 3615)

Related Sample Code
RadiantColorPicker

Declared In
NSColorPicking.h

provideNewView:
Returns the view containing the receiver’s user interface. (required)

- (NSView *)provideNewView:(BOOL)initialRequest

Parameters
initialRequest

YES only when this method is first invoked for your color picker. If initialRequest is YES, the
method should perform any initialization required (such as lazily loading a nib file, initializing the
view, or performing any other custom initialization required for your picker).

Return Value
The view containing the color picker's user interface. The NSView returned by this method should be set to
automatically resize both its width and height.

3614 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 181

NSColorPickingCustom Protocol Reference

Discussion
This message is sent to the color picker whenever the color panel attempts to display it. This may be when
the panel is first presented, when the user switches pickers, or when the picker is switched through an API.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPicking.h

setColor:
Adjusts the receiver to make the specified color the currently selected color. (required)

- (void)setColor:(NSColor *)color

Parameters
color

The color to set as the currently selected color.

Discussion
This method is invoked on the current color picker each time NSColorPanel’s setColor: (page 733) method
is invoked. If color is actually different from the color picker’s color (as it would be if, for example, the user
dragged a color into NSColorPanel’s color well), this method could be used to update the color picker’s
color to reflect the change.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPicking.h

supportsMode:
Returns a Boolean value indicating whether or not the receiver supports the specified picking mode. (required)

- (BOOL)supportsMode:(NSColorPanelMode)mode

Parameters
mode

The color picking mode.

Return Value
YES if the color picker supports the specified color picking mode; otherwise NO.

Discussion
This method is invoked when the NSColorPanel is first initialized: It is used to attempt to restore the user’s
previously selected mode. It is also invoked by NSColorPanel's setMode: (page 734) method to find the
color picker that supports a particular mode. See this protocol description’s list of the unique mode values
for the standard color pickers used by the Application Kit.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3615
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 181

NSColorPickingCustom Protocol Reference

See Also
– currentMode (page 3614)

Declared In
NSColorPicking.h

3616 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 181

NSColorPickingCustom Protocol Reference

Adopted by NSColorPicker

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSColorPicking.h

Companion guide Color Programming Topics

Overview

The NSColorPickingDefault protocol, together with the NSColorPickingCustom protocol, provides
an interface for adding color pickers—custom user interfaces for color selection—to an application’s
NSColorPanel instance. The NSColorPickingDefault protocol provides basic behavior for a color picker.
The NSColorPickingCustom protocol provides implementation-specific behavior.

Tasks

Creating Color Pickers

– initWithPickerMask:colorPanel: (page 3620)
Initializes the receiver with a given color panel and its mode.

Configuring Color Pickers

– setMode: (page 3622)
Specifies the receiver’s mode.

– insertNewButtonImage:in: (page 3621)
Sets the image of a given button cell.

– provideNewButtonImage (page 3621)
Provides the image of the button used to select the receiver in the color panel.

– minContentSize (page 3621)
Indicates the receiver’s minimum content size.

Overview 3617
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 182

NSColorPickingDefault Protocol Reference

– buttonToolTip (page 3619)
Provides the toolbar button help tag.

Handling Events

– alphaControlAddedOrRemoved: (page 3618)
Sent when the color panel's opacity controls have been hidden or displayed.

– viewSizeChanged: (page 3622)
Tells the recever when the color panel's view size changes in a way that might affect the color picker.

Managing Color Lists

– attachColorList: (page 3618)
Tells the receiver to attach the given color list, if it isn’t already displaying the list.

– detachColorList: (page 3619)
Tells the receiver to detach the given color list, unless the receiver isn’t displaying the list.

Instance Methods

alphaControlAddedOrRemoved:
Sent when the color panel's opacity controls have been hidden or displayed.

- (void)alphaControlAddedOrRemoved:(id)sender

Parameters
sender

The color panel sending the message.

Discussion
This method is invoked automatically when the opacity slider of the NSColorPanel is added or removed;
you never invoke this method directly.

If the color picker has its own opacity controls, it should hide or display them, depending on whether the
sender’s showsAlpha (page 736) method returns NO or YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPicking.h

attachColorList:
Tells the receiver to attach the given color list, if it isn’t already displaying the list.

- (void)attachColorList:(NSColorList *)colorList

3618 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 182

NSColorPickingDefault Protocol Reference

Parameters
colorList

The color list to display.

Discussion
You never invoke this method; it’s invoked automatically by the NSColorPanel object when its
attachColorList: (page 730) method is invoked. Because the NSColorPanel list mode manages
NSColorList objects, this method need only be implemented by a custom color picker that manages
NSColorList objects itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
– detachColorList: (page 3619)

Declared In
NSColorPicking.h

buttonToolTip
Provides the toolbar button help tag.

- (NSString *)buttonToolTip

Return Value
Help tag text.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSColorPicking.h

detachColorList:
Tells the receiver to detach the given color list, unless the receiver isn’t displaying the list.

- (void)detachColorList:(NSColorList *)colorList

Parameters
colorList

The color list to detach.

Discussion
You never invoke this method; it’s invoked automatically by the NSColorPanel object when its
detachColorList: (page 731) method is invoked. Because the NSColorPanel list mode manages
NSColorList objects, this method need only be implemented by a custom color picker that manages
NSColorList objects itself.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3619
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 182

NSColorPickingDefault Protocol Reference

See Also
– attachColorList: (page 3618)

Declared In
NSColorPicking.h

initWithPickerMask:colorPanel:
Initializes the receiver with a given color panel and its mode.

- (id)initWithPickerMask:(NSUInteger)panelModes colorPanel:(NSColorPanel
*)owningColorPanel

Parameters
panelModes

A mask indicating the various color picker modes supported by the color panel. This is determined
by the argument to the NSColorPanel method setPickerMask: (page 728). If it has not been set,
panelModes is NSColorPanelAllModesMask. If your color picker supports any additional modes,
you should invoke the setPickerMask: (page 728) method when your application initializes to notify
the NSColorPanel class. The standard mode constants are defined in “Choosing the Color Pickers
in a Color Panel”.

owningColorPanel
The color panel than owns the receiver.

Return Value
If your color picker responds to any of the modes represented in panelModes, it should perform its initialization
and return an initialized color picker. Color pickers that do so have their buttons inserted in the color panel
and continue to receive messages from the panel as the user manipulates it. If the color picker doesn’t respond
to any of the modes represented in panelModes, it should do nothing and return nil.

Discussion
This method is sent by the NSColorPanel to all implementors of the color-picking protocols when the
application’s color panel is first initialized. In order for your color picker to receive this message, it must have
a bundle in your application’s “ColorPickers” directory (described in “Color Picker Bundles”).

This method should examine the mask and determine whether it supports any of the modes included there.
You may also check the value in mask to enable or disable any subpickers or optional controls implemented
by your color picker. Your color picker may also retain owningColorPanel in an instance variable for future
communication with the color panel.

This method is provided to initialize your color picker; however, much of a color picker’s initialization may
be done lazily through the NSColorPickingCustom protocol’s provideNewView: (page 3614) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setPickerMask: (page 728) (NSColorPanel class)

Declared In
NSColorPicking.h

3620 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 182

NSColorPickingDefault Protocol Reference

insertNewButtonImage:in:
Sets the image of a given button cell.

- (void)insertNewButtonImage:(NSImage *)newButtonImage in:(NSButtonCell *)buttonCell

Parameters
newButtonImage

The image to set for the button cell.

buttonCell
The NSButtonCell object that lets the user choose the picker from the color panel—the color picker’s
representation in the NSMatrix of the NSColorPanel.

Discussion
This method should perform application-specific manipulation of the image before it’s inserted and displayed
by the button cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
– provideNewButtonImage (page 3621)

Declared In
NSColorPicking.h

minContentSize
Indicates the receiver’s minimum content size.

- (NSSize)minContentSize

Discussion
The receiver does not allow a size smaller than minContentSize.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSColorPicking.h

provideNewButtonImage
Provides the image of the button used to select the receiver in the color panel.

- (NSImage *)provideNewButtonImage

Return Value
The image for the mode button the user uses to select this picker in the color panel; that is, the color picker's
representation in the NSMatrix of the NSColorPanel.

This image is the same one the color panel uses as an argument when sending the
insertNewButtonImage:in: (page 3621) message.

Instance Methods 3621
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 182

NSColorPickingDefault Protocol Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPicking.h

setMode:
Specifies the receiver’s mode.

- (void)setMode:(NSColorPanelMode)mode

Parameters
mode

The color picker mode. The available modes are described in “Choosing the Color Pickers in a Color
Panel”.

Discussion
This method is invoked by the NSColorPanel method setMode: (page 734) method to ensure the color
picker reflects the current mode. For example, invoke this method during color picker initialization to ensure
that all color pickers are restored to the mode the user left them in the last time an NSColorPanelwas used.

Most color pickers have only one mode and thus don’t need to do any work in this method. An example of
a color picker that uses this method is the slider picker, which can choose from one of several submodes
depending on the value of mode.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPicking.h

viewSizeChanged:
Tells the recever when the color panel's view size changes in a way that might affect the color picker.

- (void)viewSizeChanged:(id)sender

Parameters
sender

The NSColorPanel that contains the color picker.

Discussion
Use this method to perform special preparation when resizing the color picker’s view. Because this method
is invoked only as appropriate, it’s better to implement this method than to override the method
superviewSizeChanged: for the NSView in which the color picker’s user interface is contained.

Availability
Available in Mac OS X v10.0 and later.

See Also
– provideNewView: (page 3614) (NSColorPickingCustom protocol)

3622 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 182

NSColorPickingDefault Protocol Reference

Declared In
NSColorPicking.h

Instance Methods 3623
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 182

NSColorPickingDefault Protocol Reference

3624 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 182

NSColorPickingDefault Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSComboBoxCell.h

Companion guide Combo Box Programming Topics

Overview

The NSComboBoxCellDataSource protocol declares the methods that an NSComboBoxCell uses to access
the contents of its data source object.

For more information, see Combo Box Programming Topics.

Tasks

Populating Combo Boxes

– comboBoxCell:objectValueForItemAtIndex: (page 3627)
Returns the object that corresponds to the item at the given index in the combo box cell.

– numberOfItemsInComboBoxCell: (page 3627)
Returns the number of items managed for the combo box cell by your data source object.

Entry Completion

– comboBoxCell:completedString: (page 3626)
Returns the item from the combo box's pop-up list that matches the text entered by the user.

– comboBoxCell:indexOfItemWithStringValue: (page 3626)
Invoked by an NSComboBoxCell object to synchronize the pop-up list’s selected item with the text
field’s contents.

Overview 3625
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 183

NSComboBoxCellDataSource Protocol
Reference

Instance Methods

comboBoxCell:completedString:
Returns the item from the combo box's pop-up list that matches the text entered by the user.

- (NSString *)comboBoxCell:(NSComboBoxCell *)aComboBoxCell completedString:(NSString
 *)uncompletedString

Parameters
aComboBoxCell

The combo box cell.

uncompletedString
The substring containing the text the user typed into the text field of the combo box cell.

Return Value
The completed string, from the items in the pop-up list, that matches the text entered by the user. Your
implementation should return the first complete string that starts with uncompletedString.

Discussion
An NSComboBoxCell object uses this method to perform incremental—or “smart”—searches when the user
types into the text field.

As the user types in the text field, the receiver uses this method to search for items from the pop-up list that
start with what the user has typed. The receiver adds the new text to the end of the field and selects the new
text, so when the user types another character, it replaces the new text.

If you don’t implement this method, the receiver does not perform incremental searches.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBoxCell.h

comboBoxCell:indexOfItemWithStringValue:
Invoked by an NSComboBoxCell object to synchronize the pop-up list’s selected item with the text field’s
contents.

- (NSUInteger)comboBoxCell:(NSComboBoxCell *)aComboBoxCell
indexOfItemWithStringValue:(NSString *)aString

Parameters
aComboBoxCell

The combo box cell.

aString
The string to match. If comboBoxCell:completedString: (page 3626) is implemented, aString is
the string returned by that method. Otherwise, aString is the text that the user has typed.

3626 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 183

NSComboBoxCellDataSource Protocol Reference

Return Value
The index for the pop-up list item matching aString, or NSNotFound if no item matches.

Discussion
If you don’t implement this method, the receiver does not synchronize the pop-up list’s selected item with
the text field’s contents.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBoxCell.h

comboBoxCell:objectValueForItemAtIndex:
Returns the object that corresponds to the item at the given index in the combo box cell.

- (id)comboBoxCell:(NSComboBoxCell *)aComboBoxCell
objectValueForItemAtIndex:(NSInteger)index

Parameters
aComboBoxCell

The combo box cell for which to return the item.

index
The index of the item to return.

Return Value
The object corresponding to the item at the specified index in the given combo box cell.

Discussion
An NSComboBoxCell object uses this method to populate the items displayed in its pop-up list.

Important: While this method is marked as @optional in the protocol, you must implement this method
if you are not providing the data for the combo box using using Cocoa bindings.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBoxCell.h

numberOfItemsInComboBoxCell:
Returns the number of items managed for the combo box cell by your data source object.

- (NSInteger)numberOfItemsInComboBoxCell:(NSComboBoxCell *)aComboBoxCell

Instance Methods 3627
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 183

NSComboBoxCellDataSource Protocol Reference

Parameters
aComboBoxCell

The combo box cell for which your data source manages items.

Return Value
The number of items your data source object manages.

Discussion
An NSComboBoxCell object uses this method to determine how many items it should display in its pop-up
list.

Important: While this method is marked as @optional in the protocol, you must implement this method
if you are not providing the data for the combo box using using Cocoa bindings.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBoxCell.h

3628 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 183

NSComboBoxCellDataSource Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSComboBox.h

Companion guide Combo Box Programming Topics

Overview

The NSComboBoxDataSource informal protocol declares the methods that an NSComboBox object uses to
access the contents of its data source object.

For more information, see Combo Box Programming Topics.

Tasks

Populating Combo Boxes

– comboBox:objectValueForItemAtIndex: (page 3631)
Returns the object that corresponds to the item at the specified index in the combo box.

– numberOfItemsInComboBox: (page 3631)
Returns the number of items that the data source manages for the combo box.

String Completion

– comboBox:completedString: (page 3630)
Returns the first item from the pop-up list that starts with the text the user has typed.

– comboBox:indexOfItemWithStringValue: (page 3630)
Returns the index of the combo box item matching the specified string.

Overview 3629
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 184

NSComboBoxDataSource Protocol Reference

Instance Methods

comboBox:completedString:
Returns the first item from the pop-up list that starts with the text the user has typed.

- (NSString *)comboBox:(NSComboBox *)aComboBox completedString:(NSString
*)uncompletedString

Parameters
aComboBox

The combo box.

uncompletedString
The string to match against items in the combo box's pop-up list. This is text that the user has typed.

Return Value
The first complete string from the items in the combo box's pop-up list that starts with the string in
uncompletedString.

Discussion
An NSComboBox object uses this method to perform incremental—or “smart”—searches when the user types
into the text field. As the user types in the text field, the receiver uses this method to search for items from
the pop-up list that start with what the user has typed. The receiver adds the new text to the end of the field
and selects the new text, so when the user types another character, it replaces the new text.

This method is optional. If you don’t implement it, the receiver does not perform incremental searches.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBox.h

comboBox:indexOfItemWithStringValue:
Returns the index of the combo box item matching the specified string.

- (NSUInteger)comboBox:(NSComboBox *)aComboBox indexOfItemWithStringValue:(NSString
 *)aString

Parameters
aComboBox

The combo box.

aString
The string to match against the items in the combo box. If the datasource
implementscomboBox:completedString: (page 3630), this is the string returned by that method.
Otherwise, it is the text that the user has typed.

Return Value
The index for the item that matches the specified string, or NSNotFound if no item matches.

3630 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 184

NSComboBoxDataSource Protocol Reference

Discussion
An NSComboBox object uses this method to synchronize the pop-up list’s selected item with the text field’s
contents. If you don’t implement this method the receiver does not synchronize the pop-up list’s selected
item with the text field’s contents.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBox.h

comboBox:objectValueForItemAtIndex:
Returns the object that corresponds to the item at the specified index in the combo box.

- (id)comboBox:(NSComboBox *)aComboBox objectValueForItemAtIndex:(NSInteger)index

Parameters
aComboBox

The combo box.

index
The index of the item to return.

Return Value
The object corresponding to the specified index number.

Discussion
An NSComboBox object uses this method to populate the items displayed in its pop-up list.

Important: While this method is marked as @optional in the protocol, you must implement this method
if you are not providing the data for the combo box using Cocoa bindings.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBox.h

numberOfItemsInComboBox:
Returns the number of items that the data source manages for the combo box.

- (NSInteger)numberOfItemsInComboBox:(NSComboBox *)aComboBox

Parameters
aComboBox

The combo box.

Return Value
The number of items that the data source object manages for the specified combo box.

Instance Methods 3631
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 184

NSComboBoxDataSource Protocol Reference

Discussion
An NSComboBox object uses this method to determine how many items it should display in its pop-up list.

Important: While this method is marked as @optional in the protocol, you must implement this method
if you are not providing the data for the combo box using Cocoa bindings.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBox.h

3632 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 184

NSComboBoxDataSource Protocol Reference

Conforms to NSTextFieldDelegate

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSComboBox.h

Companion guide Combo Box Programming Topics

Overview

The NSComboBoxDelegateprotocol defines the optional methods implemented by delegates of NSComboBox
objects.

Tasks

Manipulating the Selection

– comboBoxSelectionDidChange: (page 3633)
Informs the delegate that the pop-up list selection has finished changing.

– comboBoxSelectionIsChanging: (page 3634)
Informs the delegate that the pop-up list selection is changing.

– comboBoxWillDismiss: (page 3634)
Informs the delegate that the pop-up list is about to be dismissed.

– comboBoxWillPopUp: (page 3634)
Informs the delegate that the pop-up list is about to be displayed.

Instance Methods

comboBoxSelectionDidChange:
Informs the delegate that the pop-up list selection has finished changing.

Overview 3633
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 185

NSComboBoxDelegate Protocol Reference

- (void)comboBoxSelectionDidChange:(NSNotification *)notification

Parameters
notification

A notification named NSComboBoxSelectionDidChangeNotification (page 786).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBox.h

comboBoxSelectionIsChanging:
Informs the delegate that the pop-up list selection is changing.

- (void)comboBoxSelectionIsChanging:(NSNotification *)notification

Parameters
notification

A notification named NSComboBoxSelectionIsChangingNotification (page 786).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBox.h

comboBoxWillDismiss:
Informs the delegate that the pop-up list is about to be dismissed.

- (void)comboBoxWillDismiss:(NSNotification *)notification

Parameters
notification

A notification named NSComboBoxWillDismissNotification (page 786).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBox.h

comboBoxWillPopUp:
Informs the delegate that the pop-up list is about to be displayed.

- (void)comboBoxWillPopUp:(NSNotification *)notification

3634 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 185

NSComboBoxDelegate Protocol Reference

Parameters
notification

A notification named NSComboBoxWillPopUpNotification (page 787).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSComboBox.h

Instance Methods 3635
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 185

NSComboBoxDelegate Protocol Reference

3636 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 185

NSComboBoxDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSControl.h

Companion guide Control and Cell Programming Topics for Cocoa

Related sample code CoreAnimationText

Overview

The NSControlTextEditingDelegate protocol defines the optional methods implemented by delegates
of objects that are subclasses of NSControl.

Tasks

Validating a Control’s Value

– control:isValidObject: (page 3639)
Invoked when the insertion point leaves a cell belonging to the specified control, but before the value
of the cell’s object is displayed.

– control:didFailToValidatePartialString:errorDescription: (page 3639)
Invoked when the formatter for the cell belonging to control (or selected cell) rejects a partial string
a user is typing into the cell.

Responding to Text Formatting

– control:didFailToFormatString:errorDescription: (page 3638)
Invoked when the formatter for the cell belonging to the specified control cannot convert a string to
an underlying object.

Overview 3637
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 186

NSControlTextEditingDelegate Protocol
Reference

Responding to Text Editing

– control:textShouldBeginEditing: (page 3640)
Invoked when the user tries to enter a character in a cell of a control that allows editing of text (such
as a text field or form field).

– control:textShouldEndEditing: (page 3640)
Invoked when the insertion point tries to leave a cell of the control that has been edited.

Working with Text Completion

– control:textView:completions:forPartialWordRange:indexOfSelectedItem: (page 3641)
Invoked to allow you to control the list of proposed text completions generated by text fields and
other controls.

Working with Key Bindings

– control:textView:doCommandBySelector: (page 3642)
Invoked when users press keys with predefined bindings in a cell of the specified control.

Instance Methods

control:didFailToFormatString:errorDescription:
Invoked when the formatter for the cell belonging to the specified control cannot convert a string to an
underlying object.

- (BOOL)control:(NSControl *)control didFailToFormatString:(NSString *)string
errorDescription:(NSString *)error

Parameters
control

The control whose cell could not convert the string.

string
The string that could not be converted.

error
A localized, user-presentable string that explains why the conversion failed.

Return Value
YES if the value in the string parameter should be accepted as is; otherwise, NO if the value in the parameter
should be rejected.

Discussion
Your implementation of this method should evaluate the error or query the user an appropriate value
indicating whether the string should be accepted or rejected.

Availability
Available in Mac OS X v10.0 and later.

3638 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 186

NSControlTextEditingDelegate Protocol Reference

Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
getObjectValue:forString:errorDescription: (NSFormatter)

Declared In
NSControl.h

control:didFailToValidatePartialString:errorDescription:
Invoked when the formatter for the cell belonging to control (or selected cell) rejects a partial string a user
is typing into the cell.

- (void)control:(NSControl *)control didFailToValidatePartialString:(NSString
*)string errorDescription:(NSString *)error

Parameters
control

The control whose cell rejected the string.

string
The string that includes the character that caused the rejection.

error
A localized, user-presentable string that explains why the string was rejected.

Discussion
You can implement this method to display a warning message or perform a similar action when the user
enters improperly formatted text.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
isPartialStringValid:newEditingString:errorDescription: (NSFormatter)

Declared In
NSControl.h

control:isValidObject:
Invoked when the insertion point leaves a cell belonging to the specified control, but before the value of the
cell’s object is displayed.

- (BOOL)control:(NSControl *)control isValidObject:(id)object

Parameters
control

The control whose object value needs to be validated.

object
The object value to validate.

Instance Methods 3639
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 186

NSControlTextEditingDelegate Protocol Reference

Return Value
YES if you want to allow the control to display the specified value; otherwise, NO to reject the value and
return the cursor to the control's cell.

Discussion
This method gives the delegate the opportunity to validate the contents of the control’s cell (or selected
cell). In validating, the delegate should check the value in the object parameter and determine if it falls
within a permissible range, has required attributes, accords with a given context, and so on. Examples of
objects subject to such evaluations are an NSDate object that should not represent a future date or a monetary
amount (represented by an NSNumber object) that exceeds a predetermined limit.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSControl.h

control:textShouldBeginEditing:
Invoked when the user tries to enter a character in a cell of a control that allows editing of text (such as a
text field or form field).

- (BOOL)control:(NSControl *)control textShouldBeginEditing:(NSText *)fieldEditor

Parameters
control

The control whose content is about to be edited.

fieldEditor
The field editor of the control.

Return Value
YES if the control's field editor should be allowed to start editing the text; otherwise, NO.

Discussion
You can use this method to allow or disallow editing in a control. This message is sent by the control directly
to its delegate object.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSControl.h

control:textShouldEndEditing:
Invoked when the insertion point tries to leave a cell of the control that has been edited.

- (BOOL)control:(NSControl *)control textShouldEndEditing:(NSText *)fieldEditor

3640 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 186

NSControlTextEditingDelegate Protocol Reference

Parameters
control

The control for which editing is about to end.

fieldEditor
The field editor of the control. You can use this parameter to get the edited text.

Return Value
YES if the insertion point should be allowed to end the editing session; otherwise, NO.

Discussion
This message is sent only by controls that allow editing of text (such as a text field or a form field). This
message is sent by the control directly to its delegate object.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSControl.h

control:textView:completions:forPartialWordRange:indexOfSelectedItem:
Invoked to allow you to control the list of proposed text completions generated by text fields and other
controls.

- (NSArray *)control:(NSControl *)control textView:(NSTextView *)textView
completions:(NSArray *)words forPartialWordRange:(NSRange)charRange
indexOfSelectedItem:(NSInteger *)index

Parameters
control

The control whose cell initiated the message. If the control contains multiple cells, the one that initiated
the message is usually the selected cell.

textView
The field editor of the control. You can use this parameter to get the typed text.

words
An array of NSString objects containing the potential completions. The completion strings are listed
in their order of preference in the array.

charRange
The range of characters the user has already typed.

index
On input, an integer variable with the default value of 0. On output, you can set this value to an index
in the returned array indicating which item should be selected initially. Set the value to -1 to indicate
there should not be an initial selection.

Return Value
An array of NSString objects containing the list of completions to use in place of the array in the words
parameter. The returned array should list the completions in their preferred order

Instance Methods 3641
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 186

NSControlTextEditingDelegate Protocol Reference

Discussion
Each string you return should be a complete word that the user might be trying to type. The strings must
be complete words rather than just the remainder of the word, in case completion requires some slight
modification of what the user has already typed—for example, the addition of an accent, or a change in
capitalization. You can also use this method to support abbreviations that complete into words that do not
start with the characters of the abbreviation. The index argument allows you to return by reference an index
specifying which of the completions should be selected initially.

The actual means of presentation of the potential completions is determined by the complete: method of
NSTextView.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– complete: (page 2888) (NSTextView)

Declared In
NSControl.h

control:textView:doCommandBySelector:
Invoked when users press keys with predefined bindings in a cell of the specified control.

- (BOOL)control:(NSControl *)control textView:(NSTextView *)textView
doCommandBySelector:(SEL)command

Parameters
control

The control whose cell initiated the message. If the control contains multiple cells, the one that initiated
the message is usually the selected cell.

textView
The field editor of the control.

command
The selector that was associated with the binding.

Return Value
YES if the delegate object handles the key binding; otherwise, NO.

Discussion
These bindings are usually implemented as methods (command) defined in the NSResponder class; examples
of such key bindings are arrow keys (for directional movement) and the Escape key (for name completion).
By implementing this method, the delegate can override the default implementation of command and supply
its own behavior.

For example, the default method for completing partially typed pathnames or symbols (usually when users
press the Escape key) is complete: (page 2147). The default implementation of the complete: method (in
NSResponder) does nothing. The delegate could evaluate the method in the command parameter and, if it’s
complete:, get the current string from the textView parameter and then expand it, or display a list of
potential completions, or do whatever else is appropriate.

3642 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 186

NSControlTextEditingDelegate Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSControl.h

Instance Methods 3643
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 186

NSControlTextEditingDelegate Protocol Reference

3644 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 186

NSControlTextEditingDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSDatePickerCell.h

Related sample code DatePicker

Overview

The NSDatePickerCellDelegate protocol defines the optional methods implemented by delegates of
NSDatePickerCell objects.

Tasks

Content Validation

– datePickerCell:validateProposedDateValue:timeInterval: (page 3645)
The delegate receives this message each time the user attempts to change the receiver‘s value,
allowing the delegate the opportunity to override the change.

Instance Methods

datePickerCell:validateProposedDateValue:timeInterval:
The delegate receives this message each time the user attempts to change the receiver‘s value, allowing the
delegate the opportunity to override the change.

- (void)datePickerCell:(NSDatePickerCell *)aDatePickerCell
validateProposedDateValue:(NSDate **)proposedDateValue
timeInterval:(NSTimeInterval *)proposedTimeInterval

Overview 3645
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 187

NSDatePickerCellDelegate Protocol Reference

Parameters
aDatePickerCell

The cell cell that sent the message.

proposedDateValue
On input, contains the proposed new date. The delegate may change this value before returning.

proposedTimeInterval
On input, contains the proposed new time interval. The delegate may change this value before
returning.

Discussion
When returning a new proposedDateValue, the NSDate instance should be autoreleased, and the
proposedDateValue should not be released by the delegate.

The proposedDateValue and proposedTimeInterval are guaranteed to lie between the dates returned
by minDate (page 899) and maxDate (page 898). If you modify these values, you should ensure that the new
values are within the appropriate range.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSDatePickerCell.h

3646 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 187

NSDatePickerCellDelegate Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSDictionaryController.h

Availability Available in Mac OS X v10.5 and later.

Companion guide Cocoa Bindings Programming Topics

Overview

NSDictionaryControllerKeyValuePair is an informal protocol that is implemented by objects returned
by the NSDictionaryController method arrangedObjects. See NSDictionaryController Class Reference
for more information.

Tasks

Localizing the Display Key

– setLocalizedKey: (page 3649)
Sets the localized key name for the receiver.

– localizedKey (page 3648)
Returns the receiver’s localized key name.

Key-Value Pair Settings

– setKey: (page 3649)
Sets the key name for the receiver.

– key (page 3648)
Returns the receiver’s key name.

– setValue: (page 3649)
Sets the receiver’s value.

– value (page 3650)
Returns the receiver’s value.

– isExplicitlyIncluded (page 3648)
Specifies whether the receiver’s key name is an included key.

Overview 3647
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 188

NSDictionaryControllerKeyValuePair Protocol
Reference

Instance Methods

isExplicitlyIncluded
Specifies whether the receiver’s key name is an included key.

- (BOOL)isExplicitlyIncluded

Return Value
YES if the key name is specified as an included key, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSDictionaryController.h

key
Returns the receiver’s key name.

- (NSString *)key

Return Value
The key name.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setKey: (page 3649)

Related Sample Code
EnhancedAudioBurn
Quartz EB
SimpleStickies
STUCAuthoringDeviceCocoaSample
WhackedTV

Declared In
NSDictionaryController.h

localizedKey
Returns the receiver’s localized key name.

- (NSString *)localizedKey

Return Value
The localized key name.

3648 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 188

NSDictionaryControllerKeyValuePair Protocol Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
– setLocalizedKey: (page 3649)

Declared In
NSDictionaryController.h

setKey:
Sets the key name for the receiver.

- (void)setKey:(NSString *)key

Parameters
key

The key name.

Availability
Available in Mac OS X v10.5 and later.

See Also
– key (page 3648)

Declared In
NSDictionaryController.h

setLocalizedKey:
Sets the localized key name for the receiver.

- (void)setLocalizedKey:(NSString *)localizedKey

Parameters
localizedKey

The localized name of the receivers key.

Availability
Available in Mac OS X v10.5 and later.

See Also
– localizedKey (page 3648)

Declared In
NSDictionaryController.h

setValue:
Sets the receiver’s value.

- (void)setValue:(id)value

Instance Methods 3649
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 188

NSDictionaryControllerKeyValuePair Protocol Reference

Parameters
value

An object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– value (page 3650)

Declared In
NSDictionaryController.h

value
Returns the receiver’s value.

- (id)value

Return Value
The receiver’s value object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setValue: (page 3649)

Related Sample Code
CocoaHTTPServer
Quartz Composer QCTV
SetMouseAcclSample
SillyFrequencyLevels
WebKitPluginWithJavaScript

Declared In
NSDictionaryController.h

3650 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 188

NSDictionaryControllerKeyValuePair Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSDockTile.h

Companion guide Dock Tile Programming Guide

Overview

The NSDockTilePlugIn protocol defines the methods implemented by plug-ins that allow an application’s
Dock tile to be customized while the application is not running.

Customizing an application’s Dock tile when the application itself is not running requires that you write a
plug-in. The plug-in’s principal class must implement the NSDockTilePlugIn protocol.

The name of the plugin is indicated by a NSDockTilePlugIn key in the application's Info.plist file.

The plugin is loaded in a system process at login time or when the application tile is added to the Dock.
When the plugin is loaded, the principal class' implementation of setDockTile: (page 3652) is invoked,
passing an NSDockTile for the plug-in to customize. If the principal class implements dockMenu (page 3652)
it is invoked whenever the user causes the application's dock menu to be shown. When the dock tile is no
longer valid (for example,. the application has been removed from the dock) -setDockTile: (page 3652) is
invoked with nil.

Tasks

Setting the Dock Tile

– setDockTile: (page 3652) required method
Invoked when the plug-in is first loaded and when the application is removed from the Dock. (required)

Overview 3651
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 189

NSDockTilePlugIn Protocol Reference

Getting the Dock Tile Menu

– dockMenu (page 3652)
Invoked when the user causes the application's dock menu to be shown.

Instance Methods

dockMenu
Invoked when the user causes the application's dock menu to be shown.

- (NSMenu*)dockMenu

Return Value
The menu the dock tile displays.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSDockTile.h

setDockTile:
Invoked when the plug-in is first loaded and when the application is removed from the Dock. (required)

- (void)setDockTile:(NSDockTile*)dockTile

Parameters
dockTile

The dock tile associated with the application, or nil if the application has been removed from the
Dock.

Discussion
The plugin is loaded in a system process at login time or when the application tile is added to the Dock.

The principal class of the plug-in must implement the NSDockTilePlugIn protocol.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSDockTile.h

3652 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 189

NSDockTilePlugIn Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSDragging.h

Companion guide Drag and Drop Programming Topics for Cocoa

Overview

The NSDraggingDestination informal protocol declares methods that the destination object (or recipient)
of a dragged image must implement. The destination automatically receives NSDraggingDestination
messages for pasteboard data types it has registered for as an image enters, moves around inside, and then
exits or is released within the destination’s boundaries.

Tasks

Managing a Dragging Session Before an Image Is Released

– draggingEntered: (page 3655)
Invoked when the dragged image enters destination bounds or frame; delegate returns dragging
operation to perform.

– wantsPeriodicDraggingUpdates (page 3658)
Asks the destination object whether it wants to receive periodic draggingUpdated: (page 3656)
messages.

– draggingUpdated: (page 3656)
Invoked periodically as the image is held within the destination area, allowing modification of the
dragging operation or mouse-pointer position.

– draggingEnded: (page 3654)
Implement this method to be notified when a drag operation ends in some other destination.

– draggingExited: (page 3655)
Invoked when the dragged image exits the destination’s bounds rectangle (in the case of a view
object) or its frame rectangle (in the case of a window object).

Managing a Dragging Session After an Image Is Released

– prepareForDragOperation: (page 3657)
Invoked when the image is released, allowing the receiver to agree to or refuse drag operation.

Overview 3653
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 190

NSDraggingDestination Protocol Reference
(informal protocol)

– performDragOperation: (page 3657)
Invoked after the released image has been removed from the screen, signaling the receiver to import
the pasteboard data.

– concludeDragOperation: (page 3654)
Invoked when the dragging operation is complete, signaling the receiver to perform any necessary
clean-up.

Instance Methods

concludeDragOperation:
Invoked when the dragging operation is complete, signaling the receiver to perform any necessary clean-up.

- (void)concludeDragOperation:(id < NSDraggingInfo >)sender

Parameters
sender

The object sending the message; use it to get details about the dragging operation.

Discussion
For this method to be invoked, the previous performDragOperation: (page 3657) must have returned YES.
The destination implements this method to perform any tidying up that it needs to do, such as updating its
visual representation now that it has incorporated the dragged data. This message is the last message sent
from sender to the destination during a dragging session.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDragging.h

draggingEnded:
Implement this method to be notified when a drag operation ends in some other destination.

- (void)draggingEnded:(id < NSDraggingInfo >)sender

Parameters
sender

The object sending the message; use it to get details about the dragging operation.

Discussion
This method might be used by a destination doing auto-expansion in order to collapse any auto-expands.

Note: While this method has been implemented since Mac OS X V 10.0, it was non-functional until Mac OS
X v10.5.

Availability
Available in Mac OS X v10.0 and later.

3654 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 190

NSDraggingDestination Protocol Reference

Declared In
NSDragging.h

draggingEntered:
Invoked when the dragged image enters destination bounds or frame; delegate returns dragging operation
to perform.

- (NSDragOperation)draggingEntered:(id < NSDraggingInfo >)sender

Parameters
sender

The object sending the message; use it to get details about the dragging operation.

Return Value
One (and only one) of the dragging operation constants described in Dragging operations (page 3664) in
the NSDraggingInfo reference. The default return value (if this method is not implemented by the
destination) is the value returned by the previous draggingEntered: (page 3655) message.

Discussion
Invoked when a dragged image enters the destination but only if the destination has registered for the
pasteboard data type involved in the drag operation. Specifically, this method is invoked when the mouse
pointer enters the destination’s bounds rectangle (if it is a view object) or its frame rectangle (if it is a window
object).

This method must return a value that indicates which dragging operation the destination will perform when
the image is released. In deciding which dragging operation to return, the method should evaluate the
overlap between both the dragging operations allowed by the source (obtained from sender with the
draggingSourceOperationMask (page 3663) method) and the dragging operations and pasteboard data
types the destination itself supports.

If none of the operations is appropriate, this method should return NSDragOperationNone (this is the
default response if the method is not implemented by the destination). A destination will still receive
draggingUpdated: (page 3656) anddraggingExited: (page 3655) even ifNSDragOperationNone is returned
by this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
– draggingUpdated: (page 3656)
– draggingExited: (page 3655)
– prepareForDragOperation: (page 3657)

Declared In
NSDragging.h

draggingExited:
Invoked when the dragged image exits the destination’s bounds rectangle (in the case of a view object) or
its frame rectangle (in the case of a window object).

- (void)draggingExited:(id < NSDraggingInfo >)sender

Instance Methods 3655
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 190

NSDraggingDestination Protocol Reference

Parameters
sender

The object sending the message; use it to get details about the dragging operation.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDragging.h

draggingUpdated:
Invoked periodically as the image is held within the destination area, allowing modification of the dragging
operation or mouse-pointer position.

- (NSDragOperation)draggingUpdated:(id < NSDraggingInfo >)sender

Parameters
sender

The object sending the message; use it to get details about the dragging operation.

Return Value
One (and only one) of the dragging operation constants described in Dragging operations (page 3664) in
the NSDraggingInfo reference. The default return value (if this method is not implemented by the
destination) is the value returned by the previous draggingEntered: (page 3655) message.

Discussion
For this to be invoked, the destination must have registered for the pasteboard data type involved in the
drag operation. The messages continue until the image is either released or dragged out of the window or
view.

This method provides the destination with an opportunity to modify the dragging operation depending on
the position of the mouse pointer inside of the destination view or window object. For example, you may
have several graphics or areas of text contained within the same view and wish to tailor the dragging
operation, or to ignore the drag event completely, depending upon which object is underneath the mouse
pointer at the time when the user releases the dragged image and the performDragOperation: (page
3657) method is invoked.

You typically examine the contents of the pasteboard in the draggingEntered: (page 3655) method, where
this examination is performed only once, rather than in the draggingUpdated: (page 3656) method, which
is invoked multiple times.

Only one destination at a time receives a sequence of draggingUpdated: (page 3656) messages. If the mouse
pointer is within the bounds of two overlapping views that are both valid destinations, the uppermost view
receives these messages until the image is either released or dragged out.

Availability
Available in Mac OS X v10.0 and later.

See Also
– draggingExited: (page 3655)
– prepareForDragOperation: (page 3657)

3656 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 190

NSDraggingDestination Protocol Reference

Declared In
NSDragging.h

performDragOperation:
Invoked after the released image has been removed from the screen, signaling the receiver to import the
pasteboard data.

- (BOOL)performDragOperation:(id < NSDraggingInfo >)sender

Parameters
sender

The object sending the message; use it to get details about the dragging operation.

Return Value
If the destination accepts the data, it returns YES; otherwise it returns NO. The default is to return NO.

Discussion
For this method to be invoked, the previous prepareForDragOperation: (page 3657) message must have
returned YES. The destination should implement this method to do the real work of importing the pasteboard
data represented by the image.

Availability
Available in Mac OS X v10.0 and later.

See Also
– concludeDragOperation: (page 3654)

Declared In
NSDragging.h

prepareForDragOperation:
Invoked when the image is released, allowing the receiver to agree to or refuse drag operation.

- (BOOL)prepareForDragOperation:(id < NSDraggingInfo >)sender

Parameters
sender

The object sending the message; use it to get details about the dragging operation.

Return Value
YES if the receiver agrees to perform the drag operation and NO if not.

Discussion
This method is invoked only if the most recent draggingEntered: (page 3655) or draggingUpdated: (page
3656) message returned an acceptable drag-operation value.

Availability
Available in Mac OS X v10.0 and later.

See Also
– performDragOperation: (page 3657)

Instance Methods 3657
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 190

NSDraggingDestination Protocol Reference

Declared In
NSDragging.h

wantsPeriodicDraggingUpdates
Asks the destination object whether it wants to receive periodic draggingUpdated: (page 3656) messages.

- (BOOL)wantsPeriodicDraggingUpdates

Return Value
YES if the destination wants to receive periodic draggingUpdated: (page 3656) messages, NO otherwise.

Discussion
If the destination returns NO, these messages are sent only when the mouse moves or a modifier flag changes.
Otherwise the destination gets the default behavior, where it receives periodic dragging-updated messages
even if nothing changes.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
GeekGameBoard

Declared In
NSDragging.h

3658 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 190

NSDraggingDestination Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSDragging.h

Companion guide Drag and Drop Programming Topics for Cocoa

Related sample code CompositeLab
DemoMonkey
QTKitMovieShuffler
Sketch-112
With and Without Bindings

Overview

The NSDraggingInfo protocol declares methods that supply information about a dragging session.
NSDraggingInfo methods are designed to be invoked from within a class’s implementation of
NSDraggingDestination informal protocol methods. The Application Kit automatically passes an object
that conforms to the NSDraggingInfo protocol as the argument to each of the methods defined by
NSDraggingDestination. NSDraggingInfo messages should be sent to this object; you never need to
create a class that implements the NSDraggingInfo protocol.

Tasks

Obtaining Information About the Dragging Session

– draggingPasteboard (page 3662)
Returns the pasteboard object that holds the data being dragged.

– draggingSequenceNumber (page 3662)
Returns a number that uniquely identifies the dragging session.

– draggingSource (page 3662)
Returns the source, or owner, of the dragged data.

– draggingSourceOperationMask (page 3663)
Returns the dragging operation mask of the dragging source.

Overview 3659
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 191

NSDraggingInfo Protocol Reference

– draggingLocation (page 3661)
Returns the current location of the mouse pointer in the base coordinate system of the destination
object’s window.

– draggingDestinationWindow (page 3661)
Returns the destination window for the dragging operation.

– namesOfPromisedFilesDroppedAtDestination: (page 3663)
Sets the drop location for promised files and returns the names of the files that the receiver promises
to create there.

Getting Image Information

– draggedImage (page 3660)
Returns the image being dragged.

– draggedImageLocation (page 3661)
Returns the current location of the dragged image’s origin.

Sliding the Image

– slideDraggedImageTo: (page 3664)
Slides the image to a specified location.

Instance Methods

draggedImage
Returns the image being dragged.

- (NSImage *)draggedImage

Return Value
The image being dragged.

Discussion
This image object visually represents the data put on the pasteboard during the drag operation; however,
it is the pasteboard data and not this image that is ultimately utilized in the dragging operation.

Availability
Available in Mac OS X v10.0 and later.

See Also
– draggedImageLocation (page 3661)

Declared In
NSDragging.h

3660 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 191

NSDraggingInfo Protocol Reference

draggedImageLocation
Returns the current location of the dragged image’s origin.

- (NSPoint)draggedImageLocation

Return Value
The dragged image's origin, in the base coordinate system of the destination object’s window.

Discussion
The image moves along with the mouse pointer (the position of which is given by draggingLocation (page
3661)) but may be positioned at some offset.

Availability
Available in Mac OS X v10.0 and later.

See Also
– draggedImage (page 3660)

Declared In
NSDragging.h

draggingDestinationWindow
Returns the destination window for the dragging operation.

- (NSWindow *)draggingDestinationWindow

Return Value
The destination window for the dragging operation.

Discussion
Either this window is the destination itself, or it contains the view object that is the destination.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDragging.h

draggingLocation
Returns the current location of the mouse pointer in the base coordinate system of the destination object’s
window.

- (NSPoint)draggingLocation

Return Value
The current location of the mouse pointer in the base coordinate system of the destination object’s window.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3661
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 191

NSDraggingInfo Protocol Reference

See Also
– draggedImageLocation (page 3661)

Declared In
NSDragging.h

draggingPasteboard
Returns the pasteboard object that holds the data being dragged.

- (NSPasteboard *)draggingPasteboard

Return Value
The pasteboard object that holds the data being dragged.

Discussion
The dragging operation that is ultimately performed utilizes this pasteboard data and not the image returned
by the draggedImage (page 3660) method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDragging.h

draggingSequenceNumber
Returns a number that uniquely identifies the dragging session.

- (NSInteger)draggingSequenceNumber

Return Value
A number that uniquely identifies the dragging session.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDragging.h

draggingSource
Returns the source, or owner, of the dragged data.

- (id)draggingSource

Return Value
The source, or owner, of the dragged data.

Discussion
This method returns nil if the source is not in the same application as the destination. The dragging source
implements methods from the NSDraggingSource informal protocol.

3662 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 191

NSDraggingInfo Protocol Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDragging.h

draggingSourceOperationMask
Returns the dragging operation mask of the dragging source.

- (NSDragOperation)draggingSourceOperationMask

Return Value
The dragging operation mask, which is declared by the dragging source through its
draggingSourceOperationMaskForLocal: (page 3670) method. If the source does not permit any dragging
operations, this method should return NSDragOperationNone.

Discussion
If the source permits dragging operations, the elements in the mask are one or more of the constants described
in“Obtaining Information About the Dragging Session” (page 3659), combined using the C bitwise
OR operator.

If the user is holding down a modifier key during the dragging session and the source does not prohibit
modifier keys from affecting the drag operation (through its ignoreModifierKeysWhileDragging (page
3670) method), then the operating system combines the dragging operation value that corresponds to the
modifier key (see the descriptions below) with the source’s mask using the C bitwise AND operator.

The modifier keys are associated with the dragging operation options shown below:

Dragging OperationModifier Key

NSDragOperationLinkControl

NSDragOperationCopyOption

NSDragOperationGenericCommand

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDragging.h

namesOfPromisedFilesDroppedAtDestination:
Sets the drop location for promised files and returns the names of the files that the receiver promises to
create there.

- (NSArray *)namesOfPromisedFilesDroppedAtDestination:(NSURL *)dropDestination

Instance Methods 3663
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 191

NSDraggingInfo Protocol Reference

Parameters
dropDestination

A URL object specifying the drop location for promised files.

Return Value
An array of file names, which are not full paths.

Discussion
Drag destinations should invoke this method within their performDragOperation: (page 3657) method.
The source may or may not have created the files by the time this method returns.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSDragging.h

slideDraggedImageTo:
Slides the image to a specified location.

- (void)slideDraggedImageTo:(NSPoint)aPoint

Parameters
aPoint

A point that specifies a location in the screen coordinate system.

Discussion
This method can be used to adjust the location to which the dragged image will slide back if the drag is
rejected.

It should only be invoked from within the destination’s implementation of
prepareForDragOperation: (page 3657), and will only have effect if the destination rejects the drag.

This method is invoked after the user has released the image but before it is removed from the screen.

Special Considerations

This method has been available since Mac OS X v 10.0, however it was not implemented until Mac OS X v
10.5. Previous to that version, it did nothing.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDragging.h

Constants

Dragging operations
These constants are used by draggingSourceOperationMask (page 3663).

3664 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 191

NSDraggingInfo Protocol Reference

enum {
 NSDragOperationNone = 0,
 NSDragOperationCopy = 1,
 NSDragOperationLink = 2,
 NSDragOperationGeneric = 4,
 NSDragOperationPrivate = 8,
 NSDragOperationAll_Obsolete = 15,
 NSDragOperationMove = 16,
 NSDragOperationDelete = 32,
 NSDragOperationEvery = NSUIntegerMax
};
typedef NSUInteger NSDragOperation;

Constants
NSDragOperationCopy

The data represented by the image can be copied.

Available in Mac OS X v10.0 and later.

Declared in NSDragging.h.

NSDragOperationLink
The data can be shared.

Available in Mac OS X v10.0 and later.

Declared in NSDragging.h.

NSDragOperationGeneric
The operation can be defined by the destination.

Available in Mac OS X v10.0 and later.

Declared in NSDragging.h.

NSDragOperationPrivate
The operation is negotiated privately between the source and the destination.

Available in Mac OS X v10.0 and later.

Declared in NSDragging.h.

NSDragOperationAll_Obsolete
TheNSDragOperationAll constant is deprecated. UseNSDragOperationEvery (page 3665) instead.

Available in Mac OS X v10.0 and later.

Declared in NSDragging.h.

NSDragOperationMove
The data can be moved.

Available in Mac OS X v10.0 and later.

Declared in NSDragging.h.

NSDragOperationDelete
The data can be deleted.

Available in Mac OS X v10.0 and later.

Declared in NSDragging.h.

NSDragOperationEvery
All of the above.

Available in Mac OS X v10.0 and later.

Declared in NSDragging.h.

Constants 3665
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 191

NSDraggingInfo Protocol Reference

NSDragOperationNone
No drag operations are allowed.

Available in Mac OS X v10.0 and later.

Declared in NSDragging.h.

NSDragOperationAll Deprecation
The NSDragOperationAll constant has been deprecated. Use NSDragOperationEvery (page 3665) instead.

#define NSDragOperationAll NSDragOperationAll_Obsolete

Constants
NSDragOperationAll

Use NSDragOperationEvery (page 3665) instead.

Available in Mac OS X v10.0 and later.

Declared in NSDragging.h.

3666 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 191

NSDraggingInfo Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSDragging.h

Companion guide Drag and Drop Programming Topics for Cocoa

Overview

The NSDraggingSource informal protocol declares methods that are implemented by the source object in
a dragging session. The dragging source is specified as an argument to the
dragImage:at:offset:event:pasteboard:source:slideBack: (page 3168) message, sent to a window
or view object to initiate the dragging session.

The NSDraggingSource methods are invoked only if the dragging source implements them. All methods
are invoked automatically during a dragging session—you never send an NSDraggingSource message
directly to an object.

Tasks

Specifying Dragging Options

– draggingSourceOperationMaskForLocal: (page 3670)
Returns an integer bit mask indicating the types of dragging operations the source object will allow
to be performed on the dragged image's data.

– ignoreModifierKeysWhileDragging (page 3670)
Sets whether the use of modifier keys should have an effect on the type of operation performed.

Responding to Messages During a Dragging Session

– draggedImage:beganAt: (page 3668)
Gives the source object an opportunity to respond to the initiation of a dragging session.

– draggedImage:movedTo: (page 3669)
Informs the dragging source when a dragged image moves to a new screen coordinate.

– draggedImage:endedAt:operation: (page 3669)
Invoked after the dragging destination has been given a chance to operate on the data represented
by the image,

Overview 3667
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 192

NSDraggingSource Protocol Reference
(informal protocol)

– namesOfPromisedFilesDroppedAtDestination: (page 3671)
Returns the names of the files that the receiver promises to create at a specified location.

– draggedImage:endedAt:deposited: (page 3668) required method Deprecated in Mac OS X v10.1
Invoked after the dragging destination has been given a chance to operate on the data represented
by the image. (required) (Deprecated. UsedraggedImage:endedAt:operation: (page 3669) instead.)

Instance Methods

draggedImage:beganAt:
Gives the source object an opportunity to respond to the initiation of a dragging session.

- (void)draggedImage:(NSImage *)anImage beganAt:(NSPoint)aPoint

Parameters
anImage

The image of the dragged item.

aPoint
The origin of the image in screen coordinates.

Discussion
This method is invoked when anImage is displayed but before it starts following the mouse. For example,
you might choose to have the source give a visual indication to the user that data is being dragged from the
source.

Availability
Available in Mac OS X v10.0 and later.

See Also
– convertScreenToBase: (page 3314) (NSWindow)
– convertBaseToScreen: (page 3313) (NSWindow)
– convertPoint:fromView: (page 3155) (NSView)
– convertPoint:toView: (page 3155) (NSView)

Declared In
NSDragging.h

draggedImage:endedAt:deposited:
Invoked after the dragging destination has been given a chance to operate on the data represented by the
image. (required) (Deprecated in Mac OS X v10.1. Use draggedImage:endedAt:operation: (page 3669)
instead.)

- (void)draggedImage:(NSImage *)anImage endedAt:(NSPoint)aPoint deposited:(BOOL)flag

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.1.

3668 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 192

NSDraggingSource Protocol Reference

Declared In
NSDragging.h

draggedImage:endedAt:operation:
Invoked after the dragging destination has been given a chance to operate on the data represented by the
image,

- (void)draggedImage:(NSImage *)anImage endedAt:(NSPoint)aPoint
operation:(NSDragOperation)operation

Parameters
anImage

The dragged image.

aPoint
The point locating the image’s origin in the screen coordinate system when it was released.

operation
An integer constant that indicates the operation performed by the destination.

Discussion
This method is invoked after the dragged image (anImage) has been released and the dragging destination
has been given a chance to operate on the data it represents. This method provides the source object with
an opportunity to respond to either a successful or a failed dragging session. For example, if you are moving
data from one location to another, you could use this method to make the source data disappear from its
previous location, if the dragging session is successful, or reset itself to its previous state, in the event of a
failure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDragging.h

draggedImage:movedTo:
Informs the dragging source when a dragged image moves to a new screen coordinate.

- (void)draggedImage:(NSImage *)draggedImage movedTo:(NSPoint)screenPoint

Parameters
draggedImage

The dragged image.

screenPoint
The point specifying the new location of the image in screen coordinates.

Discussion
This message is similar to the dragging destination being sent draggingUpdated: (page 3656) messages.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 3669
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 192

NSDraggingSource Protocol Reference

Declared In
NSDragging.h

draggingSourceOperationMaskForLocal:
Returns an integer bit mask indicating the types of dragging operations the source object will allow to be
performed on the dragged image's data.

- (NSDragOperation)draggingSourceOperationMaskForLocal:(BOOL)isLocal

Parameters
isLocal

YES indicates that the candidate destination object (the window or view over which the dragged
image is currently poised) is in the same application as the source, while a NO value indicates that the
destination object is in a different application.

Return Value
A mask, created by combining the dragging operations listed in the NSDragOperation (page 3664) section
of NSDraggingInfo protocol reference using the C bitwise OR operator.If the source does not permit any
dragging operations, it should return NSDragOperationNone (page 3666).

Discussion
If not implemented, the default value is NSDragOperationCopy (page 3665) | NSDragOperationLink (page
3665) | NSDragOperationGeneric (page 3665) | NSDragOperationPrivate (page 3665).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDragging.h

ignoreModifierKeysWhileDragging
Sets whether the use of modifier keys should have an effect on the type of operation performed.

- (BOOL)ignoreModifierKeysWhileDragging

Return Value
Return NO, if the user can tailor the drag operation by holding down a modifier key during the drag.

Discussion
If this method is not implemented the default behavior is equivalent to returning NO

The dragging option that corresponds to the modifier key is combined with the source’s mask (as set with
the draggingSourceOperationMaskForLocal: (page 3670) method) using the C bitwise OR operator. See
the description for the draggingSourceOperationMask (page 3663) method in the NSDraggingInfo
protocol specification for more information about dragging masks and modifier keys.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSDragging.h

3670 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 192

NSDraggingSource Protocol Reference

namesOfPromisedFilesDroppedAtDestination:
Returns the names of the files that the receiver promises to create at a specified location.

- (NSArray *)namesOfPromisedFilesDroppedAtDestination:(NSURL *)dropDestination

Parameters
dropDestination

A URL object that identifies the location at which the promised files will be created.

Return Value
An array of the names of files (not full paths) that the receiver promises to create at dropDestination.

Discussion
This method is invoked when the drop has been accepted by the destination and the destination, in the case
of another Cocoa application, invokes the NSDraggingInfo method
namesOfPromisedFilesDroppedAtDestination: (page 3663). For long operations, you can cache
dropDestination and defer the creation of the files until the draggedImage:endedAt:operation: (page
3669) method to avoid blocking the destination application.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSDragging.h

Instance Methods 3671
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 192

NSDraggingSource Protocol Reference

3672 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 192

NSDraggingSource Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSDrawer.h

Companion guide Drawers

Related sample code DrawerMadness

Overview

The NSDrawerDelegate protocol defines the messages sent to delegates of NSDrawer. All of the methods
of this protocol are optional.

Tasks

Opening and Closing Drawers

– drawerShouldOpen: (page 3675)
Asks the delegate if the specified drawer should open.

– drawerWillOpen: (page 3676)
Notifies the delegate that the drawer will open.

– drawerDidOpen: (page 3674)
Notifies the delegate that the drawer has opened.

– drawerShouldClose: (page 3674)
Asks the delegate if the specified drawer should close.

– drawerWillClose: (page 3675)
Notifies the delegate the the drawer will close.

– drawerDidClose: (page 3674)
Notifies the delegate that the drawer has closed.

Overview 3673
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 193

NSDrawerDelegate Protocol Reference

Managing Drawer Size

– drawerWillResizeContents:toSize: (page 3676)
Invoked when the user resizes the drawer or parent.

Instance Methods

drawerDidClose:
Notifies the delegate that the drawer has closed.

- (void)drawerDidClose:(NSNotification *)notification

Parameters
notification

An NSDrawerDidCloseNotification (page ?) notification sent by the default notification center
immediately after the drawer has closed.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSDrawer.h

drawerDidOpen:
Notifies the delegate that the drawer has opened.

- (void)drawerDidOpen:(NSNotification *)notification

Parameters
notification

An NSDrawerDidOpenNotification (page ?) notification, sent by the default notification center
immediately after the drawer has opened.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSDrawer.h

drawerShouldClose:
Asks the delegate if the specified drawer should close.

- (BOOL)drawerShouldClose:(NSDrawer *)sender

3674 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 193

NSDrawerDelegate Protocol Reference

Parameters
sender

The drawer being closed.

Return Value
YES to allow the drawer to close; NO to prevent it from closing.

Discussion
This method is invoked on user-initiated attempts to close a drawer by dragging it or when the close: (page
?) method is called.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSDrawer.h

drawerShouldOpen:
Asks the delegate if the specified drawer should open.

- (BOOL)drawerShouldOpen:(NSDrawer *)sender

Parameters
sender

The drawer requesting permission to open.

Return Value
YES if the drawer should open; NO to prevent the drawer from opening.

Discussion
This method is invoked on user-initiated attempts to open a drawer by dragging it or when the open: (page
?) method is called.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSDrawer.h

drawerWillClose:
Notifies the delegate the the drawer will close.

- (void)drawerWillClose:(NSNotification *)notification

Parameters
notification

An NSDrawerWillCloseNotification (page ?) notification sent by the default notification center
immediately before the drawer is closed.

Instance Methods 3675
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 193

NSDrawerDelegate Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSDrawer.h

drawerWillOpen:
Notifies the delegate that the drawer will open.

- (void)drawerWillOpen:(NSNotification *)notification

Parameters
notification

An NSDrawerWillOpenNotification (page ?) notification, sent by the default notification center
immediately before the drawer is opened.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSDrawer.h

drawerWillResizeContents:toSize:
Invoked when the user resizes the drawer or parent.

- (NSSize)drawerWillResizeContents:(NSDrawer *)sender toSize:(NSSize)contentSize

Parameters
sender

The drawer being resized.

contentSize
The proposed new size of the drawer.

Return Value
The size that the drawer should be resized to. To resize to a different size, simply return the desired size from
this method; to avoid resizing, return the current size.

Discussion
The receiver’s minimum and maximum size constraints have already been applied when this method is
invoked. While the user is resizing an NSDrawer or its parent, the delegate is sent a series of
windowWillResize messages as the NSDrawer or parent window is dragged.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSDrawer.h

3676 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 193

NSDrawerDelegate Protocol Reference

Adopted by NSController (informal protocol)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSKeyValueBinding.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Bindings Programming Topics

Overview

The NSEditor informal protocol is implemented by controllers and user interface elements. It provides a
means for requesting that the receiver commit or discard any pending edits.

These methods are typically invoked on user interface elements by a controller. They can also be sent to a
controller in response to a user’s attempt to save a document or quit an application.

NSController provides an implementation of this protocol, as do the Application Kit user interface elements
that support binding.

Tasks

Managing Editing

– discardEditing (page 3679)
Causes the receiver to discard any changes, restoring the previous values.

– commitEditing (page 3678)
Returns whether the receiver was able to commit any pending edits.

– commitEditingWithDelegate:didCommitSelector:contextInfo: (page 3678)
Attempt to commit any currently edited results of the receiver.

Overview 3677
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 194

NSEditor Protocol Reference
(informal protocol)

Instance Methods

commitEditing
Returns whether the receiver was able to commit any pending edits.

- (BOOL)commitEditing

Discussion
Returns YES if the changes were successfully applied to the model, NO otherwise. A commit is denied if the
receiver fails to apply the changes to the model object, perhaps due to a validation error.

Availability
Available in Mac OS X v10.3 and later.

See Also
– discardEditing (page 3679)

Related Sample Code
AbstractTree
Core Data HTML Store
CoreRecipes
Image Kit with Core Data

Declared In
NSKeyValueBinding.h

commitEditingWithDelegate:didCommitSelector:contextInfo:
Attempt to commit any currently edited results of the receiver.

- (void)commitEditingWithDelegate:(id)delegate
didCommitSelector:(SEL)didCommitSelector contextInfo:(void *)contextInfo

Discussion
The receiver must have been registered as the editor of an object using objectDidBeginEditing:, and
has not yet been unregistered by a subsequent invocation of objectDidEndEditing:. When the committing
has either succeeded or failed, send the following message to the specified object. The didCommitSelector
method must have the following method signature:

- (void)editor:(id)editor didCommit:(BOOL)didCommit contextInfo:(void
*)contextInfo

If an error occurs while attempting to commit, for example if key-value coding validation fails, an
implementation of this method should typically send the NSView in which editing is being done a
presentError:modalForWindow:delegate:didRecoverSelector:contextInfo:message, specifying
the view's containing window.

Availability
Available in Mac OS X v10.4 and later.

3678 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 194

NSEditor Protocol Reference

Related Sample Code
CoreRecipes

Declared In
NSKeyValueBinding.h

discardEditing
Causes the receiver to discard any changes, restoring the previous values.

- (void)discardEditing

Availability
Available in Mac OS X v10.3 and later.

See Also
– commitEditing (page 3678)

Declared In
NSKeyValueBinding.h

Instance Methods 3679
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 194

NSEditor Protocol Reference

3680 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 194

NSEditor Protocol Reference

Adopted by NSController (informal protocol)

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSKeyValueBinding.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Bindings Programming Topics

Overview

The NSEditorRegistration informal protocol is implemented by controllers to provide an interface for a
view, the editor, to inform the controller when it has uncommitted changes.

An implementor is responsible for tracking which editors have uncommitted changes, and sending those
editors commitEditing (page 3678) and discardEditing (page 3679) messages, as appropriate, to force the
editor to submit, or discard, their values.

NSController provides an implementation of this informal protocol. You would implement this protocol
if you wanted to provide your own controller class without subclassing NSController.

Tasks

Managing Editing

– objectDidBeginEditing: (page 3682)
This message should be sent to the receiver when editor has uncommitted changes that can affect
the receiver.

– objectDidEndEditing: (page 3682)
This message should be sent to the receiver when editor has finished editing a property belonging
to the receiver.

Overview 3681
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 195

NSEditorRegistration Protocol Reference
(informal protocol)

Instance Methods

objectDidBeginEditing:
This message should be sent to the receiver when editor has uncommitted changes that can affect the
receiver.

- (void)objectDidBeginEditing:(id)editor

Availability
Available in Mac OS X v10.3 and later.

See Also
– objectDidEndEditing: (page 3682)

Declared In
NSKeyValueBinding.h

objectDidEndEditing:
This message should be sent to the receiver when editor has finished editing a property belonging to the
receiver.

- (void)objectDidEndEditing:(id)editor

Availability
Available in Mac OS X v10.3 and later.

See Also
– objectDidBeginEditing: (page 3682)

Declared In
NSKeyValueBinding.h

3682 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 195

NSEditorRegistration Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSFontPanel.h

Companion guide Font Panel

Overview

Informal protocol. The Font Panel can be explicitly ordered to display some or all of its elements by responding
to the validModesForFontPanel: (page 3683) instance method.

Tasks

Validating Modes for a Font Panel

– validModesForFontPanel: (page 3683)
Returns the mode mask corresponding to the expected font panel mode.

Instance Methods

validModesForFontPanel:
Returns the mode mask corresponding to the expected font panel mode.

- (NSUInteger)validModesForFontPanel:(NSFontPanel *)fontPanel

Discussion
The mode masks are defined in Mode Masks (page 3684).

The Font Panel has the ability to hide elements that are not applicable for a given context by having the
target respond to validModesForFontPanel:. If the target desires a font panel mode other than the
standard mode mask, it must respond to this method.

This message is sent up the responder chain to the first responder implementing the method. Ideally that
object should be the first responder found that also implements changeFont: (page 1239).

Overview 3683
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 196

NSFontPanelValidation Protocol Reference
(informal protocol)

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSFontPanel.h

Constants

Mode Masks
The following constants correspond to the available font panel mode masks returned by
validModesForFontPanel: (page 3683).

enum {
 NSFontPanelFaceModeMask = 1 << 0,
 NSFontPanelSizeModeMask = 1 << 1,
 NSFontPanelCollectionModeMask = 1 << 2,
 NSFontPanelUnderlineEffectModeMask = 1<<8,
 NSFontPanelStrikethroughEffectModeMask = 1<<9,
 NSFontPanelTextColorEffectModeMask = 1<< 10,
 NSFontPanelDocumentColorEffectModeMask = 1<<11,
 NSFontPanelShadowEffectModeMask = 1<<12,
 NSFontPanelAllEffectsModeMask = 0XFFF00,
 NSFontPanelStandardModesMask = 0xFFFF,
 NSFontPanelAllModesMask = 0xFFFFFFFF
};

Constants
NSFontPanelFaceModeMask

Display the typeface column.

Available in Mac OS X v10.3 and later.

Declared in NSFontPanel.h.

NSFontPanelSizeModeMask
Display the font size column.

Available in Mac OS X v10.3 and later.

Declared in NSFontPanel.h.

NSFontPanelCollectionModeMask
Display the font collections column.

Available in Mac OS X v10.3 and later.

Declared in NSFontPanel.h.

NSFontPanelUnderlineEffectModeMask
Display the underline popup menu.

Available in Mac OS X v10.4 and later.

Declared in NSFontPanel.h.

3684 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 196

NSFontPanelValidation Protocol Reference

NSFontPanelStrikethroughEffectModeMask
Display the strike-through popup menu.

Available in Mac OS X v10.4 and later.

Declared in NSFontPanel.h.

NSFontPanelTextColorEffectModeMask
Display the text color button.

Available in Mac OS X v10.4 and later.

Declared in NSFontPanel.h.

NSFontPanelDocumentColorEffectModeMask
Display the document color button.

Available in Mac OS X v10.4 and later.

Declared in NSFontPanel.h.

NSFontPanelShadowEffectModeMask
Display the shadow effects button.

Available in Mac OS X v10.4 and later.

Declared in NSFontPanel.h.

NSFontPanelAllEffectsModeMask
Display all the effects user interface items.

Available in Mac OS X v10.4 and later.

Declared in NSFontPanel.h.

NSFontPanelStandardModesMask
Display the standard default font panel—that is, including the collections, typeface, and size columns.

Available in Mac OS X v10.3 and later.

Declared in NSFontPanel.h.

NSFontPanelAllModesMask
Display all the available adornments.

Available in Mac OS X v10.3 and later.

Declared in NSFontPanel.h.

Constants 3685
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 196

NSFontPanelValidation Protocol Reference

3686 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 196

NSFontPanelValidation Protocol Reference

Adopted by NSLayoutManager

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.3 and later.

Declared in AppKit/NSGlyphGenerator.h

Companion guides Text System Overview
Text Layout Programming Guide

Overview

The NSGlyphStorage protocol defines the methods that a glyph storage object must implement in order
to interact properly with NSGlyphGenerator.

An example of a Cocoa class conforming to the NSGlyphStorage protocol is NSLayoutManager.

Tasks

Returning Text Storage

– attributedString (page 3688) required method
Returns the text storage object from which the NSGlyphGenerator object procures characters for
glyph generation. (required)

Returning Glyph Display Options

– layoutOptions (page 3689) required method
Returns the current layout options. (required)

Modifying the Glyph Cache

– insertGlyphs:length:forStartingGlyphAtIndex:characterIndex: (page 3688) required method
Inserts the given glyphs into the glyph cache and maps them to the specified characters. (required)

Overview 3687
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 197

NSGlyphStorage Protocol Reference

– setIntAttribute:value:forGlyphAtIndex: (page 3689) required method
Sets a custom attribute value for a given glyph. (required)

Instance Methods

attributedString
Returns the text storage object from which the NSGlyphGenerator object procures characters for glyph
generation. (required)

- (NSAttributedString *)attributedString

Return Value
The receiver’s text storage object.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGlyphGenerator.h

insertGlyphs:length:forStartingGlyphAtIndex:characterIndex:
Inserts the given glyphs into the glyph cache and maps them to the specified characters. (required)

- (void)insertGlyphs:(const NSGlyph *)glyphs length:(NSUInteger)length
forStartingGlyphAtIndex:(NSUInteger)glyphIndex
characterIndex:(NSUInteger)charIndex

Parameters
glyphs

The glyphs to insert.

glyphIndex
Location in the glyph cache to begin inserting glyphs.

length
Number of glyphs to insert.

charIndex
Index of first character to be mapped.

Discussion
This is a bulk insert method for the glyph cache.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGlyphGenerator.h

3688 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 197

NSGlyphStorage Protocol Reference

layoutOptions
Returns the current layout options. (required)

- (NSUInteger)layoutOptions

Return Value
The layout options as a bit mask, as defined in “Constants” (page 3689).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGlyphGenerator.h

setIntAttribute:value:forGlyphAtIndex:
Sets a custom attribute value for a given glyph. (required)

- (void)setIntAttribute:(NSInteger)attributeTag value:(NSInteger)val
forGlyphAtIndex:(NSUInteger)glyphIndex

Parameters
attributeTag

The custom attribute.

val
The new attribute value.

glyphIndex
Index of the glyph whose attribute is set.

Discussion
Custom attributes are glyph attributes such as NSGlyphInscription or attributes defined by subclasses.
Subclasses that define their own custom attributes must override this method and provide their own storage
for the attribute values. Nonnegative tags are reserved; you can define your own attributes with negative
tags and set values using this method.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGlyphGenerator.h

Constants

Layout Options
These constants describe layout options returned as a bit mask by the layoutOptions (page 3689) method.

Constants 3689
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 197

NSGlyphStorage Protocol Reference

enum {
 NSShowControlGlyphs = (1 << 0),
 NSShowInvisibleGlyphs = (1 << 1),
 NSWantsBidiLevels = (1 << 2)
};

Constants
NSShowControlGlyphs

Generates displayable glyphs for control characters.

Available in Mac OS X v10.3 and later.

Declared in NSGlyphGenerator.h.

NSShowInvisibleGlyphs
Generates displayable glyphs for invisible characters.

Available in Mac OS X v10.3 and later.

Declared in NSGlyphGenerator.h.

NSWantsBidiLevels
Generates directional formatting codes for bidirectional text.

Available in Mac OS X v10.3 and later.

Declared in NSGlyphGenerator.h.

Declared In
NSGlyphGenerator.h

3690 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 197

NSGlyphStorage Protocol Reference

Adopted by NSText

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSSpellProtocol.h

Companion guide Spell Checking

Overview

Implement this protocol to have the Ignore button in the Spelling panel function properly. The Ignore button
allows the user to accept a word that the spelling checker believes is misspelled. In order for this action to
update the “ignored words” list for the document being checked, the NSIgnoreMisspelledWords protocol
must be implemented.

This protocol is necessary because a list of ignored words is useful only if it pertains to the entire document
being checked, but the spelling checker (NSSpellChecker object) does not check the entire document for
spelling at once. The spelling checker returns as soon as it finds a misspelled word. Thus, it checks only a
subset of the document at any one time. The user usually wants to check the entire document, so usually
several spelling checks are run in succession until no misspelled words are found. This protocol allows the
list of ignored words to be maintained per document, even though the spelling checks are not run per
document.

The NSIgnoreMisspelledWords protocol specifies a method, ignoreSpelling: (page 3692), which should be
implemented like this:

- (void)ignoreSpelling:(id)sender {
 [[NSSpellChecker sharedSpellChecker] ignoreWord:[[sender selectedCell]
stringValue]
 inSpellDocumentWithTag: myDocumentTag];
}

The second argument to the NSSpellChecker method ignoreWord:inSpellDocumentWithTag: (page
2527) is a tag that the NSSpellChecker can use to distinguish the documents being checked. Once the
NSSpellChecker has a way to distinguish the various documents, it can append new ignored words to the
appropriate list.

To make the ignored words feature useful, the application must store a document’s ignored words list with
the document. See the NSSpellChecker class description for more information.

Overview 3691
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 198

NSIgnoreMisspelledWords Protocol Reference

Tasks

Ignoring Spellings

– ignoreSpelling: (page 3692) required method

Instance Methods

ignoreSpelling:
- (void)ignoreSpelling:(id)sender

Discussion
Implement this action method to allow an application to ignore misspelled words on a document-by-document
basis. This message is sent by the NSSpellChecker instance to the object whose text is being checked.

Implement this method by using the code shown in the protocol description.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSSpellProtocol.h

3692 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 198

NSIgnoreMisspelledWords Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSImage.h

Companion guide Cocoa Drawing Guide

Overview

The NSImageDelegate protocol defines the optional methods implemented by delegates of NSImage
objects.

Tasks

Responding to Drawing Failure

– imageDidNotDraw:inRect: (page 3696)
Sent to the delegate when the image object is unable, for whatever reason, to lock focus on its image
or draw in the specified rectangle.

Managing Incremental Loads

– image:didLoadPartOfRepresentation:withValidRows: (page 3694)
During incremental loading, this method is called repeatedly to inform the delegate that more of the
image data is available.

– image:didLoadRepresentation:withStatus: (page 3694)
For incremental loading, this method is invoked when the specified image has been loaded and
decompressed as fully as is possible.

– image:didLoadRepresentationHeader: (page 3695)
During incremental loading, this method is called once enough data has been read to determine the
size of the image.

Overview 3693
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 199

NSImageDelegate Protocol Reference

– image:willLoadRepresentation: (page 3695)
For incremental loading, this method is invoked when you first attempt to draw the image or otherwise
access the bitmap data.

Instance Methods

image:didLoadPartOfRepresentation:withValidRows:
During incremental loading, this method is called repeatedly to inform the delegate that more of the image
data is available.

- (void)image:(NSImage *)image didLoadPartOfRepresentation:(NSImageRep *)rep
withValidRows:(NSInteger)rows

Parameters
image

The image object whose contents are being loaded.

rep
The image representation object that is receiving and processing the image data.

rows
The number of rows of data that have been decompressed.

Discussion
This method is optional; incremental loading will continue if the delegate does not implement it.

Availability
Available in Mac OS X v10.2 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSImage.h

image:didLoadRepresentation:withStatus:
For incremental loading, this method is invoked when the specified image has been loaded and decompressed
as fully as is possible.

- (void)image:(NSImage *)image didLoadRepresentation:(NSImageRep *)rep
withStatus:(NSImageLoadStatus)status

Parameters
image

The image object whose contents are being loaded.

rep
The image representation object that loaded the image data.

status
The status of the load operation. For a list of possible values, see NSImageLoadStatus (page 1378) in
NSImage Class Reference.

3694 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 199

NSImageDelegate Protocol Reference

Discussion
The delegate must implement this method if it wants to support the incremental loading of images. In that
case, you must also set up the image object to be loaded lazily, by initializing it using the
initByReferencingFile: (page 1350) or initByReferencingURL: (page 1351) method.

If an error occurs during downloading or decompression, the status parameter is set to
NSImageLoadStatusInvalidData, NSImageLoadStatusUnexpectedEOF, or
NSImageLoadStatusReadError. If the download was cancelled, the status parameter is set to
NSImageLoadStatusCancelled.

Availability
Available in Mac OS X v10.2 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSImage.h

image:didLoadRepresentationHeader:
During incremental loading, this method is called once enough data has been read to determine the size of
the image.

- (void)image:(NSImage *)image didLoadRepresentationHeader:(NSImageRep *)rep

Parameters
image

The image object whose contents are being loaded.

rep
The image representation object that is receiving and processing the image data.

Discussion
By the time this method is called, the NSBitmapImageRep object specified in the rep parameter is valid and
has allocated the memory needed to store the bitmap. The bitmap itself is filled with the image's background
color. This method is optional; incremental loading will continue if the delegate does not implement it.

Availability
Available in Mac OS X v10.2 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSImage.h

image:willLoadRepresentation:
For incremental loading, this method is invoked when you first attempt to draw the image or otherwise
access the bitmap data.

- (void)image:(NSImage *)image willLoadRepresentation:(NSImageRep *)rep

Parameters
image

The image object whose contents need to be loaded.

Instance Methods 3695
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 199

NSImageDelegate Protocol Reference

rep
The image representation object that was accessed.

Discussion
Downloading of the image begins immediately after this method returns. This method is optional; incremental
loading will continue if the delegate does not implement it.

Availability
Available in Mac OS X v10.2 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSImage.h

imageDidNotDraw:inRect:
Sent to the delegate when the image object is unable, for whatever reason, to lock focus on its image or
draw in the specified rectangle.

- (NSImage *)imageDidNotDraw:(id)sender inRect:(NSRect)aRect

Parameters
sender

The NSImage object that encountered the problem.

aRect
The rectangle that the image object was attempting to draw.

Return Value
An NSImage to draw in place of the one in sender, or nil if the delegate wants to draw the image itself.

Discussion
The delegate can do one of the following:

 ■ Return another NSImage object to draw in the sender’s place.

 ■ Draw the image itself and return nil,.

 ■ Simply return nil to indicate that sender should give up on the attempt at drawing the image.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSImage.h

3696 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 199

NSImageDelegate Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSKeyValueBinding.h

Companion guides Cocoa Bindings Programming Topics
Cocoa Bindings Reference

Overview

The NSKeyValueBindingCreation informal protocol provides methods to create and remove bindings
between view objects and controllers or controllers and model objects. In addition, it provides a means for
a view subclass to advertise the bindings that it exposes. This informal protocol is implemented by NSObject
and its methods can be overridden by view and controller subclasses.

When a new binding is created it relates the receiver’s binding (for example, a property of the view object)
to a property of the observable object specified by a key path. When the value of the specified property of
the observable object changes, the receiver is notified using the key-value observing mechanism. A binding
also specifies binding options that can further customize how the observing and the observed objects interact.

Bindings are considered to be a property of the object which is bound, and all information related to bindings
should be retained by the object. All standard bindings on AppKit objects (views, cells, table columns,
controllers) unbind their bindings automatically when they are released, but if you create key-value bindings
for other kind of objects, you need to make sure that you remove those bindings when you release them
(observed objects don't retain their observers, so controllers/model objects might continue referencing and
messaging the objects that were bound to them).

Bindings between objects are typically established in Interface Builder using the Bindings inspector. However,
there are times it must be done programmatically, such as when establishing a binding between objects in
different nib files.

NSView subclasses can expose additional key-value-coding/key-value-observing compliant properties as
bindings by calling the class method exposeBinding: (page 3698) for each of the properties. This is typically
done in the class’s initialize method. By exposing the bindings that an object supports and creating an
Interface Builder palette, you can make instances of your own classes bindable in Interface Builder.

Overview 3697
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol
Reference
(informal protocol)

Tasks

Exposing Bindings

+ exposeBinding: (page 3698)
Exposes the specified binding, advertising its availability.

– exposedBindings (page 3699)
Returns an array containing the bindings exposed by the receiver.

Managing Bindings

– valueClassForBinding: (page 3701)
Returns the class of the value that will be returned for the specified binding.

– bind:toObject:withKeyPath:options: (page 3699)
Establishes a binding between a given property of the receiver and the property of a given object
specified by a given key path.

– optionDescriptionsForBinding: (page 3700)
Returns an array describing the options for the specified binding.

– infoForBinding: (page 3700)
Returns a dictionary describing the receiver’s binding.

– unbind: (page 3701)
Removes a given binding between the receiver and a controller.

Class Methods

exposeBinding:
Exposes the specified binding, advertising its availability.

+ (void)exposeBinding:(NSString *)binding

Parameters
binding

The key path for the property to be exposed.

Discussion
The bound property will be accessed using key-value-coding compliant methods. This method is typically
invoked in the class’s initialize implementation.

Bindings exposed using exposeBindingwill be exposed automatically in exposedBindings (page 3699) unless
that method explicitly filters them out, for example in subclasses.

Availability
Available in Mac OS X v10.3 and later.

3698 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

Declared In
NSKeyValueBinding.h

Instance Methods

bind:toObject:withKeyPath:options:
Establishes a binding between a given property of the receiver and the property of a given object specified
by a given key path.

- (void)bind:(NSString *)binding
toObject:(id)observableController
withKeyPath:(NSString *)keyPath
options:(NSDictionary *)options

Parameters
binding

The key path for a property of the receiver previously exposed using the exposeBinding: (page
3698) method.

observableController
The bound-to object.

keyPath
A key path to a property reachable from observableController. The elements in the path must
be key-value observing compliant (see Key-Value Observing Programming Guide).

options
A dictionary containing options for the binding, such as placeholder objects or an
NSValueTransformer identifier as described in “Constants” (page 3702). This value is optional—pass
nil to specify no options.

Availability
Available in Mac OS X v10.3 and later.

See Also
– unbind: (page 3701)

Related Sample Code
AnimatedTableView
Simple Bindings Adoption
Sketch+Accessibility

Declared In
NSKeyValueBinding.h

exposedBindings
Returns an array containing the bindings exposed by the receiver.

- (NSArray *)exposedBindings

Instance Methods 3699
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

Return Value
An array containing the bindings exposed by the receiver.

Discussion
A subclass can override this method to remove bindings that are exposed by a superclass that are not
appropriate for the subclass.

Availability
Available in Mac OS X v10.3 and later.

See Also
+ exposeBinding: (page 3698)

Declared In
NSKeyValueBinding.h

infoForBinding:
Returns a dictionary describing the receiver’s binding.

- (NSDictionary *)infoForBinding:(NSString *)binding

Parameters
binding

The name of a binding.

Return Value
A dictionary with information about binding, or nil if the binding is not bound. The dictionary contains
three key/value pairs: NSObservedObjectKey: object bound, NSObservedKeyPathKey: key path bound,
NSOptionsKey: dictionary with the options and their values for the bindings.

Discussion
This method is mostly for use by subclasses which want to analyze the existing bindings of an object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSKeyValueBinding.h

optionDescriptionsForBinding:
Returns an array describing the options for the specified binding.

- (NSArray *)optionDescriptionsForBinding:(NSString *)binding

Parameters
binding

The name of a binding

Return Value
Returns an array of NSAttributeDescription that describe the options for binding.

3700 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

Discussion
The NSAttributeDescription instances in the array are used by Interface Builder to build the options
editor user interface of the bindings inspector.

 ■ The option name displayed for the option in the bindings inspector is based on the value of the
NSAttributeDescription method name.

 ■ The type of editor displayed for the option in the bindings inspector is based on the value of the
NSAttributeDescription method attributeType.

 ■ The default value displayed in the bindings inspector for the option is based on the value of the
NSAttributeDescription method defaultValue.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSKeyValueBinding.h

unbind:
Removes a given binding between the receiver and a controller.

- (void)unbind:(NSString *)binding

Parameters
binding

The name of a binding.

Availability
Available in Mac OS X v10.3 and later.

See Also
– bind:toObject:withKeyPath:options: (page 3699)

Declared In
NSKeyValueBinding.h

valueClassForBinding:
Returns the class of the value that will be returned for the specified binding.

- (Class)valueClassForBinding:(NSString *)binding

Parameters
binding

The name of a binding.

Return Value
The class of the value that will be returned for binding.

Discussion
This method is used by Interface Builder to determine the appropriate transformers for a binding.

Instance Methods 3701
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

Implementation of this method is optional.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSKeyValueBinding.h

Constants

Binding Options
The following values are used as keys in the options dictionary passed to the
bind:toObject:withKeyPath:options: (page 3699) method. These keys are also used in the dictionary
returned as the NSOptionsKey value of infoForBinding: (page 3700). See the Cocoa Bindings Reference for
more information.

NSString *NSAllowsEditingMultipleValuesSelectionBindingOption;
NSString *NSAllowsNullArgumentBindingOption;
NSString *NSAlwaysPresentsApplicationModalAlertsBindingOption;
NSString *NSConditionallySetsEditableBindingOption;
NSString *NSConditionallySetsEnabledBindingOption;
NSString *NSConditionallySetsHiddenBindingOption;
NSString *NSContinuouslyUpdatesValueBindingOption;
NSString *NSCreatesSortDescriptorBindingOption;
NSString *NSDeletesObjectsOnRemoveBindingsOption;
NSString *NSDisplayNameBindingOption;
NSString *NSDisplayPatternBindingOption;
NSString *NSContentPlacementTagBindingOption;
NSString *NSHandlesContentAsCompoundValueBindingOption;
NSString *NSInsertsNullPlaceholderBindingOption;
NSString *NSInvokesSeparatelyWithArrayObjectsBindingOption;
NSString *NSMultipleValuesPlaceholderBindingOption;
NSString *NSNoSelectionPlaceholderBindingOption;
NSString *NSNotApplicablePlaceholderBindingOption;
NSString *NSNullPlaceholderBindingOption;
NSString *NSRaisesForNotApplicableKeysBindingOption;
NSString *NSPredicateFormatBindingOption;
NSString *NSSelectorNameBindingOption;
NSString *NSSelectsAllWhenSettingContentBindingOption;
NSString *NSValidatesImmediatelyBindingOption;
NSString *NSValueTransformerNameBindingOption;
NSString *NSValueTransformerBindingOption;

Constants
NSAllowsEditingMultipleValuesSelectionBindingOption

An NSNumber object containing a Boolean value that determines if the binding allows editing when
the value represents a multiple selection.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

3702 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSAlwaysPresentsApplicationModalAlertsBindingOption
An NSNumber object containing a Boolean value that determines if validation and error alert panels
displayed as a result of this binding are displayed as application modal alerts. If YES, then the alerts
are displayed application model, otherwise they are displayed as sheets.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSAllowsNullArgumentBindingOption
An NSNumber object containing a Boolean value that determines if the argument bindings allows
passing argument values of nil.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSConditionallySetsEditableBindingOption
An NSNumber object containing a Boolean value that determines if the editable state of the user
interface item is automatically configured based on the controller's selection.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSConditionallySetsEnabledBindingOption
An NSNumber object containing a Boolean value that determines if the enabled state of the user
interface item is automatically configured based on the controller's selection.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSConditionallySetsHiddenBindingOption
An NSNumber object containing a Boolean value that determines if the hidden state of the user
interface item is automatically configured based on the controller's selection.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSContentPlacementTagBindingOption
An NSNumber object specifying the tag id of the popup menu item to replace with the content of
the array. This allows you to use a popup menu that contains both static and bindings generated
items.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSContinuouslyUpdatesValueBindingOption
An NSNumber object containing a Boolean value that determines whether the value of the binding
is updated as edits are made to the user interface item or is updated only when the user interface
item resigns as the responder.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSCreatesSortDescriptorBindingOption
An NSNumber object containing a Boolean value that determines if a sort descriptor is created for a
table column.

If this value is NO, then the table column does not allow sorting.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

Constants 3703
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSDeletesObjectsOnRemoveBindingsOption
An NSNumber object containing a Boolean value that determines if an object is deleted from the
managed context immediately upon being removed from a relationship.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSDisplayNameBindingOption
An NSString object containing a human readable string to be displayed for a predicate.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSDisplayPatternBindingOption
An NSString object that specifies a format string used to construct the final value of a string.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSHandlesContentAsCompoundValueBindingOption
An NSNumber object containing a Boolean value that determines if the content is treated as a
compound value.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSInsertsNullPlaceholderBindingOption
An NSNumber object containing a Boolean value that determines if an additional item which represents
nil is inserted into a matrix or pop-up menu before the items in the content array.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSInvokesSeparatelyWithArrayObjectsBindingOption
An NSNumber object containing a Boolean value that determines whether the specified selector is
invoked with the array as the argument or is invoked repeatedly with each array item as an argument.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSMultipleValuesPlaceholderBindingOption
An object that is used as a placeholder when the key path of the bound controller returns the
NSMultipleValuesMarker marker for a binding.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSNoSelectionPlaceholderBindingOption
An object that is used as a placeholder when the key path of the bound controller returns the
NSNoSelectionMarker marker for a binding.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSNotApplicablePlaceholderBindingOption
An object that is used as a placeholder when the key path of the bound controller returns the
NSNotApplicableMarker marker for a binding.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

3704 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSNullPlaceholderBindingOption
An object that is used as a placeholder when the key path of the bound controller returns nil for a
binding.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSPredicateFormatBindingOption
An NSString object containing the predicate pattern string for the predicate bindings. Use $value
to refer to the value in the search field.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSRaisesForNotApplicableKeysBindingOption
An NSNumber object containing a Boolean value that specifies if an exception is raised when the
binding is bound to a key that is not applicable—for example when an object is not key-value coding
compliant for a key.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSSelectorNameBindingOption
An NSString object that specifies the method selector invoked by the target binding when the user
interface item is clicked.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSSelectsAllWhenSettingContentBindingOption
An NSNumber object containing a Boolean value that specifies if all the items in the array controller
are selected when the content is set.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSValidatesImmediatelyBindingOption
An NSNumber object containing a Boolean value that determines if the contents of the binding are
validated immediately.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSValueTransformerNameBindingOption
The value for this key is an identifier of a registered NSValueTransformer instance that is applied
to the bound value.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSValueTransformerBindingOption
An NSValueTransformer instance that is applied to the bound value.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

Binding Dictionary Keys
The following values are used as keys in the dictionary returned by infoForBinding: (page 3700)

Constants 3705
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSString *NSObservedObjectKey;
NSString *NSObservedKeyPathKey;
NSString *NSOptionsKey;

Constants
NSObservedObjectKey

The object that is the observable controller of the binding.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSObservedKeyPathKey
An NSString object containing the key path of the binding.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSOptionsKey
An NSDictionary object containing key value pairs as specified in the options dictionary when the
binding was created.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

Bindings
The following values are used to specify a binding to bind:toObject:withKeyPath:options: (page 3699),
infoForBinding: (page 3700),unbind: (page 3701) andvalueClassForBinding: (page 3701). See Cocoa
Bindings Reference for more information.

3706 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSString *NSAlignmentBinding;
NSString *NSAlternateImageBinding;
NSString *NSAlternateTitleBinding;
NSString *NSAnimateBinding;
NSString *NSAnimationDelayBinding;
NSString *NSArgumentBinding;
NSString *NSAttributedStringBinding;
NSString *NSContentArrayBinding;
NSString *NSContentArrayForMultipleSelectionBinding;
NSString *NSContentBinding;
NSString *NSContentDictionaryBinding;
NSString *NSContentHeightBinding;
NSString *NSContentObjectBinding;
NSString *NSContentObjectsBinding;
NSString *NSContentSetBinding;
NSString *NSContentValuesBinding;
NSString *NSContentWidthBinding;
NSString *NSCriticalValueBinding;
NSString *NSDataBinding;
NSString *NSDisplayPatternTitleBinding;
NSString *NSDisplayPatternValueBinding;
NSString *NSDocumentEditedBinding;
NSString *NSDoubleClickArgumentBinding;
NSString *NSDoubleClickTargetBinding;
NSString *NSEditableBinding;
NSString *NSEnabledBinding;
NSString *NSExcludedKeysBinding;
NSString *NSFilterPredicateBinding;
NSString *NSFontBinding;
NSString *NSFontBoldBinding;
NSString *NSFontFamilyNameBinding;
NSString *NSFontItalicBinding;
NSString *NSFontNameBinding;
NSString *NSFontSizeBinding;
NSString *NSHeaderTitleBinding;
NSString *NSHiddenBinding;
NSString *NSImageBinding;
NSString *NSIncludedKeysBinding;
NSString *NSInitialKeyBinding;
NSString *NSInitialValueBinding;
NSString *NSIsIndeterminateBinding;
NSString *NSLabelBinding;
NSString *NSLocalizedKeyDictionaryBinding;
NSString *NSManagedObjectContextBinding;
NSString *NSMaximumRecentsBinding;
NSString *NSMaxValueBinding;
NSString *NSMaxWidthBinding;
NSString *NSMinValueBinding;
NSString *NSMinWidthBinding;
NSString *NSMixedStateImageBinding;
NSString *NSOffStateImageBinding;
NSString *NSOnStateImageBinding;
NSString *NSPredicateBinding;
NSString *NSRecentSearchesBinding;
NSString *NSRepresentedFilenameBinding;
NSString *NSRowHeightBinding;
NSString *NSSelectedIdentifierBinding;
NSString *NSSelectedIndexBinding;

Constants 3707
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSString *NSSelectedLabelBinding;
NSString *NSSelectedObjectBinding;
NSString *NSSelectedObjectsBinding;
NSString *NSSelectedTagBinding;
NSString *NSSelectedValueBinding;
NSString *NSSelectedValuesBinding;
NSString *NSSelectionIndexesBinding;
NSString *NSSelectionIndexPathsBinding;
NSString *NSSortDescriptorsBinding;
NSString *NSTargetBinding;
NSString *NSTextColorBinding;
NSString *NSTitleBinding;
NSString *NSToolTipBinding;
NSString *NSTransparentBinding;
NSString *NSValueBinding;
NSString *NSValuePathBinding;
NSString *NSValueURLBinding;
NSString *NSVisibleBinding;
NSString *NSWarningValueBinding;
NSString *NSWidthBinding;

Constants
NSAlignmentBinding

See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSAlternateImageBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSAlternateTitleBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSAnimateBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSAnimationDelayBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSArgumentBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

3708 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSAttributedStringBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSContentArrayBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSContentArrayForMultipleSelectionBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSContentBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSContentDictionaryBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSContentHeightBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSContentObjectBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSContentObjectsBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSContentSetBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSContentValuesBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

Constants 3709
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSContentWidthBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSCriticalValueBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSDataBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSDisplayPatternTitleBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSDisplayPatternValueBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSDocumentEditedBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSDoubleClickArgumentBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSDoubleClickTargetBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSEditableBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSEnabledBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

3710 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSExcludedKeysBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSFilterPredicateBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSFontBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSFontBoldBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSFontFamilyNameBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSFontItalicBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSFontNameBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSFontSizeBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSHeaderTitleBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSHiddenBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

Constants 3711
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSImageBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSIncludedKeysBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSInitialKeyBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSInitialValueBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSIsIndeterminateBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSLabelBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSLocalizedKeyDictionaryBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSManagedObjectContextBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSMaximumRecentsBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSMaxValueBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

3712 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSMaxWidthBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSMinValueBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSMinWidthBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSMixedStateImageBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSOffStateImageBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSOnStateImageBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSPredicateBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSRecentSearchesBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSRepresentedFilenameBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSRowHeightBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

Constants 3713
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSSelectedIdentifierBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSSelectedIndexBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSSelectedLabelBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSSelectedObjectBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSSelectedObjectsBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSSelectedTagBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSSelectedValueBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSSelectedValuesBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSSelectionIndexesBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSSelectionIndexPathsBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

3714 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSSortDescriptorsBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSTargetBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSTextColorBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSTitleBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSToolTipBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSTransparentBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.5 and later.

Declared in NSKeyValueBinding.h.

NSValueBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSValuePathBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSValueURLBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSVisibleBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

Constants 3715
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

NSWarningValueBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

NSWidthBinding
See Cocoa Bindings Reference for more information.

Available in Mac OS X v10.4 and later.

Declared in NSKeyValueBinding.h.

3716 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 200

NSKeyValueBindingCreation Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSLayoutManager.h

Companion guides Text System Overview
Text Layout Programming Guide

Overview

The NSLayoutManagerDelegate protocol defines the optional methods implemented by delegates of
NSLayoutManager objects.

Tasks

Invalidating Glyphs and Layout

– layoutManagerDidInvalidateLayout: (page 3719)
Informs the delegate that the given layout manager has invalidated layout information (not glyph
information).

Handling Layout for Text Containers

– layoutManager:didCompleteLayoutForTextContainer:atEnd: (page 3718)
Informs the delegate that the given layout manager has finished laying out text in the given text
container.

Overview 3717
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 201

NSLayoutManagerDelegate Protocol
Reference

Managing Temporary Attribute Support

– layoutManager:shouldUseTemporaryAttributes:forDrawingToScreen:atCharacterIndex:effectiveRange: (page
3718)

Sent when the layout manager is drawing and needs to decide whether or not to use temporary
attributes.

Instance Methods

layoutManager:didCompleteLayoutForTextContainer:atEnd:
Informs the delegate that the given layout manager has finished laying out text in the given text container.

- (void)layoutManager:(NSLayoutManager *)aLayoutManager
didCompleteLayoutForTextContainer:(NSTextContainer *)aTextContainer
atEnd:(BOOL)flag

Parameters
aLayoutManager

The layout manager doing the layout.

aTextContainer
The text container in which layout is complete. If nil, if there aren’t enough containers to hold all
the text; the delegate can use this information as a cue to add another text container.

flag
If YES, aLayoutManager is finished laying out its text—this also means that aTextContainer is the
final text container used by the layout manager. Delegates can use this information to show an
indicator or background or to enable or disable a button that forces immediate layout of text.

Discussion
This message is sent whenever a text container has been filled. This method can be useful for paginating.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSLayoutManager.h

layoutManager:shouldUseTemporaryAttributes:forDrawingToScreen:atCharacterIndex:
effectiveRange:
Sent when the layout manager is drawing and needs to decide whether or not to use temporary attributes.

- (NSDictionary *)layoutManager:(NSLayoutManager *)layoutManager
shouldUseTemporaryAttributes:(NSDictionary *)attrs
forDrawingToScreen:(BOOL)toScreen atCharacterIndex:(NSUInteger)charIndex
effectiveRange:(NSRangePointer)effectiveCharRange

3718 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 201

NSLayoutManagerDelegate Protocol Reference

Parameters
layoutManager

The layout manager sending the message.

attrs
The temporary attributes currently in effect for the given character range.

toScreen
YES if the layout manager is drawing to the screen; otherwise, NO.

charIndex
Index of the first character in the range being drawn.

effectiveCharRange
On input and output, the effective range to which the temporary attributes apply.

Return Value
The temporary attributes for the layout manager to use, or nil if no temporary attributes are to be used.

Discussion
The default behavior, if this method is not implemented, is to use temporary attributes only when drawing
to the screen, so an implementation to match that behavior would return attrs if toScreen is YES and
nil otherwise, without changing effectiveCharRange.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSLayoutManager.h

layoutManagerDidInvalidateLayout:
Informs the delegate that the given layout manager has invalidated layout information (not glyph information).

- (void)layoutManagerDidInvalidateLayout:(NSLayoutManager *)sender

Parameters
sender

The layout manager that invalidated layout.

Discussion
This method is invoked only when layout was complete and then became invalidated for some reason.
Delegates can use this information to show an indicator of background layout or to enable a button that
forces immediate layout of text.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSLayoutManager.h

Instance Methods 3719
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 201

NSLayoutManagerDelegate Protocol Reference

3720 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 201

NSLayoutManagerDelegate Protocol Reference

Conforms to NSControlTextEditingDelegate

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSMatrix.h

Companion guide Matrix Programming Guide

Overview

The NSMatrixDelegate protocol defines the optional methods implemented by delegates of NSMatrix
objects.

This protocol simply adopts the NSControlTextEditingDelegate protocol, adding no additional methods.
See NSControlTextEditingDelegate Protocol Reference for more information.

Overview 3721
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 202

NSMatrixDelegate Protocol Reference

3722 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 202

NSMatrixDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSMenu.h

Companion guide Application Menu and Pop-up List Programming Topics

Overview

The NSMenuDelegate protocol defines the optional methods implemented by delegates of NSMenu objects.

Tasks

Handling Keyboard Equivalents

– menuHasKeyEquivalent:forEvent:target:action: (page 3726)
Invoked to allow the delegate to return the target and action for a key-down event.

Updating Menu Layout

– menu:updateItem:atIndex:shouldCancel: (page 3725)
Invoked to let the delegate update a menu item before it is displayed.

– confinementRectForMenu:onScreen: (page 3724)
Invoked to allow the delegate to specify a display location for the menu.

Handling Highlighting

– menu:willHighlightItem: (page 3725)
Invoked to indicates that a menu is about to highlight a given item.

Overview 3723
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 203

NSMenuDelegate Protocol Reference

Handling Open and Close Events

– menuWillOpen: (page 3727)
Invoked when a menu is about to open.

– menuDidClose: (page 3726)
Invoked after a menu closed.

Handling Tracking

– numberOfItemsInMenu: (page 3728)
Invoked when a menu is about to be displayed at the start of a tracking session so the delegate can
specify the number of items in the menu.

– menuNeedsUpdate: (page 3727)
Invoked when a menu is about to be displayed at the start of a tracking session so the delegate can
modify the menu.

Instance Methods

confinementRectForMenu:onScreen:
Invoked to allow the delegate to specify a display location for the menu.

- (NSRect)confinementRectForMenu:(NSMenu *)menu onScreen:(NSScreen *)screen

Parameters
menu

The menu object.

screen
The screen the menu will open on.

Return Value
The rectangle, in screen coordinates, the menu should be displayed within.

Discussion
This method is sent to the delegate when a menu is about to be opened on the specified screen.

If you return NSZeroRect, or if the delegate does not implement this method, the menu will be confined
to the bounds appropriate for the given screen. The returned rect may not be honored in all cases, for example,
if it would force the menu to be too small.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSMenu.h

3724 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 203

NSMenuDelegate Protocol Reference

menu:updateItem:atIndex:shouldCancel:
Invoked to let the delegate update a menu item before it is displayed.

- (BOOL)menu:(NSMenu *)menu updateItem:(NSMenuItem *)item atIndex:(NSInteger)index
shouldCancel:(BOOL)shouldCancel

Parameters
menu

The menu object that owns item.

item
The menu-item object that may be updated.

index
The integer index of the menu item.

shouldCancel
Set to YES if, due to some user action, the menu no longer needs to be displayed before all the menu
items have been updated. You can ignore this flag, return YES, and continue; or you can save your
work (to save time the next time your delegate is called) and return NO to stop the updating.

Return Value
YES to continue the process. If you return NO, your menu:updateItem:atIndex:shouldCancel: is not
called again. In that case, it is your responsibility to trim any extra items from the menu.

Discussion
If your numberOfItemsInMenu: (page 3728) delegate method returns a positive value, then your
menu:updateItem:atIndex:shouldCancel: method is called for each item in the menu. You can then
update the menu title, image, and so forth for each menu item.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSMenu.h

menu:willHighlightItem:
Invoked to indicates that a menu is about to highlight a given item.

- (void)menu:(NSMenu *)menu willHighlightItem:(NSMenuItem *)item

Parameters
menu

The menu object about to highlight an item.

item
The item about to be highlighted.

Discussion
Only one item per menu can be highlighted at a time. If item is nil, it means that all items in the menu are
about to be unhighlighted

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 3725
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 203

NSMenuDelegate Protocol Reference

Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– highlightedItem (page 1614) (NSMenu)

Declared In
NSMenu.h

menuDidClose:
Invoked after a menu closed.

- (void)menuDidClose:(NSMenu *)menu

Parameters
menu

The menu that closed.

Special Considerations

Do not modify the structure of the menu or the menu items during this method.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– menuWillOpen: (page 3727)

Declared In
NSMenu.h

menuHasKeyEquivalent:forEvent:target:action:
Invoked to allow the delegate to return the target and action for a key-down event.

- (BOOL)menuHasKeyEquivalent:(NSMenu *)menu forEvent:(NSEvent *)event target:(id
*)target action:(SEL *)action

Parameters
menu

The menu object sending the delegation message.

event
An NSEvent object representing a key-down event.

target
Return by reference the target object for the menu item that corresponds to the event. Specify nil
to requests the menu's target.

action
Return by reference the action selector for the menu item that corresponds to the event.

Return Value
If there is a valid and enabled menu item that corresponds to this key-down even, return YES after specifying
the target and action. Return NO if there are no items with that key equivalent or if the item is disabled.

3726 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 203

NSMenuDelegate Protocol Reference

Discussion
If the delegate does not define this method, the menu is populated to find out if any items have a matching
key equivalent.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– performKeyEquivalent: (page 1625) (NSMenu)
– performActionForItemAtIndex: (page 1624) (NSMenu)

Declared In
NSMenu.h

menuNeedsUpdate:
Invoked when a menu is about to be displayed at the start of a tracking session so the delegate can modify
the menu.

- (void)menuNeedsUpdate:(NSMenu *)menu

Parameters
menu

The menu object that is about to be displayed.

Discussion
You can change the menu by adding, removing or modifying menu items. Be sure to set the proper enable
state for any new menu items. If populating the menu will take a long time, implement
numberOfItemsInMenu: (page 3728) andmenu:updateItem:atIndex:shouldCancel: (page 3725) instead.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSMenu.h

menuWillOpen:
Invoked when a menu is about to open.

- (void)menuWillOpen:(NSMenu *)menu

Parameters
menu

The menu that is about to open.

Special Considerations

Do not modify the structure of the menu or the menu items during this method.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 3727
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 203

NSMenuDelegate Protocol Reference

Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– menuDidClose: (page 3726)

Declared In
NSMenu.h

numberOfItemsInMenu:
Invoked when a menu is about to be displayed at the start of a tracking session so the delegate can specify
the number of items in the menu.

- (NSInteger)numberOfItemsInMenu:(NSMenu *)menu

Parameters
menu

The menu object about to be displayed.

Return Value
The number of menu items in the menu.

Discussion
If you return a positive value, the menu is resized by either removing or adding items. Newly created items
are blank. After the menu is resized, your menu:updateItem:atIndex:shouldCancel: method is called
for each item. If you return a negative value, the number of items is left unchanged and
menu:updateItem:atIndex:shouldCancel: (page 3725) is not called. If you can populate the menu quickly,
you can implement menuNeedsUpdate: (page 3727) instead of numberOfItemsInMenu: and
menu:updateItem:atIndex:shouldCancel:.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSMenu.h

3728 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 203

NSMenuDelegate Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSMenu.h

Companion guide Application Menu and Pop-up List Programming Topics

Overview

This informal protocol allows your application to update the enabled or disabled status of an NSMenuItem
object. It declares only one method, validateMenuItem: (page 3729).

Tasks

Validating Menu Items

– validateMenuItem: (page 3729)
Implemented to override the default action of enabling or disabling a specific menu item.

Instance Methods

validateMenuItem:
Implemented to override the default action of enabling or disabling a specific menu item.

- (BOOL)validateMenuItem:(NSMenuItem *)menuItem

Parameters
menuItem

An NSMenuItem object that represents the menu item.

Return Value
YES to enable menuItem, NO to disable it.

Discussion
The object implementing this method must be the target of menuItem. You can determine which menu
item menuItem is by querying it for its tag or action.

Overview 3729
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 204

NSMenuValidation Protocol Reference
(informal protocol)

The following example disables the menu item associated with the nextRecord action method when the
selected line in a table view is the last one; conversely, it disables the menu item with priorRecord as its
action method when the selected row is the first one in the table view. (The countryKeys array contains
names that appear in the table view.)

- (BOOL)validateMenuItem:(NSMenuItem *)item {
 int row = [tableView selectedRow];
 if ([item action] == @selector(nextRecord) &&
 (row == [countryKeys indexOfObject:[countryKeys lastObject]])) {
 return NO;
 }
 if ([item action] == @selector(priorRecord) && row == 0) {
 return NO;
 }
 return YES;
}

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTAudioContextInsert
QTAudioExtractionPanel
QTKitImport
QTKitPlayer

Declared In
NSMenu.h

3730 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 204

NSMenuValidation Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSNibLoading.h

Companion guide Resource Programming Guide

Overview

This informal protocol consists of a single method, awakeFromNib (page 3731). Classes can implement this
method to initialize state information after objects have been loaded from an Interface Builder archive (nib
file).

Tasks

Responding to Being Loaded from a Nib File

– awakeFromNib (page 3731)
Prepares the receiver for service after it has been loaded from an Interface Builder archive, or nib file.

Instance Methods

awakeFromNib
Prepares the receiver for service after it has been loaded from an Interface Builder archive, or nib file.

- (void)awakeFromNib

Discussion
An awakeFromNib message is sent to each object loaded from the archive, but only if it can respond to the
message, and only after all the objects in the archive have been loaded and initialized. When an object
receives an awakeFromNib message, it is guaranteed to have all its outlet instance variables set.

Overview 3731
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 205

NSNibAwaking Protocol Reference
(informal protocol)

Note: During Interface Builder’s test mode, this method is also sent to objects instantiated from loaded
palettes, which include executable code for the objects. It is not sent to objects created using the Classes
display of the nib file window in Interface Builder.

During the instantiation process, each object in the archive is unarchived and then initialized with the method
befitting its type. Cocoa views (and custom views that can be customized using an associated Interface
Builder palette) are initialized using their initWithCoder: method. Custom views are initialized using their
initWithFrame: method. Custom classes that have been instantiated in the nib are initialized using their
init method.

Once all objects have been instantiated and initialized from the archive, the nib loading code attempts to
reestablish the connections between each object’s outlets and the corresponding target objects. If your
custom objects have outlets, an NSNib object attempts to reestablish any connections you created in Interface
Builder. It starts by trying to establish the connections using your object’s own methods first. For each outlet
that needs a connection, the NSNib object looks for a method of the form setOutletName: in your object.
If that method exists, the NSNib object calls it, passing the target object as a parameter. If you did not define
a setter method with that exact name, the NSNib object searches the object for an instance variable (of type
IBOutlet id) with the corresponding outlet name and tries to set its value directly. If an instance variable
with the correct name cannot be found, initialization of that connection does not occur. Finally, after all the
objects are fully initialized, each receives an awakeFromNib message.

Important: Because the order in which objects are instantiated from an archive is not guaranteed, your
initialization methods should not send messages to other objects in the hierarchy. Messages to other objects
can be sent safely from within awakeFromNib—by which time it’s assured that all the objects are unarchived
and initialized (though not necessarily awakened, of course).

Typically, you implement awakeFromNib for the class you associate with the “File’s Owner” of the nib file.
You might also want to implement this method for any other classes you instantiate directly in your nib file.
The job of these objects is to give you a hook for connecting the nib file objects to other objects in your
application. Once that job is finished, you can either dispose of the objects or use them as a controller for
the nib file objects.

An example of how you might use awakeFromNib is shown below. Suppose your nib file has two custom
views that must be positioned relative to each other at runtime. Trying to position them at initialization time
might fail because the other view might not yet be unarchived and initialized yet. However, you can position
both of them in the nib file owner’s awakeFromNibmethod. In the code below, firstView and secondView
are outlets of the file’s owner:

- (void)awakeFromNib {
 NSRect viewFrame;

 viewFrame = [firstView frame];
 viewFrame.origin.x += viewFrame.size.width;
 [secondView setFrame:viewFrame];
 return;
}

It is recommended that you maintain a one-to-one correspondence between your File’s Owner objects and
their associated nib files. Loading two nib files with the same File’s Owner object causes that object’s
awakeFromNib method being called twice, which could cause some data structures to be reinitialized in
undesired ways. It is also recommended that you avoid loading other nib files from your awakeFromNib
method implementation.

3732 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 205

NSNibAwaking Protocol Reference

You should call the super implementation of awakeFromNib only if you know for certain that your superclass
provides an implementation. Because the Application Kit does not provide a default implementation of the
awakeFromNib method, calling super results in an exception if the parent class does not implement it.
Classes whose immediate parent class is NSObject or NSView do not need to call the super implementation.
For any other classes, you can use the instancesRespondToSelector: class method of NSObject to
determine if the parent class responds to awakeFromNib and call the method if it does.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ loadNibNamed:owner: (page 465) (NSBundle Additions)
- awakeAfterUsingCoder (NSObject class)
+ instancesRespondToSelector: (NSObject class)
- initWithCoder: (NSCoding protocol)
+ initialize (NSObject class)

Related Sample Code
ImageKitDemo
MenuItemView
MyPhoto
NumberInput_IMKit_Sample
ViewController

Declared In
NSNibLoading.h

Instance Methods 3733
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 205

NSNibAwaking Protocol Reference

3734 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 205

NSNibAwaking Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSSavePanel.h

Companion guides Application File Management
Sheet Programming Topics

Related sample code QTMetadataEditor

Overview

The NSOpenSavePanelDelegate protocol defines the methods that a delegate of NSOpenPanel or
NSSavePanel should implement.

Tasks

Running Panels

– panel:shouldEnableURL: (page 3736)
For NSOpenPanel delegates, asks the delegate whether the specified URL should be enabled in the
panel. This method is not called for NSSavePanel delegates; all URLs are always disabled.

– panel:validateURL:error: (page 3737)
For NSSavePanel delegates, asks the delegate for file URL validation when the user chooses the Save
button. For NSOpenPanel delegates, asks the delegate for file URL validation once for each selected
filename (or directory) when the user chooses the Open button.

– panel:didChangeToDirectoryURL: (page 3736)
Informs the delegate that the user changed the selected directory to the directory located at the
specified URL. The URL may be nil if the current URL can’t be represented by an NSURL object.

– panel:userEnteredFilename:confirmed: (page 3737)
Tells the delegate that the user confirmed a filename choice by clicking Save in a Save panel.

Overview 3735
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 206

NSOpenSavePanelDelegate Protocol
Reference

– panel:willExpand: (page 3738)
Tells the delegate that the Save panel is about to expand or collapse because the user clicked the
disclosure triangle that displays or hides the file browser.

– panelSelectionDidChange: (page 3738)
Tells the delegate that the user changed the selection in the specified Save panel.

Instance Methods

panel:didChangeToDirectoryURL:
Informs the delegate that the user changed the selected directory to the directory located at the specified
URL. The URL may be nil if the current URL can’t be represented by an NSURL object.

- (void)panel:(id)sender
didChangeToDirectoryURL:(NSURL *)url

Parameters
sender

The panel whose directory changed.

url
The URL of the new directory, or nil if it can’t be represented by an NSURL object.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSSavePanel.h

panel:shouldEnableURL:
For NSOpenPanel delegates, asks the delegate whether the specified URL should be enabled in the panel.
This method is not called for NSSavePanel delegates; all URLs are always disabled.

- (BOOL)panel:(id)sender
shouldEnableURL:(NSURL *)url

Parameters
sender

The panel asking whether the URL should be enabled.

url
The URL to be checked.

Return Value
YES to allow the URL to be enabled in the panel; otherwise, NO.

Discussion
Implementations of this method should be fast to avoid stalling the user interface. Use
panel:validateURL:error: (page 3737) instead if processing will take a long time.

3736 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 206

NSOpenSavePanelDelegate Protocol Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSSavePanel.h

panel:userEnteredFilename:confirmed:
Tells the delegate that the user confirmed a filename choice by clicking Save in a Save panel.

- (NSString *)panel:(id)sender
userEnteredFilename:(NSString *)filename
confirmed:(BOOL)okFlag

Parameters
sender

The panel reporting the user’s confirmation of a filename choice.

filename
The user’s filename choice.

okFlag
If YES, the user clicked the Save button; if NO, the user did not.

Return Value
You can either leave the filename alone, return a new filename, or return nil to cancel the save (and leave
the Save panel as is). This method is called before any required extension is appended to the filename and
before the Save panel asks the user to replace an existing file, if applicable.

Note that in the future, this method may be called multiple times in the sessions as the user types. In those
cases, okFlag will be NO until the user confirms the choice, in which case okFlag will become YES. If the
delegate does extensive validation or puts up alerts, it should do so only when okFlag is YES.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– panel:validateURL:error: (page 3737)

Declared In
NSSavePanel.h

panel:validateURL:error:
For NSSavePanel delegates, asks the delegate for file URL validation when the user chooses the Save button.
For NSOpenPanel delegates, asks the delegate for file URL validation once for each selected filename (or
directory) when the user chooses the Open button.

- (BOOL)panel:(id)sender
validateURL:(NSURL *)url
error:(NSError **)outError

Instance Methods 3737
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 206

NSOpenSavePanelDelegate Protocol Reference

Parameters
sender

The panel requesting URL validation.

url
The URL to be validated.

outError
If an error occurred during validation, the error that occurred.

Return Value
YES if the URL is an acceptable URL to save to or to open; otherwise, NO.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSSavePanel.h

panel:willExpand:
Tells the delegate that the Save panel is about to expand or collapse because the user clicked the disclosure
triangle that displays or hides the file browser.

- (void)panel:(id)sender
willExpand:(BOOL)expanding

Parameters
sender

The panel that is about to expand or collapse.

expanding
YES specifies that the panel is expanding; NO specifies that it is collapsing.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSavePanel.h

panelSelectionDidChange:
Tells the delegate that the user changed the selection in the specified Save panel.

- (void)panelSelectionDidChange:(id)sender

Parameters
sender

The panel whose selection changed.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

3738 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 206

NSOpenSavePanelDelegate Protocol Reference

Declared In
NSSavePanel.h

Instance Methods 3739
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 206

NSOpenSavePanelDelegate Protocol Reference

3740 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 206

NSOpenSavePanelDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSOutlineView.h

Companion guide Outline View Programming Topics

Overview

NSOutlineView objects support a data source delegate in addition to the regular delegate object. The
NSOutlineViewDataSource protocol defines methods that the outline view invokes as necessary to retrieve
data and information about the data from the data source delegate, and—optionally—to update data values.

All the methods in the NSOutlineViewDataSource protocol are marked as @optional. While this is true,
there are cases were you must implement some methods to achieve required functionality, specifically when
working with conventional data sources rather that data that is provided by Cocoa bindings.

Required and Optional Methods Using Programmatic Conventions
and Cocoa Bindings

If you are using conventional data sources for content you must implement the basic methods that provide
the outline view with data: outlineView:child:ofItem: (page 3743),
outlineView:isItemExpandable: (page 3744),outlineView:numberOfChildrenOfItem: (page 3746),
and outlineView:objectValueForTableColumn:byItem: (page 3747). Applications that acquire their
data using Cocoa bindings do not need to implement these methods.

Similarly, when using conventional data sources , if you want to allow the user to edit values, you must
implementoutlineView:setObjectValue:forTableColumn:byItem: (page 3748). When these methods
are invoked by the outline view, nil as the item refers to the “root” item. NSOutlineView requires that
each item in the outline view be unique. In order for the collapsed state of an outline view to remain consistent
between reloads you must always return the same object for an item. When using Cocoa bindings to provide
outline view content, there is no requirement to implement this method.

Overview 3741
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 207

NSOutlineViewDataSource Protocol Reference

Note: Some of the methods in this protocol, such as outlineView:child:ofItem: (page 3743) and
outlineView:numberOfChildrenOfItem: (page 3746) along with other methods that return data, are
called very frequently, so they must be efficient.

Tasks

Working with Items in a View

– outlineView:child:ofItem: (page 3743)
Returns the child item at the specified index of a given item.

– outlineView:isItemExpandable: (page 3744)
Returns a Boolean value that indicates whether the a given item is expandable.

– outlineView:numberOfChildrenOfItem: (page 3746)
Returns the number of child items encompassed by a given item.

– outlineView:objectValueForTableColumn:byItem: (page 3747)
Invoked by outlineView to return the data object associated with the specified item.

– outlineView:setObjectValue:forTableColumn:byItem: (page 3748)
Set the data object for a given item in a given column.

Supporting Drag and Drop

– outlineView:acceptDrop:item:childIndex: (page 3743)
Returns a Boolean value that indicates whether a drop operation was successful.

– outlineView:validateDrop:proposedItem:proposedChildIndex: (page 3749)
Used by an outline view to determine a valid drop target.

– outlineView:namesOfPromisedFilesDroppedAtDestination:forDraggedItems: (page 3745)
Returns an array of filenames for the created files that the receiver promises to create.

Supporting Object Persistence

– outlineView:itemForPersistentObject: (page 3745)
Invoked by outlineView to return the item for the archived object.

– outlineView:persistentObjectForItem: (page 3747)
Invoked by outlineView to return an archived object for item.

Working with a Pasteboard

– outlineView:writeItems:toPasteboard: (page 3750)
Returns a Boolean value that indicates whether a drag operation is allowed.

3742 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 207

NSOutlineViewDataSource Protocol Reference

Sorting

– outlineView:sortDescriptorsDidChange: (page 3748)
Invoked by an outline view to notify the data source that the descriptors changed and the data may
need to be resorted.

Instance Methods

outlineView:acceptDrop:item:childIndex:
Returns a Boolean value that indicates whether a drop operation was successful.

- (BOOL)outlineView:(NSOutlineView *)outlineView acceptDrop:(id < NSDraggingInfo
>)info item:(id)item childIndex:(NSInteger)index

Parameters
outlineView

The outline view that sent the message. outlineView must have previously allowed a drop.

info
An object that contains more information about this dragging operation.

item
The parent of the item over which the cursor was placed when the mouse button was released.

index
The index of the child of item over which the cursor was placed when the mouse button was released.

Return Value
YES if the drop operation was successful, otherwise NO.

Discussion
The data source should incorporate the data from the dragging pasteboard in the implementation of this
method. You can get the data for the drop operation from info using the draggingPasteboard (page 3662)
method.

The return value indicates success or failure of the drag operation to the system.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– shouldCollapseAutoExpandedItemsForDeposited: (page 1843) (NSOutlineView)

Declared In
NSOutlineView.h

outlineView:child:ofItem:
Returns the child item at the specified index of a given item.

Instance Methods 3743
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 207

NSOutlineViewDataSource Protocol Reference

- (id)outlineView:(NSOutlineView *)outlineView child:(NSInteger)index ofItem:(id)item

Parameters
outlineView

The outline view that sent the message.

index
The index of the child item from item to return.

item
An item in the data source.

Return Value
The child item at index of a item. If item is nil, returns the appropriate child item of the root object.

Discussion
Children of a given parent item are accessed sequentially. In order for the collapsed state of the outline view
to remain consistent when it is reloaded you must always return the same object for a specified child and
item.

Important: While this method is marked as @optional in the protocol, you must implement this method
if you are not providing the data for the outline view using Cocoa bindings.

Special Considerations

outlineView:child:ofItem: (page 3743) is called very frequently, so it must be efficient.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– outlineView:numberOfChildrenOfItem: (page 3746)

Declared In
NSOutlineView.h

outlineView:isItemExpandable:
Returns a Boolean value that indicates whether the a given item is expandable.

- (BOOL)outlineView:(NSOutlineView *)outlineView isItemExpandable:(id)item

Parameters
outlineView

The outline view that sent the message.

item
An item in the data source.

Return Value
YES if item can be expanded to display its children, otherwise NO.

Discussion
This method may be called quite often and should be efficient.

3744 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 207

NSOutlineViewDataSource Protocol Reference

Important: While this method is marked as @optional in the protocol, you must implement this method
if you are not providing the data for the outline view using Cocoa bindings.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:itemForPersistentObject:
Invoked by outlineView to return the item for the archived object.

- (id)outlineView:(NSOutlineView *)outlineView itemForPersistentObject:(id)object

Parameters
outlineView

The outline view that sent the message.

object
An archived representation of an item in outlineView's data source.

Return Value
The unarchived item corresponding to object. If the item is an archived object, this method may return the
object.

Discussion
When the outline view is restoring the saved expanded items, this method is called for each expanded item,
to translate the archived object to an outline view item.

Special Considerations

You must implement this method if you are automatically saving expanded items (that is, if
autosaveExpandedItems (page 1830) returns YES).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:namesOfPromisedFilesDroppedAtDestination:forDraggedItems:
Returns an array of filenames for the created files that the receiver promises to create.

- (NSArray *)outlineView:(NSOutlineView *)outlineView
namesOfPromisedFilesDroppedAtDestination:(NSURL *)dropDestination
forDraggedItems:(NSArray *)items

Instance Methods 3745
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 207

NSOutlineViewDataSource Protocol Reference

Parameters
outlineView

The outline view that sent the message.

dropDestination
The drop location where the files are created.

items
The items being dragged.

Return Value
An array of filenames (not full paths) for the created files that the receiver promises to create.

Discussion
For more information on file promise dragging, see documentation on the NSDraggingSource protocol
and namesOfPromisedFilesDroppedAtDestination: (page 3663).

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:numberOfChildrenOfItem:
Returns the number of child items encompassed by a given item.

- (NSInteger)outlineView:(NSOutlineView *)outlineView numberOfChildrenOfItem:(id)item

Parameters
outlineView

The outline view that sent the message.

item
An item in the data source.

Return Value
The number of child items encompassed by item. If item is nil, this method should return the number of
children for the top-level item.

Discussion
outlineView:numberOfChildrenOfItem: (page 3746) is called very frequently, so it must be efficient.

Important: While this method is marked as @optional in the protocol, you must implement this method
if you are not providing the data for the outline view using Cocoa bindings.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

3746 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 207

NSOutlineViewDataSource Protocol Reference

outlineView:objectValueForTableColumn:byItem:
Invoked by outlineView to return the data object associated with the specified item.

- (id)outlineView:(NSOutlineView *)outlineView
objectValueForTableColumn:(NSTableColumn *)tableColumn byItem:(id)item

Parameters
outlineView

The outline view that sent the message.

tableColumn
A column in outlineView.

item
An item in the data source in the specified tableColumn of the view.

Discussion
The item is located in the specified tableColumn of the view.

Important: While this method is marked as @optional in the protocol, you must implement this method
if you are not providing the data for the outline view using Cocoa bindings.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:persistentObjectForItem:
Invoked by outlineView to return an archived object for item.

- (id)outlineView:(NSOutlineView *)outlineView persistentObjectForItem:(id)item

Parameters
outlineView

The outline view that sent the message.

item
The item for which to return an archived object.

Return Value
An archived representation of item. If the item is an archived object, this method may return the item.

Discussion
When the outline view is saving the expanded items, this method is called for each expanded item, to translate
the outline view item to an archived object.

Special Considerations

You must implement this method if you are automatically saving expanded items (that is, if
autosaveExpandedItems (page 1830) returns YES).

Instance Methods 3747
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 207

NSOutlineViewDataSource Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:setObjectValue:forTableColumn:byItem:
Set the data object for a given item in a given column.

- (void)outlineView:(NSOutlineView *)outlineView setObjectValue:(id)object
forTableColumn:(NSTableColumn *)tableColumn byItem:(id)item

Parameters
outlineView

The outline view that sent the message.

object
The new value for the item.

tableColumn
A column in outlineView.

item
An item in the data source in the specified tableColumn of the view.

Discussion
The item is located in the specified tableColumn of the view.

Important: While this method is marked as @optional in the protocol, you must implement this method
if you are not providing the data for the outline view using Cocoa bindings.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:sortDescriptorsDidChange:
Invoked by an outline view to notify the data source that the descriptors changed and the data may need
to be resorted.

- (void)outlineView:(NSOutlineView *)outlineView sortDescriptorsDidChange:(NSArray
 *)oldDescriptors

Parameters
outlineView

The outline view that sent the message.

3748 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 207

NSOutlineViewDataSource Protocol Reference

oldDescriptors
An array that contains the previous descriptors.

Discussion
The data source typically sorts and reloads the data, and adjusts the selections accordingly. If you need to
know the current sort descriptors and the data source does not itself manage them, you can get
outlineView's current sort descriptors by sending it a sortDescriptors (page 2670) message.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:validateDrop:proposedItem:proposedChildIndex:
Used by an outline view to determine a valid drop target.

- (NSDragOperation)outlineView:(NSOutlineView *)outlineView validateDrop:(id <
NSDraggingInfo >)info proposedItem:(id)item proposedChildIndex:(NSInteger)index

Parameters
outlineView

The outline view that sent the message.

info
An object that contains more information about this dragging operation.

item
The proposed parent.

index
The proposed child location.

Return Value
A value that indicates which dragging operation the data source will perform.

Discussion
Based on the mouse position, the outline view will suggest a proposed drop location. The data source may
“retarget” a drop if desired by calling setDropItem:dropChildIndex: (page 1841) and returning something
other than NSDragOperationNone. You may choose to retarget for various reasons (for example, for better
visual feedback when inserting into a sorted position).

Implementation of this method is optional.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

Instance Methods 3749
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 207

NSOutlineViewDataSource Protocol Reference

outlineView:writeItems:toPasteboard:
Returns a Boolean value that indicates whether a drag operation is allowed.

- (BOOL)outlineView:(NSOutlineView *)outlineView writeItems:(NSArray *)items
toPasteboard:(NSPasteboard *)pboard

Parameters
outlineView

The outline view that invoked the method.

items
An array of the items participating in the drag.

pboard
The pasteboard to which to write the drag data.

Return Value
YES if the drag operation is allowed, otherwise NO.

Discussion
Invoked by outlineView after it has been determined that a drag should begin, but before the drag has
been started.

To refuse the drag, return NO. To start a drag, return YES and place the drag data onto the pboard (data,
owner, and so on). The drag image and other drag-related information will be set up and provided by the
outline view once this call returns with YES.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

3750 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 207

NSOutlineViewDataSource Protocol Reference

Conforms to NSControlTextEditingDelegate

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSOutlineView.h

Companion guides Outline View Programming Topics
Drag and Drop Programming Topics for Cocoa

Overview

The NSOutlineViewDelegate protocol defines the optional methods implemented by delegates of
NSOutlineView objects.

Some delegate methods have not yet migrated to the NSOutlineViewDelegate protocol, including:

 ■ outlineViewColumnDidMove: (page 1844)

 ■ outlineViewColumnDidResize: (page 1844)

 ■ outlineViewItemDidCollapse: (page 1844)

 ■ outlineViewItemDidExpand: (page 1845)

 ■ outlineViewItemWillCollapse: (page 1845)

 ■ outlineViewItemWillExpand: (page 1845)

 ■ outlineViewSelectionDidChange: (page 1846)

 ■ outlineViewSelectionIsChanging: (page 1846)

Tasks

Expanding and Collapsing the Outline

– outlineView:shouldExpandItem: (page 3759)
Returns a Boolean value that indicates whether the outline view should expand a given item.

Overview 3751
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

– outlineView:shouldCollapseItem: (page 3757)
Returns a Boolean value that indicates whether the outline view should collapse a given item.

Supporting Type Select

– outlineView:typeSelectStringForTableColumn:item: (page 3764)
Returns the string that is used for type selection for a given column and item.

– outlineView:nextTypeSelectMatchFromItem:toItem:forString: (page 3756)
Returns the first item that matches the searchString from within the range of startItem to endItem

– outlineView:shouldTypeSelectForEvent:withCurrentSearchString: (page 3762)
Returns a Boolean value that indicates whether type select should proceed for a given event and
search string.

Working with Tooltips

– outlineView:toolTipForCell:rect:tableColumn:item:mouseLocation: (page 3763)
When the cursor pauses over a given cell, the value returned from this method is displayed in a tooltip.

Handling Selection

– outlineView:shouldSelectTableColumn: (page 3760)
Returns a Boolean value that indicates whether the outline view should select a given table column.

– outlineView:shouldSelectItem: (page 3760)
Returns a Boolean value that indicates whether the outline view should select a given item.

– outlineView:selectionIndexesForProposedSelection: (page 3757)
Invoked to allow the delegate to modify the proposed selection.

– selectionShouldChangeInOutlineView: (page 3765)
Returns a Boolean value that indicates whether the outline view should change its selection.

Displaying Cells

– outlineView:willDisplayCell:forTableColumn:item: (page 3765)
Informs the delegate that outlineView is about to display the cell specified by tableColumn and
item.

– outlineView:willDisplayOutlineCell:forTableColumn:item: (page 3765)
Informs the delegate that an outline view is about to display a cell used to draw the expansion symbol.

– outlineView:dataCellForTableColumn:item: (page 3754)
Returns the cell to use in a given column for a given item.

– outlineView:shouldShowOutlineCellForItem: (page 3761)
Returns a whether the specified item should display the outline cell (the disclosure triangle).

– outlineView:shouldShowCellExpansionForTableColumn:item: (page 3760)
Invoked to allow the delegate to control cell expansion for a specific column and item.

3752 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

Moving and Resizing Columns

– outlineView:shouldReorderColumn:toColumn: (page 3759)
Sent to the delegate to allow or prohibit the specified column to be dragged to a new location.

Editing Items

– outlineView:shouldEditTableColumn:item: (page 3758)
Returns a Boolean value that indicates whether the outline view should allow editing of a given item
in a given table column.

Working with Table Columns

– outlineView:mouseDownInHeaderOfTableColumn: (page 3756)
Sent to the delegate whenever the mouse button is clicked in outlineView while the cursor is in a
column header tableColumn.

– outlineView:didClickTableColumn: (page 3754)
Sent at the time the mouse button subsequently goes up in outlineView and tableColumn has
been “clicked” without having been dragged anywhere.

– outlineView:didDragTableColumn: (page 3755)
Sent at the time the mouse button goes up in outlineView and tableColumn has been dragged
during the time the mouse button was down.

Customizing Column and Row Sizes

– outlineView:heightOfRowByItem: (page 3755)
Returns the height in points of the row containing item.

– outlineView:sizeToFitWidthOfColumn: (page 3763)
Invoked to allow the delegate to provide custom sizing behavior when a column’s resize divider is
double clicked.

Customizing Tracking Support

– outlineView:shouldTrackCell:forTableColumn:item: (page 3762)
Returns a Boolean value that indicates whether a given cell should be tracked.

Grouping Rows

– outlineView:isGroupItem: (page 3755)
Returns a Boolean that indicates whether a given row should be drawn in the “group row” style.

Tasks 3753
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

Instance Methods

outlineView:dataCellForTableColumn:item:
Returns the cell to use in a given column for a given item.

- (NSCell *)outlineView:(NSOutlineView *)outlineView
dataCellForTableColumn:(NSTableColumn *)tableColumn item:(id)item

Parameters
outlineView

The outline view that sent the message.

tableColumn
The table column for which the cell is required. This value may be nil.

item
The item for which the cell is required.

Return Value
The cell to use in column tableColumn for item item, or nil (see Discussion). The cell must properly
implement copyWithZone: (since it may be copied by by the outline view).

Discussion
You can return a different data cell for any particular combination of table column and item, or a cell that
will be used for the entire row (a full width cell). If tableColumn is non-nil, you should return a cell. Typically
you should default to returning the result from [tableColumn dataCellForRow:row].

When each row (identified by the item) is being drawn, this method is first called with a nil value for
tableColumn. At this time, you can return a cell that will be used to draw the entire row, acting like a group.
If you do return a cell for the 'nil' table column, your implementations of the other corresponding datasource
and delegate methods must be prepared to be invoked with a nil value for tableColumn. If do not return
a cell for the 'nil' table column, the method will be called once for each column in the outline view, as usual.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:didClickTableColumn:
Sent at the time the mouse button subsequently goes up in outlineView and tableColumn has been
“clicked” without having been dragged anywhere.

- (void)outlineView:(NSOutlineView *)outlineView didClickTableColumn:(NSTableColumn
 *)tableColumn

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

3754 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

Declared In
NSOutlineView.h

outlineView:didDragTableColumn:
Sent at the time the mouse button goes up in outlineView and tableColumn has been dragged during
the time the mouse button was down.

- (void)outlineView:(NSOutlineView *)outlineView didDragTableColumn:(NSTableColumn
 *)tableColumn

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:heightOfRowByItem:
Returns the height in points of the row containing item.

- (CGFloat)outlineView:(NSOutlineView *)outlineView heightOfRowByItem:(id)item

Discussion
Values returned by this method should not include intercell spacing and must be greater than 0. Implement
this method to support an outline view with varying row heights.

Special Considerations

For large tables in particular, you should make sure that this method is efficient. NSTableView may cache
the values this method returns, so if you would like to change a row's height make sure to invalidate the row
height by calling noteHeightOfRowsWithIndexesChanged: (page 2640). NSTableView automatically
invalidates its entire row height cache in reloadData (page 2645) and noteNumberOfRowsChanged (page
2641).

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:isGroupItem:
Returns a Boolean that indicates whether a given row should be drawn in the “group row” style.

- (BOOL)outlineView:(NSOutlineView *)outlineView isGroupItem:(id)item

Parameters
outlineView

The outline view that sent the message.

Instance Methods 3755
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

item
An item in the outline view.

Return Value
YES to indicate a particular row should have the "group row" style drawn for that row, otherwise NO.

Discussion
If the cell in that row is an instance of NSTextFieldCell and contains only a string value, the “group row”
style attributes are automatically applied for that cell.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:mouseDownInHeaderOfTableColumn:
Sent to the delegate whenever the mouse button is clicked in outlineView while the cursor is in a column
header tableColumn.

- (void)outlineView:(NSOutlineView *)outlineView
mouseDownInHeaderOfTableColumn:(NSTableColumn *)tableColumn

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:nextTypeSelectMatchFromItem:toItem:forString:
Returns the first item that matches the searchString from within the range of startItem to endItem

- (id)outlineView:(NSOutlineView *)outlineView
nextTypeSelectMatchFromItem:(id)startItem toItem:(id)endItem forString:(NSString
 *)searchString

Parameters
outlineView

The outline view that sent the message.

startItem
The first item to search.

endItem
The item before which to stop searching. It is possible for endItem to be less than startItem if the
search will wrap.

searchString
The string for which to search.

3756 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

Return Value
The first item—from within the range of startItem to endItem—that matches the searchString, or nil
if there is no match.

Discussion
Implement this method if you want to control how type selection works. You should include startItem as
a possible match, but do not include endItem.

It is not necessary to implement this method in order to support type select.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:selectionIndexesForProposedSelection:
Invoked to allow the delegate to modify the proposed selection.

- (NSIndexSet *)outlineView:(NSOutlineView *)outlineView
selectionIndexesForProposedSelection:(NSIndexSet *)proposedSelectionIndexes

Parameters
outlineView

The outline view that sent the message.

proposedSelectionIndexes
An index set containing the indexes of the proposed selection.

Return Value
An NSIndexSet instance containing the indexes of the new selection. Return proposedSelectionIndexes
if the proposed selection is acceptable, or the value of the table view’s existing selection to avoid changing
the selection.

Discussion
This method may be called multiple times with one new index added to the existing selection to find out if
a particular index can be selected when the user is extending the selection with the keyboard or mouse.

Implementation of this method is optional. If implemented, this method will be called instead of
outlineView:willDisplayOutlineCell:forTableColumn:item: (page 3765).

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:shouldCollapseItem:
Returns a Boolean value that indicates whether the outline view should collapse a given item.

Instance Methods 3757
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

- (BOOL)outlineView:(NSOutlineView *)outlineView shouldCollapseItem:(id)item

Parameters
outlineView

The outline view that sent the message.

item
The item that should collapse.

Return Value
YES to permit outlineView to collapse item, NO to deny permission.

Discussion
The delegate can implement this method to disallow collapsing of specific items. For example, if the first
row of your outline view should not be collapsed, your delegate method could contain this line of code:

return [outlineView rowForItem:item]!=0;

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:shouldEditTableColumn:item:
Returns a Boolean value that indicates whether the outline view should allow editing of a given item in a
given table column.

- (BOOL)outlineView:(NSOutlineView *)outlineView shouldEditTableColumn:(NSTableColumn
 *)tableColumn item:(id)item

Return Value
YES to permit outlineView to edit the cell specified by tableColumn and item, NO to deny permission.

If this method returns YES, the cell may still not be editable—for example, if you have set up a custom
NSTextFieldCell as a data cell, it must return YES for isEditable to allow editing.

Discussion
The delegate can implement this method to disallow editing of specific cells.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– outlineView:setObjectValue:forTableColumn:byItem:

Declared In
NSOutlineView.h

3758 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

outlineView:shouldExpandItem:
Returns a Boolean value that indicates whether the outline view should expand a given item.

- (BOOL)outlineView:(NSOutlineView *)outlineView shouldExpandItem:(id)item

Parameters
outlineView

The outline view that sent the message.

item
The item that should expand.

Return Value
YES to permit outlineView to expand item, NO to deny permission.

Discussion
The delegate can implement this method to disallow expanding of specific items.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:shouldReorderColumn:toColumn:
Sent to the delegate to allow or prohibit the specified column to be dragged to a new location.

- (BOOL)outlineView:(NSOutlineView *)outlineView
shouldReorderColumn:(NSInteger)columnIndex toColumn:(NSInteger)newColumnIndex

Parameters
outlineView

The outline view that sent the message.

columnIndex
The index of the column being dragged.

newColumnIndex
The proposed target index of the column.

Return Value
YES if the column reordering should be allowed, otherwise NO.

Discussion
When a column is initially dragged by the user, the delegate is first called with a newColumnIndex value of
-1. Returning NOwill disallow that column from being reordered at all. Returning YES allows it to be reordered,
and the delegate will be called again when the column reaches a new location.

The actual NSTableColumn instance can be retrieved from the tableColumns (page 2670) array.

If this method is not implemented, all columns are considered reorderable.

Availability
Available in Mac OS X v10.6 and later.

Instance Methods 3759
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

Declared In
NSOutlineView.h

outlineView:shouldSelectItem:
Returns a Boolean value that indicates whether the outline view should select a given item.

- (BOOL)outlineView:(NSOutlineView *)outlineView shouldSelectItem:(id)item

Return Value
YES to permit outlineView to select item, NO to deny permission.

Discussion
The delegate can implement this method to disallow selection of particular items.

For better performance and finer grain control over the selection, use
outlineView:dataCellForTableColumn:item: (page 3754).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:shouldSelectTableColumn:
Returns a Boolean value that indicates whether the outline view should select a given table column.

- (BOOL)outlineView:(NSOutlineView *)outlineView
shouldSelectTableColumn:(NSTableColumn *)tableColumn

Return Value
YES to permit outlineView to select tableColumn, NO to deny permission.

Discussion
The delegate can implement this method to disallow selection of specific columns.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:shouldShowCellExpansionForTableColumn:item:
Invoked to allow the delegate to control cell expansion for a specific column and item.

- (BOOL)outlineView:(NSOutlineView *)outlineView
shouldShowCellExpansionForTableColumn:(NSTableColumn *)tableColumn item:(id)item

3760 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

Parameters
outlineView

The outline view that sent the message.

tableColumn
A table column in the outline view.

item
An item in the outline view.

Return Value
YES to allow an expansion tooltip to appear in the column tableColumn for item item, otherwise NO.

Discussion
Cell expansion can occur when the mouse hovers over the specified cell and the cell contents are unable to
be fully displayed within the cell. If this method returns YES, the full cell contents will be shown in a special
floating tool tip view, otherwise the content is truncated.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:shouldShowOutlineCellForItem:
Returns a whether the specified item should display the outline cell (the disclosure triangle).

- (BOOL)outlineView:(NSOutlineView *)outlineView
shouldShowOutlineCellForItem:(id)item

Parameters
outlineView

The outline view that sent the message.

item
An item in the outline view.

Return Value
YES if the outline cell should be displayed, otherwise NO.

Discussion
Returning NO causes frameOfOutlineCellAtRow: (page 1833) to return NSZeroRect, hiding the cell. In
addition, the row will not be collapsable by keyboard shortcuts.

This method will only be called for expandable rows.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOutlineView.h

Instance Methods 3761
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

outlineView:shouldTrackCell:forTableColumn:item:
Returns a Boolean value that indicates whether a given cell should be tracked.

- (BOOL)outlineView:(NSOutlineView *)outlineView shouldTrackCell:(NSCell *)cell
forTableColumn:(NSTableColumn *)tableColumn item:(id)item

Parameters
outlineView

The outline view that sent the message.

cell
The cell used to display item item in column tableColumn

tableColumn
A table column in the outline view.

item
An item in the outline view.

Return Value
YES if the cell should be tracked for the item item in column tableColumn, otherwise NO.

Discussion
Normally, only selectable or selected cells can be tracked. If you implement this method, cells which are not
selectable or selected can be tracked (and vice-versa). For example, this allows you to have a button cell in
a table which does not change the selection, but can still be clicked on and tracked.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:shouldTypeSelectForEvent:withCurrentSearchString:
Returns a Boolean value that indicates whether type select should proceed for a given event and search
string.

- (BOOL)outlineView:(NSOutlineView *)outlineView shouldTypeSelectForEvent:(NSEvent
 *)event withCurrentSearchString:(NSString *)searchString

Parameters
outlineView

The outline view that sent the message.

event
The event that caused the message to be sent.

searchString
The string for which searching is to proceed. The search string is nil if no type select has begun.

Return Value
YES if type select should proceed, otherwise NO.

Discussion
Generally, this method will be called from keyDown: (page 2159) and the event will be a key event.

3762 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:sizeToFitWidthOfColumn:
Invoked to allow the delegate to provide custom sizing behavior when a column’s resize divider is double
clicked.

- (CGFloat)outlineView:(NSOutlineView *)outlineView
sizeToFitWidthOfColumn:(NSInteger)column

Parameters
outlineView

The outline view that sent the message.

column
The index of the column.

Return Value
The width of the specified column.

Discussion
By default, NSOutlineView iterates every row in the table, accesses a cell via
preparedCellAtColumn:row: (page 2643), and requests the cellSize (page 549) to find the appropriate
largest width to use.

For accurate results and performance, it is recommended that this method is implemented when using large
tables. By default, large tables use a monte carlo simulation instead of interating every row.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSOutlineView.h

outlineView:toolTipForCell:rect:tableColumn:item:mouseLocation:
When the cursor pauses over a given cell, the value returned from this method is displayed in a tooltip.

- (NSString *)outlineView:(NSOutlineView *)outlineView toolTipForCell:(NSCell *)cell
rect:(NSRectPointer)rect tableColumn:(NSTableColumn *)tc item:(id)item
mouseLocation:(NSPoint)mouseLocation

Parameters
outlineView

The outline view that sent the message.

cell
The cell for which to generate a tooltip.

Instance Methods 3763
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

rect
The proposed active area of the tooltip. To control the default active area, you can modify the rect
parameter. By default, rect is computed as [cell drawingRectForBounds:cellFrame].

tc
The table column that contains cell.

item
The item for which to display a tooltip.

mouseLocation
The current mouse location in view coordinates.

Return Value
If you don’t want a tooltip at that location, return nil or the empty string.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:typeSelectStringForTableColumn:item:
Returns the string that is used for type selection for a given column and item.

- (NSString *)outlineView:(NSOutlineView *)outlineView
typeSelectStringForTableColumn:(NSTableColumn *)tableColumn item:(id)item

Parameters
outlineView

The outline view that sent the message.

tableColumn
A table column in the outline view.

item
An item in the outline view.

Return Value
The string that is used for type selection. You may want to change what is searched for based on what is
displayed, or simply return nil for that row and/or column to not be searched

Discussion
Implement this method if you want to control the string that is used for type selection. You may want to
change what is searched for based on what is displayed, or simply return nil to specify that the given row
and/or column should not be searched. By default, all cells with text in them are searched.

The default value when this delegate method is not implemented is:

[[outlineView preparedCellAtColumn:tableColumn row:[outlineView rowForItem:item]]
 stringValue]

and you can return this value from the delegate method if you wish.

Availability
Available in Mac OS X v10.5 and later.

3764 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:willDisplayCell:forTableColumn:item:
Informs the delegate that outlineView is about to display the cell specified by tableColumn and item.

- (void)outlineView:(NSOutlineView *)outlineView willDisplayCell:(id)cell
forTableColumn:(NSTableColumn *)tableColumn item:(id)item

Discussion
The delegate can modify cell to alter its display attributes; for example, making uneditable values display
in italic or gray text.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

outlineView:willDisplayOutlineCell:forTableColumn:item:
Informs the delegate that an outline view is about to display a cell used to draw the expansion symbol.

- (void)outlineView:(NSOutlineView *)outlineView willDisplayOutlineCell:(id)cell
forTableColumn:(NSTableColumn *)tableColumn item:(id)item

Discussion
Informs the delegate that outlineView is about to display cell—an expandable cell (a cell that has the
expansion symbol)—for the column and item specified by tableColumn and item. The delegate can modify
cell to alter its display attributes.

This method is not invoked when outlineView is about to display a non-expandable cell.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

selectionShouldChangeInOutlineView:
Returns a Boolean value that indicates whether the outline view should change its selection.

- (BOOL)selectionShouldChangeInOutlineView:(NSOutlineView *)outlineView

Return Value
YES to permit outlineView to change its selection (typically a row being edited), NO to deny permission.

Instance Methods 3765
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

Discussion
For example, if the user is editing a cell and enters an improper value, the delegate can prevent the user
from selecting or editing any other cells until a proper value has been entered into the original cell. The
delegate can implement this method for complex validation of edited rows based on the values of any of
their cells.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSOutlineView.h

3766 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 208

NSOutlineViewDelegate Protocol Reference

Conforms to NSObject

Availability Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h

Companion guides Pasteboard Programming Guide
Drag and Drop Programming Topics for Cocoa
Services Implementation Guide

Overview

This protocol is implemented by the data provider of a pasteboard item to provide the data for a particular
UTI type.

You can specify an object as a pasteboard data provider for a pasteboard item using NSPasteboardItem’s
setDataProvider:forTypes: (page 1914) method. The data provider must implement this protocol to
provide data upon request.

Tasks

Providing Data

– pasteboard:item:provideDataForType: (page 3767) required method
Asks the receiver to provide data for a specified type to a given pasteboard. (required)

– pasteboardFinishedWithDataProvider: (page 3768)
Informs the receiver that the pasteboard no longer needs the data provider for any of its pasteboard
items.

Instance Methods

pasteboard:item:provideDataForType:
Asks the receiver to provide data for a specified type to a given pasteboard. (required)

Overview 3767
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 209

NSPasteboardItemDataProvider Protocol
Reference

- (void)pasteboard:(NSPasteboard *)pasteboard
item:(NSPasteboardItem *)item
provideDataForType:(NSString *)type

Parameters
pasteboard

A pasteboard to which the receiver has promised to provide data.

item
A pasteboard item for which the receiver has promised to provide data

type
A UTI type string.

Discussion
The receiver was previously set as the provider using setDataProvider:forTypes: (page 1914).

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboardItem.h

pasteboardFinishedWithDataProvider:
Informs the receiver that the pasteboard no longer needs the data provider for any of its pasteboard items.

- (void)pasteboardFinishedWithDataProvider:(NSPasteboard *)pasteboard

Parameters
pasteboard

A pasteboard.

Discussion
One data provider can provide data for more than one pasteboard item. This method is called when the
pasteboard no longer needs the data provider for any of its pasteboard items. This can be either because
the data provider has fulfilled all promises, or because ownership of the pasteboard has changed.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboardItem.h

3768 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 209

NSPasteboardItemDataProvider Protocol Reference

Conforms to NSObject

Availability Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h

Companion guides Pasteboard Programming Guide
Drag and Drop Programming Topics for Cocoa
Services Implementation Guide

Related sample code DemoMonkey

Overview

The NSPasteboardReading protocol specifies the interface for initializing an object from a pasteboard. The
Cocoa framework classes NSString, NSAttributedString, NSURL, NSColor, NSSound, NSImage, and
NSPasteboardItem implement this protocol. You can make your custom class conform to this protocol so
that you can read instances from a pasteboard using the readObjectsForClasses:options: (page 1897)
method of NSPasteboard.

Tasks

Required Methods

+ readableTypesForPasteboard: (page 3770) required method
Returns an array of UTI strings of data types the receiver can read from the pasteboard and be initialized
from. (required)

+ readingOptionsForType:pasteboard: (page 3770) required method
Returns options for reading data of a specified type from a given pasteboard. (required)

Optional Method

– initWithPasteboardPropertyList:ofType: (page 3771)
Initializes an instance with a property list object and a type string.

Overview 3769
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 210

NSPasteboardReading Protocol Reference

Class Methods

readableTypesForPasteboard:
Returns an array of UTI strings of data types the receiver can read from the pasteboard and be initialized
from. (required)

+ (NSArray *)readableTypesForPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

A pasteboard.

You can use the pasteboard argument to provide different types based on the pasteboard name,
should you need to do so.

Return Value
An array of UTI strings of data types instances of the receiver can read from the pasteboard and be initialized
from.

Discussion
By default, the data for a type is provided to initWithPasteboardPropertyList:ofType: (page 3771) as
an instance of NSData. If you implement readingOptionsForType:pasteboard: (page 3770) and specify
a different option, the NSData object for a type can be converted to an NSString object or any other property
list object.

Special Considerations

Do not perform other pasteboard operations in the method implementation.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboard.h

readingOptionsForType:pasteboard:
Returns options for reading data of a specified type from a given pasteboard. (required)

+ (NSPasteboardReadingOptions)readingOptionsForType:(NSString *)type
pasteboard:(NSPasteboard *)pasteboard

Parameters
type

A UTI supported by instances of the receiver for reading (one of the types returned by
readableTypesForPasteboard: (page 3770)).

pasteboard
A pasteboard.

You can use the pasteboard argument to provide return different based on the pasteboard name,
should you need to do so.

3770 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 210

NSPasteboardReading Protocol Reference

Return Value
Options for reading data of type from pasteboard. For a list of valid values, see “Pasteboard Reading
Options” (page 3772).

Special Considerations

Do not perform other pasteboard operations in the method implementation.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboard.h

Instance Methods

initWithPasteboardPropertyList:ofType:
Initializes an instance with a property list object and a type string.

- (id)initWithPasteboardPropertyList:(id)propertyList
ofType:(NSString *)type

Parameters
propertyList

A property list containing data to initialize the receiver.

By default, the property list object is an instance of NSData. If you implement
readingOptionsForType:pasteboard: (page 3770) and specify an option other than
NSPasteboardReadingAsData (page 3772), thepropertyListmay be any other property list object.

type
A UTI supported by the receiver for reading (one of the types returned by
readableTypesForPasteboard: (page 3770)).

Return Value
An object initialized using the data in propertyList.

Special Considerations

This method is considered optional because, if readableTypesForPasteboard: (page 3770) returns just a
single type, and that type uses the NSPasteboardReadingAsKeyedArchive (page 3772) reading option,
then instances are initialized using initWithCoder: instead of this method.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboard.h

Instance Methods 3771
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 210

NSPasteboardReading Protocol Reference

Constants

Pasteboard Reading Options
Options to specify how data on the pasteboard should be interpreted to initialize an object in
initWithPasteboardPropertyList:ofType: (page 3771).

enum {
 NSPasteboardReadingAsData = 0,
 NSPasteboardReadingAsString = 1 << 0,
 NSPasteboardReadingAsPropertyList = 1 << 1,
 NSPasteboardReadingAsKeyedArchive = 1 << 2
};

Constants
NSPasteboardReadingAsData

Reads data from the pasteboard as-is and returns it as an NSData object.

This is the default value.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardReadingAsString
Reads data from the pasteboard and converts it to an NSString object.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardReadingAsPropertyList
Reads data from the pasteboard and un-serializes it as a property list.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardReadingAsKeyedArchive
Reads data from the pasteboard and uses initWithCoder: to initialize the object.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

Discussion
You can specify only one option from this list. If you do not specify an option, the default
NSPasteboardReadingAsData (page 3772) is used.

NSPasteboardReadingOptions
A type to specify how data on the pasteboard should be interpreted to initialize an object in
initWithPasteboardPropertyList:ofType: (page 3771).

typedef NSUInteger NSPasteboardReadingOptions;

Discussion
For valid values, see “Pasteboard Reading Options” (page 3772).

3772 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 210

NSPasteboardReading Protocol Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboard.h

Constants 3773
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 210

NSPasteboardReading Protocol Reference

3774 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 210

NSPasteboardReading Protocol Reference

Conforms to NSObject

Availability Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h

Companion guides Pasteboard Programming Guide
Drag and Drop Programming Topics for Cocoa
Services Implementation Guide

Related sample code DemoMonkey

Overview

The NSPasteboardWriting protocol specifies the interface for retrieving a representation of an object that
can be written to a pasteboard. The Cocoa framework classes NSString, NSAttributedString, NSURL,
NSColor, NSSound, NSImage, and NSPasteboardItem implement this protocol. You can make your custom
class conform to this protocol so that you can write instances of the class to a pasteboard using the
writeObjects: (page 1903) method of NSPasteboard.

Tasks

Required Methods

– writableTypesForPasteboard: (page 3776) required method
Returns an array of UTI strings of data types the receiver can write to a given pasteboard. (required)

– pasteboardPropertyListForType: (page 3776) required method
Returns a property list object to represent the receiver on a pasteboard as an object of a specified
type. (required)

Optional Method

– writingOptionsForType:pasteboard: (page 3777)
Returns options for writing data of a specified type to a given pasteboard.

Overview 3775
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 211

NSPasteboardWriting Protocol Reference

Instance Methods

pasteboardPropertyListForType:
Returns a property list object to represent the receiver on a pasteboard as an object of a specified type.
(required)

- (id)pasteboardPropertyListForType:(NSString *)type

Parameters
type

One of the types the receiver supports for writing (one of the UTIs returned by its implementation of
writableTypesForPasteboard: (page 3776)).

Return Value
A property list object to represent the receiver on a pasteboard as an object of type type.

Discussion
The returned value will commonly be the NSData object for the specified data type. However, if this method
returns either a string, or any other property-list type, the pasteboard will automatically convert these items
to the correct data format required for the pasteboard.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboard.h

writableTypesForPasteboard:
Returns an array of UTI strings of data types the receiver can write to a given pasteboard. (required)

- (NSArray *)writableTypesForPasteboard:(NSPasteboard *)pasteboard

Parameters
pasteboard

A pasteboard.

You can use this argument to provide different options based on the pasteboard name, if you need
to.

Return Value
An array of UTI strings of data types the receiver can write to pasteboard.

Discussion
By default, data for the first returned type is put onto the pasteboard immediately, with the remaining types
being promised.

To change the default behavior, implement -writingOptionsForType:pasteboard: and return
NSPasteboardWritingPromised (page 3778) to lazily provide data for types, return no option to provide
the data for that type immediately. Use the pasteboard argument to provide different types based on the
pasteboard name, if desired. Do not perform other pasteboard operations in the method implementation.

3776 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 211

NSPasteboardWriting Protocol Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboard.h

writingOptionsForType:pasteboard:
Returns options for writing data of a specified type to a given pasteboard.

- (NSPasteboardWritingOptions)writingOptionsForType:(NSString *)type
pasteboard:(NSPasteboard *)pasteboard

Parameters
type

One of the types the receiver supports for writing (one of the UTIs returned by its implementation of
writableTypesForPasteboard: (page 3776)).

pasteboard
A pasteboard.

You can use this argument to provide different options based on the pasteboard name, if you need
to.

Return Value
Options for writing data of type type to pasteboard. Return 0 for no options, or a value given in “Pasteboard
Writing Options” (page 3777).

Special Considerations

Do not perform other pasteboard operations in the method implementation.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboard.h

Constants

Pasteboard Writing Options
Constant to specify options for writing to a pasteboard, used by
writingOptionsForType:pasteboard: (page 3777).

Constants 3777
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 211

NSPasteboardWriting Protocol Reference

enum {
 NSPasteboardWritingPromised = 1 << 9,
};

Constants
NSPasteboardWritingPromised

Data for a type with this option will be promised, not immediately written.

Available in Mac OS X v10.6 and later.

Declared in NSPasteboard.h.

NSPasteboardWritingOptions
Type to specify options for writing to a pasteboard.

typedef NSUInteger NSPasteboardWritingOptions;

Discussion
For possible values, see “Pasteboard Writing Options” (page 3777).

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSPasteboard.h

3778 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 211

NSPasteboardWriting Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSPathCell.h

Overview

The NSPathCellDelegate optional protocol enables the delegate of an NSPathCell object to customize
the Open panel or pop-up menu of a path whose style is set to NSPathStylePopUp (page 1930).

Tasks

Customizing the Open Panel

– pathCell:willDisplayOpenPanel: (page 3779)
Implement this method to customize the Open panel shown by a pop-up–style path.

Customizing the Menu

– pathCell:willPopUpMenu: (page 3780)
Implement this method to customize the menu of a pop-up–style path.

Instance Methods

pathCell:willDisplayOpenPanel:
Implement this method to customize the Open panel shown by a pop-up–style path.

- (void)pathCell:(NSPathCell *)pathCell
willDisplayOpenPanel:(NSOpenPanel *)openPanel

Overview 3779
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 212

NSPathCellDelegate Protocol Reference

Parameters
pathCell

The path cell that sent the message.

openPanel
The Open panel to be displayed.

Discussion
This method is called before the Open panel is shown but after its allowed file types are set to the cell's
allowed types. At this time, you can further customize the Open panel as required. This method is called only
when the style is set to NSPathStylePopUp.

Implementation of this method is optional.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

pathCell:willPopUpMenu:
Implement this method to customize the menu of a pop-up–style path.

- (void)pathCell:(NSPathCell *)pathCell
willPopUpMenu:(NSMenu *)menu

Parameters
pathCell

The path cell that sent the message.

menu
The pop-up menu to be displayed.

Discussion
This method is called before the pop-up menu is shown. At this time, you can further customize the menu
as required, adding and removing items. This method is called only when the style is set to
NSPathStylePopUp.

Implementation of this method is optional.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathCell.h

3780 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 212

NSPathCellDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSPathControl.h

Overview

The NSPathControlDelegate optional protocol is implemented by the delegate of an NSPathControl
object to support dragging to and from the control.

Tasks

Dragging Support

– pathControl:shouldDragPathComponentCell:withPasteboard: (page 3782)
Implement this method to enable dragging from the control.

– pathControl:validateDrop: (page 3783)
Implement this method to enable dragging onto the control.

– pathControl:acceptDrop: (page 3782)
Implement this method to accept previously validated contents dropped onto the control.

Customizing a Pop-Up–Style Path

– pathControl:willDisplayOpenPanel: (page 3783)
Implement this method to customize the Open panel shown by a pop-up–style path.

– pathControl:willPopUpMenu: (page 3784)
Implement this method to customize the menu of a pop-up–style path.

Overview 3781
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 213

NSPathControlDelegate Protocol Reference

Instance Methods

pathControl:acceptDrop:
Implement this method to accept previously validated contents dropped onto the control.

- (BOOL)pathControl:(NSPathControl *)pathControl acceptDrop:(id < NSDraggingInfo
>)info

Parameters
pathControl

The path control that sent the message.

info
An object containing details about this dragging operation.

Discussion
In order to accept the dropped contents previously accepted from pathControl:validateDrop: (page
3783), you must implement this method. This method is called from performDragOperation: (page 3657).
You should change the URL value based on the dragged information.

If not implemented, and the control's cell is editable, the drop is accepted if it contains an NSURLPboardType
or NSFilenamesPboardType that conforms to the cell’s allowed types. The cell's URL value is automatically
changed, and the action is invoked. Implementation of this method is optional.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathControl.h

pathControl:shouldDragPathComponentCell:withPasteboard:
Implement this method to enable dragging from the control.

- (BOOL)pathControl:(NSPathControl *)pathControl
shouldDragPathComponentCell:(NSPathComponentCell *)pathComponentCell
withPasteboard:(NSPasteboard *)pasteboard

Parameters
pathControl

The path control that sent the message.

pathComponentCell
The path component cell from which the drag is beginning.

pasteboard
The pasteboard.

3782 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 213

NSPathControlDelegate Protocol Reference

Discussion
This method is called when a drag is about to begin. You can refuse to allow the drag to happen by returning
NO and allow it by returning YES. By default, the pasteboard automatically has the following types on it:
NSStringPboardType, NSURLPboardType (if there is a URL value for the cell being dragged), and
NSFilenamesPboardType (if the URL value returns YES from -isFileURL). You can customize the types
placed on the pasteboard at this time, if desired. Implementation of this method is optional.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathControl.h

pathControl:validateDrop:
Implement this method to enable dragging onto the control.

- (NSDragOperation)pathControl:(NSPathControl *)pathControl validateDrop:(id <
NSDraggingInfo >)info

Parameters
pathControl

The path control that sent the message.

info
An object containing details about this dragging operation.

Discussion
This method is called when something is dragged over the control. Return NSDragOperationNone to refuse
the drop, or return anything else to accept it.

If not implemented, and the control's cell is editable, the drop is accepted if it contains an NSURLPboardType
or NSFilenamesPboardType that conforms to the cell’s allowed types. Implementation of this method is
optional.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathControl.h

pathControl:willDisplayOpenPanel:
Implement this method to customize the Open panel shown by a pop-up–style path.

- (void)pathControl:(NSPathControl *)pathControl willDisplayOpenPanel:(NSOpenPanel
 *)openPanel

Parameters
pathControl

The path control displaying the Open panel.

openPanel
The Open panel to be displayed.

Instance Methods 3783
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 213

NSPathControlDelegate Protocol Reference

Discussion
This method is called before the Open panel is shown but after its allowed file types are set to the cell's
allowed types. At this time, you can further customize the Open panel as required. This method is called only
when the style is set to NSPathStylePopUp. Implementation of this method is optional.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathControl.h

pathControl:willPopUpMenu:
Implement this method to customize the menu of a pop-up–style path.

- (void)pathControl:(NSPathControl *)pathControl willPopUpMenu:(NSMenu *)menu

Parameters
pathControl

The path control displaying the pop-up menu.

menu
The pop-up menu to be displayed.

Discussion
This method is called before the pop-up menu is shown. At this time, you can further customize the menu
as required, adding and removing items. This method is called only when the style is set to
NSPathStylePopUp. Implementation of this method is optional.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPathControl.h

3784 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 213

NSPathControlDelegate Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSKeyValueBinding.h

Availability Available in Mac OS X v10.3 and later.

Companion guide Cocoa Bindings Programming Topics

Overview

The NSPlaceholders protocol provides an interface that allows an object to register default placeholders
that will be displayed for a binding, when no other placeholder has been specified. Individual placeholder
values can be specified for each of the marker objects (described in “Selection Markers” (page 3786)), as
well as when the property is nil.

Placeholders are used when a property of an instance of the receiving class is accessed through a key value
coding compliant method, and returns nil or a specialized marker.

Tasks

Managing Default Placeholders

+ setDefaultPlaceholder:forMarker:withBinding: (page 3786)
Sets placeholder as the default placeholder for the binding, when a key value coding compliant
property of an instance of the receiving class returns the value specified by marker, and no other
placeholder has been specified.

+ defaultPlaceholderForMarker:withBinding: (page 3786)
Returns an object that will be used as the placeholder for the binding, when a key value coding
compliant property of an instance of the receiving class returns the value specified by marker, and
no other placeholder has been specified.

Overview 3785
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 214

NSPlaceholders Protocol Reference
(informal protocol)

Class Methods

defaultPlaceholderForMarker:withBinding:
Returns an object that will be used as the placeholder for the binding, when a key value coding compliant
property of an instance of the receiving class returns the value specified by marker, and no other placeholder
has been specified.

+ (id)defaultPlaceholderForMarker:(id)marker withBinding:(NSString *)binding

Discussion
The marker can be nil or one of the constants described in “Selection Markers” (page 3786).

Availability
Available in Mac OS X v10.3 and later.

See Also
+ setDefaultPlaceholder:forMarker:withBinding: (page 3786)

Declared In
NSKeyValueBinding.h

setDefaultPlaceholder:forMarker:withBinding:
Sets placeholder as the default placeholder for the binding, when a key value coding compliant property
of an instance of the receiving class returns the value specified by marker, and no other placeholder has
been specified.

+ (void)setDefaultPlaceholder:(id)placeholder forMarker:(id)marker
withBinding:(NSString *)binding

Discussion
The marker can be nil or one of the constants described in “Selection Markers” (page 3786).

Availability
Available in Mac OS X v10.3 and later.

See Also
+ defaultPlaceholderForMarker:withBinding: (page 3786)

Declared In
NSKeyValueBinding.h

Constants

Selection Markers
The following constants are used to describe special cases for a controller’s selection.

3786 Class Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 214

NSPlaceholders Protocol Reference

id NSMultipleValuesMarker;
id NSNoSelectionMarker;
id NSNotApplicableMarker;

Constants
NSMultipleValuesMarker

This marker indicates that a key’s value contains multiple values that differ.

A binding can be configured to always return this marker for multiple items, even if the values are
the same.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueBinding.h.

NSNoSelectionMarker
This marker indicates that the controller’s selection is currently empty.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueBinding.h.

NSNotApplicableMarker
This marker indicates that an object is not key-value coding compliant for the requested key.

Available in Mac OS X v10.3 and later.

Declared in NSKeyValueBinding.h.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSKeyValueBinding.h

Constants 3787
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 214

NSPlaceholders Protocol Reference

3788 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 214

NSPlaceholders Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSPrintPanel.h

Overview

The NSPrintPanelAccessorizing protocol declares two methods that the NSPrintPanel class uses to
get information from a printing accessory controller.

A printing accessory controller manages a custom print panel accessory view and used to coordinate print
settings. If you are implementing a custom printing accessory view, your controller must support this protocol.
Implementation of only one method in the protocol is actually required. The other method is considered
optional and is used to support the print panel’s built-in preview facilities.

Tasks

Responding to Being Loaded from a Nib File

– localizedSummaryItems (page 3790) required method
Returns an array of dictionaries containing the localized user setting summary strings. (required)

– keyPathsForValuesAffectingPreview (page 3789)
Returns a set of strings identifying the key paths for any properties that might affect the built-in print
preview. (optional)

Instance Methods

keyPathsForValuesAffectingPreview
Returns a set of strings identifying the key paths for any properties that might affect the built-in print preview.
(optional)

- (NSSet *)keyPathsForValuesAffectingPreview

Overview 3789
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 215

NSPrintPanelAccessorizing Protocol Reference

Return Value
A set of NSString objects identifying one or more key paths. Only key paths for properties that might affect
the contents of the print preview should be returned.

Discussion
If an accessory view modifies printing-related properties that are used by the print preview, you should
implement this method to return the key paths for those properties. For example, if you write an accessory
view that lets the user change the left and right document margins in the current NSPrintInfo object, you
would return the following key paths: representedObject.leftMargin,
representedObject.rightMargin. (The NSPrintInfo object is the represented object of the accessory
controller.)

Implementation of this method is optional. You do not need to implement this method if you are not using
the NSPrintPanel object’s built-in preview facilities. If you do use these facilities, however, you should
implement this method.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPrintPanel.h

localizedSummaryItems
Returns an array of dictionaries containing the localized user setting summary strings. (required)

- (NSArray *)localizedSummaryItems

Return Value
An array of NSDictionary objects, each of which contains a
NSPrintPanelAccessorySummaryItemNameKey and
NSPrintPanelAccessorySummaryItemDescriptionKey key. The values for the keys are both strings.
This method must not return nil.

Discussion
Accessory panels must implement this method to return information about the panel’s current settings. The
returned array should contain a dictionary for each setting that is managed by the accessory panel and each
dictionary should contain two key-value pairs identifying the name of the setting and its current value.

Your accessory view must be KVO-compliant for the localizedSummaryItems key path because
NSPrintPanel object observes that key path and uses it to keep the contents of the summary view up to
date. This means your view should manually send KVO notifications to observers for the
localizedSummaryItems key path whenever the contents of the set of summary items changes. For more
information on supporting key-value observing and manual notifications, see Key-Value Observing Programming
Guide.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSPrintPanel.h

3790 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 215

NSPrintPanelAccessorizing Protocol Reference

Constants

Printing Summary Item Keys
These keys must be included in the dictionaries returned by the localizedSummaryItems (page 3790)
method.

NSString *NSPrintPanelAccessorySummaryItemNameKey;
NSString *NSPrintPanelAccessorySummaryItemDescriptionKey;

Constants
NSPrintPanelAccessorySummaryItemNameKey

Used as a key to specify the name of the accessory panel setting. The corresponding value should be
an NSString object.

Available in Mac OS X v10.5 and later.

Declared in NSPrintPanel.h.

NSPrintPanelAccessorySummaryItemDescriptionKey
Used as a key to identify the current value of the accessory panel setting. The corresponding value
should be an NSString object.

Available in Mac OS X v10.5 and later.

Declared in NSPrintPanel.h.

Declared In
NSPrintPanel.h

Constants 3791
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 215

NSPrintPanelAccessorizing Protocol Reference

3792 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 215

NSPrintPanelAccessorizing Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSRuleEditor.h

Companion guides Control and Cell Programming Topics for Cocoa
Predicate Programming Guide

Overview

The NSRuleEditorDelegate protocol defines the optional methods implemented by delegates of
NSRuleEditor objects.

Tasks

Providing Data

– ruleEditor:child:forCriterion:withRowType: (page 3794) required method
Returns the child of a given item at a given index. (required)

– ruleEditor:displayValueForCriterion:inRow: (page 3794) required method
Returns the value for a given criterion. (required)

– ruleEditor:numberOfChildrenForCriterion:withRowType: (page 3795) required method
Returns the number of child items of a given criterion or row type. (required)

– ruleEditor:predicatePartsForCriterion:withDisplayValue:inRow: (page 3795)
Returns a dictionary representing the parts of the predicate determined by the given criterion and
value.

Monitoring Row Changes

– ruleEditorRowsDidChange: (page 3796)
Notifies the receiver that a rule editor’s rows changed.

Overview 3793
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 216

NSRuleEditorDelegate Protocol Reference

Instance Methods

ruleEditor:child:forCriterion:withRowType:
Returns the child of a given item at a given index. (required)

- (id)ruleEditor:(NSRuleEditor *)editor child:(NSInteger)index
forCriterion:(id)criterion withRowType:(NSRuleEditorRowType)rowType

Parameters
editor

The rule editor that sent the message.

index
The index of the requested child criterion. This value must be in the range from 0 up to (but not
including) the number of children, as reported by the delegate in
ruleEditor:numberOfChildrenForCriterion:withRowType: (page 3795).

criterion
The parent of the requested child, or nil if the rule editor is requesting a root criterion.

rowType
The type of the row.

Return Value
An object representing the requested child (or root) criterion. This object is used by the delegate to represent
that position in the tree, and is passed as a parameter in subsequent calls to the delegate.

Special Considerations

The delegate must implement this method.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSRuleEditor.h

ruleEditor:displayValueForCriterion:inRow:
Returns the value for a given criterion. (required)

- (id)ruleEditor:(NSRuleEditor *)editor displayValueForCriterion:(id)criterion
inRow:(NSInteger)row

Parameters
editor

The rule editor that sent the message.

criterion
The criterion for which the value is required.

row
The row number of criterion.

3794 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 216

NSRuleEditorDelegate Protocol Reference

Return Value
The value for criterion.

Discussion
The value should be an instance of NSString, NSView, or NSMenuItem. If the value is an NSView or
NSMenuItem, you must ensure it is unique for every invocation of this method; that is, do not return a
particular instance of NSView or NSMenuItem more than once.

Special Considerations

The delegate must implement this method.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSRuleEditor.h

ruleEditor:numberOfChildrenForCriterion:withRowType:
Returns the number of child items of a given criterion or row type. (required)

- (NSInteger)ruleEditor:(NSRuleEditor *)editor
numberOfChildrenForCriterion:(id)criterion
withRowType:(NSRuleEditorRowType)rowType

Parameters
editor

The rule editor that sent the message.

criterion
The criterion for which the number of children is required.

rowType
The type of row of criterion.

Return Value
The number of child items of criterion. If criterion is nil, return the number of root criteria for the
row type rowType.

Special Considerations

The delegate must implement this method.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSRuleEditor.h

ruleEditor:predicatePartsForCriterion:withDisplayValue:inRow:
Returns a dictionary representing the parts of the predicate determined by the given criterion and value.

Instance Methods 3795
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 216

NSRuleEditorDelegate Protocol Reference

- (NSDictionary *)ruleEditor:(NSRuleEditor *)editor
predicatePartsForCriterion:(id)criterion withDisplayValue:(id)value
inRow:(NSInteger)row

Parameters
editor

The rule editor that sent the message.

criterion
The criterion for which the predicate parts are required.

value
The display value.

row
The row number of criterion.

Return Value
A dictionary representing the parts of the predicate determined by the given criterion and value. The keys
of the dictionary should be the string constants specified in Predicate Part Keys (page 2230) with
corresponding appropriate values.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSRuleEditor.h

ruleEditorRowsDidChange:
Notifies the receiver that a rule editor’s rows changed.

- (void)ruleEditorRowsDidChange:(NSNotification *)notification

Parameters
notification

A notification namedNSRuleEditorRowsDidChangeNotification (page 2231).

Discussion
If the delegate implements this method, NSRuleEditor automatically registers its delegate to receive
NSRuleEditorRowsDidChangeNotification (page 2231) notifications.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSRuleEditor.h

3796 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 216

NSRuleEditorDelegate Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSApplication.h

Companion guide Services Implementation Guide

Overview

This informal protocol consists of two methods, writeSelectionToPasteboard:types: (page 3798) and
readSelectionFromPasteboard: (page 3797). The first method provides data to a remote service, and the
second receives any data the remote service might send back. Both respond to messages that are generated
when the user chooses a command from the Services menu.

Tasks

Working with Pasteboards

– readSelectionFromPasteboard: (page 3797)
Reads data from the pasteboard and uses it to replace the current selection.

– writeSelectionToPasteboard:types: (page 3798)
Writes the current selection to the pasteboard.

Instance Methods

readSelectionFromPasteboard:
Reads data from the pasteboard and uses it to replace the current selection.

- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard

Parameters
pboard

The pasteboard containing the data to read.

Return Value
YES if your implementation was able to read the pasteboard data successfully; otherwise, NO.

Overview 3797
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 217

NSServicesRequests Protocol Reference
(informal protocol)

Discussion
You implement this method to replace your application's current selection (that is, the text or objects that
are currently selected) with the data on the pasteboard. The data would have been placed in the pasteboard
by another application in response to a remote message from the Services menu. A
readSelectionFromPasteboard: message is sent to the same object that previously received a
writeSelectionToPasteboard:types: (page 3798) message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

writeSelectionToPasteboard:types:
Writes the current selection to the pasteboard.

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard types:(NSArray *)types

Parameters
pboard

The pasteboard to receive your data.

types
An array of NSString objects listing the types of data that you should write to the pasteboard. You
should write data to the pasteboard for as many of the types as you support.

Return Value
YES if your implementation was able to write one or more types to the pasteboard; otherwise, NO.

Discussion
A writeSelectionToPasteboard:types: message is sent to the first responder when the user chooses
a command from the Services menu, but only if the receiver didn’t return nil to a previous
validRequestorForSendType:returnType: (page 2204) message.

After your method writes the data to the pasteboard, a remote message is sent to the application that provides
the service the user requested. If the service provider supplies return data to replace the selection, the first
responder will then receive a readSelectionFromPasteboard: (page 3797) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
– validRequestorForSendType:returnType: (page 2204) (NSResponder)

Related Sample Code
iSpend

Declared In
NSApplication.h

3798 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 217

NSServicesRequests Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSSound.h

Companion guide Sound Programming Topics for Cocoa

Overview

The NSSoundDelegate protocol defines the optional methods implemented by delegates of NSSound
objects.

Tasks

Playing Sounds

– sound:didFinishPlaying: (page 3799)
This delegate method is called when an NSSound instance has completed playback of its sound data.

Instance Methods

sound:didFinishPlaying:
This delegate method is called when an NSSound instance has completed playback of its sound data.

- (void)sound:(NSSound *)sound didFinishPlaying:(BOOL)finishedPlaying

Parameters
sound

The NSSound that has completed playback of its sound data.

finishedPlaying
YES when playback was successful; NO otherwise.

Overview 3799
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 218

NSSoundDelegate Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSound.h

3800 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 218

NSSoundDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSSpeechRecognizer.h

Companion guide Speech

Overview

The NSSpeechRecognizerDelegate protocol defines the optional methods implemented by delegates of
NSSpeechRecognizer objects.

Tasks

Recognizing Commands

– speechRecognizer:didRecognizeCommand: (page 3801)
Invoked when the recognition engine has recognized the application command command.

Instance Methods

speechRecognizer:didRecognizeCommand:
Invoked when the recognition engine has recognized the application command command.

- (void)speechRecognizer:(NSSpeechRecognizer *)sender didRecognizeCommand:(id)command

Discussion
command is one of the strings from the array passed to setCommands: (page 2483). The delegate typically
evaluates which command was recognized and performs the related action.

Availability
Available in Mac OS X v10.3 and later.

Overview 3801
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 219

NSSpeechRecognizerDelegate Protocol
Reference

Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSpeechRecognizer.h

3802 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 219

NSSpeechRecognizerDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSSpeechSynthesizer.h

Companion guide Speech

Overview

The NSSpeechSynthesizerDelegate protocol defines the optional methods implemented by delegates
of NSSpeechSynthesizer objects.

Tasks

Synthesizing Speech

– speechSynthesizer:willSpeakWord:ofString: (page 3806)
Sent just before a synthesized word is spoken through the sound output device.

– speechSynthesizer:willSpeakPhoneme: (page 3805)
Sent just before a synthesized phoneme is spoken through the sound output device.

– speechSynthesizer:didEncounterErrorAtIndex:ofString:message: (page 3804)
Sent to the delegate when a speech synthesizer encounters an error in text being synthesized.

– speechSynthesizer:didEncounterSyncMessage: (page 3804)
Sent to the delegate when a speech synthesizer encounters a synchronization error.

– speechSynthesizer:didFinishSpeaking: (page 3805)
Sent when an NSSpeechSynthesizer object finishes speaking through the sound output device.

Overview 3803
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 220

NSSpeechSynthesizerDelegate Protocol
Reference

Instance Methods

speechSynthesizer:didEncounterErrorAtIndex:ofString:message:
Sent to the delegate when a speech synthesizer encounters an error in text being synthesized.

- (void)speechSynthesizer:(NSSpeechSynthesizer *)sender
didEncounterErrorAtIndex:(NSUInteger)characterIndex ofString:(NSString *)string
message:(NSString *)message

Parameters
sender

Speech synthesizer informing its delegate of an error.

characterIndex
Location in text where the receiver encountered the error.

text
Text the receiver was synthesizing when the error occurred.

errorMessage
Error message.

Discussion
The synthesizer sends an error delegate message whenever it encounters a syntax error within a command
embedded in the string it is processing. This can be useful during application debugging, to detect problems
with commands that you have embedded in strings that your application speaks. It can also be useful if your
application allows users to embed commands within strings. Your application might display an alert indicating
that the synthesizer encountered a problem in processing an embedded command.

If your application needs information about errors that occurred prior to calling your error delegate method,
the application (including the error delegate method) can call the sender’s
objectForProperty:error: (page 2494) method with theNSSpeechErrorsProperty (page 2505) constant.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSpeechSynthesizer.h

speechSynthesizer:didEncounterSyncMessage:
Sent to the delegate when a speech synthesizer encounters a synchronization error.

- (void)speechSynthesizer:(NSSpeechSynthesizer *)sender
didEncounterSyncMessage:(NSString *)message

Parameters
sender

Speech synthesizer informing its delegate of an error.

errorMessage
Error message.

3804 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 220

NSSpeechSynthesizerDelegate Protocol Reference

Discussion
The synthesizer calls your synchronization delegate method whenever it encounters a synchronization
command embedded in a string. You might use the synchronization delegate method to provide a callback
not ordinarily provided.

For example, you might insert synchronization commands at the end of every sentence in a string, or you
might enter synchronization commands after every numeric value in the text.

However, to synchronize your application with phonemes or words, it makes more sense to use the built-in
phoneme and word delegate methods: speechSynthesizer:willSpeakPhoneme: (page 3805) and
speechSynthesizer:willSpeakWord:ofString: (page 3806).

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSpeechSynthesizer.h

speechSynthesizer:didFinishSpeaking:
Sent when an NSSpeechSynthesizer object finishes speaking through the sound output device.

- (void)speechSynthesizer:(NSSpeechSynthesizer *)sender
didFinishSpeaking:(BOOL)success

Parameters
sender

An NSSpeechSynthesizer object that has stopped speaking into the sound output device.

success
YES when speaking completed normally, NO if speaking is stopped prematurely for any reason.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– startSpeakingString: (page 2498) (NSSpeechSynthesizer)
– stopSpeaking (page 2500) (NSSpeechSynthesizer)

Declared In
NSSpeechSynthesizer.h

speechSynthesizer:willSpeakPhoneme:
Sent just before a synthesized phoneme is spoken through the sound output device.

- (void)speechSynthesizer:(NSSpeechSynthesizer *)sender
willSpeakPhoneme:(short)phonemeOpcode

Instance Methods 3805
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 220

NSSpeechSynthesizerDelegate Protocol Reference

Parameters
sender

An NSSpeechSynthesizer object that’s synthesizing text into speech.

phonemeOpcode
Phoneme that sender is about to speak into the sound output device.

Discussion
One use of this method might be to animate a mouth on screen to match the generated speech.

Important: In Mac OS X v10.4 and earlier, the delegate is not sent this message when the
NSSpeechSynthesizer object is synthesizing speech to a file (startSpeakingString:toURL: (page
2499)).

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– startSpeakingString: (page 2498) (NSSpeechSynthesizer)

Declared In
NSSpeechSynthesizer.h

speechSynthesizer:willSpeakWord:ofString:
Sent just before a synthesized word is spoken through the sound output device.

- (void)speechSynthesizer:(NSSpeechSynthesizer *)sender
willSpeakWord:(NSRange)wordToSpeak ofString:(NSString *)text

Parameters
sender

An NSSpeechSynthesizer object that’s synthesizing text into speech.

wordToSpeak
Word that sender is about to speak into the sound output device.

text
Text that is being synthesized by sender.

Discussion
One use of this method might be to visually highlight the word being spoken.

Important: In Mac OS X v10.4 and earlier, the delegate is not sent this message when the
NSSpeechSynthesizer object is synthesizing speech to a file (startSpeakingString:toURL: (page
2499)).

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

3806 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 220

NSSpeechSynthesizerDelegate Protocol Reference

See Also
– startSpeakingString: (page 2498) (NSSpeechSynthesizer)

Declared In
NSSpeechSynthesizer.h

Instance Methods 3807
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 220

NSSpeechSynthesizerDelegate Protocol Reference

3808 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 220

NSSpeechSynthesizerDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSSplitView.h

Companion guides Scroll View Programming Guide for Cocoa
View Programming Guide

Related sample code CoreAnimationText

Overview

The NSSplitViewDelegate protocol defines the optional methods implemented by delegates of
NSSplitView objects.

Tasks

Managing Subviews

– splitView:resizeSubviewsWithOldSize: (page 3814)
Allows the delegate to specify custom sizing behavior for the subviews of the NSSplitView sender.

– splitViewWillResizeSubviews: (page 3817)
Invoked by the default notification center to notify the delegate that the splitview will resize its
subviews.

– splitViewDidResizeSubviews: (page 3817)
Invoked by the default notification center to notify the delegate that the splitview did resize its
subviews.

– splitView:canCollapseSubview: (page 3811)
Allows the delegate to determine whether the user can collapse and uncollapse subview.

– splitView:shouldCollapseSubview:forDoubleClickOnDividerAtIndex: (page 3815)
Invoked to allow a delegate to determine if a subview should collapse in response to a double click.

– splitView:shouldAdjustSizeOfSubview: (page 3815)
Allows the delegate to specify whether the subview should be resized.

Overview 3809
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 221

NSSplitViewDelegate Protocol Reference

Configuring and Drawing View Dividers

– splitView:effectiveRect:forDrawnRect:ofDividerAtIndex: (page 3813)
Allows the delegate to modify the rectangle in which mouse clicks initiate divider dragging.

– splitView:shouldHideDividerAtIndex: (page 3816)
Allows the delegate to determine whether a divider can be dragged or adjusted off the edge of the
split view.

– splitView:additionalEffectiveRectOfDividerAtIndex: (page 3810)
Allows the delegate to return an additional rectangle in which mouse clicks will initiate divider
dragging.

Constraining Split Position

– splitView:constrainMaxCoordinate:ofSubviewAt: (page 3811)
Allows the delegate for sender to constrain the maximum coordinate limit of a divider when the
user drags it.

– splitView:constrainMinCoordinate:ofSubviewAt: (page 3812)
Allows the delegate for sender to constrain the minimum coordinate limit of a divider when the user
drags it.

– splitView:constrainSplitPosition:ofSubviewAt: (page 3813)
Allows the delegate for sender to constrain the divider to certain positions.

Instance Methods

splitView:additionalEffectiveRectOfDividerAtIndex:
Allows the delegate to return an additional rectangle in which mouse clicks will initiate divider dragging.

- (NSRect)splitView:(NSSplitView *)splitView
additionalEffectiveRectOfDividerAtIndex:(NSInteger)dividerIndex

Parameters
splitView

The split view that sent the message.

dividerIndex
The index of the divider.

Return Value
An additional rectangle in which mouse clicks should initiate divider dragging. The rectangle should be
expressed in the coordinate system defined by splitView. Returning NSZeroRect indicates no additional
dragging rectangle is desired.

Discussion
If a split view has no delegate, or if its delegate does not respond to this message, only mouse clicks within
the effective frame of a divider initiate divider dragging.

3810 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 221

NSSplitViewDelegate Protocol Reference

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSplitView.h

splitView:canCollapseSubview:
Allows the delegate to determine whether the user can collapse and uncollapse subview.

- (BOOL)splitView:(NSSplitView *)splitView canCollapseSubview:(NSView *)subview

Parameters
splitView

The split view that sent the message.

subview
The subview to collapse.

Return Value
YES if subview should collapse when the user drags a divider beyond the halfway mark between its minimum
size and its edge, otherwise NO.

Discussion
The subview uncollapses when the user drags the divider back beyond the halfway mark between its
minimum size and its edge.

To specify the minimum size, define the methods
splitView:constrainMaxCoordinate:ofSubviewAt: (page 3811) and
splitView:constrainMinCoordinate:ofSubviewAt: (page 3812). A subview can collapse only if you
also define splitView:constrainMinCoordinate:ofSubviewAt: (page 3812).

A collapsed subview is hidden but retained by the split view object, with the same size it had before it was
collapsed.

If the delegate does not implement this method the subviews can’t be collapsed.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSplitView.h

splitView:constrainMaxCoordinate:ofSubviewAt:
Allows the delegate for sender to constrain the maximum coordinate limit of a divider when the user drags
it.

- (CGFloat)splitView:(NSSplitView *)splitView
constrainMaxCoordinate:(CGFloat)proposedMax ofSubviewAt:(NSInteger)dividerIndex

Instance Methods 3811
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 221

NSSplitViewDelegate Protocol Reference

Parameters
splitView

The split view that sent the message.

proposedMax
The proposed maximum coordinate limit of the subview, in the split view’s flipped coordinate system.

dividerIndex
Specifies the divider the user is moving, with the first divider being 0 and increasing from top to
bottom (or left to right).

Return Value
The maximum coordinate limit of the divider.

Discussion
This method is invoked before the split view begins tracking the mouse to position a divider. You may further
constrain the limits that have been already set, but you cannot extend the divider limits.

If the split bars are horizontal (views are one on top of the other), proposedMax is the bottom limit. If the
split bars are vertical (views are side by side), proposedMax is the right limit. The initial value of proposedMax
is the bottom (or right side) of the subview after the divider.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– isVertical (page 2545) (NSSplitView)

Declared In
NSSplitView.h

splitView:constrainMinCoordinate:ofSubviewAt:
Allows the delegate for sender to constrain the minimum coordinate limit of a divider when the user drags
it.

- (CGFloat)splitView:(NSSplitView *)splitView
constrainMinCoordinate:(CGFloat)proposedMin ofSubviewAt:(NSInteger)dividerIndex

Parameters
splitView

The split view that sent the message.

proposedMin
The proposed minimum coordinate limit of the subview, in the split view’s flipped coordinate system.

dividerIndex
Specifies the divider the user is moving, with the first divider being 0 and increasing from top to
bottom (or left to right).

Return Value
The minimum coordinate limit of the divider.

Discussion
This method is invoked before the split view begins tracking the cursor to position a divider. You may further
constrain the limits that have been already set, but you cannot extend the divider limits.

3812 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 221

NSSplitViewDelegate Protocol Reference

If the split bars are horizontal (views are one on top of the other), proposedMin is the top limit. If the split
bars are vertical (views are side by side), proposedMin is the left limit. The initial value of proposedMin is
the top (or left side) of the subview before the divider.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– isVertical (page 2545) (NSSplitView)

Declared In
NSSplitView.h

splitView:constrainSplitPosition:ofSubviewAt:
Allows the delegate for sender to constrain the divider to certain positions.

- (CGFloat)splitView:(NSSplitView *)splitView
constrainSplitPosition:(CGFloat)proposedPosition
ofSubviewAt:(NSInteger)dividerIndex

Parameters
splitView

The split view that sent the message.

proposedPosition
The cursor’s current position, and the proposed position of the divider.

dividerIndex
Specifies the divider the user is moving, with the first divider being 0 and increasing from top to
bottom (or left to right).

Return Value
The position at which to constrain the divider.

Discussion
If the delegate implements this method, the split view calls it repeatedly as the user moves the divider.

For example, if a subview’s height must be a multiple of a certain number, use this method to return the
multiple nearest to proposedPosition.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSplitView.h

splitView:effectiveRect:forDrawnRect:ofDividerAtIndex:
Allows the delegate to modify the rectangle in which mouse clicks initiate divider dragging.

Instance Methods 3813
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 221

NSSplitViewDelegate Protocol Reference

- (NSRect)splitView:(NSSplitView *)splitView
effectiveRect:(NSRect)proposedEffectiveRect forDrawnRect:(NSRect)drawnRect
ofDividerAtIndex:(NSInteger)dividerIndex

Parameters
splitView

The split view that sent the message.

proposedEffectiveRect
The proposed rectangle in which mouse clicks should initiate divider dragging. The rectangle is
expressed in the coordinate system defined by splitView.

drawnRect
The frame of the divider, expressed in the coordinate system defined by splitView.

dividerIndex
The index of the divider.

Return Value
The rectangle in which mouse clicks should initiate divider dragging. The rectangle should be expressed in
the coordinate system defined by splitView.

Discussion
A split view with thick dividers proposes the drawn frame as the effective frame. A split view with thin dividers
proposes an effective frame that's a little larger than the drawn frame, to make it easier for the user to actually
grab the divider.

If a split view has no delegate, or if its delegate does not respond to this message, the split view behaves as
if it has a delegate that returns proposedEffectiveRect when sent this message.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSplitView.h

splitView:resizeSubviewsWithOldSize:
Allows the delegate to specify custom sizing behavior for the subviews of the NSSplitView sender.

- (void)splitView:(NSSplitView *)splitView resizeSubviewsWithOldSize:(NSSize)oldSize

Parameters
splitView

The split view that sent the message.

oldSize
The size of the split view before the user resized it.

Discussion
If the delegate implements this method,splitView:resizeSubviewsWithOldSize: (page 3814) is invoked
after the split view is resized.

The subviews should be resized such that the sum of the sizes of the subviews plus the sum of the thickness
of the dividers equals the size of the NSSplitView’s new frame. You can get the thickness of a divider through
the dividerThickness (page 2543) method.

3814 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 221

NSSplitViewDelegate Protocol Reference

Note that if you implement this delegate method to resize subviews on your own, the NSSplitView does not
perform any error checking for you. However, you can invoke adjustSubviews (page 2541) to perform the
default sizing behavior.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– adjustSubviews (page 2541) (NSSplitView)
– setFrame: (page 3218) (NSView)

Declared In
NSSplitView.h

splitView:shouldAdjustSizeOfSubview:
Allows the delegate to specify whether the subview should be resized.

- (BOOL)splitView:(NSSplitView *)splitView shouldAdjustSizeOfSubview:(NSView
*)subview

Parameters
splitView

The split view that sent the message.

subview
The subview to resize.

Return Value
YES if adjustSubviews can change the size of the subview, otherwise NO. By returning NO, you lock the size
of the split view subview while the split view is resized.

Discussion
Regardless of the value returned by this method, adjustSubviews (page 2541) may change the origin of the
subview. Otherwise non-resizable subviews may also be resized in order to prevent an invalid subview layout.

If a split view has no delegate, or if its delegate does not respond to this message, the split view behaves as
if this method returns YES.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSSplitView.h

splitView:shouldCollapseSubview:forDoubleClickOnDividerAtIndex:
Invoked to allow a delegate to determine if a subview should collapse in response to a double click.

- (BOOL)splitView:(NSSplitView *)splitView shouldCollapseSubview:(NSView *)subview
forDoubleClickOnDividerAtIndex:(NSInteger)dividerIndex

Instance Methods 3815
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 221

NSSplitViewDelegate Protocol Reference

Parameters
splitView

The split view that sent the message.

subview
The subview to collapse.

dividerIndex
The index of the divider.

Return Value
YES if the subview should collapse, NO otherwise.

Discussion
If implemented, the delegate will receive this message once for the subview before a divider when the user
double-clicks on that divider, and again for the subview after the divider, but only if the delegate returned
YES when sent splitView:canCollapseSubview: (page 3811) for the subview in question. When the
delegate indicates that both subviews should be collapsed NSSplitView's behavior is undefined.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSplitView.h

splitView:shouldHideDividerAtIndex:
Allows the delegate to determine whether a divider can be dragged or adjusted off the edge of the split
view.

- (BOOL)splitView:(NSSplitView *)splitView
shouldHideDividerAtIndex:(NSInteger)dividerIndex

Parameters
splitView

The split view that sent the message.

dividerIndex
The zero-based index of the divider.

Return Value
YES if the divider should allow dragging off the edge of the split view, resulting in it not being visible.

Discussion
If a split view has no delegate, or if its delegate does not respond to this message, the split view behaves as
if it has a delegate that returns NO when sent this message.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSplitView.h

3816 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 221

NSSplitViewDelegate Protocol Reference

splitViewDidResizeSubviews:
Invoked by the default notification center to notify the delegate that the splitview did resize its subviews.

- (void)splitViewDidResizeSubviews:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSSplitViewDidResizeSubviewsNotification (page 2549).

Discussion
If the delegate implements this method, the delegate is automatically registered to receive this notification.

This method is invoked after the split view resizes two of its subviews in response to the repositioning of a
divider.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSplitView.h

splitViewWillResizeSubviews:
Invoked by the default notification center to notify the delegate that the splitview will resize its subviews.

- (void)splitViewWillResizeSubviews:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSSplitViewWillResizeSubviewsNotification (page 2550).

Discussion
If the delegate implements this method, the delegate is automatically registered to receive this notification.

This method is invoked before the split view resizes two of its subviews in response to the repositioning of
a divider.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSSplitView.h

Instance Methods 3817
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 221

NSSplitViewDelegate Protocol Reference

3818 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 221

NSSplitViewDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSTableView.h

Companion guide Table View Programming Guide

Related sample code AnimatedTableView
ClockControl
Cocoa Tips and Tricks
QuickLookDownloader

Overview

The NSTableViewDataSource protocol declares the methods that an instance of NSTableView uses to
provide and access the contents of its data source object.

Note: Some of the methods in this protocol, such as
tableView:objectValueForTableColumn:row: (page 3822) andnumberOfRowsInTableView: (page
3820) along with other methods that return data, are called very frequently, so they must be efficient.

Tasks

Getting Values

– numberOfRowsInTableView: (page 3820)
Returns the number of records managed for aTableView by the data source object.

– tableView:objectValueForTableColumn:row: (page 3822)
Invoked by the table view to return the data object associated with the specified row and column.

Overview 3819
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 222

NSTableViewDataSource Protocol Reference

Setting Values

– tableView:setObjectValue:forTableColumn:row: (page 3823)
Sets the data object for an item in a given row in a given column.

Dragging

– tableView:acceptDrop:row:dropOperation: (page 3821)
Invoked by aTableViewwhen the mouse button is released over a table view that previously decided
to allow a drop.

– tableView:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithIndexes: (page
3821)

Returns an array of filenames that represent theindexSet rows for a drag to dropDestination.

– tableView:validateDrop:proposedRow:proposedDropOperation: (page 3824)
Used by aTableView to determine a valid drop target.

– tableView:writeRowsWithIndexes:toPasteboard: (page 3825)
Returns a Boolean value that indicates whether a drag operation is allowed.

Sorting

– tableView:sortDescriptorsDidChange: (page 3823)
Invoked by aTableView to indicate that sorting may need to be done.

Instance Methods

numberOfRowsInTableView:
Returns the number of records managed for aTableView by the data source object.

- (NSInteger)numberOfRowsInTableView:(NSTableView *)aTableView

Parameters
aTableView

The table view that sent the message.

Return Value
The number of rows in aTableView.

Discussion
An instance of NSTableView uses this method to determine how many rows it should create and display.
Your numberOfRowsInTableView: implementation is called very frequently, so it must be efficient.

3820 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 222

NSTableViewDataSource Protocol Reference

Note: This method is optional if your application is using Cocoa bindings for providing data to the table
view, otherwise it must be implemented.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:acceptDrop:row:dropOperation:
Invoked by aTableView when the mouse button is released over a table view that previously decided to
allow a drop.

- (BOOL)tableView:(NSTableView *)aTableView acceptDrop:(id < NSDraggingInfo >)info
row:(NSInteger)row dropOperation:(NSTableViewDropOperation)operation

Parameters
aTableView

The table view that sent the message.

info
An object that contains more information about this dragging operation.

row
The index of the proposed target row.

operation
The type of dragging operation.

Return Value
YES if the drop operation was successful, otherwise NO.

Discussion
The data source should incorporate the data from the dragging pasteboard in the implementation of this
method. You can get the data for the drop operation from info using the draggingPasteboard (page 3662)
method.

To accept a drop on the second row, row would be 2 and operation would be NSTableViewDropOn. To
accept a drop below the last row, row would be [aTableView numberOfRows] and operation would be
NSTableViewDropAbove.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithIndexes:
Returns an array of filenames that represent theindexSet rows for a drag to dropDestination.

Instance Methods 3821
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 222

NSTableViewDataSource Protocol Reference

- (NSArray *)tableView:(NSTableView *)aTableView
namesOfPromisedFilesDroppedAtDestination:(NSURL *)dropDestination
forDraggedRowsWithIndexes:(NSIndexSet *)indexSet

Parameters
aTableView

The table view that sent the message.

dropDestination
The drop location where the files are created.

indexSet
The indexes of the items being dragged.

Return Value
An array of filenames (not full paths) for the created files that the receiver promises to create.

Discussion
This method is called when a destination has accepted a promise drag.

For more information on file promise dragging, see documentation on the NSDraggingSource protocol
and namesOfPromisedFilesDroppedAtDestination: (page 3663).

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:objectValueForTableColumn:row:
Invoked by the table view to return the data object associated with the specified row and column.

- (id)tableView:(NSTableView *)aTableView objectValueForTableColumn:(NSTableColumn
 *)aTableColumn row:(NSInteger)rowIndex

Parameters
aTableView

The table view that sent the message.

aTableColumn
A column in in aTableView.

rowIndex
The row of the item in aTableColumn.

Return Value
An item in the data source in the specified tableColumn of the view.

Discussion
tableView:objectValueForTableColumn:row: is called each time the table cell needs to be redisplayed,
so it must be efficient.

3822 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 222

NSTableViewDataSource Protocol Reference

Note: This method is optional if your application is using Cocoa bindings for providing data to the table
view, otherwise it must be implemented.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:setObjectValue:forTableColumn:row:
Sets the data object for an item in a given row in a given column.

- (void)tableView:(NSTableView *)aTableView setObjectValue:(id)anObject
forTableColumn:(NSTableColumn *)aTableColumn row:(NSInteger)rowIndex

Parameters
aTableView

The table view that sent the message.

anObject
The new value for the item.

aTableColumn
A column in aTableView.

rowIndex
The row of the item in aTableColumn.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:sortDescriptorsDidChange:
Invoked by aTableView to indicate that sorting may need to be done.

- (void)tableView:(NSTableView *)aTableView sortDescriptorsDidChange:(NSArray
*)oldDescriptors

Parameters
aTableView

The table view that sent the message.

oldDescriptors
An array that contains the previous descriptors.

Instance Methods 3823
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 222

NSTableViewDataSource Protocol Reference

Discussion
The data source typically sorts and reloads the data, and adjusts the selections accordingly. If you need to
know the current sort descriptors and the data source does not manage them itself, you can get the current
sort descriptors by sending aTableView a sortDescriptors (page 2670) message.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:validateDrop:proposedRow:proposedDropOperation:
Used by aTableView to determine a valid drop target.

- (NSDragOperation)tableView:(NSTableView *)aTableView validateDrop:(id <
NSDraggingInfo >)info proposedRow:(NSInteger)row
proposedDropOperation:(NSTableViewDropOperation)operation

Parameters
aTableView

The table view that sent the message.

info
An object that contains more information about this dragging operation.

row
The index of the proposed target row.

operation
The type of dragging operation proposed.

Return Value
The dragging operation the data source will perform.

Discussion
The data source may “retarget” a drop if desired by calling setDropRow:dropOperation: (page 2663) and
returning something other than NSDragOperationNone. One may choose to retarget for various reasons
(e.g. for better visual feedback when inserting into a sorted position).

To propose a drop on the second row, row would be 2 and operation would be NSTableViewDropOn. To
propose a drop below the last row, row would be [aTableView numberOfRows] and operation would
be NSTableViewDropAbove.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

3824 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 222

NSTableViewDataSource Protocol Reference

tableView:writeRowsWithIndexes:toPasteboard:
Returns a Boolean value that indicates whether a drag operation is allowed.

- (BOOL)tableView:(NSTableView *)aTableView writeRowsWithIndexes:(NSIndexSet
*)rowIndexes toPasteboard:(NSPasteboard *)pboard

Parameters
aTableView

The table view that sent the message.

rowIndexes
An index set of row numbers that will be participating in the drag.

pboard
The pasteboard to which to write the drag data.

Return Value
YES if the drag operation is allowed, NO otherwise.

Discussion
Invoked by aTableView after it has been determined that a drag should begin, but before the drag has
been started.

To refuse the drag, return NO. To start a drag, return YES and place the drag data onto pboard (data, owner,
and so on). The drag image and other drag-related information will be set up and provided by the table view
once this call returns with YES.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

Instance Methods 3825
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 222

NSTableViewDataSource Protocol Reference

3826 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 222

NSTableViewDataSource Protocol Reference

Conforms to NSControlTextEditingDelegate

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSTableView.h

Companion guides Table View Programming Guide
Drag and Drop Programming Topics for Cocoa

Related sample code AnimatedTableView
Cocoa Tips and Tricks
DemoMonkey
QuickLookDownloader

Overview

The NSTableViewDelegate protocol defines the optional methods implemented by delegates of
NSTableView objects.

Tasks

Displaying Cells

– tableView:willDisplayCell:forTableColumn:row: (page 3840)
Informs the delegate that the tableview will display the specified cell at the row in the column.

– tableView:dataCellForTableColumn:row: (page 3829)
Invoked to allow the delegate to return a custom data cell for a specified row and column.

– tableView:shouldShowCellExpansionForTableColumn:row: (page 3836)
Invoked to allow the delegate to control cell expansion for a specific row and column.

– tableView:isGroupRow: (page 3832)
Invoked to allow the delegate to indicate that a specified row is a group row.

– tableView:toolTipForCell:rect:tableColumn:row:mouseLocation: (page 3838)
Returns a string that is displayed as a tooltip for the specified cell in the column and row.

Overview 3827
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

Editing Cells

– tableView:shouldEditTableColumn:row: (page 3834)
Returns whether the cell at the specified row and column can be edited.

Setting Row and Column Size

– tableView:heightOfRow: (page 3831)
Returns the height of the specified row.

– tableView:sizeToFitWidthOfColumn: (page 3838)
Invoked to allow the delegate to provide custom sizing behavior when a column’s resize divider is
double clicked.

Selecting in the Tableview

– selectionShouldChangeInTableView: (page 3829)
Returns whether the selection should change.

– tableView:shouldSelectRow: (page 3835)
Returns whether the table view should allow selection of the specified row.

– tableView:selectionIndexesForProposedSelection: (page 3833)
Invoked to allow the delegate to modify the proposed selection.

– tableView:shouldSelectTableColumn: (page 3835)
Returns whether the specified table column can be selected.

– tableViewSelectionIsChanging: (page 3841)
Informs the delegate that the table view’s selection is in the process of changing (typically because
the user is dragging the mouse across a number of rows).

– tableViewSelectionDidChange: (page 3841)
Informs the delegate that the table view’s selection has changed.

– tableView:shouldTypeSelectForEvent:withCurrentSearchString: (page 3837)
Invoked to allow the delegate to control type select for a specific event.

– tableView:typeSelectStringForTableColumn:row: (page 3839)
Invoked to allow the delegate to provide an alternate text value used for type selection for a specified
row and column.

– tableView:nextTypeSelectMatchFromRow:toRow:forString: (page 3833)
Invoked to allow the delegate to allow the delegate to modify how type selection works.

Moving and Resizing Columns

– tableView:shouldReorderColumn:toColumn: (page 3834)
Sent to the delegate to allow or prohibit the specified column to be dragged to a new location.

– tableView:didDragTableColumn: (page 3831)
Sent at the time the mouse button goes up in tableView and tableColumn has been dragged
during the time the mouse button was down.

3828 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

– tableViewColumnDidMove: (page 3840)
Informs the delegate that a column was moved by user action in the table view.

– tableViewColumnDidResize: (page 3841)
Informs the delegate that a column was resized in the table view.

Responding to Mouse Events

– tableView:didClickTableColumn: (page 3830)
Sent when the mouse button was clicked in a table column, but the column was not dragged.

– tableView:mouseDownInHeaderOfTableColumn: (page 3832)
Sent to the delegate whenever the mouse button is clicked in the table view’s header column.

– tableView:shouldTrackCell:forTableColumn:row: (page 3837)
Invoked to allow the delegate to control the tracking behavior for a specific cell.

Instance Methods

selectionShouldChangeInTableView:
Returns whether the selection should change.

- (BOOL)selectionShouldChangeInTableView:(NSTableView *)aTableView

Parameters
aTableView

The table view that sent the message.

Return Value
YES to allow the table view to change its selection (typically a row being edited), NO to deny selection change.

Discussion
The user can select and edit different cells within the same row, but can’t select another row unless the
delegate approves. The delegate can implement this method for complex validation of edited rows based
on the values of any of their cells.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:dataCellForTableColumn:row:
Invoked to allow the delegate to return a custom data cell for a specified row and column.

- (NSCell *)tableView:(NSTableView *)tableView dataCellForTableColumn:(NSTableColumn
 *)tableColumn row:(NSInteger)row

Instance Methods 3829
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

Parameters
tableView

The table view that sent the message.

tableColumn
The table column.

row
The row index.

Return Value
An NSCell subclass that is used for the specified row and tableColumn. The returned cell must properly
implement copyWithZone:.

Discussion
A different data cell can be returned for any particular table column and row, or a cell that will be used for
the entire row (a full width cell).

If the tableColumn is non-nil, you should return a cell, and generally that will be the result of sending
tableColumn a dataCellForRow: (page 2590) message.

This method will be invoked with a tableColumn value of nil to allow you to return a group cell–a cell that
will be used to draw the entire row, acting as a separator. If you return a cell when tableColumn is nil, any
implemented datasource and delegate methods must be prepared to handle a nil table column value.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:didClickTableColumn:
Sent when the mouse button was clicked in a table column, but the column was not dragged.

- (void)tableView:(NSTableView *)tableView didClickTableColumn:(NSTableColumn
*)tableColumn

Parameters
tableView

The table view that sent the message.

tableColumn
The table column.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

3830 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

tableView:didDragTableColumn:
Sent at the time the mouse button goes up in tableView and tableColumn has been dragged during the
time the mouse button was down.

- (void)tableView:(NSTableView *)tableView didDragTableColumn:(NSTableColumn
*)tableColumn

Parameters
tableView

The table view that sent the message.

tableColumn
The table column.

Special Considerations

The behavior of this method on Mac OS X v10.5 is different from prior versions. On Mac OS X v 10.5 the
dragged column is sent to the delegate. In earlier versions the table column that is currently located at the
dragged column's original index is sent.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:heightOfRow:
Returns the height of the specified row.

- (CGFloat)tableView:(NSTableView *)tableView heightOfRow:(NSInteger)row

Parameters
tableView

The table view that sent the message.

row
The row index.

Return Value
The height of the row. The height should not include intercell spacing and must be greater than zero.

Discussion
You should implement this method if your table supports varying row heights.

Although table views may cache the returned values, you should ensure that this method is efficient. When
you change a row's height you must invalidate the existing row height by calling
noteHeightOfRowsWithIndexesChanged: (page ?). NSTableView automatically invalidates its entire
row height cache when reloadData (page ?) and noteNumberOfRowsChanged (page ?) are called.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Instance Methods 3831
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

Declared In
NSTableView.h

tableView:isGroupRow:
Invoked to allow the delegate to indicate that a specified row is a group row.

- (BOOL)tableView:(NSTableView *)tableView isGroupRow:(NSInteger)row

Parameters
tableView

The table view that sent the message.

row
The row index.

Return Value
YES if the specified row should have the group row style drawn, NO otherwise.

Discussion
If the cell in row is an NSTextFieldCell and contains only a string, the group row style attributes will
automatically be applied to the cell.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:mouseDownInHeaderOfTableColumn:
Sent to the delegate whenever the mouse button is clicked in the table view’s header column.

- (void)tableView:(NSTableView *)tableView
mouseDownInHeaderOfTableColumn:(NSTableColumn *)tableColumn

Parameters
tableView

The table view that sent the message.

tableColumn
The table column.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

3832 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

tableView:nextTypeSelectMatchFromRow:toRow:forString:
Invoked to allow the delegate to allow the delegate to modify how type selection works.

- (NSInteger)tableView:(NSTableView *)tableView
nextTypeSelectMatchFromRow:(NSInteger)startRow toRow:(NSInteger)endRow
forString:(NSString *)searchString

Parameters
tableView

The table view that sent the message.

startRow
The starting row of the search range.

endRow
The ending row of the search range.

searchString
A string containing the typed selection.

Return Value
The first row in the range of startRow through endRow (excluding endRow itself) that matches
selectionString. Return -1 if no match is found.

Discussion
It is possible for endRow to be less than startRow if the search will wrap.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:selectionIndexesForProposedSelection:
Invoked to allow the delegate to modify the proposed selection.

- (NSIndexSet *)tableView:(NSTableView *)tableView
selectionIndexesForProposedSelection:(NSIndexSet *)proposedSelectionIndexes

Parameters
tableView

The table view that sent the message.

proposedSelectionIndexes
An index set containing the indexes of the proposed selection.

Return Value
An NSIndexSet instance containing the indexes of the new selection. Return proposedSelectionIndexes
if the proposed selection is acceptable, or the value of the table view’s existing selection to avoid changing
the selection.

Discussion
This method may be called multiple times with one new index added to the existing selection to find out if
a particular index can be selected when the user is extending the selection with the keyboard or mouse.

Instance Methods 3833
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

Implementation of this method is optional. If implemented, this method will be called instead of
tableView:shouldSelectRow: (page ?).

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:shouldEditTableColumn:row:
Returns whether the cell at the specified row and column can be edited.

- (BOOL)tableView:(NSTableView *)aTableView shouldEditTableColumn:(NSTableColumn
*)aTableColumn row:(NSInteger)rowIndex

Parameters
aTableView

The table view that sent the message.

aTableColumn
The table column.

rowIndex
The row index.

Return Value
YES to allow editing the cell , NO to deny editing.

Discussion
The delegate can implement this method to disallow editing of specific cells.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:shouldReorderColumn:toColumn:
Sent to the delegate to allow or prohibit the specified column to be dragged to a new location.

- (BOOL)tableView:(NSTableView *)tableView shouldReorderColumn:(NSInteger)columnIndex
toColumn:(NSInteger)newColumnIndex

Parameters
tableView

The tableview that sent the message.

columnIndex
The index of the column being dragged.

3834 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

newColumnIndex
The proposed target index of the column.

Return Value
YES if the column reordering should be allowed, otherwise NO.

Discussion
When a column is initially dragged by the user, the delegate is first called with a newColumnIndex value of
-1. Returning NOwill disallow that column from being reordered at all. Returning YES allows it to be reordered,
and the delegate will be called again when the column reaches a new location.

The actual NSTableColumn instance can be retrieved from the tableColumns (page 2670) array.

If this method is not implemented, all columns are considered reorderable.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTableView.h

tableView:shouldSelectRow:
Returns whether the table view should allow selection of the specified row.

- (BOOL)tableView:(NSTableView *)aTableView shouldSelectRow:(NSInteger)rowIndex

Parameters
aTableView

The table view that sent the message.

rowIndex
The row index.

Return Value
YES to permit selection of the row, NO to deny selection.

Discussion
The delegate can implement this method to disallow selection of particular rows.

For better performance and finer-grain control over the selection, use
tableView:selectionIndexesForProposedSelection: (page 2643).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:shouldSelectTableColumn:
Returns whether the specified table column can be selected.

Instance Methods 3835
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

- (BOOL)tableView:(NSTableView *)aTableView shouldSelectTableColumn:(NSTableColumn
 *)aTableColumn

Parameters
aTableView

The table view that sent the message.

aTableColumn
The table column.

Return Value
YES to permit selection, otherwise NO.

Discussion
The delegate can implement this method to disallow selection of particular columns.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:shouldShowCellExpansionForTableColumn:row:
Invoked to allow the delegate to control cell expansion for a specific row and column.

- (BOOL)tableView:(NSTableView *)tableView
shouldShowCellExpansionForTableColumn:(NSTableColumn *)tableColumn
row:(NSInteger)row

Parameters
tableView

The table view that sent the message.

tableColumn
The table column.

row
The row index.

Return Value
YES if the tooltip cell should expand, NO otherwise.

Discussion
Cell expansion can occur when the mouse hovers over the specified cell and the cell contents are unable to
be fully displayed within the cell. If this method returns YES, the full cell contents will be shown in a special
floating tool tip view, otherwise the content is truncated.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

3836 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

tableView:shouldTrackCell:forTableColumn:row:
Invoked to allow the delegate to control the tracking behavior for a specific cell.

- (BOOL)tableView:(NSTableView *)tableView shouldTrackCell:(NSCell *)cell
forTableColumn:(NSTableColumn *)tableColumn row:(NSInteger)row

Parameters
tableView

The table view that sent the message.

cell
The cell to track.

tableColumn
The table column.

row
A row in tableView.

Return Value
YES if the cell should track, NO otherwise.

Discussion
Normally, only selectable or selected cells can be tracked. If you implement this method, cells which are not
selectable or selected can be tracked, and vice-versa.

For example, this allows you to have an NSButtonCell in a table which does not change the selection, but
can still be clicked on and tracked.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:shouldTypeSelectForEvent:withCurrentSearchString:
Invoked to allow the delegate to control type select for a specific event.

- (BOOL)tableView:(NSTableView *)tableView shouldTypeSelectForEvent:(NSEvent *)event
withCurrentSearchString:(NSString *)searchString

Parameters
tableView

The table view that sent the message.

event
The event.

searchString
The search string or nil if no type select has began.

Return Value
YES to allow type select for event, NO otherwise.

Instance Methods 3837
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

Discussion
Typically, this is called from the table view keyDown: implementation and the event will be a key event.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:sizeToFitWidthOfColumn:
Invoked to allow the delegate to provide custom sizing behavior when a column’s resize divider is double
clicked.

- (CGFloat)tableView:(NSTableView *)tableView
sizeToFitWidthOfColumn:(NSInteger)column

Parameters
tableView

The tableview that sent the message.

column
The index of the column.

Return Value
The width of the specified column.

Discussion
By default, NSOutlineView iterates every row in the table, accesses a cell via
preparedCellAtColumn:row: (page 2643), and requests the cellSize (page 549) to find the appropriate
largest width to use.

For accurate results and performance, it is recommended that this method is implemented when using large
tables. By default, large tables use a monte carlo simulation instead of interating every row.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTableView.h

tableView:toolTipForCell:rect:tableColumn:row:mouseLocation:
Returns a string that is displayed as a tooltip for the specified cell in the column and row.

- (NSString *)tableView:(NSTableView *)aTableView toolTipForCell:(NSCell *)aCell
rect:(NSRectPointer)rect tableColumn:(NSTableColumn *)aTableColumn
row:(NSInteger)row mouseLocation:(NSPoint)mouseLocation

Parameters
aTableView

The table view that sent the message.

3838 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

aCell
The cell.

rect
The proposed active area of the tooltip. You can modify rect to provide an alternative active area.

aTableColumn
The table column.

row
The row index.

mouseLocation
The mouse location.

Return Value
A string containing the tooltip. Return nil or the empty string if no tooltip is desired.

Discussion
By default, rect is computed as [cell drawingRectForBounds:cellFrame].

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:typeSelectStringForTableColumn:row:
Invoked to allow the delegate to provide an alternate text value used for type selection for a specified row
and column.

- (NSString *)tableView:(NSTableView *)tableView
typeSelectStringForTableColumn:(NSTableColumn *)tableColumn row:(NSInteger)row

Parameters
tableView

The table view that sent the message.

tableColumn
The table column.

row
The row index.

Return Value
A string that is used in type select comparison for row and tableColumn. Return nil if the row or
tableColumn should not be searched.

Discussion
Implement this method to change the string value that is searched for based on what is displayed. By default,
all cells with text in them are searched.

If this delegate method is not implemented the string value is:

[[tableView preparedCellAtColumn:tableColumn row:row] stringValue]

Instance Methods 3839
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

This value can be returned from the delegate method if desired.

Implementation of this method is optional.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableView:willDisplayCell:forTableColumn:row:
Informs the delegate that the tableview will display the specified cell at the row in the column.

- (void)tableView:(NSTableView *)aTableView willDisplayCell:(id)aCell
forTableColumn:(NSTableColumn *)aTableColumn row:(NSInteger)rowIndex

Parameters
aTableView

The table view that sent the message.

aCell
The cell to be displayed.

aTableColumn
The table column.

rowIndex
The row index.

Discussion
The delegate can modify the display attributes of aCell to alter the appearance of the cell.

Because aCell is reused for every row in aTableColumn, the delegate must set the display attributes both
when drawing special cells and when drawing normal cells.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableViewColumnDidMove:
Informs the delegate that a column was moved by user action in the table view.

- (void)tableViewColumnDidMove:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSTableViewColumnDidMoveNotification (page ?).

3840 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableViewColumnDidResize:
Informs the delegate that a column was resized in the table view.

- (void)tableViewColumnDidResize:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSTableViewColumnDidResizeNotification (page ?).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableViewSelectionDidChange:
Informs the delegate that the table view’s selection has changed.

- (void)tableViewSelectionDidChange:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSTableViewSelectionDidChangeNotification (page ?).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

tableViewSelectionIsChanging:
Informs the delegate that the table view’s selection is in the process of changing (typically because the user
is dragging the mouse across a number of rows).

- (void)tableViewSelectionIsChanging:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSTableViewSelectionIsChangingNotification (page ?).

Instance Methods 3841
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTableView.h

3842 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 223

NSTableViewDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSTabView.h

Companion guide Tab Views

Overview

The NSTabViewDelegate protocol defines the optional methods implemented by delegates of NSTabView
objects.

Tasks

Adding and Removing Tabs

– tabViewDidChangeNumberOfTabViewItems: (page 3845)
Informs the delegate that the number of tab view items in tabView has changed.

Selecting a Tab

– tabView:shouldSelectTabViewItem: (page 3844)
Invoked just before tabViewItem in tabView is selected.

– tabView:willSelectTabViewItem: (page 3844)
Informs the delegate that tabView is about to select tabViewItem.

– tabView:didSelectTabViewItem: (page 3844)
Informs the delegate that tabView has selected tabViewItem.

Overview 3843
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 224

NSTabViewDelegate Protocol Reference

Instance Methods

tabView:didSelectTabViewItem:
Informs the delegate that tabView has selected tabViewItem.

- (void)tabView:(NSTabView *)tabView didSelectTabViewItem:(NSTabViewItem
*)tabViewItem

Parameters
tabView

The tab view that sent the request.

tabViewItem
The tab view item that was selected.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTabView.h

tabView:shouldSelectTabViewItem:
Invoked just before tabViewItem in tabView is selected.

- (BOOL)tabView:(NSTabView *)tabView shouldSelectTabViewItem:(NSTabViewItem
*)tabViewItem

Parameters
tabView

The tab view that sent the request.

tabViewItem
The tab view item to select.

Return Value
YES if the tab view item should be selected, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTabView.h

tabView:willSelectTabViewItem:
Informs the delegate that tabView is about to select tabViewItem.

3844 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 224

NSTabViewDelegate Protocol Reference

- (void)tabView:(NSTabView *)tabView willSelectTabViewItem:(NSTabViewItem
*)tabViewItem

Parameters
tabView

The tab view that sent the request.

tabViewItem
The tab view item that is about to be selected.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTabView.h

tabViewDidChangeNumberOfTabViewItems:
Informs the delegate that the number of tab view items in tabView has changed.

- (void)tabViewDidChangeNumberOfTabViewItems:(NSTabView *)tabView

Parameters
tabView

The tab view that added or removed tabview items.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– numberOfTabViewItems (page 2690)

Declared In
NSTabView.h

Instance Methods 3845
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 224

NSTabViewDelegate Protocol Reference

3846 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 224

NSTabViewDelegate Protocol Reference

Adopted by NSTextAttachmentCell

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSTextAttachment.h

Companion guides Text System Overview
Text Attachment Programming Topics

Overview

The NSTextAttachmentCell protocol declares the interface for objects that draw text attachment icons and
handle mouse events on their icons. With the exceptions of cellBaselineOffset (page 3849),
setAttachment: (page 3851), and attachment (page 3848), all of these methods are implemented by the
NSCell class and described in that class specification.

See the NSAttributedString and NSTextView class specifications for general information on text attachments.

Tasks

Drawing

– drawWithFrame:inView: (page 3850) required method
Draws the receiver’s image within cellFrame in aView, which is the view currently focused. (required)

– drawWithFrame:inView:characterIndex: (page 3850) required method
Draws the receiver’s image within cellFrame in aView, which is the view currently focused.
charIndex is the index of the attachment character within the text. (required)

– drawWithFrame:inView:characterIndex:layoutManager: (page 3850) required method
Draws the receiver’s image within cellFrame in controlView, which is the view currently focused.
charIndex is the index of the attachment character within the text. layoutManager is the layout
manager for the text. (required)

Overview 3847
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 225

NSTextAttachmentCell Protocol Reference

– highlight:withFrame:inView: (page 3851) required method
Draws the receiver’s image—with highlighting if flag is YES—within cellFrame in aView, which
should be the focus view. (required)

Cell Size and Position

– cellSize (page 3849) required method
Returns the size of the attachment’s icon. (required)

– cellBaselineOffset (page 3849) required method
Returns the position where the attachment cell’s image should be drawn in text, relative to the current
point established in the glyph layout. (required)

– cellFrameForTextContainer:proposedLineFragment:glyphPosition:characterIndex: (page
3849) required method

Returns the frame of the cell as it would be drawn as the character at the given glyph position, and
character index, charIndex, in textContainer. (required)

Event Handling

– wantsToTrackMouse (page 3853) required method
Returns YES if the receiver will handle a mouse event occurring over its image (to support dragging,
for example), NO otherwise. (required)

– wantsToTrackMouseForEvent:inRect:ofView:atCharacterIndex: (page 3853) required method
Allows an attachment to specify what events it would want to track the mouse for. (required)

– trackMouse:inRect:ofView:untilMouseUp: (page 3852) required method
Handles a mouse-down event on the receiver’s image. (required)

– trackMouse:inRect:ofView:atCharacterIndex:untilMouseUp: (page 3851) required method
Handles a mouse-down event on the receiver’s image. (required)

Setting the Attachment

– setAttachment: (page 3851) required method
Sets the text attachment object that owns the receiver to anAttachment, without retaining it (the
text attachment, as the owner, retains the cell). (required)

– attachment (page 3848) required method
Returns the text attachment object that owns the receiver. (required)

Instance Methods

attachment
Returns the text attachment object that owns the receiver. (required)

- (NSTextAttachment *)attachment

3848 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 225

NSTextAttachmentCell Protocol Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setAttachment: (page 3851)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSTextAttachment.h

cellBaselineOffset
Returns the position where the attachment cell’s image should be drawn in text, relative to the current point
established in the glyph layout. (required)

- (NSPoint)cellBaselineOffset

Discussion
The image should be drawn so its lower-left corner lies on this point.

Availability
Available in Mac OS X v10.0 and later.

See Also
– icon (NSFileWrapper)

Declared In
NSTextAttachment.h

cellFrameForTextContainer:proposedLineFragment:glyphPosition:characterIndex:
Returns the frame of the cell as it would be drawn as the character at the given glyph position, and character
index, charIndex, in textContainer. (required)

- (NSRect)cellFrameForTextContainer:(NSTextContainer *)textContainer
proposedLineFragment:(NSRect)lineFrag glyphPosition:(NSPoint)position
characterIndex:(NSUInteger)charIndex

Discussion
The proposed line fragment is specified by lineFrag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextAttachment.h

cellSize
Returns the size of the attachment’s icon. (required)

Instance Methods 3849
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 225

NSTextAttachmentCell Protocol Reference

- (NSSize)cellSize

Availability
Available in Mac OS X v10.0 and later.

See Also
– icon (NSFileWrapper)
– fileWrapper (page 2757) (NSTextAttachment)

Declared In
NSTextAttachment.h

drawWithFrame:inView:
Draws the receiver’s image within cellFrame in aView, which is the view currently focused. (required)

- (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)aView

Availability
Available in Mac OS X v10.0 and later.

See Also
– drawWithFrame:inView: (page 554) (NSCell)
– lockFocus (page 3187) (NSView)

Declared In
NSTextAttachment.h

drawWithFrame:inView:characterIndex:
Draws the receiver’s image within cellFrame in aView, which is the view currently focused. charIndex is
the index of the attachment character within the text. (required)

- (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)aView
characterIndex:(NSUInteger)charIndex

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextAttachment.h

drawWithFrame:inView:characterIndex:layoutManager:
Draws the receiver’s image within cellFrame in controlView, which is the view currently focused.
charIndex is the index of the attachment character within the text. layoutManager is the layout manager
for the text. (required)

- (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)controlView
characterIndex:(NSUInteger)charIndex layoutManager:(NSLayoutManager
*)layoutManager

3850 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 225

NSTextAttachmentCell Protocol Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextAttachment.h

highlight:withFrame:inView:
Draws the receiver’s image—with highlighting if flag is YES—within cellFrame in aView, which should
be the focus view. (required)

- (void)highlight:(BOOL)flag withFrame:(NSRect)cellFrame inView:(NSView *)aView

Availability
Available in Mac OS X v10.0 and later.

See Also
– highlight:withFrame:inView: (page 560) (NSCell)
– lockFocus (page 3187) (NSView)

Declared In
NSTextAttachment.h

setAttachment:
Sets the text attachment object that owns the receiver to anAttachment, without retaining it (the text
attachment, as the owner, retains the cell). (required)

- (void)setAttachment:(NSTextAttachment *)anAttachment

Availability
Available in Mac OS X v10.0 and later.

See Also
– attachment (page 3848)
– setAttachmentCell: (page 2758) (NSTextAttachment)

Declared In
NSTextAttachment.h

trackMouse:inRect:ofView:atCharacterIndex:untilMouseUp:
Handles a mouse-down event on the receiver’s image. (required)

- (BOOL)trackMouse:(NSEvent *)theEvent inRect:(NSRect)cellFrame ofView:(NSView
*)aTextView atCharacterIndex:(NSUInteger)charIndex untilMouseUp:(BOOL)flag

Discussion
theEvent is the mouse-down event. cellFrame is the region of aTextView in which you should track
further mouse events. charIndex is the position in the text at which this attachment appears. aTextView
is the view that received the event. It’s assumed to be an NSTextView, and should be the focus view. If flag

Instance Methods 3851
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 225

NSTextAttachmentCell Protocol Reference

is YES, the receiver tracks the mouse until a mouse-up event occurs; if flag is NO, it stops tracking when a
mouse-dragged event occurs outside of cellFrame. Returns YES if the receiver successfully finished tracking
the mouse (typically through a mouse-up event), NO otherwise (such as when the mouse is dragged outside
cellFrame).

NSTextAttachmentCell’s implementation of this method calls upon aTextView’s delegate to handle the
event. If theEvent is a mouse-up event for a double click, the text attachment cell sends the delegate a
textView:doubleClickedOnCell:inRect:message and returns YES. Otherwise, depending on whether
the user clicks or drags the cell, it sends the delegate a textView:clickedOnCell:inRect: or a
textView:draggedCell:inRect:event: message and returns YES. NSTextAttachmentCell’s
implementation returns NO only if flag is NO and the mouse is dragged outside of cellFrame. The delegate
methods are invoked only if the delegate responds.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextAttachment.h

trackMouse:inRect:ofView:untilMouseUp:
Handles a mouse-down event on the receiver’s image. (required)

- (BOOL)trackMouse:(NSEvent *)theEvent inRect:(NSRect)cellFrame ofView:(NSView
*)aTextView untilMouseUp:(BOOL)flag

Discussion
theEvent is the mouse-down event. cellFrame is the region of aTextView in which further mouse events
should be tracked. aTextView is the view that received the event. It’s assumed to be an NSTextView and
should be the focus view. If flag is YES, the receiver tracks the mouse until a mouse-up event occurs; if flag
is NO, it stops tracking when a mouse-dragged event occurs outside of cellFrame. Returns YES if the receiver
successfully finished tracking the mouse (typically through a mouse-up event), NO otherwise (such as when
the cursor is dragged outside cellFrame).

NSTextAttachmentCell’s implementation of this method calls upon the delegate of aTextView to handle
the event. If theEvent is a mouse-up event for a double click, the text attachment cell sends the delegate
atextView:doubleClickedOnCell:inRect:message and returnsYES. Otherwise, depending on whether
the user clicks or drags the cell, it sends the delegate a textView:clickedOnCell:inRect: or a
textView:draggedCell:inRect:event: message and returns YES. NSTextAttachmentCell’s
implementation returns NO only if flag is NO and the cursor is dragged outside of cellFrame. The delegate
methods are invoked only if the delegate responds.

Availability
Available in Mac OS X v10.0 and later.

See Also
– wantsToTrackMouse (page 3853)
– trackMouse:inRect:ofView:untilMouseUp: (page 610) (NSCell)
– lockFocus (page 3187) (NSView)

Declared In
NSTextAttachment.h

3852 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 225

NSTextAttachmentCell Protocol Reference

wantsToTrackMouse
Returns YES if the receiver will handle a mouse event occurring over its image (to support dragging, for
example), NO otherwise. (required)

- (BOOL)wantsToTrackMouse

Discussion
NSTextAttachmentCell’s implementation of this method returns YES. The NSView containing the cell should
invoke this method before sending a trackMouse:inRect:ofView:untilMouseUp: (page 3852) message.

For an attachment in an attributed string, if the attachment cell returns NO its attachment character should
be selected rather than the cell being asked to track the mouse. This results in the attachment icon behaving
as any regular glyph in text.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextAttachment.h

wantsToTrackMouseForEvent:inRect:ofView:atCharacterIndex:
Allows an attachment to specify what events it would want to track the mouse for. (required)

- (BOOL)wantsToTrackMouseForEvent:(NSEvent *)theEvent inRect:(NSRect)cellFrame
ofView:(NSView *)controlView atCharacterIndex:(NSUInteger)charIndex

Discussion
theEvent is the event in question that occurred in cellFrame inside controlView. charIndex is the
index of the attachment character within the text. IfwantsToTrackMouse (page 3853) returnsYES, this method
allows the attachment to decide whether it wishes to do so for particular events.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSTextAttachment.h

Instance Methods 3853
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 225

NSTextAttachmentCell Protocol Reference

3854 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 225

NSTextAttachmentCell Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSText.h

Companion guide Text System Overview

Overview

The NSTextDelegate protocol defines the optional methods implemented by delegates of NSText objects.

Tasks

Changing Text Formatting

– textDidChange: (page 3856)
Informs the delegate that the text object has changed its characters or formatting attributes.

Editing Text

– textShouldBeginEditing: (page 3857)
Invoked when a text object begins to change its text, this method requests permission for
aTextObject to begin editing.

– textDidBeginEditing: (page 3856)
Informs the delegate that the text object has begun editing (that the user has begun changing it).

– textShouldEndEditing: (page 3857)
Invoked from a text object’s implementation of resignFirstResponder (page 2189), this method
requests permission for aTextObject to end editing.

– textDidEndEditing: (page 3856)
Informs the delegate that the text object has finished editing (that it has resigned first responder
status).

Overview 3855
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 226

NSTextDelegate Protocol Reference

Instance Methods

textDidBeginEditing:
Informs the delegate that the text object has begun editing (that the user has begun changing it).

- (void)textDidBeginEditing:(NSNotification *)aNotification

Discussion
The name of aNotification is NSTextDidBeginEditingNotification (page 2752).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSText.h

textDidChange:
Informs the delegate that the text object has changed its characters or formatting attributes.

- (void)textDidChange:(NSNotification *)aNotification

Discussion
The name of aNotification is NSTextDidChangeNotification (page 2752).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSText.h

textDidEndEditing:
Informs the delegate that the text object has finished editing (that it has resigned first responder status).

- (void)textDidEndEditing:(NSNotification *)aNotification

Discussion
The name of aNotification is NSTextDidEndEditingNotification (page 2752).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSText.h

3856 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 226

NSTextDelegate Protocol Reference

textShouldBeginEditing:
Invoked when a text object begins to change its text, this method requests permission for aTextObject to
begin editing.

- (BOOL)textShouldBeginEditing:(NSText *)aTextObject

Discussion
If the delegate returns YES, the text object proceeds to make changes. If the delegate returns NO, the text
object abandons the editing operation. This method is also invoked when the user drags and drops a file
onto the text object.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– makeFirstResponder: (page 3344) (NSWindow)
– becomeFirstResponder (page 2144) (NSResponder)

Declared In
NSText.h

textShouldEndEditing:
Invoked from a text object’s implementation of resignFirstResponder (page 2189), this method requests
permission for aTextObject to end editing.

- (BOOL)textShouldEndEditing:(NSText *)aTextObject

Discussion
If the delegate returns YES, the text object proceeds to finish editing and resign first responder status. If the
delegate returns NO, the text object selects all of its text and remains the first responder.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– resignFirstResponder (page 2189) (NSResponder)

Declared In
NSText.h

Instance Methods 3857
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 226

NSTextDelegate Protocol Reference

3858 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 226

NSTextDelegate Protocol Reference

Conforms to NSControlTextEditingDelegate

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSTextField.h

Companion guide Text Fields

Overview

The NSTextFieldDelegateprotocol adopts the NSControlTextEditingDelegateprotocol and currently
does not extend it further.

Overview 3859
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 227

NSTextFieldDelegate Protocol Reference

3860 Overview
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 227

NSTextFieldDelegate Protocol Reference

Adopted by NSInputManager

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSInputManager.h

Companion guides Text System Overview
Text Input Management

Overview

The NSTextInput protocol defines the methods that Cocoa text views must implement in order to interact
properly with the text input management system.

Important: NSTextInput protocol is slated for deprecation. Please use NSTextInputClient protocol,
introduced in Mac OS X v10.5, as described in NSTextInputClient Protocol Reference.

NSTextView and its abstract superclass NSText are the only classes included in Cocoa that implement
NSTextInput. To create another text view class, you can either subclass NSTextView (and not NSText, for
historical reasons), or subclass NSView and implement the NSTextInput protocol.

Important: Methods specific to the NSTextInput protocol are intended for dealing with text input and
generally are not suitable for other purposes.

Tasks

Marked Text

– hasMarkedText (page 3865) required method
Returns a Boolean value indicating whether or not the receiver has marked text. (required)

– markedRange (page 3865) required method
Returns the range of the marked text. (required)

Overview 3861
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 228

NSTextInput Protocol Reference

– selectedRange (page 3866) required method
Returns the range of selected text. (required)

– setMarkedText:selectedRange: (page 3866) required method
Replaces currently marked text in the receiver’s text storage with the given string and sets the selection
to the given range, computed from the beginning of the marked text. (required)

– unmarkText (page 3867) required method
Removes any marking from pending input text and disposes of the marked text as it wishes. The text
view should accept the marked text as if it had been inserted normally. (required)

– validAttributesForMarkedText (page 3867) required method
Returns an array of names for the attributes supported by the receiver. (required)

Text Storage

– attributedSubstringFromRange: (page 3862) required method
Returns an attributed string derived from the given range in the receiver's text storage. (required)

– insertText: (page 3865) required method
Inserts the given string into the receiver’s text storage. (required)

Character Coordinates

– characterIndexForPoint: (page 3863) required method
Returns the index of the character whose frame rectangle includes the given point. (required)

– firstRectForCharacterRange: (page 3864) required method
Returns the first frame rectangle for characters in the given range, in screen coordinates. (required)

Key Bindings

– doCommandBySelector: (page 3864) required method
Invokes the given selector if possible. (required)

Other

– conversationIdentifier (page 3863) required method
Returns a number used to identify the receiver’s context to the input server. (required)

Instance Methods

attributedSubstringFromRange:
Returns an attributed string derived from the given range in the receiver's text storage. (required)

- (NSAttributedString *)attributedSubstringFromRange:(NSRange)theRange

3862 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 228

NSTextInput Protocol Reference

Parameters
theRange

The range in the text storage from which to create the returned string.

Return Value
The string created from the given range.

Discussion
This method allows input mangers to query any range in text storage.

An implementation of this method should be prepared for theRange to be out-of-bounds. For example, the
InkWell text input service can ask for the contents of the text input client that extends beyond the document’s
range. In this case, you should return the intersection of the document’s range and theRange. If the location
of theRange is completely outside of the document’s range, return nil.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSInputManager.h

characterIndexForPoint:
Returns the index of the character whose frame rectangle includes the given point. (required)

- (NSUInteger)characterIndexForPoint:(NSPoint)thePoint

Parameters
thePoint

A point, in screen coordinates.

Return Value
The character index, measured from the start of the receiver’s text storage, of the character containing the
given point. Returns NSNotFound if the cursor is not within a character.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSInputManager.h

conversationIdentifier
Returns a number used to identify the receiver’s context to the input server. (required)

- (NSInteger)conversationIdentifier

Return Value
The identifying number of the receiver.

Discussion
Each text view within an application should return a unique identifier (typically its address). However, multiple
text views sharing the same text storage must all return the same identifier.

Instance Methods 3863
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 228

NSTextInput Protocol Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSInputManager.h

doCommandBySelector:
Invokes the given selector if possible. (required)

- (void)doCommandBySelector:(SEL)aSelector

Parameters
aSelector

The selector to be invoked.

Discussion
If aSelector cannot be invoked, then doCommandBySelector: should not pass this message up the
responder chain. NSResponder also implements this method, and it does forward uninvokable commands
up the responder chain, but a text view should not. A text view implementing the NSTextInput protocol
inherits from NSView, which inherits from NSResponder, so your implementation of this method will override
the one in NSResponder. It should not call super.

Availability
Available in Mac OS X v10.0 and later.

See Also
– interpretKeyEvents: (page 2158) (NSResponder)
– doCommandBySelector: (page 2152) (NSResponder)

Declared In
NSInputManager.h

firstRectForCharacterRange:
Returns the first frame rectangle for characters in the given range, in screen coordinates. (required)

- (NSRect)firstRectForCharacterRange:(NSRange)theRange

Parameters
theRange

The character range whose frame is returned.

Return Value
The frame rectangle for the given range of characters.

Discussion
If theRange spans multiple lines of text in the text view, the rectangle returned is the one for the characters
in the first line. If the length of theRange is 0 (as it would be if there is nothing selected at the insertion
point), the rectangle coincides with the insertion point, and its width is 0.

Availability
Available in Mac OS X v10.0 and later.

3864 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 228

NSTextInput Protocol Reference

Declared In
NSInputManager.h

hasMarkedText
Returns a Boolean value indicating whether or not the receiver has marked text. (required)

- (BOOL)hasMarkedText

Return Value
YES if the receiver has marked text, NO if it doesn’t.

Discussion
Unlike other methods in this protocol, this one is not called by an input server. The text view itself may call
this method to determine whether there currently is marked text. NSTextView, for example, disables the
Edit > Copy menu item when this method returns YES.

Availability
Available in Mac OS X v10.0 and later.

See Also
– markedRange (page 3865)

Declared In
NSInputManager.h

insertText:
Inserts the given string into the receiver’s text storage. (required)

- (void)insertText:(id)aString

Parameters
aString

Either an NSString or an NSAttributedString object.

Discussion
This method is the entry point for inserting text typed by the user and is generally not suitable for other
purposes. Programmatic modification of the text is best done by operating on the text storage directly.
Because this method pertains to the actions of the user, the text view must be editable for the insertion to
work.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSInputManager.h

markedRange
Returns the range of the marked text. (required)

Instance Methods 3865
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 228

NSTextInput Protocol Reference

- (NSRange)markedRange

Return Value
The range of marked text.

Discussion
The returned range measures from the start of the receiver’s text storage. The return value’s location is
NSNotFound, and its length is 0 if and only if hasMarkedText (page 3865) returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMarkedText:selectedRange: (page 3866)
– unmarkText (page 3867)
– hasMarkedText (page 3865)

Declared In
NSInputManager.h

selectedRange
Returns the range of selected text. (required)

- (NSRange)selectedRange

Return Value
The range of selected text.

Discussion
The returned range measures from the start of the receiver’s text storage. If there is no selection, the return
value’s location is NSNotFound, and its length is 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
– setMarkedText:selectedRange: (page 3866)

Declared In
NSInputManager.h

setMarkedText:selectedRange:
Replaces currently marked text in the receiver’s text storage with the given string and sets the selection to
the given range, computed from the beginning of the marked text. (required)

- (void)setMarkedText:(id)aString selectedRange:(NSRange)selRange

Parameters
aString

Either an NSString or an NSAttributedString object; must not be nil.

3866 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 228

NSTextInput Protocol Reference

selRange
The range within aString to set as the selection.

Discussion
If there is no marked text, the current selection is replaced. If there is no selection, the string is inserted at
the insertion point.

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedRange (page 3866)
– unmarkText (page 3867)

Declared In
NSInputManager.h

unmarkText
Removes any marking from pending input text and disposes of the marked text as it wishes. The text view
should accept the marked text as if it had been inserted normally. (required)

- (void)unmarkText

Availability
Available in Mac OS X v10.0 and later.

See Also
– selectedRange (page 3866)
– setMarkedText:selectedRange: (page 3866)

Declared In
NSInputManager.h

validAttributesForMarkedText
Returns an array of names for the attributes supported by the receiver. (required)

- (NSArray *)validAttributesForMarkedText

Return Value
An array of NSString objects representing names for the supported attributes.

Discussion
The input server may choose to use some of these attributes in the text it inserts or in marked text. Returns
an empty array if no attributes are supported. See NSAttributedString Additions (page 249) for the set of
string constants that you could return in the array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSInputManager.h

Instance Methods 3867
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 228

NSTextInput Protocol Reference

3868 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 228

NSTextInput Protocol Reference

Adopted by NSTextView

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.5 and later.

Declared in AppKit/NSTextInputClient.h

Related sample code TextInputView

Overview

The NSTextInputClient protocol defines the methods that Cocoa text views must implement in order to
interact properly with the text input management system. To create another text view class, you can either
subclass NSTextView (and not NSText, for historical reasons), or subclass NSView and implement the
NSTextInputClient protocol

Important: Methods specific to the NSTextInputClient protocol are intended for dealing with text input
and generally are not suitable for other purposes.

Tasks

Handling Marked Text

– hasMarkedText (page 3875) required method
Returns a Boolean value indicating whether the receiver has marked text. (required)

– markedRange (page 3875) required method
Returns the range of the marked text. (required)

– selectedRange (page 3876) required method
Returns the range of selected text. (required)

– setMarkedText:selectedRange:replacementRange: (page 3876) required method
Replaces a specified range in the receiver’s text storage with the given string and sets the selection.
(required)

– unmarkText (page 3877) required method
Unmarks the marked text. (required)

Overview 3869
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 229

NSTextInputClient Protocol Reference

– validAttributesForMarkedText (page 3878) required method Available in Mac OS X v10.0 through Mac
OS X v10.1

Returns an array of attribute names recognized by the receiver. (required)

Storing Text

– attributedSubstringForProposedRange:actualRange: (page 3871) required method
Returns an attributed string derived from the given range in the receiver's text storage. (required)

– insertText:replacementRange: (page 3875) required method
Inserts the given string into the receiver, replacing the specified content. (required)

Getting Character Coordinates

– characterIndexForPoint: (page 3872) required method
Returns the index of the character whose bounding rectangle includes the given point. (required)

– firstRectForCharacterRange:actualRange: (page 3873) required method
Returns the first logical boundary rectangle for characters in the given range. (required)

Binding Keystrokes

– doCommandBySelector: (page 3872) required method
Invokes the action specified by the given selector. (required)

Optional Methods

– attributedString (page 3871)
Returns an attributed string representing the receiver's text storage.

– fractionOfDistanceThroughGlyphForPoint: (page 3874)
Returns the fraction of the distance from the left side of the character to the right side that a given
point lies.

– baselineDeltaForCharacterAtIndex: (page 3872)
Returns the baseline position of a given character relative to the origin of rectangle returned by
firstRectForCharacterRange:actualRange: (page 3873).

– windowLevel (page 3878)
Returns the window level of the receiver.

– drawsVerticallyForCharacterAtIndex: (page 3873) required method
Informs the text input management system whether the protocol-conforming client renders the
character at the given index vertically. (required)

3870 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 229

NSTextInputClient Protocol Reference

Instance Methods

attributedString
Returns an attributed string representing the receiver's text storage.

- (NSAttributedString *)attributedString

Return Value
The attributed string of the receiver’s text storage.

Discussion
Implementation of this method is optional. A class adopting the NSTextInputClientprotocol can implement
this interface if it can be done efficiently to enable callers of this interface to access arbitrary portions of the
receiver's content more efficiently.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
TextInputView

Declared In
NSTextInputClient.h

attributedSubstringForProposedRange:actualRange:
Returns an attributed string derived from the given range in the receiver's text storage. (required)

- (NSAttributedString *)attributedSubstringForProposedRange:(NSRange)aRange
actualRange:(NSRangePointer)actualRange

Parameters
aRange

The range in the text storage from which to create the returned string.

actualRange
The actual range of the returned string if it was adjusted, for example, to a grapheme cluster boundary
or for performance or other reasons. NULL if range was not adjusted.

Return Value
The string created from the given range. May return nil.

Discussion
An implementation of this method should be prepared for aRange to be out of bounds. For example, the
InkWell text input service can ask for the contents of the text input client that extends beyond the document’s
range. In this case, you should return the intersection of the document’s range and aRange. If the location
of aRange is completely outside of the document’s range, return nil.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 3871
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 229

NSTextInputClient Protocol Reference

Declared In
NSTextInputClient.h

baselineDeltaForCharacterAtIndex:
Returns the baseline position of a given character relative to the origin of rectangle returned by
firstRectForCharacterRange:actualRange: (page 3873).

- (CGFloat)baselineDeltaForCharacterAtIndex:(NSUInteger)anIndex

Parameters
anIndex

Index of the character whose baseline is tested.

Return Value
The vertical distance, in points, between the baseline of the character at anIndex and the rectangle origin.

Discussion
Implementation of this method is optional. This information allows the caller to determine finer-grained
character positioning within the text storage of the text view adopting NSTextInputClient.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTextInputClient.h

characterIndexForPoint:
Returns the index of the character whose bounding rectangle includes the given point. (required)

- (NSUInteger)characterIndexForPoint:(NSPoint)aPoint

Parameters
aPoint

The point to test, in screen coordinates.

Return Value
The character index, measured from the start of the receiver’s text storage, of the character containing the
given point. Returns NSNotFound if the cursor is not within a character’s bounding rectangle.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTextInputClient.h

doCommandBySelector:
Invokes the action specified by the given selector. (required)

- (void)doCommandBySelector:(SEL)aSelector

3872 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 229

NSTextInputClient Protocol Reference

Parameters
aSelector

The selector to invoke.

Discussion
If aSelector cannot be invoked, then doCommandBySelector: should not pass this message up the
responder chain. NSResponder also implements this method, and it does forward uninvokable commands
up the responder chain, but a text view should not. A text view implementing the NSTextInputClient
protocol inherits from NSView, which inherits from NSResponder, so your implementation of this method
will override the one in NSResponder. It should not call super.

Availability
Available in Mac OS X v10.5 and later.

See Also
– interpretKeyEvents: (page 2158) (NSResponder)
– doCommandBySelector: (page 2152) (NSResponder)

Declared In
NSTextInputClient.h

drawsVerticallyForCharacterAtIndex:
Informs the text input management system whether the protocol-conforming client renders the character
at the given index vertically. (required)

- (BOOL)drawsVerticallyForCharacterAtIndex:(NSUInteger)charIndex

Parameters
charIndex

The index of the character to test.

Return Value
YES if the character is rendered vertically; otherwise NO.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextInputClient.h

firstRectForCharacterRange:actualRange:
Returns the first logical boundary rectangle for characters in the given range. (required)

- (NSRect)firstRectForCharacterRange:(NSRange)aRange
actualRange:(NSRangePointer)actualRange

Parameters
aRange

The character range whose boundary rectangle is returned.

Instance Methods 3873
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 229

NSTextInputClient Protocol Reference

actualRange
If non-NULL, contains the character range corresponding to the returned area if it was adjusted, for
example, to a grapheme cluster boundary or characters in the first line fragment.

Return Value
The boundary rectangle for the given range of characters, in screen coordinates. The rectangle’s size value
can be negative if the text flows to the left.

Discussion
If aRange spans multiple lines of text in the text view, the rectangle returned is the one surrounding the
characters in the first line. In that case actualRange contains the range covered by the first rect, so you can
query all line fragments by invoking this method repeatedly. If the length of aRange is 0 (as it would be if
there is nothing selected at the insertion point), the rectangle coincides with the insertion point, and its
width is 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTextInputClient.h

fractionOfDistanceThroughGlyphForPoint:
Returns the fraction of the distance from the left side of the character to the right side that a given point lies.

- (CGFloat)fractionOfDistanceThroughGlyphForPoint:(NSPoint)aPoint

Parameters
aPoint

The point to test.

Return Value
The fraction of the distance aPoint is through the glyph in which it lies. May be 0 or 1 if aPoint is not within
the bounding rectangle of a glyph (0 if the point is to the left or above the glyph; 1 if it's to the right or
below).

Discussion
Implementation of this method is optional. This allows caller to perform precise selection handling.

For purposes such as dragging out a selection or placing the insertion point, a partial percentage less than
or equal to 0.5 indicates that aPoint should be considered as falling before the glyph; a partial percentage
greater than 0.5 indicates that it should be considered as falling after the glyph. If the nearest glyph doesn’t
lie under aPoint at all (for example, if aPoint is beyond the beginning or end of a line), this ratio is 0 or 1.

For example, if the glyph stream contains the glyphs “A” and “b”, with the width of “A” being 13 points, and
aPoint is 8 points from the left side of “A”, then the fraction of the distance is 8/13, or 0.615. In this case,
the aPoint should be considered as falling between “A” and “b” for purposes such as dragging out a selection
or placing the insertion point.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTextInputClient.h

3874 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 229

NSTextInputClient Protocol Reference

hasMarkedText
Returns a Boolean value indicating whether the receiver has marked text. (required)

- (BOOL)hasMarkedText

Return Value
YES if the receiver has marked text; otherwise NO.

Discussion
The text view itself may call this method to determine whether there currently is marked text. NSTextView,
for example, disables the Edit > Copy menu item when this method returns YES.

Availability
Available in Mac OS X v10.5 and later.

See Also
– markedRange (page 3875)

Related Sample Code
TextInputView

Declared In
NSTextInputClient.h

insertText:replacementRange:
Inserts the given string into the receiver, replacing the specified content. (required)

- (void)insertText:(id)aString replacementRange:(NSRange)replacementRange

Parameters
aString

The text to insert, either an NSString or NSAttributedString instance.

replacementRange
The range of content to replace in the receiver’s text storage.

Discussion
This method is the entry point for inserting text typed by the user and is generally not suitable for other
purposes. Programmatic modification of the text is best done by operating on the text storage directly.
Because this method pertains to the actions of the user, the text view must be editable for the insertion to
work.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSTextInputClient.h

markedRange
Returns the range of the marked text. (required)

Instance Methods 3875
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 229

NSTextInputClient Protocol Reference

- (NSRange)markedRange

Return Value
The range of marked text or {NSNotFound, 0} if there is no marked range.

Discussion
The returned range measures from the start of the receiver’s text storage. The return value’s location is
NSNotFound and its length is 0 if and only if hasMarkedText (page 3875) returns NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
– hasMarkedText (page 3875)
– setMarkedText:selectedRange:replacementRange: (page 3876)
– unmarkText (page 3877)

Related Sample Code
TextInputView

Declared In
NSTextInputClient.h

selectedRange
Returns the range of selected text. (required)

- (NSRange)selectedRange

Return Value
The range of selected text or {NSNotFound, 0} if there is no selection.

Discussion
The returned range measures from the start of the receiver’s text storage, that is, from 0 to the document
length.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setMarkedText:selectedRange:replacementRange: (page 3876)

Related Sample Code
TextInputView

Declared In
NSTextInputClient.h

setMarkedText:selectedRange:replacementRange:
Replaces a specified range in the receiver’s text storage with the given string and sets the selection. (required)

3876 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 229

NSTextInputClient Protocol Reference

- (void)setMarkedText:(id)aString selectedRange:(NSRange)selectedRange
replacementRange:(NSRange)replacementRange

Parameters
aString

The string to insert. Can be either an NSString or NSAttributedString instance.

selectedRange
The range to set as the selection, computed from the beginning of the inserted string.

replacementRange
The range to replace, computed from the beginning of the marked text.

Discussion
If there is no marked text, the current selection is replaced. If there is no selection, the string is inserted at
the insertion point.

When aString is an NSString object, the receiver is expected to render the marked text with distinguishing
appearance (for example, NSTextView renders with markedTextAttributes (page 2906)).

Availability
Available in Mac OS X v10.5 and later.

See Also
– selectedRange (page 3876)
– unmarkText (page 3877)

Declared In
NSTextInputClient.h

unmarkText
Unmarks the marked text. (required)

- (void)unmarkText

Discussion
The receiver removes any marking from pending input text and disposes of the marked text as it wishes. The
text view should accept the marked text as if it had been inserted normally. If there is no marked text, the
invocation of this method has no effect.

Availability
Available in Mac OS X v10.5 and later.

See Also
– selectedRange (page 3876)
– setMarkedText:selectedRange:replacementRange: (page 3876)

Related Sample Code
TextInputView

Declared In
NSTextInputClient.h

Instance Methods 3877
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 229

NSTextInputClient Protocol Reference

validAttributesForMarkedText
Returns an array of attribute names recognized by the receiver. (required)

- (NSArray *)validAttributesForMarkedText

Return Value
An array of NSString objects representing names for the supported attributes.

Discussion
Returns an empty array if no attributes are supported. See NSAttributedString Application Kit Additions Reference
for the set of string constants representing standard attributes.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
TextInputView

Declared In
NSTextInputClient.h

windowLevel
Returns the window level of the receiver.

- (NSInteger)windowLevel

Return Value
The window level of the receiver.

Discussion
Implementation of this method is optional. A class adopting NSTextInputClient can implement this
interface to specify its window level if it is higher than NSFloatingWindowLevel.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
TextInputView

Declared In
NSTextInputClient.h

3878 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 229

NSTextInputClient Protocol Reference

Conforms to NSTextDelegate

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSTextView.h

Companion guides Text System Overview
Text System User Interface Layer Programming Guide

Related sample code FunHouse
TextSizingExample

Overview

The NSTextViewDelegateprotocol defines the optional methods implemented by delegates of NSTextView
objects.

Tasks

Accessing Text System Objects

– undoManagerForTextView: (page 3896)
Returns the undo manager for the specified text view.

Controlling Display

– textView:willDisplayToolTip:forCharacterAtIndex: (page 3893)
Returns the actual tooltip to display.

Managing the Selection

– textView:willChangeSelectionFromCharacterRange:toCharacterRange: (page 3891)
Returns the actual range to select.

Overview 3879
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

– textView:willChangeSelectionFromCharacterRanges:toCharacterRanges: (page 3892)
Returns the actual character ranges to select.

– textViewDidChangeSelection: (page 3895)
Sent when the selection changes in the text view.

Managing the Pasteboard

– textView:writablePasteboardTypesForCell:atIndex: (page 3894)
Returns the writable pasteboard types for a given cell.

– textView:writeCell:atIndex:toPasteboard:type: (page 3895)
Returns whether data of the specified type for the given cell could be written to the specified
pasteboard.

Setting Text Attributes

– textView:shouldChangeTextInRange:replacementString: (page 3889)
Sent when a text view needs to determine if text in a specified range should be changed.

– textView:shouldChangeTextInRanges:replacementStrings: (page 3889)
Sent when a text view needs to determine if text in an array of specified ranges should be changed.

– textView:shouldChangeTypingAttributes:toAttributes: (page 3890)
Sent when the typing attributes are changed.

– textViewDidChangeTypingAttributes: (page 3896)
Sent when a text view’s typing attributes change.

Clicking and Pasting

– textView:clickedOnCell:inRect:atIndex: (page 3882)
Sent when the user clicks a cell.

– textView:doubleClickedOnCell:inRect:atIndex: (page 3886)
Sent when the user double-clicks a cell.

– textView:clickedOnLink:atIndex: (page 3883)
Sent after the user clicks a link.

Working With the Spelling Checker

– textView:shouldSetSpellingState:range: (page 3890)
Sent when the spelling state is changed.

– textView:willCheckTextInRange:options:types: (page 3893)
Invoked to allow the delegate to modify the text checking process before it occurs.

– textView:didCheckTextInRange:types:options:results:orthography:wordCount: (page
3884)

Invoked to allow the delegate to modify the text checking results after checking has occurred.

3880 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

Dragging

– textView:draggedCell:inRect:event:atIndex: (page 3888)
Sent when the user attempts to drag a cell.

Text Completion

– textView:completions:forPartialWordRange:indexOfSelectedItem: (page 3884)
Returns the actual completions for a partial word.

Performing Commands

– textView:doCommandBySelector: (page 3885)
Sent to allow the delegate to perform the command for the text view.

Contextual Menu Management

– textView:menu:forEvent:atIndex: (page 3888)
Allows delegate to control the context menu returned by the text view.

Deprecated Methods

– textView:clickedOnLink: (page 3883)
Sent after the user clicks on a link. (Deprecated. Use textView:clickedOnLink:atIndex: instead.)

– textView:draggedCell:inRect:event: (page 3887)
Sent when the user attempts to drag a cell. (Deprecated. Use
textView:draggedCell:inRect:event:atIndex: instead.)

– textView:clickedOnCell:inRect: (page 3881)
Sent when the user clicks a cell. (Deprecated. Use textView:clickedOnCell:inRect:atIndex:
instead.)

– textView:doubleClickedOnCell:inRect: (page 3886)
Sent when the user double-clicks a cell. (Deprecated. Use
textView:doubleClickedOnCell:inRect:atIndex: instead.)

Instance Methods

textView:clickedOnCell:inRect:
Sent when the user clicks a cell. (Deprecated. Use textView:clickedOnCell:inRect:atIndex: instead.)

- (void)textView:(NSTextView *)aTextView clickedOnCell:(id < NSTextAttachmentCell
 >)attachmentCell inRect:(NSRect)cellFrame

Instance Methods 3881
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

Parameters
aTextView

The text view sending the message.

attachmentCell
The cell clicked by the user.

cellFrame
The frame of the clicked cell.

Discussion
This message is only sent if textView:clickedOnCell:inRect:atIndex: is not implemented. Implement
this method in order to track the mouse after a mouse click on a cell.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

textView:clickedOnCell:inRect:atIndex:
Sent when the user clicks a cell.

- (void)textView:(NSTextView *)aTextView clickedOnCell:(id < NSTextAttachmentCell
 >)cell inRect:(NSRect)cellFrame atIndex:(NSUInteger)charIndex

Parameters
aTextView

The text view sending the message.

cell
The cell clicked by the user.

cellFrame
The frame of the clicked cell.

charIndex
The character index of the clicked cell.

Discussion
The delegate can use this message as its cue to perform an action or select the attachment cell’s character.
aTextView is the first text view in a series shared by a layout manager, not necessarily the one that draws
cell.

The delegate may subsequently receive a textView:doubleClickedOnCell:inRect:atIndex: (page
3886) message if the user continues to perform a double click.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– textView:doubleClickedOnCell:inRect:atIndex: (page 3886)

3882 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

Declared In
NSTextView.h

textView:clickedOnLink:
Sent after the user clicks on a link. (Deprecated. Use textView:clickedOnLink:atIndex: instead.)

- (BOOL)textView:(NSTextView *)aTextView clickedOnLink:(id)link

Parameters
aTextView

The text view sending the message.

link
The link that was clicked.

Discussion
This message is only sent if textView:clickedOnLink:atIndex: is not implemented.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– clickedOnLink:atIndex: (page 2887) (NSTextView)
– textView:clickedOnLink:atIndex: (page 3883)

Declared In
NSTextView.h

textView:clickedOnLink:atIndex:
Sent after the user clicks a link.

- (BOOL)textView:(NSTextView *)aTextView clickedOnLink:(id)link
atIndex:(NSUInteger)charIndex

Parameters
aTextView

The text view sending the message.

link
The link that was clicked; the value of NSLinkAttributeName (page 272).

charIndex
The character index where the click occurred, indexed within the text storage.

Return Value
YES if the click was handled; otherwise, NO to allow the next responder to handle it.

Discussion
The delegate can use this method to handle the click on the link. It is invoked by
clickedOnLink:atIndex: (page 2887).

Instance Methods 3883
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

The charIndex parameter is a character index somewhere in the range of the link attribute. If the user
actually physically clicked the link, then it should be the character that was originally clicked. In some cases
a link may be opened indirectly or programmatically, in which case a character index somewhere in the range
of the link attribute is supplied.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– clickedOnLink:atIndex: (page 2887) (NSTextView)

Declared In
NSTextView.h

textView:completions:forPartialWordRange:indexOfSelectedItem:
Returns the actual completions for a partial word.

- (NSArray *)textView:(NSTextView *)textView completions:(NSArray *)words
forPartialWordRange:(NSRange)charRange indexOfSelectedItem:(NSInteger *)index

Parameters
textView

The text view sending the message.

words
The proposed array of completions.

charRange
The range of characters to be completed.

index
On return, the index of the initially selected completion. The default is 0, and –1 indicates no selection.

Return Value
The actual array of completions that will be presented for the partial word at the given range. Returning nil
or a zero-length array suppresses completion.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

textView:didCheckTextInRange:types:options:results:orthography:wordCount:
Invoked to allow the delegate to modify the text checking results after checking has occurred.

- (NSArray *)textView:(NSTextView *)view didCheckTextInRange:(NSRange)range
types:(NSTextCheckingTypes)checkingTypes options:(NSDictionary *)options
results:(NSArray *)results orthography:(NSOrthography *)orthography
wordCount:(NSInteger)wordCount

3884 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

Parameters
view

The text view sending the message.

range
The range that was checked.

checkingTypes
The type of checking that was performed. The possible constants are listed in NSTextCheckingTypes
and can be combined using the C bit-wise OR operator to perform multiple checks at the same time.

options
A dictionary of values used during the checking process to perform. See Spell Checking Option
Dictionary Keys (page 2537) for the supported values.

results
An array of NSTextCheckingResult instances.

orthography
The orthography of the text.

wordCount
The number of words checked.

Return Value
An array of NSTextCheckingResult instances. You can return the results array as is, or an altered array of
NSTextCheckingResult objects.

Discussion
Invoked byhandleTextCheckingResults:forRange:types:options:orthography:wordCount: (page
2894), this method allows observation of text checking, or modification of the results

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextView.h

textView:doCommandBySelector:
Sent to allow the delegate to perform the command for the text view.

- (BOOL)textView:(NSTextView *)aTextView doCommandBySelector:(SEL)aSelector

Parameters
aTextView

The text view sending the message. This is the first text view in a series shared by a layout manager.

aSelector
The selector.

Return Value
YES indicates that the delegate handled the command and the text view will not attempt to perform it; NO
indicates that the delegate did not handle the command the text view will attempt to perform it.

Discussion
This method is invoked by NSTextView's doCommandBySelector: (page 2152) method.

Instance Methods 3885
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

textView:doubleClickedOnCell:inRect:
Sent when the user double-clicks a cell. (Deprecated. Use
textView:doubleClickedOnCell:inRect:atIndex: instead.)

- (void)textView:(NSTextView *)aTextView doubleClickedOnCell:(id <
NSTextAttachmentCell >)attachmentCell inRect:(NSRect)cellFrame

Parameters
aTextView

The text view sending the message.

cell
The cell double-clicked by the user.

cellFrame
The frame of the double-clicked cell.

Discussion
This message is only sent if textView:doubleClickedOnCell:inRect:atIndex: (page 3886) is not
implemented. Implement this method in order to track the mouse after a mouse double-click on a cell.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– textView:doubleClickedOnCell:inRect:atIndex: (page 3886)

Declared In
NSTextView.h

textView:doubleClickedOnCell:inRect:atIndex:
Sent when the user double-clicks a cell.

- (void)textView:(NSTextView *)aTextView doubleClickedOnCell:(id <
NSTextAttachmentCell >)cell inRect:(NSRect)cellFrame
atIndex:(NSUInteger)charIndex

Parameters
aTextView

The text view sending the message.

cell
The cell double-clicked by the user.

3886 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

cellFrame
The frame of the double-clicked cell.

charIndex
The character index of the double-clicked cell.

Discussion
The delegate can use this message as its cue to perform an action, such as opening the file represented by
the attachment. aTextView is the first text view in a series shared by a layout manager, not necessarily the
one that draws cell.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

textView:draggedCell:inRect:event:
Sent when the user attempts to drag a cell. (Deprecated. Use
textView:draggedCell:inRect:event:atIndex: instead.)

- (void)textView:(NSTextView *)aTextView draggedCell:(id < NSTextAttachmentCell
>)cell inRect:(NSRect)aRect event:(NSEvent *)theEvent

Parameters
aTextView

The text view sending the message.

cell
The cell being dragged.

aRect
The rectangle from which the cell was dragged.

theEvent
The mouse-down event that preceded the mouse-dragged event.

Discussion
This method has been deprecated in favor of textView:draggedCell:inRect:event:atIndex: (page
3888).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– dragImage:at:offset:event:pasteboard:source:slideBack: (page 3168) (NSView)
– dragFile:fromRect:slideBack:event: (page 3167) (NSView)

Declared In
NSTextView.h

Instance Methods 3887
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

textView:draggedCell:inRect:event:atIndex:
Sent when the user attempts to drag a cell.

- (void)textView:(NSTextView *)aTextView draggedCell:(id < NSTextAttachmentCell
>)cell inRect:(NSRect)rect event:(NSEvent *)event atIndex:(NSUInteger)charIndex

Parameters
aTextView

The text view sending the message.

cell
The cell being dragged.

aRect
The rectangle from which the cell was dragged.

theEvent
The mouse-down event that preceded the mouse-dragged event.

charIndex
The character position where the mouse button was clicked.

Discussion
The delegate can use this message as its cue to initiate a dragging operation.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– dragImage:at:offset:event:pasteboard:source:slideBack: (page 3168) (NSView)
– dragFile:fromRect:slideBack:event: (page 3167) (NSView)

Declared In
NSTextView.h

textView:menu:forEvent:atIndex:
Allows delegate to control the context menu returned by the text view.

- (NSMenu *)textView:(NSTextView *)view menu:(NSMenu *)menu forEvent:(NSEvent
*)event atIndex:(NSUInteger)charIndex

Parameters
view

The text view sending the message.

menu
The proposed contextual menu.

event
The mouse-down event that initiated the contextual menu’s display.

charIndex
The character position where the mouse button was clicked.

3888 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

Return Value
A menu to use as the contextual menu. You can return menu unaltered, or you can return a customized menu.

Discussion
This method allows the delegate to control the context menu returned by menuForEvent: (page 3189).

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

textView:shouldChangeTextInRange:replacementString:
Sent when a text view needs to determine if text in a specified range should be changed.

- (BOOL)textView:(NSTextView *)aTextView
shouldChangeTextInRange:(NSRange)affectedCharRange replacementString:(NSString
 *)replacementString

Parameters
aTextView

The text view sending the message. This is the first text view in a series shared by a layout manager,
not necessarily the text view displaying the selected text.

affectedCharRange
The range of characters to be replaced.

replacementString
The characters that will replace the characters in affectedCharRange; nil if only text attributes
are being changed.

Return Value
YES to allow the replacement, or NO to reject the change.

Discussion
If a delegate implements this method and not its multiple-selection replacement,
textView:shouldChangeTextInRanges:replacementStrings: (page 3889), it is called with an appropriate
range and string. If a delegate implements the new method, then this one is ignored.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

textView:shouldChangeTextInRanges:replacementStrings:
Sent when a text view needs to determine if text in an array of specified ranges should be changed.

- (BOOL)textView:(NSTextView *)textView shouldChangeTextInRanges:(NSArray
*)affectedRanges replacementStrings:(NSArray *)replacementStrings

Instance Methods 3889
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

Parameters
textView

The text view sending the message. This is the first text view in a series shared by a layout manager,
not necessarily the text view displaying the selected text.

affectedRanges
The array of ranges of characters to be replaced. This array must be a non-nil, non-empty array of
objects responding to the NSValue rangeValuemethod, and in addition its elements must be sorted,
non-overlapping, non-contiguous, and (except for the case of a single range) have non-zero-length.

replacementStrings
The array of strings that will replace the characters in affectedRanges, one string for each range;
nil if only text attributes are being changed.

Return Value
YES to allow the replacement, or NO to reject the change.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

textView:shouldChangeTypingAttributes:toAttributes:
Sent when the typing attributes are changed.

- (NSDictionary *)textView:(NSTextView *)textView
shouldChangeTypingAttributes:(NSDictionary *)oldTypingAttributes
toAttributes:(NSDictionary *)newTypingAttributes

Parameters
textView

The text view sending the message.

oldTypingAttributes
The old typing attributes.

newTypingAttributes
The proposed typing attributes.

Return Value
The actual new typing attributes.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

textView:shouldSetSpellingState:range:
Sent when the spelling state is changed.

3890 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

- (NSInteger)textView:(NSTextView *)textView shouldSetSpellingState:(NSInteger)value
range:(NSRange)affectedCharRange

Parameters
textView

The text view sending the message.

value
The proposed spelling state value to set. Possible values, for the temporary attribute on the layout
manager using the key NSSpellingStateAttributeName, are:

NSSpellingStateSpellingFlag (page 287) to highlight spelling issues.
NSSpellingStateGrammarFlag (page 287) to highlight grammar issues.

affectedCharRange
The character range over which to set the given spelling state.

Return Value
The actual spelling state to set.

Discussion
Delegate only. Allows delegate to control the setting of spelling and grammar indicators.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– setSpellingState:range: (page 2945) (NSTextView)

Declared In
NSTextView.h

textView:willChangeSelectionFromCharacterRange:toCharacterRange:
Returns the actual range to select.

- (NSRange)textView:(NSTextView *)aTextView
willChangeSelectionFromCharacterRange:(NSRange)oldSelectedCharRange
toCharacterRange:(NSRange)newSelectedCharRange

Parameters
aTextView

The text view sending the message. This is the first text view in a series shared by a layout manager,
not necessarily the text view displaying the selected text.

oldSelectedCharRange
The original range of the selection.

newSelectedCharRange
The proposed character range for the new selection.

Return Value
The actual character range for the new selection.

Instance Methods 3891
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

Discussion
This method is invoked before a text view finishes changing the selection—that is, when the last argument
to a setSelectedRange:affinity:stillSelecting: (page 2941) message is NO.

Special Considerations

In Mac OS X version 10.4 and later, if a delegate implements this delegate method and not its multiple-selection
replacement, textView:willChangeSelectionFromCharacterRanges:toCharacterRanges: (page
3892), then multiple selection is effectively disallowed; attempts to set the selected ranges call the old delegate
method with the first subrange, and afterwards only a single selected range is set.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– textView:willChangeSelectionFromCharacterRanges:toCharacterRanges: (page 3892)

Declared In
NSTextView.h

textView:willChangeSelectionFromCharacterRanges:toCharacterRanges:
Returns the actual character ranges to select.

- (NSArray *)textView:(NSTextView *)aTextView
willChangeSelectionFromCharacterRanges:(NSArray *)oldSelectedCharRanges
toCharacterRanges:(NSArray *)newSelectedCharRanges

Parameters
aTextView

The text view sending the message. This is the first text view in a series shared by a layout manager,
not necessarily the text view displaying the selected text.

oldSelectedCharRanges
An array containing the original ranges of the selection. This must be a non-nil, non-empty array of
objects responding to the NSValue rangeValuemethod, and in addition its elements must be sorted,
non-overlapping, non-contiguous, and (except for the case of a single range) have non-zero-length.

newSelectedCharRanges
An array containing the proposed character ranges for the new selection. This must be a non-nil,
non-empty array of objects responding to the NSValue rangeValue method, and in addition its
elements must be sorted, non-overlapping, non-contiguous, and (except for the case of a single range)
have non-zero-length.

Return Value
An array containing the actual character ranges for the new selection.

Discussion
Invoked before an NSTextView finishes changing the selection—that is, when the last argument to a
setSelectedRange:affinity:stillSelecting: (page 2941) or
setSelectedRanges:affinity:stillSelecting: (page 2943) message is NO.

If a delegate implements both this method and
textView:willChangeSelectionFromCharacterRange:toCharacterRange: (page 3891), then the
latter is ignored.

3892 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

textView:willCheckTextInRange:options:types:
Invoked to allow the delegate to modify the text checking process before it occurs.

- (NSDictionary *)textView:(NSTextView *)view willCheckTextInRange:(NSRange)range
options:(NSDictionary *)options types:(NSTextCheckingTypes *)checkingTypes

Parameters
view

The text view sending the message.

range
The range to be checked.

options
A dictionary of values used during the checking process to perform. See Spell Checking Option
Dictionary Keys (page 2537) for the supported values.

checkingTypes
The type of checking to be performed, passed by-reference. The possible constants are listed in
NSTextCheckingTypes and can be combined using the C bit-wise OR operator to perform multiple
checks at the same time.

You can change this parameter to alter the types of checking to be performed.

Return Value
A dictionary containing an alternative to the options dictionary.

Discussion
Invoked bycheckTextInRange:types:options: (page 2886), this method allows control over text checking
optionss (via the return value) or types (by modifying the flags pointed to by the inout parameter
checkingTypes)

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSTextView.h

textView:willDisplayToolTip:forCharacterAtIndex:
Returns the actual tooltip to display.

- (NSString *)textView:(NSTextView *)textView willDisplayToolTip:(NSString *)tooltip
forCharacterAtIndex:(NSUInteger)characterIndex

Instance Methods 3893
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

Parameters
textView

The text view sending the message.

tooltip
The proposed tooltip to display.

characterIndex
The location in textView.

Return Value
The actual tooltip to display, or nil to suppress display of the tooltip.

Discussion
The tooltip string is the value of the NSToolTipAttributeName (page 274) attribute at characterIndex.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

textView:writablePasteboardTypesForCell:atIndex:
Returns the writable pasteboard types for a given cell.

- (NSArray *)textView:(NSTextView *)aTextView writablePasteboardTypesForCell:(id
< NSTextAttachmentCell >)cell atIndex:(NSUInteger)charIndex

Parameters
aTextView

The text view sending the message.

cell
The cell in question.

charIndex
The character index in the text view that was clicked.

Return Value
An array of types that can be written to the pasteboard for cell.

Discussion
This method is invoked after the user clicks cell at the specified charIndex location in aTextView. If the
textView:draggedCell:inRect:event:atIndex: (page 3888) is not used, this method and
textView:writeCell:atIndex:toPasteboard:type: (page 3895) allow aTextView to take care of
attachment dragging and pasting, with the delegate responsible only for writing the attachment to the
pasteboard.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

3894 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

textView:writeCell:atIndex:toPasteboard:type:
Returns whether data of the specified type for the given cell could be written to the specified pasteboard.

- (BOOL)textView:(NSTextView *)aTextView writeCell:(id < NSTextAttachmentCell >)cell
atIndex:(NSUInteger)charIndex toPasteboard:(NSPasteboard *)pboard type:(NSString
 *)type

Parameters
aTextView

The text view sending the message.

cell
The cell whose contents should be written to the pasteboard.

charIndex
The index at which the cell was accessed.

pboard
The pasteboard to which the cell's contents should be written.

type
The type of data that should be written.

Return Value
YES if the write succeeded, NO otherwise.

Discussion
The receiver should attempt to write the cell to pboard with the given type, and return success or failure.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

textViewDidChangeSelection:
Sent when the selection changes in the text view.

- (void)textViewDidChangeSelection:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSTextViewDidChangeSelectionNotification (page 2974).

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

Instance Methods 3895
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

textViewDidChangeTypingAttributes:
Sent when a text view’s typing attributes change.

- (void)textViewDidChangeTypingAttributes:(NSNotification *)aNotification

Parameters
aNotification

A notification named NSTextViewDidChangeTypingAttributesNotification (page 2975).

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

undoManagerForTextView:
Returns the undo manager for the specified text view.

- (NSUndoManager *)undoManagerForTextView:(NSTextView *)aTextView

Parameters
aTextView

The text view whose undo manager should be returned.

Return Value
The undo manager for aTextView.

Discussion
This method provides the flexibility to return a custom undo manager for the text view. Although NSTextView
implements undo and redo for changes to text, applications may need a custom undo manager to handle
interactions between changes to text and changes to other items in the application.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTextView.h

3896 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 230

NSTextViewDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSTokenFieldCell.h

Companion guide Token Field Programming Guide

Overview

The NSTokenFieldCellDelegate protocol defines the optional methods implemented by delegates of
NSTokenFieldCell objects.

Tasks

Displaying Tokenized Strings

– tokenFieldCell:displayStringForRepresentedObject: (page 3899) Available in Mac OS X v10.0
through Mac OS X v10.1 Available in Mac OS X v10.5 through Mac OS X v10.5

Allows the delegate to provide a string to be displayed as a proxy for the represented object.

– tokenFieldCell:styleForRepresentedObject: (page 3903) Available in Mac OS X v10.0 through Mac
OS X v10.1 Available in Mac OS X v10.5 through Mac OS X v10.5

Allows the delegate to return the token style for editing the specified represented object.

Editing a Tokenized Strings

– tokenFieldCell:editingStringForRepresentedObject: (page 3899)
Allows the delegate to provide a string to be edited as a proxy for the represented object.

– tokenFieldCell:representedObjectForEditingString: (page 3901)
Allows the delegate to provide a represented object for the string being edited.

– tokenFieldCell:shouldAddObjects:atIndex: (page 3902) Available in Mac OS X v10.5 through Mac
OS X v10.5

Allows the delegate to validate the tokens to be added to the receiver at a given index.

Overview 3897
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 231

NSTokenFieldCellDelegate Protocol Reference

– tokenFieldCell:completionsForSubstring:indexOfToken:indexOfSelectedItem: (page 3898)
Available in Mac OS X v10.0 through Mac OS X v10.1 Available in Mac OS X v10.5 through Mac OS X v10.5

Allows the delegate to provide an array of appropriate completions for the contents of the receiver.

Reading To and Writing From the Pasteboard

– tokenFieldCell:readFromPasteboard: (page 3901)
Allows the delegate to return an array of objects representing the data read from pboard.

– tokenFieldCell:writeRepresentedObjects:toPasteboard: (page 3903)
Allows the delegate the opportunity to write custom pasteboard types to the pasteboard for the
represented objects in objects.

Managing Menus for Represented Objects

– tokenFieldCell:hasMenuForRepresentedObject: (page 3900)
Allows the delegate to specify whether the represented object provides a menu.

– tokenFieldCell:menuForRepresentedObject: (page 3900)
Allows the delegate to provide a menu for the specified represented object.

Instance Methods

tokenFieldCell:completionsForSubstring:indexOfToken:indexOfSelectedItem:
Allows the delegate to provide an array of appropriate completions for the contents of the receiver.

- (NSArray *)tokenFieldCell:(NSTokenFieldCell *)tokenFieldCell
completionsForSubstring:(NSString *)substring indexOfToken:(NSInteger)tokenIndex
indexOfSelectedItem:(NSInteger *)selectedIndex

Parameters
tokenFieldCell

The token field cell that sent the message.

substring
The partial string that is to be completed.

tokenIndex
The index of the token being edited.

selectedIndex
Optionally, you can return by-reference an index into the returned array that specifies which of the
completions should be initially selected. If none are to be selected, return by reference -1.

Return Value
An array of strings that are possible completions.

Discussion
If the delegate does not implement this method, no completions are provided.

3898 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 231

NSTokenFieldCellDelegate Protocol Reference

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTokenFieldCell.h

tokenFieldCell:displayStringForRepresentedObject:
Allows the delegate to provide a string to be displayed as a proxy for the represented object.

- (NSString *)tokenFieldCell:(NSTokenFieldCell *)tokenFieldCell
displayStringForRepresentedObject:(id)representedObject

Parameters
tokenFieldCell

The token field cell that sent the message.

representedObject
A represented object of the token field cell.

Return Value
The string to be used as a proxy for representedObject. If you return nil or do not implement this method,
then representedObject is displayed as the string.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTokenFieldCell.h

tokenFieldCell:editingStringForRepresentedObject:
Allows the delegate to provide a string to be edited as a proxy for the represented object.

- (NSString *)tokenFieldCell:(NSTokenFieldCell *)tokenFieldCell
editingStringForRepresentedObject:(id)representedObject

Parameters
tokenFieldCell

The token field cell that sent the message.

representedObject
A represented object of the token field.

Return Value
A string that’s an editable proxy of the represented object, or nil if the token should not be editable.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Instance Methods 3899
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 231

NSTokenFieldCellDelegate Protocol Reference

See Also
– tokenFieldCell:representedObjectForEditingString: (page 3901)

Declared In
NSTokenFieldCell.h

tokenFieldCell:hasMenuForRepresentedObject:
Allows the delegate to specify whether the represented object provides a menu.

- (BOOL)tokenFieldCell:(NSTokenFieldCell *)tokenFieldCell
hasMenuForRepresentedObject:(id)representedObject

Parameters
tokenFieldCell

The token field cell that sent the message.

representedObject
A represented object of the token field.

Return Value
YES if the represented object has a menu, NO otherwise.

Discussion
By default tokens have no menus.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– tokenFieldCell:menuForRepresentedObject: (page 3900)

Declared In
NSTokenFieldCell.h

tokenFieldCell:menuForRepresentedObject:
Allows the delegate to provide a menu for the specified represented object.

- (NSMenu *)tokenFieldCell:(NSTokenFieldCell *)tokenFieldCell
menuForRepresentedObject:(id)representedObject

Parameters
tokenFieldCell

The token field cell that sent the message.

representedObject
A represented object of the token field.

Return Value
The menu associated with the represented object.

Discussion
The returned menu should be autoreleased. By default tokens in a token field cell do not return menus.

3900 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 231

NSTokenFieldCellDelegate Protocol Reference

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– tokenFieldCell:hasMenuForRepresentedObject: (page 3900)

Declared In
NSTokenFieldCell.h

tokenFieldCell:readFromPasteboard:
Allows the delegate to return an array of objects representing the data read from pboard.

- (NSArray *)tokenFieldCell:(NSTokenFieldCell *)tokenFieldCell
readFromPasteboard:(NSPasteboard *)pboard

Parameters
tokenFieldCell

The token field cell that sent the message.

pboard
The pasteboard from which to read the represented objects.

Return Value
An array of represented objects created from the pasteboard data.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– tokenFieldCell:writeRepresentedObjects:toPasteboard: (page 3903)

Declared In
NSTokenFieldCell.h

tokenFieldCell:representedObjectForEditingString:
Allows the delegate to provide a represented object for the string being edited.

- (id)tokenFieldCell:(NSTokenFieldCell *)tokenFieldCell
representedObjectForEditingString:(NSString *)editingString

Parameters
tokenFieldCell

The token field cell that sent the message.

editingString
The edited string representation of a represented object.

Return Value
A represented object that is displayed rather than the editing string.

Instance Methods 3901
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 231

NSTokenFieldCellDelegate Protocol Reference

Discussion
If your application uses some object other than an NSString for their represented objects, you should return
a new, autoreleased instance of that object from this method.

Note: In Mac OS X v10.4, NSTokenField trims whitespace around tokens but it does not trim whitespace
in Mac OS X versions 10.5.0 and 10.5.1. In Mac OS X v10.5.2, you get whitespace-trimming behavior by either
linking against the v10.4 binary or linking against the v10.5 binary and not implementing the this method.
If you do not want the whitespace-trimming behavior, link against the v10.5 binary and implement this
method, returning the editing string if you have no represented object.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– tokenFieldCell:editingStringForRepresentedObject: (page 3899)

Declared In
NSTokenFieldCell.h

tokenFieldCell:shouldAddObjects:atIndex:
Allows the delegate to validate the tokens to be added to the receiver at a given index.

- (NSArray *)tokenFieldCell:(NSTokenFieldCell *)tokenFieldCell
shouldAddObjects:(NSArray *)tokens atIndex:(NSUInteger)index

Parameters
tokenFieldCell

The token field cell that sent the message.

tokens
An array of tokens to be inserted in the receiver at index.

index
The index of the receiver in which the array of tokens to be validated (tokens) will be inserted.

Return Value
An array of validated tokens.

Discussion
The delegate can return the array unchanged or return a modified array of tokens. To reject the add completely,
return an empty array. Returning nil causes an error.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTokenFieldCell.h

3902 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 231

NSTokenFieldCellDelegate Protocol Reference

tokenFieldCell:styleForRepresentedObject:
Allows the delegate to return the token style for editing the specified represented object.

- (NSTokenStyle)tokenFieldCell:(NSTokenFieldCell *)tokenFieldCell
styleForRepresentedObject:(id)representedObject

Parameters
tokenFieldCell

The token field cell that sent the message.

representedObject
A represented object of the token field cell.

Return Value
The style that should be used to display the representedObject. Possible values are shown in
NSTokenStyle_Values.

Discussion
If the delegate implements this method and returns an NSTokenStyle (page 2988) that differs from the style
set by setTokenStyle: (page 2987), the value the delegate returns is preferred.

If the delegate does not implement this method, the token field cell’s tokenStyle (page 2988) is used.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTokenFieldCell.h

tokenFieldCell:writeRepresentedObjects:toPasteboard:
Allows the delegate the opportunity to write custom pasteboard types to the pasteboard for the represented
objects in objects.

- (BOOL)tokenFieldCell:(NSTokenFieldCell *)tokenFieldCell
writeRepresentedObjects:(NSArray *)objects toPasteboard:(NSPasteboard *)pboard

Parameters
tokenFieldCell

The token field cell that sent the message.

objects
An array of represented objects associated with the token field cell.

pboard
The pasteboard to which to write the represented objects.

Return Value
YES if the delegate writes the represented objects to the pasteboard, NO otherwise. If NO, the token field
writes the display strings to the NSStringPboardType (page 1909) pasteboard.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Instance Methods 3903
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 231

NSTokenFieldCellDelegate Protocol Reference

See Also
– tokenFieldCell:readFromPasteboard: (page 3901)

Declared In
NSTokenFieldCell.h

3904 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 231

NSTokenFieldCellDelegate Protocol Reference

Conforms to NSTextFieldDelegate

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSTokenField.h

Companion guide Token Field Programming Guide

Overview

The NSTokenFieldDelegate protocol defines the optional methods implemented by delegates of
NSTokenField objects.

Tasks

Displaying Tokenized Strings

– tokenField:displayStringForRepresentedObject: (page 3907)
Allows the delegate to provide a string to be displayed as a proxy for the given represented object.

– tokenField:styleForRepresentedObject: (page 3910)
Allows the delegate to return the token style for editing the specified represented object.

Editing a Tokenized Strings

– tokenField:completionsForSubstring:indexOfToken:indexOfSelectedItem: (page 3906)
Allows the delegate to provide an array of appropriate completions for the contents of the receiver.

– tokenField:editingStringForRepresentedObject: (page 3907)
Allows the delegate to provide a string to be edited as a proxy for a represented object.

– tokenField:representedObjectForEditingString: (page 3909)
Allows the delegate to provide a represented object for the given editing string.

– tokenField:shouldAddObjects:atIndex: (page 3910)
Allows the delegate to validate the tokens to be added to the receiver at a particular location.

Overview 3905
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 232

NSTokenFieldDelegate Protocol Reference

Reading To and Writing From the Pasteboard

– tokenField:readFromPasteboard: (page 3909)
Allows the delegate to return an array of objects representing the data read from the specified
pasteboard.

– tokenField:writeRepresentedObjects:toPasteboard: (page 3911)
Sent so the delegate can write represented objects to the pasteboard corresponding to a given array
of display strings.

Managing Menus for Represented Objects

– tokenField:hasMenuForRepresentedObject: (page 3908)
Allows the delegate to specify whether the given represented object provides a menu.

– tokenField:menuForRepresentedObject: (page 3908)
Allows the delegate to provide a menu for the specified represented object.

Instance Methods

tokenField:completionsForSubstring:indexOfToken:indexOfSelectedItem:
Allows the delegate to provide an array of appropriate completions for the contents of the receiver.

- (NSArray *)tokenField:(NSTokenField *)tokenField completionsForSubstring:(NSString
 *)substring indexOfToken:(NSInteger)tokenIndex indexOfSelectedItem:(NSInteger
 *)selectedIndex

Parameters
tokenField

The token field where editing is occurring.

substring
The partial string that is to be completed.

tokenIndex
The index of the token being edited.

selectedIndex
Optionally, you can return by-reference an index into the returned array that specifies which of the
completions should be initially selected. If none are to be selected, return by reference -1.

Return Value
An array of strings that are possible completions.

Discussion
If the delegate does not implement this method, no completions are provided.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

3906 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 232

NSTokenFieldDelegate Protocol Reference

Declared In
NSTokenField.h

tokenField:displayStringForRepresentedObject:
Allows the delegate to provide a string to be displayed as a proxy for the given represented object.

- (NSString *)tokenField:(NSTokenField *)tokenField
displayStringForRepresentedObject:(id)representedObject

Parameters
tokenField

The token field that sent the message.

representedObject
A represented object of the token field.

Return Value
The string to be used as a proxy for representedObject. If you return nil or do not implement this method,
then representedObject is displayed as the string.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTokenField.h

tokenField:editingStringForRepresentedObject:
Allows the delegate to provide a string to be edited as a proxy for a represented object.

- (NSString *)tokenField:(NSTokenField *)tokenField
editingStringForRepresentedObject:(id)representedObject

Parameters
tokenField

The token field that sent the message.

representedObject
A represented object of the token field.

Return Value
A string that’s an editable proxy of the represented object, or nil if the token should not be editable.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– tokenField:representedObjectForEditingString: (page 3909)

Declared In
NSTokenField.h

Instance Methods 3907
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 232

NSTokenFieldDelegate Protocol Reference

tokenField:hasMenuForRepresentedObject:
Allows the delegate to specify whether the given represented object provides a menu.

- (BOOL)tokenField:(NSTokenField *)tokenField
hasMenuForRepresentedObject:(id)representedObject

Parameters
tokenField

The token field that sent the message.

representedObject
A represented object of the token field.

Return Value
YES if the represented object has a menu, NO otherwise.

Discussion
By default tokens in a token field have no menus.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– tokenField:menuForRepresentedObject: (page 3908)

Declared In
NSTokenField.h

tokenField:menuForRepresentedObject:
Allows the delegate to provide a menu for the specified represented object.

- (NSMenu *)tokenField:(NSTokenField *)tokenField
menuForRepresentedObject:(id)representedObject

Parameters
tokenField

The token field that sent the message.

representedObject
A represented object of the token field.

Return Value
The menu associated with the represented object.

Discussion
The returned menu should be autoreleased. By default tokens in a token field do not return menus.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– tokenField:hasMenuForRepresentedObject: (page 3908)

3908 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 232

NSTokenFieldDelegate Protocol Reference

Declared In
NSTokenField.h

tokenField:readFromPasteboard:
Allows the delegate to return an array of objects representing the data read from the specified pasteboard.

- (NSArray *)tokenField:(NSTokenField *)tokenField readFromPasteboard:(NSPasteboard
 *)pboard

Parameters
tokenField

The token field that sent the message.

pboard
The pasteboard from which to read the represented objects.

Return Value
An array of represented objects created from the pasteboard data.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– tokenField:writeRepresentedObjects:toPasteboard: (page 3911)

Declared In
NSTokenField.h

tokenField:representedObjectForEditingString:
Allows the delegate to provide a represented object for the given editing string.

- (id)tokenField:(NSTokenField *)tokenField
representedObjectForEditingString:(NSString *)editingString

Parameters
tokenField

The token field that sent the message.

editingString
The edited string representation of a represented object.

Return Value
A represented object that is displayed rather than the editing string.

Discussion
If your application uses some object other than an NSString for their represented objects, you should return
a new, autoreleased instance of that object from this method.

Instance Methods 3909
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 232

NSTokenFieldDelegate Protocol Reference

Note: In Mac OS X v10.4, NSTokenField trims whitespace around tokens but it does not trim whitespace
in Mac OS X versions 10.5.0 and 10.5.1. In Mac OS X v10.5.2, you get whitespace-trimming behavior by either
linking against the v10.4 binary or linking against the v10.5 binary and not implementing the this method.
If you do not want the whitespace-trimming behavior, link against the v10.5 binary and implement this
method, returning the editing string if you have no represented object.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– tokenField:editingStringForRepresentedObject: (page 3907)

Declared In
NSTokenField.h

tokenField:shouldAddObjects:atIndex:
Allows the delegate to validate the tokens to be added to the receiver at a particular location.

- (NSArray *)tokenField:(NSTokenField *)tokenField shouldAddObjects:(NSArray *)tokens
atIndex:(NSUInteger)index

Parameters
tokenField

The token field that sent the message.

tokens
An array of tokens to be inserted in the receiver at index.

index
The index of the receiver in which the array of tokens to be validated (tokens) will be inserted.

Return Value
An array of validated tokens.

Discussion
The delegate can return the array unchanged or return a modified array of tokens. To reject the add completely,
return an empty array. Returning nil causes an error.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTokenField.h

tokenField:styleForRepresentedObject:
Allows the delegate to return the token style for editing the specified represented object.

- (NSTokenStyle)tokenField:(NSTokenField *)tokenField
styleForRepresentedObject:(id)representedObject

3910 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 232

NSTokenFieldDelegate Protocol Reference

Parameters
tokenField

The token field that sent the message.

representedObject
A represented object of the token field.

Return Value
The style that should be used to display the representedObject. Possible values are shown in NSTokenStyle
Values.

Discussion
If the delegate implements this method and returns an NSTokenStyle (page 2988) that differs from the style
set by setTokenStyle: (page 2981), the value the delegate returns is preferred.

If the delegate does not implement this method, the token field’s tokenStyle (page 2982) is used.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSTokenField.h

tokenField:writeRepresentedObjects:toPasteboard:
Sent so the delegate can write represented objects to the pasteboard corresponding to a given array of
display strings.

- (BOOL)tokenField:(NSTokenField *)tokenField writeRepresentedObjects:(NSArray
*)objects toPasteboard:(NSPasteboard *)pboard

Parameters
tokenField

The token field that sent the message.

objects
An array of represented objects associated with the token field.

pboard
The pasteboard to which to write the represented objects.

Return Value
YES if the delegate writes the represented objects to the pasteboard, NO otherwise. If NO, the token field
writes the display strings to the NSStringPboardType (page 1909) pasteboard.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– tokenField:readFromPasteboard: (page 3909)

Declared In
NSTokenField.h

Instance Methods 3911
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 232

NSTokenFieldDelegate Protocol Reference

3912 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 232

NSTokenFieldDelegate Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSToolbar.h

Companion guide Toolbar Programming Topics for Cocoa

Related sample code iSpend
SimpleCocoaBrowser
SimpleToolbar

Overview

The NSToolbarDelegate protocol defines the optional methods implemented by delegates of NSToolbar
objects.

Tasks

Configuring a Toolbar

– toolbar:itemForItemIdentifier:willBeInsertedIntoToolbar: (page 3914)
Sent to request a new toolbar item; returns a toolbar item of the identified kind for the specified
toolbar.

– toolbarAllowedItemIdentifiers: (page 3915)
Sent to discover the allowed item identifiers for a toolbar.

– toolbarDefaultItemIdentifiers: (page 3915)
Sent to discover the default item identifiers for a toolbar.

– toolbarSelectableItemIdentifiers: (page 3916)
Sent to discover the selectable item identifiers for a toolbar.

Overview 3913
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 233

NSToolbarDelegate Protocol Reference

Responding to Additions and Deletions in the Toolbar

– toolbarWillAddItem: (page 3917)
Sent just before a new item is added to a toolbar.

– toolbarDidRemoveItem: (page 3916)
Sent just after an item has been removed from a toolbar.

Instance Methods

toolbar:itemForItemIdentifier:willBeInsertedIntoToolbar:
Sent to request a new toolbar item; returns a toolbar item of the identified kind for the specified toolbar.

- (NSToolbarItem *)toolbar:(NSToolbar *)toolbar itemForItemIdentifier:(NSString
*)itemIdentifier willBeInsertedIntoToolbar:(BOOL)flag

Parameters
toolbar

The toolbar for which the item is being requested.

itemIdentifier
The identifier for the requested item.

flag
YES if the item will be immediately inserted into the toolbar. If flag is NO the toolbar item is being
requested for display in the toolbar customization sheet and should always be enabled or provide
some other canonical representation. If you ignore this parameter the same toolbar item will be used
in the toolbar and in the customization sheet.

Return Value
The toolbar item for the specified toolbar and identifier. Return nil to indicate that the identified kind of
toolbar item is not supported. When an item is requested again, you may return the same NSToolbarItem
object returned earlier or a different instance.

Discussion
Implement this method to create new toolbar item instances. This method is called lazily on behalf of a
toolbar instance, which must be the sole owner of the toolbar item. A toolbar may ask again for a kind of
toolbar item already supplied to it, in which case this method may return the same toolbar item it returned
before or a different one. If your delegate services multiple toolbars, each attached to a different window, it
is best to return a different item for each toolbar—an NSToolbarItem object can only be in one toolbar at
a time.

If the item is a custom view item, the NSView object must be fully formed when the item is returned. Do not
assume that the returned item is going to be added as an active item in the toolbar, as it could be that it will
be used only in the customization palette. (The customization palette makes a copy of the returned item.)

3914 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 233

NSToolbarDelegate Protocol Reference

Important: While this method is marked as @optional in the NSToolbarDelegate protocol , it must be
implemented if the associated toolbar is created programatically. Toolbars created in Interface Builder can
implement this method to augment functionality.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSToolbar.h

toolbarAllowedItemIdentifiers:
Sent to discover the allowed item identifiers for a toolbar.

- (NSArray *)toolbarAllowedItemIdentifiers:(NSToolbar *)toolbar

Parameters
toolbar

The toolbar whose allowed item identifiers are to be returned.

Return Value
An array of toolbar item identifiers for toolbar, specifying the contents and the order of the items in the
configuration palette.

Discussion
Every allowed item must be explicitly listed, even the standard ones. The identifiers returned should include
all of those returned by toolbarDefaultItemIdentifiers: (page 3915).

Important: While this method is marked as @optional in the NSToolbarDelegate protocol , it must be
implemented if the associated toolbar is created programatically. Toolbars created in Interface Builder can
implement this method to augment functionality.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSToolbar.h

toolbarDefaultItemIdentifiers:
Sent to discover the default item identifiers for a toolbar.

- (NSArray *)toolbarDefaultItemIdentifiers:(NSToolbar *)toolbar

Parameters
toolbar

The toolbar whose default item identifiers are to be returned.

Instance Methods 3915
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 233

NSToolbarDelegate Protocol Reference

Return Value
An array of toolbar item identifiers for toolbar, specifying the contents and the order of the items in the
default toolbar configuration.

Discussion
During initialization of toolbar, this method is called only if a toolbar configuration for the identifier of
toolbar is not found in the user preferences. This method is called during initialization of the toolbar
customization palette.

Important: While this method is marked as @optional in the NSToolbarDelegate protocol , it must be
implemented if the associated toolbar is created programatically. Toolbars created in Interface Builder can
implement this method to augment functionality.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSToolbar.h

toolbarDidRemoveItem:
Sent just after an item has been removed from a toolbar.

- (void)toolbarDidRemoveItem:(NSNotification *)notification

Parameters
notification

A notification named NSToolbarDidRemoveItemNotification (page 3005).

Discussion
This method allows you to remove information related to the item that may have been cached.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSToolbar.h

toolbarSelectableItemIdentifiers:
Sent to discover the selectable item identifiers for a toolbar.

- (NSArray *)toolbarSelectableItemIdentifiers:(NSToolbar *)toolbar

Parameters
toolbar

The toolbar whose selectable item identifiers are to be returned.

Return Value
An array of item identifiers that should indicate selection in the specified toolbar.

3916 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 233

NSToolbarDelegate Protocol Reference

Discussion
Toolbars that need to indicate item selection should return an array containing the identifiers of the selectable
toolbar items.

If implemented, toolbar will display the currently selected item with a visual highlight. Clicking on an item
whose identifier is selectable will automatically update the toolbar's selected item identifier, when possible.
Clicking an item whose identifier is not selectable will not update the toolbar's selected item identifier.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– setSelectedItemIdentifier: (page 3000) (NSToolbar)

Declared In
NSToolbar.h

toolbarWillAddItem:
Sent just before a new item is added to a toolbar.

- (void)toolbarWillAddItem:(NSNotification *)notification

Parameters
notification

A notification named NSToolbarWillAddItemNotification (page 3005).

Discussion
If you need to cache a reference to a toolbar item or need to set up some initial state before a toolbar item
is added, this is where to do it.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSToolbar.h

Instance Methods 3917
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 233

NSToolbarDelegate Protocol Reference

3918 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 233

NSToolbarDelegate Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSToolbarItem.h

Companion guide Toolbar Programming Topics for Cocoa

Overview

A toolbar item with a valid target and action is enabled by default. To allow a toolbar item to be disabled in
certain situations, a toolbar item’s target can implement the validateToolbarItem: (page 3919) method.

Note: NSToolbarItem’s validate (page 3024) method calls this method only if the item’s target has a valid
action defined on its target and if the item is not a custom view item. If you want to validate a custom view
item, then you have to subclass NSToolbarItem and override validate (page 3024).

Tasks

Validating Toolbar Items

– validateToolbarItem: (page 3919)
If this method is implemented and returns NO, NSToolbar will disable theItem; returning YES causes
theItem to be enabled.

Instance Methods

validateToolbarItem:
If this method is implemented and returns NO, NSToolbar will disable theItem; returning YES causes theItem
to be enabled.

- (BOOL)validateToolbarItem:(NSToolbarItem *)theItem

Discussion
NSToolbar only calls this method for image items.

Overview 3919
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 234

NSToolbarItemValidation Protocol Reference
(informal protocol)

Note: validateToolbarItem: is called very frequently, so it must be efficient.

If the receiver is the target for the actions of multiple toolbar items, it’s necessary to determine which
toolbar item theItem refers to by testing the itemIdentifier.

-(BOOL)validateToolbarItem:(NSToolbarItem *)toolbarItem
{
 BOOL enable = NO;
 if ([[toolbarItem itemIdentifier] isEqual:SaveDocToolbarItemIdentifier]) {
 // We will return YES (enable the save item)
 // only when the document is dirty and needs saving
 enable = [self isDocumentEdited];
 } else if ([[toolbarItem itemIdentifier]
isEqual:NSToolbarPrintItemIdentifier]) {
 // always enable print for this window
 enable = YES;
 }
 return enable;
}

Availability
Available in Mac OS X v10.0 and later.

See Also
– validateVisibleItems (page 3003) (NSToolbar)
– validate (page 3024) (NSToolbarItem)
– target (page 3023) (NSToolbarItem)
– action (page 3010) (NSToolbarItem)

Declared In
NSToolbarItem.h

3920 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 234

NSToolbarItemValidation Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSView.h

Companion guide Online Help

Overview

The NSToolTipOwner informal protocol declares a method that allows an object to dynamically provide the
text to a tool tip. If the tool tip object does not implement this method, the NSObject protocol description
method is invoked instead.

Tasks

Obtaining Tool Tip Strings

– view:stringForToolTip:point:userData: (page 3921)
Returns the tool tip string to be displayed due to the cursor pausing at location point within the
tool tip rectangle identified by tag in the view view.

Instance Methods

view:stringForToolTip:point:userData:
Returns the tool tip string to be displayed due to the cursor pausing at location point within the tool tip
rectangle identified by tag in the view view.

- (NSString *)view:(NSView *)view stringForToolTip:(NSToolTipTag)tag
point:(NSPoint)point userData:(void *)userData

Discussion
userData is additional information provided by the creator of the tool tip rectangle.

Availability
Available in Mac OS X v10.0 and later.

Overview 3921
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 235

NSToolTipOwner Protocol Reference
(informal protocol)

See Also
– addToolTipRect:owner:userData: (page 3141) (NSView)

Declared In
NSView.h

3922 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 235

NSToolTipOwner Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSUserInterfaceValidation.h

Companion guide User Interface Validation

Overview

The NSUserInterfaceValidations protocol works with the NSValidatedUserInterfaceItem protocol
to allow the target of a user interface element such as a menu item or a toolbar item to decide whether or
not the user interface element should be enabled.

Your custom classes should adopt this protocol if an instance may be the target of a user interface element
and need to conditionally enable or disable the element based on the current state of the instance. For more
details, read User Interface Validation.

Tasks

Validating User Interface Items

– validateUserInterfaceItem: (page 3923) required method
Returns a Boolean value that indicates whether the sender should be enabled. (required)

Instance Methods

validateUserInterfaceItem:
Returns a Boolean value that indicates whether the sender should be enabled. (required)

- (BOOL)validateUserInterfaceItem:(id < NSValidatedUserInterfaceItem >)anItem

Overview 3923
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 236

NSUserInterfaceValidations Protocol Reference

Parameters
anItem

The user interface item to validate. You can send anItem the action (page 3925) and tag (page 3926)
messages.

Return Value
YES if the user interface item should be enabled, otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUserInterfaceValidation.h

3924 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 236

NSUserInterfaceValidations Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSUserInterfaceValidation.h

Companion guide User Interface Validation

Overview

The NSValidatedUserInterfaceItem protocol works with the NSUserInterfaceValidations protocol
to enable or disable a control automatically, depending on whether any responder in the responder chain
can handle the control’s action method. The NSMenuItem and NSToolbarItem classes implement this
protocol.

By conforming to this protocol, your control can participate in this validation mechanism. To validate a control,
the application calls validateUserInterfaceItem: for each item in the responder chain, starting with
the first responder. If no responder returns YES, the item is disabled. For example, a menu item that sends
the copy: action message would disable itself if no responder in the responder chain can be copied.

Tasks

Getting Information About a User Interface Item

– action (page 3925) required method
Returns the selector of the receiver’s action method. (required)

– tag (page 3926) required method
Returns the receiver’s tag integer. (required)

Instance Methods

action
Returns the selector of the receiver’s action method. (required)

Overview 3925
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 237

NSValidatedUserInterfaceItem Protocol
Reference

- (SEL)action

Return Value
The selector of the receiver's action method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUserInterfaceValidation.h

tag
Returns the receiver’s tag integer. (required)

- (NSInteger)tag

Return Value
The receiver's tag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSUserInterfaceValidation.h

3926 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 237

NSValidatedUserInterfaceItem Protocol Reference

Conforms to NSObject

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.6 and later.

Declared in AppKit/NSWindow.h

Companion guide Window Programming Guide

Related sample code UIElementInspector

Overview

The NSWindowDelegate protocol defines the methods that a delegate of NSWindow should implement. All
methods in this protocol are optional.

By implementing these methods, the delegate may respond to window resizing, moving, exposing, minimizing,
and a number of other window events.

Tasks

Managing Sheets

– window:willPositionSheet:usingRect: (page 3931)
Tells the delegate that the window is about to show a sheet at the specified location, giving it the
opportunity to return a custom location for the attachment of the sheet to the window.

– windowWillBeginSheet: (page 3938)
Notifies the delegate that the window is about to open a sheet.

– windowDidEndSheet: (page 3934)
Tells the delegate that the window has closed a sheet.

Overview 3927
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

Sizing Windows

– windowWillUseStandardFrame:defaultFrame: (page 3942)
Invoked by NSWindow’s zoom: (page 3409) method while determining the frame a window may be
zoomed to.

– windowShouldZoom:toFrame: (page 3938)
Asks the delegate whether the specified window should zoom to the specified frame.

– windowWillResize:toSize: (page 3940)
Tells the delegate that the window is being resized (whether by the user or through one of the
setFrame... methods other than setFrame:display: (page 3381)).

– windowDidResize: (page 3936)
Informs the delegate that the window has been resized.

– windowWillStartLiveResize: (page 3941)
Informs the delegate that the window is about to be live resized.

– windowDidEndLiveResize: (page 3934)
Informs the delegate that a live resize operation on the window has ended.

Managing Key Status

– windowDidBecomeKey: (page 3932)
Informs the delegate that the window has become the key window.

– windowDidResignKey: (page 3936)
Informs the delegate that the window has resigned key window status.

Managing Main Status

– windowDidBecomeMain: (page 3932)
Informs the delegate that the window has become main.

– windowDidResignMain: (page 3936)
Informs the delegate that the window has resigned main window status.

Managing Field Editors

– windowWillReturnFieldEditor:toObject: (page 3940)
Tells the delegate that the field editor for a text-displaying object has been requested.

Updating Windows

– windowDidUpdate: (page 3937)
Tells the delegate that the window received an update (page 3405) message.

3928 Tasks
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

Exposing Windows

– windowDidExpose: (page 3935)
Tells the delegate that the window has been exposed.

Dragging Windows

– window:shouldDragDocumentWithEvent:from:withPasteboard: (page 3930)
Asks the delegate whether a user can drag the document icon from the window’s title bar.

Getting the Undo Manager

– windowWillReturnUndoManager: (page 3941)
Tells the delegate that the window’s undo manager has been requested. Returns the appropriate
undo manager for the window.

Managing Titles

– window:shouldPopUpDocumentPathMenu: (page 3931)
Asks the delegate whether the window displays the title pop-up menu in response to a Command-click
or Control-click on its title.

Moving Windows

– windowWillMove: (page 3939)
Tells the delegate that the window is about to move.

– windowDidMove: (page 3935)
Tells the delegate that the window has moved.

– windowDidChangeScreen: (page 3933)
Tells the delegate that the window has changed screens.

– windowDidChangeScreenProfile: (page 3933)
Tells the delegate that the window has changed screen display profiles.

Closing Windows

– windowShouldClose: (page 3937)
Tells the delegate that the user has attempted to close a window or the window has received a
performClose: (page 3354) message.

– windowWillClose: (page 3939)
Tells the delegate that the window is about to close.

Tasks 3929
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

Minimizing Windows

– windowWillMiniaturize: (page 3939)
Tells the delegate that the window is about to be minimized.

– windowDidMiniaturize: (page 3935)
Tells the delegate that the window has been minimized.

– windowDidDeminiaturize: (page 3933)
Tells the delegate that the window has been deminimized.

Instance Methods

window:shouldDragDocumentWithEvent:from:withPasteboard:
Asks the delegate whether a user can drag the document icon from the window’s title bar.

- (BOOL)window:(NSWindow *)window
shouldDragDocumentWithEvent:(NSEvent *)event
from:(NSPoint)dragImageLocation
withPasteboard:(NSPasteboard *)pasteboard

Parameters
window

The window containing the document icon the user wants to drag.

event
The left-mouse down event that triggered the dragging operation.

dragImageLocation
The location at which the user started the dragging operation.

pasteboard
The pasteboard containing the contents of the document, which the delegate can modify.

Return Value
YES to allow the drag to proceed; NO to prevent it.

Discussion
To implement its own dragging process, the delegate can perform the dragging operation and return NO.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– representedURL (page 3359)

Declared In
NSWindow.h

3930 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

window:shouldPopUpDocumentPathMenu:
Asks the delegate whether the window displays the title pop-up menu in response to a Command-click or
Control-click on its title.

- (BOOL)window:(NSWindow *)window
shouldPopUpDocumentPathMenu:(NSMenu *)menu

Parameters
window

The window whose title the user Command-clicked or Control-clicked.

menu
The menu the window will display, if allowed. By default, its items are the path components of the
file represented by window.

Return Value
YES to allow the display of the title pop-up menu; NO to prevent it.

Availability
Available in Mac OS X v10.5 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– representedURL (page 3359)

Declared In
NSWindow.h

window:willPositionSheet:usingRect:
Tells the delegate that the window is about to show a sheet at the specified location, giving it the opportunity
to return a custom location for the attachment of the sheet to the window.

- (NSRect)window:(NSWindow *)window
willPositionSheet:(NSWindow *)sheet
usingRect:(NSRect)rect

Parameters
window

The window containing the sheet to be animated.

sheet
The sheet to be shown.

rect
The default sheet location, just under the title bar of the window, aligned with the left and right edges
of the window.

Return Value
The custom location specified.

Discussion
This method is also invoked whenever the user resizes window while sheet is attached.

Instance Methods 3931
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

This method is useful in many situations. If your window has a toolbar, for example, you can specify a location
for the sheet that is just below it. If you want the sheet associated with a certain control or view, you could
position the sheet so that it appears to originate from the object (through animation) or is positioned next
to it.

Neither the rect parameter nor the returned NSRect value define the boundary of the sheet. They indicate
where the top-left edge of the sheet is attached to the window. The origin is expressed in window coordinates;
the default origin.y value is the height of the content view and the default origin.x value is 0. The
size.width value indicates the width and behavior of the initial animation; if size.width is narrower than
the sheet, the sheet genies out from the specified location, and if size.width is wider than the sheet, the
sheet slides out. You cannot affect the size of the sheet through the size.width and size.height fields.
It is recommended that you specify zero for the size.height value as this field may have additional meaning
in a future release.

Availability
Available in Mac OS X v10.3 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidBecomeKey:
Informs the delegate that the window has become the key window.

- (void)windowDidBecomeKey:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidBecomeKeyNotification (page 3422).

Discussion
You can retrieve the window object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidBecomeMain:
Informs the delegate that the window has become main.

- (void)windowDidBecomeMain:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidBecomeMainNotification (page 3423).

Discussion
You can retrieve the window object in question by sending object to notification.

3932 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidChangeScreen:
Tells the delegate that the window has changed screens.

- (void)windowDidChangeScreen:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidChangeScreenNotification (page 3423).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidChangeScreenProfile:
Tells the delegate that the window has changed screen display profiles.

- (void)windowDidChangeScreenProfile:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidChangeScreenProfileNotification (page 3423).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.4 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidDeminiaturize:
Tells the delegate that the window has been deminimized.

- (void)windowDidDeminiaturize:(NSNotification *)notification

Instance Methods 3933
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

Parameters
notification

A notification named NSWindowDidDeminiaturizeNotification (page 3423)

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidEndLiveResize:
Informs the delegate that a live resize operation on the window has ended.

- (void)windowDidEndLiveResize:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidEndLiveResizeNotification (page 3424).

Discussion
You can retrieve the window object in question by sending object to notification.

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWindow.h

windowDidEndSheet:
Tells the delegate that the window has closed a sheet.

- (void)windowDidEndSheet:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidEndSheetNotification (page 3424).

Discussion
You can retrieve the window object in question by sending object to notification.

Availability
Available in Mac OS X v10.1 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

3934 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

windowDidExpose:
Tells the delegate that the window has been exposed.

- (void)windowDidExpose:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidExposeNotification (page 3424).

Discussion
You can retrieve the window object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidMiniaturize:
Tells the delegate that the window has been minimized.

- (void)windowDidMiniaturize:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidMiniaturizeNotification (page 3425).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidMove:
Tells the delegate that the window has moved.

- (void)windowDidMove:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidMoveNotification (page 3425).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Instance Methods 3935
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidResignKey:
Informs the delegate that the window has resigned key window status.

- (void)windowDidResignKey:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidResignKeyNotification (page 3425).

Discussion
You can retrieve the window object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidResignMain:
Informs the delegate that the window has resigned main window status.

- (void)windowDidResignMain:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidResignMainNotification (page 3425).

Discussion
You can retrieve the window object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidResize:
Informs the delegate that the window has been resized.

- (void)windowDidResize:(NSNotification *)notification

3936 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

Parameters
notification

A notification named NSWindowDidResizeNotification (page 3426).

Discussion
You can retrieve the window object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowDidUpdate:
Tells the delegate that the window received an update (page 3405) message.

- (void)windowDidUpdate:(NSNotification *)notification

Parameters
notification

A notification named NSWindowDidUpdateNotification (page 3426)

Discussion
You can retrieve the window object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowShouldClose:
Tells the delegate that the user has attempted to close a window or the window has received a
performClose: (page 3354) message.

- (BOOL)windowShouldClose:(id)sender

Parameters
sender

The window being closed.

Return Value
YES to allow sender to be closed; otherwise, NO.

Discussion
This method may not always be called during window closing. Specifically, this method is not called when
a user quits an application. You can find additional information on application termination in Graceful
Application Termination.

Instance Methods 3937
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowShouldZoom:toFrame:
Asks the delegate whether the specified window should zoom to the specified frame.

- (BOOL)windowShouldZoom:(NSWindow *)window
toFrame:(NSRect)newFrame

Parameters
window

The window being zoomed.

newFrame
The rectangle to which the specified window is being zoomed.

Return Value
YES to allow window’s frame to become newFrame; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– windowWillUseStandardFrame:defaultFrame: (page 3942)

Declared In
NSWindow.h

windowWillBeginSheet:
Notifies the delegate that the window is about to open a sheet.

- (void)windowWillBeginSheet:(NSNotification *)notification

Parameters
notification

A notification named NSWindowWillBeginSheetNotification (page 3426).

Discussion
You can retrieve the window object in question by sending object to notification.

Availability
Available in Mac OS X v10.1 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

3938 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

windowWillClose:
Tells the delegate that the window is about to close.

- (void)windowWillClose:(NSNotification *)notification

Parameters
notification

A notification named NSWindowWillCloseNotification (page 3426).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowWillMiniaturize:
Tells the delegate that the window is about to be minimized.

- (void)windowWillMiniaturize:(NSNotification *)notification

Parameters
notification

A notification named NSWindowWillMiniaturizeNotification (page 3427).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowWillMove:
Tells the delegate that the window is about to move.

- (void)windowWillMove:(NSNotification *)notification

Parameters
notification

A notification named NSWindowWillMoveNotification (page 3427).

Discussion
You can retrieve the NSWindow object in question by sending object to notification.

Instance Methods 3939
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowWillResize:toSize:
Tells the delegate that the window is being resized (whether by the user or through one of the setFrame...
methods other than setFrame:display: (page 3381)).

- (NSSize)windowWillResize:(NSWindow *)sender
toSize:(NSSize)frameSize

Parameters
sender

The window being resized.

frameSize
The size to which the specified window is being resized.

Return Value
A custom size to which the specified window will be resized.

Discussion
The frameSize contains the size (in screen coordinates) sender will be resized to. To resize to a different
size, simply return the desired size from this method; to avoid resizing, return the current size. sender’s
minimum and maximum size constraints have already been applied when this method is invoked.

While the user is resizing a window, the delegate is sent a series of windowWillResize:toSize: messages
as the window’s outline is dragged. The window’s outline is displayed at the constrained size as set by this
method.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowWillReturnFieldEditor:toObject:
Tells the delegate that the field editor for a text-displaying object has been requested.

- (id)windowWillReturnFieldEditor:(NSWindow *)sender
toObject:(id)client

Parameters
sender

The window requesting the field editor from the delegate.

3940 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

client
A text-displaying object to be associated with the field editor. If nil, the requested field editor is the
default.

Return Value
The field editor for client; returns nil when the delegate has no field editor to assign.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– fieldEditor:forObject: (page 3325)

Declared In
NSWindow.h

windowWillReturnUndoManager:
Tells the delegate that the window’s undo manager has been requested. Returns the appropriate undo
manager for the window.

- (NSUndoManager *)windowWillReturnUndoManager:(NSWindow *)window

Parameters
window

The window whose undo manager is being requested.

Return Value
The appropriate undo manager for the specified window.

Discussion
If this method is not implemented by the delegate, the window creates anNSUndoManager for window.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

Declared In
NSWindow.h

windowWillStartLiveResize:
Informs the delegate that the window is about to be live resized.

- (void)windowWillStartLiveResize:(NSNotification *)notification

Parameters
notification

A notification named NSWindowWillStartLiveResizeNotification (page 3427).

Discussion
You can retrieve the window object in question by sending object to notification.

Instance Methods 3941
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

Availability
Available in Mac OS X v10.6 and later.

Declared In
NSWindow.h

windowWillUseStandardFrame:defaultFrame:
Invoked by NSWindow’s zoom: (page 3409) method while determining the frame a window may be zoomed
to.

- (NSRect)windowWillUseStandardFrame:(NSWindow *)window
defaultFrame:(NSRect)newFrame

Parameters
window

The window whose frame size is being determined.

newFrame
The size of the current screen, which is the screen containing the largest part of the window’s current
frame, possibly reduced on the top, bottom, left, or right, depending on the current interface style.
The frame is reduced on the top to leave room for the menu bar.

Return Value
The specified window’s standard frame.

Discussion
The standard frame for a window should supply the size and location that are “best” for the type of information
shown in the window, taking into account the available display or displays. For example, the best width for
a window that displays a word-processing document is the width of a page or the width of the display,
whichever is smaller. The best height can be determined similarly. On return from this method, the zoom: (page
3409) method modifies the returned standard frame, if necessary, to fit on the current screen.

Availability
Available in Mac OS X v10.0 and later.
Available as part of an informal protocol prior to Mac OS X v10.6.

See Also
– windowShouldZoom:toFrame: (page 3938)

Declared In
NSWindow.h

3942 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 238

NSWindowDelegate Protocol Reference

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSWindowScripting.h

Companion guide Cocoa Scripting Guide

Overview

Category on NSWindow. Supports window scripting for all scriptable Cocoa applications by getting and setting
standard properties and handling the close, print, and save AppleScript commands.

Tasks

Getting Scripting Attribute Information About a Window

– hasCloseBox (page 3945) required method
Returns YES if the receiver has a close box. (required)

– hasTitleBar (page 3946) required method
Returns YES if the receiver has a title bar. (required)

– isFloatingPanel (page 3946) required method
Returns YES if the receiver is a floating panel. (required)

– isMiniaturizable (page 3946) required method
Returns YES if the receiver can be miniaturized (has a minimize button). (required)

– isModalPanel (page 3946) required method
Returns YES if the receiver is an application-modal panel. (required)

– isResizable (page 3946) required method
Returns YES if the receiver is resizable (has a size control). (required)

– isZoomable (page 3947) required method
Returns YES if the receiver is zoomable (has a zoom button). (required)

Setting Scripting Attribute Information for a Window

– setIsMiniaturized: (page 3947) required method
Sets the receiver’s miniaturized state to the value specified by flag. (required)

Overview 3943
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 239

NSWindowScripting Protocol Reference
(informal protocol)

– setIsVisible: (page 3948) required method
Sets the receiver’s visible state to the value specified by flag. (required)

– setIsZoomed: (page 3948) required method
Sets the receiver’s zoomed state to the value specified by flag. (required)

Handling Script Commands

– handleCloseScriptCommand: (page 3944) required method
Handles the close AppleScript command by attempting to close the window (and its associated
document, if any). (required)

– handlePrintScriptCommand: (page 3945) required method
Handles the print AppleScript command by attempting to print the contents of the window (or its
associated document, if any). (required)

– handleSaveScriptCommand: (page 3945) required method
Handles the save AppleScript command by attempting to save the window (and its associated
document, if any). (required)

Working with Ordered Indices

– orderedIndex (page 3947) required method
Returns the zero-based position of the receiver based on its order from front to back among all
application windows. (required)

– setOrderedIndex: (page 3948) required method
Sets the zero-based position of the receiver, based on its order from front to back among all visible
application windows, to the value specified by index. If index is out of range, sets the position to
the nearest value that is in range. (required)

Instance Methods

handleCloseScriptCommand:
Handles the close AppleScript command by attempting to close the window (and its associated document,
if any). (required)

- (id)handleCloseScriptCommand:(NSCloseCommand *)command

Discussion
Extracts close command arguments from the command object and uses them to determine how to close
the associated document—specifically, whether to ignore unsaved changes, save changes automatically, or
ask the user and to identify the file in which to save the document (by default, the file that was opened or
previously saved to, or an “untitled” name if the file has never been saved).

If there is a corresponding document and the window is the main window of the document, it forwards the
close command to the corresponding document; otherwise, the window sends itself a performClose
message, if it has a close box. This may have been handled differently in versions of Mac OS X prior to version
10.3.

3944 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 239

NSWindowScripting Protocol Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

handlePrintScriptCommand:
Handles the printAppleScript command by attempting to print the contents of the window (or its associated
document, if any). (required)

- (id)handlePrintScriptCommand:(NSScriptCommand *)command

Discussion
If there is a corresponding document and the window is the main window of the document, it forwards the
print command to the corresponding document; otherwise, the window sends itself a print message.
This may have been handled differently in versions of Mac OS X prior to version 10.3.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

handleSaveScriptCommand:
Handles the save AppleScript command by attempting to save the window (and its associated document,
if any). (required)

- (id)handleSaveScriptCommand:(NSScriptCommand *)command

Discussion
The default version invokes the same named method of the window's document, if the window is the one
being saved.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

hasCloseBox
Returns YES if the receiver has a close box. (required)

- (BOOL)hasCloseBox

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

Instance Methods 3945
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 239

NSWindowScripting Protocol Reference

hasTitleBar
Returns YES if the receiver has a title bar. (required)

- (BOOL)hasTitleBar

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

isFloatingPanel
Returns YES if the receiver is a floating panel. (required)

- (BOOL)isFloatingPanel

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

isMiniaturizable
Returns YES if the receiver can be miniaturized (has a minimize button). (required)

- (BOOL)isMiniaturizable

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

isModalPanel
Returns YES if the receiver is an application-modal panel. (required)

- (BOOL)isModalPanel

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

isResizable
Returns YES if the receiver is resizable (has a size control). (required)

3946 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 239

NSWindowScripting Protocol Reference

- (BOOL)isResizable

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

isZoomable
Returns YES if the receiver is zoomable (has a zoom button). (required)

- (BOOL)isZoomable

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

orderedIndex
Returns the zero-based position of the receiver based on its order from front to back among all application
windows. (required)

- (int)orderedIndex

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

setIsMiniaturized:
Sets the receiver’s miniaturized state to the value specified by flag. (required)

- (void)setIsMiniaturized:(BOOL)flag

Discussion
Depending on the current miniaturized state and the value of flag, the window may be minimized to the
Dock or expanded from the Dock.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

Instance Methods 3947
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 239

NSWindowScripting Protocol Reference

setIsVisible:
Sets the receiver’s visible state to the value specified by flag. (required)

- (void)setIsVisible:(BOOL)flag

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

setIsZoomed:
Sets the receiver’s zoomed state to the value specified by flag. (required)

- (void)setIsZoomed:(BOOL)flag

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

setOrderedIndex:
Sets the zero-based position of the receiver, based on its order from front to back among all visible application
windows, to the value specified by index. If index is out of range, sets the position to the nearest value
that is in range. (required)

- (void)setOrderedIndex:(int)index

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSWindowScripting.h

3948 Instance Methods
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 239

NSWindowScripting Protocol Reference

3949
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

PART III

Functions

3950
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

PART III

Functions

Framework: AppKit/AppKit.h

Overview

This document describes functions and function-like macros defined in the Application Kit framework.

Functions by Task

Accessibility
Additional information on accessibility can be found in NSAccessibility.

NSAccessibilityActionDescription (page 3956)
Returns a standard description for an action.

NSAccessibilityPostNotification (page 3956)
Sends a notification to any observing assistive applications.

NSAccessibilityRaiseBadArgumentException (page 3957)
Raises an error if the parameter is the wrong type or has an illegal value

NSAccessibilityRoleDescription (page 3957)
Returns a standard description for a role and subrole.

NSAccessibilityRoleDescriptionForUIElement (page 3958)
Returns a standard role description for a user interface element.

NSAccessibilityUnignoredChildren (page 3959)
Returns a list of unignored accessibility objects, descending the hierarchy if necessary.

NSAccessibilityUnignoredChildrenForOnlyChild (page 3959)
Returns a list of unignored accessibility objects, descending the hierarchy if necessary.

NSAccessibilityUnignoredDescendant (page 3960)
Returns an unignored accessibility object, descending the hierarchy if necessary.

NSAccessibilityUnignoredAncestor (page 3958)
Returns an unignored accessibility object, ascending the hierarchy if necessary.

Applications
Additional information on NSApplication can be found in NSApplication Class Reference.

Overview 3951
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSApplicationLoad (page 3960)
Startup function to call when running Cocoa code from a Carbon application.

NSApplicationMain (page 3961)
Called by the main function to create and run the application.

NSPerformService (page 3990)
Programmatically invokes a Services menu service.

NSRegisterServicesProvider (page 3997)
Registers a service provider.

NSSetShowsServicesMenuItem (page 4001)
Specifies whether an item should be included in Services menus.

NSShowsServicesMenuItem (page 4002)
Specifies whether a Services menu item is currently enabled.

NSUpdateDynamicServices (page 4003) Deprecated in Mac OS X v10.5
Causes the services information for the system to be updated.

NSUnregisterServicesProvider (page 4002) Deprecated in Mac OS X v10.6
Unregisters a service provider.

Events

NSEventMaskFromType (page 3981)
Returns the event mask for the specified type.

Fonts

NSConvertGlyphsToPackedGlyphs (page 3967)
Prepares a set of glyphs for processing by character-based routines.

Graphics

NSCopyBits (page 3967)
Copies a bitmap image to the location specified by a destination point.

NSCountWindows (page 3968)
Counts the number of onscreen windows.

NSCountWindowsForContext (page 3968)
Counts the number of onscreen windows belonging to a particular application.

NSDisableScreenUpdates (page 3969)
Disables screen updates.

NSEnableScreenUpdates (page 3980)
Enables screen updates

NSDottedFrameRect (page 3970)
Draws a bordered rectangle.

NSDrawBitmap (page 3970)
Draws a bitmap image.

3952 Functions by Task
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSDrawButton (page 3972)
Draws a gray-filled rectangle representing a user-interface button.

NSDrawDarkBezel (page 3973)
Draws a dark gray-filled rectangle with a bezel border.

NSDrawGrayBezel (page 3973)
Draws a gray-filled rectangle with a bezel border.

NSDrawGroove (page 3974)
Draws a gray-filled rectangle with a groove border.

NSDrawLightBezel (page 3974)
Draws a white-filled rectangle with a bezel border.

NSDrawThreePartImage (page 3976)
Draws a three-part tiled image.

NSDrawNinePartImage (page 3975)
Draws a nine-part tiled image.

NSDrawTiledRects (page 3978)
Draws rectangles with borders.

NSDrawColorTiledRects (page 3972)
Draws a colored bordered rectangle.

NSDrawWhiteBezel (page 3979)
Draws a white-filled rectangle with a bezel border.

NSDrawWindowBackground (page 3980)
Draws the window’s default background pattern into the specified rectangle of the currently focused
view.

NSEraseRect (page 3980)
Erases the specified rect by filling it with white.

NSFrameRectWithWidth (page 3982)
Draw a bordered rectangle.

NSFrameRectWithWidthUsingOperation (page 3983)
Draw a bordered rectangle using the specified compositing operation.

NSHighlightRect (page 3987)
Highlights the specified rect by filling it with white.

NSReadPixel (page 3991)
Reads the color of the pixel at the specified location.

NSRectClip (page 3991)
Modifies the current clipping path by intersecting it with the passed rect.

NSRectClipList (page 3992)
Modifies the current clipping path by intersecting it with the passed rect.

NSRectFill (page 3993)
Fills the passed rectangle with the current color.

NSRectFillList (page 3993)
Fills the rectangles in the passed list with the current fill color.

NSRectFillListWithColors (page 3994)
Fills the rectangles in the passed list with the passed list of colors.

Functions by Task 3953
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSRectFillListWithGrays (page 3996)
Fills the rectangles in the passed list with the passed list of grays.

NSRectFillListUsingOperation (page 3994)
Fills the rectangles in a list using the current fill color and specified compositing operation.

NSRectFillListWithColorsUsingOperation (page 3995)
Fills the rectangles in a list using the specified colors and compositing operation.

NSRectFillUsingOperation (page 3997)
Fills a rectangle using the current fill color and the specified compositing operation.

NSSetFocusRingStyle (page 4000)
Specifies how a focus ring will be drawn.

NSShowAnimationEffect (page 4001)
Runs a system animation effect.

NSWindowList (page 4003)
Gets information about onscreen windows.

NSWindowListForContext (page 4003)
Gets information about an application’s onscreen windows.

NSFrameRect (page 3981) Available in Mac OS X v10.3 through Mac OS X v10.5
Draw a bordered rectangle.

NSGetWindowServerMemory (page 3986) Deprecated in Mac OS X v10.6
Returns the amount of memory being used by a context.

Graphics-Window Depth

NSAvailableWindowDepths (page 3962)
Returns the available window depth values.

NSBestDepth (page 3965)
Attempts to return a window depth adequate for the specified parameters.

NSBitsPerPixelFromDepth (page 3966)
Returns the bits per pixel for the specified window depth.

NSBitsPerSampleFromDepth (page 3966)
Returns the bits per sample for the specified window depth.

NSColorSpaceFromDepth (page 3966)
Returns the name of the color space corresponding to the passed window depth.

NSNumberOfColorComponents (page 3988)
Returns the number of color components in the specified color space.

NSPlanarFromDepth (page 3990)
Returns whether the specified window depth is planar.

Interface Styles

NSInterfaceStyleForKey (page 3987)
Returns an interface style value for the specified key and responder.

3954 Functions by Task
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Key Value Bindings

NSIsControllerMarker (page 3988)
Tests whether a given object is special marker object used for indicating the state of a selection in
relation to a key.

OpenGL

NSOpenGLGetOption (page 3989)
Returns global OpenGL options.

NSOpenGLGetVersion (page 3989)
Returns the NSOpenGL version numbers.

NSOpenGLSetOption (page 3989)
Sets global OpenGL options.

Panels

NSBeginAlertSheet (page 3962)
Creates and runs an alert sheet.

NSBeginCriticalAlertSheet (page 3964)
Creates and runs a critical alert sheet.

NSBeginInformationalAlertSheet (page 3964)
Creates and runs an informational alert sheet.

NSGetAlertPanel (page 3983)
Returns an alert panel.

NSGetCriticalAlertPanel (page 3984)
Returns an alert panel to display a critical message.

NSGetInformationalAlertPanel (page 3985)
Returns an alert panel to display an informational message.

NSReleaseAlertPanel (page 3998)
Releases an alert panel.

NSRunAlertPanel (page 3998)
Creates an alert panel.

NSRunCriticalAlertPanel (page 3999)
Creates and runs a critical alert panel.

NSRunInformationalAlertPanel (page 4000) Deprecated in Mac OS X v10.4
Creates and runs an informational alert panel.

Pasteboards

NSCreateFileContentsPboardType (page 3968)
Returns a pasteboard type based on the passed file type. (Deprecated. The file contents pboard type
allowed you to synthesize a pboard type for a file’s contents based on the file’s extension. Using the
UTI of a file to represent its contents now replaces this functionality.)

Functions by Task 3955
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSCreateFilenamePboardType (page 3969)
Returns a pasteboard type based on the passed file type. (Deprecated. The file contents pboard type
allowed you to synthesize a pboard type for a file’s contents based on the file’s extension. Using the
UTI of a file to represent its contents now replaces this functionality.)

NSGetFileType (page 3985)
Returns a file type based on the passed pasteboard type. (Deprecated. The file contents pboard type
allowed you to synthesize a pboard type for a file’s contents based on the file’s extension. Using the
UTI of a file to represent its contents now replaces this functionality.)

NSGetFileTypes (page 3985)
Returns an array of file types based on the passed pasteboard types. (Deprecated. The file contents
pboard type allowed you to synthesize a pboard type for a file’s contents based on the file’s extension.
Using the UTI of a file to represent its contents now replaces this functionality.)

System Beep
Additional information on sounds can be found in NSSound.

NSBeep (page 3962)
Plays the system beep.

Functions

NSAccessibilityActionDescription
Returns a standard description for an action.

NSString * NSAccessibilityActionDescription (
 NSString *action
);

Discussion
This function returns a standard description for action.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Dicey
ImageMap
ImageMapExample

Declared In
NSAccessibility.h

NSAccessibilityPostNotification
Sends a notification to any observing assistive applications.

3956 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

void NSAccessibilityPostNotification (
 id element,
 NSString *notification
);

Discussion
Sends notification to any assistive applications that have registered to receive the notification from the
user interface object element in your application. Accessibility notifications require special handling, so they
cannot be posted using NSNotificationCenter.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Dicey
Sketch+Accessibility
TrackBall

Declared In
NSAccessibility.h

NSAccessibilityRaiseBadArgumentException
Raises an error if the parameter is the wrong type or has an illegal value

void NSAccessibilityRaiseBadArgumentException (
 id element,
 NSString *attribute,
 id value
);

Discussion
Raises an error if a parameter is the wrong type or has an illegal value. This function can also be used to raise
an error if an attempt is made to set an attribute's value with the wrong type or an illegal value.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
Sketch+Accessibility

Declared In
NSAccessibility.h

NSAccessibilityRoleDescription
Returns a standard description for a role and subrole.

Functions 3957
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSString * NSAccessibilityRoleDescription (
 NSString *role,
 NSString *subrole
);

Discussion
You should pass nil to this function if there is no subrole. This function returns a description of a standard
role. For example, if you implement a button widget that does not inherit from NSButton, you should use
this function to return a localized role description matching that returned by a standard button.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Dicey
ImageMap
ImageMapExample
Sketch+Accessibility
ZipBrowser

Declared In
NSAccessibility.h

NSAccessibilityRoleDescriptionForUIElement
Returns a standard role description for a user interface element.

NSString * NSAccessibilityRoleDescriptionForUIElement (
 id element
);

Discussion
This function is like the NSAccessibilityRoleDescription (page 3957) function, except that it queries
element to get the role and subrole. The NSAccessibilityRoleDescription function is more efficient,
but this function is useful for accessorizing base classes so that they properly handle derived classes, which
may override the subrole or even the role.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
ImageMap
ImageMapExample

Declared In
NSAccessibility.h

NSAccessibilityUnignoredAncestor
Returns an unignored accessibility object, ascending the hierarchy if necessary.

3958 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

id NSAccessibilityUnignoredAncestor (
 id element
);

Discussion
Tests whether element is an ignored object, returning either element, if it is not ignored, or the first
unignored ancestor of element.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
ImageMap
ImageMapExample
Sketch+Accessibility
TrackBall
ZipBrowser

Declared In
NSAccessibility.h

NSAccessibilityUnignoredChildren
Returns a list of unignored accessibility objects, descending the hierarchy if necessary.

NSArray * NSAccessibilityUnignoredChildren (
 NSArray *originalChildren
);

Discussion
Returns a copy of originalChildren with any ignored objects in the array replaced by their unignored
descendants.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
Dicey
ImageMap
ImageMapExample

Declared In
NSAccessibility.h

NSAccessibilityUnignoredChildrenForOnlyChild
Returns a list of unignored accessibility objects, descending the hierarchy if necessary.

Functions 3959
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSArray * NSAccessibilityUnignoredChildrenForOnlyChild (
 id originalChild
);

Discussion
Tests whether originalChild is an ignored object and returns an array containing either originalChild,
if it is not ignored, or its unignored descendants.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAccessibility.h

NSAccessibilityUnignoredDescendant
Returns an unignored accessibility object, descending the hierarchy if necessary.

id NSAccessibilityUnignoredDescendant (
 id element
);

Discussion
Tests whether element is an ignored object, returning either element, if it is not ignored, or the first
unignored descendant of element. Use this function only if you know there is a linear, one-to-one, hierarchy
below element. Otherwise, if element has either no unignored children or multiple unignored children,
this function fails and returns nil.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
ImageMap
ImageMapExample

Declared In
NSAccessibility.h

NSApplicationLoad
Startup function to call when running Cocoa code from a Carbon application.

BOOL NSApplicationLoad (void);

Return Value
YES if the NSApplication object was successfully initialized and can now be used from your Carbon
application or NO if there was an error during initialization.

Discussion
You typically call this function before calling other Cocoa code in a plug-in loaded into a primarily Carbon
application. If the shared NSApplication object is not already initialized, this function initializes it and sets
up the necessary event handlers for Cocoa.

3960 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SpellingChecker-CocoaCarbon

Declared In
NSApplication.h

NSApplicationMain
Called by the main function to create and run the application.

int NSApplicationMain (
 int argc,
 const char *argv[]
);

Parameters
argc

The number of arguments in the argv parameter.

argv
An array of pointers containing the arguments that were passed to the application at startup.

Return Value
This method never returns a result code. Instead, it calls the exit function to exit the application and terminate
the process. If you want to determine why the application exited, you should look at the result code from
the exit function instead.

Discussion
Creates the application, loads the main nib file from the application’s main bundle, and runs the application.
You must call this function from the main thread of your application, and you typically call it only once from
your application’s main function, which is usually generated automatically by Xcode.

Special Considerations

NSApplicationMain itself ignores the argc and argv arguments. Instead, Cocoa gets its arguments
indirectly via _NSGetArgv, _NSGetArgc, and _NSGetEnviron (see <crt_externs.h>).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Cocoa Tips and Tricks
CoreRecipes
ImageClient
ImageKitDemo
MyPhoto

Declared In
NSApplication.h

Functions 3961
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSAvailableWindowDepths
Returns the available window depth values.

const NSWindowDepth * NSAvailableWindowDepths (void);

Discussion
Returns a null-terminated array of NSWindowDepthâ Window Depth (page 3416) values that specify which
window depths are currently available. Window depth values are converted to specific display properties
using the functions NSBitsPerPixelFromDepth (page 3966), NSBitsPerSampleFromDepth (page 3966),
NSColorSpaceFromDepth (page 3966), and NSPlanarFromDepth (page 3990).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSBeep
Plays the system beep.

void NSBeep (void);

Discussion
Plays the system beep. Users can select a sound to be played as the system beep. On a Macintosh computer,
for example, you can change sounds with the Sound pane of System Preferences.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes
GridCalendar
NewsReader
PDFKitLinker2
Quartz Composer WWDC 2005 TextEdit

Declared In
NSGraphics.h

NSBeginAlertSheet
Creates and runs an alert sheet.

3962 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

void NSBeginAlertSheet (
 NSString *title,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 NSWindow *docWindow,
 id modalDelegate,
 SEL didEndSelector,
 SEL didDismissSelector,
 void *contextInfo,
 NSString *msg,
 ...
);

Discussion
Creates and runs an alert sheet on docWindow, with the title of title, the text of msg, and buttons with
titles of defaultButton, alternateButton, and otherButton.

The buttons are laid out on the lower-right corner of the sheet, with defaultButton on the right,
alternateButton on the left, and otherButton in the middle. If title is nil or an empty string, a default
localized title is used (“Alert” in English). If defaultButton is nil or an empty string, a default localized
button title (“OK” in English) is used. For the remaining buttons, this function creates them only if their
corresponding button title is non-nil.

A Command-D key equivalent for the “Don’t Save” button is provided, if one is found. The button titles are
searched for the localized value for “Don’t Save.” If a match is found, that button is assigned a Command-D
key equivalent, provided it is not the default button.

If you create a modal panel using runModalForWindow: (page 163) or
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 140), you can
assign the key equivalent yourself, using setKeyEquivalent: (page 483) and
setKeyEquivalentModifierMask: (page 484).

The msg argument is the message that’s displayed in the panel. It can use printf-style formatting characters;
any necessary arguments should be listed at the end of the function’s argument list (after the msg argument).
For more information on formatting characters, see the man page for printf.

When the modal session is ended, and before the sheet is dismissed, the didEndSelector is invoked on
the modalDelegate. passing contextInfo. After the sheet is dismissed, the didDismissSelector is
invoked on the modalDelegate, passing contextInfo. Typically, you will want to implement the
didEndSelector but you may pass NULL for the didDismissSelector. The two selectors should be
defined as follows:

sheetDidEnd:(NSWindow *)sheet returnCode:(int)returnCode contextInfo:(void
*)contextInfo;
sheetDidDismiss:(NSWindow *)sheet returnCode:(int)returnCode contextInfo:(void
 *)contextInfo;

where sheet is the alert sheet, returnCode specifies which button the user pressed, and contextInfo is
the same contextInfo passed into NSBeginAlertSheet. returnCode can be one of the following:

 ■ NSAlertDefaultReturn means the user pressed the default button.

 ■ NSAlertAlternateReturn means the user pressed the alternate button.

 ■ NSAlertOtherReturn means the user pressed the other button.

Functions 3963
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

 ■ NSAlertErrorReturn means an error occurred while running the alert panel.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ImageClient
PrefsPane
QTAudioExtractionPanel
QTKitPlayer
Quartz Composer WWDC 2005 TextEdit

Declared In
NSPanel.h

NSBeginCriticalAlertSheet
Creates and runs a critical alert sheet.

void NSBeginCriticalAlertSheet (
 NSString *title,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 NSWindow *docWindow,
 id modalDelegate,
 SEL didEndSelector,
 SEL didDismissSelector,
 void *contextInfo,
 NSString *msg,
 ...
);

Discussion
Creates and runs a critical alert sheet on docWindow, with the title of title, the text of msg, and buttons
with titles of defaultButton, alternateButton, and otherButton.

See the description of NSBeginAlertSheet (page 3962) for information on layout, default parameters, and
the selectors.

The sheet presented to the user is badged with a caution icon. Critical alerts should be used only as specified
in the "Alerts” section of the Windows chapter of Apple Human Interface Guidelines.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPanel.h

NSBeginInformationalAlertSheet
Creates and runs an informational alert sheet.

3964 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

void NSBeginInformationalAlertSheet (
 NSString *title,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 NSWindow *docWindow,
 id modalDelegate,
 SEL didEndSelector,
 SEL didDismissSelector,
 void *contextInfo,
 NSString *msg,
 ...
);

Discussion
Creates and runs an informational alert sheet on docWindow, with the title of title, the text of msg, and
buttons with titles of defaultButton, alternateButton, and otherButton.

See the description of NSBeginAlertSheet (page 3962) for information on layout, default parameters, and
the selectors.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AutoSample
InstallerPluginSample
SimpleToolbar

Declared In
NSPanel.h

NSBestDepth
Attempts to return a window depth adequate for the specified parameters.

NSWindowDepth NSBestDepth (
 NSString *colorSpace,
 NSInteger bps,
 NSInteger bpp,
 BOOL planar,
 BOOL *exactMatch
);

Discussion
Returns a window depth deep enough for the given number of colors in colorSpace, bits per sample
specified by bps, bits per pixel specified by bpp, and whether planar as specified by planar. Upon return,
the variable pointed to by exactMatch is YES if the window depth can accommodate all of the values
specified by the parameters, NO if it can’t.

Use this function to compute window depths. This function tries to accommodate all the parameters (match
or better); if there are multiple matches, it gives the closest, with matching colorSpace first, then bps, then
planar, then bpp. bpp is “bits per pixel”; 0 indicates default (same as the number of bits per plane, either

Functions 3965
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

bps or bps * NSNumberOfColorComponents (page 3988)); other values may be used as hints to provide
backing stores of different configuration; for instance, 8-bit color. The exactMatch parameter is optional
and indicates whether all the parameters matched exactly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSBitsPerPixelFromDepth
Returns the bits per pixel for the specified window depth.

NSInteger NSBitsPerPixelFromDepth (
 NSWindowDepth depth
);

Discussion
Returns the number of bits per pixel for the window depth specified by depth.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
GLUT

Declared In
NSGraphics.h

NSBitsPerSampleFromDepth
Returns the bits per sample for the specified window depth.

NSInteger NSBitsPerSampleFromDepth (
 NSWindowDepth depth
);

Discussion
Returns the number of bits per sample (bits per pixel in each color component) for the window depth specified
by depth.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSColorSpaceFromDepth
Returns the name of the color space corresponding to the passed window depth.

3966 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSString * NSColorSpaceFromDepth (
 NSWindowDepth depth
);

Discussion
Returns the color space name for the specified depth. For example, the returned color space name can be
NSCalibratedRGBColorSpace, or NSDeviceCMYKColorSpace.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSConvertGlyphsToPackedGlyphs
Prepares a set of glyphs for processing by character-based routines.

NSInteger NSConvertGlyphsToPackedGlyphs (
 NSGlyph *glBuf,
 NSInteger count,
 NSMultibyteGlyphPacking packing,
 char *packedGlyphs
);

Discussion
Takes a buffer of glyphs, specified in the glBuf parameter, and packs them into a condensed character array.
The character array is returned in the packedGlyphs parameter, which should have enough space for at
least ((4 * count) + 1) bytes to guarantee that the packed glyphs fit. count specifies the number of glyphs
in glBuf. packing specifies how the glyphs are currently packed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSFont.h

NSCopyBits
Copies a bitmap image to the location specified by a destination point.

void NSCopyBits (
 NSInteger srcGState,
 NSRect srcRect,
 NSPoint destPoint
);

Discussion
Copies the pixels in the rectangle specified by srcRect to the location specified by destPoint. The source
rectangle is defined in the graphics state designated by srcGState. If srcGState is NSNullObject, the
current graphics state is assumed. The destPoint destination is defined in the current graphics state.

Availability
Available in Mac OS X v10.0 and later.

Functions 3967
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Declared In
NSGraphics.h

NSCountWindows
Counts the number of onscreen windows.

void NSCountWindows (
 NSInteger *count
);

Parameters
count

On output, this parameter contains the number of onscreen windows.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSCountWindowsForContext
Counts the number of onscreen windows belonging to a particular application.

void NSCountWindowsForContext (
 NSInteger context,
 NSInteger *count
);

Discussion
Counts the number of onscreen windows belonging to a particular application, identified by context, which
is a window server connection ID. The function returns the number by reference in count.

Use of this function is discouraged as it may be deprecated in a future release.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSCreateFileContentsPboardType
Returns a pasteboard type based on the passed file type. (Deprecated. The file contents pboard type allowed
you to synthesize a pboard type for a file’s contents based on the file’s extension. Using the UTI of a file to
represent its contents now replaces this functionality.)

3968 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSString * NSCreateFileContentsPboardType (
 NSString *fileType
);

Discussion
Returns an NSString to a pasteboard type representing a file’s contents based on the supplied string fileType.
fileType should generally be the extension part of a filename. The conversion from a named file type to a
pasteboard type is simple; no mapping to standard pasteboard types is attempted.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

NSCreateFilenamePboardType
Returns a pasteboard type based on the passed file type. (Deprecated. The file contents pboard type allowed
you to synthesize a pboard type for a file’s contents based on the file’s extension. Using the UTI of a file to
represent its contents now replaces this functionality.)

NSString * NSCreateFilenamePboardType (
 NSString *fileType
);

Discussion
Returns an NSString to a pasteboard type representing a filename based on the supplied string fileType.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

NSDisableScreenUpdates
Disables screen updates.

void NSDisableScreenUpdates (void);

Discussion
Prevents drawing operations from being flushed to the screen for all windows belonging to the calling
process. When you re-enable screen updates (with NSEnableScreenUpdates (page 3980)) screen flushing
for all windows belonging to the calling process appears to be simultaneous. You typically call this function
so that operations on multiple windows appear atomic to the user. This is a technique particularly useful for
synchronizing parent and child windows. Make sure that the period after calling this function and before
reenabling updates is short; the system only allow updating to be disabled for a limited time (currently one
second) before automatically reenabling updates. Successive calls to this function are placed on a stack and
must be popped off that stack by matching NSEnableScreenUpdates calls.

Availability
Available in Mac OS X v10.3 and later.

Functions 3969
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Related Sample Code
AnimatedTableView

Declared In
NSGraphics.h

NSDottedFrameRect
Draws a bordered rectangle.

void NSDottedFrameRect (
 NSRect aRect
);

Discussion
Deprecated. Use a dashed NSBezierPath instead.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 3978)

Declared In
NSGraphics.h

NSDrawBitmap
Draws a bitmap image.

void NSDrawBitmap (
 NSRect rect,
 NSInteger width,
 NSInteger height,
 NSInteger bps,
 NSInteger spp,
 NSInteger bpp,
 NSInteger bpr,
 BOOL isPlanar,
 BOOL hasAlpha,
 NSString *colorSpaceName,
 const unsigned char *const data[5]
);

Discussion
This function is marginally obsolete. Most applications are better served using the NSBitmapImageRep class
to read and display bitmap images.

This function renders an image from a bitmap, binary data that describes the pixel values for the image.

3970 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

This function renders a bitmap image using an appropriate display operator. It puts the image in the
rectangular area specified by its first argument, rect; the rectangle is specified in the current coordinate
system and is located in the current window. The next two arguments, pixelsWide and pixelsHigh, give
the width and height of the image in pixels. If either of these dimensions is larger or smaller than the
corresponding dimension of the destination rectangle, the image will be scaled to fit.

The remaining arguments describe the bitmap data, as explained in the following paragraphs.

The bitsPerSample argument is the number of bits per sample for each pixel and samplesPerPixel is
the number of samples per pixel. bitsPerPixel is based on samplesPerPixel and the configuration of
the bitmap: if the configuration is planar, then the value of bitsPerPixel should equal the value of
bitsPerSample; if the configuration isn’t planar (is meshed instead), bitsPerPixel should equal
bitsPerSample * samplesPerPixel.

The bytesPerRow argument is calculated in one of two ways, depending on the configuration of the image
data (data configuration is described below). If the data is planar, bytesPerRow is (7 + (pixelsWide
* bitsPerSample)) / 8. If the data is meshed,bytesPerRow is (7 + (pixelsWide * bitsPerSample
* samplesPerPixel)) / 8.

A sample is data that describes one component of a pixel. In an RGB color system, the red, green, and blue
components of a color are specified as separate samples, as are the cyan, magenta, yellow, and black
components in a CMYK system. Color values in a grayscale are a single sample. Alpha values that determine
transparency and opaqueness are specified as a coverage sample separate from color. In bitmap images with
alpha, the color (or gray) components have to be premultiplied with the alpha. This is the way images with
alpha are displayed, this is the way they are read back, and this is the way they are stored in TIFFs.

The isPlanar argument refers to the way data is configured in the bitmap. This flag should be set to YES
if a separate data channel is used for each sample. The function provides for up to five channels, data1,
data2, data3, data4, and data5. It should be set NO if sample values are interwoven in a single channel
(meshed); all values for one pixel are specified before values for the next pixel.

Grayscale windows store pixel data in planar configuration; color windows store it in meshed configuration.
NSDrawBitmap can render meshed data in a planar window, or planar data in a meshed window. However,
it’s more efficient if the image has a depth (bitsPerSample) and configuration (isPlanar) that match the
window.

The hasAlpha argument indicates whether the image contains alpha. If it does, the number of samples
should be 1 greater than the number of color components in the model (for example, 4 for RGB).

The colorSpace argument can be NSCustomColorSpace, indicating that the image data is to be interpreted
according to the current color space in the graphics state. This allows for imaging using custom color spaces.
The image parameters supplied as the other arguments should match what the color space is expecting.

If the image data is planar, data[0] through data[samplesPerPixel–1] point to the planes; if the data is
meshed, only data[0] needs to be set.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

Functions 3971
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSDrawButton
Draws a gray-filled rectangle representing a user-interface button.

void NSDrawButton (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Discussion
Draws a gray-filled rectangle, used to signify a user-interface button. Since this function is often used to draw
the border of a view, the aRect parameter typically contains the view’s bounds rectangle. For an Aqua button,
use an NSButton object instead.

This function fills the specified rectangle with light gray. This function is designed for rectangles that are
defined in unscaled, unrotated coordinate systems (that is, where the y axis is vertical, the x axis is horizontal,
and a unit along either axis is equal to 1 screen pixel). The coordinate system can be either flipped or unflipped.
The sides of the rectangle should lie on pixel boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSDrawColorTiledRects
Draws a colored bordered rectangle.

NSRect NSDrawColorTiledRects (
 NSRect boundsRect,
 NSRect clipRect,
 const NSRectEdge *sides,
 NSColor **colors,
 NSInteger count
);

Parameters
boundsRect

The bounding rectangle (in the current coordinate system) in which to draw. Since this function is
often used to draw the border of a view, this rectangle will typically be that view’s bounds rectangle.
Only those parts of boundsRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

sides
The sides of the rectangle for which you want to specify custom colors. Each side must have a
corresponding entry in the colors parameter.

3972 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

colors
The colors to draw for each of the edges listed in the sides parameter.

count
The number of 1.0-unit-wide slices to draw on the specified sides.

Return Value
The rectangle that lies within the resulting border.

Discussion
Behaves the same as NSDrawTiledRects (page 3978) except it draws its border using colors from the colors
array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSDrawDarkBezel
Draws a dark gray-filled rectangle with a bezel border.

void NSDrawDarkBezel (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 3978)

Related Sample Code
BindingsJoystick

Declared In
NSGraphics.h

NSDrawGrayBezel
Draws a gray-filled rectangle with a bezel border.

Functions 3973
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

void NSDrawGrayBezel (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 3978)

Declared In
NSGraphics.h

NSDrawGroove
Draws a gray-filled rectangle with a groove border.

void NSDrawGroove (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 3978)

Declared In
NSGraphics.h

NSDrawLightBezel
Draws a white-filled rectangle with a bezel border.

3974 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

void NSDrawLightBezel (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 3978)

Related Sample Code
BindingsJoystick

Declared In
NSGraphics.h

NSDrawNinePartImage
Draws a nine-part tiled image.

void NSDrawNinePartImage(NSRect frame,
 NSImage *topLeftCorner,
 NSImage *topEdgeFill,
 NSImage *topRightCorner,
 NSImage *leftEdgeFill,
 NSImage *centerFill,
 NSImage *rightEdgeFill,
 NSImage *bottomLeftCorner,
 NSImage *bottomEdgeFill,
 NSImage *bottomRightCorner,
 NSCompositingOperation op,
 CGFloat alphaFraction,
 BOOL flipped
);

Parameters
frame

The rectangle (specified in the current coordinate system) in which to draw the images.

topLeftCorner
The image to display in the top-left corner.

topEdgeFill
The image used to tile the space between the topLeftCorner and topRightCorner images.

topRightCorner
The image to display in the top-right corner.

Functions 3975
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

leftEdgeFill
The image used to tile the space between the topLeftCorner and bottomLeftCorner images.

centerFill
The image used to tile the center area between the other eight images.

rightEdgeFill
The image used to tile the space between the topRightCorner and bottomRightCorner images.

bottomLeftCorner
The image to display in the bottom-left corner.

bottomEdgeFill
The image used to tile the space between the bottomLeftCorner and bottomRightCorner images.

bottomRightCorner
The image to display in the bottom-right corner.

op
The compositing operation to use when rendering the images.

alphaFraction
The alpha value to apply to the rendered image. This value can range between 0.0 and 1.0, with 0.0
being fully transparent and 1.0 being fully opaque.

flipped
Specify YES if you are drawing the images in a flipped coordinate system; otherwise, specify NO.

Discussion
This function is typically used to draw custom cells that are capable of being resized both vertically and
horizontally. Cells of this type are comprised of four fixed-size corner images along and a set of edge and
center images that are used to fill the gaps between the corners. These cells allow you to create sophisticated
looking controls that can grow and shrink in any direction without distorting the control’s overall appearance.

You should prefer the use of this function over your own custom code for handling multi-part images whose
size can change. This function correctly manages the subtle behaviors needed to handle resolution
independence issues and to avoid visual artifacts caused by tiling the various images.

This function uses the top-left and bottom-right corner images to determine the widths and heights of the
edge areas that need to be filled. If the width or height of the bottom-left and top-right images are not sized
appropriately, they may be scaled to fill their corner area. Edge areas between the corners are tiled using the
corresponding image. Similarly, the center area is tiled using the specified center image.

The flipped parameter lets you reorient the contents of each image when drawing in a flipped coordinate
system. By default, images use an internal coordinate system that is not flipped. Rendering such an image
in a flipped coordinate system would therefore cause the image to appear upside down. Passing YES for the
flipped parameter adjusts the image’s internal coordinate system to draw it correctly in a flipped
environment.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCell.h

NSDrawThreePartImage
Draws a three-part tiled image.

3976 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

void NSDrawThreePartImage(NSRect frame,
 NSImage *startCap,
 NSImage *centerFill,
 NSImage *endCap,
 BOOL vertical,
 NSCompositingOperation op,
 CGFloat alphaFraction,
 BOOL flipped
);

Parameters
frame

The rectangle (specified in the current coordinate system) in which to draw the images.

startCap
For a horizontal three-part image, this is the image located at the left edge of the frame rectangle.
For a vertical three-part image, this image appears at the top of the screen in an unflipped coordinate
system and at the bottom of the screen in a flipped coordinate system.

centerFill
The image used to tile the space between the startCap and endCap images.

endCap
For a horizontal three-part image, this is the image located at the right edge of the frame rectangle.
For a vertical three-part image, this image appears at the bottom of the screen in an unflipped
coordinate system and at the top of the screen in a flipped coordinate system.

vertical
Specify YES if the images should be stacked on top of one another to create a vertically oriented
element. Specify NO if the images should be laid out side-by-side to create a horizontally oriented
element.

op
The compositing operation to use when rendering the images.

alphaFraction
The alpha value to apply to the rendered image. This value can range between 0.0 and 1.0, with 0.0
being fully transparent and 1.0 being fully opaque.

flipped
Specify YES if you are drawing the images in a flipped coordinate system; otherwise, specify NO.

Discussion
This function is typically used to draw custom cells (such as the backgrounds for push button and slider
controls) that are capable of being resized along a single axis only. Cells of this type are comprised of fixed-size
end cap images and a center area that is filled by tiling the specified center image as many times as needed
to fill the gap. These cells allow you to create sophisticated looking controls that can grow and shrink without
distorting the control’s overall appearance.

You should prefer the use of this function over your own custom code for handling multi-part images whose
size can change. This function correctly manages the subtle behaviors needed to handle resolution
independence issues and to avoid visual artifacts caused by tiling the various images.

When drawing a horizontally oriented control, the images in the startCap, centerFill, and endCap
parameters should all have the same height, and that height should match the height of the frame rectangle.
If an image’s height does not match the height of the frame rectangle, it is scaled until it does match, which
might yield less desirable results. For vertically oriented controls, the image widths are scaled instead of the
heights.

Functions 3977
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

The flipped parameter lets you reorient the contents of each image when drawing in a flipped coordinate
system. By default, images use an internal coordinate system that is not flipped. Rendering such an image
in a flipped coordinate system would therefore cause the image to appear upside down. Passing YES for the
flipped parameter adjusts the image’s internal coordinate system to draw it correctly in a flipped
environment.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSCell.h

NSDrawTiledRects
Draws rectangles with borders.

NSRect NSDrawTiledRects (
 NSRect boundsRect,
 NSRect clipRect,
 const NSRectEdge *sides,
 const CGFloat *grays,
 NSInteger count
);

Parameters
boundsRect

The bounding rectangle (in the current coordinate system) in which to draw. Since this function is
often used to draw the border of a view, this rectangle will typically be that view’s bounds rectangle.
Only those parts of boundsRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

sides
The sides of the rectangle for which you want to specify custom gray levels. Each side must have a
corresponding entry in the grays parameter.

grays
The gray levels to draw for each of the edges listed in the sides parameter.

count
The number of 1.0-unit-wide slices to draw on the specified sides.

Return Value
The rectangle that lies within the resulting border.

Discussion
This is a generic function that can be used to draw different types of borders inside a given rectangle. These
borders can be used to outline an area or to give rectangles the effect of being recessed from or elevated
above the surface of the screen.

The sides, grays, and count parameters determine how thick the border is and what gray levels are used
to form it. This function uses the NSDivideRect function to take successive 1.0-unit-wide slices from the
sides of the rectangle specified by the sides parameter. Each slice is drawn using the corresponding gray
level from the grays parameter. This function makes and draws these slices count number of times. If you
specify the same side more than once, the second slice is drawn inside the first.

3978 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

The following example uses this function to draw a bezeled border consisting of a 1.0–unit-wide white line
at the top and on the left side and a 1.0-unit-wide dark-gray line inside a 1.0–unit-wide black line on the
other two sides. The resulting rectangle inside this border is then filled in using light gray.

NSRectEdge mySides[] = {NSMinYEdge, NSMaxXEdge, NSMaxYEdge, NSMinXEdge,
 NSMinYEdge, NSMaxXEdge};
float myGrays[] = {NSBlack, NSBlack, NSWhite, NSWhite,
 NSDarkGray, NSDarkGray};
NSRect aRect, clipRect; // Assume exists

aRect = NSDrawTiledRects(aRect, clipRect, mySides, myGrays, 6);
[[NSColor grayColor] set];
NSRectFill(aRect);

In the preceding example, mySides is an array that specifies sides of a rectangle; for example, NSMinYEdge
selects the side parallel to the x axis with the smallest y coordinate value. myGrays is an array that specifies
the successive gray levels to be used in drawing parts of the border.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSDrawWhiteBezel
Draws a white-filled rectangle with a bezel border.

void NSDrawWhiteBezel (
 NSRect aRect,
 NSRect clipRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw. Only those parts of
aRect that lie within the clipRect are actually drawn.

clipRect
The clipping rectangle to use during drawing.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 3978)

Related Sample Code
Sketch-112

Declared In
NSGraphics.h

Functions 3979
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSDrawWindowBackground
Draws the window’s default background pattern into the specified rectangle of the currently focused view.

void NSDrawWindowBackground (
 NSRect aRect
);

Parameters
aRect

The rectangle (in the current coordinate system) in which to draw the window’s background pattern.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSEnableScreenUpdates
Enables screen updates

void NSEnableScreenUpdates (void);

Discussion
Reenables, for all windows of a process, the flushing of drawing operations to the screen that was previously
disabled by NSDisableScreenUpdates (page 3969). Successive calls to NSDisableScreenUpdates are
placed on a stack and must be popped off that stack by matching calls to this function.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
AnimatedTableView

Declared In
NSGraphics.h

NSEraseRect
Erases the specified rect by filling it with white.

void NSEraseRect (
 NSRect aRect
);

Parameters
aRect

The rectangle (in the current coordinate system) defining the area to erase.

Discussion
This function fills the specified rectangle with white. It does not alter the current color.

Availability
Available in Mac OS X v10.0 and later.

3980 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Related Sample Code
Quartz EB

Declared In
NSGraphics.h

NSEventMaskFromType
Returns the event mask for the specified type.

static NSUInteger NSEventMaskFromType (
 NSEventType type
);

Parameters
type

The event type whose mask you want to get.

Return Value
The event mask corresponding to the specified type. The returned mask is equivalent to the number 1
left-shifted by type bits.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer Matrix

Declared In
NSEvent.h

NSFrameRect
Draw a bordered rectangle.

void NSFrameRect (
 NSRect aRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw.

Discussion
Draws a frame around the inside of aRect in the current color and using the NSCompositeCopy compositing
operation. The width is equal to 1.0 in the current coordinate system. Since the frame is drawn inside the
rectangle, it will be visible even if drawing is clipped to the rectangle.

Because this function does not draw directly on the line, but rather inside it, it uses the current fill color (not
stroke color) when drawing.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Functions 3981
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

See Also
NSDrawTiledRects (page 3978)

Related Sample Code
CompositeLab
Cropped Image
FilterDemo
PDF Calendar
Sketch-112

Declared In
NSGraphics.h

NSFrameRectWithWidth
Draw a bordered rectangle.

void NSFrameRectWithWidth (
 NSRect aRect,
 CGFloat frameWidth
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw.

frameWidth
The width of the frame, specified in points.

Discussion
Draws a frame around the inside of aRect in the current color and using the NSCompositeCopy compositing
operation. The width is equal to frameWidth in the current coordinate system. Since the frame is drawn
inside the rectangle, it will be visible even if drawing is clipped to the rectangle.

Because this function does not draw directly on the line, but rather inside it, it uses the current fill color (not
stroke color) when drawing.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSDrawTiledRects (page 3978)

Related Sample Code
AnimatedTableView
Quartz Composer WWDC 2005 TextEdit
Rulers

Declared In
NSGraphics.h

3982 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSFrameRectWithWidthUsingOperation
Draw a bordered rectangle using the specified compositing operation.

void NSFrameRectWithWidthUsingOperation (
 NSRect aRect,
 CGFloat frameWidth,
 NSCompositingOperation op
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw.

frameWidth
The width of the frame, specified in points.

op
The compositing operation to use when drawing the frame.

Discussion
Draws a frame around the inside of aRect in the current color, using the compositing operation op. The
width is equal to frameWidth in the current coordinate system. Since the frame is drawn inside the rectangle,
it will be visible even if drawing is clipped to the rectangle.

Because this function does not draw directly on the line, but rather inside it, it uses the current fill color (not
stroke color) when drawing.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaAUHost
EnhancedAudioBurn
PDF Annotation Editor

Declared In
NSGraphics.h

NSGetAlertPanel
Returns an alert panel.

Functions 3983
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

id NSGetAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Returns an NSPanel that can be used to set up a modal session. A modal session is useful for allowing the
user to interrupt the program. During a modal session, you can perform activities while the panel is displayed
and check at various points in your program whether the user has clicked one of the panel’s buttons. The
arguments for this function are the same as those for NSRunAlertPanel (page 3998), but unlike that function,
no button is displayed if defaultButton is nil.

To set up a modal session, send the Application object beginModalSessionForWindow: (page 139) with
the panel returned by NSGetAlertPanel as its argument. When you want to check if the user has clicked
one of the panel’s buttons, use runModalSession: (page 164). To end the modal session, use
endModalSession: (page 146). When you’re finished with the panel created by NSGetAlertPanel, you
must free it by passing it to NSReleaseAlertPanel (page 3998).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPanel.h

NSGetCriticalAlertPanel
Returns an alert panel to display a critical message.

id NSGetCriticalAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Returns an NSPanel that can be used to set up a modal session. No button is displayed if defaultButton
is nil. When you’re finished with the panel created by this function, you must free it by passing it to
NSReleaseAlertPanel (page 3998).

The arguments for this function are the same as those for the NSGetAlertPanel (page 3983). For more
information on using a panel in a modal session, see NSGetAlertPanel.

The panel presented to the user is badged with a caution icon. Critical alerts should be used only as specified
in the "Alerts” section of the Windows chapter of Apple Human Interface Guidelines.

Availability
Available in Mac OS X v10.0 and later.

3984 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Declared In
NSPanel.h

NSGetFileType
Returns a file type based on the passed pasteboard type. (Deprecated. The file contents pboard type allowed
you to synthesize a pboard type for a file’s contents based on the file’s extension. Using the UTI of a file to
represent its contents now replaces this functionality.)

NSString * NSGetFileType (
 NSString *pboardType
);

Discussion
This function is the inverse of both NSCreateFileContentsPboardType (page 3968) and
NSCreateFilenamePboardType (page 3969). When passed a pasteboard type as returned by those functions,
it returns the extension or filename from which the type was derived. It returns nil if pboardType isn’t a
pasteboard type created by those functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

NSGetFileTypes
Returns an array of file types based on the passed pasteboard types. (Deprecated. The file contents pboard
type allowed you to synthesize a pboard type for a file’s contents based on the file’s extension. Using the
UTI of a file to represent its contents now replaces this functionality.)

NSArray * NSGetFileTypes (
 NSArray *pboardTypes
);

Discussion
Accepts a null-terminated array of pointers to pasteboard types and returns a null-terminated array of the
unique extensions and filenames from the file content and filename types found in the input array. It returns
nil if the input array contains no file content or filename types. The returned array is allocated and must be
freed by the caller. The pointers in the return array point into strings passed in the input array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPasteboard.h

NSGetInformationalAlertPanel
Returns an alert panel to display an informational message.

Functions 3985
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

id NSGetInformationalAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Returns an NSPanel that can be used to set up a modal session. No button is displayed if defaultButton
is nil. When you’re finished with the panel created by this function, you must free it by passing it to
NSReleaseAlertPanel (page 3998).

The arguments for this function are the same as those for the NSRunAlertPanel (page 3998) function. For
more information on using a panel in a modal session, see NSGetAlertPanel (page 3983).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPanel.h

NSGetWindowServerMemory
Returns the amount of memory being used by a context.

NSInteger NSGetWindowServerMemory (
 NSInteger context,
 NSInteger *virtualMemory,
 NSInteger *windowBackingMemory,
 NSString **windowDumpString
);

Discussion
Calculates the amount of memory being used at the moment by the given context. If NULL is passed for
context, the current context is used. The amount of virtual memory used by the current context is returned
in the int pointed to by virtualMemory; the amount of window backing store used by windows owned by
the current context is returned in the int pointed to by windowBackingMemory. The sum of these two
numbers is the amount of the memory that this context is responsible for.

Calculating these numbers takes some time to execute; thus, calling this function in normal operation is not
recommended.

If nil is not passed in for windowDumpStream, the information returned is echoed to the specified stream.
This fact can be useful for finding out more about which windows are using up your storage.

Normally, NSGetWindowServerMemory returns 0. If NULL is passed for context and there’s no current
display context, this function returns –1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

3986 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSHighlightRect
Highlights the specified rect by filling it with white.

void NSHighlightRect (
 NSRect aRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw.

Discussion
Highlights the rectangle referred to by aRect. Light gray becomes white, and white becomes light gray. This
function must be called twice, once to highlight the rectangle and once to unhighlight it; the rectangle
should not be left in its highlighted state. When not drawing on the screen, the compositing operation is
replaced by one that fills the rectangle with light gray.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSInterfaceStyleForKey
Returns an interface style value for the specified key and responder.

NSInterfaceStyle NSInterfaceStyleForKey (
 NSString *key,
 NSResponder *responder
);

Discussion
Used to determine an interface style based on a key and a responder, either of which may be nil. An
NSInterfaceStyle (page 4009) value specifies the style in which an interface item, such as a button or a
scroll bar, should be drawn. For example, a value of NSMacintoshInterfaceStyle indicates an item should
be drawn in the Macintosh style. The values defined for NSInterfaceStyle are NSNoInterfaceStyle,
NSNextStepInterfaceStyle, NSWindows95InterfaceStyle, and NSMacintoshInterfaceStyle.
Note that this function never returns NSNoInterfaceStyle.

The interface style value returned by this function depends on several factors. If responder is not nil and if
responder specifies an interface style other than NSNoInterfaceStyle, this function returns the responder’s
style, and key is ignored.

Otherwise, if key is not nil and there is an interface style for key specified by the defaults system, this
function returns the interface style for key from the defaults system.

Finally, if key is nil, or if there is no interface style for key specified by the defaults system, this function
returns the global interface style specified by the defaults system.

The defaults system allows an application to customize its behavior to match a user’s preferences. You can
read about the defaults system in the documentation for NSUserDefaults.

Availability
Available in Mac OS X v10.0 and later.

Functions 3987
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Declared In
NSInterfaceStyle.h

NSIsControllerMarker
Tests whether a given object is special marker object used for indicating the state of a selection in relation
to a key.

BOOL NSIsControllerMarker (
 id object
);

Parameters
Term

Specify the object you want to check. This parameter can be nil.

Return Value
YES if the object is one of the designated controller markers or NO if it is not.

Discussion
This function helps you to create bindings between user interface elements and controller objects. The
Application Kit predefines several special marker objects used as values for indicating selection state; currently
these are NSMultipleValuesMarker, NSNoSelectionMarker, and NSNotApplicableMarker. These
markers are typed as id and only exist for the purpose of indicating a state; they are never archived and
cannot be used as object values in controls. You use this function to test whether a given object value is a
marker, in which case it is not directly assignable to the object that is bound. This check is important, especially
since additional markers may be added in the future.

See the NSKeyValueBinding.h header file for further details.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CoreRecipes

Declared In
NSKeyValueBinding.h

NSNumberOfColorComponents
Returns the number of color components in the specified color space.

NSInteger NSNumberOfColorComponents (
 NSString *colorSpaceName
);

Discussion
Returns the number of color components in the color space whose name is provided by colorSpaceName.

3988 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSOpenGLGetOption
Returns global OpenGL options.

void NSOpenGLGetOption (
 NSOpenGLGlobalOption pname,
 GLint *param
);

Discussion
Returns in param the value of the global OpenGL parameter pname. The available options are enumerated
by the NSOpenGLGlobalOption (page 4011) type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

NSOpenGLGetVersion
Returns the NSOpenGL version numbers.

void NSOpenGLGetVersion (
 GLint *major,
 GLint *minor
);

Discussion
Returns by reference the major and minor version numbers of the NSOpenGL implementation. This function
is not the same as the OpenGL version.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

NSOpenGLSetOption
Sets global OpenGL options.

Functions 3989
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

void NSOpenGLSetOption (
 NSOpenGLGlobalOption pname,
 GLint param
);

Discussion
Sets the value of the global OpenGL parameter pname to param. The available options are enumerated by
the NSOpenGLGlobalOption (page 4011) type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

NSPerformService
Programmatically invokes a Services menu service.

BOOL NSPerformService (
 NSString *itemName,
 NSPasteboard *pboard
);

Parameters
itemName

Specifies a Services menu item, in any language. If the requested service is from a submenu of the
Services menu, the value must contain a slash (for example, “Mail/Selection”).

pboard
The pasteboard containing the data required by the service. This data must be present for the service
to succeed. On output, this pasteboard contains the data returned by the service provider.

Return Value
YES if the service was successfully performed or NO if it was not.

Discussion
Use this function to programmatically invoke a service found in the application’s Services menu.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
PhotoSearch

Declared In
NSApplication.h

NSPlanarFromDepth
Returns whether the specified window depth is planar.

3990 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

BOOL NSPlanarFromDepth (
 NSWindowDepth depth
);

Discussion
Returns YES if the specified window depth is planar and NO if it is not.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSReadPixel
Reads the color of the pixel at the specified location.

NSColor * NSReadPixel (
 NSPoint passedPoint
);

Parameters
passedPoint

The pixel location to read, specified in the current coordinate system.

Return Value
The color of the pixel at the specified location.

Discussion
Because the passedPoint parameter is relative to the current coordinate system, if you wish to read a pixel
from a specific view, you must convert points in the view’s coordinate system to the current coordinate
system before calling this function. Alternatively, you can lock focus on the view and then specify the pixel
coordinate in the view’s coordinate system.

When mapping the specified point to pixel boundaries, this method rounds to the nearest pixel. For more
information on how coordinate points map to the underlying pixels, see Coordinate Systems and Transforms
in Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Color Sampler
Monochrome Image

Declared In
NSGraphics.h

NSRectClip
Modifies the current clipping path by intersecting it with the passed rect.

Functions 3991
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

void NSRectClip (
 NSRect aRect
);

Parameters
aRect

The rectangle to intersect with the current clipping rectangle.

Discussion
This function modifies the clipping path permanently. If you need to undo this modification later, you should
save the current graphics state before calling this function and restore it once you are done.

A side effect of this function is that it clears the current Quartz 2D drawing path information. If you used
Quartz 2D functions to create a drawing path in the current context, and you want to save that path
information and use it later, you should transfer it to a CGPathRef opaque type before calling this function.
If you are using only Cocoa to do your drawing, this behavior should not affect you.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Aperture Edit Plugin - Borders & Titles
Rulers
SampleRaster

Declared In
NSGraphics.h

NSRectClipList
Modifies the current clipping path by intersecting it with the passed rect.

void NSRectClipList (
 const NSRect *rects,
 NSInteger count
);

Parameters
rects

A pointer to an array of NSRect structures, which are combined and intersected with the current
clipping path.

count
The number of rectangles in rects.

Discussion
This function modifies the clipping path permanently by generating a graphical union of the specified
rectangles and then intersecting that union with the current clipping path. If you need to undo this
modification later, you should save the current graphics state before calling this function and restore it once
you are done.

A side effect of this function is that it clears the current Quartz 2D drawing path information. If you used
Quartz 2D functions to create a drawing path in the current context, and you want to save that path
information and use it later, you should transfer it to a CGPathRef opaque type before calling this function.
If you are using only Cocoa to do your drawing, this behavior should not affect you.

3992 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSRectFill
Fills the passed rectangle with the current color.

void NSRectFill (
 NSRect aRect
);

Parameters
aRect

The bounding rectangle (in the current coordinate system) in which to draw.

Discussion
Fills aRect with the current color using the compositing mode NSCompositeCopy (page 1376), which fills
with the current color by copying the RGBA values. Use NSRectFillUsingOperation (page 3997) to fill
specifying a compositing mode.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaSlides
FilterDemo
Quartz Composer WWDC 2005 TextEdit
Sketch+Accessibility
Sketch-112

Declared In
NSGraphics.h

NSRectFillList
Fills the rectangles in the passed list with the current fill color.

void NSRectFillList (
 const NSRect *rects,
 NSInteger count
);

Parameters
rects

A pointer to an array of NSRect structures representing the rectangles to fill.

count
The number of rectangles in rects.

Functions 3993
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Discussion
Fills the specified rectangles with the current fill color using the compositing mode NSCompositeCopy.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSRectFillListUsingOperation
Fills the rectangles in a list using the current fill color and specified compositing operation.

void NSRectFillListUsingOperation (
 const NSRect *rects,
 NSInteger count,
 NSCompositingOperation op
);

Parameters
rects

A pointer to an array of NSRect structures representing the rectangles to fill.

count
The number of rectangles in the rects parameter.

op
The compositing operation to use when filling the rectangles.

Discussion
Fills a list of count rectangles with the current fill color, using the compositing operation op. For example,
specifying NSCompositeSourceOver (page 1376) will blend with what's already been drawn.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iChatTheater

Declared In
NSGraphics.h

NSRectFillListWithColors
Fills the rectangles in the passed list with the passed list of colors.

3994 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

void NSRectFillListWithColors (
 const NSRect *rects,
 NSColor **colors,
 NSInteger num
);

Parameters
rects

A pointer to an array of NSRect structures representing the rectangles to fill.

colors
A pointer to an array of NSColor objects. The number of color objects in this parameter must equal
the number of rectangles in the rects parameter.

num
The number of rectangles in the rects parameter.

Discussion
Takes a list of num rectangles and a matching list of color objects. The first rectangle is filled with the first
color, the second rectangle with the second color, and so on. There must be an equal number of rectangles
and color values. The rectangles are composited using the NSCompositeCopy (page 1376) operator and the
order in which the rectangles are filled cannot be guaranteed; therefore, overlapping rectangles may not
draw as expected. This function alters the current color of the current graphics state, setting it unpredictably
to one of the values passed in colors.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSRectFillListWithColorsUsingOperation
Fills the rectangles in a list using the specified colors and compositing operation.

void NSRectFillListWithColorsUsingOperation (
 const NSRect *rects,
 NSColor **colors,
 NSInteger num,
 NSCompositingOperation op
);

Parameters
rects

A pointer to an array of NSRect structures representing the rectangles to fill.

colors
A pointer to an array of NSColor objects. The number of color objects in this parameter must equal
the number of rectangles in the rects parameter.

num
The number of rectangles in the rects parameter.

op
The compositing operation to use when filling the rectangles.

Functions 3995
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Discussion
Takes a list of num rectangles and a matching list of color values. The first rectangle is filled with the first
color, the second rectangle with the second color, and so on. There must be an equal number of rectangles
and color values. Each fill operation is performed using the compositing operation op. The rectangles should
not overlap; the order in which they are filled cannot be guaranteed. This function alters the current color
of the current graphics state, setting it unpredictably to one of the values passed in colors.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSRectFillListWithGrays
Fills the rectangles in the passed list with the passed list of grays.

void NSRectFillListWithGrays (
 const NSRect *rects,
 const CGFloat *grays,
 NSInteger num
);

Parameters
rects

A pointer to an array of NSRect structures representing the rectangles to fill.

grays
A pointer to an array of floating-point values in the range 0.0 to 1.0, where 0.0 represents absolute
black and 1.0 represents absolute white and numbers in between are varying levels of gray. Values
outside this range are clamped to 0.0 or 1.0.

num
The number of rectangles in the rects parameter.

Discussion
Takes a list of num rectangles and a matching list of gray values. The first rectangle is filled with the first gray,
the second rectangle with the second gray, and so on. There must be an equal number of rectangles and
gray values. The rectangles are composited using the NSCompositeCopy (page 1376) operator and the order
in which the rectangles are filled cannot be guaranteed; therefore, overlapping rectangles may not draw as
expected. This function alters the current color of the current graphics state, setting it unpredictably to one
of the values passed in grays.

For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

3996 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

NSRectFillUsingOperation
Fills a rectangle using the current fill color and the specified compositing operation.

void NSRectFillUsingOperation (
 NSRect aRect,
 NSCompositingOperation op
);

Parameters
aRect

The rectangle to fill with the current fill color.

op
The compositing operation to use when filling the rectangle.

Discussion
For a list of compositing operations and how you use them, see Cocoa Drawing Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ComplexBrowser
Cropped Image
RGB Image
RGB ValueTransformers
Tinted Image

Declared In
NSGraphics.h

NSRegisterServicesProvider
Registers a service provider.

void NSRegisterServicesProvider (
 id provider,
 NSString *name
);

Parameters
provider

The object providing the service you want to register.

name
The unique name to associate with the service. This string is used to advertise the service to interested
clients.

Discussion
Use this function to register custom services not directly related to your application.

You should not use this function to register the services provided by your application. For your application’s
services, you should use the setServicesProvider: (page 171) method of NSApplication, passing a
non-nil argument.

Functions 3997
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSReleaseAlertPanel
Releases an alert panel.

void NSReleaseAlertPanel (
 id panel
);

Discussion
When you’re finished with a panel created by a function such as NSGetAlertPanel (page 3983),
NSGetCriticalAlertPanel (page 3984), orNSGetInformationalAlertPanel (page 3985), you must free
it by passing it to this function.

Note that the alert panel may not be deallocated immediately because it may have internal references that
are released in a deferred way. You should not make the assumption that the alert panel is immediately
removed from the application window list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPanel.h

NSRunAlertPanel
Creates an alert panel.

NSInteger NSRunAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Creates and runs an alert panel (or dialog) with the title of title, the text of msg, and buttons with titles of
defaultButton, alternateButton, and otherButton. See the description of NSBeginAlertSheet (page
3962) for information on layout of buttons, default parameters, and possible return values. NSRunAlertPanel
runs the panel in a modal event loop.

A Command-D key equivalent for the “Don’t Save” button is provided, if one is found. The button titles are
searched for the localized value for “Don’t Save.” If a match is found, that button is assigned a Command-D
key equivalent, provided it is not the default button.

3998 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

If you create a modal panel using runModalForWindow: (page 163) or
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 140), you can
assign the key equivalent yourself, using setKeyEquivalent: (page 483) and
setKeyEquivalentModifierMask: (page 484).

This function not only creates the panel; it also puts the panel onscreen and runs it using the
runModalForWindow: (page 163) method defined in the NSApplication class. This method sets up a
modal event loop that causes the panel to remain onscreen until the user clicks one of its buttons. This
function then removes the panel from the screen list and returns a value that indicates which of the three
buttons the user clicked. For efficiency, this function creates the panel the first time it’s called and reuses it
on subsequent calls, reconfiguring it if necessary.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaSpeechSynthesisExample
Quartz Composer WWDC 2005 TextEdit
SimpleCocoaApp
TextLinks
WhackedTV

Declared In
NSPanel.h

NSRunCriticalAlertPanel
Creates and runs a critical alert panel.

NSInteger NSRunCriticalAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Creates a critical alert panel that warns the user of some critical consequence of a requested action; the panel
lets the user cancel the action and may allow the user to modify the action. It then runs the panel in a modal
event loop.

The panel presented to the user is badged with a caution icon. Critical alerts should be used only as specified
in the "Alerts” section of the Windows chapter of Apple Human Interface Guidelines.

The arguments for this function are the same as those for NSRunAlertPanel (page 3998).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIColorTracking
GLSL Showpiece Lite

Functions 3999
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

GLUT
iChatStatusFromApplication
NewsReader

Declared In
NSPanel.h

NSRunInformationalAlertPanel
Creates and runs an informational alert panel.

NSInteger NSRunInformationalAlertPanel (
 NSString *title,
 NSString *msg,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 ...
);

Discussion
Creates an informational alert panel that provides information related to a requested action. It then runs the
panel in a modal event loop.

The arguments for this function are the same as those for NSRunAlertPanel (page 3998).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSPanel.h

NSSetFocusRingStyle
Specifies how a focus ring will be drawn.

void NSSetFocusRingStyle (
 NSFocusRingPlacement placement
);

Parameters
placement

Specifies how you want the focus ring to be drawn.

Discussion
Use NSFocusRingAbove to draw the focus ring over an image, use NSFocusRingBelow to draw the focus
ring under text, and use NSFocusRingOnly if you don’t have an image or text. For the NSFocusRingOnly
case, fills a shape to add the focus ring around the shape.

Note that the focus ring may actually be drawn outside the view but will be clipped to any clipping superview
or the window content view.

Availability
Available in Mac OS X v10.1 and later.

4000 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Related Sample Code
ClockControl
Dicey
TrackBall

Declared In
NSGraphics.h

NSSetShowsServicesMenuItem
Specifies whether an item should be included in Services menus.

NSInteger NSSetShowsServicesMenuItem (
 NSString *itemName,
 BOOL enabled
);

Discussion
Deprecated. This function simply returns 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSShowAnimationEffect
Runs a system animation effect.

void NSShowAnimationEffect (
 NSAnimationEffect animationEffect,
 NSPoint centerLocation,
 NSSize size,
 id animationDelegate,
 SEL didEndSelector,
 void *contextInfo
);

Parameters
animationEffect

The type of animation you want to apply.

centerLocation
The location at which to show the animated image, specified in screen coordinates. The animation
is centered on the point you specify.

size
The desired size of the animated image. Specify NSZeroSize to perform the animation at the default
size.

animationDelegate
The object to notify when the animation completes. Specify nil if you do not need to be notified
when the animation completes.

Functions 4001
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

didEndSelector
The selector of animationDelegate to call when the animation completes. Specify nil if you do
not need to be notified when the animation completes. If you specify a selector, the corresponding
method should have the following signature:

 - (void)animationEffectDidEnd:(void *)contextInfo;

contextInfo
A pointer to any optional information you want passed as a parameter to the selector in the
didEndSelector parameter.

Discussion
This function runs one of the standard system animation effects, which includes display and sound. For
example, you can use this function to display the puff of smoke effect. For a complete list of animation effects,
see NSAnimationEffect (page 4007).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGraphics.h

NSShowsServicesMenuItem
Specifies whether a Services menu item is currently enabled.

BOOL NSShowsServicesMenuItem (
 NSString *itemName
);

Discussion
Deprecated. This function simply returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSUnregisterServicesProvider
Unregisters a service provider.

void NSUnregisterServicesProvider(NSString *name);

Parameters
name

The name of the service you want to unregister.

Discussion
Use this function to unregister custom services not directly related to your application.

You should not use this function to unregister the services provided by your application. For your application’s
services, you should use the setServicesProvider: (page 171) method of NSApplication, passing a
nil argument.

4002 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSUpdateDynamicServices
Causes the services information for the system to be updated.

void NSUpdateDynamicServices (void);

Discussion
Used by a service-providing application to reregister the services it is willing to provide. To do this, you create
a bundle with the extension “.service” and place it in the application’s path or ~/Library/Services.
The content of the bundle is identical to a normal service bundle. You then call this function.

It is only necessary to call this function if your program adds dynamic services to the system.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SpotlightFortunes

Declared In
NSApplication.h

NSWindowList
Gets information about onscreen windows.

void NSWindowList (
 NSInteger size,
 NSInteger list[]
);

Discussion
Provides an ordered list of all onscreen windows. It fills list with up to size window numbers; the order
of windows in the array is the same as their order in the window server’s screen list (their front-to-back order
on the screen). Use the count obtained by NSCountWindows (page 3968) to specify the size of the array for
this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

NSWindowListForContext
Gets information about an application’s onscreen windows.

Functions 4003
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

void NSWindowListForContext (
 NSInteger context,
 NSInteger size,
 NSInteger list[]
);

Discussion
Provides an ordered list of onscreen windows for a particular application, identified by context, which is a
window server connection ID. It fills list with up to size window numbers; the order of windows in the
array is the same as their order in the window server’s screen list (their front-to-back order on the screen).
Use the count obtained by the NSCountWindowsForContext (page 3968) function to specify the size of the
array for this function.

Use of this function is discouraged as it may be deprecated in a future release.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphics.h

4004 Functions
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 240

Application Kit Functions Reference

4005
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

PART IV

Data Types

4006
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

PART IV

Data Types

Framework: AppKit/AppKit.h

Overview

This document describes the data types defined in the Application Kit framework and not described in a
document for an individual class.

Data Types

NSAnimationEffect
This type defines the standard system animation effects, which include both display and sound.

typedef enum _NSAnimationEffect {
 NSAnimationEffectDisappearingItemDefault = 0,
 NSAnimationEffectPoof = 10
} NSAnimationEffect;

Constants
NSAnimationEffectDisappearingItemDefault

The default effect.

Available in Mac OS X v10.3 and later.

Declared in NSGraphics.h.

NSAnimationEffectPoof
An effect showing a puff of smoke.

Available in Mac OS X v10.3 and later.

Declared in NSGraphics.h.

Discussion
These effects are used to indicate that an item was removed from a collection, such as a toolbar, without
deleting the underlying data. See NSShowAnimationEffect (page 4001).

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGraphics.h

Overview 4007
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 241

Application Kit Data Types Reference

NSBrowserAuxiliaryOpaque
A private data structure used internally by NSBrowser.

typedef struct NSBrowserAuxiliary NSBrowserAuxiliaryOpaque;

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSBrowser.h

NSColorListAuxiliaryOpaque
A private data structure used internally by NSColorList.

typedef struct NSColorListAuxiliary NSColorListAuxiliaryOpaque;

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSColorList.h

NSFocusRingPlacement
The focus ring style indicates how the focus ring will be drawn.

typedef enum {
 NSFocusRingOnly = 0,
 NSFocusRingBelow = 1,
 NSFocusRingAbove = 2
} NSFocusRingPlacement;

Constants
NSFocusRingAbove

Use NSFocusRingAbove to draw over an image.

Fill a shape to add the focus ring around the shape.

Available in Mac OS X v10.1 and later.

Declared in NSGraphics.h.

NSFocusRingBelow
Use NSFocusRingBelow to draw the focus ring under text.

Available in Mac OS X v10.1 and later.

Declared in NSGraphics.h.

NSFocusRingOnly
Use NSFocusRingOnly if you don’t have an image or text.

Available in Mac OS X v10.1 and later.

Declared in NSGraphics.h.

Availability
Available in Mac OS X v10.1 and later.

4008 Data Types
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 241

Application Kit Data Types Reference

Declared In
NSGraphics.h

NSFocusRingType
The focus ring type is used by NSView and NSCell to configure if and how a control should draw its focus
ring.

typedef enum _NSFocusRingType {
 NSFocusRingTypeDefault = 0,
 NSFocusRingTypeNone = 1,
 NSFocusRingTypeExterior = 2
} NSFocusRingType;

Constants
NSFocusRingTypeDefault

The default focus ring type for NSView or NSCell.

Available in Mac OS X v10.3 and later.

Declared in NSGraphics.h.

NSFocusRingTypeNone
No focus ring. If you set the focus ring type to this value, NSView and NSCell will not draw any focus
ring.

Available in Mac OS X v10.3 and later.

Declared in NSGraphics.h.

NSFocusRingTypeExterior
The standard Aqua focus ring.

Available in Mac OS X v10.3 and later.

Declared in NSGraphics.h.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSGraphics.h

NSInterfaceStyle
These constants are used in NSResponder’s interfaceStyle (page 2158) method.

Data Types 4009
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 241

Application Kit Data Types Reference

typedef enum {
 NSNoInterfaceStyle = 0,
 NSNextStepInterfaceStyle = 1,
 NSWindows95InterfaceStyle = 2,
 NSMacintoshInterfaceStyle = 3
} NSInterfaceStyle;

Constants
NSNoInterfaceStyle

The default interface style.

Available in Mac OS X v10.0 and later.

Declared in NSInterfaceStyle.h.

NSNextStepInterfaceStyle
The NextStep interface style.

Available in Mac OS X v10.0 and later.

Declared in NSInterfaceStyle.h.

NSWindows95InterfaceStyle
The Windows 95 interface style.

Available in Mac OS X v10.0 and later.

Declared in NSInterfaceStyle.h.

NSMacintoshInterfaceStyle
The Macintosh interface style.

Available in Mac OS X v10.0 and later.

Declared in NSInterfaceStyle.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSInterfaceStyle.h

NSModalSession
Variables of type NSModalSession point to information used by the system between NSApplication’s
beginModalSessionForWindow: (page 139) and endModalSession: (page 146) messages.

typedef struct _NSModalSession *NSModalSession;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSOpenGLContextAuxiliary
A private data structure used by NSOpenGLContext.

4010 Data Types
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 241

Application Kit Data Types Reference

typedef struct _CGLContextObject NSOpenGLContextAuxiliary;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

NSOpenGLGlobalOption
These constants are option names for NSOpenGLSetOption (page 3989) and NSOpenGLGetOption (page
3989).

typedef enum {
 NSOpenGLGOFormatCacheSize = 501,
 NSOpenGLGOClearFormatCache = 502,
 NSOpenGLGORetainRenderers = 503,
 NSOpenGLGOResetLibrary = 504
} NSOpenGLGlobalOption;

Constants
NSOpenGLGOFormatCacheSize

Sets the size of the pixel format cache.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLGOClearFormatCache
Resets the pixel format cache if true.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLGORetainRenderers
Whether to retain loaded renderers in memory.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

NSOpenGLGOResetLibrary
Does a soft reset of the CGL library if true.

Available in Mac OS X v10.0 and later.

Declared in NSOpenGL.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

NSOpenGLPixelFormatAuxiliary
A private data structure used by NSOpenGLPixelFormat.

Data Types 4011
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 241

Application Kit Data Types Reference

typedef struct _CGLPixelFormatObject NSOpenGLPixelFormatAuxiliary;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSOpenGL.h

NSSavePanelAuxiliaryOpaque
A private data structure used internally by NSSavePanel.

typedef struct NSSavePanelAuxiliary NSSavePanelAuxiliaryOpaque;

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSSavePanel.h

NSScreenAuxiliaryOpaque
A private data structure used internally by NSScreen.

typedef struct NSScreenAuxiliary NSScreenAuxiliaryOpaque;

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSScreen.h

NSTabViewItemAuxiliaryOpaque
A private data structure used by NSTabViewItem.

typedef struct NSTabViewItemAuxiliary NSTabViewItemAuxiliaryOpaque;

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSTabViewItem.h

NSTypesetterGlyphInfo
This type is a caching structure used by NSSimpleHorizontalTypesetter.

4012 Data Types
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 241

Application Kit Data Types Reference

typedef struct _NSTypesetterGlyphInfo {
 NSPoint curLocation;
 float extent;
 float belowBaseline;
 float aboveBaseline;
 unsigned glyphCharacterIndex;
 NSFont *font;
 NSSize attachmentSize;
 struct {
 BOOL defaultPositioning:1;
 BOOL dontShow:1;
 BOOL isAttachment:1;
 } _giflags;
} NSTypesetterGlyphInfo;

Fields
curLocation

Location (relative to the baseline) for laying this glyph out.

extent
Required space from curLocation to lay this glyph out; –1.0 if not set.

belowBaseline
Distance from baseline to bottom of the line fragment required for all the glyphs so far, including this
one (positive if baseline is above the bottom of the line fragment).

aboveBaseline
Distance from baseline to top of the line fragment required for all the glyphs so far, including this
one (positive if baseline is below the top of the line fragment).

glyphCharacterIndex
Character index.

font
Font.

attachmentSize
Size of the character if it’s an attachment; otherwise meaningless.

defaultPositioning
This block needs to be “show”ed.

dontShow
Don’t show this glyph.

isAttachment
Whether the glyph is an attachment.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
NSSimpleHorizontalTypesetter.h

Data Types 4013
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 241

Application Kit Data Types Reference

4014 Data Types
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 241

Application Kit Data Types Reference

4015
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

PART V

Constants

4016
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

PART V

Constants

Framework: /System/Library/Frameworks/AppKit.framework

Declared in AppKit/AppKitDefines.h
AppKit/NSErrors.h
AppKit/AppKitErrors.h
AppKit/NSNibDeclarations.h
AppKit/NSGraphics.h

Overview

This document describes the constants defined in the Application Kit framework that are not defined in, or
are not described in, a document for an individual class.

See Application Kit Data Types Reference for descriptions of other constants defined in enumerations.

Constants

There are three types of constant in this document: global variables, errors, and exceptions.

Global Variables

Color Space Names
Color-space names designate predefined color spaces.

Overview 4017
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

NSString *NSCalibratedWhiteColorSpace;
NSString *NSCalibratedBlackColorSpace;
NSString *NSCalibratedRGBColorSpace;
NSString *NSDeviceWhiteColorSpace;
NSString *NSDeviceBlackColorSpace;
NSString *NSDeviceRGBColorSpace;
NSString *NSDeviceCMYKColorSpace;
NSString *NSNamedColorSpace;
NSString *NSPatternColorSpace;
NSString *NSCustomColorSpace;

Constants
NSCalibratedWhiteColorSpace

Calibrated color space with white and alpha components (pure white is 1.0)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCalibratedBlackColorSpace
Calibrated color space with black and alpha components (pure black is 1.0)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.6.

Declared in NSGraphics.h.

NSCalibratedRGBColorSpace
Calibrated color space with red, green, blue, and alpha components.

You can also create a color with HSB (hue, saturation, brightness) and alpha components and can
extract these components.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSDeviceWhiteColorSpace
Device-dependent color space with white and alpha components (pure white is 1.0)

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSDeviceBlackColorSpace
Device-dependent color space with black and alpha components (pure black is 1.0)

Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.6.

Declared in NSGraphics.h.

NSDeviceRGBColorSpace
Device-dependent color space with red, green, blue, and alpha components.

You can also create a color with HSB (hue, saturation, brightness) and alpha components and can
extract these components.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSDeviceCMYKColorSpace
Device-dependent color space with cyan, magenta, yellow, black, and alpha components

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

4018 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

NSNamedColorSpace
Catalog name and color name components

The components of this color space are indexes into lists or catalogs of prepared colors. The catalogs
of named colors come with lookup tables that are able to generate the correct color on a given device.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSPatternColorSpace
Pattern image (tiled)

Identifies a pattern color space, which is simply an image that is repeated over and over again in a
tiled pattern.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSCustomColorSpace
Custom NSColorSpace object and floating-point components describing a color in that space

A custom color-space object represents a color space that is not necessarily predefined by the
Application Kit. See “Working With Color Spaces” for information on creating custom color-space
objects.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

Discussion
You can use a color-space name in certain methods of NSColor that create or convert color objects. The
name identifies the color space to be used for the operation.

Declared In
NSGraphics.h

Grayscale Values
These constants are the standard gray values for the 2-bit deep grayscale color space.

const float NSWhite;
const float NSLightGray;
const float NSDarkGray;
const float NSBlack;

Constants
NSWhite

A constant that specifies the white shade in the 2-bit deep grayscale color space.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSLightGray
A constant that specifies the light gray shade in the 2-bit deep grayscale color space.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

Constants 4019
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

NSDarkGray
A constant that specifies the dark gray shade in the 2-bit deep grayscale color space.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSBlack
A constant that specifies the black shade in the 2-bit deep grayscale color space.

Available in Mac OS X v10.0 and later.

Declared in NSGraphics.h.

NSInterfaceStyleDefault
NSInterfaceStyleDefault can be used to override the platform’s default interface style.

NSString *NSInterfaceStyleDefault;

Constants
NSInterfaceStyleDefault

For more information, see the function NSInterfaceStyleForKey (page 3987).

Available in Mac OS X v10.0 and later.

Declared in NSInterfaceStyle.h.

Interface Builder Constants
Type qualifiers used by Interface Builder to synchronize with Xcode. For more information, see Communicating
With Objects in Cocoa Fundamentals Guide.

#define IBAction void
#define IBOutlet

Constants
IBAction

Type qualifier used by Interface Builder to synchronize actions added programmatically with its internal
list of action methods defined for a project.

Available in Mac OS X v10.0 and later.

Declared in NSNibDeclarations.h.

IBOutlet
Identifier used to qualify an instance-variable declaration so that Interface Builder can synchronize
the display and connection of outlets with Xcode.

Available in Mac OS X v10.0 and later.

Declared in NSNibDeclarations.h.

NSWindow—Sizes
Obsolete constant values. Do not use.

4020 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

NSSize NSIconSize;
NSSize NSTokenSize;

Constants
NSIconSize

Obsolete constant values. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in NSWindow.h.

NSTokenSize
Obsolete constant values. Do not use.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in NSWindow.h.

Errors

Attributed String Errors
These constants represent errors generated by NSAttributedString.

enum {
 NSTextReadInapplicableDocumentTypeError = 65806,
 NSTextWriteInapplicableDocumentTypeError = 66062,
 NSTextReadWriteErrorMinimum = 65792,
 NSTextReadWriteErrorMaximum = 66303
};

Constants
NSTextReadInapplicableDocumentTypeError

Indicates a problem reading data with the specified format.

Available in Mac OS X v10.4 and later.

Declared in AppKitErrors.h.

NSTextWriteInapplicableDocumentTypeError
Indicates a problem writing data of the specified format.

Available in Mac OS X v10.4 and later.

Declared in AppKitErrors.h.

NSTextReadWriteErrorMinimum
The beginning of a range of error codes reserved for future use.

Available in Mac OS X v10.4 and later.

Declared in AppKitErrors.h.

NSTextReadWriteErrorMaximum
The end of a range of error codes reserved for future use.

Available in Mac OS X v10.4 and later.

Declared in AppKitErrors.h.

Discussion
These constants are returned in an NSError object.

Constants 4021
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

Services Error Codes
These constants represent errors returned by application services.

enum {
 NSServiceApplicationNotFoundError = 66560,
 NSServiceApplicationLaunchFailedError = 66561,
 NSServiceRequestTimedOutError = 66562,
 NSServiceInvalidPasteboardDataError = 66563,
 NSServiceMalformedServiceDictionaryError = 66564,
 NSServiceMiscellaneousError = 66800,
 NSServiceErrorMinimum = 66560,
 NSServiceErrorMaximum = 66817
};

Constants
NSServiceApplicationNotFoundError

The service provider could not be found.

Available in Mac OS X v10.5 and later.

Declared in AppKitErrors.h.

NSServiceApplicationLaunchFailedError
The service providing application could not be launched. This will typically contain an underlying
error with an Launch Services error code.

Available in Mac OS X v10.5 and later.

Declared in AppKitErrors.h.

NSServiceRequestTimedOutError
The service providing application did not open its service listening port in time, or the app didn't
respond to the request in time; see the Console log to figure out which (the errors are typically reported
the same way to the user).

Available in Mac OS X v10.5 and later.

Declared in AppKitErrors.h.

NSServiceInvalidPasteboardDataError
The service providing app did not return a pasteboard with any of the promised types, or we couldn't
write the data from the pasteboard to the object receiving the returned data.

Available in Mac OS X v10.5 and later.

Declared in AppKitErrors.h.

NSServiceMalformedServiceDictionaryError
The service dictionary did not contain the necessary keys. Messages will typically be logged to the
console giving more details.

Available in Mac OS X v10.5 and later.

Declared in AppKitErrors.h.

NSServiceMiscellaneousError
Other errors, representing programmatic mistakes in the service consuming application. These show
a generic error message to the user.

Available in Mac OS X v10.5 and later.

Declared in AppKitErrors.h.

4022 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

NSServiceErrorMinimum
Inclusive service error range, for checking future error codes.

Available in Mac OS X v10.5 and later.

Declared in AppKitErrors.h.

NSServiceErrorMaximum
Inclusive service error range, for checking future error codes.

Available in Mac OS X v10.5 and later.

Declared in AppKitErrors.h.

Exceptions

Application Kit Exception Names
These constants name the exceptions that the Application Kit can raise.

Constants 4023
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

NSString *NSTextLineTooLongException;
NSString *NSTextNoSelectionException;
NSString *NSWordTablesWriteException;
NSString *NSWordTablesReadException;
NSString *NSTextReadException;
NSString *NSTextWriteException;
NSString *NSPasteboardCommunicationException;
NSString *NSPrintingCommunicationException;
NSString *NSAbortModalException;
NSString *NSAbortPrintingException;
NSString *NSIllegalSelectorException;
NSString *NSAppKitVirtualMemoryException;
NSString *NSBadRTFDirectiveException;
NSString *NSBadRTFFontTableException;
NSString *NSBadRTFStyleSheetException;
NSString *NSTypedStreamVersionException;
NSString *NSTIFFException;
NSString *NSPrintPackageException;
NSString *NSBadRTFColorTableException;
NSString *NSDraggingException;
NSString *NSColorListIOException;
NSString *NSColorListNotEditableException;
NSString *NSBadBitmapParametersException;
NSString *NSWindowServerCommunicationException;
NSString *NSFontUnavailableException;
NSString *NSPPDIncludeNotFoundException;
NSString *NSPPDParseException;
NSString *NSPPDIncludeStackOverflowException;
NSString *NSPPDIncludeStackUnderflowException;
NSString *NSRTFPropertyStackOverflowException;
NSString *NSAppKitIgnoredException;
NSString *NSBadComparisonException;
NSString *NSImageCacheException;
NSString *NSNibLoadingException;
NSString *NSBrowserIllegalDelegateException;
NSString *NSAccessibilityException;

Constants
NSTextLineTooLongException

Exception generated if a line is too long in a NSText object.

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSTextNoSelectionException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSWordTablesWriteException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSWordTablesReadException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

4024 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

NSTextReadException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSTextWriteException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSPasteboardCommunicationException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSPrintingCommunicationException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSAbortModalException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSAbortPrintingException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSIllegalSelectorException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSAppKitVirtualMemoryException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSBadRTFDirectiveException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSBadRTFFontTableException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSBadRTFStyleSheetException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSTypedStreamVersionException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSTIFFException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

Constants 4025
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

NSPrintPackageException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSBadRTFColorTableException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSDraggingException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSColorListIOException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSColorListNotEditableException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSBadBitmapParametersException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSWindowServerCommunicationException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSFontUnavailableException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSPPDIncludeNotFoundException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSPPDParseException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSPPDIncludeStackOverflowException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSPPDIncludeStackUnderflowException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSRTFPropertyStackOverflowException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

4026 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

NSAppKitIgnoredException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSBadComparisonException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSImageCacheException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSNibLoadingException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSBrowserIllegalDelegateException

Available in Mac OS X v10.0 and later.

Declared in NSErrors.h.

NSAccessibilityException

Available in Mac OS X v10.2 and later.

Declared in NSErrors.h.

Declared In
NSErrors.h

Constants 4027
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

4028 Constants
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

CHAPTER 242

Application Kit Constants Reference

This table describes the changes to Application Kit Framework Reference.

NotesDate

Added NSTextInputContext Class Reference and updated the class hierarchy
diagrams.

2009-08-28

Added new classes introduced in Mac OS X v10.6.2009-05-28

Added NSTextInputClient Protocol Reference.2008-11-19

Updated framework illustrations.2007-10-31

Added new classes introduced with Mac OS X v10.5.2007-05-10

First publication of this content as a collection of separate documents.2006-05-23

4029
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

4030
2009-08-28 | © 1997, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Application Kit Framework Reference
	Contents
	Figures, Tables, and Listings
	Introduction
	Application Kit Classes and Protocols
	Encapsulating an Application
	General Event Handling and Drawing
	Panels
	Menus and Cursors
	Grouping and Scrolling Views
	Controlling an Application
	Tables
	Text and Fonts
	Graphics and Color
	Dragging
	Printing
	Accessing the File System
	Sharing Data With Other Applications
	Checking Spelling
	Localization

	Part I: Classes
	CIColor Additions Reference
	Overview
	Tasks
	Creating a CIColor Instance

	Instance Methods
	initWithColor:

	CIImage Additions Reference
	Overview
	Tasks
	Initializing
	Drawing Images

	Instance Methods
	drawAtPoint:fromRect:operation:fraction:
	drawInRect:fromRect:operation:fraction:
	initWithBitmapImageRep:

	NSActionCell Class Reference
	Overview
	Tasks
	Configuring an NSActionCell Object
	Obtaining and Setting Cell Values
	Managing the Cell’s View
	Assigning the Target and Action
	Assigning a Tag

	Instance Methods
	action
	controlView
	doubleValue
	floatValue
	integerValue
	intValue
	setAction:
	setAlignment:
	setBezeled:
	setBordered:
	setControlView:
	setEnabled:
	setFloatingPointFormat:left:right:
	setFont:
	setImage:
	setObjectValue:
	setTag:
	setTarget:
	stringValue
	tag
	target

	NSAffineTransform Additions Reference
	Overview
	Tasks
	Setting and Building the Current Transformation Matrix
	Transforming Bezier Paths

	Instance Methods
	concat
	set
	transformBezierPath:

	NSAlert Class Reference
	Overview
	Instance Attributes
	Subclassing Notes

	Tasks
	Creating Alerts
	Configuring Alerts
	Displaying Alerts
	Accessing Alert Text
	Accessing Alert Icons
	Accessing Alert Buttons
	Getting Alert Panels

	Class Methods
	alertWithError:
	alertWithMessageText:defaultButton:alternateButton:otherButton: informativeTextWithFormat:

	Instance Methods
	accessoryView
	addButtonWithTitle:
	alertStyle
	beginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo:
	buttons
	delegate
	helpAnchor
	icon
	informativeText
	layout
	messageText
	runModal
	setAccessoryView:
	setAlertStyle:
	setDelegate:
	setHelpAnchor:
	setIcon:
	setInformativeText:
	setMessageText:
	setShowsHelp:
	setShowsSuppressionButton:
	showsHelp
	showsSuppressionButton
	suppressionButton
	window

	Constants
	NSAlertStyle
	Button Return Values

	NSAnimation Class Reference
	Overview
	Subclassing Notes

	Tasks
	Initializing an NSAnimation Object
	Configuring an Animation
	Managing the Delegate
	Controlling and Monitoring an Animation
	Managing Progress Marks
	Linking Animations Together

	Instance Methods
	addProgressMark:
	animationBlockingMode
	animationCurve
	clearStartAnimation
	clearStopAnimation
	currentProgress
	currentValue
	delegate
	duration
	frameRate
	initWithDuration:animationCurve:
	isAnimating
	progressMarks
	removeProgressMark:
	runLoopModesForAnimating
	setAnimationBlockingMode:
	setAnimationCurve:
	setCurrentProgress:
	setDelegate:
	setDuration:
	setFrameRate:
	setProgressMarks:
	startAnimation
	startWhenAnimation:reachesProgress:
	stopAnimation
	stopWhenAnimation:reachesProgress:

	Constants
	NSAnimationCurve
	NSAnimationBlockingMode
	NSAnimationProgress
	Animation action triggers
	NSAnimationProgressMark Notification Key

	Notifications
	NSAnimationProgressMarkNotification

	NSAnimationContext Class Reference
	Overview
	Tasks
	Grouping Transactions
	Getting the Current Animation Context
	Modifying the Animation Duration

	Class Methods
	beginGrouping
	currentContext
	endGrouping

	Instance Methods
	duration
	setDuration:

	NSAppleScript Additions Reference
	Overview
	Tasks
	Obtaining Source

	Instance Methods
	richTextSource

	NSApplication Class Reference
	Class at a Glance
	Overview
	The Delegate and Notifications
	System Services
	Subclassing Notes
	Methods to Override
	Special Considerations
	Alternatives to Subclassing

	Tasks
	Getting the Application
	Configuring Applications
	Launching Applications
	Terminating Applications
	Managing Active Status
	Hiding Applications
	Managing the Event Loop
	Handling Events
	Posting Events
	Managing Sheets
	Managing Windows
	Minimizing Windows
	User Interface Layout Direction
	Hiding Windows
	Updating Windows
	Managing Window Layers
	Accessing the Main Menu
	Managing the Window Menu
	Accessing the Dock Tile
	Managing the Services Menu
	Providing Services
	Managing Panels
	Displaying Help
	Managing Threads
	Posting Actions
	Drawing Windows
	Logging Exceptions
	Scripting
	Managing User Attention Requests
	Keyboard Accessibility
	Presentation Options
	Activation Policy
	Deprecated
	Spotlight for Help

	Class Methods
	detachDrawingThread:toTarget:withObject:
	sharedApplication

	Instance Methods
	abortModal
	activateContextHelpMode:
	activateIgnoringOtherApps:
	activationPolicy
	addWindowsItem:title:filename:
	applicationIconImage
	arrangeInFront:
	beginModalSessionForWindow:
	beginModalSessionForWindow:relativeToWindow:
	beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo:
	cancelUserAttentionRequest:
	changeWindowsItem:title:filename:
	context
	currentEvent
	currentSystemPresentationOptions
	deactivate
	delegate
	discardEventsMatchingMask:beforeEvent:
	dockTile
	endModalSession:
	endSheet:
	endSheet:returnCode:
	finishLaunching
	helpMenu
	hide:
	hideOtherApplications:
	isActive
	isFullKeyboardAccessEnabled
	isHidden
	isRunning
	keyWindow
	mainMenu
	mainWindow
	makeWindowsPerform:inOrder:
	miniaturizeAll:
	modalWindow
	nextEventMatchingMask:untilDate:inMode:dequeue:
	orderedDocuments
	orderedWindows
	orderFrontCharacterPalette:
	orderFrontColorPanel:
	orderFrontStandardAboutPanel:
	orderFrontStandardAboutPanelWithOptions:
	postEvent:atStart:
	presentationOptions
	preventWindowOrdering
	registerServicesMenuSendTypes:returnTypes:
	registerUserInterfaceItemSearchHandler:
	removeWindowsItem:
	replyToApplicationShouldTerminate:
	replyToOpenOrPrint:
	reportException:
	requestUserAttention:
	run
	runModalForWindow:
	runModalForWindow:relativeToWindow:
	runModalSession:
	runPageLayout:
	searchString:inUserInterfaceItemString:searchRange:foundRange:
	sendAction:to:from:
	sendEvent:
	servicesMenu
	servicesProvider
	setActivationPolicy:
	setApplicationIconImage:
	setDelegate:
	setHelpMenu:
	setMainMenu:
	setPresentationOptions:
	setServicesMenu:
	setServicesProvider:
	setWindowsMenu:
	setWindowsNeedUpdate:
	showHelp:
	stop:
	stopModal
	stopModalWithCode:
	targetForAction:
	targetForAction:to:from:
	terminate:
	tryToPerform:with:
	unhide:
	unhideAllApplications:
	unhideWithoutActivation
	unregisterUserInterfaceItemSearchHandler:
	updateWindows
	updateWindowsItem:
	userInterfaceLayoutDirection
	validRequestorForSendType:returnType:
	windows
	windowsMenu
	windowWithWindowNumber:

	Delegate Methods
	application:delegateHandlesKey:
	application:printFiles:

	Constants
	NSUserInterfaceLayoutDirection
	Return values for modal operations
	NSUpdateWindowsRunLoopOrdering
	NSApp
	NSRequestUserAttentionType
	NSApplicationDelegateReply
	NSApplicationPresentationOptions
	NSApplicationTerminateReply
	NSApplicationPrintReply
	Run loop modes
	NSAppKitVersionNumber
	Application Kit framework version numbers

	Notifications
	NSApplicationDidBecomeActiveNotification
	NSApplicationDidChangeScreenParametersNotification
	NSApplicationDidFinishLaunchingNotification
	NSApplicationDidHideNotification
	NSApplicationDidResignActiveNotification
	NSApplicationDidUnhideNotification
	NSApplicationDidUpdateNotification
	NSApplicationWillBecomeActiveNotification
	NSApplicationWillFinishLaunchingNotification
	NSApplicationWillHideNotification
	NSApplicationWillResignActiveNotification
	NSApplicationWillTerminateNotification
	NSApplicationWillUnhideNotification
	NSApplicationWillUpdateNotification

	NSArrayController Class Reference
	Overview
	Tasks
	Managing Sort Descriptors
	Arranging Objects
	Managing Content
	Selection Attributes
	Managing Selections
	Inserting
	Adding and Removing Objects
	Filtering Content
	Automatic Content Rearranging

	Instance Methods
	add:
	addObject:
	addObjects:
	addSelectedObjects:
	addSelectionIndexes:
	alwaysUsesMultipleValuesMarker
	arrangedObjects
	arrangeObjects:
	automaticallyPreparesContent
	automaticallyRearrangesObjects
	automaticRearrangementKeyPaths
	avoidsEmptySelection
	canInsert
	canSelectNext
	canSelectPrevious
	clearsFilterPredicateOnInsertion
	didChangeArrangementCriteria
	filterPredicate
	insert:
	insertObject:atArrangedObjectIndex:
	insertObjects:atArrangedObjectIndexes:
	preservesSelection
	rearrangeObjects
	remove:
	removeObject:
	removeObjectAtArrangedObjectIndex:
	removeObjects:
	removeObjectsAtArrangedObjectIndexes:
	removeSelectedObjects:
	removeSelectionIndexes:
	selectedObjects
	selectionIndex
	selectionIndexes
	selectNext:
	selectPrevious:
	selectsInsertedObjects
	setAlwaysUsesMultipleValuesMarker:
	setAutomaticallyPreparesContent:
	setAutomaticallyRearrangesObjects:
	setAvoidsEmptySelection:
	setClearsFilterPredicateOnInsertion:
	setFilterPredicate:
	setPreservesSelection:
	setSelectedObjects:
	setSelectionIndex:
	setSelectionIndexes:
	setSelectsInsertedObjects:
	setSortDescriptors:
	sortDescriptors

	NSATSTypesetter Class Reference
	Overview
	Subclassing Notes

	Tasks
	Getting a Typesetter
	Managing the Layout Manager
	Managing the Text Container
	Mapping Screen and Printer Fonts
	Managing Text Tabs
	Bidirectional Text Processing
	Accessing Paragraph Typesetting Information
	Paragraph Layout
	Line and Paragraph Spacing
	Glyph Caching
	Laying out Glyphs
	Interfacing with Glyph Storage

	Class Methods
	sharedTypesetter

	Instance Methods
	attributedString
	bidiProcessingEnabled
	boundingBoxForControlGlyphAtIndex:forTextContainer:proposedLineFragment: glyphPosition:characterIndex:
	characterRangeForGlyphRange:actualGlyphRange:
	currentTextContainer
	deleteGlyphsInRange:
	getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
	getLineFragmentRect:usedRect:forParagraphSeparatorGlyphRange:atProposedOrigin:
	glyphRangeForCharacterRange:actualCharacterRange:
	hyphenationFactor
	hyphenationFactorForGlyphAtIndex:
	hyphenCharacterForGlyphAtIndex:
	insertGlyph:atGlyphIndex:characterIndex:
	layoutManager
	layoutParagraphAtPoint:
	lineFragmentPadding
	lineFragmentRectForProposedRect:remainingRect:
	lineSpacingAfterGlyphAtIndex:withProposedLineFragmentRect:
	paragraphGlyphRange
	paragraphSeparatorGlyphRange
	paragraphSpacingAfterGlyphAtIndex:withProposedLineFragmentRect:
	paragraphSpacingBeforeGlyphAtIndex:withProposedLineFragmentRect:
	setAttachmentSize:forGlyphRange:
	setAttributedString:
	setBidiLevels:forGlyphRange:
	setBidiProcessingEnabled:
	setDrawsOutsideLineFragment:forGlyphRange:
	setHardInvalidation:forGlyphRange:
	setHyphenationFactor:
	setLineFragmentPadding:
	setLineFragmentRect:forGlyphRange:usedRect:baselineOffset:
	setLocation:withAdvancements:forStartOfGlyphRange:
	setNotShownAttribute:forGlyphRange:
	setParagraphGlyphRange:separatorGlyphRange:
	setTypesetterBehavior:
	setUsesFontLeading:
	shouldBreakLineByHyphenatingBeforeCharacterAtIndex:
	shouldBreakLineByWordBeforeCharacterAtIndex:
	substituteFontForFont:
	substituteGlyphsInRange:withGlyphs:
	textTabForGlyphLocation:writingDirection:maxLocation:
	typesetterBehavior
	usesFontLeading
	willSetLineFragmentRect:forGlyphRange:usedRect:baselineOffset:

	NSAttributedString Application Kit Additions Reference
	Overview
	Tasks
	Creating an NSAttributedString
	Retrieving Font Attribute Information
	Calculating Linguistic Units
	Calculating Ranges
	Generating Data
	Drawing the String
	Getting the Bounding Rectangle of Rendered Strings
	Testing String Data Sources
	Deprecated Methods

	Class Methods
	attributedStringWithAttachment:
	textFileTypes
	textPasteboardTypes
	textTypes
	textUnfilteredFileTypes
	textUnfilteredPasteboardTypes
	textUnfilteredTypes

	Instance Methods
	boundingRectWithSize:options:
	containsAttachments
	dataFromRange:documentAttributes:error:
	docFormatFromRange:documentAttributes:
	doubleClickAtIndex:
	drawAtPoint:
	drawInRect:
	drawWithRect:options:
	fileWrapperFromRange:documentAttributes:error:
	fontAttributesInRange:
	initWithData:options:documentAttributes:error:
	initWithDocFormat:documentAttributes:
	initWithHTML:baseURL:documentAttributes:
	initWithHTML:documentAttributes:
	initWithHTML:options:documentAttributes:
	initWithPath:documentAttributes:
	initWithRTF:documentAttributes:
	initWithRTFD:documentAttributes:
	initWithRTFDFileWrapper:documentAttributes:
	initWithURL:documentAttributes:
	initWithURL:options:documentAttributes:error:
	itemNumberInTextList:atIndex:
	lineBreakBeforeIndex:withinRange:
	lineBreakByHyphenatingBeforeIndex:withinRange:
	nextWordFromIndex:forward:
	rangeOfTextBlock:atIndex:
	rangeOfTextList:atIndex:
	rangeOfTextTable:atIndex:
	RTFDFileWrapperFromRange:documentAttributes:
	RTFDFromRange:documentAttributes:
	RTFFromRange:documentAttributes:
	rulerAttributesInRange:
	size
	URLAtIndex:effectiveRange:

	Constants
	Standard Attributes
	Underlining Styles
	Underlining Patterns
	Deprecated Underlining Styles
	Underline Masks
	Glyph Info Attribute
	Character Shape Attribute
	Document Types
	Document Attributes
	Attributes for generating HTML
	Option keys for importing documents
	NSSpellingStateAttributeName
	NSSpellingStateAttributeName Flags

	NSBezierPath Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSBezierPath Object
	Constructing Paths
	Appending Common Shapes to a Path
	Accessing Path Attributes
	Drawing Paths
	Clipping Paths
	Hit Detection
	Querying Paths
	Applying Transformations
	Accessing Elements of a Path
	Caching Paths

	Class Methods
	bezierPath
	bezierPathWithOvalInRect:
	bezierPathWithRect:
	bezierPathWithRoundedRect:xRadius:yRadius:
	clipRect:
	defaultFlatness
	defaultLineCapStyle
	defaultLineJoinStyle
	defaultLineWidth
	defaultMiterLimit
	defaultWindingRule
	drawPackedGlyphs:atPoint:
	fillRect:
	setDefaultFlatness:
	setDefaultLineCapStyle:
	setDefaultLineJoinStyle:
	setDefaultLineWidth:
	setDefaultMiterLimit:
	setDefaultWindingRule:
	strokeLineFromPoint:toPoint:
	strokeRect:

	Instance Methods
	addClip
	appendBezierPath:
	appendBezierPathWithArcFromPoint:toPoint:radius:
	appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:
	appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:clockwise:
	appendBezierPathWithGlyph:inFont:
	appendBezierPathWithGlyphs:count:inFont:
	appendBezierPathWithOvalInRect:
	appendBezierPathWithPackedGlyphs:
	appendBezierPathWithPoints:count:
	appendBezierPathWithRect:
	appendBezierPathWithRoundedRect:xRadius:yRadius:
	bezierPathByFlatteningPath
	bezierPathByReversingPath
	bounds
	cachesBezierPath
	closePath
	containsPoint:
	controlPointBounds
	currentPoint
	curveToPoint:controlPoint1:controlPoint2:
	elementAtIndex:
	elementAtIndex:associatedPoints:
	elementCount
	fill
	flatness
	getLineDash:count:phase:
	isEmpty
	lineCapStyle
	lineJoinStyle
	lineToPoint:
	lineWidth
	miterLimit
	moveToPoint:
	relativeCurveToPoint:controlPoint1:controlPoint2:
	relativeLineToPoint:
	relativeMoveToPoint:
	removeAllPoints
	setAssociatedPoints:atIndex:
	setCachesBezierPath:
	setClip
	setFlatness:
	setLineCapStyle:
	setLineDash:count:phase:
	setLineJoinStyle:
	setLineWidth:
	setMiterLimit:
	setWindingRule:
	stroke
	transformUsingAffineTransform:
	windingRule

	Constants
	NSBezierPathElement
	NSLineJoinStyle
	NSLineCapStyle
	NSWindingRule

	NSBitmapImageRep Class Reference
	Overview
	Alpha Premultiplication

	Tasks
	Creating an NSBitmapImageRep Object
	Getting Information About the Image
	Getting Image Data
	Producing Representations of the Image
	Managing Compression Types
	Loading Image Incrementally
	Managing Pixel Values
	Getting a Core Graphics Image
	Managing ColorSpaces

	Class Methods
	getTIFFCompressionTypes:count:
	imageRepsWithData:
	imageRepWithData:
	localizedNameForTIFFCompressionType:
	representationOfImageRepsInArray:usingType:properties:
	TIFFRepresentationOfImageRepsInArray:
	TIFFRepresentationOfImageRepsInArray:usingCompression:factor:

	Instance Methods
	bitmapData
	bitmapFormat
	bitmapImageRepByConvertingToColorSpace:renderingIntent:
	bitmapImageRepByRetaggingWithColorSpace:
	bitsPerPixel
	bytesPerPlane
	bytesPerRow
	canBeCompressedUsing:
	CGImage
	colorAtX:y:
	colorizeByMappingGray:toColor:blackMapping:whiteMapping:
	colorSpace
	getBitmapDataPlanes:
	getCompression:factor:
	getPixel:atX:y:
	incrementalLoadFromData:complete:
	initForIncrementalLoad
	initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel: hasAlpha:isPlanar:colorSpaceName:bitmapFormat:bytesPerRow:bitsPerPixel:
	initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel: hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPerPixel:
	initWithCGImage:
	initWithCIImage:
	initWithData:
	initWithFocusedViewRect:
	isPlanar
	numberOfPlanes
	representationUsingType:properties:
	samplesPerPixel
	setColor:atX:y:
	setCompression:factor:
	setPixel:atX:y:
	setProperty:withValue:
	TIFFRepresentation
	TIFFRepresentationUsingCompression:factor:
	valueForProperty:

	Constants
	NSImageRepLoadStatus
	Bitmap image properties
	NSBitmapImageFileType
	NSTIFFCompression
	NSBitmapFormat

	NSBox Class Reference
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations

	Tasks
	Configuring Boxes
	Customizing
	Managing Content
	Sizing

	Instance Methods
	borderColor
	borderRect
	borderType
	borderWidth
	boxType
	contentView
	contentViewMargins
	cornerRadius
	fillColor
	isTransparent
	setBorderColor:
	setBorderType:
	setBorderWidth:
	setBoxType:
	setContentView:
	setContentViewMargins:
	setCornerRadius:
	setFillColor:
	setFrameFromContentFrame:
	setTitle:
	setTitleFont:
	setTitlePosition:
	setTitleWithMnemonic:
	setTransparent:
	sizeToFit
	title
	titleCell
	titleFont
	titlePosition
	titleRect

	Constants
	NSTitlePosition
	NSBoxType

	NSBrowser Class Reference
	Overview
	Tasks
	Configuring Browsers
	Getting Browser Information
	Managing Component Types
	Managing Selection Behavior
	Managing Selection
	Accessing Components
	Managing the Path
	Managing Columns
	Accessing Column Titles
	Updating Browsers
	Scrolling
	Dragging
	Getting Column Frames
	Getting Row Frames
	Managing Actions
	Handling Mouse-Click Events
	Sizing

	Class Methods
	cellClass
	removeSavedColumnsWithAutosaveName:

	Instance Methods
	acceptsArrowKeys
	addColumn
	allowsBranchSelection
	allowsEmptySelection
	allowsMultipleSelection
	allowsTypeSelect
	autohidesScroller
	backgroundColor
	canDragRowsWithIndexes:inColumn:withEvent:
	cellPrototype
	clickedColumn
	clickedRow
	columnContentWidthForColumnWidth:
	columnOfMatrix:
	columnResizingType
	columnsAutosaveName
	columnWidthForColumnContentWidth:
	defaultColumnWidth
	delegate
	displayAllColumns
	displayColumn:
	doClick:
	doDoubleClick:
	doubleAction
	draggingImageForRowsWithIndexes:inColumn:withEvent:offset:
	draggingSourceOperationMaskForLocal:
	drawTitleOfColumn:inRect:
	editItemAtIndexPath:withEvent:select:
	firstVisibleColumn
	frameOfColumn:
	frameOfInsideOfColumn:
	frameOfRow:inColumn:
	getRow:column:forPoint:
	hasHorizontalScroller
	indexPathForColumn:
	isLeafItem:
	isLoaded
	isOpaque
	isTitled
	itemAtIndexPath:
	itemAtRow:inColumn:
	lastColumn
	lastVisibleColumn
	loadColumnZero
	loadedCellAtRow:column:
	matrixClass
	matrixInColumn:
	maxVisibleColumns
	minColumnWidth
	namesOfPromisedFilesDroppedAtDestination:
	noteHeightOfRowsWithIndexesChanged:inColumn:
	numberOfVisibleColumns
	parentForItemsInColumn:
	path
	pathSeparator
	pathToColumn:
	prefersAllColumnUserResizing
	reloadColumn:
	reloadDataForRowIndexes:inColumn:
	reusesColumns
	rowHeight
	scrollColumnsLeftBy:
	scrollColumnsRightBy:
	scrollColumnToVisible:
	scrollRowToVisible:inColumn:
	scrollViaScroller:
	selectAll:
	selectedCell
	selectedCellInColumn:
	selectedCells
	selectedColumn
	selectedRowInColumn:
	selectedRowIndexesInColumn:
	selectionIndexPath
	selectionIndexPaths
	selectRow:inColumn:
	selectRowIndexes:inColumn:
	sendAction
	sendsActionOnArrowKeys
	separatesColumns
	setAcceptsArrowKeys:
	setAllowsBranchSelection:
	setAllowsEmptySelection:
	setAllowsMultipleSelection:
	setAllowsTypeSelect:
	setAutohidesScroller:
	setBackgroundColor:
	setCellClass:
	setCellPrototype:
	setColumnResizingType:
	setColumnsAutosaveName:
	setDefaultColumnWidth:
	setDelegate:
	setDoubleAction:
	setDraggingSourceOperationMask:forLocal:
	setHasHorizontalScroller:
	setLastColumn:
	setMatrixClass:
	setMaxVisibleColumns:
	setMinColumnWidth:
	setPath:
	setPathSeparator:
	setPrefersAllColumnUserResizing:
	setReusesColumns:
	setRowHeight:
	setSelectionIndexPath:
	setSelectionIndexPaths:
	setSendsActionOnArrowKeys:
	setSeparatesColumns:
	setTakesTitleFromPreviousColumn:
	setTitle:ofColumn:
	setTitled:
	setWidth:ofColumn:
	takesTitleFromPreviousColumn
	tile
	titleFrameOfColumn:
	titleHeight
	titleOfColumn:
	updateScroller
	validateVisibleColumns
	widthOfColumn:

	Constants
	NSBrowserColumnResizingType
	NSBrowserDropOperation
	Application Kit Versions for NSBrowser Functionality

	Notifications
	NSBrowserColumnConfigurationDidChangeNotification

	NSBrowserCell Class Reference
	Overview
	Tasks
	Getting Browser Cell Information
	Configuring Browser Cells
	Managing Browser Cell State

	Class Methods
	branchImage
	highlightedBranchImage

	Instance Methods
	alternateImage
	highlightColorInView:
	image
	isLeaf
	isLoaded
	reset
	set
	setAlternateImage:
	setImage:
	setLeaf:
	setLoaded:

	NSBundle Additions Reference
	Overview
	Tasks
	Loading Nib Files
	Locating Image Resources
	Accessing Context Help
	Locating Sound Resources

	Class Methods
	loadNibFile:externalNameTable:withZone:
	loadNibNamed:owner:

	Instance Methods
	contextHelpForKey:
	loadNibFile:externalNameTable:withZone:
	pathForImageResource:
	pathForSoundResource:
	URLForImageResource:

	NSButton Class Reference
	Overview
	Tasks
	Configuring Buttons
	Configuring Button Images
	Managing Button State
	Accessing Key Equivalents
	Handling Keyboard Events

	Instance Methods
	allowsMixedState
	alternateImage
	alternateTitle
	attributedAlternateTitle
	attributedTitle
	bezelStyle
	getPeriodicDelay:interval:
	highlight:
	image
	imagePosition
	isBordered
	isTransparent
	keyEquivalent
	keyEquivalentModifierMask
	performKeyEquivalent:
	setAllowsMixedState:
	setAlternateImage:
	setAlternateTitle:
	setAttributedAlternateTitle:
	setAttributedTitle:
	setBezelStyle:
	setBordered:
	setButtonType:
	setImage:
	setImagePosition:
	setKeyEquivalent:
	setKeyEquivalentModifierMask:
	setNextState
	setPeriodicDelay:interval:
	setShowsBorderOnlyWhileMouseInside:
	setSound:
	setState:
	setTitle:
	setTitleWithMnemonic:
	setTransparent:
	showsBorderOnlyWhileMouseInside
	sound
	state
	title

	NSButtonCell Class Reference
	Overview
	Exceptions

	Tasks
	Setting Titles
	Managing Images
	Managing the Repeat Interval
	Managing the Key Equivalent
	Managing Graphics Attributes
	Displaying the Cell
	Managing the Sound
	Handling Events and Action Messages
	Drawing the Button Content

	Instance Methods
	alternateImage
	alternateMnemonic
	alternateMnemonicLocation
	alternateTitle
	attributedAlternateTitle
	attributedTitle
	backgroundColor
	bezelStyle
	drawBezelWithFrame:inView:
	drawImage:withFrame:inView:
	drawTitle:withFrame:inView:
	getPeriodicDelay:interval:
	gradientType
	highlightsBy
	imageDimsWhenDisabled
	imagePosition
	imageScaling
	isOpaque
	isTransparent
	keyEquivalent
	keyEquivalentFont
	keyEquivalentModifierMask
	mouseEntered:
	mouseExited:
	performClick:
	setAlternateImage:
	setAlternateMnemonicLocation:
	setAlternateTitle:
	setAlternateTitleWithMnemonic:
	setAttributedAlternateTitle:
	setAttributedTitle:
	setBackgroundColor:
	setBezelStyle:
	setButtonType:
	setFont:
	setGradientType:
	setHighlightsBy:
	setImageDimsWhenDisabled:
	setImagePosition:
	setImageScaling:
	setKeyEquivalent:
	setKeyEquivalentFont:
	setKeyEquivalentFont:size:
	setKeyEquivalentModifierMask:
	setPeriodicDelay:interval:
	setShowsBorderOnlyWhileMouseInside:
	setShowsStateBy:
	setSound:
	setTitle:
	setTitleWithMnemonic:
	setTransparent:
	showsBorderOnlyWhileMouseInside
	showsStateBy
	sound
	title

	Constants
	NSBezelStyle
	Bezel Styles
	NSButtonType
	Button Types
	NSGradientType
	Gradient Types

	NSCachedImageRep Class Reference
	Overview
	Tasks
	Initializing an NSCachedImageRep
	Getting the Representation

	Instance Methods
	initWithSize:depth:separate:alpha:
	initWithWindow:rect:
	rect
	window

	NSCell Class Reference
	Overview
	Designated Initializers

	Tasks
	Initializing a Cell
	Managing Cell Values
	Managing Cell Attributes
	Managing Display Attributes
	Managing Cell State
	Modifying Textual Attributes
	Managing the Target and Action
	Managing the Image
	Managing the Tag
	Formatting and Validating Data
	Managing Menus
	Comparing Cells
	Respond to Keyboard Events
	Deriving Values
	Representing an Object
	Tracking the Mouse
	Hit Testing
	Managing the Cursor
	Handling Keyboard Alternatives
	Managing Focus Rings
	Determining Cell Size
	Drawing and Highlighting
	Editing and Selecting Text
	Managing Expansion Frames
	User Interface Layout Direction

	Class Methods
	defaultFocusRingType
	defaultMenu
	prefersTrackingUntilMouseUp

	Instance Methods
	acceptsFirstResponder
	action
	alignment
	allowsEditingTextAttributes
	allowsMixedState
	allowsUndo
	attributedStringValue
	backgroundStyle
	baseWritingDirection
	calcDrawInfo:
	cellAttribute:
	cellSize
	cellSizeForBounds:
	compare:
	continueTracking:at:inView:
	controlSize
	controlTint
	controlView
	doubleValue
	drawingRectForBounds:
	drawInteriorWithFrame:inView:
	drawWithExpansionFrame:inView:
	drawWithFrame:inView:
	editWithFrame:inView:editor:delegate:event:
	endEditing:
	entryType
	expansionFrameWithFrame:inView:
	fieldEditorForView:
	floatValue
	focusRingType
	font
	formatter
	getPeriodicDelay:interval:
	hasValidObjectValue
	highlight:withFrame:inView:
	highlightColorWithFrame:inView:
	hitTestForEvent:inRect:ofView:
	image
	imageRectForBounds:
	importsGraphics
	initImageCell:
	initTextCell:
	integerValue
	interiorBackgroundStyle
	intValue
	isBezeled
	isBordered
	isContinuous
	isEditable
	isEnabled
	isEntryAcceptable:
	isHighlighted
	isOpaque
	isScrollable
	isSelectable
	keyEquivalent
	lineBreakMode
	menu
	menuForEvent:inRect:ofView:
	mnemonic
	mnemonicLocation
	mouseDownFlags
	nextState
	objectValue
	performClick:
	refusesFirstResponder
	representedObject
	resetCursorRect:inView:
	selectWithFrame:inView:editor:delegate:start:length:
	sendActionOn:
	sendsActionOnEndEditing
	setAction:
	setAlignment:
	setAllowsEditingTextAttributes:
	setAllowsMixedState:
	setAllowsUndo:
	setAttributedStringValue:
	setBackgroundStyle:
	setBaseWritingDirection:
	setBezeled:
	setBordered:
	setCellAttribute:to:
	setContinuous:
	setControlSize:
	setControlTint:
	setControlView:
	setDoubleValue:
	setEditable:
	setEnabled:
	setEntryType:
	setFloatingPointFormat:left:right:
	setFloatValue:
	setFocusRingType:
	setFont:
	setFormatter:
	setHighlighted:
	setImage:
	setImportsGraphics:
	setIntegerValue:
	setIntValue:
	setLineBreakMode:
	setMenu:
	setMnemonicLocation:
	setNextState
	setObjectValue:
	setRefusesFirstResponder:
	setRepresentedObject:
	setScrollable:
	setSelectable:
	setSendsActionOnEndEditing:
	setShowsFirstResponder:
	setState:
	setStringValue:
	setTag:
	setTarget:
	setTitle:
	setTitleWithMnemonic:
	setTruncatesLastVisibleLine:
	setType:
	setUpFieldEditorAttributes:
	setUserInterfaceLayoutDirection:
	setUsesSingleLineMode:
	setWraps:
	showsFirstResponder
	startTrackingAt:inView:
	state
	stopTracking:at:inView:mouseIsUp:
	stringValue
	tag
	takeDoubleValueFrom:
	takeFloatValueFrom:
	takeIntegerValueFrom:
	takeIntValueFrom:
	takeObjectValueFrom:
	takeStringValueFrom:
	target
	title
	titleRectForBounds:
	trackMouse:inRect:ofView:untilMouseUp:
	truncatesLastVisibleLine
	type
	userInterfaceLayoutDirection
	usesSingleLineMode
	wantsNotificationForMarkedText
	wraps

	Constants
	NSCellType
	NSCellAttribute
	NSCellImagePosition
	NSImageScaling
	NSCellStateValue
	State Masks
	NSControlTint
	NSControlSize
	Hit Testing
	NSBackgroundStyle
	Deprecated Scaling Constants
	Data Entry Types

	Notifications
	NSControlTintDidChangeNotification

	NSCIImageRep Class Reference
	Overview
	Tasks
	Initialization
	Returning an Image

	Class Methods
	imageRepWithCIImage:

	Instance Methods
	CIImage
	initWithCIImage:

	NSClipView Class Objective-C Reference
	Class at a Glance
	Overview
	Interaction With NSScrollView

	Tasks
	Setting the Document View
	Scrolling
	Determining Scrolling Efficiency
	Getting the Visible Portion
	Setting the Document Cursor
	Working with Background Color
	Overriding NSView Methods

	Instance Methods
	autoscroll:
	backgroundColor
	constrainScrollPoint:
	copiesOnScroll
	documentCursor
	documentRect
	documentView
	documentVisibleRect
	drawsBackground
	scrollToPoint:
	setBackgroundColor:
	setCopiesOnScroll:
	setDocumentCursor:
	setDocumentView:
	setDrawsBackground:
	viewBoundsChanged:
	viewFrameChanged:

	NSCoder Application Kit Additions Reference
	Overview
	Tasks
	Decoding NXColor Structures

	Instance Methods
	decodeNXColor

	NSCollectionView Class Reference
	Overview
	Tasks
	Modifying the Collection View Item
	Working with the Responder Chain
	Setting the Content
	Setting the Selection Mode
	Laying out the Collection View
	Modifying the Background
	Getting and Setting the Delegate
	Drag and Drop Support
	Getting a Collection Item and Its Frame

	Instance Methods
	allowsMultipleSelection
	backgroundColors
	content
	delegate
	draggingImageForItemsAtIndexes:withEvent:offset:
	frameForItemAtIndex:
	isFirstResponder
	isSelectable
	itemAtIndex:
	itemPrototype
	maxItemSize
	maxNumberOfColumns
	maxNumberOfRows
	minItemSize
	newItemForRepresentedObject:
	selectionIndexes
	setAllowsMultipleSelection:
	setBackgroundColors:
	setContent:
	setDelegate:
	setDraggingSourceOperationMask:forLocal:
	setItemPrototype:
	setMaxItemSize:
	setMaxNumberOfColumns:
	setMaxNumberOfRows:
	setMinItemSize:
	setSelectable:
	setSelectionIndexes:

	Constants
	NSCollectionViewDropOperation

	NSCollectionViewItem Class Reference
	Overview
	Tasks
	Setting the Represented Object
	Modifying the View
	Managing the Selection
	Parent Collection View

	Instance Methods
	collectionView
	isSelected
	representedObject
	setRepresentedObject:
	setSelected:
	setView:
	view

	NSColor Class Reference
	Class at a Glance
	Overview
	Adopted Protocols
	Tasks
	Creating an NSColor Object from Component Values
	Creating an NSColor with Preset Components
	Working with Pattern Images
	Creating a System Color—an NSColor Whose Value Is Specified by User Preferences
	Ignoring Alpha Components
	Copying and Pasting
	Retrieving a Set of Components
	Retrieving Individual Components
	Working with the Color Space
	Changing the Color
	Drawing

	Class Methods
	alternateSelectedControlColor
	alternateSelectedControlTextColor
	blackColor
	blueColor
	brownColor
	clearColor
	colorForControlTint:
	colorFromPasteboard:
	colorWithCalibratedHue:saturation:brightness:alpha:
	colorWithCalibratedRed:green:blue:alpha:
	colorWithCalibratedWhite:alpha:
	colorWithCatalogName:colorName:
	colorWithCIColor:
	colorWithColorSpace:components:count:
	colorWithDeviceCyan:magenta:yellow:black:alpha:
	colorWithDeviceHue:saturation:brightness:alpha:
	colorWithDeviceRed:green:blue:alpha:
	colorWithDeviceWhite:alpha:
	colorWithPatternImage:
	controlAlternatingRowBackgroundColors
	controlBackgroundColor
	controlColor
	controlDarkShadowColor
	controlHighlightColor
	controlLightHighlightColor
	controlShadowColor
	controlTextColor
	currentControlTint
	cyanColor
	darkGrayColor
	disabledControlTextColor
	grayColor
	greenColor
	gridColor
	headerColor
	headerTextColor
	highlightColor
	ignoresAlpha
	keyboardFocusIndicatorColor
	knobColor
	lightGrayColor
	magentaColor
	orangeColor
	purpleColor
	redColor
	scrollBarColor
	secondarySelectedControlColor
	selectedControlColor
	selectedControlTextColor
	selectedKnobColor
	selectedMenuItemColor
	selectedMenuItemTextColor
	selectedTextBackgroundColor
	selectedTextColor
	setIgnoresAlpha:
	shadowColor
	textBackgroundColor
	textColor
	whiteColor
	windowBackgroundColor
	windowFrameColor
	windowFrameTextColor
	yellowColor

	Instance Methods
	alphaComponent
	blackComponent
	blendedColorWithFraction:ofColor:
	blueComponent
	brightnessComponent
	catalogNameComponent
	colorNameComponent
	colorSpace
	colorSpaceName
	colorUsingColorSpace:
	colorUsingColorSpaceName:
	colorUsingColorSpaceName:device:
	colorWithAlphaComponent:
	cyanComponent
	drawSwatchInRect:
	getComponents:
	getCyan:magenta:yellow:black:alpha:
	getHue:saturation:brightness:alpha:
	getRed:green:blue:alpha:
	getWhite:alpha:
	greenComponent
	highlightWithLevel:
	hueComponent
	localizedCatalogNameComponent
	localizedColorNameComponent
	magentaComponent
	numberOfComponents
	patternImage
	redComponent
	saturationComponent
	set
	setFill
	setStroke
	shadowWithLevel:
	whiteComponent
	writeToPasteboard:
	yellowComponent

	Constants
	AppKit Versions for NSColor Bug Fixes

	Notifications
	NSSystemColorsDidChangeNotification

	NSColorList Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing an NSColorList Object
	Getting Color Lists
	Getting Color List Properties
	Managing Colors By Key
	Writing and Removing Color-List Files

	Class Methods
	availableColorLists
	colorListNamed:

	Instance Methods
	allKeys
	colorWithKey:
	initWithName:
	initWithName:fromFile:
	insertColor:key:atIndex:
	isEditable
	name
	removeColorWithKey:
	removeFile
	setColor:forKey:
	writeToFile:

	Notifications
	NSColorListDidChangeNotification

	NSColorPanel Class Reference
	Overview
	Tasks
	Obtaining the Shared Color-Panel Object
	Configuring the Color Panel
	Managing Color Lists
	Setting Color Picker Modes
	Setting Color
	Getting Color Information
	Responding to a Color Change

	Class Methods
	dragColor:withEvent:fromView:
	setPickerMask:
	setPickerMode:
	sharedColorPanel
	sharedColorPanelExists

	Instance Methods
	accessoryView
	alpha
	attachColorList:
	color
	detachColorList:
	isContinuous
	mode
	setAccessoryView:
	setAction:
	setColor:
	setContinuous:
	setMode:
	setShowsAlpha:
	setTarget:
	showsAlpha

	Delegate Methods
	changeColor:

	Constants
	Color Picker Mode Masks
	NSColorPanelMode
	Color Panel Modes

	Notifications
	NSColorPanelColorDidChangeNotification

	NSColorPicker Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing an NSColorPicker Object
	Getting the Color Panel
	Adding Button Images
	Setting the Mode
	Mananging Color Lists
	Responding to View Changes
	Customizing the Color Picker

	Instance Methods
	attachColorList:
	buttonToolTip
	colorPanel
	detachColorList:
	initWithPickerMask:colorPanel:
	insertNewButtonImage:in:
	minContentSize
	provideNewButtonImage
	setMode:
	viewSizeChanged:

	NSColorSpace Class Reference
	Overview
	Tasks
	Getting a Named NSColorSpace Object
	Getting the Color Spaces Available On the System
	Initializing a Custom NSColorSpace Object
	Accessing Color-Space Data and Attributes

	Class Methods
	adobeRGB1998ColorSpace
	availableColorSpacesWithModel:
	deviceCMYKColorSpace
	deviceGrayColorSpace
	deviceRGBColorSpace
	genericCMYKColorSpace
	genericGamma22GrayColorSpace
	genericGrayColorSpace
	genericRGBColorSpace
	sRGBColorSpace

	Instance Methods
	CGColorSpace
	colorSpaceModel
	colorSyncProfile
	ICCProfileData
	initWithCGColorSpace:
	initWithColorSyncProfile:
	initWithICCProfileData:
	localizedName
	numberOfColorComponents

	Constants
	NSColorSpaceModel
	Color Space Models

	NSColorWell Class Reference
	Overview
	Tasks
	Managing Color From Color Wells
	Activating and Deactivating Color Wells
	Managing Borders of Color Wells
	Drawing a Color Well

	Instance Methods
	activate:
	color
	deactivate
	drawWellInside:
	isActive
	isBordered
	setBordered:
	setColor:
	takeColorFrom:

	NSComboBox Class Reference
	Overview
	Tasks
	Setting Display Attributes
	Setting a Data Source
	Working with an Internal List
	Manipulating the Displayed List
	Manipulating the Selection
	Completing the Text Field
	New Methods

	Instance Methods
	addItemsWithObjectValues:
	addItemWithObjectValue:
	completes
	dataSource
	delegate
	deselectItemAtIndex:
	hasVerticalScroller
	indexOfItemWithObjectValue:
	indexOfSelectedItem
	insertItemWithObjectValue:atIndex:
	intercellSpacing
	isButtonBordered
	itemHeight
	itemObjectValueAtIndex:
	noteNumberOfItemsChanged
	numberOfItems
	numberOfVisibleItems
	objectValueOfSelectedItem
	objectValues
	reloadData
	removeAllItems
	removeItemAtIndex:
	removeItemWithObjectValue:
	scrollItemAtIndexToTop:
	scrollItemAtIndexToVisible:
	selectItemAtIndex:
	selectItemWithObjectValue:
	setButtonBordered:
	setCompletes:
	setDataSource:
	setDelegate:
	setHasVerticalScroller:
	setIntercellSpacing:
	setItemHeight:
	setNumberOfVisibleItems:
	setUsesDataSource:
	usesDataSource

	Notifications
	NSComboBoxSelectionDidChangeNotification
	NSComboBoxSelectionIsChangingNotification
	NSComboBoxWillDismissNotification
	NSComboBoxWillPopUpNotification

	NSComboBoxCell Class Reference
	Overview
	Tasks
	Setting Display Attributes
	Setting a Data Source
	Working with an Internal List
	Manipulating the Displayed List
	Manipulating the Selection
	Completing the Text Field

	Instance Methods
	addItemsWithObjectValues:
	addItemWithObjectValue:
	completedString:
	completes
	dataSource
	deselectItemAtIndex:
	hasVerticalScroller
	indexOfItemWithObjectValue:
	indexOfSelectedItem
	insertItemWithObjectValue:atIndex:
	intercellSpacing
	isButtonBordered
	itemHeight
	itemObjectValueAtIndex:
	noteNumberOfItemsChanged
	numberOfItems
	numberOfVisibleItems
	objectValueOfSelectedItem
	objectValues
	reloadData
	removeAllItems
	removeItemAtIndex:
	removeItemWithObjectValue:
	scrollItemAtIndexToTop:
	scrollItemAtIndexToVisible:
	selectItemAtIndex:
	selectItemWithObjectValue:
	setButtonBordered:
	setCompletes:
	setDataSource:
	setHasVerticalScroller:
	setIntercellSpacing:
	setItemHeight:
	setNumberOfVisibleItems:
	setUsesDataSource:
	usesDataSource

	NSControl Class Reference
	Overview
	About Delegate Methods

	Tasks
	Initializing an NSControl
	Setting the Control’s Cell
	Enabling and Disabling the Control
	Identifying the Selected Cell
	Setting the Control’s Value
	Interacting with Other Controls
	Formatting Text
	Managing the Field Editor
	Resizing the Control
	Displaying a Cell
	Implementing the Target/action Mechanism
	Getting and Setting Tags
	Activating from the Keyboard
	Tracking the Mouse
	Control Editing Notifications

	Class Methods
	cellClass
	setCellClass:

	Instance Methods
	abortEditing
	action
	alignment
	attributedStringValue
	baseWritingDirection
	calcSize
	cell
	currentEditor
	doubleValue
	drawCell:
	drawCellInside:
	floatValue
	font
	formatter
	ignoresMultiClick
	initWithFrame:
	integerValue
	intValue
	isContinuous
	isEnabled
	mouseDown:
	objectValue
	performClick:
	refusesFirstResponder
	selectCell:
	selectedCell
	selectedTag
	sendAction:to:
	sendActionOn:
	setAction:
	setAlignment:
	setAttributedStringValue:
	setBaseWritingDirection:
	setCell:
	setContinuous:
	setDoubleValue:
	setEnabled:
	setFloatingPointFormat:left:right:
	setFloatValue:
	setFont:
	setFormatter:
	setIgnoresMultiClick:
	setIntegerValue:
	setIntValue:
	setNeedsDisplay
	setObjectValue:
	setRefusesFirstResponder:
	setStringValue:
	setTag:
	setTarget:
	sizeToFit
	stringValue
	tag
	takeDoubleValueFrom:
	takeFloatValueFrom:
	takeIntegerValueFrom:
	takeIntValueFrom:
	takeObjectValueFrom:
	takeStringValueFrom:
	target
	updateCell:
	updateCellInside:
	validateEditing

	Delegate Methods
	controlTextDidBeginEditing:
	controlTextDidChange:
	controlTextDidEndEditing:

	Notifications
	NSControlTextDidBeginEditingNotification
	NSControlTextDidChangeNotification
	NSControlTextDidEndEditingNotification

	NSController Class Reference
	Overview
	Adopted Protocols
	Tasks
	Managing Editing

	Instance Methods
	commitEditing
	commitEditingWithDelegate:didCommitSelector:contextInfo:
	discardEditing
	isEditing
	objectDidBeginEditing:
	objectDidEndEditing:

	NSCursor Class Reference
	Overview
	Cursor Rectangles

	Tasks
	Initializing a New Cursor
	Setting Cursor Attributes
	Controlling Which Cursor Is Current
	Retrieving Cursor Instances

	Class Methods
	arrowCursor
	closedHandCursor
	contextualMenuCursor
	crosshairCursor
	currentCursor
	currentSystemCursor
	disappearingItemCursor
	dragCopyCursor
	dragLinkCursor
	hide
	IBeamCursor
	openHandCursor
	operationNotAllowedCursor
	pointingHandCursor
	pop
	resizeDownCursor
	resizeLeftCursor
	resizeLeftRightCursor
	resizeRightCursor
	resizeUpCursor
	resizeUpDownCursor
	setHiddenUntilMouseMoves:
	unhide

	Instance Methods
	hotSpot
	image
	initWithImage:foregroundColorHint:backgroundColorHint:hotSpot:
	initWithImage:hotSpot:
	isSetOnMouseEntered
	isSetOnMouseExited
	mouseEntered:
	mouseExited:
	pop
	push
	set
	setOnMouseEntered:
	setOnMouseExited:

	Constants
	AppKit Versions for NSCursor Bug Fixes

	NSCustomImageRep Class Reference
	Overview
	Tasks
	Initializing a New NSCustomImageRep
	Identifying the Object

	Instance Methods
	delegate
	drawSelector
	initWithDrawSelector:delegate:

	NSDatePicker Class Reference
	Overview
	Tasks
	Configuring Date Pickers
	Controlling Date Picker Range and Mode
	Accessing Object Values
	Constraining the Displayable/Selectable Range

	Instance Methods
	backgroundColor
	calendar
	datePickerElements
	datePickerMode
	datePickerStyle
	dateValue
	delegate
	drawsBackground
	isBezeled
	isBordered
	locale
	maxDate
	minDate
	setBackgroundColor:
	setBezeled:
	setBordered:
	setCalendar:
	setDatePickerElements:
	setDatePickerMode:
	setDatePickerStyle:
	setDateValue:
	setDelegate:
	setDrawsBackground:
	setLocale:
	setMaxDate:
	setMinDate:
	setTextColor:
	setTimeInterval:
	setTimeZone:
	textColor
	timeInterval
	timeZone

	NSDatePickerCell Class Reference
	Overview
	Tasks
	Configuring Appearance
	Range Mode
	Object Values
	Date Range Constraints
	Getting and Setting the Delegate

	Instance Methods
	backgroundColor
	calendar
	datePickerElements
	datePickerMode
	datePickerStyle
	dateValue
	delegate
	drawsBackground
	locale
	maxDate
	minDate
	setBackgroundColor:
	setCalendar:
	setDatePickerElements:
	setDatePickerMode:
	setDatePickerStyle:
	setDateValue:
	setDelegate:
	setDrawsBackground:
	setLocale:
	setMaxDate:
	setMinDate:
	setTextColor:
	setTimeInterval:
	setTimeZone:
	textColor
	timeInterval
	timeZone

	Constants
	NSDatePickerStyle
	Date Picker Style
	NSDatePickerMode
	Date Picker Mode
	NSDatePickerElementFlags
	Date Picker Elements

	NSDictionaryController Class Reference
	Overview
	Adopted Protocols
	Tasks
	Arranging Objects
	Creating New Entries
	Localizing Key Names
	Keys to Display
	Setting Initial Key and Values

	Instance Methods
	arrangedObjects
	excludedKeys
	includedKeys
	initialKey
	initialValue
	localizedKeyDictionary
	localizedKeyTable
	newObject
	setExcludedKeys:
	setIncludedKeys:
	setInitialKey:
	setInitialValue:
	setLocalizedKeyDictionary:
	setLocalizedKeyTable:

	Constants
	Exposed Bindings

	NSDockTile Class Reference
	Overview
	Application Dock Tiles
	Window Dock Tiles

	Tasks
	Drawing the Tile’s Content
	Getting the Tile Information
	Applying Badge Icons to the Tile
	Updating the Dock Tile

	Instance Methods
	badgeLabel
	contentView
	display
	owner
	setBadgeLabel:
	setContentView:
	setShowsApplicationBadge:
	showsApplicationBadge
	size

	Constants
	Dock Tile Plug-In Support Version

	NSDocument Class Reference
	Class at a Glance
	Overview
	Subclassing NSDocument
	Writing of HFS Creator and File Type Codes
	NSDocument Saving Behavior
	Multicore Considerations

	Tasks
	Initializing
	Loading Document Data
	Creating and Managing Window Controllers
	Managing Document Windows
	Reading From and Writing to Files
	Reading From and Writing to URLs
	Autosaving
	Managing Document Status
	Handling User Actions
	Closing Documents
	Reverting Documents
	Printing Documents
	Handling Errors
	Working with Undo Manager
	Managing File Types
	Validating User Interface Items
	Scripting
	Deprecated Methods

	Class Methods
	canConcurrentlyReadDocumentsOfType:
	isNativeType:
	readableTypes
	writableTypes

	Instance Methods
	addWindowController:
	autosavedContentsFileURL
	autosaveDocumentWithDelegate:didAutosaveSelector:contextInfo:
	autosavingFileType
	canCloseDocument
	canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo:
	close
	dataOfType:error:
	dataRepresentationOfType:
	displayName
	fileAttributesToWriteToFile:ofType:saveOperation:
	fileAttributesToWriteToURL:ofType:forSaveOperation:originalContentsURL:error:
	fileModificationDate
	fileName
	fileNameExtensionForType:saveOperation:
	fileNameExtensionWasHiddenInLastRunSavePanel
	fileNameFromRunningSavePanelForSaveOperation:
	fileType
	fileTypeFromLastRunSavePanel
	fileURL
	fileWrapperOfType:error:
	fileWrapperRepresentationOfType:
	handleCloseScriptCommand:
	handlePrintScriptCommand:
	handleSaveScriptCommand:
	hasUnautosavedChanges
	hasUndoManager
	init
	initForURL:withContentsOfURL:ofType:error:
	initWithContentsOfFile:ofType:
	initWithContentsOfURL:ofType:
	initWithContentsOfURL:ofType:error:
	initWithType:error:
	isDocumentEdited
	keepBackupFile
	lastComponentOfFileName
	loadDataRepresentation:ofType:
	loadFileWrapperRepresentation:ofType:
	makeWindowControllers
	objectSpecifier
	preparePageLayout:
	prepareSavePanel:
	presentError:
	presentError:modalForWindow:delegate:didPresentSelector:contextInfo:
	printDocument:
	printDocumentWithSettings:showPrintPanel:delegate:didPrintSelector:contextInfo:
	printInfo
	printOperationWithSettings:error:
	printShowingPrintPanel:
	readFromData:ofType:error:
	readFromFile:ofType:
	readFromFileWrapper:ofType:error:
	readFromURL:ofType:
	readFromURL:ofType:error:
	removeWindowController:
	revertDocumentToSaved:
	revertToContentsOfURL:ofType:error:
	revertToSavedFromFile:ofType:
	revertToSavedFromURL:ofType:
	runModalPageLayoutWithPrintInfo:
	runModalPageLayoutWithPrintInfo:delegate:didRunSelector:contextInfo:
	runModalPrintOperation:delegate:didRunSelector:contextInfo:
	runModalSavePanelForSaveOperation:delegate:didSaveSelector:contextInfo:
	runPageLayout:
	saveDocument:
	saveDocumentAs:
	saveDocumentTo:
	saveDocumentWithDelegate:didSaveSelector:contextInfo:
	saveToFile:saveOperation:delegate:didSaveSelector:contextInfo:
	saveToURL:ofType:forSaveOperation:delegate:didSaveSelector:contextInfo:
	saveToURL:ofType:forSaveOperation:error:
	setAutosavedContentsFileURL:
	setFileModificationDate:
	setFileName:
	setFileType:
	setFileURL:
	setHasUndoManager:
	setLastComponentOfFileName:
	setPrintInfo:
	setUndoManager:
	setWindow:
	shouldChangePrintInfo:
	shouldCloseWindowController:
	shouldCloseWindowController:delegate:shouldCloseSelector:contextInfo:
	shouldRunSavePanelWithAccessoryView
	showWindows
	undoManager
	updateChangeCount:
	validateMenuItem:
	validateUserInterfaceItem:
	willPresentError:
	windowControllerDidLoadNib:
	windowControllers
	windowControllerWillLoadNib:
	windowForSheet
	windowNibName
	writableTypesForSaveOperation:
	writeSafelyToURL:ofType:forSaveOperation:error:
	writeToFile:ofType:
	writeToFile:ofType:originalFile:saveOperation:
	writeToURL:ofType:
	writeToURL:ofType:error:
	writeToURL:ofType:forSaveOperation:originalContentsURL:error:
	writeWithBackupToFile:ofType:saveOperation:

	Constants
	NSSaveOperationType
	NSDocumentChangeType

	NSDocumentController Class Reference
	Overview
	Adopted Protocols
	Tasks
	Obtaining the Shared Document Controller
	Initializing a New NSDocumentController
	Creating and Opening Documents
	Managing Documents
	Managing Document Types
	Autosaving
	Closing Documents
	Responding to Action Messages
	Managing the Open Panel
	Managing the Open Recent Menu
	Validating User Interface Items
	Handling Errors
	Deprecated Methods

	Class Methods
	sharedDocumentController

	Instance Methods
	addDocument:
	autosavingDelay
	clearRecentDocuments:
	closeAllDocumentsWithDelegate:didCloseAllSelector:contextInfo:
	currentDirectory
	currentDocument
	defaultType
	displayNameForType:
	documentClassForType:
	documentClassNames
	documentForFileName:
	documentForURL:
	documentForWindow:
	documents
	fileExtensionsFromType:
	fileNamesFromRunningOpenPanel
	hasEditedDocuments
	init
	makeDocumentForURL:withContentsOfURL:ofType:error:
	makeDocumentWithContentsOfFile:ofType:
	makeDocumentWithContentsOfURL:ofType:
	makeDocumentWithContentsOfURL:ofType:error:
	makeUntitledDocumentOfType:
	makeUntitledDocumentOfType:error:
	maximumRecentDocumentCount
	newDocument:
	noteNewRecentDocument:
	noteNewRecentDocumentURL:
	openDocument:
	openDocumentWithContentsOfFile:display:
	openDocumentWithContentsOfURL:display:
	openDocumentWithContentsOfURL:display:error:
	openUntitledDocumentAndDisplay:error:
	openUntitledDocumentOfType:display:
	presentError:
	presentError:modalForWindow:delegate:didPresentSelector:contextInfo:
	recentDocumentURLs
	removeDocument:
	reopenDocumentForURL:withContentsOfURL:error:
	reviewUnsavedDocumentsWithAlertTitle:cancellable:delegate:didReviewAllSelector: contextInfo:
	runModalOpenPanel:forTypes:
	saveAllDocuments:
	setAutosavingDelay:
	setShouldCreateUI:
	shouldCreateUI
	typeForContentsOfURL:error:
	typeFromFileExtension:
	URLsFromRunningOpenPanel
	validateUserInterfaceItem:
	willPresentError:

	NSDrawer Class Reference
	Overview
	Tasks
	Creating Drawers
	Opening and Closing Drawers
	Managing Drawer Size
	Managing Drawer Edges
	Managing Drawer Views

	Instance Methods
	close
	close:
	contentSize
	contentView
	delegate
	edge
	initWithContentSize:preferredEdge:
	leadingOffset
	maxContentSize
	minContentSize
	open
	open:
	openOnEdge:
	parentWindow
	preferredEdge
	setContentSize:
	setContentView:
	setDelegate:
	setLeadingOffset:
	setMaxContentSize:
	setMinContentSize:
	setParentWindow:
	setPreferredEdge:
	setTrailingOffset:
	state
	toggle:
	trailingOffset

	Constants
	NSDrawerState

	Notifications
	NSDrawerDidCloseNotification
	NSDrawerDidOpenNotification
	NSDrawerWillCloseNotification
	NSDrawerWillOpenNotification

	NSEPSImageRep Class Reference
	Overview
	Tasks
	Creating an NSEPSImageRep
	Getting Image Data
	Drawing the Image

	Class Methods
	imageRepWithData:

	Instance Methods
	boundingBox
	EPSRepresentation
	initWithData:
	prepareGState

	NSEvent Class Reference
	Overview
	Tasks
	Creating Events
	Getting General Event Information
	Getting Key Event Information
	Getting Mouse Event Information
	Getting Mouse-Tracking Event Information
	Getting Custom Event Information
	Getting Scroll Wheel Event Information
	Getting Tablet Proximity Information
	Getting Tablet Pointing Information
	Requesting and Stopping Periodic Events
	Getting Touch and Gesture Information
	Monitoring Application Events

	Class Methods
	addGlobalMonitorForEventsMatchingMask:handler:
	addLocalMonitorForEventsMatchingMask:handler:
	doubleClickInterval
	enterExitEventWithType:location:modifierFlags:timestamp:windowNumber:context: eventNumber:trackingNumber:userData:
	eventWithCGEvent:
	eventWithEventRef:
	isMouseCoalescingEnabled
	keyEventWithType:location:modifierFlags:timestamp:windowNumber:context: characters:charactersIgnoringModifiers:isARepeat:keyCode:
	keyRepeatDelay
	keyRepeatInterval
	modifierFlags
	mouseEventWithType:location:modifierFlags:timestamp:windowNumber:context: eventNumber:clickCount:pressure:
	mouseLocation
	otherEventWithType:location:modifierFlags:timestamp:windowNumber:context: subtype:data1:data2:
	pressedMouseButtons
	removeMonitor:
	setMouseCoalescingEnabled:
	startPeriodicEventsAfterDelay:withPeriod:
	stopPeriodicEvents

	Instance Methods
	absoluteX
	absoluteY
	absoluteZ
	buttonMask
	buttonNumber
	capabilityMask
	CGEvent
	characters
	charactersIgnoringModifiers
	clickCount
	context
	data1
	data2
	deltaX
	deltaY
	deltaZ
	deviceID
	eventNumber
	eventRef
	isARepeat
	isEnteringProximity
	keyCode
	locationInWindow
	magnification
	modifierFlags
	pointingDeviceID
	pointingDeviceSerialNumber
	pointingDeviceType
	pressure
	rotation
	subtype
	systemTabletID
	tabletID
	tangentialPressure
	tilt
	timestamp
	touchesMatchingPhase:inView:
	trackingArea
	trackingNumber
	type
	uniqueID
	userData
	vendorDefined
	vendorID
	vendorPointingDeviceType
	window
	windowNumber

	Constants
	Touch Phases
	Event Types
	Masks for event types
	Modifier Flags
	NSPointingDeviceType
	Mouse-event subtypes
	Tablet event masks
	Types Defined by the Application Kit
	Power-off event
	Function-Key Unicodes

	NSFileWrapper Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating File Wrappers
	Querying File Wrappers
	Accessing File-Wrapper Information
	Updating File Wrappers
	Serializing
	Accessing Files
	Writing Files

	Instance Methods
	addFileWithPath:
	addFileWrapper:
	addRegularFileWithContents:preferredFilename:
	addSymbolicLinkWithDestination:preferredFilename:
	fileAttributes
	filename
	fileWrappers
	initDirectoryWithFileWrappers:
	initRegularFileWithContents:
	initSymbolicLinkWithDestination:
	initSymbolicLinkWithDestinationURL:
	initWithPath:
	initWithSerializedRepresentation:
	initWithURL:options:error:
	isDirectory
	isRegularFile
	isSymbolicLink
	keyForFileWrapper:
	matchesContentsOfURL:
	needsToBeUpdatedFromPath:
	preferredFilename
	readFromURL:options:error:
	regularFileContents
	removeFileWrapper:
	serializedRepresentation
	setFileAttributes:
	setFilename:
	setPreferredFilename:
	symbolicLinkDestination
	symbolicLinkDestinationURL
	updateFromPath:
	writeToFile:atomically:updateFilenames:
	writeToURL:options:originalContentsURL:error:

	Constants
	File Wrapper Reading Options
	File Wrapper Writing Options

	NSFont Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Arbitrary Fonts
	Creating User Fonts
	Creating System Fonts
	Using a Font to Draw
	Getting General Font Information
	Getting Information About Glyphs
	Getting Metrics Information
	Getting Font Names
	Setting User Fonts
	Getting Corresponding Device Fonts
	Deprecated Methods

	Class Methods
	boldSystemFontOfSize:
	controlContentFontOfSize:
	fontWithDescriptor:size:
	fontWithDescriptor:textTransform:
	fontWithName:matrix:
	fontWithName:size:
	labelFontOfSize:
	labelFontSize
	menuBarFontOfSize:
	menuFontOfSize:
	messageFontOfSize:
	paletteFontOfSize:
	preferredFontNames
	setPreferredFontNames:
	setUserFixedPitchFont:
	setUserFont:
	smallSystemFontSize
	systemFontOfSize:
	systemFontSize
	systemFontSizeForControlSize:
	titleBarFontOfSize:
	toolTipsFontOfSize:
	useFont:
	userFixedPitchFontOfSize:
	userFontOfSize:

	Instance Methods
	advancementForGlyph:
	afmDictionary
	ascender
	boundingRectForFont
	boundingRectForGlyph:
	capHeight
	coveredCharacterSet
	defaultLineHeightForFont
	descender
	displayName
	encodingScheme
	familyName
	fontDescriptor
	fontName
	getAdvancements:forGlyphs:count:
	getAdvancements:forPackedGlyphs:length:
	getBoundingRects:forGlyphs:count:
	glyphIsEncoded:
	glyphPacking
	glyphWithName:
	isBaseFont
	isFixedPitch
	italicAngle
	leading
	matrix
	maximumAdvancement
	mostCompatibleStringEncoding
	numberOfGlyphs
	pointSize
	positionOfGlyph:forCharacter:struckOverRect:
	positionOfGlyph:precededByGlyph:isNominal:
	positionOfGlyph:struckOverGlyph:metricsExist:
	positionOfGlyph:struckOverRect:metricsExist:
	positionOfGlyph:withRelation:toBaseGlyph:totalAdvancement:metricsExist:
	positionsForCompositeSequence:numberOfGlyphs:pointArray:
	printerFont
	renderingMode
	screenFont
	screenFontWithRenderingMode:
	set
	setInContext:
	textTransform
	underlinePosition
	underlineThickness
	widthOfString:
	xHeight

	Constants
	NSFontRenderingMode
	PostScript Transformation Matrix
	NSMultibyteGlyphPacking
	Reserved Glyph Codes
	Keys to the AFM Dictionary
	NSGlyph
	NSGlyphRelation
	NSMultibyteGlyphPacking

	Notifications
	NSAntialiasThresholdChangedNotification
	NSFontSetChangedNotification

	NSFontDescriptor Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Font Descriptor
	Initializing a Font Descriptor
	Finding Fonts
	Querying a Font Descriptor

	Class Methods
	fontDescriptorWithFontAttributes:
	fontDescriptorWithName:matrix:
	fontDescriptorWithName:size:

	Instance Methods
	fontAttributes
	fontDescriptorByAddingAttributes:
	fontDescriptorWithFace:
	fontDescriptorWithFamily:
	fontDescriptorWithMatrix:
	fontDescriptorWithSize:
	fontDescriptorWithSymbolicTraits:
	initWithFontAttributes:
	matchingFontDescriptorsWithMandatoryKeys:
	matchingFontDescriptorWithMandatoryKeys:
	matrix
	objectForKey:
	pointSize
	postscriptName
	symbolicTraits

	Constants
	Font Attributes
	Font Traits Dictionary Keys
	Font Variation Axis Dictionary Keys
	Font Feature Keys
	NSFontSymbolicTraits
	NSFontFamilyClass
	NSFontFamilyClassMask
	Typeface Information

	NSFontManager Class Reference
	Overview
	Tasks
	Getting the Shared Font Manager
	Changing the Default Font Conversion Classes
	Getting Available Fonts
	Setting and Examining the Selected Font
	Sending Action Methods
	Converting Fonts Automatically
	Converting Fonts Manually
	Getting a Particular Font
	Examining Fonts
	Managing the Font Panel and Font Menu
	Setting the Delegate
	Accessing the Action Method
	Setting Attributes
	Working with Font Descriptors

	Class Methods
	setFontManagerFactory:
	setFontPanelFactory:
	sharedFontManager

	Instance Methods
	action
	addCollection:options:
	addFontDescriptors:toCollection:
	addFontTrait:
	availableFontFamilies
	availableFontNamesMatchingFontDescriptor:
	availableFontNamesWithTraits:
	availableFonts
	availableMembersOfFontFamily:
	collectionNames
	convertAttributes:
	convertFont:
	convertFont:toFace:
	convertFont:toFamily:
	convertFont:toHaveTrait:
	convertFont:toNotHaveTrait:
	convertFont:toSize:
	convertFontTraits:
	convertWeight:ofFont:
	currentFontAction
	delegate
	fontDescriptorsInCollection:
	fontMenu:
	fontNamed:hasTraits:
	fontPanel:
	fontWithFamily:traits:weight:size:
	isEnabled
	isMultiple
	localizedNameForFamily:face:
	modifyFont:
	modifyFontViaPanel:
	orderFrontFontPanel:
	orderFrontStylesPanel:
	removeCollection:
	removeFontDescriptor:fromCollection:
	removeFontTrait:
	selectedFont
	sendAction
	setAction:
	setDelegate:
	setEnabled:
	setFontMenu:
	setSelectedAttributes:isMultiple:
	setSelectedFont:isMultiple:
	setTarget:
	target
	traitsOfFont:
	weightOfFont:

	Delegate Methods
	changeFont:
	fontManager:willIncludeFont:

	Constants
	Font Collection Mask
	NSFontTraitMask
	Font traits
	NSFontAction

	NSFontPanel Class Reference
	Overview
	Tasks
	Getting the Font Panel
	Enabling Font Changes
	Updating the Font Panel
	Converting Fonts
	Working in Modal Loops
	Setting an Accessory View

	Class Methods
	sharedFontPanel
	sharedFontPanelExists

	Instance Methods
	accessoryView
	isEnabled
	panelConvertFont:
	reloadDefaultFontFamilies
	setAccessoryView:
	setEnabled:
	setPanelFont:isMultiple:
	worksWhenModal

	Constants
	Tags of Views in the FontPanel

	NSForm Class Reference
	Overview
	Tasks
	Adding and Removing Entries
	Changing the Appearance of All the Entries
	Getting Cells and Indices
	Displaying a Cell
	Editing Text

	Instance Methods
	addEntry:
	cellAtIndex:
	drawCellAtIndex:
	indexOfCellWithTag:
	indexOfSelectedItem
	insertEntry:atIndex:
	removeEntryAtIndex:
	selectTextAtIndex:
	setBezeled:
	setBordered:
	setEntryWidth:
	setFrameSize:
	setInterlineSpacing:
	setTextAlignment:
	setTextBaseWritingDirection:
	setTextFont:
	setTitleAlignment:
	setTitleBaseWritingDirection:
	setTitleFont:

	NSFormCell Class Reference
	Overview
	Tasks
	Initializing an NSFormCell
	Asking About a Cell’s Appearance
	Asking About a Cell’s Title
	Changing the Cell’s Title
	Setting a Keyboard Equivalent
	Asking About Placeholder Values

	Instance Methods
	attributedTitle
	initTextCell:
	isOpaque
	placeholderAttributedString
	placeholderString
	setAttributedTitle:
	setPlaceholderAttributedString:
	setPlaceholderString:
	setTitle:
	setTitleAlignment:
	setTitleBaseWritingDirection:
	setTitleFont:
	setTitleWidth:
	setTitleWithMnemonic:
	title
	titleAlignment
	titleBaseWritingDirection
	titleFont
	titleWidth
	titleWidth:

	NSGlyphGenerator Class Reference
	Overview
	Tasks
	Obtaining a Glyph Generator
	Generating Glyphs

	Class Methods
	sharedGlyphGenerator

	Instance Methods
	generateGlyphsForGlyphStorage:desiredNumberOfCharacters:glyphIndex: characterIndex:

	NSGlyphInfo Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSGlyphInfo Object
	Getting Information About an NSGlyphInfo Object

	Class Methods
	glyphInfoWithCharacterIdentifier:collection:baseString:
	glyphInfoWithGlyph:forFont:baseString:
	glyphInfoWithGlyphName:forFont:baseString:

	Instance Methods
	characterCollection
	characterIdentifier
	glyphName

	Constants
	NSCharacterCollection

	NSGradient Class Reference
	Overview
	Tasks
	Initialization
	Primitive Drawing Methods
	Drawing Linear Gradients
	Drawing Radial Gradients
	Getting Gradient Properties

	Instance Methods
	colorSpace
	drawFromCenter:radius:toCenter:radius:options:
	drawFromPoint:toPoint:options:
	drawInBezierPath:angle:
	drawInBezierPath:relativeCenterPosition:
	drawInRect:angle:
	drawInRect:relativeCenterPosition:
	getColor:location:atIndex:
	initWithColors:
	initWithColors:atLocations:colorSpace:
	initWithColorsAndLocations:
	initWithStartingColor:endingColor:
	interpolatedColorAtLocation:
	numberOfColorStops

	Constants
	NSGradientDrawingOptions
	Gradient Drawing Options

	NSGraphicsContext Class Reference
	Overview
	Tasks
	Creating a Graphics Context
	Managing the Current Context
	Managing the Graphics State
	Testing the Drawing Destination
	Getting Information About a Context
	Flushing Graphics to the Context
	Managing the Focus Stack
	Configuring Rendering Options
	Getting the Core Image Context
	Managing the Color Rendering Intent

	Class Methods
	currentContext
	currentContextDrawingToScreen
	graphicsContextWithAttributes:
	graphicsContextWithBitmapImageRep:
	graphicsContextWithGraphicsPort:flipped:
	graphicsContextWithWindow:
	restoreGraphicsState
	saveGraphicsState
	setCurrentContext:
	setGraphicsState:

	Instance Methods
	attributes
	CIContext
	colorRenderingIntent
	compositingOperation
	flushGraphics
	focusStack
	graphicsPort
	imageInterpolation
	isDrawingToScreen
	isFlipped
	patternPhase
	restoreGraphicsState
	saveGraphicsState
	setColorRenderingIntent:
	setCompositingOperation:
	setFocusStack:
	setImageInterpolation:
	setPatternPhase:
	setShouldAntialias:
	shouldAntialias

	Constants
	Attribute dictionary keys
	Representation format attribute keys
	NSImageInterpolation
	NSColorRenderingIntent

	NSHelpManager Class Reference
	Overview
	Tasks
	Getting the Help Manager
	Displaying Help
	Dynamically Adding Help Books
	Configuring Context-Sensitive Help
	Displaying Context-Sensitive Help

	Class Methods
	isContextHelpModeActive
	setContextHelpModeActive:
	sharedHelpManager

	Instance Methods
	contextHelpForObject:
	findString:inBook:
	openHelpAnchor:inBook:
	registerBooksInBundle:
	removeContextHelpForObject:
	setContextHelp:forObject:
	showContextHelpForObject:locationHint:

	Notifications
	NSContextHelpModeDidActivateNotification
	NSContextHelpModeDidDeactivateNotification

	NSImage Class Reference
	Overview
	Tasks
	Initializing a New NSImage Object
	Setting the Image Attributes
	Referring to Images by Name
	Determining the Supported Image Types
	Working With Image Representations
	Hit Testing an Image
	Setting the Image Representation Selection Criteria
	Managing the Focus
	Drawing the Image
	Working With Alignment Metadata
	Setting the Image Storage Options
	Setting the Image Drawing Options
	Assigning a Delegate
	Producing TIFF Data for the Image
	Producing a CGImage from an Image
	Managing Incremental Loads
	Image Accessibility

	Class Methods
	canInitWithPasteboard:
	imageFileTypes
	imageNamed:
	imagePasteboardTypes
	imageTypes
	imageUnfilteredFileTypes
	imageUnfilteredPasteboardTypes
	imageUnfilteredTypes

	Instance Methods
	accessibilityDescription
	addRepresentation:
	addRepresentations:
	alignmentRect
	backgroundColor
	bestRepresentationForDevice:
	bestRepresentationForRect:context:hints:
	cacheDepthMatchesImageDepth
	cacheMode
	cancelIncrementalLoad
	CGImageForProposedRect:context:hints:
	compositeToPoint:fromRect:operation:
	compositeToPoint:fromRect:operation:fraction:
	compositeToPoint:operation:
	compositeToPoint:operation:fraction:
	delegate
	dissolveToPoint:fraction:
	dissolveToPoint:fromRect:fraction:
	drawAtPoint:fromRect:operation:fraction:
	drawInRect:fromRect:operation:fraction:
	drawInRect:fromRect:operation:fraction:respectFlipped:hints:
	drawRepresentation:inRect:
	hitTestRect:withImageDestinationRect:context:hints:flipped:
	initByReferencingFile:
	initByReferencingURL:
	initWithCGImage:size:
	initWithContentsOfFile:
	initWithContentsOfURL:
	initWithData:
	initWithDataIgnoringOrientation:
	initWithIconRef:
	initWithPasteboard:
	initWithSize:
	isCachedSeparately
	isDataRetained
	isFlipped
	isTemplate
	isValid
	lockFocus
	lockFocusFlipped:
	lockFocusOnRepresentation:
	matchesOnMultipleResolution
	name
	prefersColorMatch
	recache
	removeRepresentation:
	representations
	scalesWhenResized
	setAccessibilityDescription:
	setAlignmentRect:
	setBackgroundColor:
	setCacheDepthMatchesImageDepth:
	setCachedSeparately:
	setCacheMode:
	setDataRetained:
	setDelegate:
	setFlipped:
	setMatchesOnMultipleResolution:
	setName:
	setPrefersColorMatch:
	setScalesWhenResized:
	setSize:
	setTemplate:
	setUsesEPSOnResolutionMismatch:
	size
	TIFFRepresentation
	TIFFRepresentationUsingCompression:factor:
	unlockFocus
	usesEPSOnResolutionMismatch

	Constants
	Image Hint Dictionary Keys
	NSCompositingOperation
	NSImageLoadStatus
	NSImageCacheMode
	Image Template Constants
	Multiple Documents Drag Image
	Sharing Permissions Named Images
	System Entity Images
	Toolbar Named Images
	View Type Template Images

	NSImageCell Class Reference
	Overview
	Designated Initializers

	Tasks
	Aligning and Scaling the Image
	Choosing the Frame

	Instance Methods
	imageAlignment
	imageFrameStyle
	imageScaling
	setImageAlignment:
	setImageFrameStyle:
	setImageScaling:

	Constants
	NSImageAlignment
	NSImageFrameStyle

	NSImageRep Class Reference
	Overview
	Tasks
	Creating an NSImageRep
	Determining the Supported Image Types
	Setting the Size of the Image
	Specifying Information About the Representation
	Getting a CGImage
	Drawing the Image
	Managing NSImageRep Subclasses

	Class Methods
	canInitWithData:
	canInitWithPasteboard:
	imageFileTypes
	imagePasteboardTypes
	imageRepClassForData:
	imageRepClassForFileType:
	imageRepClassForPasteboardType:
	imageRepClassForType:
	imageRepsWithContentsOfFile:
	imageRepsWithContentsOfURL:
	imageRepsWithPasteboard:
	imageRepWithContentsOfFile:
	imageRepWithContentsOfURL:
	imageRepWithPasteboard:
	imageTypes
	imageUnfilteredFileTypes
	imageUnfilteredPasteboardTypes
	imageUnfilteredTypes
	registeredImageRepClasses
	registerImageRepClass:
	unregisterImageRepClass:

	Instance Methods
	bitsPerSample
	CGImageForProposedRect:context:hints:
	colorSpaceName
	draw
	drawAtPoint:
	drawInRect:
	drawInRect:fromRect:operation:fraction:respectFlipped:hints:
	hasAlpha
	isOpaque
	pixelsHigh
	pixelsWide
	setAlpha:
	setBitsPerSample:
	setColorSpaceName:
	setOpaque:
	setPixelsHigh:
	setPixelsWide:
	setSize:
	size

	Constants
	Display Device Matching
	Deprecated Notification Name

	Notifications
	NSImageRepRegistryDidChangeNotification

	NSImageView Class Reference
	Overview
	Tasks
	Choosing the Image
	Choosing the Frame
	Aligning and Scaling the Image
	Responding to User Events
	Animating Image Playback
	Pasteboard Support

	Instance Methods
	allowsCutCopyPaste
	animates
	image
	imageAlignment
	imageFrameStyle
	imageScaling
	isEditable
	setAllowsCutCopyPaste:
	setAnimates:
	setEditable:
	setImage:
	setImageAlignment:
	setImageFrameStyle:
	setImageScaling:

	NSLayoutManager Class Reference
	Overview
	Text Antialiasing
	Thread Safety of NSLayoutManager
	Noncontiguous Layout

	Adopted Protocols
	Tasks
	Initializing
	Setting the Text Storage
	Setting Text Containers
	Setting the Glyph Generator
	Invalidating Glyphs and Layout
	Enabling Background Layout
	Accessing Glyphs
	Mapping Characters to Glyphs
	Setting Glyph Attributes
	Handling Layout for Text Containers
	Handling Line Fragment Rectangles
	Laying Out Glyphs
	Handling Layout for Text Blocks
	Displaying Special Glyphs
	Controlling Hyphenation
	Finding Characters and Glyphs Not Laid Out
	Using Screen Fonts
	Handling Rulers
	Managing the Responder Chain
	Drawing
	Accessing the Delegate
	Accessing the Typesetter
	Managing Typesetter Compatibility
	Managing Temporary Attribute Support
	Managing Noncontiguous Layout
	Accessing the Font Leading

	Instance Methods
	addTemporaryAttribute:value:forCharacterRange:
	addTemporaryAttributes:forCharacterRange:
	addTextContainer:
	allowsNonContiguousLayout
	attachmentSizeForGlyphAtIndex:
	attributedString
	backgroundLayoutEnabled
	boundingRectForGlyphRange:inTextContainer:
	boundsRectForTextBlock:atIndex:effectiveRange:
	boundsRectForTextBlock:glyphRange:
	characterIndexForGlyphAtIndex:
	characterIndexForPoint:inTextContainer:fractionOfDistanceBetweenInsertionPoints:
	characterRangeForGlyphRange:actualGlyphRange:
	defaultAttachmentScaling
	defaultBaselineOffsetForFont:
	defaultLineHeightForFont:
	delegate
	deleteGlyphsInRange:
	drawBackgroundForGlyphRange:atPoint:
	drawGlyphsForGlyphRange:atPoint:
	drawsOutsideLineFragmentForGlyphAtIndex:
	drawStrikethroughForGlyphRange:strikethroughType:baselineOffset: lineFragmentRect:lineFragmentGlyphRange:containerOrigin:
	drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect: lineFragmentGlyphRange:containerOrigin:
	ensureGlyphsForCharacterRange:
	ensureGlyphsForGlyphRange:
	ensureLayoutForBoundingRect:inTextContainer:
	ensureLayoutForCharacterRange:
	ensureLayoutForGlyphRange:
	ensureLayoutForTextContainer:
	extraLineFragmentRect
	extraLineFragmentTextContainer
	extraLineFragmentUsedRect
	fillBackgroundRectArray:count:forCharacterRange:color:
	firstTextView
	firstUnlaidCharacterIndex
	firstUnlaidGlyphIndex
	fractionOfDistanceThroughGlyphForPoint:inTextContainer:
	getFirstUnlaidCharacterIndex:glyphIndex:
	getGlyphs:range:
	getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:
	getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: bidiLevels:
	getLineFragmentInsertionPointsForCharacterAtIndex:alternatePositions: inDisplayOrder:positions:characterIndexes:
	glyphAtIndex:
	glyphAtIndex:isValidIndex:
	glyphGenerator
	glyphIndexForCharacterAtIndex:
	glyphIndexForPoint:inTextContainer:
	glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph:
	glyphRangeForBoundingRect:inTextContainer:
	glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer:
	glyphRangeForCharacterRange:actualCharacterRange:
	glyphRangeForTextContainer:
	hasNonContiguousLayout
	hyphenationFactor
	init
	insertGlyph:atGlyphIndex:characterIndex:
	insertGlyphs:length:forStartingGlyphAtIndex:characterIndex:
	insertTextContainer:atIndex:
	intAttribute:forGlyphAtIndex:
	invalidateDisplayForCharacterRange:
	invalidateDisplayForGlyphRange:
	invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:
	invalidateGlyphsOnLayoutInvalidationForGlyphRange:
	invalidateLayoutForCharacterRange:actualCharacterRange:
	invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:
	isValidGlyphIndex:
	layoutManagerOwnsFirstResponderInWindow:
	layoutOptions
	layoutRectForTextBlock:atIndex:effectiveRange:
	layoutRectForTextBlock:glyphRange:
	lineFragmentRectForGlyphAtIndex:effectiveRange:
	lineFragmentRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
	lineFragmentUsedRectForGlyphAtIndex:effectiveRange:
	lineFragmentUsedRectForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
	locationForGlyphAtIndex:
	notShownAttributeForGlyphAtIndex:
	numberOfGlyphs
	rangeOfNominallySpacedGlyphsContainingIndex:
	rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer: rectCount:
	rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount:
	removeTemporaryAttribute:forCharacterRange:
	removeTextContainerAtIndex:
	replaceGlyphAtIndex:withGlyph:
	replaceTextStorage:
	rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:
	rulerMarkersForTextView:paragraphStyle:ruler:
	setAllowsNonContiguousLayout:
	setAttachmentSize:forGlyphRange:
	setBackgroundLayoutEnabled:
	setBoundsRect:forTextBlock:glyphRange:
	setCharacterIndex:forGlyphAtIndex:
	setDefaultAttachmentScaling:
	setDelegate:
	setDrawsOutsideLineFragment:forGlyphAtIndex:
	setExtraLineFragmentRect:usedRect:textContainer:
	setGlyphGenerator:
	setHyphenationFactor:
	setIntAttribute:value:forGlyphAtIndex:
	setLayoutRect:forTextBlock:glyphRange:
	setLineFragmentRect:forGlyphRange:usedRect:
	setLocation:forStartOfGlyphRange:
	setLocations:startingGlyphIndexes:count:forGlyphRange:
	setNotShownAttribute:forGlyphAtIndex:
	setShowsControlCharacters:
	setShowsInvisibleCharacters:
	setTemporaryAttributes:forCharacterRange:
	setTextContainer:forGlyphRange:
	setTextStorage:
	setTypesetter:
	setTypesetterBehavior:
	setUsesFontLeading:
	setUsesScreenFonts:
	showAttachmentCell:inRect:characterIndex:
	showPackedGlyphs:length:glyphRange:atPoint:font:color:printingAdjustment:
	showsControlCharacters
	showsInvisibleCharacters
	strikethroughGlyphRange:strikethroughType:lineFragmentRect: lineFragmentGlyphRange:containerOrigin:
	substituteFontForFont:
	temporaryAttribute:atCharacterIndex:effectiveRange:
	temporaryAttribute:atCharacterIndex:longestEffectiveRange:inRange:
	temporaryAttributesAtCharacterIndex:effectiveRange:
	temporaryAttributesAtCharacterIndex:longestEffectiveRange:inRange:
	textContainerChangedGeometry:
	textContainerChangedTextView:
	textContainerForGlyphAtIndex:effectiveRange:
	textContainerForGlyphAtIndex:effectiveRange:withoutAdditionalLayout:
	textContainers
	textStorage
	textStorage:edited:range:changeInLength:invalidatedRange:
	textViewForBeginningOfSelection
	typesetter
	typesetterBehavior
	underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange: containerOrigin:
	usedRectForTextContainer:
	usesFontLeading
	usesScreenFonts

	Constants
	Glyph Attributes
	NSGlyphInscription
	NSTypesetterBehavior

	NSLevelIndicator Class Reference
	Overview
	Tasks
	Configuring the Range of Values
	Managing Tick Marks

	Instance Methods
	criticalValue
	maxValue
	minValue
	numberOfMajorTickMarks
	numberOfTickMarks
	rectOfTickMarkAtIndex:
	setCriticalValue:
	setMaxValue:
	setMinValue:
	setNumberOfMajorTickMarks:
	setNumberOfTickMarks:
	setTickMarkPosition:
	setWarningValue:
	tickMarkPosition
	tickMarkValueAtIndex:
	warningValue

	NSLevelIndicatorCell Class Reference
	Overview
	Tasks
	Initializing NSLevelIndicatorCell Objects
	Configuring the Range of Values
	Managing Tick Marks
	Setting the Level-Indicator Image

	Instance Methods
	criticalValue
	initWithLevelIndicatorStyle:
	levelIndicatorStyle
	maxValue
	minValue
	numberOfMajorTickMarks
	numberOfTickMarks
	rectOfTickMarkAtIndex:
	setCriticalValue:
	setImage:
	setLevelIndicatorStyle:
	setMaxValue:
	setMinValue:
	setNumberOfMajorTickMarks:
	setNumberOfTickMarks:
	setTickMarkPosition:
	setWarningValue:
	tickMarkPosition
	tickMarkValueAtIndex:
	warningValue

	Constants
	NSLevelIndicatorStyle

	NSMatrix Class Reference
	Overview
	Tasks
	Initializing an NSMatrix Object
	Configuring the Matrix Object
	Managing the Cell Class
	Laying Out the Cells of the Matrix
	Finding Matrix Coordinates
	Managing Attributes of Individual Cells
	Selecting and Deselecting Cells
	Finding Cells
	Modifying Graphics Attributes
	Editing Text in Cells
	Setting Tab Key Behavior
	Managing the Delegate
	Resizing the Matrix and Its Cells
	Scrolling Cells in the Matrix
	Displaying and Highlighting Cells
	Managing and Sending Action Messages
	Handling Event and Action Messages
	Managing the Cursor

	Instance Methods
	acceptsFirstMouse:
	addColumn
	addColumnWithCells:
	addRow
	addRowWithCells:
	allowsEmptySelection
	autosizesCells
	backgroundColor
	cellAtRow:column:
	cellBackgroundColor
	cellClass
	cellFrameAtRow:column:
	cells
	cellSize
	cellWithTag:
	delegate
	deselectAllCells
	deselectSelectedCell
	doubleAction
	drawCellAtRow:column:
	drawsBackground
	drawsCellBackground
	getNumberOfRows:columns:
	getRow:column:forPoint:
	getRow:column:ofCell:
	highlightCell:atRow:column:
	initWithFrame:
	initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:
	initWithFrame:mode:prototype:numberOfRows:numberOfColumns:
	insertColumn:
	insertColumn:withCells:
	insertRow:
	insertRow:withCells:
	intercellSpacing
	isAutoscroll
	isSelectionByRect
	keyCell
	makeCellAtRow:column:
	mode
	mouseDown:
	mouseDownFlags
	numberOfColumns
	numberOfRows
	performKeyEquivalent:
	prototype
	putCell:atRow:column:
	removeColumn:
	removeRow:
	renewRows:columns:
	resetCursorRects
	scrollCellToVisibleAtRow:column:
	selectAll:
	selectCellAtRow:column:
	selectCellWithTag:
	selectedCell
	selectedCells
	selectedColumn
	selectedRow
	selectText:
	selectTextAtRow:column:
	sendAction
	sendAction:to:forAllCells:
	sendDoubleAction
	setAllowsEmptySelection:
	setAutoscroll:
	setAutosizesCells:
	setBackgroundColor:
	setCellBackgroundColor:
	setCellClass:
	setCellSize:
	setDelegate:
	setDoubleAction:
	setDrawsBackground:
	setDrawsCellBackground:
	setIntercellSpacing:
	setKeyCell:
	setMode:
	setPrototype:
	setScrollable:
	setSelectionByRect:
	setSelectionFrom:to:anchor:highlight:
	setState:atRow:column:
	setTabKeyTraversesCells:
	setToolTip:forCell:
	setValidateSize:
	sizeToCells
	sortUsingFunction:context:
	sortUsingSelector:
	tabKeyTraversesCells
	textDidBeginEditing:
	textDidChange:
	textDidEndEditing:
	textShouldBeginEditing:
	textShouldEndEditing:
	toolTipForCell:

	Constants
	NSMatrixMode

	NSMenu Class Reference
	Overview
	Tasks
	Managing the Menu Bar
	Creating an NSMenu Object
	Adding and Removing Menu Items
	Finding Menu Items
	Finding Indices of Menu Items
	Managing Submenus
	Enabling and Disabling Menu Items
	Getting and Setting the Menu Font
	Handling Keyboard Equivalents
	Simulating Mouse Clicks
	Managing the Title
	Configuring Menu Size
	Getting Menu Properties
	Managing Menu Change Notifications
	Displaying Contextual Menus
	Displaying Context-Sensitive Help
	Managing Display of the State Column
	Controlling Allocation Zones
	Handling Highlighting
	Managing the Delegate
	Handling Tracking
	Deprecated Methods

	Class Methods
	menuBarVisible
	menuZone
	popUpContextMenu:withEvent:forView:
	popUpContextMenu:withEvent:forView:withFont:
	setMenuBarVisible:
	setMenuZone:

	Instance Methods
	addItem:
	addItemWithTitle:action:keyEquivalent:
	allowsContextMenuPlugIns
	attachedMenu
	autoenablesItems
	cancelTracking
	cancelTrackingWithoutAnimation
	contextMenuRepresentation
	delegate
	font
	helpRequested:
	highlightedItem
	indexOfItem:
	indexOfItemWithRepresentedObject:
	indexOfItemWithSubmenu:
	indexOfItemWithTag:
	indexOfItemWithTarget:andAction:
	indexOfItemWithTitle:
	initWithTitle:
	insertItem:atIndex:
	insertItemWithTitle:action:keyEquivalent:atIndex:
	isAttached
	isTornOff
	itemArray
	itemAtIndex:
	itemChanged:
	itemWithTag:
	itemWithTitle:
	locationForSubmenu:
	menuBarHeight
	menuChangedMessagesEnabled
	menuRepresentation
	minimumWidth
	numberOfItems
	performActionForItemAtIndex:
	performKeyEquivalent:
	popUpMenuPositioningItem:atLocation:inView:
	propertiesToUpdate
	removeAllItems
	removeItem:
	removeItemAtIndex:
	setAllowsContextMenuPlugIns:
	setAutoenablesItems:
	setContextMenuRepresentation:
	setDelegate:
	setFont:
	setMenuChangedMessagesEnabled:
	setMenuRepresentation:
	setMinimumWidth:
	setShowsStateColumn:
	setSubmenu:forItem:
	setSupermenu:
	setTearOffMenuRepresentation:
	setTitle:
	showsStateColumn
	size
	sizeToFit
	submenuAction:
	supermenu
	tearOffMenuRepresentation
	title
	update

	Constants
	NSMenuProperties

	Notifications
	NSMenuDidAddItemNotification
	NSMenuDidChangeItemNotification
	NSMenuDidBeginTrackingNotification
	NSMenuDidEndTrackingNotification
	NSMenuDidRemoveItemNotification
	NSMenuDidSendActionNotification
	NSMenuWillSendActionNotification

	NSMenuItem Class Reference
	Overview
	Tasks
	Creating a Menu Item
	Enabling a Menu Item
	Managing Hidden Status
	Managing the Target and Action
	Managing the Title
	Managing the Tag
	Managing the State
	Managing the Image
	Managing Submenus
	Getting a Separator Item
	Managing the Owning Menu
	Managing Key Equivalents
	Managing Mnemonics
	Managing User Key Equivalents
	Managing Alternates
	Managing Indentation Levels
	Managing Tool Tips
	Representing an Object
	Managing the View
	Getting Highlighted Status

	Class Methods
	separatorItem
	setUsesUserKeyEquivalents:
	usesUserKeyEquivalents

	Instance Methods
	action
	attributedTitle
	hasSubmenu
	image
	indentationLevel
	initWithTitle:action:keyEquivalent:
	isAlternate
	isEnabled
	isHidden
	isHiddenOrHasHiddenAncestor
	isHighlighted
	isSeparatorItem
	keyEquivalent
	keyEquivalentModifierMask
	menu
	mixedStateImage
	mnemonic
	mnemonicLocation
	offStateImage
	onStateImage
	parentItem
	representedObject
	setAction:
	setAlternate:
	setAttributedTitle:
	setEnabled:
	setHidden:
	setImage:
	setIndentationLevel:
	setKeyEquivalent:
	setKeyEquivalentModifierMask:
	setMenu:
	setMixedStateImage:
	setMnemonicLocation:
	setOffStateImage:
	setOnStateImage:
	setRepresentedObject:
	setState:
	setSubmenu:
	setTag:
	setTarget:
	setTitle:
	setTitleWithMnemonic:
	setToolTip:
	setView:
	state
	submenu
	tag
	target
	title
	toolTip
	userKeyEquivalent
	view

	NSMenuItemCell Class Reference
	Overview
	Tasks
	Configuring Menu-Item Attributes
	Calculating the Size of a Menu Item
	Getting the Menu Item’s Drawing Rectangle
	Drawing the Menu Item
	Assigning a Tag

	Instance Methods
	calcSize
	drawBorderAndBackgroundWithFrame:inView:
	drawImageWithFrame:inView:
	drawKeyEquivalentWithFrame:inView:
	drawSeparatorItemWithFrame:inView:
	drawStateImageWithFrame:inView:
	drawTitleWithFrame:inView:
	imageWidth
	keyEquivalentRectForBounds:
	keyEquivalentWidth
	menuItem
	menuView
	needsDisplay
	needsSizing
	setMenuItem:
	setMenuView:
	setNeedsDisplay:
	setNeedsSizing:
	stateImageRectForBounds:
	stateImageWidth
	tag
	titleRectForBounds:
	titleWidth

	NSMenuView Class Reference
	Overview
	Tasks
	Initializing a Menu View
	Managing Menu View Attributes
	Responding to Notifications
	Working With Submenus
	Calculating Menu Geometry
	Handling Events

	Class Methods
	menuBarHeight

	Instance Methods
	attachedMenu
	attachedMenuView
	attachSubmenuForItemAtIndex:
	detachSubmenu
	font
	highlightedItemIndex
	horizontalEdgePadding
	imageAndTitleOffset
	imageAndTitleWidth
	indexOfItemAtPoint:
	initAsTearOff
	initWithFrame:
	innerRect
	isAttached
	isHorizontal
	isTornOff
	itemAdded:
	itemChanged:
	itemRemoved:
	keyEquivalentOffset
	keyEquivalentWidth
	locationForSubmenu:
	menu
	menuItemCellForItemAtIndex:
	needsSizing
	performActionWithHighlightingForItemAtIndex:
	rectOfItemAtIndex:
	setFont:
	setHighlightedItemIndex:
	setHorizontal:
	setHorizontalEdgePadding:
	setMenu:
	setMenuItemCell:forItemAtIndex:
	setNeedsDisplayForItemAtIndex:
	setNeedsSizing:
	setWindowFrameForAttachingToRect:onScreen:preferredEdge:popUpSelectedItem:
	sizeToFit
	stateImageOffset
	stateImageWidth
	trackWithEvent:
	update

	NSMutableAttributedString Additions Reference
	Overview
	Tasks
	Changing Attributes
	Updating Attachment Contents
	Fixing Attributes After Changes
	Reading Content

	Instance Methods
	applyFontTraits:range:
	fixAttachmentAttributeInRange:
	fixAttributesInRange:
	fixFontAttributeInRange:
	fixParagraphStyleAttributeInRange:
	readFromData:options:documentAttributes:
	readFromData:options:documentAttributes:error:
	readFromURL:options:documentAttributes:
	readFromURL:options:documentAttributes:error:
	setAlignment:range:
	setBaseWritingDirection:range:
	subscriptRange:
	superscriptRange:
	unscriptRange:
	updateAttachmentsFromPath:

	NSMutableParagraphStyle Class Reference
	Overview
	Tasks
	Setting Tab Stops
	Setting Other Style Information
	Setting Text Blocks and Lists
	Controlling Hyphenation and Truncation
	Setting HTML Header Level

	Instance Methods
	addTabStop:
	removeTabStop:
	setAlignment:
	setBaseWritingDirection:
	setDefaultTabInterval:
	setFirstLineHeadIndent:
	setHeaderLevel:
	setHeadIndent:
	setHyphenationFactor:
	setLineBreakMode:
	setLineHeightMultiple:
	setLineSpacing:
	setMaximumLineHeight:
	setMinimumLineHeight:
	setParagraphSpacing:
	setParagraphSpacingBefore:
	setParagraphStyle:
	setTabStops:
	setTailIndent:
	setTextBlocks:
	setTextLists:
	setTighteningFactorForTruncation:

	NSNib Class Reference
	Overview
	Subclassing Notes

	Adopted Protocols
	Tasks
	Initializing a Nib
	Instantiating a Nib

	Instance Methods
	initWithContentsOfURL:
	initWithNibNamed:bundle:
	instantiateNibWithExternalNameTable:
	instantiateNibWithOwner:topLevelObjects:

	Constants
	Nib Loading Keys

	NSNibConnector Class Reference
	Overview
	Adopted Protocols
	Tasks
	Working with the Source
	Working with the Destination
	Working with the Connection

	Instance Methods
	destination
	establishConnection
	label
	replaceObject:withObject:
	setDestination:
	setLabel:
	setSource:
	source

	NSNibControlConnector Class Reference
	Overview
	Tasks
	Establishing a Connection

	Instance Methods
	establishConnection

	NSNibOutletConnector Class Reference
	Overview
	Tasks
	Establishing a Connection

	Instance Methods
	establishConnection

	NSObjectController Class Reference
	Overview
	Tasks
	Initializing an Object Controller
	Managing Content
	Setting the Content Class
	Managing Objects
	Managing Editing
	Core Data Support
	Obtaining Selections
	Validating User Interface Items

	Instance Methods
	add:
	addObject:
	automaticallyPreparesContent
	canAdd
	canRemove
	content
	defaultFetchRequest
	entityName
	fetch:
	fetchPredicate
	fetchWithRequest:merge:error:
	initWithContent:
	isEditable
	managedObjectContext
	newObject
	objectClass
	prepareContent
	remove:
	removeObject:
	selectedObjects
	selection
	setAutomaticallyPreparesContent:
	setContent:
	setEditable:
	setEntityName:
	setFetchPredicate:
	setManagedObjectContext:
	setObjectClass:
	setUsesLazyFetching:
	usesLazyFetching
	validateUserInterfaceItem:

	NSOpenGLContext Class Reference
	Overview
	Tasks
	Context Creation
	Managing the Current Context
	Drawable Object Management
	Flushing the Drawing Buffer
	Copying Attributes
	Context Parameter Handling
	Working with Virtual Screens
	Creating Textures
	Getting the CGL Context Object
	Working with Pixel Buffers

	Class Methods
	clearCurrentContext
	currentContext

	Instance Methods
	CGLContextObj
	clearDrawable
	copyAttributesFromContext:withMask:
	createTexture:fromView:internalFormat:
	currentVirtualScreen
	flushBuffer
	getValues:forParameter:
	initWithCGLContextObj:
	initWithFormat:shareContext:
	makeCurrentContext
	pixelBuffer
	pixelBufferCubeMapFace
	pixelBufferMipMapLevel
	setCurrentVirtualScreen:
	setFullScreen
	setOffScreen:width:height:rowbytes:
	setPixelBuffer:cubeMapFace:mipMapLevel:currentVirtualScreen:
	setTextureImageToPixelBuffer:colorBuffer:
	setValues:forParameter:
	setView:
	update
	view

	Constants
	NSOpenGLContextParameter

	NSOpenGLLayer Class Reference
	Overview
	Tasks
	Drawing the Content
	Managing the Pixel Format
	Managing the Rendering Context
	Accessing the Associated View

	Properties
	openGLContext
	openGLPixelFormat
	view

	Instance Methods
	canDrawInOpenGLContext:pixelFormat:forLayerTime:displayTime:
	drawInOpenGLContext:pixelFormat:forLayerTime:displayTime:
	openGLContextForPixelFormat:
	openGLPixelFormatForDisplayMask:

	NSOpenGLPixelBuffer Class Reference
	Overview
	Tasks
	Initializing an OpenGL Pixel Buffer
	Obtaining Information About an OpenGL Pixel Buffer

	Instance Methods
	CGLPBufferObj
	initWithCGLPBufferObj:
	initWithTextureTarget:textureInternalFormat:textureMaxMipMapLevel:pixelsWide: pixelsHigh:
	pixelsHigh
	pixelsWide
	textureInternalFormat
	textureMaxMipMapLevel
	textureTarget

	NSOpenGLPixelFormat Class Reference
	Overview
	Tasks
	Creating an NSOpenGLPixelFormat Object
	Managing the Pixel Format
	Managing Attributes

	Instance Methods
	attributes
	CGLPixelFormatObj
	getValues:forAttribute:forVirtualScreen:
	initWithAttributes:
	initWithCGLPixelFormatObj:
	initWithData:
	numberOfVirtualScreens
	setAttributes:

	Constants
	NSOpenGLPixelFormatAttribute

	NSOpenGLView Class Reference
	Overview
	Tasks
	Initializing an NSOpenGLView
	Managing the NSOpenGLPixelFormat
	Managing the NSOpenGLContext
	Managing the Visible Region

	Class Methods
	defaultPixelFormat

	Instance Methods
	clearGLContext
	initWithFrame:pixelFormat:
	openGLContext
	pixelFormat
	prepareOpenGL
	reshape
	setOpenGLContext:
	setPixelFormat:
	update

	NSOpenPanel Class Reference
	Overview
	Tasks
	Creating Panels
	Configuring Panels
	Running Panels
	Accessing User Selection

	Class Methods
	openPanel

	Instance Methods
	allowsMultipleSelection
	beginForDirectory:file:types:modelessDelegate:didEndSelector:contextInfo:
	beginSheetForDirectory:file:types:modalForWindow:modalDelegate:didEndSelector: contextInfo:
	canChooseDirectories
	canChooseFiles
	filenames
	resolvesAliases
	runModalForDirectory:file:types:
	runModalForTypes:
	setAllowsMultipleSelection:
	setCanChooseDirectories:
	setCanChooseFiles:
	setResolvesAliases:
	URLs

	NSOutlineView Class Reference
	Overview
	Delegation

	Tasks
	Setting the Data Source
	Working with Expandability
	Monitoring Selection Changes
	Expanding and Collapsing the Outline
	Redisplaying Information
	Converting Between Items and Rows
	Working with the Outline Column
	Working with Indentation
	Working with Persistence
	Supporting Drag and Drop
	Getting the Parent for an Item
	Getting the Frame for a Cell
	Getting and Setting the Delegate

	Instance Methods
	autoresizesOutlineColumn
	autosaveExpandedItems
	collapseItem:
	collapseItem:collapseChildren:
	dataSource
	delegate
	expandItem:
	expandItem:expandChildren:
	frameOfOutlineCellAtRow:
	indentationMarkerFollowsCell
	indentationPerLevel
	isExpandable:
	isItemExpanded:
	itemAtRow:
	levelForItem:
	levelForRow:
	outlineTableColumn
	parentForItem:
	reloadItem:
	reloadItem:reloadChildren:
	rowForItem:
	setAutoresizesOutlineColumn:
	setAutosaveExpandedItems:
	setDataSource:
	setDelegate:
	setDropItem:dropChildIndex:
	setIndentationMarkerFollowsCell:
	setIndentationPerLevel:
	setOutlineTableColumn:
	shouldCollapseAutoExpandedItemsForDeposited:

	Delegate Methods
	outlineViewColumnDidMove:
	outlineViewColumnDidResize:
	outlineViewItemDidCollapse:
	outlineViewItemDidExpand:
	outlineViewItemWillCollapse:
	outlineViewItemWillExpand:
	outlineViewSelectionDidChange:
	outlineViewSelectionIsChanging:

	Constants
	Drop on Item Index

	Notifications
	NSOutlineViewColumnDidMoveNotification
	NSOutlineViewColumnDidResizeNotification
	NSOutlineViewItemDidCollapseNotification
	NSOutlineViewItemDidExpandNotification
	NSOutlineViewItemWillCollapseNotification
	NSOutlineViewItemWillExpandNotification
	NSOutlineViewSelectionDidChangeNotification
	NSOutlineViewSelectionIsChangingNotification

	NSPageLayout Class Reference
	Overview
	Tasks
	Creating an NSPageLayout Instance
	Running a Page Setup Dialog
	Customizing the Page Setup Dialog
	Accessing the NSPrintInfo Object
	Deprecated Methods

	Class Methods
	pageLayout

	Instance Methods
	accessoryControllers
	accessoryView
	addAccessoryController:
	beginSheetWithPrintInfo:modalForWindow:delegate:didEndSelector:contextInfo:
	printInfo
	readPrintInfo
	removeAccessoryController:
	runModal
	runModalWithPrintInfo:
	setAccessoryView:
	writePrintInfo

	NSPanel Class Reference
	Overview
	Tasks
	Configuring Panels

	Instance Methods
	becomesKeyOnlyIfNeeded
	isFloatingPanel
	setBecomesKeyOnlyIfNeeded:
	setFloatingPanel:
	setWorksWhenModal:
	worksWhenModal

	Constants
	Alert Panel Return Values
	Modal Panel Return Values
	Style Masks

	NSParagraphStyle Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSParagraphStyle
	Accessing Style Information
	Getting Text Block and List Information
	Getting Line Breaking Information
	Getting HTML Header Level
	Writing Direction

	Class Methods
	defaultParagraphStyle
	defaultWritingDirectionForLanguage:

	Instance Methods
	alignment
	baseWritingDirection
	defaultTabInterval
	firstLineHeadIndent
	headerLevel
	headIndent
	hyphenationFactor
	lineBreakMode
	lineHeightMultiple
	lineSpacing
	maximumLineHeight
	minimumLineHeight
	paragraphSpacing
	paragraphSpacingBefore
	tabStops
	tailIndent
	textBlocks
	textLists
	tighteningFactorForTruncation

	Constants
	NSLineBreakMode

	NSPasteboard Class Reference
	Overview
	Tasks
	Creating and Releasing a Pasteboard
	Writing Data
	Reading Data
	Validating Contents
	Getting Information About a Pasteboard
	Writing Data (Mac OS X v10.5 and Earlier)
	Reading Data (Mac OS X v10.5 and Earlier)

	Class Methods
	generalPasteboard
	pasteboardByFilteringData:ofType:
	pasteboardByFilteringFile:
	pasteboardByFilteringTypesInPasteboard:
	pasteboardWithName:
	pasteboardWithUniqueName
	typesFilterableTo:

	Instance Methods
	addTypes:owner:
	availableTypeFromArray:
	canReadItemWithDataConformingToTypes:
	canReadObjectForClasses:options:
	changeCount
	clearContents
	dataForType:
	declareTypes:owner:
	indexOfPasteboardItem:
	name
	pasteboardItems
	propertyListForType:
	readFileContentsType:toFile:
	readFileWrapper
	readObjectsForClasses:options:
	releaseGlobally
	setData:forType:
	setPropertyList:forType:
	setString:forType:
	stringForType:
	types
	writeFileContents:
	writeFileWrapper:
	writeObjects:

	Constants
	Pasteboard Names
	Types for Standard Data (Mac OS X 10.6 and later)
	Types for Standard Data (Mac OS X 10.5 and earlier)
	Pasteboard Reading Options

	NSPasteboardItem Class Reference
	Overview
	Tasks
	Getting Types
	Setting the Data Provider
	Setting Values
	Getting Values

	Instance Methods
	availableTypeFromArray:
	dataForType:
	propertyListForType:
	setData:forType:
	setDataProvider:forTypes:
	setPropertyList:forType:
	setString:forType:
	stringForType:
	types

	NSPathCell Class Reference
	Overview
	Tasks
	Displaying Hidden Components
	Setting the Allowed Types
	Setting the Control Style
	Setting the Object Value
	Setting Cell Appearance
	Managing Path Components
	Setting the Double-Click Action
	Setting the Path
	Setting the Delegate

	Class Methods
	pathComponentCellClass

	Instance Methods
	allowedTypes
	backgroundColor
	clickedPathComponentCell
	delegate
	doubleAction
	mouseEntered:withFrame:inView:
	mouseExited:withFrame:inView:
	pathComponentCellAtPoint:withFrame:inView:
	pathComponentCells
	pathStyle
	placeholderAttributedString
	placeholderString
	rectOfPathComponentCell:withFrame:inView:
	setAllowedTypes:
	setBackgroundColor:
	setControlSize:
	setDelegate:
	setDoubleAction:
	setObjectValue:
	setPathComponentCells:
	setPathStyle:
	setPlaceholderAttributedString:
	setPlaceholderString:
	setURL:
	URL

	Constants
	NSPathStyle

	NSPathComponentCell Class Reference
	Overview
	Tasks
	Setting the Image
	Setting the Path

	Instance Methods
	image
	setImage:
	setURL:
	URL

	NSPathControl Class Reference
	Overview
	Tasks
	Setting the Control Style
	Setting the Background Color
	Managing Path Components
	Setting the Double-Click Action
	Setting the Path
	Setting the Delegate
	Setting the Drag Operation Mask
	Setting Popup Menu

	Instance Methods
	backgroundColor
	clickedPathComponentCell
	delegate
	doubleAction
	menu
	pathComponentCells
	pathStyle
	setBackgroundColor:
	setDelegate:
	setDoubleAction:
	setDraggingSourceOperationMask:forLocal:
	setMenu:
	setPathComponentCells:
	setPathStyle:
	setURL:
	URL

	NSPDFImageRep Class Reference
	Overview
	Tasks
	Creating an NSPDFImageRep
	Getting Image Data

	Class Methods
	imageRepWithData:

	Instance Methods
	bounds
	currentPage
	initWithData:
	pageCount
	PDFRepresentation
	setCurrentPage:

	NSPersistentDocument Class Reference
	Overview
	Tasks
	Managing the Persistence Objects
	Undo Support
	Document Content Management
	Deprecated

	Instance Methods
	configurePersistentStoreCoordinatorForURL:ofType:error:
	configurePersistentStoreCoordinatorForURL:ofType:modelConfiguration: storeOptions:error:
	hasUndoManager
	isDocumentEdited
	managedObjectContext
	managedObjectModel
	persistentStoreTypeForFileType:
	readFromURL:ofType:error:
	revertToContentsOfURL:ofType:error:
	setHasUndoManager:
	setManagedObjectContext:
	setUndoManager:
	writeToURL:ofType:forSaveOperation:originalContentsURL:error:

	NSPICTImageRep Class Reference
	Overview
	Tasks
	Creating an NSPICTImageRep
	Getting Image Data

	Class Methods
	imageRepWithData:

	Instance Methods
	boundingBox
	initWithData:
	PICTRepresentation

	NSPopUpButton Class Reference
	Class at a Glance
	Overview
	Tasks
	Initializing an NSPopUpButton
	Setting the Type of Menu
	Inserting and Deleting Items
	Getting the User’s Selection
	Setting the Current Selection
	Getting Menu Items
	Getting the Indices of Menu Items
	Setting the Cell Edge to Pop out in Restricted Situations
	Setting the Title
	Setting the Image
	Setting the State

	Instance Methods
	addItemsWithTitles:
	addItemWithTitle:
	autoenablesItems
	indexOfItem:
	indexOfItemWithRepresentedObject:
	indexOfItemWithTag:
	indexOfItemWithTarget:andAction:
	indexOfItemWithTitle:
	indexOfSelectedItem
	initWithFrame:pullsDown:
	insertItemWithTitle:atIndex:
	itemArray
	itemAtIndex:
	itemTitleAtIndex:
	itemTitles
	itemWithTitle:
	lastItem
	menu
	numberOfItems
	objectValue
	preferredEdge
	pullsDown
	removeAllItems
	removeItemAtIndex:
	removeItemWithTitle:
	selectedItem
	selectItem:
	selectItemAtIndex:
	selectItemWithTag:
	selectItemWithTitle:
	setAutoenablesItems:
	setImage:
	setMenu:
	setObjectValue:
	setPreferredEdge:
	setPullsDown:
	setTitle:
	synchronizeTitleAndSelectedItem
	titleOfSelectedItem

	Notifications
	NSPopUpButtonWillPopUpNotification

	NSPopUpButtonCell Class Reference
	Overview
	Tasks
	Initialization
	Getting and Setting Attributes
	Adding and Removing Items
	Accessing the Items
	Dealing with Selection
	Title Conveniences
	Setting the Image
	Handling Events and Action Messages

	Instance Methods
	addItemsWithTitles:
	addItemWithTitle:
	altersStateOfSelectedItem
	arrowPosition
	attachPopUpWithFrame:inView:
	autoenablesItems
	dismissPopUp
	indexOfItem:
	indexOfItemWithRepresentedObject:
	indexOfItemWithTag:
	indexOfItemWithTarget:andAction:
	indexOfItemWithTitle:
	indexOfSelectedItem
	initTextCell:pullsDown:
	insertItemWithTitle:atIndex:
	itemArray
	itemAtIndex:
	itemTitleAtIndex:
	itemTitles
	itemWithTitle:
	lastItem
	menu
	numberOfItems
	objectValue
	performClickWithFrame:inView:
	preferredEdge
	pullsDown
	removeAllItems
	removeItemAtIndex:
	removeItemWithTitle:
	selectedItem
	selectItem:
	selectItemAtIndex:
	selectItemWithTag:
	selectItemWithTitle:
	setAltersStateOfSelectedItem:
	setArrowPosition:
	setAutoenablesItems:
	setImage:
	setMenu:
	setObjectValue:
	setPreferredEdge:
	setPullsDown:
	setTitle:
	setUsesItemFromMenu:
	synchronizeTitleAndSelectedItem
	titleOfSelectedItem
	usesItemFromMenu

	Constants
	NSPopUpArrowPosition

	Notifications
	NSPopUpButtonCellWillPopUpNotification

	NSPredicateEditor Class Reference
	Overview
	Tasks
	Managing Row Templates

	Instance Methods
	rowTemplates
	setRowTemplates:

	NSPredicateEditorRowTemplate Class Reference
	Overview
	Tasks
	Initializing a Template
	Core Data Integration
	Primitive Methods
	Information About a Row Template

	Class Methods
	templatesWithAttributeKeyPaths:inEntityDescription:

	Instance Methods
	compoundTypes
	displayableSubpredicatesOfPredicate:
	initWithCompoundTypes:
	initWithLeftExpressions:rightExpressionAttributeType:modifier:operators:options:
	initWithLeftExpressions:rightExpressions:modifier:operators:options:
	leftExpressions
	matchForPredicate:
	modifier
	operators
	options
	predicateWithSubpredicates:
	rightExpressionAttributeType
	rightExpressions
	setPredicate:
	templateViews

	NSPrinter Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSPrinter
	Getting General Printer Information
	Getting Attributes
	Getting Specific Information
	Querying the Tables
	Deprecated Methods

	Class Methods
	printerNames
	printerTypes
	printerWithName:
	printerWithName:domain:includeUnavailable:
	printerWithType:

	Instance Methods
	acceptsBinary
	booleanForKey:inTable:
	deviceDescription
	domain
	floatForKey:inTable:
	host
	imageRectForPaper:
	intForKey:inTable:
	isColor
	isFontAvailable:
	isKey:inTable:
	isOutputStackInReverseOrder
	languageLevel
	name
	note
	pageSizeForPaper:
	rectForKey:inTable:
	sizeForKey:inTable:
	statusForTable:
	stringForKey:inTable:
	stringListForKey:inTable:
	type

	Constants
	NSPrinterTableStatus

	NSPrintInfo Class Reference
	Overview
	Tasks
	Initializing an NSPrintInfo
	Managing the Shared NSPrintInfo
	Managing the Printing Rectangle
	Pagination
	Positioning the Image on the Page
	Specifying the Printer
	Controlling Printing
	Accessing the Print Info Dictionary
	Print Settings Convenience Methods
	Accessing Core Printing Information
	Deprecated Methods

	Class Methods
	defaultPrinter
	setDefaultPrinter:
	setSharedPrintInfo:
	sharedPrintInfo
	sizeForPaperName:

	Instance Methods
	bottomMargin
	dictionary
	horizontalPagination
	imageablePageBounds
	initWithDictionary:
	isHorizontallyCentered
	isSelectionOnly
	isVerticallyCentered
	jobDisposition
	leftMargin
	localizedPaperName
	orientation
	paperName
	paperSize
	PMPageFormat
	PMPrintSession
	PMPrintSettings
	printer
	printSettings
	rightMargin
	scalingFactor
	setBottomMargin:
	setHorizontallyCentered:
	setHorizontalPagination:
	setJobDisposition:
	setLeftMargin:
	setOrientation:
	setPaperName:
	setPaperSize:
	setPrinter:
	setRightMargin:
	setScalingFactor:
	setSelectionOnly:
	setTopMargin:
	setUpPrintOperationDefaultValues
	setVerticallyCentered:
	setVerticalPagination:
	topMargin
	updateFromPMPageFormat
	updateFromPMPrintSettings
	verticalPagination

	Constants
	Print job attributes
	NSPrintingPaginationMode
	NSPrintingOrientation
	Print job dispositions
	Page setup attributes
	Pagination attributes
	Deprecated Printing Keys

	NSPrintOperation Class Reference
	Overview
	Tasks
	Creating an NSPrintOperation
	Setting the Current NSPrintOperation for This Thread
	Determining the Type of Operation
	Modifying the NSPrintInfo Object
	Getting the NSView Object
	Running a Print Operation
	Modifying the User Interface
	Managing the Drawing Context
	Managing Page Information
	Managing Printing-Related Threads
	Deprecated Methods

	Class Methods
	currentOperation
	EPSOperationWithView:insideRect:toData:
	EPSOperationWithView:insideRect:toData:printInfo:
	EPSOperationWithView:insideRect:toPath:printInfo:
	PDFOperationWithView:insideRect:toData:
	PDFOperationWithView:insideRect:toData:printInfo:
	PDFOperationWithView:insideRect:toPath:printInfo:
	printOperationWithView:
	printOperationWithView:printInfo:
	setCurrentOperation:

	Instance Methods
	accessoryView
	canSpawnSeparateThread
	cleanUpOperation
	context
	createContext
	currentPage
	deliverResult
	destroyContext
	isCopyingOperation
	jobStyleHint
	jobTitle
	pageOrder
	pageRange
	printInfo
	printPanel
	runOperation
	runOperationModalForWindow:delegate:didRunSelector:contextInfo:
	setAccessoryView:
	setCanSpawnSeparateThread:
	setJobStyleHint:
	setJobTitle:
	setPageOrder:
	setPrintInfo:
	setPrintPanel:
	setShowPanels:
	setShowsPrintPanel:
	setShowsProgressPanel:
	showPanels
	showsPrintPanel
	showsProgressPanel
	view

	Constants
	NSPrintingPageOrder
	Exception Name

	NSPrintPanel Class Reference
	Overview
	Tasks
	Creating an NSPrintPanel
	Customizing the Panel
	Managing Accessory Views
	Running the Panel
	Communicating with the NSPrintInfo Object
	Deprecated Methods

	Class Methods
	printPanel

	Instance Methods
	accessoryControllers
	accessoryView
	addAccessoryController:
	beginSheetWithPrintInfo:modalForWindow:delegate:didEndSelector:contextInfo:
	defaultButtonTitle
	finalWritePrintInfo
	helpAnchor
	jobStyleHint
	options
	pickedAllPages:
	pickedButton:
	pickedLayoutList:
	printInfo
	removeAccessoryController:
	runModal
	runModalWithPrintInfo:
	setAccessoryView:
	setDefaultButtonTitle:
	setHelpAnchor:
	setJobStyleHint:
	setOptions:
	updateFromPrintInfo

	Constants
	Job Style Hints
	NSPrintPanelOptions

	NSProgressIndicator Class Reference
	Overview
	Tasks
	Animating the Progress Indicator
	Advancing the Progress Bar
	Setting the Appearance

	Instance Methods
	animate:
	animationDelay
	controlSize
	controlTint
	doubleValue
	incrementBy:
	isBezeled
	isDisplayedWhenStopped
	isIndeterminate
	maxValue
	minValue
	setAnimationDelay:
	setBezeled:
	setControlSize:
	setControlTint:
	setDisplayedWhenStopped:
	setDoubleValue:
	setIndeterminate:
	setMaxValue:
	setMinValue:
	setStyle:
	setUsesThreadedAnimation:
	sizeToFit
	startAnimation:
	stopAnimation:
	style
	usesThreadedAnimation

	Constants
	NSProgressIndicatorThickness
	NSProgressIndicatorStyle

	NSResponder Class Reference
	Overview
	Tasks
	Changing the First Responder
	Managing the Next Responder
	Responding to Mouse Events
	Responding to Key Events
	Responding to Other Kinds of Events
	Responding to Action Messages
	Presenting and Customizing Error Information
	Dispatching Messages
	Managing a Responder’s Menu
	Updating the Services Menu
	Getting the Undo Manager
	Testing Events
	Terminating the Responder Chain
	Setting the Interface Style
	Touch and Gesture Events
	Setting the Writing Direction

	Instance Methods
	acceptsFirstResponder
	becomeFirstResponder
	beginGestureWithEvent:
	cancelOperation:
	capitalizeWord:
	centerSelectionInVisibleArea:
	changeCaseOfLetter:
	complete:
	cursorUpdate:
	deleteBackward:
	deleteBackwardByDecomposingPreviousCharacter:
	deleteForward:
	deleteToBeginningOfLine:
	deleteToBeginningOfParagraph:
	deleteToEndOfLine:
	deleteToEndOfParagraph:
	deleteToMark:
	deleteWordBackward:
	deleteWordForward:
	doCommandBySelector:
	endGestureWithEvent:
	flagsChanged:
	flushBufferedKeyEvents
	helpRequested:
	indent:
	insertBacktab:
	insertContainerBreak:
	insertDoubleQuoteIgnoringSubstitution:
	insertLineBreak:
	insertNewline:
	insertNewlineIgnoringFieldEditor:
	insertParagraphSeparator:
	insertSingleQuoteIgnoringSubstitution:
	insertTab:
	insertTabIgnoringFieldEditor:
	insertText:
	interfaceStyle
	interpretKeyEvents:
	keyDown:
	keyUp:
	lowercaseWord:
	magnifyWithEvent:
	makeBaseWritingDirectionLeftToRight:
	makeBaseWritingDirectionNatural:
	makeBaseWritingDirectionRightToLeft:
	makeTextWritingDirectionLeftToRight:
	makeTextWritingDirectionNatural:
	makeTextWritingDirectionRightToLeft:
	menu
	mouseDown:
	mouseDragged:
	mouseEntered:
	mouseExited:
	mouseMoved:
	mouseUp:
	moveBackward:
	moveBackwardAndModifySelection:
	moveDown:
	moveDownAndModifySelection:
	moveForward:
	moveForwardAndModifySelection:
	moveLeft:
	moveLeftAndModifySelection:
	moveParagraphBackwardAndModifySelection:
	moveParagraphForwardAndModifySelection:
	moveRight:
	moveRightAndModifySelection:
	moveToBeginningOfDocument:
	moveToBeginningOfDocumentAndModifySelection:
	moveToBeginningOfLine:
	moveToBeginningOfLineAndModifySelection:
	moveToBeginningOfParagraph:
	moveToBeginningOfParagraphAndModifySelection:
	moveToEndOfDocument:
	moveToEndOfDocumentAndModifySelection:
	moveToEndOfLine:
	moveToEndOfLineAndModifySelection:
	moveToEndOfParagraph:
	moveToEndOfParagraphAndModifySelection:
	moveToLeftEndOfLine:
	moveToLeftEndOfLineAndModifySelection:
	moveToRightEndOfLine:
	moveToRightEndOfLineAndModifySelection:
	moveUp:
	moveUpAndModifySelection:
	moveWordBackward:
	moveWordBackwardAndModifySelection:
	moveWordForward:
	moveWordForwardAndModifySelection:
	moveWordLeft:
	moveWordLeftAndModifySelection:
	moveWordRight:
	moveWordRightAndModifySelection:
	nextResponder
	noResponderFor:
	otherMouseDown:
	otherMouseDragged:
	otherMouseUp:
	pageDown:
	pageDownAndModifySelection:
	pageUp:
	pageUpAndModifySelection:
	performKeyEquivalent:
	performMnemonic:
	presentError:
	presentError:modalForWindow:delegate:didPresentSelector:contextInfo:
	resignFirstResponder
	rightMouseDown:
	rightMouseDragged:
	rightMouseUp:
	rotateWithEvent:
	scrollLineDown:
	scrollLineUp:
	scrollPageDown:
	scrollPageUp:
	scrollToBeginningOfDocument:
	scrollToEndOfDocument:
	scrollWheel:
	selectAll:
	selectLine:
	selectParagraph:
	selectToMark:
	selectWord:
	setInterfaceStyle:
	setMark:
	setMenu:
	setNextResponder:
	shouldBeTreatedAsInkEvent:
	showContextHelp:
	swapWithMark:
	swipeWithEvent:
	tabletPoint:
	tabletProximity:
	touchesBeganWithEvent:
	touchesCancelledWithEvent:
	touchesEndedWithEvent:
	touchesMovedWithEvent:
	transpose:
	transposeWords:
	tryToPerform:with:
	undoManager
	uppercaseWord:
	validRequestorForSendType:returnType:
	willPresentError:
	yank:

	NSRuleEditor Class Reference
	Overview
	Tasks
	Configuring a Rule Editor
	Working with Formatting
	Providing Data
	Obtaining Row Information
	Working with the Selection
	Manipulating Rows
	Working with Predicates
	Supporting Bindings
	Overriding ViewDidMoveToWindow

	Instance Methods
	addRow:
	canRemoveAllRows
	criteriaForRow:
	criteriaKeyPath
	delegate
	displayValuesForRow:
	displayValuesKeyPath
	formattingDictionary
	formattingStringsFilename
	insertRowAtIndex:withType:asSubrowOfRow:animate:
	isEditable
	nestingMode
	numberOfRows
	parentRowForRow:
	predicate
	predicateForRow:
	reloadCriteria
	reloadPredicate
	removeRowAtIndex:
	removeRowsAtIndexes:includeSubrows:
	rowClass
	rowForDisplayValue:
	rowHeight
	rowTypeForRow:
	rowTypeKeyPath
	selectedRowIndexes
	selectRowIndexes:byExtendingSelection:
	setCanRemoveAllRows:
	setCriteria:andDisplayValues:forRowAtIndex:
	setCriteriaKeyPath:
	setDelegate:
	setDisplayValuesKeyPath:
	setEditable:
	setFormattingDictionary:
	setFormattingStringsFilename:
	setNestingMode:
	setRowClass:
	setRowHeight:
	setRowTypeKeyPath:
	setSubrowsKeyPath:
	subrowIndexesForRow:
	subrowsKeyPath
	viewDidMoveToWindow

	Constants
	NSRuleEditorNestingMode
	Nesting Modes
	NSRuleEditorRowType
	Row Types
	Predicate Part Keys

	Notifications
	NSRuleEditorRowsDidChangeNotification

	NSRulerMarker Class Objective-C Reference
	Overview
	Adopted Protocols
	Tasks
	Creating Instances
	Getting the Ruler View
	Setting the Image
	Setting Movability
	Setting the Location
	Setting the Represented Object
	Drawing and Event Handling

	Instance Methods
	drawRect:
	image
	imageOrigin
	imageRectInRuler
	initWithRulerView:markerLocation:image:imageOrigin:
	isDragging
	isMovable
	isRemovable
	markerLocation
	representedObject
	ruler
	setImage:
	setImageOrigin:
	setMarkerLocation:
	setMovable:
	setRemovable:
	setRepresentedObject:
	thicknessRequiredInRuler
	trackMouse:adding:

	NSRulerView Class Reference
	Class at a Glance
	Overview
	Tasks
	Creating Instances
	Altering Measurement Units
	Setting the Client View
	Setting an Accessory View
	Setting the Zero Mark Position
	Adding and Removing Markers
	Drawing Temporary Ruler Lines
	Drawing
	Ruler Layout
	Adding markers
	Moving markers
	Removing markers
	Handling mouse events
	Changing client view

	Class Methods
	registerUnitWithName:abbreviation:unitToPointsConversionFactor:stepUpCycle: stepDownCycle:

	Instance Methods
	accessoryView
	addMarker:
	baselineLocation
	clientView
	drawHashMarksAndLabelsInRect:
	drawMarkersInRect:
	initWithScrollView:orientation:
	invalidateHashMarks
	isFlipped
	markers
	measurementUnits
	moveRulerlineFromLocation:toLocation:
	orientation
	originOffset
	removeMarker:
	requiredThickness
	reservedThicknessForAccessoryView
	reservedThicknessForMarkers
	ruleThickness
	scrollView
	setAccessoryView:
	setClientView:
	setMarkers:
	setMeasurementUnits:
	setOrientation:
	setOriginOffset:
	setReservedThicknessForAccessoryView:
	setReservedThicknessForMarkers:
	setRuleThickness:
	setScrollView:
	trackMarker:withMouseEvent:

	Delegate Methods
	rulerView:didAddMarker:
	rulerView:didMoveMarker:
	rulerView:didRemoveMarker:
	rulerView:handleMouseDown:
	rulerView:shouldAddMarker:
	rulerView:shouldMoveMarker:
	rulerView:shouldRemoveMarker:
	rulerView:willAddMarker:atLocation:
	rulerView:willMoveMarker:toLocation:
	rulerView:willSetClientView:

	Constants
	NSRulerOrientation

	NSRunningApplication Class Reference
	Overview
	Tasks
	Getting Running Application Instances
	Activating Applications
	Hiding and Unhiding Applications
	Application Information
	Terminating Applications

	Properties
	activationPolicy
	active
	bundleIdentifier
	bundleURL
	executableArchitecture
	executableURL
	finishedLaunching
	hidden
	icon
	launchDate
	localizedName
	processIdentifier
	terminated

	Class Methods
	currentApplication
	runningApplicationsWithBundleIdentifier:
	runningApplicationWithProcessIdentifier:

	Instance Methods
	activateWithOptions:
	forceTerminate
	hide
	terminate
	unhide

	Constants
	NSApplicationActivationOptions
	NSApplicationActivationPolicy

	NSSavePanel Class Reference
	Overview
	Tasks
	Creating Panels
	Configuring Panels
	Configuring Panel Content
	Running Panels
	Accessing User Selection
	Handling Actions

	Class Methods
	savePanel

	Instance Methods
	accessoryView
	allowedFileTypes
	allowsOtherFileTypes
	beginSheetForDirectory:file:modalForWindow:modalDelegate:didEndSelector: contextInfo:
	beginSheetModalForWindow:completionHandler:
	beginWithCompletionHandler:
	cancel:
	canCreateDirectories
	canSelectHiddenExtension
	delegate
	directory
	directoryURL
	filename
	isExpanded
	isExtensionHidden
	message
	nameFieldLabel
	nameFieldStringValue
	ok:
	prompt
	requiredFileType
	runModal
	runModalForDirectory:file:
	selectText:
	setAccessoryView:
	setAllowedFileTypes:
	setAllowsOtherFileTypes:
	setCanCreateDirectories:
	setCanSelectHiddenExtension:
	setDelegate:
	setDirectory:
	setDirectoryURL:
	setExtensionHidden:
	setMessage:
	setNameFieldLabel:
	setNameFieldStringValue:
	setPrompt:
	setRequiredFileType:
	setShowsHiddenFiles:
	setTitle:
	setTreatsFilePackagesAsDirectories:
	showsHiddenFiles
	title
	treatsFilePackagesAsDirectories
	URL
	validateVisibleColumns

	Delegate Methods
	panel:compareFilename:with:caseSensitive:
	panel:directoryDidChange:
	panel:isValidFilename:
	panel:shouldShowFilename:

	Constants
	Button tags

	NSScreen Class Reference
	Overview
	Tasks
	Getting NSScreen Objects
	Getting Screen Information

	Class Methods
	deepestScreen
	mainScreen
	screens

	Instance Methods
	colorSpace
	depth
	deviceDescription
	frame
	supportedWindowDepths
	userSpaceScaleFactor
	visibleFrame

	Notifications
	NSScreenColorSpaceDidChangeNotification

	NSScroller Class Reference
	Class at a Glance
	Overview
	Tasks
	Determining NSScroller Size
	Laying out an NSScroller
	Setting the Knob Position
	Calculating Layout
	Drawing the Parts
	Event Handling
	Setting Control Tint

	Class Methods
	scrollerWidth
	scrollerWidthForControlSize:

	Instance Methods
	arrowsPosition
	checkSpaceForParts
	controlSize
	controlTint
	drawArrow:highlight:
	drawKnob
	drawKnobSlotInRect:highlight:
	drawParts
	highlight:
	hitPart
	knobProportion
	rectForPart:
	setArrowsPosition:
	setControlSize:
	setControlTint:
	setFloatValue:knobProportion:
	setKnobProportion:
	testPart:
	trackKnob:
	trackScrollButtons:
	usableParts

	Constants
	NSScrollerPart
	NSScrollerArrow
	NSScrollArrowPosition
	NSUsableScrollerParts

	NSScrollView Class Reference
	Class at a Glance
	Overview
	Tasks
	Calculating Layout
	Determining Component Sizes
	Managing Graphics Attributes
	Managing the Scrolled Views
	Managing Scrollers
	Managing Rulers
	Setting Scrolling Behavior
	Updating Display After Scrolling
	Arranging Components

	Class Methods
	contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType:
	frameSizeForContentSize:hasHorizontalScroller:hasVerticalScroller:borderType:
	rulerViewClass
	setRulerViewClass:

	Instance Methods
	autohidesScrollers
	backgroundColor
	borderType
	contentSize
	contentView
	documentCursor
	documentView
	documentVisibleRect
	drawsBackground
	hasHorizontalRuler
	hasHorizontalScroller
	hasVerticalRuler
	hasVerticalScroller
	horizontalLineScroll
	horizontalPageScroll
	horizontalRulerView
	horizontalScroller
	lineScroll
	pageScroll
	reflectScrolledClipView:
	rulersVisible
	scrollsDynamically
	scrollWheel:
	setAutohidesScrollers:
	setBackgroundColor:
	setBorderType:
	setContentView:
	setDocumentCursor:
	setDocumentView:
	setDrawsBackground:
	setHasHorizontalRuler:
	setHasHorizontalScroller:
	setHasVerticalRuler:
	setHasVerticalScroller:
	setHorizontalLineScroll:
	setHorizontalPageScroll:
	setHorizontalRulerView:
	setHorizontalScroller:
	setLineScroll:
	setPageScroll:
	setRulersVisible:
	setScrollsDynamically:
	setVerticalLineScroll:
	setVerticalPageScroll:
	setVerticalRulerView:
	setVerticalScroller:
	tile
	verticalLineScroll
	verticalPageScroll
	verticalRulerView
	verticalScroller

	NSSearchField Class Reference
	Overview
	Tasks
	Managing Recent Searches
	Managing Autosave Name

	Instance Methods
	recentsAutosaveName
	recentSearches
	setRecentsAutosaveName:
	setRecentSearches:

	NSSearchFieldCell Class Reference
	Overview
	Tasks
	Managing Buttons
	Custom Layout
	Managing Menu Templates
	Managing Search Modes
	Managing Recent Search Strings

	Instance Methods
	cancelButtonCell
	cancelButtonRectForBounds:
	maximumRecents
	recentsAutosaveName
	recentSearches
	resetCancelButtonCell
	resetSearchButtonCell
	searchButtonCell
	searchButtonRectForBounds:
	searchMenuTemplate
	searchTextRectForBounds:
	sendsSearchStringImmediately
	sendsWholeSearchString
	setCancelButtonCell:
	setMaximumRecents:
	setRecentsAutosaveName:
	setRecentSearches:
	setSearchButtonCell:
	setSearchMenuTemplate:
	setSendsSearchStringImmediately:
	setSendsWholeSearchString:

	Constants
	Menu tags

	NSSecureTextField Class Reference
	Overview

	NSSecureTextFieldCell Class Reference
	Overview
	Tasks
	Working with Character Echo

	Instance Methods
	echosBullets
	setEchosBullets:

	NSSegmentedCell Class Reference
	Overview
	Tasks
	Specifying the Number of Segments
	Specifying the Selected Segment
	Specifying the Tracking Mode
	Configuring Individual Segments
	Drawing Custom Content
	Specifying Segment Visual Styles

	Instance Methods
	drawSegment:inFrame:withView:
	imageForSegment:
	imageScalingForSegment:
	interiorBackgroundStyleForSegment:
	isEnabledForSegment:
	isSelectedForSegment:
	labelForSegment:
	makeNextSegmentKey
	makePreviousSegmentKey
	menuForSegment:
	segmentCount
	segmentStyle
	selectedSegment
	selectSegmentWithTag:
	setEnabled:forSegment:
	setImage:forSegment:
	setImageScaling:forSegment:
	setLabel:forSegment:
	setMenu:forSegment:
	setSegmentCount:
	setSegmentStyle:
	setSelected:forSegment:
	setSelectedSegment:
	setTag:forSegment:
	setToolTip:forSegment:
	setTrackingMode:
	setWidth:forSegment:
	tagForSegment:
	toolTipForSegment:
	trackingMode
	widthForSegment:

	Constants
	NSSegmentSwitchTracking

	NSSegmentedControl Class Reference
	Overview
	Tasks
	Specifying Number of Segments
	Specifying Selected Segment
	Working with Individual Segments
	Specifying Segment Display

	Instance Methods
	imageForSegment:
	imageScalingForSegment:
	isEnabledForSegment:
	isSelectedForSegment:
	labelForSegment:
	menuForSegment:
	segmentCount
	segmentStyle
	selectedSegment
	selectSegmentWithTag:
	setEnabled:forSegment:
	setImage:forSegment:
	setImageScaling:forSegment:
	setLabel:forSegment:
	setMenu:forSegment:
	setSegmentCount:
	setSegmentStyle:
	setSelected:forSegment:
	setSelectedSegment:
	setWidth:forSegment:
	widthForSegment:

	Constants
	Segmented Control Visual Styles

	NSShadow Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Shadow
	Managing a Shadow
	Setting the Shadow

	Instance Methods
	init
	set
	setShadowBlurRadius:
	setShadowColor:
	setShadowOffset:
	shadowBlurRadius
	shadowColor
	shadowOffset

	NSSlider Class Reference
	Overview
	Tasks
	Asking About the Slider’s Appearance
	Changing the Slider’s Appearance
	Asking About the Slider’s Title
	Changing the Slider’s Title
	Asking About the Value Limits
	Changing the Value Limits
	Handling Mouse-down Events
	Managing Tick Marks

	Instance Methods
	acceptsFirstMouse:
	allowsTickMarkValuesOnly
	altIncrementValue
	closestTickMarkValueToValue:
	image
	indexOfTickMarkAtPoint:
	isVertical
	knobThickness
	maxValue
	minValue
	numberOfTickMarks
	rectOfTickMarkAtIndex:
	setAllowsTickMarkValuesOnly:
	setAltIncrementValue:
	setImage:
	setKnobThickness:
	setMaxValue:
	setMinValue:
	setNumberOfTickMarks:
	setTickMarkPosition:
	setTitle:
	setTitleCell:
	setTitleColor:
	setTitleFont:
	tickMarkPosition
	tickMarkValueAtIndex:
	title
	titleCell
	titleColor
	titleFont

	NSSliderCell Class Reference
	Overview
	Tasks
	Asking About the Cell’s Behavior
	Setting the Slider Type
	Changing the Cell’s Behavior
	Displaying the Cell
	Asking About the Cell’s Appearance
	Changing the Cell’s Appearance
	Asking About the Value Limits
	Changing the Value Limits
	Managing Tick Marks

	Class Methods
	prefersTrackingUntilMouseUp

	Instance Methods
	allowsTickMarkValuesOnly
	altIncrementValue
	closestTickMarkValueToValue:
	drawBarInside:flipped:
	drawKnob
	drawKnob:
	indexOfTickMarkAtPoint:
	isVertical
	knobRectFlipped:
	knobThickness
	maxValue
	minValue
	numberOfTickMarks
	rectOfTickMarkAtIndex:
	setAllowsTickMarkValuesOnly:
	setAltIncrementValue:
	setKnobThickness:
	setMaxValue:
	setMinValue:
	setNumberOfTickMarks:
	setSliderType:
	setTickMarkPosition:
	setTitle:
	setTitleCell:
	setTitleColor:
	setTitleFont:
	sliderType
	tickMarkPosition
	tickMarkValueAtIndex:
	title
	titleCell
	titleColor
	titleFont
	trackRect

	Constants
	NSTickMarkPosition
	NSSliderType

	NSSound Class Reference
	Overview
	Tasks
	Creating Sounds
	Configuring Sounds
	Getting Sound Information
	Playing Sounds
	Writing Sounds
	Deprecated

	Class Methods
	canInitWithPasteboard:
	soundNamed:
	soundUnfilteredFileTypes
	soundUnfilteredPasteboardTypes
	soundUnfilteredTypes

	Instance Methods
	channelMapping
	currentTime
	delegate
	duration
	initWithContentsOfFile:byReference:
	initWithContentsOfURL:byReference:
	initWithData:
	initWithPasteboard:
	isPlaying
	loops
	name
	pause
	play
	playbackDeviceIdentifier
	resume
	setChannelMapping:
	setCurrentTime:
	setDelegate:
	setLoops:
	setName:
	setPlaybackDeviceIdentifier:
	setVolume:
	stop
	volume
	writeToPasteboard:

	Constants
	NSPasteboard Type for Sound Data

	NSSpeechRecognizer Class Reference
	Overview
	Tasks
	Creating Speech Recognizers
	Configuring Speech Recognizers
	Listening

	Instance Methods
	blocksOtherRecognizers
	commands
	delegate
	displayedCommandsTitle
	init
	listensInForegroundOnly
	setBlocksOtherRecognizers:
	setCommands:
	setDelegate:
	setDisplayedCommandsTitle:
	setListensInForegroundOnly:
	startListening
	stopListening

	NSSpeechSynthesizer Class Reference
	Overview
	Speech Feedback Window

	Tasks
	Creating Speech Synthesizers
	Configuring Speech Synthesizers
	Getting Speech Synthesizer Information
	Getting Speech State
	Synthesizing Speech
	Getting Phonemes

	Class Methods
	attributesForVoice:
	availableVoices
	defaultVoice
	isAnyApplicationSpeaking

	Instance Methods
	addSpeechDictionary:
	continueSpeaking
	delegate
	initWithVoice:
	isSpeaking
	objectForProperty:error:
	pauseSpeakingAtBoundary:
	phonemesFromText:
	rate
	setDelegate:
	setObject:forProperty:error:
	setRate:
	setUsesFeedbackWindow:
	setVoice:
	setVolume:
	startSpeakingString:
	startSpeakingString:toURL:
	stopSpeaking
	stopSpeakingAtBoundary:
	usesFeedbackWindow
	voice
	volume

	Constants
	Voice Attributes Keys
	Voice Gender Keys
	Speech Synthesizer Property Keys
	Speaking Modes for NSSpeechInputModeProperty
	Speaking Modes for NSSpeechNumberModeProperty
	NSSpeechStatusProperty Dictionary Keys
	NSSpeechErrorProperty Dictionary Keys
	NSSpeechSynthesizerInfoProperty Dictionary Keys
	NSSpeechPhonemeSymbolsProperty Dictionary Keys
	Speech Command Delimiter Keys
	Speech Dictionary Properties Keys
	NSSpeechBoundary

	NSSpellChecker Class Reference
	Overview
	Tasks
	Getting the Spell Checker
	Configuring Spell Checkers Languages
	Managing Panels
	Checking Strings for Spelling and Grammar
	Managing the Spell-Checking Process
	Data Detector Interaction

	Class Methods
	sharedSpellChecker
	sharedSpellCheckerExists
	uniqueSpellDocumentTag

	Instance Methods
	accessoryView
	automaticallyIdentifiesLanguages
	availableLanguages
	checkGrammarOfString:startingAt:language:wrap:inSpellDocumentWithTag:details:
	checkSpellingOfString:startingAt:
	checkSpellingOfString:startingAt:language:wrap:inSpellDocumentWithTag:wordCount:
	checkString:range:types:options:inSpellDocumentWithTag:orthography:wordCount:
	closeSpellDocumentWithTag:
	completionsForPartialWordRange:inString:language:inSpellDocumentWithTag:
	countWordsInString:language:
	forgetWord:
	guessesForWord:
	guessesForWordRange:inString:language:inSpellDocumentWithTag:
	hasLearnedWord:
	ignoredWordsInSpellDocumentWithTag:
	ignoreWord:inSpellDocumentWithTag:
	language
	learnWord:
	menuForResult:string:options:atLocation:inView:
	requestCheckingOfString:range:types:options:inSpellDocumentWithTag: completionHandler:
	setAccessoryView:
	setAutomaticallyIdentifiesLanguages:
	setIgnoredWords:inSpellDocumentWithTag:
	setLanguage:
	setSubstitutionsPanelAccessoryViewController:
	setWordFieldStringValue:
	spellingPanel
	substitutionsPanel
	substitutionsPanelAccessoryViewController
	unlearnWord:
	updatePanels
	updateSpellingPanelWithGrammarString:detail:
	updateSpellingPanelWithMisspelledWord:
	userPreferredLanguages
	userQuotesArrayForLanguage:
	userReplacementsDictionary

	Constants
	Spell Checking Option Dictionary Keys

	NSSplitView Class Reference
	Overview
	Tasks
	Managing Subviews
	Managing Split View Orientation
	Assigning a Delegate
	Configuring and Drawing View Dividers
	Saving Subview Positions
	Configuring Pane Splitters
	Constraining Split Position

	Instance Methods
	adjustSubviews
	autosaveName
	delegate
	dividerColor
	dividerStyle
	dividerThickness
	drawDividerInRect:
	isPaneSplitter
	isSubviewCollapsed:
	isVertical
	maxPossiblePositionOfDividerAtIndex:
	minPossiblePositionOfDividerAtIndex:
	setAutosaveName:
	setDelegate:
	setDividerStyle:
	setIsPaneSplitter:
	setPosition:ofDividerAtIndex:
	setVertical:

	Constants
	Split View Divider Styles

	Notifications
	NSSplitViewDidResizeSubviewsNotification
	NSSplitViewWillResizeSubviewsNotification

	NSStatusBar Class Reference
	Overview
	Tasks
	Getting the System-Wide Instance
	Managing Status Items
	Getting Status-Bar Attributes

	Class Methods
	systemStatusBar

	Instance Methods
	isVertical
	removeStatusItem:
	statusItemWithLength:
	thickness

	Constants
	Status Bar Item Length

	NSStatusItem Class Reference
	Overview
	Tasks
	Getting the Item’s Status Bar
	Configuring the Status Item’s Appearance
	Managing the Status Item’s Behavior
	Managing a Custom View
	Drawing a Status Item

	Instance Methods
	action
	alternateImage
	attributedTitle
	doubleAction
	drawStatusBarBackgroundInRect:withHighlight:
	highlightMode
	image
	isEnabled
	length
	menu
	popUpStatusItemMenu:
	sendActionOn:
	setAction:
	setAlternateImage:
	setAttributedTitle:
	setDoubleAction:
	setEnabled:
	setHighlightMode:
	setImage:
	setLength:
	setMenu:
	setTarget:
	setTitle:
	setToolTip:
	setView:
	statusBar
	target
	title
	toolTip
	view

	NSStepper Class Reference
	Overview
	Tasks
	Specifying Value Range
	Specifying How the Stepper Responds

	Instance Methods
	autorepeat
	increment
	maxValue
	minValue
	setAutorepeat:
	setIncrement:
	setMaxValue:
	setMinValue:
	setValueWraps:
	valueWraps

	NSStepperCell Class Reference
	Overview
	Tasks
	Specifying Value Range
	Specifying How Stepper Cell Responds

	Instance Methods
	autorepeat
	increment
	maxValue
	minValue
	setAutorepeat:
	setIncrement:
	setMaxValue:
	setMinValue:
	setValueWraps:
	valueWraps

	NSString Application Kit Additions Reference
	Overview
	Tasks
	Drawing String Objects
	Getting the Bounding Rect of Rendered Strings

	Instance Methods
	boundingRectWithSize:options:attributes:
	drawAtPoint:withAttributes:
	drawInRect:withAttributes:
	drawWithRect:options:attributes:
	sizeWithAttributes:

	Constants
	NSStringDrawingOptions

	NSTableColumn Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSTableColumn
	Setting the NSTableView
	Controlling Size
	Setting Component Cells
	Setting the Identifier
	Controlling Editability
	Sorting
	Setting Column Visibility
	Setting Tool Tips
	Deprecated Methods

	Instance Methods
	dataCell
	dataCellForRow:
	headerCell
	headerToolTip
	identifier
	initWithIdentifier:
	isEditable
	isHidden
	isResizable
	maxWidth
	minWidth
	resizingMask
	setDataCell:
	setEditable:
	setHeaderCell:
	setHeaderToolTip:
	setHidden:
	setIdentifier:
	setMaxWidth:
	setMinWidth:
	setResizable:
	setResizingMask:
	setSortDescriptorPrototype:
	setTableView:
	setWidth:
	sizeToFit
	sortDescriptorPrototype
	tableView
	width

	Constants
	Resizing Modes

	NSTableHeaderCell Class Reference
	Overview
	Tasks
	Sorting

	Instance Methods
	drawSortIndicatorWithFrame:inView:ascending:priority:
	sortIndicatorRectForBounds:

	NSTableHeaderView Class Reference
	Overview
	Tasks
	Setting the Table View
	Checking Altered Columns
	Utility Methods

	Instance Methods
	columnAtPoint:
	draggedColumn
	draggedDistance
	headerRectOfColumn:
	resizedColumn
	setTableView:
	tableView

	NSTableView Class Reference
	Class at a Glance
	Overview
	Tasks
	Setting the Data Source
	Loading Data
	Target-action Behavior
	Configuring Behavior
	Setting Display Attributes
	Column Management
	Selecting Columns and Rows
	Managing Type Select
	Getting and Setting Column Focus
	Table Dimensions
	Displaying Cell
	Editing Cells
	Setting Auxiliary Views
	Layout Support
	Drawing
	Scrolling
	Persistence
	Setting the Delegate
	Highlightable Column Headers
	Dragging
	Sorting
	Text Delegate Methods
	Deprecated Methods

	Instance Methods
	addTableColumn:
	allowsColumnReordering
	allowsColumnResizing
	allowsColumnSelection
	allowsEmptySelection
	allowsMultipleSelection
	allowsTypeSelect
	autoresizesAllColumnsToFit
	autosaveName
	autosaveTableColumns
	backgroundColor
	canDragRowsWithIndexes:atPoint:
	clickedColumn
	clickedRow
	columnAtPoint:
	columnAutoresizingStyle
	columnIndexesInRect:
	columnsInRect:
	columnWithIdentifier:
	cornerView
	dataSource
	delegate
	deselectAll:
	deselectColumn:
	deselectRow:
	doubleAction
	draggingDestinationFeedbackStyle
	dragImageForRows:event:dragImageOffset:
	dragImageForRowsWithIndexes:tableColumns:event:offset:
	drawBackgroundInClipRect:
	drawGridInClipRect:
	drawRow:clipRect:
	drawsGrid
	editColumn:row:withEvent:select:
	editedColumn
	editedRow
	focusedColumn
	frameOfCellAtColumn:row:
	gridColor
	gridStyleMask
	headerView
	highlightedTableColumn
	highlightSelectionInClipRect:
	indicatorImageInTableColumn:
	intercellSpacing
	isColumnSelected:
	isRowSelected:
	moveColumn:toColumn:
	noteHeightOfRowsWithIndexesChanged:
	noteNumberOfRowsChanged
	numberOfColumns
	numberOfRows
	numberOfSelectedColumns
	numberOfSelectedRows
	performClickOnCellAtColumn:row:
	preparedCellAtColumn:row:
	rectOfColumn:
	rectOfRow:
	reloadData
	reloadDataForRowIndexes:columnIndexes:
	removeTableColumn:
	rowAtPoint:
	rowHeight
	rowsInRect:
	scrollColumnToVisible:
	scrollRowToVisible:
	selectAll:
	selectColumn:byExtendingSelection:
	selectColumnIndexes:byExtendingSelection:
	selectedColumn
	selectedColumnEnumerator
	selectedColumnIndexes
	selectedRow
	selectedRowEnumerator
	selectedRowIndexes
	selectionHighlightStyle
	selectRow:byExtendingSelection:
	selectRowIndexes:byExtendingSelection:
	setAllowsColumnReordering:
	setAllowsColumnResizing:
	setAllowsColumnSelection:
	setAllowsEmptySelection:
	setAllowsMultipleSelection:
	setAllowsTypeSelect:
	setAutoresizesAllColumnsToFit:
	setAutosaveName:
	setAutosaveTableColumns:
	setBackgroundColor:
	setColumnAutoresizingStyle:
	setCornerView:
	setDataSource:
	setDelegate:
	setDoubleAction:
	setDraggingDestinationFeedbackStyle:
	setDraggingSourceOperationMask:forLocal:
	setDrawsGrid:
	setDropRow:dropOperation:
	setFocusedColumn:
	setGridColor:
	setGridStyleMask:
	setHeaderView:
	setHighlightedTableColumn:
	setIndicatorImage:inTableColumn:
	setIntercellSpacing:
	setRowHeight:
	setSelectionHighlightStyle:
	setSortDescriptors:
	setUsesAlternatingRowBackgroundColors:
	setVerticalMotionCanBeginDrag:
	shouldFocusCell:atColumn:row:
	sizeLastColumnToFit
	sizeToFit
	sortDescriptors
	tableColumns
	tableColumnWithIdentifier:
	textDidBeginEditing:
	textDidChange:
	textDidEndEditing:
	textShouldBeginEditing:
	textShouldEndEditing:
	tile
	usesAlternatingRowBackgroundColors
	verticalMotionCanBeginDrag

	Delegate Methods
	tableView:writeRows:toPasteboard:

	Constants
	NSTableViewDraggingDestinationFeedbackStyle
	Drop Operations
	Grid styles
	Autoresizing Styles
	Selection Styles

	Notifications
	NSTableViewColumnDidMoveNotification
	NSTableViewColumnDidResizeNotification
	NSTableViewSelectionDidChangeNotification
	NSTableViewSelectionIsChangingNotification

	NSTabView Class Reference
	Overview
	Tasks
	Adding and Removing Tabs
	Accessing Tabs
	Selecting a Tab
	Modifying the Font
	Modifying the Tab Type
	Modifying Controls Tint
	Manipulating the Background
	Determining the Size
	Truncating Tab Labels
	Assigning a Delegate
	Event Handling

	Instance Methods
	addTabViewItem:
	allowsTruncatedLabels
	contentRect
	controlSize
	controlTint
	delegate
	drawsBackground
	font
	indexOfTabViewItem:
	indexOfTabViewItemWithIdentifier:
	insertTabViewItem:atIndex:
	minimumSize
	numberOfTabViewItems
	removeTabViewItem:
	selectedTabViewItem
	selectFirstTabViewItem:
	selectLastTabViewItem:
	selectNextTabViewItem:
	selectPreviousTabViewItem:
	selectTabViewItem:
	selectTabViewItemAtIndex:
	selectTabViewItemWithIdentifier:
	setAllowsTruncatedLabels:
	setControlSize:
	setControlTint:
	setDelegate:
	setDrawsBackground:
	setFont:
	setTabViewType:
	tabViewItemAtIndex:
	tabViewItemAtPoint:
	tabViewItems
	tabViewType
	takeSelectedTabViewItemFromSender:

	Constants
	NSTabViewType
	NSAppKitVersionNumberWithDirectionalTabs

	NSTabViewItem Class Reference
	Overview
	Tasks
	Creating a Tab View Item
	Working with Labels
	Checking the Tab Display State
	Assigning an Identifier Object
	Setting the Color
	Assigning a View
	Setting the Initial First Responder
	Accessing the Parent Tab View
	Getting and Setting Tooltips

	Instance Methods
	color
	drawLabel:inRect:
	identifier
	initialFirstResponder
	initWithIdentifier:
	label
	setColor:
	setIdentifier:
	setInitialFirstResponder:
	setLabel:
	setToolTip:
	setView:
	sizeOfLabel:
	tabState
	tabView
	toolTip
	view

	Constants
	NSTabState

	NSText Class Reference
	Class at a Glance
	Overview
	Adopted Protocols
	Tasks
	Getting the Characters
	Setting Graphics Attributes
	Setting Behavioral Attributes
	Using the Font Panel and Menu
	Using the Ruler
	Changing the Selection
	Replacing Text
	Action Methods for Editing
	Changing the Font
	Setting Text Alignment
	Setting Text Color
	Writing Direction
	Setting Superscripting and Subscripting
	Underlining Text
	Reading and Writing RTF Files
	Checking Spelling
	Constraining Size
	Scrolling
	Setting the Delegate

	Instance Methods
	alignCenter:
	alignLeft:
	alignment
	alignRight:
	backgroundColor
	baseWritingDirection
	changeFont:
	checkSpelling:
	copy:
	copyFont:
	copyRuler:
	cut:
	delegate
	delete:
	drawsBackground
	font
	importsGraphics
	isEditable
	isFieldEditor
	isHorizontallyResizable
	isRichText
	isRulerVisible
	isSelectable
	isVerticallyResizable
	maxSize
	minSize
	paste:
	pasteFont:
	pasteRuler:
	readRTFDFromFile:
	replaceCharactersInRange:withRTF:
	replaceCharactersInRange:withRTFD:
	replaceCharactersInRange:withString:
	RTFDFromRange:
	RTFFromRange:
	scrollRangeToVisible:
	selectAll:
	selectedRange
	setAlignment:
	setBackgroundColor:
	setBaseWritingDirection:
	setDelegate:
	setDrawsBackground:
	setEditable:
	setFieldEditor:
	setFont:
	setFont:range:
	setHorizontallyResizable:
	setImportsGraphics:
	setMaxSize:
	setMinSize:
	setRichText:
	setSelectable:
	setSelectedRange:
	setString:
	setTextColor:
	setTextColor:range:
	setUsesFontPanel:
	setVerticallyResizable:
	showGuessPanel:
	sizeToFit
	string
	subscript:
	superscript:
	textColor
	toggleRuler:
	underline:
	unscript:
	usesFontPanel
	writeRTFDToFile:atomically:

	Constants
	NSTextAlignment
	NSWritingDirection
	Additional Writing Directions
	Movement Codes
	Commonly-used Unicode characters

	Notifications
	NSTextDidBeginEditingNotification
	NSTextDidChangeNotification
	NSTextDidEndEditingNotification

	NSTextAttachment Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing an NSTextAttachment Object
	Setting the File Wrapper
	Setting the Attachment Cell

	Instance Methods
	attachmentCell
	fileWrapper
	initWithFileWrapper:
	setAttachmentCell:
	setFileWrapper:

	Constants
	Attachment Character

	NSTextAttachmentCell Class Reference
	Overview
	Adopted Protocols

	NSTextBlock Class Reference
	Overview
	Tasks
	Creating Text Blocks
	Working with Dimensions of Content
	Getting and Setting Margins, Borders, and Padding
	Getting and Setting Alignment
	Working with Color
	Determining Size and Position of a Text Block
	Drawing Colors and Decorations

	Instance Methods
	backgroundColor
	borderColorForEdge:
	boundsRectForContentRect:inRect:textContainer:characterRange:
	contentWidth
	contentWidthValueType
	drawBackgroundWithFrame:inView:characterRange:layoutManager:
	init
	rectForLayoutAtPoint:inRect:textContainer:characterRange:
	setBackgroundColor:
	setBorderColor:
	setBorderColor:forEdge:
	setContentWidth:type:
	setValue:type:forDimension:
	setVerticalAlignment:
	setWidth:type:forLayer:
	setWidth:type:forLayer:edge:
	valueForDimension:
	valueTypeForDimension:
	verticalAlignment
	widthForLayer:edge:
	widthValueTypeForLayer:edge:

	Constants
	Text Block Value Type Constants
	Text Block Dimension Constants
	Text Block Layer Constants
	Text Block Vertical Alignment Constants

	NSTextContainer Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an Instance
	Managing Text Components
	Controlling Size
	Setting Line Fragment Padding
	Calculating Text Layout
	Mouse Hit Testing

	Instance Methods
	containerSize
	containsPoint:
	heightTracksTextView
	initWithContainerSize:
	isSimpleRectangularTextContainer
	layoutManager
	lineFragmentPadding
	lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect:
	replaceLayoutManager:
	setContainerSize:
	setHeightTracksTextView:
	setLayoutManager:
	setLineFragmentPadding:
	setTextView:
	setWidthTracksTextView:
	textView
	widthTracksTextView

	Constants
	NSLineSweepDirection
	NSLineMovementDirection

	NSTextField Class Reference
	Overview
	Tasks
	Controlling Editability and Selectability
	Controlling Rich Text Behavior
	Setting the Text Color
	Controlling the Background
	Setting a Border
	Selecting the Text
	Working with the Responder Chain
	Using Keyboard Interface Control
	Setting the Delegate
	NSText Delegate Method Implementations

	Instance Methods
	acceptsFirstResponder
	allowsEditingTextAttributes
	backgroundColor
	bezelStyle
	delegate
	drawsBackground
	importsGraphics
	isBezeled
	isBordered
	isEditable
	isSelectable
	nextText
	previousText
	selectText:
	setAllowsEditingTextAttributes:
	setBackgroundColor:
	setBezeled:
	setBezelStyle:
	setBordered:
	setDelegate:
	setDrawsBackground:
	setEditable:
	setImportsGraphics:
	setNextText:
	setPreviousText:
	setSelectable:
	setTextColor:
	setTitleWithMnemonic:
	textColor
	textDidBeginEditing:
	textDidChange:
	textDidEndEditing:
	textShouldBeginEditing:
	textShouldEndEditing:

	NSTextFieldCell Class Reference
	Overview
	Designated Initializers

	Tasks
	Setting the Text Color
	Setting the Bezel Style
	Controlling the Background
	Managing the Field Editor
	Managing Placeholder Strings
	Accessing Input Source Locales

	Instance Methods
	allowedInputSourceLocales
	backgroundColor
	bezelStyle
	drawsBackground
	placeholderAttributedString
	placeholderString
	setAllowedInputSourceLocales:
	setBackgroundColor:
	setBezelStyle:
	setDrawsBackground:
	setPlaceholderAttributedString:
	setPlaceholderString:
	setTextColor:
	setUpFieldEditorAttributes:
	setWantsNotificationForMarkedText:
	textColor

	Constants
	NSTextFieldBezelStyle

	NSTextInputContext Class Reference
	Overview
	Tasks
	Creating an Input Context
	Getting the Input Context and Client
	Configuring the Input Context
	Activating the Input Context
	Handling Input Sources

	Properties
	acceptsGlyphInfo
	allowedInputSourceLocales
	client
	keyboardInputSources
	selectedKeyboardInputSource

	Class Methods
	currentInputContext
	localizedNameForInputSource:

	Instance Methods
	activate
	deactivate
	discardMarkedText
	handleEvent:
	initWithClient:
	invalidateCharacterCoordinates

	Notifications
	NSTextInputContextKeyboardSelectionDidChangeNotification

	NSTextList Class Reference
	Overview
	Tasks
	Creating a Text List
	Working with Markers
	Getting List Options
	Managing Item Numbering

	Instance Methods
	initWithMarkerFormat:options:
	listOptions
	markerForItemNumber:
	markerFormat
	setStartingItemNumber:
	startingItemNumber

	Constants

	NSTextStorage Class Reference
	Overview
	Tasks
	Managing NSLayoutManager Objects
	Handling Text Edited Messages
	Determining the Nature of Changes
	Determining the Extent of Changes
	Setting the Delegate
	Getting and Setting Scriptable Properties

	Instance Methods
	addLayoutManager:
	attributeRuns
	changeInLength
	characters
	delegate
	edited:range:changeInLength:
	editedMask
	editedRange
	ensureAttributesAreFixedInRange:
	fixesAttributesLazily
	font
	foregroundColor
	invalidateAttributesInRange:
	layoutManagers
	paragraphs
	processEditing
	removeLayoutManager:
	setAttributeRuns:
	setCharacters:
	setDelegate:
	setFont:
	setForegroundColor:
	setParagraphs:
	setWords:
	words

	Constants
	Change notifications

	Notifications
	NSTextStorageDidProcessEditingNotification
	NSTextStorageWillProcessEditingNotification

	NSTextTab Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating an NSTextTab
	Getting Tab Stop Information
	Getting Text Tab Information

	Instance Methods
	alignment
	initWithTextAlignment:location:options:
	initWithType:location:
	location
	options
	tabStopType

	Constants
	NSTextTabType
	Terminating character

	NSTextTable Class Reference
	Overview
	Tasks
	Getting and Setting Number of Columns
	Getting and Setting Layout Algorithm
	Collapsing Borders
	Hiding Empty Cells
	Determining Layout Rectangles
	Drawing the Table

	Instance Methods
	boundsRectForBlock:contentRect:inRect:textContainer:characterRange:
	collapsesBorders
	drawBackgroundForBlock:withFrame:inView:characterRange:layoutManager:
	hidesEmptyCells
	layoutAlgorithm
	numberOfColumns
	rectForBlock:layoutAtPoint:inRect:textContainer:characterRange:
	setCollapsesBorders:
	setHidesEmptyCells:
	setLayoutAlgorithm:
	setNumberOfColumns:

	Constants
	NSTextTableLayoutAlgorithm

	NSTextTableBlock Class Reference
	Overview
	Tasks
	Creation
	Getting the Block’s Enclosing Table
	Getting Information About the Block’s Position in Its Enclosing Table

	Instance Methods
	columnSpan
	initWithTable:startingRow:rowSpan:startingColumn:columnSpan:
	rowSpan
	startingColumn
	startingRow
	table

	NSTextView Class Reference
	Overview
	About Delegate Methods

	Tasks
	Initializing
	Registering Services Information
	Accessing Text System Objects
	Setting Graphics Attributes
	Controlling Display
	Inserting Text
	Setting Behavioral Attributes
	Using the Ruler
	Managing the Selection
	Managing the Pasteboard
	Setting Text Attributes
	Clicking and Pasting
	Undo Support
	Methods for Subclasses to Use or Override
	Working With the Spelling Checker
	NSRulerView Client Methods
	Assigning a Delegate
	Dragging
	Speaking Text
	Working with Panels
	Text Completion
	Text Checking and Substitutions
	Changing First Responder Status

	Class Methods
	registerForServices

	Instance Methods
	acceptableDragTypes
	acceptsGlyphInfo
	alignJustified:
	allowedInputSourceLocales
	allowsDocumentBackgroundColorChange
	allowsImageEditing
	allowsUndo
	backgroundColor
	becomeFirstResponder
	breakUndoCoalescing
	changeAttributes:
	changeColor:
	changeDocumentBackgroundColor:
	characterIndexForInsertionAtPoint:
	checkTextInDocument:
	checkTextInRange:types:options:
	checkTextInSelection:
	cleanUpAfterDragOperation
	clickedOnLink:atIndex:
	complete:
	completionsForPartialWordRange:indexOfSelectedItem:
	defaultParagraphStyle
	delegate
	didChangeText
	displaysLinkToolTips
	dragImageForSelectionWithEvent:origin:
	dragOperationForDraggingInfo:type:
	dragSelectionWithEvent:offset:slideBack:
	drawInsertionPointInRect:color:turnedOn:
	drawsBackground
	drawViewBackgroundInRect:
	enabledTextCheckingTypes
	handleTextCheckingResults:forRange:types:options:orthography:wordCount:
	importsGraphics
	initWithFrame:
	initWithFrame:textContainer:
	insertCompletion:forPartialWordRange:movement:isFinal:
	insertionPointColor
	insertText:
	invalidateTextContainerOrigin
	isAutomaticDashSubstitutionEnabled
	isAutomaticDataDetectionEnabled
	isAutomaticLinkDetectionEnabled
	isAutomaticQuoteSubstitutionEnabled
	isAutomaticSpellingCorrectionEnabled
	isAutomaticTextReplacementEnabled
	isCoalescingUndo
	isContinuousSpellCheckingEnabled
	isEditable
	isFieldEditor
	isGrammarCheckingEnabled
	isRichText
	isRulerVisible
	isSelectable
	layoutManager
	linkTextAttributes
	loosenKerning:
	lowerBaseline:
	markedTextAttributes
	orderFrontLinkPanel:
	orderFrontListPanel:
	orderFrontSpacingPanel:
	orderFrontSubstitutionsPanel:
	orderFrontTablePanel:
	outline:
	pasteAsPlainText:
	pasteAsRichText:
	performFindPanelAction:
	preferredPasteboardTypeFromArray:restrictedToTypesFromArray:
	raiseBaseline:
	rangeForUserCharacterAttributeChange
	rangeForUserCompletion
	rangeForUserParagraphAttributeChange
	rangeForUserTextChange
	rangesForUserCharacterAttributeChange
	rangesForUserParagraphAttributeChange
	rangesForUserTextChange
	readablePasteboardTypes
	readSelectionFromPasteboard:
	readSelectionFromPasteboard:type:
	replaceTextContainer:
	resignFirstResponder
	rulerView:didAddMarker:
	rulerView:didMoveMarker:
	rulerView:didRemoveMarker:
	rulerView:handleMouseDown:
	rulerView:shouldAddMarker:
	rulerView:shouldMoveMarker:
	rulerView:shouldRemoveMarker:
	rulerView:willAddMarker:atLocation:
	rulerView:willMoveMarker:toLocation:
	selectedRanges
	selectedTextAttributes
	selectionAffinity
	selectionGranularity
	selectionRangeForProposedRange:granularity:
	setAcceptsGlyphInfo:
	setAlignment:range:
	setAllowedInputSourceLocales:
	setAllowsDocumentBackgroundColorChange:
	setAllowsImageEditing:
	setAllowsUndo:
	setAutomaticDashSubstitutionEnabled:
	setAutomaticDataDetectionEnabled:
	setAutomaticLinkDetectionEnabled:
	setAutomaticQuoteSubstitutionEnabled:
	setAutomaticSpellingCorrectionEnabled:
	setAutomaticTextReplacementEnabled:
	setBackgroundColor:
	setBaseWritingDirection:range:
	setConstrainedFrameSize:
	setContinuousSpellCheckingEnabled:
	setDefaultParagraphStyle:
	setDelegate:
	setDisplaysLinkToolTips:
	setDrawsBackground:
	setEditable:
	setEnabledTextCheckingTypes:
	setFieldEditor:
	setGrammarCheckingEnabled:
	setImportsGraphics:
	setInsertionPointColor:
	setLinkTextAttributes:
	setMarkedTextAttributes:
	setNeedsDisplayInRect:avoidAdditionalLayout:
	setRichText:
	setRulerVisible:
	setSelectable:
	setSelectedRange:
	setSelectedRange:affinity:stillSelecting:
	setSelectedRanges:
	setSelectedRanges:affinity:stillSelecting:
	setSelectedTextAttributes:
	setSelectionGranularity:
	setSmartInsertDeleteEnabled:
	setSpellingState:range:
	setTextContainer:
	setTextContainerInset:
	setTypingAttributes:
	setUsesFindPanel:
	setUsesFontPanel:
	setUsesRuler:
	shouldChangeTextInRange:replacementString:
	shouldChangeTextInRanges:replacementStrings:
	shouldDrawInsertionPoint
	showFindIndicatorForRange:
	smartDeleteRangeForProposedRange:
	smartInsertAfterStringForString:replacingRange:
	smartInsertBeforeStringForString:replacingRange:
	smartInsertDeleteEnabled
	smartInsertForString:replacingRange:beforeString:afterString:
	spellCheckerDocumentTag
	startSpeaking:
	stopSpeaking:
	textContainer
	textContainerInset
	textContainerOrigin
	textStorage
	tightenKerning:
	toggleAutomaticDashSubstitution:
	toggleAutomaticDataDetection:
	toggleAutomaticLinkDetection:
	toggleAutomaticQuoteSubstitution:
	toggleAutomaticSpellingCorrection:
	toggleAutomaticTextReplacement:
	toggleBaseWritingDirection:
	toggleContinuousSpellChecking:
	toggleGrammarChecking:
	toggleSmartInsertDelete:
	toggleTraditionalCharacterShape:
	turnOffKerning:
	turnOffLigatures:
	typingAttributes
	updateDragTypeRegistration
	updateFontPanel
	updateInsertionPointStateAndRestartTimer:
	updateRuler
	useAllLigatures:
	usesFindPanel
	usesFontPanel
	usesRuler
	useStandardKerning:
	useStandardLigatures:
	validRequestorForSendType:returnType:
	writablePasteboardTypes
	writeSelectionToPasteboard:type:
	writeSelectionToPasteboard:types:

	Constants
	NSSelectionGranularity
	NSSelectionAffinity
	NSFindPanelAction
	Input Sources Locale Identifiers
	Find Panel Search Metadata
	NSFindPanelSubstringMatchType

	Notifications
	NSTextViewDidChangeSelectionNotification
	NSTextViewWillChangeNotifyingTextViewNotification
	NSTextViewDidChangeTypingAttributesNotification

	NSTokenField Class Reference
	Overview
	Tasks
	Configuring the Token Style
	Configuring the Tokenizing Character Set
	Configuring the Completion Delay
	Getting and Setting the Delegate

	Class Methods
	defaultCompletionDelay
	defaultTokenizingCharacterSet

	Instance Methods
	completionDelay
	delegate
	setCompletionDelay:
	setDelegate:
	setTokenizingCharacterSet:
	setTokenStyle:
	tokenizingCharacterSet
	tokenStyle

	NSTokenFieldCell Class Reference
	Overview
	Tasks
	Managing the Token Style
	Managing the Tokenizing Character Set
	Configuring the Completion Delay
	Managing the Delegate

	Class Methods
	defaultCompletionDelay
	defaultTokenizingCharacterSet

	Instance Methods
	completionDelay
	delegate
	setCompletionDelay:
	setDelegate:
	setTokenizingCharacterSet:
	setTokenStyle:
	tokenizingCharacterSet
	tokenStyle

	Constants
	NSTokenStyle

	NSToolbar Class Reference
	Overview
	Tasks
	Creating an NSToolbar Object
	Toolbar Attributes
	Getting and Setting the Delegate
	Managing Items on the Toolbar
	Displaying the Toolbar
	Toolbar Customization
	Autosaving the Configuration
	Validating Visible Items

	Instance Methods
	allowsUserCustomization
	autosavesConfiguration
	configurationDictionary
	customizationPaletteIsRunning
	delegate
	displayMode
	identifier
	initWithIdentifier:
	insertItemWithItemIdentifier:atIndex:
	isVisible
	items
	removeItemAtIndex:
	runCustomizationPalette:
	selectedItemIdentifier
	setAllowsUserCustomization:
	setAutosavesConfiguration:
	setConfigurationFromDictionary:
	setDelegate:
	setDisplayMode:
	setSelectedItemIdentifier:
	setShowsBaselineSeparator:
	setSizeMode:
	setVisible:
	showsBaselineSeparator
	sizeMode
	validateVisibleItems
	visibleItems

	Constants
	NSToolbarDisplayMode
	NSToolbarSizeMode

	Notifications
	NSToolbarDidRemoveItemNotification
	NSToolbarWillAddItemNotification

	NSToolbarItem Class Reference
	Overview
	Adopted Protocols
	Tasks
	Creating a Toolbar Item
	Managing Attributes
	Visibility Priority
	Validation
	Controlling Duplicates

	Instance Methods
	action
	allowsDuplicatesInToolbar
	autovalidates
	image
	initWithItemIdentifier:
	isEnabled
	itemIdentifier
	label
	maxSize
	menuFormRepresentation
	minSize
	paletteLabel
	setAction:
	setAutovalidates:
	setEnabled:
	setImage:
	setLabel:
	setMaxSize:
	setMenuFormRepresentation:
	setMinSize:
	setPaletteLabel:
	setTag:
	setTarget:
	setToolTip:
	setView:
	setVisibilityPriority:
	tag
	target
	toolbar
	toolTip
	validate
	view
	visibilityPriority

	Constants
	Standard Identifiers
	Item Priority

	NSToolbarItemGroup Class Reference
	Overview
	Tasks
	Working with Subitems

	Instance Methods
	setSubitems:
	subitems

	NSTouch Class Reference
	Overview
	Tasks
	Properties of This Touch
	Properties of Touch Device

	Properties
	device
	deviceSize
	identity
	isResting
	normalizedPosition
	phase

	Constants
	NSTouchPhase

	NSTrackingArea Class Reference
	Overview
	Adopted Protocols
	Tasks
	Initializing the Tracking-Area Object
	Getting Object Attributes

	Instance Methods
	initWithRect:options:owner:userInfo:
	options
	owner
	rect
	userInfo

	Constants
	NSTrackingAreaOptions

	NSTreeController Class Reference
	Overview
	Adopted Protocols
	Tasks
	Managing Sort Descriptors
	Setting the Content
	Arranging Objects
	Getting the Current Selection
	Managing Selections
	Adding, Inserting and Removing Objects
	Specifying Model Attributes

	Instance Methods
	add:
	addChild:
	addSelectionIndexPaths:
	alwaysUsesMultipleValuesMarker
	arrangedObjects
	avoidsEmptySelection
	canAddChild
	canInsert
	canInsertChild
	childrenKeyPath
	childrenKeyPathForNode:
	content
	countKeyPath
	countKeyPathForNode:
	insert:
	insertChild:
	insertObject:atArrangedObjectIndexPath:
	insertObjects:atArrangedObjectIndexPaths:
	leafKeyPath
	leafKeyPathForNode:
	moveNode:toIndexPath:
	moveNodes:toIndexPath:
	preservesSelection
	rearrangeObjects
	remove:
	removeObjectAtArrangedObjectIndexPath:
	removeObjectsAtArrangedObjectIndexPaths:
	removeSelectionIndexPaths:
	selectedNodes
	selectedObjects
	selectionIndexPath
	selectionIndexPaths
	selectsInsertedObjects
	setAlwaysUsesMultipleValuesMarker:
	setAvoidsEmptySelection:
	setChildrenKeyPath:
	setContent:
	setCountKeyPath:
	setLeafKeyPath:
	setPreservesSelection:
	setSelectionIndexPath:
	setSelectionIndexPaths:
	setSelectsInsertedObjects:
	setSortDescriptors:
	sortDescriptors

	NSTreeNode Class Reference
	Overview
	Tasks
	Creating Tree Nodes
	Getting Information About a Node
	Sorting the Subtree

	Class Methods
	treeNodeWithRepresentedObject:

	Instance Methods
	childNodes
	descendantNodeAtIndexPath:
	indexPath
	initWithRepresentedObject:
	isLeaf
	mutableChildNodes
	parentNode
	representedObject
	sortWithSortDescriptors:recursively:

	NSTypesetter Class Reference
	Overview
	Subclassing Notes
	Glyph Storage Interface
	Layout Phase Interface

	Tasks
	Getting a Typesetter
	Getting Information About a Typesetter
	Getting Information About Glyphs
	Managing the Layout Manager
	Managing Text Containers
	Mapping Screen and Printer Fonts
	Handling Control Characters
	Bidirectional Text Processing
	Accessing Paragraph Typesetting Information
	Paragraph Layout
	Character Layout
	Line and Paragraph Spacing
	Glyph Caching
	Laying out Glyphs
	Interfacing with Glyph Storage

	Class Methods
	defaultTypesetterBehavior
	printingAdjustmentInLayoutManager:forNominallySpacedGlyphRange:packedGlyphs: count:
	sharedSystemTypesetter
	sharedSystemTypesetterForBehavior:

	Instance Methods
	actionForControlCharacterAtIndex:
	attributedString
	attributesForExtraLineFragment
	baselineOffsetInLayoutManager:glyphIndex:
	beginLineWithGlyphAtIndex:
	beginParagraph
	bidiProcessingEnabled
	boundingBoxForControlGlyphAtIndex:forTextContainer:proposedLineFragment: glyphPosition:characterIndex:
	characterRangeForGlyphRange:actualGlyphRange:
	currentParagraphStyle
	currentTextContainer
	deleteGlyphsInRange:
	endLineWithGlyphRange:
	endParagraph
	getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: bidiLevels:
	getLineFragmentRect:usedRect:forParagraphSeparatorGlyphRange:atProposedOrigin:
	getLineFragmentRect:usedRect:remainingRect:forStartingGlyphAtIndex:proposedRect: lineSpacing:paragraphSpacingBefore:paragraphSpacingAfter:
	glyphRangeForCharacterRange:actualCharacterRange:
	hyphenationFactor
	hyphenationFactorForGlyphAtIndex:
	hyphenCharacterForGlyphAtIndex:
	insertGlyph:atGlyphIndex:characterIndex:
	layoutCharactersInRange:forLayoutManager:maximumNumberOfLineFragments:
	layoutGlyphsInLayoutManager:startingAtGlyphIndex:maxNumberOfLineFragments: nextGlyphIndex:
	layoutManager
	layoutParagraphAtPoint:
	lineFragmentPadding
	lineSpacingAfterGlyphAtIndex:withProposedLineFragmentRect:
	paragraphCharacterRange
	paragraphGlyphRange
	paragraphSeparatorCharacterRange
	paragraphSeparatorGlyphRange
	paragraphSpacingAfterGlyphAtIndex:withProposedLineFragmentRect:
	paragraphSpacingBeforeGlyphAtIndex:withProposedLineFragmentRect:
	setAttachmentSize:forGlyphRange:
	setAttributedString:
	setBidiLevels:forGlyphRange:
	setBidiProcessingEnabled:
	setDrawsOutsideLineFragment:forGlyphRange:
	setHardInvalidation:forGlyphRange:
	setHyphenationFactor:
	setLineFragmentPadding:
	setLineFragmentRect:forGlyphRange:usedRect:baselineOffset:
	setLocation:withAdvancements:forStartOfGlyphRange:
	setNotShownAttribute:forGlyphRange:
	setParagraphGlyphRange:separatorGlyphRange:
	setTypesetterBehavior:
	setUsesFontLeading:
	shouldBreakLineByHyphenatingBeforeCharacterAtIndex:
	shouldBreakLineByWordBeforeCharacterAtIndex:
	substituteFontForFont:
	substituteGlyphsInRange:withGlyphs:
	textContainers
	textTabForGlyphLocation:writingDirection:maxLocation:
	typesetterBehavior
	usesFontLeading
	willSetLineFragmentRect:forGlyphRange:usedRect:baselineOffset:

	Constants
	NSTypesetterControlCharacterAction

	NSURL Additions Reference
	Overview
	Tasks
	Working with Pasteboards

	Class Methods
	URLFromPasteboard:

	Instance Methods
	writeToPasteboard:

	NSUserDefaultsController Class Reference
	Overview
	Tasks
	Obtaining the Shared Instance
	Initializing a User Defaults Controller
	Managing User Defaults Values

	Class Methods
	sharedUserDefaultsController

	Instance Methods
	appliesImmediately
	defaults
	hasUnappliedChanges
	initialValues
	initWithDefaults:initialValues:
	revert:
	revertToInitialValues:
	save:
	setAppliesImmediately:
	setInitialValues:
	values

	NSView Class Reference
	Class at a Glance
	Overview
	Subclassing Notes

	Tasks
	Creating Instances
	Managing the View Hierarchy
	Searching by Tag
	Modifying the Frame Rectangle
	Modifying the Bounds Rectangle
	Modifying the Coordinate System
	Examining Coordinate System Modifications
	Base Coordinate Conversion
	Converting Coordinates
	Controlling Notifications
	Resizing Subviews
	Focusing
	Displaying
	Focus Ring Drawing
	Fullscreen Mode
	Hiding Views
	Drawing
	Managing Live Resize
	Managing the Graphics State
	Event Handling
	Dragging Operations
	Tool Tips
	Managing Tracking Rectangles
	Managing Tracking Areas
	Managing Cursor Tracking
	Scrolling
	Contextual Menus
	Key-view Loop Management
	Printing
	Pagination
	Writing Conforming Rendering Instructions
	Core Animation Layer-Backing
	Core Animation Layer Properties
	Displaying Definition Windows
	Touch Event Handling

	Class Methods
	defaultFocusRingType
	defaultMenu
	focusView

	Instance Methods
	acceptsFirstMouse:
	acceptsTouchEvents
	addCursorRect:cursor:
	addSubview:
	addSubview:positioned:relativeTo:
	addToolTipRect:owner:userData:
	addTrackingArea:
	addTrackingRect:owner:userData:assumeInside:
	adjustPageHeightNew:top:bottom:limit:
	adjustPageWidthNew:left:right:limit:
	adjustScroll:
	allocateGState
	alphaValue
	ancestorSharedWithView:
	autoresizesSubviews
	autoresizingMask
	autoscroll:
	backgroundFilters
	beginDocument
	beginPageInRect:atPlacement:
	bitmapImageRepForCachingDisplayInRect:
	bounds
	boundsRotation
	cacheDisplayInRect:toBitmapImageRep:
	canBecomeKeyView
	canDraw
	canDrawConcurrently
	centerScanRect:
	compositingFilter
	contentFilters
	convertPoint:fromView:
	convertPoint:toView:
	convertPointFromBase:
	convertPointToBase:
	convertRect:fromView:
	convertRect:toView:
	convertRectFromBase:
	convertRectToBase:
	convertSize:fromView:
	convertSize:toView:
	convertSizeFromBase:
	convertSizeToBase:
	dataWithEPSInsideRect:
	dataWithPDFInsideRect:
	didAddSubview:
	discardCursorRects
	display
	displayIfNeeded
	displayIfNeededIgnoringOpacity
	displayIfNeededInRect:
	displayIfNeededInRectIgnoringOpacity:
	displayRect:
	displayRectIgnoringOpacity:
	displayRectIgnoringOpacity:inContext:
	dragFile:fromRect:slideBack:event:
	dragImage:at:offset:event:pasteboard:source:slideBack:
	dragPromisedFilesOfTypes:fromRect:source:slideBack:event:
	drawPageBorderWithSize:
	drawRect:
	drawSheetBorderWithSize:
	enclosingMenuItem
	enclosingScrollView
	endDocument
	endPage
	enterFullScreenMode:withOptions:
	exitFullScreenModeWithOptions:
	focusRingType
	frame
	frameCenterRotation
	frameRotation
	getRectsBeingDrawn:count:
	getRectsExposedDuringLiveResize:count:
	gState
	heightAdjustLimit
	hitTest:
	initWithFrame:
	inLiveResize
	inputContext
	isDescendantOf:
	isFlipped
	isHidden
	isHiddenOrHasHiddenAncestor
	isInFullScreenMode
	isOpaque
	isRotatedFromBase
	isRotatedOrScaledFromBase
	knowsPageRange:
	layer
	layerContentsPlacement
	layerContentsRedrawPolicy
	locationOfPrintRect:
	lockFocus
	lockFocusIfCanDraw
	lockFocusIfCanDrawInContext:
	makeBackingLayer
	menuForEvent:
	mouse:inRect:
	mouseDownCanMoveWindow
	needsDisplay
	needsPanelToBecomeKey
	needsToDrawRect:
	nextKeyView
	nextValidKeyView
	opaqueAncestor
	pageFooter
	pageHeader
	performKeyEquivalent:
	performMnemonic:
	postsBoundsChangedNotifications
	postsFrameChangedNotifications
	preservesContentDuringLiveResize
	previousKeyView
	previousValidKeyView
	print:
	printJobTitle
	rectForPage:
	rectPreservedDuringLiveResize
	reflectScrolledClipView:
	registeredDraggedTypes
	registerForDraggedTypes:
	releaseGState
	removeAllToolTips
	removeCursorRect:cursor:
	removeFromSuperview
	removeFromSuperviewWithoutNeedingDisplay
	removeToolTip:
	removeTrackingArea:
	removeTrackingRect:
	renewGState
	replaceSubview:with:
	resetCursorRects
	resizeSubviewsWithOldSize:
	resizeWithOldSuperviewSize:
	rightMouseDown:
	rotateByAngle:
	scaleUnitSquareToSize:
	scrollClipView:toPoint:
	scrollPoint:
	scrollRect:by:
	scrollRectToVisible:
	setAcceptsTouchEvents:
	setAlphaValue:
	setAutoresizesSubviews:
	setAutoresizingMask:
	setBackgroundFilters:
	setBounds:
	setBoundsOrigin:
	setBoundsRotation:
	setBoundsSize:
	setCanDrawConcurrently:
	setCompositingFilter:
	setContentFilters:
	setFocusRingType:
	setFrame:
	setFrameCenterRotation:
	setFrameOrigin:
	setFrameRotation:
	setFrameSize:
	setHidden:
	setKeyboardFocusRingNeedsDisplayInRect:
	setLayer:
	setLayerContentsPlacement:
	setLayerContentsRedrawPolicy:
	setNeedsDisplay:
	setNeedsDisplayInRect:
	setNextKeyView:
	setPostsBoundsChangedNotifications:
	setPostsFrameChangedNotifications:
	setShadow:
	setSubviews:
	setToolTip:
	setUpGState
	setWantsLayer:
	setWantsRestingTouches:
	shadow
	shouldDelayWindowOrderingForEvent:
	shouldDrawColor
	showDefinitionForAttributedString:atPoint:
	showDefinitionForAttributedString:range:options:baselineOriginProvider:
	sortSubviewsUsingFunction:context:
	subviews
	superview
	tag
	toolTip
	trackingAreas
	translateOriginToPoint:
	translateRectsNeedingDisplayInRect:by:
	unlockFocus
	unregisterDraggedTypes
	updateTrackingAreas
	viewDidEndLiveResize
	viewDidHide
	viewDidMoveToSuperview
	viewDidMoveToWindow
	viewDidUnhide
	viewWillDraw
	viewWillMoveToSuperview:
	viewWillMoveToWindow:
	viewWillStartLiveResize
	viewWithTag:
	visibleRect
	wantsDefaultClipping
	wantsLayer
	wantsRestingTouches
	widthAdjustLimit
	willRemoveSubview:
	window
	writeEPSInsideRect:toPasteboard:
	writePDFInsideRect:toPasteboard:

	Constants
	NSBorderType
	Resizing masks
	NSToolTipTag
	NSTrackingRectTag
	Full Screen Mode Options
	NSViewLayerContentsRedrawPolicy
	NSViewLayerContentsPlacement
	NSDefinition Presentation Constants

	Notifications
	NSViewBoundsDidChangeNotification
	NSViewFocusDidChangeNotification
	NSViewFrameDidChangeNotification
	NSViewDidUpdateTrackingAreasNotification
	NSViewGlobalFrameDidChangeNotification

	NSViewAnimation Class Reference
	Overview
	Tasks
	Initializing an NSViewAnimation Object
	Getting and Setting View-animation Dictionaries

	Instance Methods
	initWithViewAnimations:
	setViewAnimations:
	viewAnimations

	Constants
	View Animation Dictionary Keys
	Values for NSViewAnimationEffectKey

	NSViewController Class Reference
	Overview
	Tasks
	Creating A View Controller
	Represented Object
	Nib Properties
	View Properties
	NSEditor Conformance

	Instance Methods
	commitEditing
	commitEditingWithDelegate:didCommitSelector:contextInfo:
	discardEditing
	initWithNibName:bundle:
	loadView
	nibBundle
	nibName
	representedObject
	setRepresentedObject:
	setTitle:
	setView:
	title
	view

	NSWindow Class Reference
	Overview
	Tasks
	Creating Windows
	Configuring Windows
	Accessing Window Information
	Getting Layout Information
	Managing Windows
	Managing Sheets
	Sizing Windows
	Sizing Content
	Managing Window Layers
	Managing Window Frames in User Defaults
	Managing Key Status
	Managing Main Status
	Managing Toolbars
	Managing Attached Windows
	Managing Window Buffers
	Managing Default Buttons
	Managing Field Editors
	Managing the Window Menu
	Managing Cursor Rectangles
	Managing Title Bars
	Managing Tooltips
	Handling Events
	Managing Responders
	Managing the Key View Loop
	Handling Keyboard Events
	Handling Mouse Events
	Bracketing Drawing Operations
	Drawing Windows
	Updating Windows
	Dragging Items
	Converting Coordinates
	Accessing Edited Status
	Managing Titles
	Accessing Screen Information
	Moving Windows
	Closing Windows
	Minimizing Windows
	Getting the Dock Tile
	Printing Windows
	Providing Services
	Working with Carbon

	Class Methods
	contentRectForFrameRect:styleMask:
	defaultDepthLimit
	frameRectForContentRect:styleMask:
	menuChanged:
	minFrameWidthWithTitle:styleMask:
	removeFrameUsingName:
	standardWindowButton:forStyleMask:
	windowNumberAtPoint:belowWindowWithWindowNumber:
	windowNumbersWithOptions:

	Instance Methods
	acceptsMouseMovedEvents
	addChildWindow:ordered:
	allowsConcurrentViewDrawing
	allowsToolTipsWhenApplicationIsInactive
	alphaValue
	animationResizeTime:
	areCursorRectsEnabled
	aspectRatio
	attachedSheet
	autorecalculatesContentBorderThicknessForEdge:
	autorecalculatesKeyViewLoop
	backgroundColor
	backingLocation
	backingType
	becomeKeyWindow
	becomeMainWindow
	cacheImageInRect:
	canBecomeKeyWindow
	canBecomeMainWindow
	canBecomeVisibleWithoutLogin
	canBeVisibleOnAllSpaces
	canHide
	canStoreColor
	cascadeTopLeftFromPoint:
	center
	childWindows
	close
	collectionBehavior
	colorSpace
	constrainFrameRect:toScreen:
	contentAspectRatio
	contentBorderThicknessForEdge:
	contentMaxSize
	contentMinSize
	contentRectForFrameRect:
	contentResizeIncrements
	contentView
	convertBaseToScreen:
	convertScreenToBase:
	currentEvent
	dataWithEPSInsideRect:
	dataWithPDFInsideRect:
	deepestScreen
	defaultButtonCell
	delegate
	deminiaturize:
	depthLimit
	deviceDescription
	disableCursorRects
	disableFlushWindow
	disableKeyEquivalentForDefaultButtonCell
	disableScreenUpdatesUntilFlush
	discardCachedImage
	discardCursorRects
	discardEventsMatchingMask:beforeEvent:
	display
	displayIfNeeded
	displaysWhenScreenProfileChanges
	dockTile
	dragImage:at:offset:event:pasteboard:source:slideBack:
	drawers
	enableCursorRects
	enableFlushWindow
	enableKeyEquivalentForDefaultButtonCell
	endEditingFor:
	fieldEditor:forObject:
	firstResponder
	flushWindow
	flushWindowIfNeeded
	frame
	frameAutosaveName
	frameRectForContentRect:
	graphicsContext
	gState
	hasDynamicDepthLimit
	hasShadow
	hidesOnDeactivate
	ignoresMouseEvents
	initialFirstResponder
	initWithContentRect:styleMask:backing:defer:
	initWithContentRect:styleMask:backing:defer:screen:
	initWithWindowRef:
	inLiveResize
	invalidateCursorRectsForView:
	invalidateShadow
	isAutodisplay
	isDocumentEdited
	isExcludedFromWindowsMenu
	isFlushWindowDisabled
	isKeyWindow
	isMainWindow
	isMiniaturized
	isMovable
	isMovableByWindowBackground
	isOnActiveSpace
	isOneShot
	isOpaque
	isReleasedWhenClosed
	isSheet
	isVisible
	isZoomed
	keyDown:
	keyViewSelectionDirection
	level
	makeFirstResponder:
	makeKeyAndOrderFront:
	makeKeyWindow
	makeMainWindow
	maxSize
	miniaturize:
	miniwindowImage
	miniwindowTitle
	minSize
	mouseLocationOutsideOfEventStream
	nextEventMatchingMask:
	nextEventMatchingMask:untilDate:inMode:dequeue:
	orderBack:
	orderFront:
	orderFrontRegardless
	orderOut:
	orderWindow:relativeTo:
	parentWindow
	performClose:
	performMiniaturize:
	performZoom:
	postEvent:atStart:
	preferredBackingLocation
	preservesContentDuringLiveResize
	preventsApplicationTerminationWhenModal
	print:
	recalculateKeyViewLoop
	registerForDraggedTypes:
	removeChildWindow:
	representedFilename
	representedURL
	resetCursorRects
	resignKeyWindow
	resignMainWindow
	resizeFlags
	resizeIncrements
	restoreCachedImage
	runToolbarCustomizationPalette:
	saveFrameUsingName:
	screen
	selectKeyViewFollowingView:
	selectKeyViewPrecedingView:
	selectNextKeyView:
	selectPreviousKeyView:
	sendEvent:
	setAcceptsMouseMovedEvents:
	setAllowsConcurrentViewDrawing:
	setAllowsToolTipsWhenApplicationIsInactive:
	setAlphaValue:
	setAspectRatio:
	setAutodisplay:
	setAutorecalculatesContentBorderThickness:forEdge:
	setAutorecalculatesKeyViewLoop:
	setBackgroundColor:
	setBackingType:
	setCanBecomeVisibleWithoutLogin:
	setCanBeVisibleOnAllSpaces:
	setCanHide:
	setCollectionBehavior:
	setColorSpace:
	setContentAspectRatio:
	setContentBorderThickness:forEdge:
	setContentMaxSize:
	setContentMinSize:
	setContentResizeIncrements:
	setContentSize:
	setContentView:
	setDefaultButtonCell:
	setDelegate:
	setDepthLimit:
	setDisplaysWhenScreenProfileChanges:
	setDocumentEdited:
	setDynamicDepthLimit:
	setExcludedFromWindowsMenu:
	setFrame:display:
	setFrame:display:animate:
	setFrameAutosaveName:
	setFrameFromString:
	setFrameOrigin:
	setFrameTopLeftPoint:
	setFrameUsingName:
	setFrameUsingName:force:
	setHasShadow:
	setHidesOnDeactivate:
	setIgnoresMouseEvents:
	setInitialFirstResponder:
	setLevel:
	setMaxSize:
	setMiniwindowImage:
	setMiniwindowTitle:
	setMinSize:
	setMovable:
	setMovableByWindowBackground:
	setOneShot:
	setOpaque:
	setParentWindow:
	setPreferredBackingLocation:
	setPreservesContentDuringLiveResize:
	setPreventsApplicationTerminationWhenModal:
	setReleasedWhenClosed:
	setRepresentedFilename:
	setRepresentedURL:
	setResizeIncrements:
	setSharingType:
	setShowsResizeIndicator:
	setShowsToolbarButton:
	setStyleMask:
	setTitle:
	setTitleWithRepresentedFilename:
	setToolbar:
	setViewsNeedDisplay:
	setWindowController:
	sharingType
	showsResizeIndicator
	showsToolbarButton
	standardWindowButton:
	stringWithSavedFrame
	styleMask
	title
	toggleToolbarShown:
	toolbar
	tryToPerform:with:
	unregisterDraggedTypes
	update
	useOptimizedDrawing:
	userSpaceScaleFactor
	validRequestorForSendType:returnType:
	viewsNeedDisplay
	windowController
	windowNumber
	windowRef
	worksWhenModal
	zoom:

	Constants
	Window Style Masks
	Window Levels
	Display Device—Descriptions
	Managing Scaling Factors
	Controlling the Look of a Window and Its Toolbar
	NSSelectionDirection—Direction of Key View Change
	NSWindowButton—Accessing Standard Title Bar Buttons
	NSRunLoop—Ordering Modes for NSWindow
	NSWindowDepth—Window Depth
	Explicit Window Depth Limits
	NSBackingStoreType—Buffered Window Drawing
	NSWindowOrderingMode
	NSWindowSharingType
	NSWindowBackingLocation
	NSWindowNumberListOptions
	Managing Window Collections
	Application Kit Version for Deferred Window Display Support
	Application Kit Version for Custom Sheet Position

	Notifications
	NSWindowDidBecomeKeyNotification
	NSWindowDidBecomeMainNotification
	NSWindowDidChangeScreenNotification
	NSWindowDidChangeScreenProfileNotification
	NSWindowDidDeminiaturizeNotification
	NSWindowDidEndSheetNotification
	NSWindowDidEndLiveResizeNotification
	NSWindowDidExposeNotification
	NSWindowDidMiniaturizeNotification
	NSWindowDidMoveNotification
	NSWindowDidResignKeyNotification
	NSWindowDidResignMainNotification
	NSWindowDidResizeNotification
	NSWindowDidUpdateNotification
	NSWindowWillBeginSheetNotification
	NSWindowWillCloseNotification
	NSWindowWillMiniaturizeNotification
	NSWindowWillMoveNotification
	NSWindowWillStartLiveResizeNotification

	NSWindowController Class Reference
	Overview
	Subclassing NSWindowController

	Adopted Protocols
	Tasks
	Initializing NSWindowControllers
	Loading and Display the Window
	Setting and Getting the Document
	Closing the Window
	Getting Nib File Information
	Setting and Getting Window Attributes

	Instance Methods
	close
	document
	initWithWindow:
	initWithWindowNibName:
	initWithWindowNibName:owner:
	initWithWindowNibPath:owner:
	isWindowLoaded
	loadWindow
	owner
	setDocument:
	setDocumentEdited:
	setShouldCascadeWindows:
	setShouldCloseDocument:
	setWindow:
	setWindowFrameAutosaveName:
	shouldCascadeWindows
	shouldCloseDocument
	showWindow:
	synchronizeWindowTitleWithDocumentName
	window
	windowDidLoad
	windowFrameAutosaveName
	windowNibName
	windowNibPath
	windowTitleForDocumentDisplayName:
	windowWillLoad

	NSWorkspace Class Reference
	Overview
	Tasks
	Accessing the Shared NSWorkspace Instance
	Accessing the NSWorkspace Notification Center
	Opening Files
	Manipulating Applications
	Manipulating Files
	Manipulating Uniform Type Identifier Information
	Requesting Information
	Image Animation
	Requesting Additional Time Before Logout
	Tracking Changes to the File System
	Updating Registered Services and File Types
	Tracking Changes to the Defaults Database
	Tracking Status Changes for Applications and Devices
	Providing Custom Icons
	Unmounting a Device
	Working with Bundles
	Managing the Desktop Image
	Performing Finder Spotlight Searches
	Finder File Labels

	Class Methods
	sharedWorkspace

	Instance Methods
	absolutePathForAppBundleWithIdentifier:
	activateFileViewerSelectingURLs:
	activeApplication
	checkForRemovableMedia
	desktopImageOptionsForScreen:
	desktopImageURLForScreen:
	duplicateURLs:completionHandler:
	extendPowerOffBy:
	fileLabelColors
	fileLabels
	filenameExtension:isValidForType:
	fileSystemChanged
	findApplications
	fullPathForApplication:
	getFileSystemInfoForPath:isRemovable:isWritable:isUnmountable:description:type:
	getInfoForFile:application:type:
	hideOtherApplications
	iconForFile:
	iconForFiles:
	iconForFileType:
	isFilePackageAtPath:
	launchApplication:
	launchApplication:showIcon:autolaunch:
	launchApplicationAtURL:options:configuration:error:
	launchAppWithBundleIdentifier:options:additionalEventParamDescriptor: launchIdentifier:
	launchedApplications
	localizedDescriptionForType:
	mountedLocalVolumePaths
	mountedRemovableMedia
	mountNewRemovableMedia
	noteFileSystemChanged
	noteFileSystemChanged:
	noteUserDefaultsChanged
	notificationCenter
	openFile:
	openFile:fromImage:at:inView:
	openFile:withApplication:
	openFile:withApplication:andDeactivate:
	openTempFile:
	openURL:
	openURLs:withAppBundleIdentifier:options:additionalEventParamDescriptor: launchIdentifiers:
	performFileOperation:source:destination:files:tag:
	preferredFilenameExtensionForType:
	recycleURLs:completionHandler:
	runningApplications
	selectFile:inFileViewerRootedAtPath:
	setDesktopImageURL:forScreen:options:error:
	setIcon:forFile:options:
	showSearchResultsForQueryString:
	slideImage:from:to:
	type:conformsToType:
	typeOfFile:error:
	unmountAndEjectDeviceAtPath:
	unmountAndEjectDeviceAtURL:error:
	URLForApplicationToOpenURL:
	URLForApplicationWithBundleIdentifier:
	userDefaultsChanged

	Constants
	File Types
	Workspace Launch Configuration Options
	File Operations
	Desktop Image Dictionary Keys
	NSWorkspaceLaunchOptions
	Volume Mounting Notification User Info Keys
	NSWorkspaceDidRenameVolumeNotification User Info Keys
	NSWorkspaceApplicationKey User Info Key
	Workspace icon creation options

	Notifications
	NSWorkspaceWillLaunchApplicationNotification
	NSWorkspaceDidLaunchApplicationNotification
	NSWorkspaceDidTerminateApplicationNotification
	NSWorkspaceSessionDidBecomeActiveNotification
	NSWorkspaceSessionDidResignActiveNotification
	NSWorkspaceDidHideApplicationNotification
	NSWorkspaceDidUnhideApplicationNotification
	NSWorkspaceDidActivateApplicationNotification
	NSWorkspaceDidDeactivateApplicationNotification
	NSWorkspaceDidRenameVolumeNotification
	NSWorkspaceDidMountNotification
	NSWorkspaceWillUnmountNotification
	NSWorkspaceDidUnmountNotification
	NSWorkspaceDidPerformFileOperationNotification
	NSWorkspaceDidChangeFileLabelsNotification
	NSWorkspaceActiveSpaceDidChangeNotification
	NSWorkspaceDidWakeNotification
	NSWorkspaceWillPowerOffNotification
	NSWorkspaceWillSleepNotification
	NSWorkspaceScreensDidSleepNotification
	NSWorkspaceScreensDidWakeNotification

	Part II: Protocols
	NSAccessibility Protocol Reference
	Overview
	Tasks
	Accessing Attributes
	Accessing Parameterized Attributes
	Accessing Actions
	Querying Elements

	Instance Methods
	accessibilityActionDescription:
	accessibilityActionNames
	accessibilityArrayAttributeCount:
	accessibilityArrayAttributeValues:index:maxCount:
	accessibilityAttributeNames
	accessibilityAttributeValue:
	accessibilityAttributeValue:forParameter:
	accessibilityFocusedUIElement
	accessibilityHitTest:
	accessibilityIndexOfChild:
	accessibilityIsAttributeSettable:
	accessibilityIsIgnored
	accessibilityParameterizedAttributeNames
	accessibilityPerformAction:
	accessibilitySetOverrideValue:forAttribute:
	accessibilitySetValue:forAttribute:

	Constants
	Standard attributes
	Text-specific attributes
	Text-specific parameterized attributes
	Text attributed string attributes and constants
	Window-specific attributes
	Orientations
	Application-specific attributes
	Grid view attributes
	Table view and outline view attributes
	Outline view attributes
	Cell-based table attributes
	Cell-based table parameterized attributes
	Cell attributes
	Column sort direction
	Layout area attributes
	Layout area parameterized attributes
	Layout item attributes
	Slider attributes
	Screen matte attributes
	Ruler view attributes
	Ruler marker type values
	Measurement unit attributes
	Linkage elements
	Miscellaneous attributes
	Roles
	Subroles
	Action values
	Focus-change notifications
	Window-change notifications
	Application notifications
	Drawer and sheet notifications
	Element notifications
	Miscellaneous notifications
	UserInfo key for error codes in accessibility exceptions

	NSAlertDelegate Protocol Reference
	Overview
	Tasks
	Displaying Help

	Instance Methods
	alertShowHelp:

	NSAnimatablePropertyContainer Protocol Reference
	Overview
	Tasks
	Getting the Animator Proxy
	Managing Animations for Properties

	Class Methods
	defaultAnimationForKey:

	Instance Methods
	animationForKey:
	animations
	animator
	setAnimations:

	Constants
	Transition Animation Keys

	NSAnimationDelegate Protocol Reference
	Overview
	Tasks
	Controlling and Monitoring an Animation
	Managing Progress Marks

	Instance Methods
	animation:didReachProgressMark:
	animation:valueForProgress:
	animationDidEnd:
	animationDidStop:
	animationShouldStart:

	NSApplicationDelegate Protocol Reference
	Overview
	Tasks
	Launching Applications
	Terminating Applications
	Managing Active Status
	Hiding Applications
	Managing Windows
	Managing the Dock Menu
	Displaying Errors
	Managing the Screen
	Opening Files
	Printing

	Instance Methods
	application:openFile:
	application:openFiles:
	application:openFileWithoutUI:
	application:openTempFile:
	application:printFile:
	application:printFiles:withSettings:showPrintPanels:
	application:willPresentError:
	applicationDidBecomeActive:
	applicationDidChangeScreenParameters:
	applicationDidFinishLaunching:
	applicationDidHide:
	applicationDidResignActive:
	applicationDidUnhide:
	applicationDidUpdate:
	applicationDockMenu:
	applicationOpenUntitledFile:
	applicationShouldHandleReopen:hasVisibleWindows:
	applicationShouldOpenUntitledFile:
	applicationShouldTerminate:
	applicationShouldTerminateAfterLastWindowClosed:
	applicationWillBecomeActive:
	applicationWillFinishLaunching:
	applicationWillHide:
	applicationWillResignActive:
	applicationWillTerminate:
	applicationWillUnhide:
	applicationWillUpdate:

	NSBrowserDelegate Protocol Reference
	Overview
	Tasks
	Getting Browser Information
	Managing Selection Behavior
	Managing Selection
	Accessing Components
	Managing Columns
	Scrolling
	Dragging
	Sizing
	Displaying Cell Content

	Instance Methods
	browser:acceptDrop:atRow:column:dropOperation:
	browser:canDragRowsWithIndexes:inColumn:withEvent:
	browser:child:ofItem:
	browser:createRowsForColumn:inMatrix:
	browser:didChangeLastColumn:toColumn:
	browser:draggingImageForRowsWithIndexes:inColumn:withEvent:offset:
	browser:headerViewControllerForItem:
	browser:heightOfRow:inColumn:
	browser:isColumnValid:
	browser:isLeafItem:
	browser:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithIndexes: inColumn:
	browser:nextTypeSelectMatchFromRow:toRow:inColumn:forString:
	browser:numberOfChildrenOfItem:
	browser:numberOfRowsInColumn:
	browser:objectValueForItem:
	browser:previewViewControllerForLeafItem:
	browser:selectCellWithString:inColumn:
	browser:selectionIndexesForProposedSelection:inColumn:
	browser:selectRow:inColumn:
	browser:setObjectValue:forItem:
	browser:shouldEditItem:
	browser:shouldShowCellExpansionForRow:column:
	browser:shouldSizeColumn:forUserResize:toWidth:
	browser:shouldTypeSelectForEvent:withCurrentSearchString:
	browser:sizeToFitWidthOfColumn:
	browser:titleOfColumn:
	browser:typeSelectStringForRow:inColumn:
	browser:validateDrop:proposedRow:column:dropOperation:
	browser:willDisplayCell:atRow:column:
	browser:writeRowsWithIndexes:inColumn:toPasteboard:
	browserColumnConfigurationDidChange:
	browserDidScroll:
	browserWillScroll:
	rootItemForBrowser:

	NSChangeSpelling Protocol Reference
	Overview
	Tasks
	Changing Spellings

	Instance Methods
	changeSpelling:

	NSCollectionViewDelegate Protocol Reference
	Overview
	Tasks
	Drag and Drop Support
	Writing to the Pasteboard

	Instance Methods
	collectionView:acceptDrop:index:dropOperation:
	collectionView:canDragItemsAtIndexes:withEvent:
	collectionView:draggingImageForItemsAtIndexes:withEvent:offset:
	collectionView:namesOfPromisedFilesDroppedAtDestination: forDraggedItemsAtIndexes:
	collectionView:validateDrop:proposedIndex:dropOperation:
	collectionView:writeItemsAtIndexes:toPasteboard:

	NSColorPickingCustom Protocol Reference
	Overview
	Tasks
	Configuring Color Pickers
	Getting Color Picker Information
	Displaying Color Pickers

	Instance Methods
	currentMode
	provideNewView:
	setColor:
	supportsMode:

	NSColorPickingDefault Protocol Reference
	Overview
	Tasks
	Creating Color Pickers
	Configuring Color Pickers
	Handling Events
	Managing Color Lists

	Instance Methods
	alphaControlAddedOrRemoved:
	attachColorList:
	buttonToolTip
	detachColorList:
	initWithPickerMask:colorPanel:
	insertNewButtonImage:in:
	minContentSize
	provideNewButtonImage
	setMode:
	viewSizeChanged:

	NSComboBoxCellDataSource Protocol Reference
	Overview
	Tasks
	Populating Combo Boxes
	Entry Completion

	Instance Methods
	comboBoxCell:completedString:
	comboBoxCell:indexOfItemWithStringValue:
	comboBoxCell:objectValueForItemAtIndex:
	numberOfItemsInComboBoxCell:

	NSComboBoxDataSource Protocol Reference
	Overview
	Tasks
	Populating Combo Boxes
	String Completion

	Instance Methods
	comboBox:completedString:
	comboBox:indexOfItemWithStringValue:
	comboBox:objectValueForItemAtIndex:
	numberOfItemsInComboBox:

	NSComboBoxDelegate Protocol Reference
	Overview
	Tasks
	Manipulating the Selection

	Instance Methods
	comboBoxSelectionDidChange:
	comboBoxSelectionIsChanging:
	comboBoxWillDismiss:
	comboBoxWillPopUp:

	NSControlTextEditingDelegate Protocol Reference
	Overview
	Tasks
	Validating a Control’s Value
	Responding to Text Formatting
	Responding to Text Editing
	Working with Text Completion
	Working with Key Bindings

	Instance Methods
	control:didFailToFormatString:errorDescription:
	control:didFailToValidatePartialString:errorDescription:
	control:isValidObject:
	control:textShouldBeginEditing:
	control:textShouldEndEditing:
	control:textView:completions:forPartialWordRange:indexOfSelectedItem:
	control:textView:doCommandBySelector:

	NSDatePickerCellDelegate Protocol Reference
	Overview
	Tasks
	Content Validation

	Instance Methods
	datePickerCell:validateProposedDateValue:timeInterval:

	NSDictionaryControllerKeyValuePair Protocol Reference
	Overview
	Tasks
	Localizing the Display Key
	Key-Value Pair Settings

	Instance Methods
	isExplicitlyIncluded
	key
	localizedKey
	setKey:
	setLocalizedKey:
	setValue:
	value

	NSDockTilePlugIn Protocol Reference
	Overview
	Tasks
	Setting the Dock Tile
	Getting the Dock Tile Menu

	Instance Methods
	dockMenu
	setDockTile:

	NSDraggingDestination Protocol Reference
	Overview
	Tasks
	Managing a Dragging Session Before an Image Is Released
	Managing a Dragging Session After an Image Is Released

	Instance Methods
	concludeDragOperation:
	draggingEnded:
	draggingEntered:
	draggingExited:
	draggingUpdated:
	performDragOperation:
	prepareForDragOperation:
	wantsPeriodicDraggingUpdates

	NSDraggingInfo Protocol Reference
	Overview
	Tasks
	Obtaining Information About the Dragging Session
	Getting Image Information
	Sliding the Image

	Instance Methods
	draggedImage
	draggedImageLocation
	draggingDestinationWindow
	draggingLocation
	draggingPasteboard
	draggingSequenceNumber
	draggingSource
	draggingSourceOperationMask
	namesOfPromisedFilesDroppedAtDestination:
	slideDraggedImageTo:

	Constants
	Dragging operations
	NSDragOperationAll Deprecation

	NSDraggingSource Protocol Reference
	Overview
	Tasks
	Specifying Dragging Options
	Responding to Messages During a Dragging Session

	Instance Methods
	draggedImage:beganAt:
	draggedImage:endedAt:deposited:
	draggedImage:endedAt:operation:
	draggedImage:movedTo:
	draggingSourceOperationMaskForLocal:
	ignoreModifierKeysWhileDragging
	namesOfPromisedFilesDroppedAtDestination:

	NSDrawerDelegate Protocol Reference
	Overview
	Tasks
	Opening and Closing Drawers
	Managing Drawer Size

	Instance Methods
	drawerDidClose:
	drawerDidOpen:
	drawerShouldClose:
	drawerShouldOpen:
	drawerWillClose:
	drawerWillOpen:
	drawerWillResizeContents:toSize:

	NSEditor Protocol Reference
	Overview
	Tasks
	Managing Editing

	Instance Methods
	commitEditing
	commitEditingWithDelegate:didCommitSelector:contextInfo:
	discardEditing

	NSEditorRegistration Protocol Reference
	Overview
	Tasks
	Managing Editing

	Instance Methods
	objectDidBeginEditing:
	objectDidEndEditing:

	NSFontPanelValidation Protocol Reference
	Overview
	Tasks
	Validating Modes for a Font Panel

	Instance Methods
	validModesForFontPanel:

	Constants
	Mode Masks

	NSGlyphStorage Protocol Reference
	Overview
	Tasks
	Returning Text Storage
	Returning Glyph Display Options
	Modifying the Glyph Cache

	Instance Methods
	attributedString
	insertGlyphs:length:forStartingGlyphAtIndex:characterIndex:
	layoutOptions
	setIntAttribute:value:forGlyphAtIndex:

	Constants
	Layout Options

	NSIgnoreMisspelledWords Protocol Reference
	Overview
	Tasks
	Ignoring Spellings

	Instance Methods
	ignoreSpelling:

	NSImageDelegate Protocol Reference
	Overview
	Tasks
	Responding to Drawing Failure
	Managing Incremental Loads

	Instance Methods
	image:didLoadPartOfRepresentation:withValidRows:
	image:didLoadRepresentation:withStatus:
	image:didLoadRepresentationHeader:
	image:willLoadRepresentation:
	imageDidNotDraw:inRect:

	NSKeyValueBindingCreation Protocol Reference
	Overview
	Tasks
	Exposing Bindings
	Managing Bindings

	Class Methods
	exposeBinding:

	Instance Methods
	bind:toObject:withKeyPath:options:
	exposedBindings
	infoForBinding:
	optionDescriptionsForBinding:
	unbind:
	valueClassForBinding:

	Constants
	Binding Options
	Binding Dictionary Keys
	Bindings

	NSLayoutManagerDelegate Protocol Reference
	Overview
	Tasks
	Invalidating Glyphs and Layout
	Handling Layout for Text Containers
	Managing Temporary Attribute Support

	Instance Methods
	layoutManager:didCompleteLayoutForTextContainer:atEnd:
	layoutManager:shouldUseTemporaryAttributes:forDrawingToScreen:atCharacterIndex: effectiveRange:
	layoutManagerDidInvalidateLayout:

	NSMatrixDelegate Protocol Reference
	Overview

	NSMenuDelegate Protocol Reference
	Overview
	Tasks
	Handling Keyboard Equivalents
	Updating Menu Layout
	Handling Highlighting
	Handling Open and Close Events
	Handling Tracking

	Instance Methods
	confinementRectForMenu:onScreen:
	menu:updateItem:atIndex:shouldCancel:
	menu:willHighlightItem:
	menuDidClose:
	menuHasKeyEquivalent:forEvent:target:action:
	menuNeedsUpdate:
	menuWillOpen:
	numberOfItemsInMenu:

	NSMenuValidation Protocol Reference
	Overview
	Tasks
	Validating Menu Items

	Instance Methods
	validateMenuItem:

	NSNibAwaking Protocol Reference
	Overview
	Tasks
	Responding to Being Loaded from a Nib File

	Instance Methods
	awakeFromNib

	NSOpenSavePanelDelegate Protocol Reference
	Overview
	Tasks
	Running Panels

	Instance Methods
	panel:didChangeToDirectoryURL:
	panel:shouldEnableURL:
	panel:userEnteredFilename:confirmed:
	panel:validateURL:error:
	panel:willExpand:
	panelSelectionDidChange:

	NSOutlineViewDataSource Protocol Reference
	Overview
	Required and Optional Methods Using Programmatic Conventions and Cocoa Bindings

	Tasks
	Working with Items in a View
	Supporting Drag and Drop
	Supporting Object Persistence
	Working with a Pasteboard
	Sorting

	Instance Methods
	outlineView:acceptDrop:item:childIndex:
	outlineView:child:ofItem:
	outlineView:isItemExpandable:
	outlineView:itemForPersistentObject:
	outlineView:namesOfPromisedFilesDroppedAtDestination:forDraggedItems:
	outlineView:numberOfChildrenOfItem:
	outlineView:objectValueForTableColumn:byItem:
	outlineView:persistentObjectForItem:
	outlineView:setObjectValue:forTableColumn:byItem:
	outlineView:sortDescriptorsDidChange:
	outlineView:validateDrop:proposedItem:proposedChildIndex:
	outlineView:writeItems:toPasteboard:

	NSOutlineViewDelegate Protocol Reference
	Overview
	Tasks
	Expanding and Collapsing the Outline
	Supporting Type Select
	Working with Tooltips
	Handling Selection
	Displaying Cells
	Moving and Resizing Columns
	Editing Items
	Working with Table Columns
	Customizing Column and Row Sizes
	Customizing Tracking Support
	Grouping Rows

	Instance Methods
	outlineView:dataCellForTableColumn:item:
	outlineView:didClickTableColumn:
	outlineView:didDragTableColumn:
	outlineView:heightOfRowByItem:
	outlineView:isGroupItem:
	outlineView:mouseDownInHeaderOfTableColumn:
	outlineView:nextTypeSelectMatchFromItem:toItem:forString:
	outlineView:selectionIndexesForProposedSelection:
	outlineView:shouldCollapseItem:
	outlineView:shouldEditTableColumn:item:
	outlineView:shouldExpandItem:
	outlineView:shouldReorderColumn:toColumn:
	outlineView:shouldSelectItem:
	outlineView:shouldSelectTableColumn:
	outlineView:shouldShowCellExpansionForTableColumn:item:
	outlineView:shouldShowOutlineCellForItem:
	outlineView:shouldTrackCell:forTableColumn:item:
	outlineView:shouldTypeSelectForEvent:withCurrentSearchString:
	outlineView:sizeToFitWidthOfColumn:
	outlineView:toolTipForCell:rect:tableColumn:item:mouseLocation:
	outlineView:typeSelectStringForTableColumn:item:
	outlineView:willDisplayCell:forTableColumn:item:
	outlineView:willDisplayOutlineCell:forTableColumn:item:
	selectionShouldChangeInOutlineView:

	NSPasteboardItemDataProvider Protocol Reference
	Overview
	Tasks
	Providing Data

	Instance Methods
	pasteboard:item:provideDataForType:
	pasteboardFinishedWithDataProvider:

	NSPasteboardReading Protocol Reference
	Overview
	Tasks
	Required Methods
	Optional Method

	Class Methods
	readableTypesForPasteboard:
	readingOptionsForType:pasteboard:

	Instance Methods
	initWithPasteboardPropertyList:ofType:

	Constants
	Pasteboard Reading Options
	NSPasteboardReadingOptions

	NSPasteboardWriting Protocol Reference
	Overview
	Tasks
	Required Methods
	Optional Method

	Instance Methods
	pasteboardPropertyListForType:
	writableTypesForPasteboard:
	writingOptionsForType:pasteboard:

	Constants
	Pasteboard Writing Options
	NSPasteboardWritingOptions

	NSPathCellDelegate Protocol Reference
	Overview
	Tasks
	Customizing the Open Panel
	Customizing the Menu

	Instance Methods
	pathCell:willDisplayOpenPanel:
	pathCell:willPopUpMenu:

	NSPathControlDelegate Protocol Reference
	Overview
	Tasks
	Dragging Support
	Customizing a Pop-Up–Style Path

	Instance Methods
	pathControl:acceptDrop:
	pathControl:shouldDragPathComponentCell:withPasteboard:
	pathControl:validateDrop:
	pathControl:willDisplayOpenPanel:
	pathControl:willPopUpMenu:

	NSPlaceholders Protocol Reference
	Overview
	Tasks
	Managing Default Placeholders

	Class Methods
	defaultPlaceholderForMarker:withBinding:
	setDefaultPlaceholder:forMarker:withBinding:

	Constants
	Selection Markers

	NSPrintPanelAccessorizing Protocol Reference
	Overview
	Tasks
	Responding to Being Loaded from a Nib File

	Instance Methods
	keyPathsForValuesAffectingPreview
	localizedSummaryItems

	Constants
	Printing Summary Item Keys

	NSRuleEditorDelegate Protocol Reference
	Overview
	Tasks
	Providing Data
	Monitoring Row Changes

	Instance Methods
	ruleEditor:child:forCriterion:withRowType:
	ruleEditor:displayValueForCriterion:inRow:
	ruleEditor:numberOfChildrenForCriterion:withRowType:
	ruleEditor:predicatePartsForCriterion:withDisplayValue:inRow:
	ruleEditorRowsDidChange:

	NSServicesRequests Protocol Reference
	Overview
	Tasks
	Working with Pasteboards

	Instance Methods
	readSelectionFromPasteboard:
	writeSelectionToPasteboard:types:

	NSSoundDelegate Protocol Reference
	Overview
	Tasks
	Playing Sounds

	Instance Methods
	sound:didFinishPlaying:

	NSSpeechRecognizerDelegate Protocol Reference
	Overview
	Tasks
	Recognizing Commands

	Instance Methods
	speechRecognizer:didRecognizeCommand:

	NSSpeechSynthesizerDelegate Protocol Reference
	Overview
	Tasks
	Synthesizing Speech

	Instance Methods
	speechSynthesizer:didEncounterErrorAtIndex:ofString:message:
	speechSynthesizer:didEncounterSyncMessage:
	speechSynthesizer:didFinishSpeaking:
	speechSynthesizer:willSpeakPhoneme:
	speechSynthesizer:willSpeakWord:ofString:

	NSSplitViewDelegate Protocol Reference
	Overview
	Tasks
	Managing Subviews
	Configuring and Drawing View Dividers
	Constraining Split Position

	Instance Methods
	splitView:additionalEffectiveRectOfDividerAtIndex:
	splitView:canCollapseSubview:
	splitView:constrainMaxCoordinate:ofSubviewAt:
	splitView:constrainMinCoordinate:ofSubviewAt:
	splitView:constrainSplitPosition:ofSubviewAt:
	splitView:effectiveRect:forDrawnRect:ofDividerAtIndex:
	splitView:resizeSubviewsWithOldSize:
	splitView:shouldAdjustSizeOfSubview:
	splitView:shouldCollapseSubview:forDoubleClickOnDividerAtIndex:
	splitView:shouldHideDividerAtIndex:
	splitViewDidResizeSubviews:
	splitViewWillResizeSubviews:

	NSTableViewDataSource Protocol Reference
	Overview
	Tasks
	Getting Values
	Setting Values
	Dragging
	Sorting

	Instance Methods
	numberOfRowsInTableView:
	tableView:acceptDrop:row:dropOperation:
	tableView:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithIndexes:
	tableView:objectValueForTableColumn:row:
	tableView:setObjectValue:forTableColumn:row:
	tableView:sortDescriptorsDidChange:
	tableView:validateDrop:proposedRow:proposedDropOperation:
	tableView:writeRowsWithIndexes:toPasteboard:

	NSTableViewDelegate Protocol Reference
	Overview
	Tasks
	Displaying Cells
	Editing Cells
	Setting Row and Column Size
	Selecting in the Tableview
	Moving and Resizing Columns
	Responding to Mouse Events

	Instance Methods
	selectionShouldChangeInTableView:
	tableView:dataCellForTableColumn:row:
	tableView:didClickTableColumn:
	tableView:didDragTableColumn:
	tableView:heightOfRow:
	tableView:isGroupRow:
	tableView:mouseDownInHeaderOfTableColumn:
	tableView:nextTypeSelectMatchFromRow:toRow:forString:
	tableView:selectionIndexesForProposedSelection:
	tableView:shouldEditTableColumn:row:
	tableView:shouldReorderColumn:toColumn:
	tableView:shouldSelectRow:
	tableView:shouldSelectTableColumn:
	tableView:shouldShowCellExpansionForTableColumn:row:
	tableView:shouldTrackCell:forTableColumn:row:
	tableView:shouldTypeSelectForEvent:withCurrentSearchString:
	tableView:sizeToFitWidthOfColumn:
	tableView:toolTipForCell:rect:tableColumn:row:mouseLocation:
	tableView:typeSelectStringForTableColumn:row:
	tableView:willDisplayCell:forTableColumn:row:
	tableViewColumnDidMove:
	tableViewColumnDidResize:
	tableViewSelectionDidChange:
	tableViewSelectionIsChanging:

	NSTabViewDelegate Protocol Reference
	Overview
	Tasks
	Adding and Removing Tabs
	Selecting a Tab

	Instance Methods
	tabView:didSelectTabViewItem:
	tabView:shouldSelectTabViewItem:
	tabView:willSelectTabViewItem:
	tabViewDidChangeNumberOfTabViewItems:

	NSTextAttachmentCell Protocol Reference
	Overview
	Tasks
	Drawing
	Cell Size and Position
	Event Handling
	Setting the Attachment

	Instance Methods
	attachment
	cellBaselineOffset
	cellFrameForTextContainer:proposedLineFragment:glyphPosition:characterIndex:
	cellSize
	drawWithFrame:inView:
	drawWithFrame:inView:characterIndex:
	drawWithFrame:inView:characterIndex:layoutManager:
	highlight:withFrame:inView:
	setAttachment:
	trackMouse:inRect:ofView:atCharacterIndex:untilMouseUp:
	trackMouse:inRect:ofView:untilMouseUp:
	wantsToTrackMouse
	wantsToTrackMouseForEvent:inRect:ofView:atCharacterIndex:

	NSTextDelegate Protocol Reference
	Overview
	Tasks
	Changing Text Formatting
	Editing Text

	Instance Methods
	textDidBeginEditing:
	textDidChange:
	textDidEndEditing:
	textShouldBeginEditing:
	textShouldEndEditing:

	NSTextFieldDelegate Protocol Reference
	Overview

	NSTextInput Protocol Reference
	Overview
	Tasks
	Marked Text
	Text Storage
	Character Coordinates
	Key Bindings
	Other

	Instance Methods
	attributedSubstringFromRange:
	characterIndexForPoint:
	conversationIdentifier
	doCommandBySelector:
	firstRectForCharacterRange:
	hasMarkedText
	insertText:
	markedRange
	selectedRange
	setMarkedText:selectedRange:
	unmarkText
	validAttributesForMarkedText

	NSTextInputClient Protocol Reference
	Overview
	Tasks
	Handling Marked Text
	Storing Text
	Getting Character Coordinates
	Binding Keystrokes
	Optional Methods

	Instance Methods
	attributedString
	attributedSubstringForProposedRange:actualRange:
	baselineDeltaForCharacterAtIndex:
	characterIndexForPoint:
	doCommandBySelector:
	drawsVerticallyForCharacterAtIndex:
	firstRectForCharacterRange:actualRange:
	fractionOfDistanceThroughGlyphForPoint:
	hasMarkedText
	insertText:replacementRange:
	markedRange
	selectedRange
	setMarkedText:selectedRange:replacementRange:
	unmarkText
	validAttributesForMarkedText
	windowLevel

	NSTextViewDelegate Protocol Reference
	Overview
	Tasks
	Accessing Text System Objects
	Controlling Display
	Managing the Selection
	Managing the Pasteboard
	Setting Text Attributes
	Clicking and Pasting
	Working With the Spelling Checker
	Dragging
	Text Completion
	Performing Commands
	Contextual Menu Management
	Deprecated Methods

	Instance Methods
	textView:clickedOnCell:inRect:
	textView:clickedOnCell:inRect:atIndex:
	textView:clickedOnLink:
	textView:clickedOnLink:atIndex:
	textView:completions:forPartialWordRange:indexOfSelectedItem:
	textView:didCheckTextInRange:types:options:results:orthography:wordCount:
	textView:doCommandBySelector:
	textView:doubleClickedOnCell:inRect:
	textView:doubleClickedOnCell:inRect:atIndex:
	textView:draggedCell:inRect:event:
	textView:draggedCell:inRect:event:atIndex:
	textView:menu:forEvent:atIndex:
	textView:shouldChangeTextInRange:replacementString:
	textView:shouldChangeTextInRanges:replacementStrings:
	textView:shouldChangeTypingAttributes:toAttributes:
	textView:shouldSetSpellingState:range:
	textView:willChangeSelectionFromCharacterRange:toCharacterRange:
	textView:willChangeSelectionFromCharacterRanges:toCharacterRanges:
	textView:willCheckTextInRange:options:types:
	textView:willDisplayToolTip:forCharacterAtIndex:
	textView:writablePasteboardTypesForCell:atIndex:
	textView:writeCell:atIndex:toPasteboard:type:
	textViewDidChangeSelection:
	textViewDidChangeTypingAttributes:
	undoManagerForTextView:

	NSTokenFieldCellDelegate Protocol Reference
	Overview
	Tasks
	Displaying Tokenized Strings
	Editing a Tokenized Strings
	Reading To and Writing From the Pasteboard
	Managing Menus for Represented Objects

	Instance Methods
	tokenFieldCell:completionsForSubstring:indexOfToken:indexOfSelectedItem:
	tokenFieldCell:displayStringForRepresentedObject:
	tokenFieldCell:editingStringForRepresentedObject:
	tokenFieldCell:hasMenuForRepresentedObject:
	tokenFieldCell:menuForRepresentedObject:
	tokenFieldCell:readFromPasteboard:
	tokenFieldCell:representedObjectForEditingString:
	tokenFieldCell:shouldAddObjects:atIndex:
	tokenFieldCell:styleForRepresentedObject:
	tokenFieldCell:writeRepresentedObjects:toPasteboard:

	NSTokenFieldDelegate Protocol Reference
	Overview
	Tasks
	Displaying Tokenized Strings
	Editing a Tokenized Strings
	Reading To and Writing From the Pasteboard
	Managing Menus for Represented Objects

	Instance Methods
	tokenField:completionsForSubstring:indexOfToken:indexOfSelectedItem:
	tokenField:displayStringForRepresentedObject:
	tokenField:editingStringForRepresentedObject:
	tokenField:hasMenuForRepresentedObject:
	tokenField:menuForRepresentedObject:
	tokenField:readFromPasteboard:
	tokenField:representedObjectForEditingString:
	tokenField:shouldAddObjects:atIndex:
	tokenField:styleForRepresentedObject:
	tokenField:writeRepresentedObjects:toPasteboard:

	NSToolbarDelegate Protocol Reference
	Overview
	Tasks
	Configuring a Toolbar
	Responding to Additions and Deletions in the Toolbar

	Instance Methods
	toolbar:itemForItemIdentifier:willBeInsertedIntoToolbar:
	toolbarAllowedItemIdentifiers:
	toolbarDefaultItemIdentifiers:
	toolbarDidRemoveItem:
	toolbarSelectableItemIdentifiers:
	toolbarWillAddItem:

	NSToolbarItemValidation Protocol Reference
	Overview
	Tasks
	Validating Toolbar Items

	Instance Methods
	validateToolbarItem:

	NSToolTipOwner Protocol Reference
	Overview
	Tasks
	Obtaining Tool Tip Strings

	Instance Methods
	view:stringForToolTip:point:userData:

	NSUserInterfaceValidations Protocol Reference
	Overview
	Tasks
	Validating User Interface Items

	Instance Methods
	validateUserInterfaceItem:

	NSValidatedUserInterfaceItem Protocol Reference
	Overview
	Tasks
	Getting Information About a User Interface Item

	Instance Methods
	action
	tag

	NSWindowDelegate Protocol Reference
	Overview
	Tasks
	Managing Sheets
	Sizing Windows
	Managing Key Status
	Managing Main Status
	Managing Field Editors
	Updating Windows
	Exposing Windows
	Dragging Windows
	Getting the Undo Manager
	Managing Titles
	Moving Windows
	Closing Windows
	Minimizing Windows

	Instance Methods
	window:shouldDragDocumentWithEvent:from:withPasteboard:
	window:shouldPopUpDocumentPathMenu:
	window:willPositionSheet:usingRect:
	windowDidBecomeKey:
	windowDidBecomeMain:
	windowDidChangeScreen:
	windowDidChangeScreenProfile:
	windowDidDeminiaturize:
	windowDidEndLiveResize:
	windowDidEndSheet:
	windowDidExpose:
	windowDidMiniaturize:
	windowDidMove:
	windowDidResignKey:
	windowDidResignMain:
	windowDidResize:
	windowDidUpdate:
	windowShouldClose:
	windowShouldZoom:toFrame:
	windowWillBeginSheet:
	windowWillClose:
	windowWillMiniaturize:
	windowWillMove:
	windowWillResize:toSize:
	windowWillReturnFieldEditor:toObject:
	windowWillReturnUndoManager:
	windowWillStartLiveResize:
	windowWillUseStandardFrame:defaultFrame:

	NSWindowScripting Protocol Reference
	Overview
	Tasks
	Getting Scripting Attribute Information About a Window
	Setting Scripting Attribute Information for a Window
	Handling Script Commands
	Working with Ordered Indices

	Instance Methods
	handleCloseScriptCommand:
	handlePrintScriptCommand:
	handleSaveScriptCommand:
	hasCloseBox
	hasTitleBar
	isFloatingPanel
	isMiniaturizable
	isModalPanel
	isResizable
	isZoomable
	orderedIndex
	setIsMiniaturized:
	setIsVisible:
	setIsZoomed:
	setOrderedIndex:

	Part III: Functions
	Application Kit Functions Reference
	Overview
	Functions by Task
	Accessibility
	Applications
	Events
	Fonts
	Graphics
	Graphics-Window Depth
	Interface Styles
	Key Value Bindings
	OpenGL
	Panels
	Pasteboards
	System Beep

	Functions
	NSAccessibilityActionDescription
	NSAccessibilityPostNotification
	NSAccessibilityRaiseBadArgumentException
	NSAccessibilityRoleDescription
	NSAccessibilityRoleDescriptionForUIElement
	NSAccessibilityUnignoredAncestor
	NSAccessibilityUnignoredChildren
	NSAccessibilityUnignoredChildrenForOnlyChild
	NSAccessibilityUnignoredDescendant
	NSApplicationLoad
	NSApplicationMain
	NSAvailableWindowDepths
	NSBeep
	NSBeginAlertSheet
	NSBeginCriticalAlertSheet
	NSBeginInformationalAlertSheet
	NSBestDepth
	NSBitsPerPixelFromDepth
	NSBitsPerSampleFromDepth
	NSColorSpaceFromDepth
	NSConvertGlyphsToPackedGlyphs
	NSCopyBits
	NSCountWindows
	NSCountWindowsForContext
	NSCreateFileContentsPboardType
	NSCreateFilenamePboardType
	NSDisableScreenUpdates
	NSDottedFrameRect
	NSDrawBitmap
	NSDrawButton
	NSDrawColorTiledRects
	NSDrawDarkBezel
	NSDrawGrayBezel
	NSDrawGroove
	NSDrawLightBezel
	NSDrawNinePartImage
	NSDrawThreePartImage
	NSDrawTiledRects
	NSDrawWhiteBezel
	NSDrawWindowBackground
	NSEnableScreenUpdates
	NSEraseRect
	NSEventMaskFromType
	NSFrameRect
	NSFrameRectWithWidth
	NSFrameRectWithWidthUsingOperation
	NSGetAlertPanel
	NSGetCriticalAlertPanel
	NSGetFileType
	NSGetFileTypes
	NSGetInformationalAlertPanel
	NSGetWindowServerMemory
	NSHighlightRect
	NSInterfaceStyleForKey
	NSIsControllerMarker
	NSNumberOfColorComponents
	NSOpenGLGetOption
	NSOpenGLGetVersion
	NSOpenGLSetOption
	NSPerformService
	NSPlanarFromDepth
	NSReadPixel
	NSRectClip
	NSRectClipList
	NSRectFill
	NSRectFillList
	NSRectFillListUsingOperation
	NSRectFillListWithColors
	NSRectFillListWithColorsUsingOperation
	NSRectFillListWithGrays
	NSRectFillUsingOperation
	NSRegisterServicesProvider
	NSReleaseAlertPanel
	NSRunAlertPanel
	NSRunCriticalAlertPanel
	NSRunInformationalAlertPanel
	NSSetFocusRingStyle
	NSSetShowsServicesMenuItem
	NSShowAnimationEffect
	NSShowsServicesMenuItem
	NSUnregisterServicesProvider
	NSUpdateDynamicServices
	NSWindowList
	NSWindowListForContext

	Part IV: Data Types
	Application Kit Data Types Reference
	Overview
	Data Types
	NSAnimationEffect
	NSBrowserAuxiliaryOpaque
	NSColorListAuxiliaryOpaque
	NSFocusRingPlacement
	NSFocusRingType
	NSInterfaceStyle
	NSModalSession
	NSOpenGLContextAuxiliary
	NSOpenGLGlobalOption
	NSOpenGLPixelFormatAuxiliary
	NSSavePanelAuxiliaryOpaque
	NSScreenAuxiliaryOpaque
	NSTabViewItemAuxiliaryOpaque
	NSTypesetterGlyphInfo

	Part V: Constants
	Application Kit Constants Reference
	Overview
	Constants
	Global Variables
	Color Space Names
	Grayscale Values
	NSInterfaceStyleDefault
	Interface Builder Constants
	NSWindow—Sizes

	Errors
	Attributed String Errors
	Services Error Codes

	Exceptions
	Application Kit Exception Names

	Revision History

