
NSGraphicsContext Class Reference
Graphics & Animation

2009-06-24

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iChat, Mac, Mac
OS, and Quartz are trademarks of Apple Inc.,
registered in the United States and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

NSGraphicsContext Class Reference 5

Overview 5
Tasks 6

Creating a Graphics Context 6
Managing the Current Context 6
Managing the Graphics State 6
Testing the Drawing Destination 6
Getting Information About a Context 7
Flushing Graphics to the Context 7
Managing the Focus Stack 7
Configuring Rendering Options 7
Getting the Core Image Context 8
Managing the Color Rendering Intent 8

Class Methods 8
currentContext 8
currentContextDrawingToScreen 8
graphicsContextWithAttributes: 9
graphicsContextWithBitmapImageRep: 9
graphicsContextWithGraphicsPort:flipped: 10
graphicsContextWithWindow: 10
restoreGraphicsState 11
saveGraphicsState 11
setCurrentContext: 12
setGraphicsState: 12

Instance Methods 13
attributes 13
CIContext 13
colorRenderingIntent 14
compositingOperation 14
flushGraphics 15
graphicsPort 15
imageInterpolation 15
isDrawingToScreen 16
isFlipped 16
patternPhase 17
restoreGraphicsState 17
saveGraphicsState 17
setColorRenderingIntent: 18
setCompositingOperation: 18
setImageInterpolation: 19
setPatternPhase: 19

3
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

setShouldAntialias: 20
shouldAntialias 20

Constants 21
Attribute dictionary keys 21
Representation format attribute keys 21
NSImageInterpolation 22
NSColorRenderingIntent 23

Appendix A Deprecated NSGraphicsContext Methods 25

Available in Mac OS X v10.0 through Mac OS X v10.5 25
focusStack 25
setFocusStack: 25

Document Revision History 27

4
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Companion guide Cocoa Drawing Guide

Declared in NSGraphics.h
NSGraphicsContext.h

Related sample code FunHouse
Quartz EB
QuickLookSketch
Reducer
Sketch-112

Overview

The NSGraphicsContext class is the programmatic interface to objects that represent graphics contexts.
A context can be thought of as a destination to which drawing and graphics state operations are sent for
execution. Each graphics context contains its own graphics environment and state.

The NSGraphicsContext class is an abstract superclass for destination-specific graphics contexts. You obtain
instances of concrete subclasses with the class methods currentContext (page 8),
graphicsContextWithAttributes: (page 9), graphicsContextWithBitmapImageRep: (page 9),
graphicsContextWithGraphicsPort:flipped: (page 10), and graphicsContextWithWindow: (page
10).

At any time there is the notion of the current context. The current context for the current thread may be set
using setCurrentContext: (page 12).

Graphics contexts are maintained on a stack. You push a graphics context onto the stack by sending it a
saveGraphicsState (page 17) message, and pop it off the stack by sending it a
restoreGraphicsState (page 17) message. By sending restoreGraphicsState (page 17) to an
NSGraphicsContext object you remove it from the stack, and the next graphics context on the stack
becomes the current graphics context.

Overview 5
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

Tasks

Creating a Graphics Context

+ graphicsContextWithAttributes: (page 9)
Instantiates and returns an instance of NSGraphicsContext using the specified attributes.

+ graphicsContextWithBitmapImageRep: (page 9)
Instantiates and returns a new graphics context using the supplied NSBitmapImageRep object as
the context destination.

+ graphicsContextWithGraphicsPort:flipped: (page 10)
Instantiates and returns a new graphics context from the given graphics port.

+ graphicsContextWithWindow: (page 10)
Creates and returns a new graphics context for drawing into a window.

Managing the Current Context

+ currentContext (page 8)
Returns the current graphics context of the current thread.

+ setCurrentContext: (page 12)
Sets the current graphics context of the current thread.

– graphicsPort (page 15)
Returns the low-level, platform-specific graphics context represented by the receiver.

Managing the Graphics State

+ setGraphicsState: (page 12)
Makes the graphics context of the specified graphics state current, and resets graphics state.

+ restoreGraphicsState (page 11)
Pops a graphics context from the per-thread stack, makes it current, and sends the context a
restoreGraphicsState (page 17) message.

– restoreGraphicsState (page 17)
Removes the receiver’s graphics state from the top of the graphics state stack and makes the next
graphics state the current graphics state.

+ saveGraphicsState (page 11)
Saves the graphics state of the current graphics context.

– saveGraphicsState (page 17)
Saves the current graphics state and creates a new graphics state on the top of the stack.

Testing the Drawing Destination

+ currentContextDrawingToScreen (page 8)
Returns a Boolean value that indicates whether the current context is drawing to the screen.

6 Tasks
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

– isDrawingToScreen (page 16)
Returns a Boolean value that indicates whether the drawing destination is the screen.

Getting Information About a Context

– attributes (page 13)
Returns the receiver’s attributes.

– isFlipped (page 16)
Returns a Boolean value that indicates the receiver’s flipped state.

Flushing Graphics to the Context

– flushGraphics (page 15)
Forces any buffered operations or data to be sent to the receiver’s destination.

Managing the Focus Stack

– focusStack (page 25) Available in Mac OS X v10.0 through Mac OS X v10.5
Returns the object used by the context to track the hierarchy of views with locked focus.

– setFocusStack: (page 25) Available in Mac OS X v10.0 through Mac OS X v10.5
Sets the object used by the receiver to track the hierarchy of views with locked focus.

Configuring Rendering Options

– setCompositingOperation: (page 18)
Sets the receiver’s global compositing operation.

– compositingOperation (page 14)
Returns the receiver’s global compositing operation setting.

– setImageInterpolation: (page 19)
Sets the receiver’s interpolation behavior.

– imageInterpolation (page 15)
Returns a constant that specifies the receiver’s interpolation behavior.

– setShouldAntialias: (page 20)
Sets whether the receiver should use antialiasing.

– shouldAntialias (page 20)
Returns a Boolean value that indicates whether the receiver uses antialiasing.

– setPatternPhase: (page 19)
Sets the amount to offset the pattern color when filling the receiver.

– patternPhase (page 17)
Returns the amount to offset the pattern color when filling the receiver.

Tasks 7
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

Getting the Core Image Context

– CIContext (page 13)
Returns a CIContext object that you can use to render into the receiver.

Managing the Color Rendering Intent

– colorRenderingIntent (page 14)
Returns the current rendering intent in the receiver’s graphics state.

– setColorRenderingIntent: (page 18)
Sets the rendering intent in the receiver’s graphics state.

Class Methods

currentContext
Returns the current graphics context of the current thread.

+ (NSGraphicsContext *)currentContext

Return Value
The current graphics context of the current thread.

Discussion
Returns an instance of a concrete subclass of NSGraphicsContext.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FunHouse
Quartz EB
QuickLookSketch
Sketch+Accessibility
Sketch-112

Declared In
NSGraphicsContext.h

currentContextDrawingToScreen
Returns a Boolean value that indicates whether the current context is drawing to the screen.

+ (BOOL)currentContextDrawingToScreen

Return Value
YES if the current context is drawing to the screen, otherwise NO.

8 Class Methods
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

Discussion
This convenience method is equivalent to sending isDrawingToScreen (page 16) to the result of
currentContext (page 8).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

graphicsContextWithAttributes:
Instantiates and returns an instance of NSGraphicsContext using the specified attributes.

+ (NSGraphicsContext *)graphicsContextWithAttributes:(NSDictionary *)attributes

Parameters
attributes

A dictionary of values associated with the keys described in “Attribute dictionary keys” (page
21). The attributes specify such things as representation format and destination.

Return Value
A new NSGraphicsContext object or nil if the object could not be created.

Discussion
Use this method to create a graphics context for a window or bitmap destination. If you want to create a
graphics context for a PDF or PostScript destination, do not use this method; instead, use the
NSPrintOperation class to set up the printing environment needed to generate that type of information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

graphicsContextWithBitmapImageRep:
Instantiates and returns a new graphics context using the supplied NSBitmapImageRep object as the context
destination.

+ (NSGraphicsContext *)graphicsContextWithBitmapImageRep:(NSBitmapImageRep
*)bitmapRep

Parameters
bitmapRep

The NSBitmapImageRep object to use as the destination.

Return Value
The created NSGraphicsContext object or nil if the object could not be created.

Discussion
This method accepts only single plane NSBitmapImageRep instances. It is the equivalent of using
graphicsContextWithAttributes: (page 9) and passing bitmapRep as the value for the dictionary’s
NSGraphicsContextDestinationAttributeName key.

Class Methods 9
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
+ graphicsContextWithAttributes: (page 9)

Related Sample Code
AnimatedTableView
Reducer

Declared In
NSGraphicsContext.h

graphicsContextWithGraphicsPort:flipped:
Instantiates and returns a new graphics context from the given graphics port.

+ (NSGraphicsContext *)graphicsContextWithGraphicsPort:(void *)graphicsPort
flipped:(BOOL)initialFlippedState

Parameters
graphicsPort

The graphics port used to create the graphics-context object. Typically graphicsPort is a
CGContextRef (opaque type) object.

initialFlippedState
Specifies the receiver's initial flipped state. This is the value returned by isFlipped (page 16) when
no view has focus.

Return Value
The created NSGraphicsContext object or nil if the object could not be created.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CIAnnotation
CIVideoDemoGL
FunHouse
iChatTheater
QuickLookSketch

Declared In
NSGraphicsContext.h

graphicsContextWithWindow:
Creates and returns a new graphics context for drawing into a window.

+ (NSGraphicsContext *)graphicsContextWithWindow:(NSWindow *)aWindow

10 Class Methods
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

Parameters
aWindow

The window object representing the window to use for drawing.

Return Value
The created NSGraphicsContext object or nil if the object could not be created.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
JAWTExample

Declared In
NSGraphicsContext.h

restoreGraphicsState
Pops a graphics context from the per-thread stack, makes it current, and sends the context a
restoreGraphicsState (page 17) message.

+ (void)restoreGraphicsState

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QuickLookSketch
Reducer
Sketch+Accessibility
Sketch-112
TrackBall

Declared In
NSGraphicsContext.h

saveGraphicsState
Saves the graphics state of the current graphics context.

+ (void)saveGraphicsState

Discussion
This method sends the current graphics context a saveGraphicsState (page 17) message and pushes the
context onto the per-thread stack.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QuickLookSketch
Reducer

Class Methods 11
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

Sketch+Accessibility
Sketch-112
TrackBall

Declared In
NSGraphicsContext.h

setCurrentContext:
Sets the current graphics context of the current thread.

+ (void)setCurrentContext:(NSGraphicsContext *)context

Parameters
context

The graphics-context object to set as the current one. This must be an instance of a concrete subclass
of NSGraphicsContext.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIAnnotation
CIVideoDemoGL
FunHouse
iChatTheater
QuickLookSketch

Declared In
NSGraphicsContext.h

setGraphicsState:
Makes the graphics context of the specified graphics state current, and resets graphics state.

+ (void)setGraphicsState:(NSInteger)graphicsState

Discussion
The graphicState identifier must be created in the calling thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

12 Class Methods
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

Instance Methods

attributes
Returns the receiver’s attributes.

- (NSDictionary *)attributes

Return Value
The receiver’s attributes, if any.

Discussion
Screen-based graphics contexts do not store attributes, even if you create them using
graphicsContextWithAttributes: (page 9).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

CIContext
Returns a CIContext object that you can use to render into the receiver.

- (CIContext *)CIContext

Return Value
A CIContext object or nil if the object could not be created.

Discussion
The CIContext object is created on demand and remains in existence for the lifetime of its owning
NSGraphicsContext object. A CIContext object is an evaluation context for rendering a CIImage object
through Quartz 2D or OpenGL. You use CIContextobjects in conjunction with CIFilter, CIImage,
CIVector, and CIColor objects to take advantage of the built-in Core Image filters when processing images.

For more on CIContext objects and related Core Image objects, see Core Image Programming Guide.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
AnimatedTableView
CIExposureSample
CIHazeFilterSample
CITransitionSelectorSample
FunHouse

Declared In
NSGraphicsContext.h

Instance Methods 13
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

colorRenderingIntent
Returns the current rendering intent in the receiver’s graphics state.

- (NSColorRenderingIntent)colorRenderingIntent

Return Value
An “Creating a Graphics Context” (page 6)value that specifies the rendering intent currently used
by the receiver. For possible values see “Color Rendering Intent Constants” (page 23).

Discussion
The rendering intent specifies how Cocoa should handle colors that are not located within the gamut of the
destination color space of a graphics context.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setColorRenderingIntent: (page 18)

Declared In
NSGraphicsContext.h

compositingOperation
Returns the receiver’s global compositing operation setting.

- (NSCompositingOperation)compositingOperation

Return Value
The receiver’s global compositing operation setting. See NSCompositingOperation for valid constants.

Discussion
The compositing operation is a global attribute of the graphics context and affects drawing operations that
do not take an explicit compositing operation parameter. For methods that do take an explicit compositing
operation parameter, the value of that parameter supersedes the global value.

The compositing operations are related to (but different from) the blend mode settings used in Quartz. Only
the default compositing operation (NSCompositeCopy) is supported for PDF or PostScript content.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setCompositingOperation: (page 18)

Related Sample Code
ImageMap
ImageMapExample

Declared In
NSGraphicsContext.h

14 Instance Methods
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

flushGraphics
Forces any buffered operations or data to be sent to the receiver’s destination.

- (void)flushGraphics

Discussion
Graphics contexts use buffers to queue pending operations but for efficiency reasons may not always empty
those buffers immediately. This method forces the buffers to be emptied.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaAUHost
iChatTheater

Declared In
NSGraphicsContext.h

graphicsPort
Returns the low-level, platform-specific graphics context represented by the receiver.

- (void *)graphicsPort

Discussion
In Mac OS X, this is the Core Graphics context, a CGContextRef object (opaque type).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CIAnnotation
FunHouse
ImageApp
MyPhoto
Quartz EB

Declared In
NSGraphicsContext.h

imageInterpolation
Returns a constant that specifies the receiver’s interpolation behavior.

- (NSImageInterpolation)imageInterpolation

Return Value
The receiver’s interpolation (image smoothing) behavior.

Discussion
The NSImageInterpolation constants are described in NSImageInterpolation (page 22).

Instance Methods 15
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setImageInterpolation: (page 19)

Declared In
NSGraphicsContext.h

isDrawingToScreen
Returns a Boolean value that indicates whether the drawing destination is the screen.

- (BOOL)isDrawingToScreen

Return Value
YES if the drawing destination is the screen, otherwise NO.

Discussion
A return value of NO may mean that the drawing destination is a printer, but the destination may also be a
PDF or EPS file. If this method returns NO, you can call attributes (page 13) to see if additional information
is available about the drawing destination.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

isFlipped
Returns a Boolean value that indicates the receiver’s flipped state.

- (BOOL)isFlipped

Return Value
YES if the receiver is flipped, otherwise NO.

Discussion
The state is determined by sending isFlipped to the receiver’s view that has focus. If no view has focus,
returns NO unless the receiver is instantiated using graphicsContextWithGraphicsPort:flipped: (page
10) specifying YES as the flipped parameter.

Availability
Available in Mac OS X v10.4 and later.

See Also
+ graphicsContextWithGraphicsPort:flipped: (page 10)

Declared In
NSGraphicsContext.h

16 Instance Methods
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

patternPhase
Returns the amount to offset the pattern color when filling the receiver.

- (NSPoint)patternPhase

Return Value
The amount to offset the pattern color when filling the receiver.

Discussion
The pattern phase is a translation (width, height) applied before a pattern is drawn in the current context
and is part of the saved graphics state of the context. The default pattern phase is (0,0). Setting the pattern
phase has the effect of temporarily changing the pattern matrix of any pattern you decide to draw. For
example, setting the pattern phase to (2,3) has the effect of moving the start of pattern cell tiling to the point
(2,3) in default user space.

Availability
Available in Mac OS X v10.2 and later.

See Also
– setPatternPhase: (page 19)

Declared In
NSGraphicsContext.h

restoreGraphicsState
Removes the receiver’s graphics state from the top of the graphics state stack and makes the next graphics
state the current graphics state.

- (void)restoreGraphicsState

Discussion
This method must have been preceded with a saveGraphicsState (page 17) message to add the graphics
state to the stack. Invocations of saveGraphicsState and restoreGraphicsState methods may be
nested.

Restoring the graphics state restores such attributes as the current drawing style, transformation matrix,
color, and font of the original graphics state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

saveGraphicsState
Saves the current graphics state and creates a new graphics state on the top of the stack.

- (void)saveGraphicsState

Discussion
The new graphics state is a copy of the previous state that can be modified to handle new drawing operations.

Instance Methods 17
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

Saving the graphics state saves such attributes as the current drawing style, transformation matrix, color,
and font. To set drawing style attributes, use the methods of NSBezierPath. Other attributes are accessed
through appropriate objects such as NSAffineTransform, NSColor, and NSFont.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

setColorRenderingIntent:
Sets the rendering intent in the receiver’s graphics state.

- (void)setColorRenderingIntent:(NSColorRenderingIntent)renderingIntent

Parameters
renderingIntent

An “Creating a Graphics Context” (page 6)value that specifies the rendering intent to be
used. For possible values see “NSColorRenderingIntent” (page 23).

Discussion
The rendering intent specifies how Cocoa should handle colors that are not located within the gamut of the
destination color space of a graphics context. If you do not explicitly set the rendering intent, and sampled
images are being drawn, NSGraphicsContext uses perceptual rendering intent. Otherwise,
NSGraphicsContext uses relative colorimetric rendering intent

Availability
Available in Mac OS X v10.5 and later.

See Also
– colorRenderingIntent (page 14)

Declared In
NSGraphicsContext.h

setCompositingOperation:
Sets the receiver’s global compositing operation.

- (void)setCompositingOperation:(NSCompositingOperation)operation

Parameters
operation

A constant that specifies a compositing operating. See NSCompositingOperation for valid constants.

Discussion
The compositing operation is a global attribute of the graphics context and affects drawing operations that
do not take an explicit compositing operation parameter. For methods that do take an explicit compositing
operation parameter, the value of that parameter supersedes the global value.

The compositing operations are related to (but different from) the blend mode settings used in Quartz. Only
the default compositing operation (NSCompositeCopy) is supported when rendering PDF or PostScript
content.

18 Instance Methods
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
– compositingOperation (page 14)

Related Sample Code
ImageMap
ImageMapExample

Declared In
NSGraphicsContext.h

setImageInterpolation:
Sets the receiver’s interpolation behavior.

- (void)setImageInterpolation:(NSImageInterpolation)interpolation

Parameters
interpolation

A constant specifying the image-interpolation behavior. The NSImageInterpolation constants are
described in NSImageInterpolation (page 22).

Discussion
Note that this value is not part of the graphics state, so it cannot be reset using restoreGraphicsState (page
17).

Availability
Available in Mac OS X v10.0 and later.

See Also
– imageInterpolation (page 15)

Related Sample Code
WebKitDOMElementPlugIn

Declared In
NSGraphicsContext.h

setPatternPhase:
Sets the amount to offset the pattern color when filling the receiver.

- (void)setPatternPhase:(NSPoint)phase

Parameters
phase

A point specifying the offset.

Discussion
Use this method when you need to line up the pattern color with another pattern, such as the pattern in a
superview.

Instance Methods 19
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

The pattern phase is a translation (width, height) applied before a pattern is drawn in the current context
and is part of the saved graphics state of the context. The default pattern phase is (0,0). Setting the pattern
phase has the effect of temporarily changing the pattern matrix of any pattern you decide to draw. For
example, setting the pattern phase to (2,3) has the effect of moving the start of pattern cell tiling to the point
(2,3) in default user space.

Availability
Available in Mac OS X v10.2 and later.

See Also
– patternPhase (page 17)

Declared In
NSGraphicsContext.h

setShouldAntialias:
Sets whether the receiver should use antialiasing.

- (void)setShouldAntialias:(BOOL)antialias

Parameters
antialias

YES if the receiver should use antialiasing, otherwise NO.

Discussion
This value is part of the graphics state and is restored by restoreGraphicsState (page 17).

Availability
Available in Mac OS X v10.0 and later.

See Also
– shouldAntialias (page 20)

Related Sample Code
Cocoa OpenGL
Cropped Image
From A View to A Movie
From A View to A Picture

Declared In
NSGraphicsContext.h

shouldAntialias
Returns a Boolean value that indicates whether the receiver uses antialiasing.

- (BOOL)shouldAntialias

Return Value
YES if the receiver uses antialiasing, otherwise NO.

20 Instance Methods
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
– setShouldAntialias: (page 20)

Declared In
NSGraphicsContext.h

Constants

Attribute dictionary keys
These constants are dictionary keys used by graphicsContextWithAttributes: (page 9) and
attributes (page 13).

NSString *NSGraphicsContextDestinationAttributeName;
NSString *NSGraphicsContextRepresentationFormatAttributeName;

Constants
NSGraphicsContextDestinationAttributeName

Can be an instance of NSWindow or NSBitmapImageRep when creating a graphics context.

When determining the type of a graphics context, this value can be an NSMutableData, NSString,
or NSURL object.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

NSGraphicsContextRepresentationFormatAttributeName
Specifies the destination file format.

This value should be retrieved only and not used to create a graphics context.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

Representation format attribute keys
These constants are possible values for the NSGraphicsContextRepresentationFormatAttributeName
key in a graphic context’s attribute dictionary.

NSString *NSGraphicsContextPSFormat;
NSString *NSGraphicsContextPDFFormat;

Constants
NSGraphicsContextPDFFormat

Destination file format is PDF.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

Constants 21
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

NSGraphicsContextPSFormat
Destination file format is PostScript.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

NSImageInterpolation
These interpolations are used by imageInterpolation (page 15) and setImageInterpolation: (page
19).

enum {
 NSImageInterpolationDefault,
 NSImageInterpolationNone,
 NSImageInterpolationLow,
 NSImageInterpolationMedium,
 NSImageInterpolationHigh
};
typedef NSUInteger NSImageInterpolation;

Constants
NSImageInterpolationDefault

Use the context’s default interpolation.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

NSImageInterpolationNone
No interpolation.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

NSImageInterpolationLow
Fast, low-quality interpolation.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

NSImageInterpolationMedium
Medium quality, slower than NSImageInterpolationLow.

Available in Mac OS X v10.6 and later.

Declared in NSGraphicsContext.h.

NSImageInterpolationHigh
Slower, higher-quality interpolation.

Available in Mac OS X v10.0 and later.

Declared in NSGraphicsContext.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSGraphicsContext.h

22 Constants
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

NSColorRenderingIntent
These constants specify how Cocoa should handle colors that are not located within the destination color
space of a graphics context. These constants are used by the methods setColorRenderingIntent: (page
18) and colorRenderingIntent (page 14).

enum {
 NSColorRenderingIntentDefault,
 NSColorRenderingIntentAbsoluteColorimetric,
 NSColorRenderingIntentRelativeColorimetric,
 NSColorRenderingIntentPerceptual,
 NSColorRenderingIntentSaturation
};
typedef NSInteger NSColorRenderingIntent;

Constants
NSColorRenderingIntentDefault

Use the default rendering intent for the graphics context.

Available in Mac OS X v10.5 and later.

Declared in NSGraphics.h.

NSColorRenderingIntentAbsoluteColorimetric
Map colors outside of the gamut of the output device to the closest possible match inside the gamut
of the output device.

This operation can produce a clipping effect, where two different color values in the gamut of the
graphics context are mapped to the same color value in the output device’s gamut. Unlike the relative
colorimetric, absolute colorimetric does not modify colors inside the gamut of the output device.

Available in Mac OS X v10.5 and later.

Declared in NSGraphics.h.

NSColorRenderingIntentRelativeColorimetric
Map colors outside of the gamut of the output device to the closest possible match inside the gamut
of the output device.

This operation can produce a clipping effect, where two different color values in the gamut of the
graphics context are mapped to the same color value in the output device’s gamut. The relative
colorimetric shifts all colors (including those within the gamut) to account for the difference between
the white point of the graphics context and the white point of the output device.

Available in Mac OS X v10.5 and later.

Declared in NSGraphics.h.

NSColorRenderingIntentPerceptual
Preserve the visual relationship between colors by compressing the gamut of the graphics context
to fit inside the gamut of the output device.

Perceptual intent is good for photographs and other complex, detailed images.

Available in Mac OS X v10.5 and later.

Declared in NSGraphics.h.

Constants 23
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

NSColorRenderingIntentSaturation
Preserve the relative saturation value of the colors when converting into the gamut of the output
device.

The result is an image with bright, saturated colors. Saturation intent is good for reproducing images
with low detail, such as presentation charts and graphs.

Available in Mac OS X v10.5 and later.

Declared in NSGraphics.h.

24 Constants
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

NSGraphicsContext Class Reference

A method identified as deprecated has been superseded and may become unsupported in the future.

Available in Mac OS X v10.0 through Mac OS X v10.5

focusStack
Returns the object used by the context to track the hierarchy of views with locked focus. (Available in Mac
OS X v10.0 through Mac OS X v10.5.)

- (void *)focusStack

Return Value
The object used by the context to track the hierarchy of views with locked focus.

Discussion
You should never need to get or modify the focus stack information. The use of focus stacks may be deprecated
in a future release.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSGraphicsContext.h

setFocusStack:
Sets the object used by the receiver to track the hierarchy of views with locked focus. (Available in Mac OS
X v10.0 through Mac OS X v10.5.)

- (void)setFocusStack:(void *)stack

Parameters
stack

The object used by the graphics context for view-hierarchy tracking.

Discussion
You should never need to get or modify the focus stack information. The use of focus stacks may be deprecated
in a future release.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.5.

Declared In
NSGraphicsContext.h

Available in Mac OS X v10.0 through Mac OS X v10.5 25
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated NSGraphicsContext Methods

26 Available in Mac OS X v10.0 through Mac OS X v10.5
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated NSGraphicsContext Methods

This table describes the changes to NSGraphicsContext Class Reference.

NotesDate

Reformatted constants.2009-06-24

Updated for Mac OS X v10.6. Added NSImageInterpolationMedium.2009-06-02

Updated for Mac OS version 10.5.2007-03-01

Documented the CIContext instance method.2006-11-07

First publication of this content as a separate document.2006-05-23

27
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

28
2009-06-24 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	NSGraphicsContext Class Reference
	Contents
	NSGraphicsContext Class Reference
	Overview
	Tasks
	Creating a Graphics Context
	Managing the Current Context
	Managing the Graphics State
	Testing the Drawing Destination
	Getting Information About a Context
	Flushing Graphics to the Context
	Managing the Focus Stack
	Configuring Rendering Options
	Getting the Core Image Context
	Managing the Color Rendering Intent

	Class Methods
	currentContext
	currentContextDrawingToScreen
	graphicsContextWithAttributes:
	graphicsContextWithBitmapImageRep:
	graphicsContextWithGraphicsPort:flipped:
	graphicsContextWithWindow:
	restoreGraphicsState
	saveGraphicsState
	setCurrentContext:
	setGraphicsState:

	Instance Methods
	attributes
	CIContext
	colorRenderingIntent
	compositingOperation
	flushGraphics
	graphicsPort
	imageInterpolation
	isDrawingToScreen
	isFlipped
	patternPhase
	restoreGraphicsState
	saveGraphicsState
	setColorRenderingIntent:
	setCompositingOperation:
	setImageInterpolation:
	setPatternPhase:
	setShouldAntialias:
	shouldAntialias

	Constants
	Attribute dictionary keys
	Representation format attribute keys
	NSImageInterpolation
	NSColorRenderingIntent

	Appendix A: Deprecated NSGraphicsContext Methods
	Available in Mac OS X v10.0 through Mac OS X v10.5
	focusStack
	setFocusStack:

	Revision History

