
Undo Architecture
Data Management

2009-05-16

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and Mac OS are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Undo Architecture 5

Organization of This Document 5

Undo Manager 7

Overview 7
Undo Operations and Groups 7
The Undo and Redo Stacks 8

Registering Undo Operations 9

Overview 9
Simple Undo 9
Invocation-Based Undo 10

Performing Undo and Redo 11

Clearing the Undo Stack 13

Setting Action Names 15

Using Undo in Applications 17

Undo and the Responder Chain 17
NSTextView 18

Using Undo Notifications 19

Document Revision History 21

3
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

4
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

This topic describes how to record operations with NSUndoManager, so the user can reverse an operation’s
effect.

You should read this document to learn how to use an undo manager in your application.

Organization of This Document

This document contains the following articles:

 ■ “Undo Manager” (page 7) provides a conceptual overview of the object which records operations for
undo and redo.

 ■ “Registering Undo Operations” (page 9) describes how to add operations to the undo stack.

 ■ “Performing Undo and Redo” (page 11) describes how to perform undo and redo operations.

 ■ “Cleaning the Undo Stack” (page 13) describes how to remove operations from the undo stack.

 ■ “Setting Action Names” (page 15) describes how to provide custom names for the Undo and Redo menu
items.

 ■ “Using Undo in Applications” (page 17) describes the Application Kit’s additions to undo.

 ■ “Using Undo Notifications” (page 19) describes synchronizing using notifications.

Organization of This Document 5
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Introduction to Undo Architecture

6 Organization of This Document
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Introduction to Undo Architecture

This article provides a conceptual understanding of the basic properties and behavior of the undo manager.
Practical, code-based examples are provided in later articles.

Overview

NSUndoManager is a general-purpose undo stack where clients can register callbacks to be invoked should
an undo be requested. When you perform an action that changes the property values of an object (for
example, by invoking a set accessor method), you can also register with an undo manager an operation that
can reverse the action.

An undo manager collects all undo operations that occur within a single cycle of the run loop, so that
performing an undo reverts all changes that occurred during the cycle. Also, when performing undo an undo
manager saves the operations that were reverted so that you can redo the undos.

NSUndoManager is implemented as a class of the Foundation framework because executables other than
applications might want to revert changes to their states. For example, you might have an interactive
command-line tool with undo and redo commands; or there could be Distributed Object implementations
that can revert operations “over the wire.” However, users typically see undo and redo as application-level
features. The Application Kit implements undo and redo in its NSTextView object and makes it easy to
implement it in objects along the responder chain. For more on the role of the Application Kit in undo and
redo, see “Using Undo in Applications” (page 17).

Undo Operations and Groups

An undo operation is a method for reverting a change to an object, along with the arguments needed to
revert the change. The operation specifies:

 ■ The object to which to send a message if an undo is requested.

This may be the object that changed, or an object that owns the object that changed.

 ■ The message to send.

 ■ The arguments to pass with the message.

Typically you need to pass at least one argument—the original value.

Because NSUndoManager also supports redo, these operations should typically be reversible. The method
that’s invoked during an undo operation should itself register an undo operation that will then serve as the
redo action.

Overview 7
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Undo Manager

Undo operations are typically collected in undo groups, which represent whole revertible actions, and are
stored on a stack. When an undo manager performs undo or redo, it is actually undoing or redoing an entire
group of operations. For example, a user could change the type face and the font size of some text. An
application might package both attribute-setting operations as a group, so when the user chooses Undo,
both type face and font size are reverted. To undo a single operation, it must still be packaged in a group.

Redo operations and groups are simply undo operations stored on a separate stack (described below).

NSUndoManager normally creates undo groups automatically during the run loop. The first time it is asked
to record an undo operation in the run loop, it creates a new group. Then, at the end of the loop, it closes
the group. You can create additional, nested undo groups within these default groups using the
beginUndoGrouping and enableUndoRegistrationmethods. You can also turn off the default grouping
behavior using setGroupsByEvent:.

The Undo and Redo Stacks

Undo groups are stored on a stack, with the oldest groups at the bottom and the newest at the top. The
undo stack is unlimited by default, but you can restrict it to a maximum number of groups using the
setLevelsOfUndo: method. When the stack exceeds the maximum, the oldest undo groups are dropped
from the bottom.

Initially, both stacks are empty. Recording undo operations adds to the undo stack, but the redo stack remains
empty until undo is performed. Performing undo causes the reverting operations in the latest group to be
applied to their objects. Since these operations cause changes to the objects’ states, the objects presumably
register new operations with the undo manager, this time in the reverse direction from the original operations.
Since the undo manager is in the process of performing undo, it records these operations as redo operations
on the redo stack. Consecutive undos add to the redo stack. Subsequent redo operations pull the operations
off the redo stack, apply them to the objects, and push them back onto the undo stack.

The redo stack’s contents last as long as undo and redo are performed successively. However, because
applying a new change to an object invalidates the previous changes, as soon as a new undo operation is
registered, any existing redo stack is cleared. This prevents redo from returning objects to an inappropriate
prior state. You can check for the ability to undo and redo with the canUndo and canRedo methods.

8 The Undo and Redo Stacks
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Undo Manager

This article describes the two ways you register an undo operation with an undo manager.

Overview

To add an undo operation to the undo stack, you must register it with the object that performs the undo
operation. NSUndoManager supports two ways to register undo operations:

 ■ “Simple undo” based on a simple selector with a single object argument.

Using this approach, when an object changes, the object itself (or another object acting on its behalf)
registers the change with the undo manager, passing an argument that holds the attributes of the object
prior to the change. (This may be an NSDictionary object, but it can be any object.) Performing the
undo then involves resetting the object with these attributes.

 ■ “Invocation-based undo” which uses an NSInvocation object.

Because this approach uses an invocation object, it can use a method that takes any number and type
of arguments. Invocation-based undo is useful for registering specific state-changing methods, such as
a setFont:color: method.

In most applications a single instance of NSUndoManager belongs to an object that contains or manages
other objects. This is particularly the case with document-based applications, where each NSDocument object
is responsible for all undo and redo operations for a document. An object such as this is often called the
undo manager’s client. Each client object has its own NSUndoManager. The client claims exclusive right to
alter its undoable objects so that it can record undo operations for all changes. In the specific case of
documents, this scheme keeps each pair of undo and redo stacks separate so that when an undo is performed,
it applies to the focal document in the application (typically the one displayed in the key window). It also
relieves the individual objects in a document from having to know the identity of their undo manager or
from having to track changes to themselves.

However, an object that is changed can have its own undo manager and perform its own undo and redo
operations. For example, you could have a custom view that displays images dragged into it; with each
successful drag operation, it registers a new undo group. If the view is then selected (that is, made first
responder) and the Undo command applied, the previously displayed image would be redisplayed.

Simple Undo

To record a simple undo operation, you need only invoke registerUndoWithTarget:selector:object:,
giving the object to be sent the undo operation selector, the selector to invoke, and an argument to pass
with that message. The target object may not be the actual object whose state is changing; instead, it may
be the client object, a document or container that holds many undoable objects. The argument is an object
that captures the state of the object before the change is made, as illustrated in the following example:

Overview 9
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Registering Undo Operations

- (void)setMyObjectTitle:(NSString *)newTitle {

 NSString *currentTitle = [myObject title];
 if (newTitle != currentTitle) {
 [undoManager registerUndoWithTarget:self
 selector:@selector(setMyObjectTitle:)
 object:currentTitle];
 [undoManager setActionName:NSLocalizedString(@"Title Change", @"title
undo")];
 [myObject setTitle:newTitle];
 }
}

In an undo operation, setMyObjectTitle: is invoked with the previous value. Notice that this will again
invoke the registerUndoWithTarget:selector:object: method—in this case with the “new” value
of myObject’s title. Since the undo manager is in the process of undoing, it is recorded as a redo operation.

Invocation-Based Undo

For other changes involving specific methods or arguments that are not objects, you can use invocation-based
undo, which records an actual message to revert the target object’s state. As with simple undo, you record
a message that reverts the object to its state before the change. However, in this case you do so by sending
the message directly to the undo manager, after preparing it with a special message
(prepareWithInvocationTarget:) to note the target, as in this example:

- (void)setMyObjectWidth:(CGFloat)newWidth height:(CGFloat)newHeight{

 float currentWidth = [myObject size].width;
 float currentHeight = [myObject size].height;
 if ((newWidth != currentWidth) && (newHeight != currentHeight) {
 [[undoManager prepareWithInvocationTarget:self]
 setMyObjectWidth:currentWidth height:currentHeight];
 [undoManager setActionName:NSLocalizedString(@"Size Change", @"size
undo")];
 [myObject setSize:NSMakeSize(newWidth, newHeight)];
 }
}

The prepareWithInvocationTarget: method records the argument as the target of the undo operation
about to be established. Following this, you send the message that reverts the target’s state—in this case,
setMyObjectWidth:height:. Because NSUndoManager does not respond to this method,
forwardInvocation: is invoked, which NSUndoManager implements to record the NSInvocation object
containing the target, selector, and all arguments. Performing undo thus results in self being sent a
setMyObjectWidth:height: message with the original values.

10 Invocation-Based Undo
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Registering Undo Operations

Performing undo and redo is usually as simple as sending undo and redo messages to the NSUndoManager.
undo closes the last open undo group and then applies all the undo operations in that group (recording any
undo operations as redo operations instead). redo likewise applies all the redo operations on the top redo
group.

undo is intended for undoing top-level groups, and should not be used for nested undo groups. If any
unclosed, nested undo groups are on the stack when undo is invoked, it raises an exception. To undo nested
groups, you must explicitly close the group with an enableUndoRegistration message, then use
undoNestedGroup to undo it. Note also that if you turn off automatic grouping by event with
setGroupsByEvent:, you must explicitly close the current undo group with enableUndoRegistration
before invoking either undo method.

11
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Performing Undo and Redo

12
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Performing Undo and Redo

If you are using undo managers in a reference-counted environment, you have to be careful about issues
related to memory management. An NSUndoManager object does not retain the targets of undo operations.
The client—the object performing undo operations—typically owns the undo manager, so if the undo
manager in turn retained its target this would frequently create a retain cycle. This means, though, that an
undo manager may potentially hold a reference to an object that has been deallocated. If a target object has
been deallocated and an undo message is sent to it, this results in a runtime exception.

To guard against this, you must take care to clear undo operations for targets that are being deallocated.
You typically do this in one of three ways, depending on the configuration of the client:

 ■ The client is the exclusive owner of the undo manager and the target of all undo operations.

In this case the client can simply release the undo manager in its dealloc method.

 ■ The client shares the undo manager with other clients.

To handle this the client should send removeAllActionsWithTarget: (passing self as the argument
) to the undo manager before releasing it in its dealloc method.

 ■ The client registers objects other than itself for undo operations.

Here either the client must watch for the other objects being deallocated in order to send
removeAllActionsWithTarget:, or the other objects must do so themselves when deallocated (which
requires that they have a reference to the undo manager). This is likely to be needed with invocation-based
undo.

In a more general sense, it sometimes makes sense to clear all undo and redo operations. Some applications
might want to do this when saving a document, for example. To this end, NSUndoManager defines the
removeAllActions method, which clears both stacks.

13
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Clearing the Undo Stack

14
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Clearing the Undo Stack

You can use the NSUndoManager method setActionName: to qualify the Undo and Redo command titles
in the Edit menu. You pass the string you want appended to “Undo” and “Redo” in the menu items when
the current undo group is at the top of the undo and redo stacks. Because the name is applied to the current
operation, you should typically set the name at the same time as registering the operation to ensure that
the two are kept in sync.

- (void)setBookTitle:(NSString *)newTitle {
 [undoManager registerUndoWithTarget:self
 selector:@selector(setBookTitle:)
 object:[book title]];
 [book setTitle:newTitle];
 [undoManager setActionName:@"Title Change"];
}

Consider, for example, a graphics application that allows users to add a circle, fill it with a color, and delete
it. With setActionName:, you could set the name of each action to “Add Circle,” “Fill,” and “Delete.” After
each action, the Undo menu item title is set to “Undo Add Circle,” “Undo Fill,” and “Undo Delete” respectively.

NSUndoManager automatically localizes the “Undo” and “Redo” portion of the command titles, but merely
appends the action name to them. You should localize the action names yourself. If you want to further
customize how these titles are localized, you can create a subclass of NSUndoManager and override
undoMenuTitleForUndoActionName: and redoMenuTitleForUndoActionName:.

15
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Setting Action Names

16
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Setting Action Names

The Application Kit supplements the behavior of NSUndoManager in several ways:

 ■ It offers default undo and redo behavior in text.

 ■ It includes APIs for managing the action names that appear with “Undo” and “Redo” in an application’s
menu.

 ■ it establishes a framework for the distribution and selection of undo managers in an application

Undo and the Responder Chain

As stated earlier, an application can have one or more clients—objects that register and perform undo
operations in their local contexts. Each of these objects has its own NSUndoManager object and the associated
undo and redo stacks. One example of this scenario involves custom views, each a client of an undo manager.
For example, you could have a window with two custom views; each view can display text in changeable
attributes (such as font, color, and size) and users can undo (or redo) each change to any attribute in either
of the views. NSResponder and NSWindow define methods to help you control the context of undo operations
within the view hierarchy.

NSResponder declares the undoManager method for most objects that inherit from it (namely, windows
and views). When the first responder of an application receives an undo or redo message, NSResponder
goes up the responder chain looking for a next responder that returns an NSUndoManager object from
undoManager. Any returned undo manager is used for the undo or redo operation.

If the undoManager message wends its way up the responder chain to the window, the NSWindow object
queries its delegate with windowWillReturnUndoManager: to see if the delegate has an undo manager.
If the delegate does not implement this method, the window creates an NSUndoManager object for the
window and all its views.

Document-based applications often make their NSDocument objects the delegates of their windows and
have them respond to the windowWillReturnUndoManager: message by returning the undo manager
used for the document. These applications can also make each NSWindowController object the delegate
of its window—the window controller implements windowWillReturnUndoManager: to get the undo
manager from its document and return it:

return [[self document] undoManager];

Undo and the Responder Chain 17
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Using Undo in Applications

NSTextView

Instances of NSTextView provide undo and redo behavior. This is an optional feature, and you must make
sure that when you create the text view either you select the appropriate check box in Interface Builder, or
send it setAllowsUndo: with an argument of YES. If you want a text view to use its own undo manager
(and not the window’s), you provide a delegate for the text view; the delegate can then return an instance
of NSUndoManager from the undoManagerForTextView: delegate method.

The default undo and redo behavior applies to text fields and text in cells as long as the field or cell is the
first responder (that is, the focus of keyboard actions). Once the insertion point leaves the field or cell, prior
operations cannot be undone.

18 NSTextView
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Using Undo in Applications

An NSUndoManager regularly posts checkpoint notifications to synchronize the inclusion of undo operations
in undo groups. Objects sometimes delay performing changes, for various reasons. This means they may
also delay registering undo operations for those changes. Because NSUndoManager collects individual
operations into groups, it must be sure to synchronize its client with the creation of these groups so that
operations are entered into the proper undo groups. To this end, whenever an undo manager opens or closes
a new undo group (except when it opens a top-level group), it posts an NSUndoManagerCheckpointNotification
so observers can apply their pending undo operations to the group in effect. The NSUndoManager’s client
should register itself as an observer for this notification and record undo operations for all pending changes
upon receiving it.

NSUndoManager also posts a number of other notifications at specific intervals: when a group is created,
when a group is closed, and just before and just after both undo and redo operations.

19
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Using Undo Notifications

20
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Using Undo Notifications

This table describes the changes to Undo Architecture.

NotesDate

Minor corrections and reformatting.2009-05-16

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

21
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

22
2009-05-16 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Undo Architecture
	Contents
	Introduction
	Undo Manager
	Overview
	Undo Operations and Groups
	The Undo and Redo Stacks

	Registering Undo Operations
	Overview
	Simple Undo
	Invocation-Based Undo

	Performing Undo and Redo
	Clearing the Undo Stack
	Setting Action Names
	Using Undo in Applications
	Undo and the Responder Chain
	NSTextView

	Using Undo Notifications
	Revision History

