
Text Views
User Experience: Windows & Views

2008-11-13

Apple Inc.
© 1997, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Text Views 7

Who Should Read This Document 7
Organization of This Document 7
See Also 7

Text Fields, Text Views, and the Field Editor 9

Text Fields 9
Text Views 10
The Field Editor 10

Subclassing NSTextView 13

Updating State 13
Custom Import Types 13
Altering Selection Behavior 14
Preparing to Change Text 14
Notifying About Changes to the Text 14
Smart Insert and Delete 15

Overview of Text Editing 17

The Editing Environment 17
The Key-Input Message Sequence 17
Text View Delegation 19
Subclassing and Beyond 20

Document Revision History 21

Index 23

3
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

4
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Figures

Text Fields, Text Views, and the Field Editor 9

Figure 1 A text field 9
Figure 2 A text view 10
Figure 3 The field editor 11

Overview of Text Editing 17

Figure 1 Key-event processing 18
Figure 2 Text-input key event processing 19

5
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

6
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Text Views provides information about text views, the main user interface objects of the Cocoa text system.
Text views handle user events to provide text entry and modification. Text views can display multiple lines
of text laid out in paragraphs with all the characteristics of sophisticated typesetting.

Who Should Read This Document

You should read the information presented here if you need to understand what text views are and how
they work.

Organization of This Document

The following documents describe text views:

 ■ “Text Fields, Text Views, and the Field Editor” (page 9) introduces and compares the main user interface
objects of the text system.

 ■ “Overview of Text Editing” (page 17) provides a high-level view of the text editing mechanism and
explains the message sequence that occurs when a text view receives a key event.

 ■ “Subclassing NSTextView” (page 13) explains the responsibilities an NSTextView subclass must fulfill to
interact successfully with the text system.

See Also

For more information, refer to the following documents:

 ■ Text System User Interface Layer Programming Guide describes text views in the context of the Cocoa text
system. This document includes multiple articles discussing text views.

 ■ Text System Overview provides an overview of the Cocoa text system.

Who Should Read This Document 7
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Introduction to Text Views

8 See Also
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Introduction to Text Views

Text fields, text views, and the field editor are important objects in the Cocoa text system because they are
central to the user’s interaction with the system. They provide text entry, manipulation, and display. If your
application deals in any way with user-entered text, you should understand these objects.

Text Fields

A text field is a user interface control object instantiated from the NSTextField class. Figure 1 shows a text
field. Text fields display small amounts of text, typically (although not necessarily) a single line. Text fields
also provide places for users to enter text responses, such as search parameters. Like all controls, a text field
has a target and an action. By default, text fields send their action message when editing ends—that is, when
the user presses Return or moves focus to another control. You can also control a text field’s shape and layout,
the font and color of its text, background color, whether the text is editable or read-only, whether it is
selectable or not (if read-only), and whether the text scrolls or wraps when the text exceeds the text field’s
visible area.

Figure 1 A text field

To create a secure text field for password entry, you use NSSecureTextField, a subclass of NSTextField. Secure
text fields display bullets in place of characters entered by the user, and they do not allow cutting or copying
of their contents. You can get the text field’s value using the stringValuemethod, but users have no access
to the value.

The usual way to instantiate a text field is to drag an NSTextField object from the Cocoa-Views palette in
Interface Builder and place it in a window of your application’s user interface. Then, if you then want to
convert the text field to a secure text field, you select it, open the Info window (Command-Shift-I), choose
the Custom Class pane (Command-5), and select NSSecureTextField.

See Text Fields more information.

Text Fields 9
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Text Fields, Text Views, and the Field Editor

Text Views

Text views are user interface objects instantiated from the NSTextView class. Figure 2 shows a text view. Text
views typically display multiple lines of text laid out in paragraphs with all the characteristics of sophisticated
typesetting. A text view is the main user interface to the Cocoa text-editing system. It handles user events
to provide text entry and modification, and to display any font, including those of non-English languages,
with arbitrary colors, styles, and other attributes.

Figure 2 A text view

The Cocoa text system supports text views with many other underlying objects providing text storage, layout,
font and attribute manipulation, spell checking, undo and redo, copy and paste, drag and drop, saving of
text to files, and other features. NSTextView is a subclass of NSText, which is a separate class for historical
reasons. You don’t instantiate NSText, although it declares many of the methods you use with NSTextView.
When you put an NSTextView object in an NSWindow object, you have a full-featured text editor whose
capabilities are provided “for free” by the Cocoa text system. (See “Building a Text Editor in 15 Minutes” in
Text System Overview for more information.)

The Field Editor

The field editor is a single NSTextView object that is shared among all the controls, including text fields, in
a window. This text view object inserts itself into the view hierarchy to provide text entry and editing services
for the currently active text field. When the user shifts focus to a text field, the field editor begins handling
keystroke events and display for that field. The field editor designates the current text field as its delegate,
enabling the text field to control changes to its contents. When the focus shifts to another text field, the field
editor attaches itself to that field instead. Figure 3 illustrates the disposition of the field editor in relation to
the text field it is editing.

10 Text Views
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Text Fields, Text Views, and the Field Editor

Figure 3 The field editor

anNSTextView

Field editor

delegate

Field editor becomes
first responder while
text field is being edited.

anNSTextField

Because only one of the text fields in a window can be active at a time, the system needs only one NSTextView
instance per window to be the field editor. Among its other duties, the field editor maintains the selection.
Therefore, a text field that's not being edited typically does not have a selection at all. (However, developers
can substitute custom field editors, in which case there could be more than one field editor.)

For more information about the field editor, see “Working With the Field Editor.”

The Field Editor 11
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Text Fields, Text Views, and the Field Editor

12 The Field Editor
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Text Fields, Text Views, and the Field Editor

This article explains how to subclass NSTextView. It describes the major areas where a subclass has obligations
and where it can expect help in implementing new features.

Note: To modify editing behavior, your first resort should be to notification or delegation, rather than
subclassing. It may be tempting to start by subclassing NSTextView and overriding keyDown:, but that’s
usually not appropriate, unless you really need to deal with raw key events before input management or key
binding. In most cases it’s more appropriate to work with one of the text view delegate methods or with text
view notifications, as described in “Delegate Messages and Notifications” in Text Editing Programming Guide.

The text system requires NSTextView subclasses to abide by certain rules of behavior, and NSTextView
provides many methods to help subclasses do so. Some of these methods are meant to be overridden to
add information and behavior into the basic infrastructure. Some are meant to be invoked as part of that
infrastructure when the subclass defines its own behavior.

Updating State

NSTextView automatically updates the Fonts window and ruler as its selection changes. If you add any new
font or paragraph attributes to your subclass of NSTextView, you’ll need to override the methods that
perform this updating to account for the added information. The updateFontPanel method makes the
Fonts window display the font of the first character in the selection. You could override this method to update
the display of an accessory view in the Fonts window. Similarly, updateRuler causes the ruler to display
the paragraph attributes for the first paragraph in the selection. You can also override this method to customize
display of items in the ruler. Be sure to invoke the super implementation in your override to have the basic
updating performed as well.

Custom Import Types

NSTextView supports pasteboard operations and the dragging of files and colors into its text. If you customize
the ability of your subclass to handle pasteboard operations for new data types, you should override the
readablePasteboardTypes and writablePasteboardTypes methods to reflect those types. Similarly,
to support new types of data for dragging operations, you should override the acceptableDragTypes
method. Your implementation of these methods should invoke the superclass implementation, add the new
data types to the array returned from super, and return the modified array.

To read and write custom pasteboard types, you must override the readSelectionFromPasteboard:type:
and writeSelectionToPasteboard:type: methods. In your implementation of these methods, you
should read the new data types your subclass supports and let the superclass handle any other types.

Updating State 13
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Subclassing NSTextView

For dragging operations, if your subclass’s ability to accept your custom dragging types varies over time,
you can override updateDragTypeRegistration to register or unregister the custom types according to
the text view’s current status. By default this method enables dragging of all acceptable types if the receiver
is editable and a rich text view.

Altering Selection Behavior

Your subclass of NSTextView can customize the way selections are made for the various granularities (such
as character, word, and paragraph) described in"Setting Focus and Selection Programmatically" in Text Editing
Programming Guide. While tracking user changes to the selection, whether by the mouse or keyboard, an
NSTextViewobject repeatedly invokesselectionRangeForProposedRange:granularity: to determine
what range to actually select. When finished tracking changes, it sends the delegate a
textView:willChangeSelectionFromCharacterRange:toCharacterRange:message. By overriding
the NSTextView method or implementing the delegate method, you can alter the way the selection is
extended or reduced. For example, in a code editor you can provide a delegate that extends a double click
on a brace or parenthesis character to its matching delimiter.

These mechanisms aren’t meant for changing language word definitions (such as what’s selected by a double
click). That detail of selection is handled at a lower (and currently private) level of the text system.

Preparing to Change Text

If you create a subclass of NSTextView to add new capabilities that will change the text in response to user
actions, you may need to modify the range selected by the user before actually applying the change. For
example, if the user is making a change to the ruler, the change must apply to whole paragraphs, so the
selection may have to be extended to paragraph boundaries. Three methods calculate the range to which
certain kinds of change should apply. The rangeForUserTextChange method returns the range to which
any change to characters themselves—insertions and deletions—should apply. The
rangeForUserCharacterAttributeChange method returns the range to which a character attribute
change, such as a new font or color, should apply. Finally, rangeForUserParagraphAttributeChange
returns the range for a paragraph-level change, such as a new or moved tab stop or indent. These methods
all return a range whose location is NSNotFound if a change isn’t possible; you should check the returned
range and abandon the change in this case.

Notifying About Changes to the Text

In actually making changes to the text, you must ensure that the changes are properly performed and
recorded by different parts of the text system. You do this by bracketing each batch of potential changes
with shouldChangeTextInRange:replacementString: and didChangeTextmessages. These methods
ensure that the appropriate delegate messages are sent and notifications posted. The first method asks the
delegate for permission to begin editing with a textShouldBeginEditing: message. If the delegate
returns NO, shouldChangeTextInRange:replacementString: in turn returns NO, in which case your
subclass should disallow the change. If the delegate returns YES, the text view posts an
NSTextDidBeginEditingNotification, and shouldChangeTextInRange:replacementString: in

14 Altering Selection Behavior
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Subclassing NSTextView

turn returns YES. In this case you can make your changes to the text, and follow up by invoking
didChangeText. This method concludes the changes by posting an NSTextDidChangeNotification,
which results in the delegate receiving a textDidChange: message.

The textShouldBeginEditing: and textDidBeginEditing: messages are sent only once during an
editing session. More precisely, they’re sent upon the first user input since the NSTextView became the first
responder. Thereafter, these messages—and the NSTextDidBeginEditingNotification—are skipped
in the sequence. The textView:shouldChangeTextInRange:replacementString: method, however,
must be invoked for each individual change.

Smart Insert and Delete

NSTextView defines several methods to aid in “smart” insertion and deletion of text, so that spacing and
punctuation are preserved after a change. Smart insertion and deletion typically applies when the user has
selected whole words or other significant units of text. A smart deletion of a word before a comma, for
example, also deletes the space that would otherwise be left before the comma (though not placing it on
the pasteboard in a Cut operation). A smart insertion of a word between another word and a comma adds
a space between the two words to protect that boundary. NSTextView automatically uses smart insertion
and deletion by default; you can turn this behavior off using setSmartInsertDeleteEnabled:. Doing so
causes only the selected text to be deleted, and inserted text to be added, with no addition of white space.

If your subclass of NSTextView defines any methods that insert or delete text, you can make them smart by
taking advantage of two NSTextView methods. The smartDeleteRangeForProposedRange: method
expands a proposed deletion range to include any white space that should also be deleted. If you need to
save the deleted text, however, it’s typically best to save only the text from the original range. For smart
insertion,smartInsertForString:replacingRange:beforeString:afterString: returns by reference
two strings that you can insert before and after a given string to preserve spacing and punctuation. See the
method descriptions for more information.

Smart Insert and Delete 15
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Subclassing NSTextView

16 Smart Insert and Delete
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Subclassing NSTextView

The Cocoa text system implements a sophisticated editing mechanism that enables input and modification
of complex text character and style information. It is important to understand this mechanism if your code
needs to hook into it to modify that behavior.

The text system provides a number of control points where you can customize the editing behavior:

 ■ Text system classes provide methods to control many of the ways in which they perform editing.

 ■ You can implement more control through the Cocoa mechanisms of notification and delegation.

 ■ In extreme cases where the capabilities of the text system are not suitable, you can replace the text view
with a custom subclass.

The Editing Environment

Text editing is performed by a text view object. Typically, a text view is an instance of NSTextView or a
subclass. A text view provides the front end to the text system. It displays the text, handles the user events
that edit the text, and coordinates changes to the stored text required by the editing process. NSTextView
implements methods that perform editing, manage the selection, and handle formatting attributes affecting
the layout and display of the text.

NSTextView has a number of methods that control the editing behavior available to the user. For example,
NSTextView allows you to grant or deny the user the ability to select or edit its text, using the
setSelectable: and setEditable: methods. NSTextView also implements the distinction between
plain and rich text defined by NSText with its setRichText: and setImportsGraphics: methods. See
Text System User Interface Layer Programming Guide programming topic and the NSTextView and NSText
class specifications for more information.

An editable text view can operate in either of two distinct editing modes: as a normal text editor or as a field
editor. A field editor is a single text view instance shared by many text fields belonging to a window in an
application. This sharing results in a performance gain. When a text field becomes the first responder, the
window inserts the field editor in its place in the responder chain. A normal text editor accepts Tab and
Return characters as input, whereas a field editor interprets Tab and Return as cues to end editing. The
NSTextView method setFieldEditor: controls this behavior.

The Key-Input Message Sequence

When you want to modify the way in which Cocoa edits text, it’s helpful to understand the message sequence
that defines the editing mechanism, so you can select the most appropriate point at which to add your
custom behavior.

The Editing Environment 17
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Overview of Text Editing

The message sequence invoked when a text view receives key events involves four methods declared by
NSResponder. When the user presses a key, the operating system handles certain reserved key events and
sends others to the NSApplication object, which handles Command-key events as key equivalents. The
key events not handled are sent by the application object to the key window, which processes key events
mapped to keyboard navigation actions (such as Tab moving focus on the next view) and sends other key
events to the first responder. Figure 1 illustrates this sequence.

Figure 1 Key-event processing

sendEvent:

keyDown:

sendEvent:Key press

Control-key events

First responder

Command-key events

Reserved key events

NSWindow

NSApplication

OS

If the first responder is a text view, the key event enters the text system. The key window sends the text view
a keyDown: message with the event as its argument. The keyDown: method passes the event to
handleEvent:, which sends the character input to the input context for key binding and interpretation. In
response, the input context sends either insertText:replacementRange:,
setMarkedText:selectedRange:replacementRange:, or doCommandBySelector: to the text view.
Figure 2 illustrates the sequence of text-input event processing.

18 The Key-Input Message Sequence
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Overview of Text Editing

Figure 2 Text-input key event processing

setMarkedText:selectedRange:
replacementRange:
or
doCommandBySelector:
or
insertText:replacementRange:

handleEvent:

keyDown:
First responder

Key binding and marked
text processing

NSTextView

NSTextInputContext

Key-bindings dictionary

For more information about text-input key event processing, see “Text System Defaults and Key Bindings”
in Cocoa Event-Handling Guide.

When the text view has enough information to specify an actual change to its text, it sends an editing message
to its NSTextStorage object to effect the change. The methods that change character and attribute
information in the text storage object are declared in the NSTextStorage superclass
NSMutableAttributedString, and they depend on the two primitive methods
replaceCharactersInRange:withString: and setAttributes:range:. The text storage object then
informs its layout managers of the change to initiate glyph generation and layout when necessary, and it
posts notifications and sends delegate messages before and after processing the edits. For more information
about the interaction of text view, text storage, and layout manager objects, see Text Layout Programming
Guide.

Text View Delegation

Delegation provides a powerful mechanism for modifying editing behavior because you can implement
methods in the delegate that can then perform editing commands in place of the text view, a technique
called delegation of implementation. NSTextView gives its delegate this opportunity to handle a command
by sending it a textView:doCommandBySelector: message whenever it receives a
doCommandBySelector: message from the input context. If the delegate implements this method and
returns YES, the text view does nothing further; if the delegate returns NO, the text view must try to perform
the command itself.

Text View Delegation 19
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Overview of Text Editing

Before a text view makes any change to its text, it sends its delegate a
textView:shouldChangeTextInRange:replacementString:message, which returns a Boolean value.
(As with all delegate messages, it sends the message only if the delegate implements the method.) This
mechanism provides the delegate with an opportunity to control all editing of the character and attribute
data in the text storage object associated with the text view.

For more information about text view delegation, see "Delegate Messages and Notifications" in Text Editing
Programming Guide.

Subclassing and Beyond

Using NSTextView directly is the easiest way to interact with the text system, and its delegate mechanism
provides an extremely flexible way to modify its behavior. In cases where delegation does not provide required
behavior, you can subclass NSTextView. See "Subclassing NSTextView" (page 13) for more information on
how to implement a subclass of NSTextView.

Note: To modify editing behavior, your first resort should be to notification or delegation, rather than
subclassing. It may be tempting to start by subclassing NSTextView and overriding keyDown:, but that’s
usually not appropriate, unless you really need to deal with raw key events before input management or key
binding. In most cases it’s more appropriate to work with one of the text view delegate methods or with text
view notifications.

A strategy even more complicated than subclassing NSTextView is to create your own custom text view
object. If you need more sophisticated text handling than NSTextView provides, for example in a word
processing application, it is possible to create a text view by subclassing NSView, implementing the
NSTextInputClient protocol, and interacting directly with the input management system. For information
on creating custom text views, see “Creating Custom Views.” Also refer to the reference documentation for
NSText, NSTextView, NSView, NSTextInputContext, and the NSTextInputClient protocol.

20 Subclassing and Beyond
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Overview of Text Editing

This table describes the changes to Text Views.

NotesDate

Removed links to deprecated Text Input Management.2008-11-13

Revised introduction and added an index.2004-02-09

First content added: introduction and links to existing Cocoa documents
describing text views.

2003-08-04

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

21
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Document Revision History

22
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Document Revision History

A

acceptableDragTypes method 13

C

control points of editing mechanism 17

D

delegation 19
deletion, smart 15
didChangeText method 14, 15
doCommandBySelector: method 18, 19

E

editing
customizing behavior 13, 17, 19
environment 17
message sequence 17
modes 17

event handling
keyboard events 17

F

field editors 10
text fields and 17

first responder
delegate methods and 15

Font window 13

H

handleEvent: method 18

I

import types 13
insertText:replacementRange: method 18

K

key events
processing by a text view 18

key window 18
key-input message sequence 17
keyDown: method 13, 18, 20

M

message sequence of editing mechanism 17

N

notifications
of text changes 14

NSApplication class 18
NSNotFound constant 14
NSResponder class 18
NSSecureTextField class 9
NSText class 10
NSTextDidBeginEditingNotification 14
NSTextDidChangeNotification 15
NSTextField class 9
NSTextInput protocol 20
NSTextStorage class 19
NSTextView class

23
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

Index

delegate of 19
features 17
subclassing 13, 20

P

pasteboard 13

R

rangeForUserCharacterAttributeChange method
14

rangeForUserParagraphAttributeChange method
14

rangeForUserTextChange method 14
readablePasteboardTypes method 13
readSelectionFromPasteboard:type: method 13
replaceCharactersInRange:withString: method

19
ruler 13

S

selection
altering behavior 14
granularity 14

selectionRangeForProposedRange:granularity:
method 14

setAttributes:range: method 19
setEditable: method 17
setFieldEditor: method 17
setImportsGraphics: method 17
setMarkedText:selectedRange:replacementRange:

method 18
setRichText: method 17
setSelectable: method 17
setSmartInsertDeleteEnabled: method 15
shouldChangeTextInRange:replacementString:

method 14, 15
smart insertion and deletion 15
smartDeleteRangeForProposedRange: method 15
smartInsertForString:replacingRange:beforeString:

afterString: method 15
stringValue method 9

T

text attributes 13
text delegates 14, 19
text fields 9
text ranges, modifying for changes 14
text storage 19
text views

creating your own 20
defined 10, 17

textDidBeginEditing: method 15
textDidChange: method 15
textShouldBeginEditing: method 14, 15
textView:doCommandBySelector: method 19
textView:shouldChangeTextInRange:

replacementString: method 20
textView:willChangeSelectionFromCharacterRange:

toCharacterRange: method 14

U

updateDragTypeRegistration method 14
updateFontPanel method 13
updateRuler method 13

W

writablePasteboardTypes method 13
writeSelectionToPasteboard:type: method 13

24
2008-11-13 | © 1997, 2008 Apple Inc. All Rights Reserved.

	Text Views
	Contents
	Figures
	Introduction
	Text Fields, Text Views, and the Field Editor
	Text Fields
	Text Views
	The Field Editor

	Subclassing NSTextView
	Updating State
	Custom Import Types
	Altering Selection Behavior
	Preparing to Change Text
	Notifying About Changes to the Text
	Smart Insert and Delete

	Overview of Text Editing
	The Editing Environment
	The Key-Input Message Sequence
	Text View Delegation
	Subclassing and Beyond

	Revision History
	Index
	A
	C
	D
	E
	F
	H
	I
	K
	M
	N
	P
	R
	S
	T
	U
	W

