
Services Implementation Guide
Data Management: Event Handling

2009-05-18

Apple Inc.
© 2003, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Finder, Mac, Mac
OS, Objective-C, Safari, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction 7

Who Should Read This Document? 7
Prerequisites 7
Organization of This Document 7
Changes for Mac OS X v10.6 8

Services Overview 9

How Service Requests Work 9
Sample Services 10

Items in the Services Menu 13

Services Properties 15

Property Definitions 15
Add-On Services 17
Sample Property List 18

Providing a Service 19

Deciding on a Service 19
Implementing the Service Method 20
Registering the Service Provider 20
Advertising the Service 21
Installing the Service 22
Testing 22

Using Services 23

The Process 23
Registering Objects for Services 24
Validating Services Menu Items 24
Sending Data to the Service 25
Receiving Data from the Service 26
Invoking a Service Programmatically 26

Document Revision History 27

3
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

4
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Figures and Listings

Services Overview 9

Figure 1 Data flow in a service request 9
Figure 2 Make New Sticky Note is a processor service 10
Figure 3 Open URL is a processor service 10
Figure 4 Capture Full Screen is a provider service 11
Figure 5 The Apple Facts document after a screen shot has been inserted 11

Services Properties 15

Figure 1 The NSServices property for Safari 18

Providing a Service 19

Listing 1 Text encryption method 19
Listing 2 Service method 20

Using Services 23

Figure 1 Using services 23

5
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

6
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Note: This document was previously titled System Services.

Services are features exported by your application for the benefit of other applications. Services let you share
the resources and capabilities of your application with other applications in the system.

Users access services through the Services menu that’s found in every application’s application menu. An
application does not need to know in advance what operations are available; the application merely needs
to indicate the types of data it uses. The Services menu will make available the operations that apply to those
types when they apply.

This document describes how Mac OS X services work, shows some typical Services menus, and provides
instructions on how you can use services in your application.

Who Should Read This Document?

You should read this document if you are a Cocoa application developer and want to provide your application’s
services to other applications or make services from other applications available to your application.

Prerequisites

Before you read this document, you should be familiar with information property lists. You need to know
what they are and how to add properties to a list. For more information, see Information Property List Files
in Runtime Configuration Guidelines.

For guidelines on naming menu items and for designing the interface for a services application, see Apple
Human Interface Guidelines.

Organization of This Document

Read the first three chapters to learn how services work, see examples of services in applications, and learn
which properties you use to provide and use services in your applications. The remaining two chapters
describe in detail how to provide and use services in your applications.

Who Should Read This Document? 7
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Introduction

Changes for Mac OS X v10.6

The Services feature was updated in Mac OS X version 10.6 with the following changes and additions to
properties:

 ■ A slash is no longer treated as specifying a submenu with NSMenuItem.

 ■ NSSendTypes and NSReturnTypes no longer need to be specified.

 ■ There are three new properties:NSSendFileTypes,NSServiceDescription, andNSRequiredContext.

8 Changes for Mac OS X v10.6
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Introduction

Services allow a user to access the functionality of one application from within another application. An
application that provides a service advertises the operations it can perform on a particular type of data—for
example, encryption of text, optical character recognition of a bitmapped image, or generating text such as
a message of the day. When the user is manipulating that particular type of data in some application, the
user can choose the appropriate item in the Services menu to operate on the current data selection (or merely
insert new data into the document).

This chapter discusses how services are processed and describes some sample services.

How Service Requests Work

Services are performed by transferring data back and forth between applications through a shared pasteboard.
Note that the two applications—service requester and service provider—are completely separate; they do
not run in a shared memory space. The pasteboard holding the data is specific to the service request and
does not normally interfere with the standard Copy/Paste pasteboard.

When the user chooses a Services menu item, data flows as shown in Figure 1. The current selection is copied
to a pasteboard which is then passed to the service provider application. If the service provider is not currently
running, it is automatically launched. The service provider reads the contents of the pasteboard and operates
on it. The service provider writes new data back to the pasteboard and the pasteboard is returned to the
original application. The original application then pastes the pasteboard’s contents into the document,
replacing the current selection, if there is one. The service provider application does not automatically quit
at the end of the service request.

Figure 1 Data flow in a service request

Service
requester

Copy Read

Paste Write

Pasteboard Service
provider

Not all services both receive and provide data. Some services only receive data and others only provide data.
In these cases only one of the copy and paste steps is performed. Services can thus be divided into two
groups:

 ■ Processor. This type of service acts on data. A processor service acts on the current selection and then
sends it to the service. For example, if a user selects an email address in a TextEdit document, and then
chooses Send Selection from the Services menu, TextEdit copies the person’s address to the pasteboard,
the Mail application launches, and Mail pastes the address into the Send field of a new email message.

How Service Requests Work 9
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Services Overview

 ■ Provider. This type of service gives data to the calling application. For example, if a user chooses Capture
Full Screen from the Services menu, the Grab application opens, takes a screen shot, then returns the
screen shot (TIFF data in this case) to the calling application. The calling application (such as TextEdit)
is responsible for pasting the data into the active document.

A service falls into both categories if it processes the current selection and then provides a replacement value.
For example, a text encryption service takes the current text selection, encrypts it, and then returns the
encrypted text to the service requester to replace the current selection.

Sample Services

The following figures show services in action. Figure 2 shows the Services menu from the TextEdit application.
Make New Sticky Note is an example of a processor service. The Make New Sticky Note command takes the
current selection in the TextEdit document, opens a new Stickies document, and then pastes the selection
into the Stickies document. For more convenient use, a keyboard shortcut (Command-Shift-Y) is defined for
this service.

Figure 2 Make New Sticky Note is a processor service

Figure 3 shows another example of a processor service. In this case, the Open URL command copies the
selected text, launches a Web browser, pastes the selected text into the browser’s location field, and then
tries to connect to that location.

Figure 3 Open URL is a processor service

10 Sample Services
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Services Overview

Capture Full Screen is a provider service. Figure 4 shows the Apple Facts document before Capture Full Screen
is invoked.

Figure 4 Capture Full Screen is a provider service

Figure 5 shows the Apple Facts document after Grab has taken a shot of the current screen and returned the
data to the TextEdit application. Recall that it is the responsibility of TextEdit to do something with the
returned data. In this example, TextEdit simply pastes the TIFF into the current document at the insertion
point.

Figure 5 The Apple Facts document after a screen shot has been inserted

Sample Services 11
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Services Overview

12 Sample Services
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Services Overview

Applications that provide services may be installed anywhere on the system. The applications’ information
property lists declare the services the applications provide (see “Services Properties” (page 15)). Mac OS X
collects the property list information and uses it to populate the items in the Services menu based on the
particular data types supported by each application.

The Services menu is included in the default nib file created by Xcode and Interface Builder for Cocoa
applications. If the application’s menu is instead created programmatically, you need to designate a Services
menu using the NSApplication method setServicesMenu:. If an application registers for services (see
“Using Services” (page 23)), the appropriate items are automatically available in the Services menu.

The items in the Services menu are commands categorized by what type of data they operate on. The
application icon of the application providing a service appears to the left of the service’s name in the menu.
If two or more applications provide a service with an identical name, the name of the application providing
each one is appended in parentheses after the name of the service in the menu.

The Services menu is populated when the menu is opened. Choosing the Services menu causes the current
responder chain to be searched for objects that can provide or receive data of the types used by each service
listed in the Services menu. If an object is found that can use a given service, the service’s menu item is shown
in the menu. Menu items for which no suitable object is found are not shown in the menu.

13
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Items in the Services Menu

14
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Items in the Services Menu

Any application that has one or more services to provide must advertise the type of data its services can
handle. Services are advertised through the NSServices property of the application’s information property
list (Info.plist) file.

Note: The information property list (Info.plist) contains key-value pairs that specify an application’s
properties that are of interest to the Finder and other applications. Although the Info.plist is a text file
that uses XML (Extensible Markup Language) format, you should not modify the XML directly unless you are
very familiar with XML syntax. Instead, use Xcode or the Property List Editor application provided with Mac
OS X to modify the Info.plist file. You can find more information on property lists in RuntimeConfiguration
Guidelines.

Property Definitions

NSServices is a property whose value is an array of dictionaries that specifies the services provided by the
application. Keys for each dictionary entry, are as follows:

 ■ NSMessage indicates the instance method to invoke. Its value is used to construct an Objective-C method
of the form messageName:userData:error:. This message is sent to the application’s service provider
object.

 ■ NSPortName is the name of the port on which the application should listen for service requests. Its value
depends on how the service provider application is registered. In most cases, this is the application name.
This property is ignored for Automator workflows being used as services.

 ■ NSMenuItem is a dictionary that specifies the text of the Services menu item. Only one entry should be
in this dictionary, and its key should be default. Its string value is used as the menu item’s text. There
are no submenus in the Services menu, so the text preceding and including any slash present is discarded.
(In Mac OS X version 10.5 and earlier, you could use a slash to specify a submenu. For example, Mail/Send
Selection appears in the Services menu as a submenu named Mail with an item named Send Selection.)

Any services with identical names are disambiguated by adding the application name providing each
service in parentheses after its name. (In Mac OS X version 10.5 and earlier, NSMenuItemmust be unique,
as only one is used in the Services menu if there are duplicates.)

To localize the string specified, create a ServicesMenu.strings file for each localization in your bundle
with the above default menu item string as the lookup key. For example, create a .strings file that
has Send Selection as the key and the localized text as its value. (See Resource Programming Guide
for details on localized strings files.) If a localized string is not found, the default text is used.

 ■ NSKeyEquivalent is an optional dictionary that specifies the keyboard equivalent for invoking the
menu command. Like NSMenuItem, the only entry in the dictionary should have the key default with
a string value that can be localized in the ServicesMenu.strings file. The string value must be a single
character. The keyboard shortcut is this one character, with the Command key modifier. If the character
is uppercase, the Shift modifier is also used.

Property Definitions 15
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Services Properties

Use key equivalents sparingly. Remember that your shortcuts are being added to the collection of
shortcuts defined by each application as well as defined by the other services. When an application
already has a shortcut with that key equivalent, the application’s shortcut wins. If multiple services define
the same shortcut, which one gets invoked is undefined.

 ■ NSSendTypes is an optional array that contains data type names. Send types are the types sent from
the application requesting a service. NSPasteboard Class Reference lists several common data types.
Additionally, in Mac OS X version 10.5 and later, Uniform Type Identifiers may be used. (See Uniform Type
Identifiers Overview for more information on Uniform Type Identifiers.) This key is not required. (In Mac
OS X version 10.5 and earlier, an application that provides a service must specify NSSendTypes,
NSReturnTypes, or both.)

 ■ NSReturnTypes is an optional array that contains data type names. Return types are the data types
returned to the application requesting a service. The NSPasteboard class description lists several common
data types. Additionally, in Mac OS X version 10.5 and later, Uniform Type Identifiers may be used. (See
Uniform Type Identifiers Overview for more information on Uniform Type Identifiers.) This key is not
required. (In Mac OS X version 10.5 and earlier, an application that provides a service must specify
NSSendTypes, NSReturnTypes, or both.)

 ■ NSUserData is an optional string that contains a value of your choice. You can use this string to customize
the behavior of your service. For example, if your application provides several similar services, you can
have the same NSMessage value for all of them (each service invokes the same method) and use different
NSUserData values to distinguish between them. This entry is also useful for applications that provide
open-ended, or add-on, services. This property is ignored for Automator workflows being used as services.

 ■ NSTimeout is an optional numerical string that indicates the number of milliseconds that services should
wait for a response from the application providing a service when a response is required. If the wait time
exceeds the timeout value, the application aborts the service request and continues without interruption.
If you don’t specify this entry, the timeout value is 30000 milliseconds (30 seconds).

Users may also press the Escape key or type Command-period to cancel.

 ■ NSSendFileTypes is an array that contains file type names. Only Uniform Type Identifiers are allowed;
pasteboard types are not permitted. (See Uniform Type Identifiers Overview for more information on
Uniform Type Identifiers.) By assigning a value to this key, your service declares that it can operate on
files whose type conforms to one or more of the given file types. Your service will receive a pasteboard
from which you can read file URLs. You may specify values for both NSSendTypes and NSSendFileTypes
if your service can operate on both pasteboard data and files.

 ■ NSServiceDescription is a string that contains a description of your service that is suitable for
presentation to users. It can be localized via the ServicesMenu.strings file.

The description may be long. If your description is long, the value of NSServiceDescription should
be a short token, such as SERVICE_DESCRIPTION. The full text should be given in the
ServicesMenu.strings file with that token as its key.

 ■ NSRequiredContext is a dictionary that can be used to limit when the service appears. Through judicious
use of NSRequiredContext, you can ensure that your service appears only when it applies and does
not clutter the Services menu when it is not applicable.

NSRequiredContext may be a dictionary that contains any of the following keys, all of which are
optional. It may also be an array of such dictionaries, in which case the service is enabled if any of the
given contexts is satisfied.

NSApplicationIdentifier

NSTextScript

NSTextLanguage

NSWordLimit

16 Property Definitions
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Services Properties

NSTextContent

These keys have the following significance:

 ❏ NSApplicationIdentifier is a bundle ID as a string or an array of such IDs. Your service will
appear only if the bundle ID of the current application matches one of the given bundle IDs. For
example, you could use this to limit a service to appear only in Xcode or in the Finder.

 ❏ NSTextScript is a string containing a standard four-letter script tag, such as Latn or Cyrl. It may
also be an array of such strings. The service will only appear if the dominant script of the selected
text is text corresponding to one of the given script tags. This key is relevant only for services that
accept text.

 ❏ NSTextLanguage is a string containing the required overall language of the selected text as a
BCP-47 tag. It may also be an array of such strings. The service appears only if the BCP-47 tag of the
overall language of the selected text matches one of the given tags.

The matching is performed via the default language range matching scheme, which is a
prefix-matching scheme. For example, theNSTextLanguage string “zh” matches text whose language
is “zh-Hant”. This key is relevant only for services that accept text.

 ❏ NSWordLimit is an integer representing the maximum number of selected words that the service
operates on. For example, a service to look up a stock by ticker symbol might have an NSWordLimit
of 1 because ticker symbols cannot contain spaces. It may not be an array. This key is relevant only
for services that accept text.

 ❏ NSTextContent is a string specifying a data type that the text must contain, or an array of such
strings. The valid values are as follows:

URL

Date

Address

Email

FilePath

The service is available only if the selected text contains one of the specified data types. All text
selected is provided to the service-vending application, not just the parts found to contain the given
data types.

Add-On Services

You typically define services when you create your application and advertise them in the Info.plist file
of the application’s bundle. The Services facility also allows you to advertise services outside of the application
bundle, enabling you to create “add-on” services after the fact. This is where the NSUserData entry becomes
truly useful: you can define a single message in your application that performs actions based on the user
data provided, such as running the user data string as a UNIX command or treating it as a special argument
in addition to the selected data that gets sent through the pasteboard. To define an add-on service, you
create a bundle with a .service extension that contains an Info.plist file, which in turn contains the
add-on service’s NSServices property. The property uses the application’s NSMessage and NSPortName
values.

Add-On Services 17
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Services Properties

Sample Property List

The NSServices property for Safari is shown in Figure 1 as it appears in the Property List Editor application.

Figure 1 The NSServices property for Safari

The NSServices property has one entry that represents the only service offered by Safari: “Search with
Google.” Note that, for this entry, the port name is Safari. As mentioned, the port name is usually the application
name.

The entry has one return type, NSStringPboardType. An application can have more than one return type
per entry, and the return types don’t necessarily need to be the same for each entry. Both Uniform Type
Identifiers and pasteboard types are valid here. (For more information on Uniform Type Identifiers, seeUniform
Type Identifiers Overview.)

The entry has a key equivalent of L, which means that Command-L can be used to invoke the service.

18 Sample Property List
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Services Properties

Providing a service consists of the following steps:

1. Deciding what the service will do

2. Implementing the service method

3. Registering the service provider

4. Advertising the service by adding it to your application’s property list file

5. Installing the service

Deciding on a Service

For the purposes of this chapter, suppose you have decided to work on a program to read USENET news and
have an object with a method to encrypt and decrypt articles, such as the one in Listing 1. News articles
containing offensive material are often encrypted with this algorithm, called ROT13, in which letters are
shifted halfway through the alphabet. Since this feature is generally useful as a simple encryption scheme,
it can be exported to other applications.

Listing 1 Text encryption method

- (NSString *)rotateLettersInString:(NSString *)aString {
 NSString *newString;
 unsigned length;
 unichar *buf;
 unsigned i;

 length = [aString length];
 buf = malloc((length + 1) * sizeof(unichar));
 [aString getCharacters:buf];
 buf[length] = (unichar)0; // not really needed....
 for (i = 0; i < length; i++) {
 if (buf[i] >= (unichar)'a' && buf[i] <= (unichar) 'z') {
 buf[i] += 13;
 if (buf[i] > 'z') buf[i] -= 26;
 } else if (buf[i] >= (unichar)'A' && buf[i] <= (unichar) 'Z') {
 buf[i] += 13;
 if (buf[i] > 'Z') buf[i] -= 26;
 }
 }
 newString = [NSString stringWithCharacters:buf length:length];
 free(buf);
 return newString;
}

Deciding on a Service 19
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Providing a Service

Implementing the Service Method

To offer the encryption facility as a service, write a method such as the one in Listing 2.

Listing 2 Service method

- (void)simpleEncrypt:(NSPasteboard *)pboard
 userData:(NSString *)userData error:(NSString **)error {

 // Test for strings on the pasteboard.
 NSArray *classes = [NSArray arrayWithObject:[NSString class]];
 NSDictionary *options = [NSDictionary dictionary];

 if (![pboard canReadObjectForClasses:classes options:options]) {
 *error = NSLocalizedString(@"Error: couldn't encrypt text.",
 @"pboard couldn't give string.");
 return;
 }

 // Get and encrypt the string.
 NSString *pboardString = [pboard stringForType:NSPasteboardTypeString];
 NSString *newString = [self rotateLettersInString:pboardString];
 if (!newString) {
 *error = NSLocalizedString(@"Error: couldn't encrypt text.",
 @"self couldn't rotate letters.");
 return;
 }

 // Write the encrypted string onto the pasteboard.
 [pboard clearContents];
 [pboard writeObjects:[NSArray arrayWithObject:newString]];
}

The method providing the service is of the form messageName:userData:error: and takes the values
shown in Listing 2. The method itself takes data from the pasteboard as needed, operates on it, and writes
any results back to the pasteboard. In case of an error, the method simply sets the pointer given by the error
argument to a non-nil NSString and returns. The error message is logged to the console. The userData
parameter is not used here.

Now you have an object with methods that allow it to perform a service for another application. Next, you
need to register the object at run time so the services facility knows which object to have perform the service.

Registering the Service Provider

You create and register your object in the applicationDidFinishLaunching: application delegate
method (or equivalent) with the setServicesProvider: method of the NSApplication class. If your
object is called encryptor, you create and register it with this code fragment:

EncryptoClass *encryptor;
encryptor = [[EncryptoClass alloc] init];
[NSApp setServicesProvider:encryptor];

20 Implementing the Service Method
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Providing a Service

If you are writing a Foundation tool, which lacks an NSApplication object, register the service object with
the NSRegisterServicesProvider function. Its declaration is the following:

void NSRegisterServicesProvider(id provider, NSString *portName)

where provider is the object that provides the services, and portName is the same value you specify for
theNSPortName entry in theNSServicesproperty of the application’s information property list (Info.plist)
file. After making this function call, you must enter the run loop to respond to service requests.

You can register only one service provider per application. If you have more than one service to provide, a
single object must provide the interface to all of the services.

Service requests can arrive immediately after you register the object, in some circumstances even before
exiting applicationDidFinishLaunching:. Therefore, register your service provider only when you are
completely ready to process requests.

Advertising the Service

For the system to know that your application provides a service, you must advertise that fact. You do this by
adding an entry to your application project’s Info.plist file as described in “Services Properties” (page
15). The entry you add is called the service specification. In our example, the NSServices property looks
like this:

 <key>NSServices</key>
 <array>
 <dict>
 <key>NSKeyEquivalent</key>
 <dict>
 <key>default</key>
 <string>E</string>
 </dict>
 <key>NSMenuItem</key>
 <dict>
 <key>default</key>
 <string>Encrypt Text</string>
 </dict>
 <key>NSMessage</key>
 <string>simpleEncrypt</string>
 <key>NSPortName</key>
 <string>NewsReader</string>
 <key>NSSendTypes</key>
 <array>
 <string>NSPasteboardTypeString</string>
 </array>
 <key>NSReturnTypes</key>
 <array>
 <string>NSPasteboardTypeString</string>
 </array>
 </dict>
 </array>

Advertising the Service 21
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Providing a Service

Installing the Service

A service can be offered as part of an application, such as Mail, or as a standalone service—one without a
user interface that is intended for use only in the Services menu.

 ■ To build an application that offers a service, use the extension .app and install it in the Applications
folder (or a subfolder).

 ■ To build a standalone service, use the extension .service and store it in Library/Services.

In either case, you should install it in one of the four file-system domains—System, Network, Local, and User.
(See File-System Domains in File System Overview for details.)

The list of available services on the computer is built each time a user logs in. If your service is installed in an
Applications directory, you need to log out and log back in before the service becomes available. If it’s
installed in a Library/Services directory, this is not necessary. You can force an update of the list of
services without logging out by calling the following function:

void NSUpdateDynamicServices(void)

Testing

When you test your program, it may be useful to trigger an immediate rescan of Services, as if
NSUpdateDynamicServices had been called. You can do this from the command line using the pbs tool:

/System/Library/CoreServices/pbs

It may also be useful to be sure that the system has recognized the Service. You can also use the pbs tool to
list the registered Services by specifying the dump_pboard option:

/System/Library/CoreServices/pbs -dump_pboard

If your Service is recognized by pbs, but does not appear in the Services menu, you can use the
NSDebugServices user default to help determine why. For example, to determine why Mail’s Services
appear or do not appear in TextEdit, you can launch TextEdit with the NSDebugServices option and pass
it the bundle identifier of Mail:

/Applications/TextEdit.app/Contents/MacOS/TextEdit -NSDebugServices com.apple.mail

When the Services menu is opened, it will log information to the console about why the service does or does
not appear.

Important: The pbs tool is for debugging purposes only. It does not have a guaranteed interface, and may
even be removed in a future version of Mac OS X. You should not design any programs to depend on it.

22 Installing the Service
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Providing a Service

The default nib file created for new Cocoa applications contains a Services menu in the application menu,
so there is nothing else you need to do for your application to work with the Services facility; your application
automatically has access to all appropriate services provided by other applications. If you need to construct
menus programmatically, you simply designate the NSMenu object that you want as your Services menu with
the setServicesMenu: method of NSApplication.

The Process

If you subclass NSView or NSWindow (or any other subclass of NSResponder), you need to implement it such
that it interacts properly with the Services facility. Tying custom views or windows into the Services facility
entails the following steps:

1. Registering your user-interface objects for services

2. Validating the Services menu items for the current selection

3. Sending the current selection to the service

4. Receiving data from the service to replace the current selection

The steps for using services are illustrated in Figure 1.

Figure 1 Using services

1. Register types

2. Validate menu

3. Copy selection

4. Paste new selection

User-interface
object

NSApplication
(NSApp)

When a pure provider service is invoked (in other words, a service with no send types), step 3 is skipped.
When a pure processor service is invoked (in other words, a service with no return types), step 4 is skipped.

The following sections cover each of these steps. A final section, “Invoking a Service Programmatically” (page
26), shows how to invoke a service in your code.

The Process 23
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Using Services

Registering Objects for Services

The Services menu does not contain every service offered by other applications. For example, in a text editor
a service to invert a bitmapped image is of no use and should not be offered. Which services appear in the
Services menu is determined by the data types that the objects in the application—specifically, the
NSResponder objects—can send and receive through the pasteboard.

An NSResponder object registers these data types using the NSApplication Objective-C method
registerServicesMenuSendTypes:returnTypes:. Objects in the AppKit framework already do this for
the basic text services, but your custom NSResponder subclass must do this to expand the list. A convenient
location is in your subclass’s initialize class method, which is guaranteed to be invoked by the runtime
before any other method of the class. All types used by instances of the class must be registered, even if they
are not always available; Services menu items are either present or not present based on what is available
at the moment, as described in “Validating Services Menu Items” (page 24).

An object does not have to register the same types for both sending and receiving. For example, suppose
you are writing a rich text editor that can send unformatted and rich text, but can receive only unformatted
text. Here is a portion of the initialization method for a text-editor’s NSView subclass:

+ (void)initialize
{
 static BOOL initialized = NO;
 /* Make sure code only gets executed once. */
 if (initialized == YES) return;
 initialized = YES;

 sendTypes = [NSArray arrayWithObjects:NSStringPboardType,
 NSRTFPboardType, nil];
 returnTypes = [NSArray arrayWithObjects:NSStringPboardType,
 nil];
 [NSApp registerServicesMenuSendTypes:sendTypes
 returnTypes:returnTypes];
}

Your NSResponder object can register any pasteboard data type, public or proprietary, common or rare. If
it handles the public and common types, of course, it has access to more services. For a list of standard
pasteboard data types, see NSPasteboard Class Reference.

Validating Services Menu Items

While your application is running, various types of data can be selected and available for transfer on the
pasteboard. If a service does not apply to the type of the selected data, its menu item needs to be disabled.
To check whether a service applies, the application object sends
validRequestorForSendType:returnType: messages to Objective-C objects in the responder chain to
see whether they have data of the type used by that service. While the Services menu is visible, this method
is called frequently—typically many times per event—to ensure that the menu items for all service providers
are properly enabled: it is sent for each combination of send and return types supported by each service and
possibly for many objects in the responder chain. Because this method is called frequently, it must be fast
so that event handling does not fall behind the user’s actions.

24 Registering Objects for Services
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Using Services

The following example shows how this method can be implemented for an object that handles unformatted
text:

- (id)validRequestorForSendType:(NSString *)sendType
 returnType:(NSString *)returnType
{
 if ([sendType isEqual:NSStringPboardType] &&
 [returnType isEqual:NSStringPboardType]) {
 if ([self selection] && [self isEditable]) {
 return self;
 }
 }
 return [super validRequestorForSendType:sendType returnType:returnType];
}

This implementation checks both the types indicated and the state of the object. The object is a valid requester
if the send and return types are unformatted text or simply are not specified, and if the object has a selection
and is editable (when send and return types are given). If this object cannot handle the service request in its
current state, it invokes its superclass’s implementation.

The validRequestorForSendType:returnType: message is sent along an abridged responder chain,
comprising only the responder chain for the key window and the application object. The main window is
excluded.

Sending Data to the Service

When the user chooses a Services menu command, the responder chain is checked with
validRequestorForSendType:returnType:. The first object that returns a value other than nil is called
upon to handle the service request by providing data (if any is required) with a
writeSelectionToPasteboard:types: message. You can implement this method to provide the data
immediately or to provide the data only when it is actually requested. Here is an implementation for an object
that writes unformatted text immediately:

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
types:(NSArray *)types
{
 NSArray *typesDeclared;

 if ([types containsObject:NSStringPboardType] == NO) {
 return NO;
 }
 typesDeclared = [NSArray arrayWithObject:NSStringPboardType];
 [pboard declareTypes:typesDeclared owner:nil];
 return [pboard setString:[self selection]
 forType:NSStringPboardType];
}

This method returns YES if it successfully writes or declares any data and NO if it fails. If you have large amounts
of data or you can provide the data in many formats, you should provide the data only on demand. You
declare the available types as above, but with an owner object that responds to the message
pasteboard:provideDataForType:. For more details, see NSPasteboard Class Reference.

Sending Data to the Service 25
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Using Services

Receiving Data from the Service

After the service requester writes data to the pasteboard, it waits for a response as the service provider is
invoked to perform the operation; if the service does not return data, of course, the requesting application
continues running and none of the following applies. The service provider reads the data from the pasteboard,
works on it, and then returns the result. At this point the service requester is sent a
readSelectionFromPasteboard: message telling it to replace the selection with whatever data came
back. The simple text object can implement this method as follows:

- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard
{
 NSArray *types;
 NSString *theText;

 types = [pboard types];
 if ([types containsObject:NSStringPboardType] == NO) {
 return NO;
 }
 theText = [pboard stringForType:NSStringPboardType];
 [self replaceSelectionWithString:theText];
 return YES;
}

This method returns YES if it successfully reads the data from the pasteboard; otherwise, it returns NO.

Invoking a Service Programmatically

Though the user typically invokes a standard service by choosing an item in the Services menu, you can
invoke it in code using this function:

BOOL NSPerformService(NSString *serviceItem, NSPasteboard *pboard)

This function returns YES if the service is successfully performed; otherwise, it returns NO. The name of a
Services menu item (in any language) is contained in serviceItem. It must be the full name of the service;
for example, “Search in Google.” The parameter pboard contains the data to be used for the service,
and, when the function returns, it contains the data returned from the service. You can then do with the data
what you wish.

26 Receiving Data from the Service
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Using Services

This table describes the changes to Services Implementation Guide.

NotesDate

Updated for Mac OS X v10.6; changed the title from "System Services."2009-05-18

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

27
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Document Revision History

28
2009-05-18 | © 2003, 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Services Implementation Guide
	Contents
	Figures and Listings
	Introduction
	Services Overview
	How Service Requests Work
	Sample Services

	Items in the Services Menu
	Services Properties
	Property Definitions
	Add-On Services
	Sample Property List

	Providing a Service
	Deciding on a Service
	Implementing the Service Method
	Registering the Service Provider
	Advertising the Service
	Installing the Service
	Testing

	Using Services
	The Process
	Registering Objects for Services
	Validating Services Menu Items
	Sending Data to the Service
	Receiving Data from the Service
	Invoking a Service Programmatically

	Revision History

