
Search Fields
User Experience: Controls

2008-02-08

Apple Inc.
© 2003, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Safari are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Search Fields 7

Organization of This Document 7
See Also 7

Understanding Search Fields 9

Adding a Search Field to Your Application 11

Configuring a Search Menu 13

Generating Action Messages 13
Configuring a Menu Template 13
Specifying a Search Category 15

Implementing the Target 17

Simple Search 17
Search Using a Search Category 17
The Cancel Button 18

Customizing Your Search Field’s Appearance 19

Customizing Buttons 19
Customizing Field Locations 19

Document Revision History 21

3
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

4
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Figures and Listings

Understanding Search Fields 9

Figure 1 A search field 9

Configuring a Search Menu 13

Figure 1 Sample menu template with info pane 14
Listing 1 Setting the menu template for recent search strings 14
Listing 2 Setting the menu template with a search category 15

Implementing the Target 17

Listing 1 Simple action method for a search field’s target 17
Listing 2 Example search category menu item action method 17
Listing 3 Example action method for a search field’s target 18

5
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

6
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

A search field provides a standard user interface for searching and is a feature in applications like Mail, Safari,
and Address Book.

You use the Cocoa classes NSSearchFieldCell and NSSearchField to implement search fields. Other
than sending the action message, however, NSSearchFieldCell and NSSearchField provide no direct
support for textual searches.

Organization of This Document

This programming topic contains the following articles:

 ■ “Understanding Search Fields” (page 9) describes the features of search fields and the classes used to
implement them.

 ■ “Adding a Search Field to Your Application” (page 11) describes how to add a search field to your
application, using either Interface Builder or a programming language.

 ■ “Configuring a Search Menu” (page 13) describes setting up the search field’s pop-up icon menu to
show recent search strings and search categories.

 ■ “Implementing the Target” (page 17) describes how to implement the search field’s target’s action
method.

 ■ “Customizing Your Search Field’s Appearance” (page 19) describes how to change the appearance of a
search field programatically.

See Also

 ■ Apple Human Interface Guidelines provides guidelines on when to use particular interface items and how
to position them.

 ■ Search Kit Reference describes a powerful and streamlined C language framework for indexing and
searching text in most human languages.

Organization of This Document 7
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Introduction to Search Fields

8 See Also
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Introduction to Search Fields

A search field is a rounded text field that displays text that the user can select or edit, and that sends its
action message to its target when the user presses the Return key. It presents a standard user interface for
searches, including a search button, a cancel button, and a pop-up icon menu for listing recent search strings
and custom search categories. The search button includes a menu and the option to send the results while
the user is typing or when the user presses the Return key. If there is no text in the search field, the cancel
button is hidden. Figure 1 shows the major components of a search field.

Figure 1 A search field

Search button Cancel button

Recent Searches menu

A search field is implemented by two classes: NSSearchFieldCell, the cell that does most of the work, and
NSSearchField, the control that contains that cell.

There are, broadly speaking, two ways to configure and use a search field—programmatically, or with Cocoa
bindings.

If you configure a search field programmatically, you should set the target and action of the control or its
cell to the receiver that is interested in the search request. Also, remember that NSSearchFieldCell and
NSSearchField classes are direct subclasses of NSTextFieldCell and NSTextField, respectively, so you
can use all the methods inherited from these classes.

9
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Understanding Search Fields

10
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Understanding Search Fields

You can create a search field programatically, but the easiest way to add a search field to your application is
to use Interface Builder. Simply drag a search field from the Cocoa-Text palette to your window. and add it
to a window.

Use the Attributes pane of the Show Info panel to set search-field-specific attributes:

 ■ Placeholder, which specifies text that appears in the search field until the user enters text. You can also
programmatically send the setPlaceholderString: message to the search field’s cell.

 ■ Max Recents, which specifies the maximum number of recent searches to show in the recents menu.
This value can be from 0 to 254, and defaults to 10. When the limit is exceeded, the oldest search string
on the menu is dropped. Setting the value to a negative value uses the default value; a value greater
than 254 sets the maximum to 254. The recents list is trimmed if there are more entries than the new
maximum. You can also programmatically send the setMaximumRecents:message to the search field’s
cell.

 ■ Auto Save Name, which if set, the recent search list is saved to an application preference using the name
provided, and restored the next time the recents list is needed for the popup menu. You can also
programmatically send the setRecentsAutosaveName: message. Setting the autosave name to nil
does not clear out any saved lists. Setting the autosave name to a valid string discards any current recents
and loads the recents from the user defaults.

 ■ Sends Whole Search String, which specifies whether the search field sends the action message when
the user presses the Return key or if it sends the message upon each keystroke (incremental search).
You can also programmatically send the setSendsWholeSearchString:message to the search field’s
cell. By default, the cell’s action is invoked during typing after a short delay.

You can connect the a search field to a menu template. The details of the menu’s contents are described in
“Configuring a Search Menu” (page 13).

You need to configure the targets and actions of the search field. This is described in “Implementing the
Target” (page 17).

You can also specify that the search field use a controller to perform searches. In the Bindings pane, disclose
the value binding and select the controller to bind to as well as the controller’s key. In the Connections pane,
make sure the correct target and action pair is selected. Additional information about using controllers can
be found in Cocoa Bindings Programming Topics.

11
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Adding a Search Field to Your Application

12
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Adding a Search Field to Your Application

A search field has a menu that users can access by clicking the small triangle next to the search button. The
items in this pop-up icon menu have two purposes: To list recently entered search strings, and to list search
categories for limiting the scope of the search. You can also specify when the search field sends its action
message.

Generating Action Messages

A search field has two modes for generating action messages. The first mode is similar to a text field; a
message is sent when a user clicks the search button or presses Return when the insertion point is in the
search field. The second mode, which is the default, is for incremental searches; the search field sends an
action message at each keystroke. Typically you set the mode in Interface Builder (see “Adding a Search Field
to Your Application” (page 11)). To set the message-generation mode programmatically, send
setSendsWholeSearchString: to the search field cell with an argument of NO for incremental searches
and YES for regular searches.

Configuring a Menu Template

If you specify a menu in Interface Builder or programatically, the search button has a menu indicator and the
search menu is displayed when the user clicks the search button. Do not modify the menu while it is in use
by the search field. This is because a copy is not made.

To configure this pop-up menu, create a menu template (which is an NSMenu object) and populate this menu
template with the items (NSMenuItem objects) you want to appear. Items in the menu can be given special
meaning by using predefined tags described in the Constants section of NSSearchFieldCell.

You can specify the menu template used when generating the pop-up menu in the search field. This is easily
done with Interface Builder. Or, if you have programmatically constructed the menu template, invoke
setSearchMenuTemplate: to install it in the search field.

Figure 1 shows a simple menu template with a recents item, a clear item, and a no recents item.

Generating Action Messages 13
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Configuring a Search Menu

Figure 1 Sample menu template with info pane

The menu item tag is specified in the Tag field. In Figure 1, the menu item is of the type
NSSearchFieldRecentsMenuItemTag. Although not pictured, the tag for the Clear menu item is
NSSearchFieldClearRecentsMenuItemTag and for the Empty menu item it’s
NSSearchFieldNoRecentsMenuItemTag. You can also add a menu item with the
NSSearchFieldRecentsTitleMenuItemTag tag for an item that does not appear if there are no recent
strings to display, or conversely a menu item with the NSSearchFieldNoRecentsMenuItemTag tag for an
item that only appears if there are no recent strings to display.

Important: Currently, Interface Builder does not allow you to enter the symbolic name for these menu item
tags. Instead you must enter the corresponding numeric value in the Tag field. For
NSSearchFieldRecentsTitleMenuItemTag enter 1000, for NSSearchFieldRecentsMenuItemTag
enter 1001, for NSSearchFieldClearRecentsMenuItemTag enter 1002, and for
NSSearchFieldNoRecentsMenuItemTag enter 1003. This limitation does not apply to specifying the tag
programatically.

You can also do all of this programatically. Listing 1 illustrates how you might set up the search menu template.

Listing 1 Setting the menu template for recent search strings

- (void) awakeFromNib
{
 NSMenu *cellMenu = [[[NSMenu alloc] initWithTitle:@"Search Menu"]
 autorelease];
 NSMenuItem *item;

 item = [[[NSMenuItem alloc] initWithTitle:@"Clear"
 action:NULL
 keyEquivalent:@""] autorelease];
 [item setTag:NSSearchFieldClearRecentsMenuItemTag];

14 Configuring a Menu Template
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Configuring a Search Menu

 [cellMenu insertItem:item atIndex:0];

 item = [NSMenuItem separatorItem];
 [item setTag:NSSearchFieldRecentsTitleMenuItemTag];
 [cellMenu insertItem:item atIndex:1];

 item = [[[NSMenuItem alloc] initWithTitle:@"Recent Searches"
 action:NULL
 keyEquivalent:@""] autorelease];
 [item setTag:NSSearchFieldRecentsTitleMenuItemTag];
 [cellMenu insertItem:item atIndex:2];

 item = [[[NSMenuItem alloc] initWithTitle:@"Recents"
 action:NULL
 keyEquivalent:@""] autorelease];
 [item setTag:NSSearchFieldRecentsMenuItemTag];
 [cellMenu insertItem:item atIndex:3];

 id searchCell = [searchField cell];
 [searchCell setSearchMenuTemplate:cellMenu];
}

A menu is associated with your search field only if you specify one with Interface Builder. If you are creating
the search field programatically and do not want a menu, set the menu template to nil.

Specifying a Search Category

To set up a search category, you create a menu item with a title and an action selector and add it to the
menu template. The action selector identifies the method that is invoked using the target-action paradigm
when the user selects the item; in this method you can set a flag or other value so that your search
implementation knows how to limit the scope of its search. Typically you would add the menu item to the
menu template in Interface Builder. You can also do it programmatically, as illustrated in Listing 2. This is
useful if you create or update the menu dynamically, for example if the categories depend on what table
columns are visible in a table view.

Listing 2 Setting the menu template with a search category

- (void) awakeFromNib
{
 NSMenu *cellMenu = [[[NSMenu alloc] initWithTitle:@"Search Menu"]
 autorelease];
 NSMenuItem *item;

 item = [[[NSMenuItem alloc] initWithTitle:@"First Name"
 action:@selector(setSearchCategoryFrom:)
 keyEquivalent:@""] autorelease];
 [item setTarget:self];
 [item setTag:1];
 [cellMenu insertItem:item atIndex:0];

 item = [[[NSMenuItem alloc] initWithTitle:@"Last Name"
 action:@selector(setSearchCategoryFrom:)
 keyEquivalent:@""] autorelease];
 [item setTarget:self];

Specifying a Search Category 15
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Configuring a Search Menu

 [item setTag:2];
 [cellMenu insertItem:item atIndex:1];

 id searchCell = [searchField cell];
 [searchCell setSearchMenuTemplate:cellMenu];
}

Tags are optional for search categories, but they allow you to easily discriminate between menu items in the
action method. If you choose to specify tags, their values must not be any of the values corresponding to
NSSearchFieldRecentsTitleMenuItemTag, NSSearchFieldRecentsMenuItemTag,
NSSearchFieldClearRecentsMenuItemTag, or NSSearchFieldNoRecentsMenuItemTag.

You also have to implement the action method invoked by the menu item—see “Search Using a Search
Category” (page 17).

16 Specifying a Search Category
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Configuring a Search Menu

Because a search field is a control object, when a user does something to activate the search field, it sends
an action message to a target object, telling it to perform the search. You configure the target and action in
Interface Builder as you would any other control, as described in Communicating With Objects >The
Target-Action Mechanism. Other than invoking the action method,NSSearchFieldCell andNSSearchField
provide no support for textual searches. You must implement the search behavior yourself.

Simple Search

Typically you implement the action method in a controller object in your application. You need to find out
what the search string is and then perform the search using the search term, as illustrated in Listing 1.

Listing 1 Simple action method for a search field’s target

- (IBAction)updateFilter:sender
{
 NSString *searchString = [searchField stringValue];

 /*
 Method continues to perform the search and display the results...
 */
}

Search Using a Search Category

If you want to support search categories (see “Specifying a Search Category” (page 15)), you have to implement
the action method invoked by the category menu items as well as that invoke by the search field itself. The
category action method should record in some way the menu item that was selected. It might also set the
placeholder string for the search menu, as illustrated in Listing 2.

Listing 2 Example search category menu item action method

- (IBAction)setSearchCategoryFrom:(NSMenuItem *)menuItem
{
 searchCategory = [menuItem tag];
 [[searchField cell] setPlaceholderString:[menuItem title]];
}

In the search field’s action method, you need to find out what the search string is and then perform the
search using the search term, taking into account any category that might have been set. A common way
to represent the search is as an instance of NSPredicate. In Listing 3, searchCategory is set in the
setSearchCategoryFrom: method illustrated in Listing 2.

Simple Search 17
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Implementing the Target

Listing 3 Example action method for a search field’s target

- (IBAction)updateFilter:sender
{
 /*
 Create a predicate based on what is the current string in the
 search field and the value of searchCategory.
 */
 NSPredicate *predicate = nil;

 NSString *searchString = [searchField stringValue];

 if ((searchString != nil) && (![searchString isEqualToString:@""]))
 {
 if (searchCategory == 1)
 {
 predicate = [NSPredicate predicateWithFormat:
 @"firstName contains[cd] %@", searchString];
 }
 if (searchCategory == 2)
 {
 predicate = [NSPredicate predicateWithFormat:
 @"lastName contains[cd] %@", searchString];
 }
 }

 /*
 Method continues to perform the search and display the results...
 */
}

The Cancel Button

Clicking the cancel button behaves exactly as if the user selected all the text in the field and deleted it. The
action message is sent to the target as usual. The target would typically see that the string in the field is the
empty string, and so wouldn't filter anything.

18 The Cancel Button
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Implementing the Target

You can specify the behavior in Interface Builder of search fields, like most Cocoa controls, without writing
any source code. This is described in “Adding a Search Field to Your Application” (page 11). If you want to
change a search field’s appearance, for example, its buttons or field locations, this article describes how.

Customizing Buttons

In general, avoid changing the search button cell unless you want a custom appearance or behavior. Typically,
the search button has two behaviors: it either displays a menu (if a menu template is set), or it invokes the
search field’s action method (when the button is clicked). The cancel button appears only if there is text in
the search field.

You change the search button cell by sending setSearchButtonCell: to the button’s cell, and change
the cancel button cell by sending setCancelButtonCell: to the button’s cell. To remove the search button
or the cancel button, set the cell for that button to nil.

If you have customized either the search and cancel buttons, you can easily “reset” their attributes to the
search field cell's default image, alternate image, target, and action. You do this for the search button by
sending resetSearchButtonCell to the button’s cell, and for the cancel button by sending
resetCancelButtonCell to the button’s cell. All other attributes of the search field cell are not changed.

Customizing Field Locations

The following NSSearchFieldCell methods return the bounds for the buttons and the text field. Override
these methods to position the items differently. NSSearchFieldCell assumes that there is a search button,
text field, and cancel button, from left to right.

- (NSRect) searchButtonRectForBounds:(NSRect)rect;
- (NSRect) cancelButtonRectForBounds:(NSRect)rect;
- (NSRect) searchTextRectForBounds:(NSRect)rect;

Customizing Buttons 19
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Customizing Your Search Field’s Appearance

20 Customizing Field Locations
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Customizing Your Search Field’s Appearance

This table describes the changes to Search Fields.

NotesDate

Clarified the behavior of the cancel button.2008-02-08

In “Implementing the Target” (page 17), added a link to a description of the
target-action mechanism.

Updated links.2005-08-11

In “Implementing the Target” (page 17), added a link to a description of the
target-action mechanism.

Clarified in “Implementing the Target” (page 17) that
setSendsWholeSearchString: must be sent to the search field’s cell.

2004-06-28

In “Configuring a Search Menu” (page 13), included a work around for specifying
menu item tags for search field menus in Interface Builder and also clarified the
use of tags in search categories.

2004-03-03

Clarified in “Adding a Search Field to Your Application” (page 11) that the
messages are sent to the search field’s cell.

2004-03-01

First version of Search Fields.2003-10-15

21
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History

22
2008-02-08 | © 2003, 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Search Fields
	Contents
	Figures and Listings
	Introduction
	Understanding Search Fields
	Adding a Search Field to Your Application
	Configuring a Search Menu
	Generating Action Messages
	Configuring a Menu Template
	Specifying a Search Category

	Implementing the Target
	Simple Search
	Search Using a Search Category
	The Cancel Button

	Customizing Your Search Field’s Appearance
	Customizing Buttons
	Customizing Field Locations

	Revision History

