
Outline View Programming Topics
User Experience: Data Presentation

2010-03-24

Apple Inc.
© 2001, 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and Mac OS are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Outline Views 7

Who Should Read This Document 7
Organization of This Document 7

About Outline Views 9

Behavior Inherited from NSTableView 10

Writing an Outline View Data Source 11

Data Source Requirements 11
The Data Source and Memory Management 11
Sample Data Source Implementation 12

Using an Outline View Delegate 15

Document Revision History 17

3
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

4
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

Listings

Writing an Outline View Data Source 11

Listing 1 Implementation of Outline View Data Source 12
Listing 2 Implementation of Outline View Data Source Item 12

5
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

6
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

An outline view is a type of table which lets the user expand or collapse rows that contain hierarchical data.

Who Should Read This Document

NSOutlineView, the class that implements outline views, is a subclass of NSTableView. Before reading
about outline views, read Table View Programming Guide. In particular, The Parts of a Table describes how all
the different classes used by a table fit together.

Organization of This Document

This programming topic contains the following articles:

 ■ “About Outline Views” (page 9) gives basic information on outline views.

 ■ “Using an Outline View Delegate” (page 15) describes delegate methods for a outline view.

 ■ “Writing an Outline View Data Source” (page 11) describes data source methods for an outline view.

Who Should Read This Document 7
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

Introduction to Outline Views

8 Organization of This Document
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

Introduction to Outline Views

NSOutlineView is a subclass of NSTableView that lets the user expand or collapse rows that contain
hierarchical data. As in a table view, an outline view displays data for a set of related items, with rows
representing individual items and columns representing the attributes of those items. Unlike a table view,
items in an outline view are not in a flat list, but rather may be organized in a hierarchy, like files and folders
on a hard drive, or managers and employees in an organization.

Important: NSOutlineView requires that each item in the outline view be unique.

An item in an outline view is expandable if it can contain other items. An expandable item is distinguished
visually by a disclosure triangle, which points to the right when the item is collapsed and points down when
the item is expanded. Clicking on the disclosure triangle causes the item to be expanded or collapsed,
depending on the new state of the triangle. An item can be expanded even if it contains no items. An
Option-click on an item’s disclosure triangle expands or collapses all of its contained items.

When an item is expanded, the outline view can display the previous expanded or collapsed state of its
contained items, if the items were previously shown. To automatically restore the entire expanded state of
an outline view for previously shown items, use setAutosaveExpandedItems:.

Items inside an expanded item are indented. By default, as a user expands or collapses nested items, the
width of the column is resized so that it is just wide enough to display the widest item, based on the width
of the items and their indentation in the hierarchy. Justification follows the current system justification. To
turn off automatic resizing, use setAutoresizesOutlineColumn:. Note that an item may consist of text,
an image, or anything else that can be drawn by a subclass of NSCell.

An instance of NSOutlineView is typically displayed in an instance of NSScrollView, as shown below.

9
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

About Outline Views

Behavior Inherited from NSTableView

An outline view inherits much of its behavior from its parent class, NSTableView. As a result, many operations
supported by a table view, such as selecting rows or columns, repositioning columns by dragging column
headers, deferred activation for dragging, and so on, are also supported by an outline view. Your application
has control of these features, and can configure the view’s parameters to allow or disallow certain operations.
For example, you might choose not to allow editing or rearranging for specific columns.

The NSTableView class also provides methods for working with data, responding to mouse clicks, setting
grid attributes, editing cells, and performing other operations. For more information, see Table View
Programming Guide.

10 Behavior Inherited from NSTableView
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

About Outline Views

Outline views support a data-source delegate in addition to a standard delegate object. The data-source
implements the NSOutlineViewDelegate protocol and provides data and information about that data to
the outline view, and is responsible for managing the data. Although an outline view does not require a
delegate, it must have a data source to display information.

Data Source Requirements

Like an instance of NSTableView, an instance of NSOutlineView gets all of its data from an object that you
provide, called its data source. Your data source object can store records in any way you choose, but it must
be able to identify them by their position in the hierarchy through the NSOutlineViewDataSource protocol
(prior to Mac OS X v10.6, this was an informal protocol—NSOutlineViewDataSource). The data source
must minimally implement the data access methods (outlineView:child:ofItem:,
outlineView:isItemExpandable:, outlineView:numberOfChildrenOfItem:, and
outlineView:objectValueForTableColumn:byItem:). To specify the root item in any of these methods,
nil is sent as the method’s item argument. If you want to allow the user to edit items, you must also
implement a method for changing the value of an attribute
(outlineView:setObject:forTableColumn:byItem:).

Typically the data source itself manages a collection of model objects each of which knows what their value
is, whether they represent a leaf node, and how many (if any) child objects they have.

The Data Source and Memory Management

Just like a table view, an outline view uses the data source solely to get information. An outline view does
not own its data source (see Communicating With Objects). Similarly, it does not own the objects it gets from
the data source—if they are released your application is likely to crash unless you tell the outline view to
reload its data.

The data source is a controller object, and you are responsible for ensuring that it is not deallocated before
the outline view is finished with it (typically the data source is an object such as the document object in a
document-based application, so there is no additional work to do). The data source is in turn responsible for
retaining all of the objects it provides to an outline view, and updating the outline view when there’s a change
to the model. It is therefore not safe to release the root item—or any children—until you’re no longer
displaying it in the outline view. If you need to dispose of the root item, then you should ensure that references
to it are nullified, and that the outline view is updated to ensure that no attempt is made to display other
items that may also have been disposed of, as in the following example.

 [rootItem release];
 rootItem = nil;
 [outlineView reloadData];

Data Source Requirements 11
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

Writing an Outline View Data Source

Sample Data Source Implementation

The following example shows the implementation of a data source class used in conjunction with an outline
view to display contents of the file system, and of a class used to represent entries in the file system. Listing
1 shows the implementation of the data source class. Listing 2 shows the implementation of a class used to
represent entries in the file system. The singleton rootItem instance is used as the root object in the example
in Listing 1.

Listing 1 Implementation of Outline View Data Source

@implementation DataSource
// Data Source methods

- (NSInteger)outlineView:(NSOutlineView *)outlineView
numberOfChildrenOfItem:(id)item {

 return (item == nil) ? 1 : [item numberOfChildren];
}

- (BOOL)outlineView:(NSOutlineView *)outlineView isItemExpandable:(id)item {
 return (item == nil) ? YES : ([item numberOfChildren] != -1);
}

- (id)outlineView:(NSOutlineView *)outlineView child:(NSInteger)index
ofItem:(id)item {

 return (item == nil) ? [FileSystemItem rootItem] : [(FileSystemItem *)item
 childAtIndex:index];
}

- (id)outlineView:(NSOutlineView *)outlineView
objectValueForTableColumn:(NSTableColumn *)tableColumn byItem:(id)item {
 return (item == nil) ? @"/" : [item relativePath];
}

@end

Listing 2 Implementation of Outline View Data Source Item

@interface FileSystemItem : NSObject
{
 NSString *relativePath;
 FileSystemItem *parent;
 NSMutableArray *children;
}

+ (FileSystemItem *)rootItem;
- (NSInteger)numberOfChildren;// Returns -1 for leaf nodes
- (FileSystemItem *)childAtIndex:(NSUInteger)n; // Invalid to call on leaf nodes
- (NSString *)fullPath;
- (NSString *)relativePath;

12 Sample Data Source Implementation
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

Writing an Outline View Data Source

@end

@implementation FileSystemItem

static FileSystemItem *rootItem = nil;
static NSMutableArray *leafNode = nil;

+ (void)initialize {
 if (self == [FileSystemItem class]) {
 leafNode = [[NSMutableArray alloc] init];
 }
}

- (id)initWithPath:(NSString *)path parent:(FileSystemItem *)parentItem {
 self = [super init];
 if (self) {
 relativePath = [[path lastPathComponent] copy];
 parent = parentItem;
 }
 return self;
}

+ (FileSystemItem *)rootItem {
 if (rootItem == nil) {
 rootItem = [[FileSystemItem alloc] initWithPath:@"/" parent:nil];
 }
 return rootItem;
}

// Creates, caches, and returns the array of children
// Loads children incrementally
- (NSArray *)children {

 if (children == nil) {
 NSFileManager *fileManager = [NSFileManager defaultManager];
 NSString *fullPath = [self fullPath];
 BOOL isDir, valid;

 valid = [fileManager fileExistsAtPath:fullPath isDirectory:&isDir];

 if (valid && isDir) {
 NSArray *array = [fileManager contentsOfDirectoryAtPath:fullPath
error:NULL];

 NSUInteger numChildren, i;

 numChildren = [array count];
 children = [[NSMutableArray alloc] initWithCapacity:numChildren];

 for (i = 0; i < numChildren; i++)
 {
 FileSystemItem *newChild = [[FileSystemItem alloc]
 initWithPath:[array objectAtIndex:i]
parent:self];
 [children addObject:newChild];

Sample Data Source Implementation 13
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

Writing an Outline View Data Source

 [newChild release];
 }
 }
 else {
 children = leafNode;
 }
 }
 return children;
}

- (NSString *)relativePath {
 return relativePath;
}

- (NSString *)fullPath {
 // If no parent, return our own relative path
 if (parent == nil) {
 return relativePath;
 }

 // recurse up the hierarchy, prepending each parent’s path
 return [[parent fullPath] stringByAppendingPathComponent:relativePath];
}

- (FileSystemItem *)childAtIndex:(NSUInteger)n {
 return [[self children] objectAtIndex:n];
}

- (NSInteger)numberOfChildren {
 NSArray *tmp = [self children];
 return (tmp == leafNode) ? (-1) : [tmp count];
}

- (void)dealloc {
 if (children != leafNode) {
 [children release];
 }
 [relativePath release];
 [super dealloc];
}

@end

14 Sample Data Source Implementation
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

Writing an Outline View Data Source

The NSOutlineViewDelegate protocol gives the delegate control over the appearance of individual cells
in the table, over changes in selection, and over editing of cells.

Delegate methods that request permission to alter the selection or edit a value are invoked during user
actions that affect the outline view, but are not invoked by programmatic changes to the view. When making
changes programmatically, you decide whether you want the delegate to intervene and, if so, you send the
appropriate message (checking first that the delegate responds to that message). Because the delegate
methods involve the actual data displayed by the outline view, the delegate is typically the same object as
the data source, though this is not a requirement.

The NSOutlineViewDelegate protocol defines these delegate messages:

 ■ outlineView:willDisplayCell:forTableColumn:item: informs the delegate that the outline
view is about to draw the cell specified by the passed column and item. The delegate can modify the
instance of NSCell provided to alter the display attributes for that cell; for example, making uneditable
values display in italic or gray text.

 ■ outlineView:shouldSelectItem: and outlineView:shouldSelectTableColumn: give the
delegate control over whether the user can select a specified row or column (though the user can still
reorder columns). This is useful for disabling a specified row or column. For example, in a database client
application, when a user is editing a record you might want to not allow other users to select the same
row.

 ■ selectionShouldChangeInOutlineView: allows the delegate to deny a change in selection. For
example, if the user is editing a cell and enters an improper value, the delegate can prevent the user
from selecting or editing any other cells until a proper value has been entered into the original cell.

 ■ outlineView:shouldEditTableColumn:item: asks the delegate whether it’s okay to edit the cell
specified by the passed column and item. The delegate can approve or deny the request.

The NSOutlineViewDelegate protocol defines these additional delegate messages:

 ■ outlineView:shouldExpandItem: asks the delegate whether it’s okay to expand the specified item.

 ■ outlineViewItemWillExpand: informs the delegate that the outline view is about to expand the
specified item.

 ■ outlineView:shouldCollapseItem: asks the delegate whether it’s okay to collapse the specified
item.

 ■ outlineViewItemWillCollapse: informs the delegate that the outline view is about to collapse the
specified item.

 ■ outlineView:willDisplayOutlineCell:forTableColumn:item: informs the delegate that the
outline view is about to display the cell that includes the expansion symbol.

In addition to these methods, the delegate protocol is automatically registered to receive messages
corresponding to NSOutlineView notifications. These inform the delegate when the selection changes or
is about to change, when a column is moved or resized, and when an item is expanded or collapsed:

15
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

Using an Outline View Delegate

NotificationDelegate Message

NSOutlineViewColumnDidMoveNotificationoutlineViewColumnDidMove:

NSOutlineViewColumnDidResizeNotificationoutlineViewColumnDidResize:

NSOutlineViewSelectionDidChangeNotificationoutlineViewSelectionDidChange:

NSOutlineViewSelectionIsChangingNotificationoutlineViewSelectionIsChanging:

NSOutlineViewItemDidExpandNotificationoutlineViewItemDidExpand:

NSOutlineViewItemDidCollapseNotificationoutlineViewItemDidCollapse:

16
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

Using an Outline View Delegate

This table describes the changes to Outline View Programming Topics.

NotesDate

Updated datasource example code. Added links to formal protocols for the
datasource and delegate.

2010-03-24

Updated to note new formal protocol on Mac OS X v10.6.2009-10-19

Clarified memory management for data source.2006-06-28

Added information to the section "About Outline Views."2006-05-23

Noted that Option-clicking an item’s disclosure triangle expands or collapses
all of its contained items, and that an outline view can remember the expanded
or collapsed state of contained items that were previously shown.

Noted that NSOutlineView requires that each item in the outline view be
unique.

Corrected minor typos.

Changed the title of the article "Using an Outline View Data Source" to "Writing
an Outline View Data Source."

2004-12-02

Enhanced description of data source requirements and implementation in
“Writing an Outline View Data Source” (page 11).

2004-08-31

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

17
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

Document Revision History

18
2010-03-24 | © 2001, 2010 Apple Inc. All Rights Reserved.

Document Revision History

	Outline View Programming Topics
	Contents
	Listings
	Introduction
	About Outline Views
	Behavior Inherited from NSTableView

	Writing an Outline View Data Source
	Data Source Requirements
	The Data Source and Memory Management
	Sample Data Source Implementation

	Using an Outline View Delegate
	Revision History

