
Objective-C Runtime Programming Guide
Tools & Languages: Objective-C

2009-10-19

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPhone, Mac, Mac
OS, and Objective-C are trademarks of Apple
Inc., registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
See Also 7

Chapter 1 Runtime Versions and Platforms 9

Legacy and Modern Versions 9
Platforms 9

Chapter 2 Interacting with the Runtime 11

Objective-C Source Code 11
NSObject Methods 11
Runtime Functions 12

Chapter 3 Messaging 13

The objc_msgSend Function 13
Using Hidden Arguments 15
Getting a Method Address 16

Chapter 4 Dynamic Method Resolution 17

Dynamic Method Resolution 17
Dynamic Loading 18

Chapter 5 Message Forwarding 19

Forwarding 19
Forwarding and Multiple Inheritance 20
Surrogate Objects 21
Forwarding and Inheritance 22

Chapter 6 Type Encodings 25

Chapter 7 Declared Properties 29

Property Type and Functions 29
Property Type String 30
Property Attribute Description Examples 31

3
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History 33

4
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Chapter 3 Messaging 13

Figure 3-1 Messaging Framework 14

Chapter 5 Message Forwarding 19

Figure 5-1 Forwarding 21

Chapter 6 Type Encodings 25

Table 6-1 Objective-C type encodings 25
Table 6-2 Objective-C method encodings 27

Chapter 7 Declared Properties 29

Table 7-1 Declared property type encodings 30

5
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

6
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

The Objective-C language defers as many decisions as it can from compile time and link time to runtime.
Whenever possible, it does things dynamically. This means that the language requires not just a compiler,
but also a runtime system to execute the compiled code. The runtime system acts as a kind of operating
system for the Objective-C language; it’s what makes the language work.

This document looks at the NSObject class and how Objective-C programs interact with the runtime system.
In particular, it examines the paradigms for dynamically loading new classes at runtime, and forwarding
messages to other objects. It also provides information about how you can find information about objects
while your program is running.

You should read this document to gain an understanding of how the Objective-C runtime system works and
how you can take advantage of it. Typically, though, there should be little reason for you to need to know
and understand this material to write a Cocoa application.

Organization of This Document

This document has the following chapters:

 ■ “Runtime Versions and Platforms” (page 9)

 ■ “Interacting with the Runtime” (page 11)

 ■ “Messaging” (page 13)

 ■ “Dynamic Method Resolution” (page 17)

 ■ “Message Forwarding” (page 19)

 ■ “Type Encodings” (page 25)

 ■ “Declared Properties” (page 29)

See Also

Objective-C RuntimeReference describes the data structures and functions of the Objective-C runtime support
library. Your programs can use these interfaces to interact with the Objective-C runtime system. For example,
you can add classes or methods, or obtain a list of all class definitions for loaded classes.

The Objective-C Programming Language describes the Objective-C language.

Objective-C Release Notes describes some of the changes in the Objective-C runtime in the latest release of
Mac OS X.

Organization of This Document 7
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

8 See Also
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

There are different versions of the Objective-C runtime on different platforms.

Legacy and Modern Versions

There are two versions of the Objective-C runtime—“modern” and “legacy”. The modern version was
introduced with Objective-C 2.0 and includes a number of new features. The programming interface for the
legacy version of the runtime is described in Objective-C 1 Runtime Reference; the programming interface for
the modern version of the runtime is described in Objective-C Runtime Reference.

The most notable new feature is that instance variables in the modern runtime are “non-fragile”:

 ■ In the legacy runtime, if you change the layout of instance variables in a class, you must recompile classes
that inherit from it.

 ■ In the modern runtime, if you change the layout of instance variables in a class, you do not have to
recompile classes that inherit from it.

In addition, the modern runtime supports instance variable synthesis for declared properties (see Declared
Properties in The Objective-C Programming Language).

Platforms

iPhone applications and 64-bit programs on Mac OS X v10.5 and later use the modern version of the runtime.

Other programs (32-bit programs on Mac OS X desktop) use the legacy version of the runtime.

Legacy and Modern Versions 9
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Runtime Versions and Platforms

10 Platforms
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Runtime Versions and Platforms

Objective-C programs interact with the runtime system at three distinct levels: through Objective-C source
code; through methods defined in the NSObject class of the Foundation framework; and through direct
calls to runtime functions.

Objective-C Source Code

For the most part, the runtime system works automatically and behind the scenes. You use it just by writing
and compiling Objective-C source code.

When you compile code containing Objective-C classes and methods, the compiler creates the data structures
and function calls that implement the dynamic characteristics of the language. The data structures capture
information found in class and category definitions and in protocol declarations; they include the class and
protocol objects discussed in Defining a Class and Protocols in The Objective-C Programming Language, as
well as method selectors, instance variable templates, and other information distilled from source code. The
principal runtime function is the one that sends messages, as described in “Messaging” (page 13). It’s invoked
by source-code message expressions.

NSObject Methods

Most objects in Cocoa are subclasses of the NSObject class, so most objects inherit the methods it defines.
(The notable exception is the NSProxy class; see “Message Forwarding” (page 19) for more information.) Its
methods therefore establish behaviors that are inherent to every instance and every class object. However,
in a few cases, the NSObject class merely defines a template for how something should be done; it doesn’t
provide all the necessary code itself.

For example, the NSObject class defines a description instance method that returns a string describing
the contents of the class. This is primarily used for debugging—the GDB print-object command prints
the string returned from this method. NSObject’s implementation of this method doesn’t know what the
class contains, so it returns a string with the name and address of the object. Subclasses of NSObject can
implement this method to return more details. For example, the Foundation class NSArray returns a list of
descriptions of the objects it contains.

Some of the NSObject methods simply query the runtime system for information. These methods allow
objects to perform introspection. Examples of such methods are the class method, which asks an object
to identify its class; isKindOfClass: and isMemberOfClass:, which test an object’s position in the
inheritance hierarchy; respondsToSelector:, which indicates whether an object can accept a particular
message; conformsToProtocol:, which indicates whether an object claims to implement the methods
defined in a specific protocol; and methodForSelector:, which provides the address of a method’s
implementation. Methods like these give an object the ability to introspect about itself.

Objective-C Source Code 11
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Interacting with the Runtime

Runtime Functions

The runtime system is a dynamic shared library with a public interface consisting of a set of functions and
data structures in the header files located within the directory /usr/include/objc. Many of these functions
allow you to use plain C to replicate what the compiler does when you write Objective-C code. Others form
the basis for functionality exported through the methods of the NSObject class. These functions make it
possible to develop other interfaces to the runtime system and produce tools that augment the development
environment; they’re not needed when programming in Objective-C. However, a few of the runtime functions
might on occasion be useful when writing an Objective-C program. All of these functions are documented
in Objective-C Runtime Reference.

12 Runtime Functions
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Interacting with the Runtime

This chapter describes how the message expressions are converted into objc_msgSend function calls, and
how you can refer to methods by name. It then explains how you can take advantage of objc_msgSend,
and how—if you need to—you can circumvent dynamic binding.

The objc_msgSend Function

In Objective-C, messages aren’t bound to method implementations until runtime. The compiler converts a
message expression,

[receiver message]

into a call on a messaging function, objc_msgSend. This function takes the receiver and the name of the
method mentioned in the message—that is, the method selector—as its two principal parameters:

objc_msgSend(receiver, selector)

Any arguments passed in the message are also handed to objc_msgSend:

objc_msgSend(receiver, selector, arg1, arg2, ...)

The messaging function does everything necessary for dynamic binding:

 ■ It first finds the procedure (method implementation) that the selector refers to. Since the same method
can be implemented differently by separate classes, the precise procedure that it finds depends on the
class of the receiver.

 ■ It then calls the procedure, passing it the receiving object (a pointer to its data), along with any arguments
that were specified for the method.

 ■ Finally, it passes on the return value of the procedure as its own return value.

Note: The compiler generates calls to the messaging function. You should never call it directly in the code
you write.

The key to messaging lies in the structures that the compiler builds for each class and object. Every class
structure includes these two essential elements:

 ■ A pointer to the superclass.

 ■ A class dispatch table. This table has entries that associate method selectors with the class-specific
addresses of the methods they identify. The selector for the setOrigin:: method is associated with
the address of (the procedure that implements) setOrigin::, the selector for the display method is
associated with display’s address, and so on.

The objc_msgSend Function 13
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Messaging

When a new object is created, memory for it is allocated, and its instance variables are initialized. First among
the object’s variables is a pointer to its class structure. This pointer, called isa, gives the object access to its
class and, through the class, to all the classes it inherits from.

Note: While not strictly a part of the language, the isa pointer is required for an object to work with the
Objective-C runtime system. An object needs to be “equivalent” to a struct objc_object (defined in
objc/objc.h) in whatever fields the structure defines. However, you rarely, if ever, need to create your own
root object, and objects that inherit from NSObject or NSProxy automatically have the isa variable.

These elements of class and object structure are illustrated in Figure 3-1.

Figure 3-1 Messaging Framework

. . .

superclass

selector...address
selector...address
selector...address

. . .

superclass

selector...address
selector...address
selector...address

. . .

superclass

selector...address
selector...address
selector...address

isa
instance variable
instance variable

. . .

The object’s superclass

The root class (NSObject)

The object’s class

14 The objc_msgSend Function
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Messaging

When a message is sent to an object, the messaging function follows the object’s isa pointer to the class
structure where it looks up the method selector in the dispatch table. If it can’t find the selector there,
objc_msgSend follows the pointer to the superclass and tries to find the selector in its dispatch table.
Successive failures cause objc_msgSend to climb the class hierarchy until it reaches the NSObject class.
Once it locates the selector, the function calls the method entered in the table and passes it the receiving
object’s data structure.

This is the way that method implementations are chosen at runtime—or, in the jargon of object-oriented
programming, that methods are dynamically bound to messages.

To speed the messaging process, the runtime system caches the selectors and addresses of methods as they
are used. There’s a separate cache for each class, and it can contain selectors for inherited methods as well
as for methods defined in the class. Before searching the dispatch tables, the messaging routine first checks
the cache of the receiving object’s class (on the theory that a method that was used once may likely be used
again). If the method selector is in the cache, messaging is only slightly slower than a function call. Once a
program has been running long enough to “warm up” its caches, almost all the messages it sends find a
cached method. Caches grow dynamically to accommodate new messages as the program runs.

Using Hidden Arguments

When objc_msgSend finds the procedure that implements a method, it calls the procedure and passes it
all the arguments in the message. It also passes the procedure two hidden arguments:

 ■ The receiving object

 ■ The selector for the method

These arguments give every method implementation explicit information about the two halves of the message
expression that invoked it. They’re said to be “hidden” because they aren’t declared in the source code that
defines the method. They’re inserted into the implementation when the code is compiled.

Although these arguments aren’t explicitly declared, source code can still refer to them (just as it can refer
to the receiving object’s instance variables). A method refers to the receiving object as self, and to its own
selector as _cmd. In the example below, _cmd refers to the selector for the strange method and self to
the object that receives a strange message.

- strange
{
 id target = getTheReceiver();
 SEL method = getTheMethod();

 if (target == self || method == _cmd)
 return nil;
 return [target performSelector:method];
}

self is the more useful of the two arguments. It is, in fact, the way the receiving object’s instance variables
are made available to the method definition.

Using Hidden Arguments 15
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Messaging

Getting a Method Address

The only way to circumvent dynamic binding is to get the address of a method and call it directly as if it were
a function. This might be appropriate on the rare occasions when a particular method will be performed
many times in succession and you want to avoid the overhead of messaging each time the method is
performed.

With a method defined in the NSObject class, methodForSelector:, you can ask for a pointer to the
procedure that implements a method, then use the pointer to call the procedure. The pointer that
methodForSelector: returns must be carefully cast to the proper function type. Both return and argument
types should be included in the cast.

The example below shows how the procedure that implements the setFilled: method might be called:

void (*setter)(id, SEL, BOOL);
int i;

setter = (void (*)(id, SEL, BOOL))[target
 methodForSelector:@selector(setFilled:)];
for (i = 0; i < 1000, i++)
 setter(targetList[i], @selector(setFilled:), YES);

The first two arguments passed to the procedure are the receiving object (self) and the method selector
(_cmd). These arguments are hidden in method syntax but must be made explicit when the method is called
as a function.

Using methodForSelector: to circumvent dynamic binding saves most of the time required by messaging.
However, the savings will be significant only where a particular message is repeated many times, as in the
for loop shown above.

Note that methodForSelector: is provided by the Cocoa runtime system; it’s not a feature of the Objective-C
language itself.

16 Getting a Method Address
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Messaging

This chapter describes how you can provide an implementation of a method dynamically.

Dynamic Method Resolution

There are situations where you might want to provide an implementation of a method dynamically. For
example, the Objective-C declared properties feature (see Declared Properties in TheObjective-C Programming
Language) includes the @dynamic directive:

@dynamic propertyName;

which tells the compiler that the methods associated with the property will be provided dynamically.

You can implement the methods resolveInstanceMethod: and resolveClassMethod: to dynamically
provide an implementation for a given selector for an instance and class method respectively.

An Objective-C method is simply a C function that take at least two arguments—self and _cmd. You can
add a function to a class as a method using the function class_addMethod. Therefore, given the following
function:

void dynamicMethodIMP(id self, SEL _cmd) {
 // implementation
}

you can dynamically add it to a class as a method (called resolveThisMethodDynamically) using
resolveInstanceMethod: like this:

@implementation MyClass
+ (BOOL)resolveInstanceMethod:(SEL)aSEL
{
 if (aSEL == @selector(resolveThisMethodDynamically)) {
 class_addMethod([self class], aSEL, (IMP) dynamicMethodIMP, "v@:");
 return YES;
 }
 return [super resolveInstanceMethod:aSEL];
}
@end

Forwarding methods (as described in “Message Forwarding” (page 19)) and dynamic method resolution are,
largely, orthogonal. A class has the opportunity to dynamically resolve a method before the forwarding
mechanism kicks in. If respondsToSelector: or instancesRespondToSelector: is invoked, the dynamic
method resolver is given the opportunity to provide an IMP for the selector first. If you implement
resolveInstanceMethod: but want particular selectors to actually be forwarded via the forwarding
mechanism, you return NO for those selectors.

Dynamic Method Resolution 17
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Dynamic Method Resolution

Dynamic Loading

An Objective-C program can load and link new classes and categories while it’s running. The new code is
incorporated into the program and treated identically to classes and categories loaded at the start.

Dynamic loading can be used to do a lot of different things. For example, the various modules in the System
Preferences application are dynamically loaded.

In the Cocoa environment, dynamic loading is commonly used to allow applications to be customized. Others
can write modules that your program loads at runtime—much as Interface Builder loads custom palettes
and the Mac OS X System Preferences application loads custom preference modules. The loadable modules
extend what your application can do. They contribute to it in ways that you permit but could not have
anticipated or defined yourself. You provide the framework, but others provide the code.

Although there is a runtime function that performs dynamic loading of Objective-C modules in Mach-O files
(objc_loadModules, defined in objc/objc-load.h), Cocoa’s NSBundle class provides a significantly
more convenient interface for dynamic loading—one that’s object-oriented and integrated with related
services. See the NSBundle class specification in the Foundation framework reference for information on
the NSBundle class and its use. See Mac OS X ABI Mach-O File Format Reference for information on Mach-O
files.

18 Dynamic Loading
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Dynamic Method Resolution

Sending a message to an object that does not handle that message is an error. However, before announcing
the error, the runtime system gives the receiving object a second chance to handle the message.

Forwarding

If you send a message to an object that does not handle that message, before announcing an error the
runtime sends the object a forwardInvocation: message with an NSInvocation object as its sole
argument—the NSInvocation object encapsulates the original message and the arguments that were
passed with it.

You can implement a forwardInvocation: method to give a default response to the message, or to avoid
the error in some other way. As its name implies, forwardInvocation: is commonly used to forward the
message to another object.

To see the scope and intent of forwarding, imagine the following scenarios: Suppose, first, that you’re
designing an object that can respond to a message called negotiate, and you want its response to include
the response of another kind of object. You could accomplish this easily by passing a negotiate message
to the other object somewhere in the body of the negotiate method you implement.

Take this a step further, and suppose that you want your object’s response to a negotiate message to be
exactly the response implemented in another class. One way to accomplish this would be to make your class
inherit the method from the other class. However, it might not be possible to arrange things this way. There
may be good reasons why your class and the class that implements negotiate are in different branches of
the inheritance hierarchy.

Even if your class can’t inherit the negotiate method, you can still “borrow” it by implementing a version
of the method that simply passes the message on to an instance of the other class:

- negotiate
{
 if ([someOtherObject respondsTo:@selector(negotiate)])
 return [someOtherObject negotiate];
 return self;
}

This way of doing things could get a little cumbersome, especially if there were a number of messages you
wanted your object to pass on to the other object. You’d have to implement one method to cover each
method you wanted to borrow from the other class. Moreover, it would be impossible to handle cases where
you didn’t know, at the time you wrote the code, the full set of messages you might want to forward. That
set might depend on events at runtime, and it might change as new methods and classes are implemented
in the future.

Forwarding 19
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Message Forwarding

The second chance offered by a forwardInvocation: message provides a less ad hoc solution to this
problem, and one that’s dynamic rather than static. It works like this: When an object can’t respond to a
message because it doesn’t have a method matching the selector in the message, the runtime system informs
the object by sending it a forwardInvocation: message. Every object inherits a forwardInvocation:
method from the NSObject class. However, NSObject’s version of the method simply invokes
doesNotRecognizeSelector:. By overriding NSObject’s version and implementing your own, you can
take advantage of the opportunity that the forwardInvocation: message provides to forward messages
to other objects.

To forward a message, all a forwardInvocation: method needs to do is:

 ■ Determine where the message should go, and

 ■ Send it there with its original arguments.

The message can be sent with the invokeWithTarget: method:

- (void)forwardInvocation:(NSInvocation *)anInvocation
{
 if ([someOtherObject respondsToSelector:
 [anInvocation selector]])
 [anInvocation invokeWithTarget:someOtherObject];
 else
 [super forwardInvocation:anInvocation];
}

The return value of the message that’s forwarded is returned to the original sender. All types of return values
can be delivered to the sender, including ids, structures, and double-precision floating-point numbers.

A forwardInvocation: method can act as a distribution center for unrecognized messages, parceling
them out to different receivers. Or it can be a transfer station, sending all messages to the same destination.
It can translate one message into another, or simply “swallow” some messages so there’s no response and
no error. A forwardInvocation: method can also consolidate several messages into a single response.
What forwardInvocation: does is up to the implementor. However, the opportunity it provides for linking
objects in a forwarding chain opens up possibilities for program design.

Note: The forwardInvocation: method gets to handle messages only if they don’t invoke an existing
method in the nominal receiver. If, for example, you want your object to forward negotiate messages to
another object, it can’t have a negotiate method of its own. If it does, the message will never reach
forwardInvocation:.

For more information on forwarding and invocations, see the NSInvocation class specification in the
Foundation framework reference.

Forwarding and Multiple Inheritance

Forwarding mimics inheritance, and can be used to lend some of the effects of multiple inheritance to
Objective-C programs. As shown in Figure 5-1 (page 21), an object that responds to a message by forwarding
it appears to borrow or “inherit” a method implementation defined in another class.

20 Forwarding and Multiple Inheritance
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Message Forwarding

Figure 5-1 Forwarding

isa. . .

– forwardInvocation: – negotiate

negotiate isa. . .

DiplomatWarrior

In this illustration, an instance of the Warrior class forwards a negotiate message to an instance of the
Diplomat class. The Warrior will appear to negotiate like a Diplomat. It will seem to respond to the negotiate
message, and for all practical purposes it does respond (although it’s really a Diplomat that’s doing the work).

The object that forwards a message thus “inherits” methods from two branches of the inheritance
hierarchy—its own branch and that of the object that responds to the message. In the example above, it
appears as if the Warrior class inherits from Diplomat as well as its own superclass.

Forwarding provides most of the features that you typically want from multiple inheritance. However, there’s
an important difference between the two: Multiple inheritance combines different capabilities in a single
object. It tends toward large, multifaceted objects. Forwarding, on the other hand, assigns separate
responsibilities to disparate objects. It decomposes problems into smaller objects, but associates those objects
in a way that’s transparent to the message sender.

Surrogate Objects

Forwarding not only mimics multiple inheritance, it also makes it possible to develop lightweight objects
that represent or “cover” more substantial objects. The surrogate stands in for the other object and funnels
messages to it.

The proxy discussed in “Remote Messaging” in The Objective-C Programming Language is such a surrogate.
A proxy takes care of the administrative details of forwarding messages to a remote receiver, making sure
argument values are copied and retrieved across the connection, and so on. But it doesn’t attempt to do
much else; it doesn’t duplicate the functionality of the remote object but simply gives the remote object a
local address, a place where it can receive messages in another application.

Other kinds of surrogate objects are also possible. Suppose, for example, that you have an object that
manipulates a lot of data—perhaps it creates a complicated image or reads the contents of a file on disk.
Setting this object up could be time-consuming, so you prefer to do it lazily—when it’s really needed or
when system resources are temporarily idle. At the same time, you need at least a placeholder for this object
in order for the other objects in the application to function properly.

Surrogate Objects 21
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Message Forwarding

In this circumstance, you could initially create, not the full-fledged object, but a lightweight surrogate for it.
This object could do some things on its own, such as answer questions about the data, but mostly it would
just hold a place for the larger object and, when the time came, forward messages to it. When the surrogate’s
forwardInvocation: method first receives a message destined for the other object, it would ensure that
the object existed and would create it if it didn’t. All messages for the larger object go through the surrogate,
so, as far as the rest of the program is concerned, the surrogate and the larger object would be the same.

Forwarding and Inheritance

Although forwarding mimics inheritance, the NSObject class never confuses the two. Methods like
respondsToSelector: and isKindOfClass: look only at the inheritance hierarchy, never at the forwarding
chain. If, for example, a Warrior object is asked whether it responds to a negotiate message,

if ([aWarrior respondsToSelector:@selector(negotiate)])
 ...

the answer is NO, even though it can receive negotiate messages without error and respond to them, in a
sense, by forwarding them to a Diplomat. (See Figure 5-1 (page 21).)

In many cases, NO is the right answer. But it may not be. If you use forwarding to set up a surrogate object
or to extend the capabilities of a class, the forwarding mechanism should probably be as transparent as
inheritance. If you want your objects to act as if they truly inherited the behavior of the objects they forward
messages to, you’ll need to re-implement the respondsToSelector: and isKindOfClass: methods to
include your forwarding algorithm:

- (BOOL)respondsToSelector:(SEL)aSelector
{
 if ([super respondsToSelector:aSelector])
 return YES;
 else {
 /* Here, test whether the aSelector message can *
 * be forwarded to another object and whether that *
 * object can respond to it. Return YES if it can. */
 }
 return NO;
}

In addition to respondsToSelector: and isKindOfClass:, the instancesRespondToSelector:
method should also mirror the forwarding algorithm. If protocols are used, the conformsToProtocol:
method should likewise be added to the list. Similarly, if an object forwards any remote messages it receives,
it should have a version of methodSignatureForSelector: that can return accurate descriptions of the
methods that ultimately respond to the forwarded messages; for example, if an object is able to forward a
message to its surrogate, you would implement methodSignatureForSelector: as follows:

- (NSMethodSignature*)methodSignatureForSelector:(SEL)selector
{
 NSMethodSignature* signature = [super methodSignatureForSelector:selector];
 if (!signature) {
 signature = [surrogate methodSignatureForSelector:selector];
 }
 return signature;
}

22 Forwarding and Inheritance
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Message Forwarding

You might consider putting the forwarding algorithm somewhere in private code and have all these methods,
forwardInvocation: included, call it.

Note: This is an advanced technique, suitable only for situations where no other solution is possible. It is
not intended as a replacement for inheritance. If you must make use of this technique, make sure you fully
understand the behavior of the class doing the forwarding and the class you’re forwarding to.

The methods mentioned in this section are described in the NSObject class specification in the Foundation
framework reference. For information on invokeWithTarget:, see the NSInvocation class specification
in the Foundation framework reference.

Forwarding and Inheritance 23
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Message Forwarding

24 Forwarding and Inheritance
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Message Forwarding

To assist the runtime system, the compiler encodes the return and argument types for each method in a
character string and associates the string with the method selector. The coding scheme it uses is also useful
in other contexts and so is made publicly available with the @encode() compiler directive. When given a
type specification, @encode() returns a string encoding that type. The type can be a basic type such as an
int, a pointer, a tagged structure or union, or a class name—any type, in fact, that can be used as an argument
to the C sizeof() operator.

char *buf1 = @encode(int **);
char *buf2 = @encode(struct key);
char *buf3 = @encode(Rectangle);

The table below lists the type codes. Note that many of them overlap with the codes you use when encoding
an object for purposes of archiving or distribution. However, there are codes listed here that you can’t use
when writing a coder, and there are codes that you may want to use when writing a coder that aren’t
generated by @encode(). (See the NSCoder class specification in the Foundation Framework reference for
more information on encoding objects for archiving or distribution.)

Table 6-1 Objective-C type encodings

MeaningCode

A charc

An inti

A shorts

A long

l is treated as a 32-bit quantity on 64-bit programs.

l

A long longq

An unsigned charC

An unsigned intI

An unsigned shortS

An unsigned longL

An unsigned long longQ

A floatf

A doubled

A C++ bool or a C99 _BoolB

25
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Type Encodings

MeaningCode

A voidv

A character string (char *)*

An object (whether statically typed or typed id)@

A class object (Class)#

A method selector (SEL):

An array[array type]

A structure{name=type...}

A union(name=type...)

A bit field of num bitsbnum

A pointer to type^type

An unknown type (among other things, this code is used for function pointers)?

Important: Objective-C does not support the long double type. @encode(long double) returns d, which
is the same encoding as for double.

The type code for an array is enclosed within square brackets; the number of elements in the array is specified
immediately after the open bracket, before the array type. For example, an array of 12 pointers to floats
would be encoded as:

[12^f]

Structures are specified within braces, and unions within parentheses. The structure tag is listed first, followed
by an equal sign and the codes for the fields of the structure listed in sequence. For example, the structure

typedef struct example {
 id anObject;
 char *aString;
 int anInt;
} Example;

would be encoded like this:

{example=@*i}

The same encoding results whether the defined type name (Example) or the structure tag (example) is
passed to @encode(). The encoding for a structure pointer carries the same amount of information about
the structure’s fields:

^{example=@*i}

However, another level of indirection removes the internal type specification:

^^{example}

26
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Type Encodings

Objects are treated like structures. For example, passing the NSObject class name to @encode() yields this
encoding:

{NSObject=#}

The NSObject class declares just one instance variable, isa, of type Class.

Note that although the @encode() directive doesn’t return them, the runtime system uses the additional
encodings listed in Table 6-2 for type qualifiers when they’re used to declare methods in a protocol.

Table 6-2 Objective-C method encodings

MeaningCode

constr

inn

inoutN

outo

bycopyO

byrefR

onewayV

27
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Type Encodings

28
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Type Encodings

When the compiler encounters property declarations (see Declared Properties in TheObjective-C Programming
Language), it generates descriptive metadata that is associated with the enclosing class, category or protocol.
You can access this metadata using functions that support looking up a property by name on a class or
protocol, obtaining the type of a property as an @encode string, and copying a list of a property's attributes
as an array of C strings. A list of declared properties is available for each class and protocol.

Property Type and Functions

The Property structure defines an opaque handle to a property descriptor.

typedef struct objc_property *Property;

You can use the functions class_copyPropertyList and protocol_copyPropertyList to retrieve an
array of the properties associated with a class (including loaded categories) and a protocol respectively:

objc_property_t *class_copyPropertyList(Class cls, unsigned int *outCount)
objc_property_t *protocol_copyPropertyList(Protocol *proto, unsigned int
*outCount)

For example, given the following class declaration:

@interface Lender : NSObject {
 float alone;
}
@property float alone;
@end

you can get the list of properties using:

id LenderClass = objc_getClass("Lender");
unsigned int outCount;
objc_property_t *properties = class_copyPropertyList(LenderClass, &outCount);

You can use the property_getName function to discover the name of a property:

const char *property_getName(objc_property_t property)

You can use the functions class_getProperty and protocol_getProperty to get a reference to a
property with a given name in a class and protocol respectively:

objc_property_t class_getProperty(Class cls, const char *name)
objc_property_t protocol_getProperty(Protocol *proto, const char *name, BOOL
isRequiredProperty, BOOL isInstanceProperty)

Property Type and Functions 29
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Declared Properties

You can use the property_getAttributes function to discover the name and the @encode type string
of a property. For details of the encoding type strings, see “Type Encodings” (page 25); for details of this
string, see “Property Type String” (page 30) and “Property Attribute Description Examples” (page 31).

const char *property_getAttributes(objc_property_t property)

Putting these together, you can print a list of all the properties associated with a class using the following
code:

id LenderClass = objc_getClass("Lender");
unsigned int outCount, i;
objc_property_t *properties = class_copyPropertyList(LenderClass, &outCount);
for (i = 0; i < outCount; i++) {
 objc_property_t property = properties[i];
 fprintf(stdout, "%s %s\n", property_getName(property),
property_getAttributes(property));
}

Property Type String

You can use the property_getAttributes function to discover the name, the @encode type string of a
property, and other attributes of the property.

The string starts with a T followed by the @encode type and a comma, and finishes with a V followed by the
name of the backing instance variable. Between these, the attributes are specified by the following descriptors,
separated by commas:

Table 7-1 Declared property type encodings

MeaningCode

The property is read-only (readonly).R

The property is a copy of the value last assigned (copy).C

The property is a reference to the value last assigned (retain).&

The property is non-atomic (nonatomic).N

The property defines a custom getter selector name. The name follows the G (for example,
GcustomGetter,).

G<name>

The property defines a custom setter selector name. The name follows the S (for example,
ScustomSetter:,).

S<name>

The property is dynamic (@dynamic).D

The property is a weak reference (__weak).W

The property is eligible for garbage collection.P

Specifies the type using old-style encoding.t<encoding>

30 Property Type String
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Declared Properties

For examples, see “Property Attribute Description Examples” (page 31).

Property Attribute Description Examples

Given these definitions:

enum FooManChu { FOO, MAN, CHU };
struct YorkshireTeaStruct { int pot; char lady; };
typedef struct YorkshireTeaStruct YorkshireTeaStructType;
union MoneyUnion { float alone; double down; };

the following table shows sample property declarations and the corresponding string returned by
property_getAttributes:

Property descriptionProperty declaration

Tc,VcharDefault@property char charDefault;

Td,VdoubleDefault@property double doubleDefault;

Ti,VenumDefault@property enum FooManChu enumDefault;

Tf,VfloatDefault@property float floatDefault;

Ti,VintDefault@property int intDefault;

Tl,VlongDefault@property long longDefault;

Ts,VshortDefault@property short shortDefault;

Ti,VsignedDefault@property signed signedDefault;

T{YorkshireTea-
Struct="pot"i"lady"c},Vstruct-
Default

@property struct YorkshireTeaStruct
structDefault;

T{YorkshireTea-
Struct="pot"i"lady"c},Vtypedef-
Default

@property YorkshireTeaStructType typedefDefault;

T(Money-
Union="alone"f"down"d),Vunion-
Default

@property union MoneyUnion unionDefault;

TI,VunsignedDefault@property unsigned unsignedDefault;

T^?,VfunctionPointerDefault@property int (*functionPointerDefault)(char
*);

Property Attribute Description Examples 31
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Declared Properties

Property descriptionProperty declaration

T@,VidDefault@property id idDefault;

Note: the compiler warns: no 'assign', 'retain', or
'copy' attribute is specified - 'assign' is
assumed"

T^i,VintPointer@property int *intPointer;

T^v,VvoidPointerDefault@property void *voidPointerDefault;

Ti,V_intSynthEquals@property int intSynthEquals;

In the implementation block:

@synthesize intSynthEquals=_intSynthEquals;

Ti,GintGetFoo,SintSetFoo:
,VintSetterGetter

@property(getter=intGetFoo, setter=intSetFoo:)
int intSetterGetter;

Ti,R,VintReadonly@property(readonly) int intReadonly;

Ti,R,GisIntReadOnlyGetter@property(getter=isIntReadOnlyGetter, readonly)
int intReadonlyGetter;

Ti,VintReadwrite@property(readwrite) int intReadwrite;

Ti,VintAssign@property(assign) int intAssign;

T@,&,VidRetain@property(retain)ididRetain;

T@,C,VidCopy@property(copy)ididCopy;

Ti,VintNonatomic@property(nonatomic) int intNonatomic;

T@,R,C,VidReadonlyCopyNonatomic@property(nonatomic, readonly, copy) id
idReadonlyCopyNonatomic;

T@,R,&,VidReadonlyRetainNonatomic@property(nonatomic, readonly, retain) id
idReadonlyRetainNonatomic;

32 Property Attribute Description Examples
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Declared Properties

This table describes the changes to Objective-C Runtime Programming Guide.

NotesDate

Made minor editorial changes.2009-10-19

Completed list of types described by property_getAttributes.2009-07-14

Corrected typographical errors.2009-02-04

New document that describes the Objective-C 2.0 runtime support library.2008-11-19

33
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

34
2009-10-19 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Objective-C Runtime Programming Guide
	Contents
	Figures and Tables
	Introduction
	Runtime Versions and Platforms
	Legacy and Modern Versions
	Platforms

	Interacting with the Runtime
	Objective-C Source Code
	NSObject Methods
	Runtime Functions

	Messaging
	The objc_msgSend Function
	Using Hidden Arguments
	Getting a Method Address

	Dynamic Method Resolution
	Dynamic Method Resolution
	Dynamic Loading

	Message Forwarding
	Forwarding
	Forwarding and Multiple Inheritance
	Surrogate Objects
	Forwarding and Inheritance

	Type Encodings
	Declared Properties
	Property Type and Functions
	Property Type String
	Property Attribute Description Examples

	Revision History

