
Threading Programming Guide
Performance

2010-04-28

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, Cocoa Touch, iMac, iPhone, Logic, Mac,
Mac OS, Objective-C, QuickTime, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other
countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 9

Organization of This Document 9
See Also 9

Chapter 1 About Threaded Programming 11

What Are Threads? 11
Threading Terminology 12
Alternatives to Threads 12
Threading Support 14

Threading Packages 14
Run Loops 15
Synchronization Tools 15
Interthread Communication 16

Design Tips 17
Avoid Creating Threads Explicitly 17
Keep Your Threads Reasonably Busy 17
Avoid Shared Data Structures 18
Threads and Your User Interface 18
Be Aware of Thread Behaviors at Quit Time 18
Handle Exceptions 19
Terminate Your Threads Cleanly 19
Thread Safety in Libraries 19

Chapter 2 Thread Management 21

Thread Costs 21
Creating a Thread 22

Using NSThread 22
Using POSIX Threads 24
Using NSObject to Spawn a Thread 25
Using Other Threading Technologies 25
Using POSIX Threads in a Cocoa Application 25

Configuring Thread Attributes 26
Configuring the Stack Size of a Thread 26
Configuring Thread-Local Storage 27
Setting the Detached State of a Thread 27
Setting the Thread Priority 28

Writing Your Thread Entry Routine 28
Creating an Autorelease Pool 28
Setting Up an Exception Handler 29

3
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

Setting Up a Run Loop 30
Terminating a Thread 30

Chapter 3 Run Loops 33

Anatomy of a Run Loop 33
Run Loop Modes 34
Input Sources 35
Timer Sources 37
Run Loop Observers 38
The Run Loop Sequence of Events 38

When Would You Use a Run Loop? 39
Using Run Loop Objects 40

Getting a Run Loop Object 40
Configuring the Run Loop 40
Starting the Run Loop 41
Exiting the Run Loop 43
Thread Safety and Run Loop Objects 43

Configuring Run Loop Sources 43
Defining a Custom Input Source 43
Configuring Timer Sources 48
Configuring a Port-Based Input Source 49

Chapter 4 Synchronization 57

Synchronization Tools 57
Atomic Operations 57
Memory Barriers and Volatile Variables 57
Locks 58
Conditions 59
Perform Selector Routines 60

Synchronization Costs and Performance 60
Thread Safety and Signals 61
Tips for Thread-Safe Designs 61

Avoid Synchronization Altogether 62
Understand the Limits of Synchronization 62
Be Aware of Threats to Code Correctness 62
Watch Out for Deadlocks and Livelocks 63
Use Volatile Variables Correctly 64

Using Atomic Operations 64
Using Locks 66

Using a POSIX Mutex Lock 67
Using the NSLock Class 67
Using the @synchronized Directive 68
Using Other Cocoa Locks 68

Using Conditions 70

4
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Using the NSCondition Class 71
Using POSIX Conditions 71

Appendix A Thread Safety Summary 73

Cocoa 73
Foundation Framework Thread Safety 73
Application Kit Framework Thread Safety 77
Core Data Framework 79

Core Foundation 79

Glossary 81

Document Revision History 83

5
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

6
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 About Threaded Programming 11

Table 1-1 Alternative technologies to threads 13
Table 1-2 Thread technologies 14
Table 1-3 Communication mechanisms 16

Chapter 2 Thread Management 21

Table 2-1 Thread creation costs 21
Table 2-2 Setting the stack size of a thread 27
Listing 2-1 Creating a thread in C 24
Listing 2-2 Defining your thread entry point routine 29
Listing 2-3 Checking for an exit condition during a long job 30

Chapter 3 Run Loops 33

Figure 3-1 Structure of a run loop and its sources 34
Figure 3-2 Operating a custom input source 44
Table 3-1 Predefined run loop modes 35
Table 3-2 Performing selectors on other threads 37
Listing 3-1 Creating a run loop observer 41
Listing 3-2 Running a run loop 42
Listing 3-3 The custom input source object definition 45
Listing 3-4 Scheduling a run loop source 45
Listing 3-5 Performing work in the input source 46
Listing 3-6 Invalidating an input source 46
Listing 3-7 Installing the run loop source 47
Listing 3-8 Registering and removing an input source with the application delegate 47
Listing 3-9 Waking up the run loop 48
Listing 3-10 Creating and scheduling timers using NSTimer 49
Listing 3-11 Creating and scheduling a timer using Core Foundation 49
Listing 3-12 Main thread launch method 50
Listing 3-13 Handling Mach port messages 50
Listing 3-14 Launching the worker thread using Mach ports 51
Listing 3-15 Sending the check-in message using Mach ports 51
Listing 3-16 Registering a message port 52
Listing 3-17 Attaching a Core Foundation message port to a new thread 52
Listing 3-18 Receiving the checkin message 53
Listing 3-19 Setting up the thread structures 54

7
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

Chapter 4 Synchronization 57

Table 4-1 Lock types 58
Table 4-2 Mutex and atomic operation costs 60
Table 4-3 Atomic math and logic operations 64
Listing 4-1 Performing atomic operations 66
Listing 4-2 Using a mutex lock 67
Listing 4-3 Using a Cocoa condition 71
Listing 4-4 Signaling a Cocoa condition 71
Listing 4-5 Using a POSIX condition 72
Listing 4-6 Signaling a condition lock 72

8
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Threads are one of several technologies that make it possible to execute multiple code paths concurrently
inside a single application. Although newer technologies such as operation objects and Grand Central Dispatch
(GCD) provide a more modern and efficient infrastructure for implementing concurrency, Mac OS X and iOS
also provide interfaces for creating and managing threads.

This document provides an introduction to the thread packages available in Mac OS X and shows you how
to use them. This document also describes the relevant technologies provided to support threading and the
synchronization of multithreaded code inside your application.

Important: If you are developing a new application, you are encouraged to investigate the alternative Mac
OS X technologies for implementing concurrency. This is especially true if you are not already familiar with
the design techniques needed to implement a threaded application. These alternative technologies simplify
the amount of work you have to do to implement concurrent paths of execution and offer much better
performance than traditional threads. For information about these technologies, see ConcurrencyProgramming
Guide.

Organization of This Document

This document has the following chapters and appendixes:

 ■ “About Threaded Programming” (page 11) introduces the concept of threads and their role in application
design.

 ■ “Thread Management” (page 21) provides information about the threading technologies in Mac OS X
and how you use them.

 ■ “Run Loops” (page 33) provides information about how to manage event-processing loops in secondary
threads.

 ■ “Synchronization” (page 57) describes synchronization issues and the tools you use to prevent multiple
threads from corrupting data or crashing your program.

 ■ “Thread Safety Summary” (page 73) provides a high-level summary of the inherent thread safety of Mac
OS X and iOS and some of their key frameworks.

See Also

For information about the alternatives to threads, see Concurrency Programming Guide.

Organization of This Document 9
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

This document provides only a light coverage of the use of the POSIX threads API. For more information
about the available POSIX thread routines, see the pthread man page. For a more in-depth explanation of
POSIX threads and their usage, see Programming with POSIX Threads by David R. Butenhof.

10 See Also
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

For many years, maximum computer performance was limited largely by the speed of a single microprocessor
at the heart of the computer. As the speed of individual processors started reaching their practical limits,
however, chip makers switched to multicore designs, giving the computer the opportunity to perform multiple
tasks simultaneously. And although Mac OS X takes advantage of these cores whenever it can to perform
system-related tasks, your own applications can also take advantage of them through threads.

What Are Threads?

Threads are a relatively lightweight way to implement multiple paths of execution inside of an application.
At the system level, programs run side by side, with the system doling out execution time to each program
based on its needs and the needs of other programs. Inside each program, however, exists one or more
threads of execution, which can be used to perform different tasks simultaneously or in a nearly simultaneous
manner. The system itself actually manages these threads of execution, scheduling them to run on the
available cores and preemptively interrupting them as needed to allow other threads to run.

From a technical standpoint, a thread is a combination of the kernel-level and application-level data structures
needed to manage the execution of code. The kernel-level structures coordinate the dispatching of events
to the thread and the preemptive scheduling of the thread on one of the available cores. The application-level
structures include the call stack for storing function calls and the structures the application needs to manage
and manipulate the thread’s attributes and state.

In a nonconcurrent application, there is only one thread of execution. That thread starts and ends with your
application’s main routine and branches one-by-one to different methods or functions to implement the
application’s overall behavior. By contrast, an application that supports concurrency starts with one thread
and adds more as needed to create additional execution paths. Each new path has its own custom start
routine that runs independently of the code in the application’s main routine. Having multiple threads in an
application provides two very important potential advantages:

 ■ Multiple threads can improve an application’s perceived responsiveness.

 ■ Multiple threads can improve an application’s real-time performance on multicore systems.

If your application has only one thread, that one thread must do everything. It must respond to events,
update your application’s windows, and perform all of the computations needed to implement your
application’s behavior. The problem with having just one thread is that it can only do one thing at a time.
So what happens when one of your computations takes a long time to finish? While your code is busy
computing the values it needs, your application stops responding to user events and updating its windows.
If this behavior continues long enough, a user might think your application is hung and try to forcibly quit
it. If you moved your custom computations onto a separate thread, however, your application’s main thread
would be free to respond to user interactions in a more timely manner.

With multicore computers common these days, threads provide a way to increase performance in some types
of applications. Threads that perform different tasks can do so simultaneously on different processor cores,
making it possible for an application to increase the amount of work it does in a given amount of time.

What Are Threads? 11
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About Threaded Programming

Of course, threads are not a panacea for fixing an application’s performance problems. Along with the benefits
offered by threads come the potential problems. Having multiple paths of execution in an application can
add a considerable amount of complexity to your code. Each thread has to coordinate its actions with other
threads to prevent it from corrupting the application’s state information. Because threads in a single application
share the same memory space, they have access to all of the same data structures. If two threads try to
manipulate the same data structure at the same time, one thread might overwrite another’s changes in a
way that corrupts the resulting data structure. Even with proper protections in place, you still have to watch
out for compiler optimizations that introduce subtle (and not so subtle) bugs into your code.

Threading Terminology

Before getting too far into discussions about threads and their supporting technologies, it is necessary to
define some basic terminology.

If you are familiar with Carbon’s Multiprocessor Services API or with UNIX systems, you may find that the
term “task” is used differently by this document. In earlier versions of Mac OS, the term “task” was used to
distinguish between threads created using the Multiprocessor Services and those created using the Carbon
Thread Manager API. On UNIX systems, the term “task” is also used at times to refer to a running process. In
practical terms, a Multiprocessor Services task is equivalent to a preemptively scheduled thread.

Given that both the Carbon Thread Manager and Multiprocessor Services APIs are legacy technologies in
Mac OS X, this document adopts the following terminology:

 ■ The term thread is used to refer to a separate path of execution for code.

 ■ The term process is used to refer to a running executable, which can encompass multiple threads.

 ■ The term task is used to refer to the abstract concept of work that needs to be performed.

Alternatives to Threads

One problem with creating threads yourself is that they add uncertainty to your code. Threads are a relatively
low-level and complicated way to support concurrency in your application. If you do not fully understand
the implications of your design choices, you could easily encounter synchronization or timing issues, the
severity of which can range from subtle behavioral changes to the crashing of your application and the
corruption of the user’s data.

Another factor to consider is whether you need threads or concurrency at all. Threads solve the specific
problem of how to execute multiple code paths concurrently inside the same process. There may be cases,
though, where the amount of work you are doing does not warrant concurrency. Threads introduce a
tremendous amount of overhead to your process, both in terms of memory consumption and CPU time. You
may discover that this overhead is too great for the intended task, or that other options are easier to
implement.

Table 1-1 lists some of the alternatives to threads. This table includes both replacement technologies for
threads (such as operation objects and GCD) and alternatives that are geared towards efficiently using the
single thread you already have.

12 Threading Terminology
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About Threaded Programming

Table 1-1 Alternative technologies to threads

DescriptionTechnology

Introduced in Mac OS X v10.5, an operation object is a wrapper for a task that would
normally be executed on a secondary thread. This wrapper hides the thread management
aspects of performing the task, leaving you free to focus on the task itself. You typically
use these objects in conjunction with an operation queue object, which actually manages
the execution of the operation objects on one more threads.

For more information on how to use operation objects, see Concurrency Programming
Guide.

Operation objects

Introduced in Mac OS x v10.6, Grand Central Dispatch is another alternative to threads
that lets you focus on the tasks you need to perform rather than on thread management.
With GCD, you define the task you want to perform and add it to a work queue, which
handles the scheduling of your task on an appropriate thread. Work queues take into
account the number of available cores and the current load to execute your tasks more
efficiently than you could do yourself using threads.

For information on how to use GCD and work queues, see Concurrency Programming
Guide

Grand Central
Dispatch (GCD)

For tasks that are relatively short and very low priority, idle time notifications let you
perform the task at a time when your application is not as busy. Cocoa provides support
for idle-time notifications using the NSNotificationQueue object. To request an
idle-time notification, post a notification to the default NSNotificationQueue object
using the NSPostWhenIdle option. The queue delays the delivery of your notification
object until the run loop becomes idle. For more information, see Notification
Programming Topics.

Idle-time
notifications

The system interfaces include many asynchronous functions that provide automatic
concurrency for you. These APIs may use system daemons and processes or create
custom threads to perform their task and return the results to you. (The actual
implementation is irrelevant because it is separated from your code.) As you design
your application, look for functions that offer asynchronous behavior and consider using
them instead of using the equivalent synchronous function on a custom thread.

Asynchronous
functions

You can use timers on your application’s main thread to perform periodic tasks that are
too trivial to require a thread, but which still require servicing at regular intervals. For
information on timers, see “Timer Sources” (page 37).

Timers

Although more heavyweight than threads, creating a separate process might be useful
in cases where the task is only tangentially related to your application. You might use
a process if a task requires a significant amount of memory or must be executed using
root privileges. For example, you might use a 64-bit server process to compute a large
data set while your 32-bit application displays the results to the user.

Separate
processes

Warning: When launching separate processes using the fork function, you must always follow a call
to fork with a call to exec or a similar function. Applications that depend on the Core Foundation,
Cocoa, or Core Data frameworks (either explicitly or implicitly) must make a subsequent call to an exec
function or those frameworks may behave improperly.

Alternatives to Threads 13
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About Threaded Programming

Threading Support

If you have existing code that uses threads, Mac OS X and iOS provide several technologies for creating
threads in your applications. In addition, both systems also provide support for managing and synchronizing
the work that needs to be done on those threads. The following sections describe some of the key technologies
that you need to be aware of when working with threads in Mac OS X and iOS.

Threading Packages

Although the underlying implementation mechanism for threads is Mach threads, you rarely (if ever) work
with threads at the Mach level. Instead, you usually use the more convenient POSIX API or one of its derivatives.
The Mach implementation does provide the basic features of all threads, however, including the preemptive
execution model and the ability to schedule threads so they are independent of each other.

Listing 2-2 lists the threading technologies you can use in your applications.

Table 1-2 Thread technologies

DescriptionTechnology

Cocoa implements threads using the NSThread class. Cocoa also provides methods
on NSObject for spawning new threads and executing code on already-running
threads. For more information, see “Using NSThread” (page 22) and “Using NSObject
to Spawn a Thread” (page 25).

Cocoa threads

POSIX threads provide a C-based interface for creating threads. If you are not writing
a Cocoa application, this is the best choice for creating threads. The POSIX interface
is relatively simple to use and offers ample flexibility for configuring your threads.
For more information, see “Using POSIX Threads” (page 24)

POSIX threads

Multiprocessing Services is a legacy C-based interface used by applications
transitioning from older versions of Mac OS. This technology is available in Mac OS
X only and should be avoided for any new development. Instead, you should use
the NSThread class or POSIX threads. For more information about this technology,
however, see Multiprocessing Services Programming Guide.

Multiprocessing
Services

At the application level, all threads behave in essentially the same way as on other platforms. After starting
a thread, the thread runs in one of three main states: running, ready, or blocked. If a thread is not currently
running, it is either blocked and waiting for input or it is ready to run but not scheduled to do so yet. The
thread continues moving back and forth among these states until it finally exits and moves to the terminated
state.

When you create a new thread, you must specify an entry-point function (or an entry-point method in the
case of Cocoa threads) for that thread. This entry-point function constitutes the code you want to run on the
thread. When the function returns, or when you terminate the thread explicitly, the thread stops permanently
and is reclaimed by the system. Because threads are relatively expensive to create in terms of memory and
time, it is therefore recommended that your entry point function do a significant amount of work or set up
a run loop to allow for recurring work to be performed.

14 Threading Support
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About Threaded Programming

For more information about the available threading technologies and how to use them, see “Thread
Management” (page 21).

Run Loops

A run loop is a piece of infrastructure used to manage events arriving asynchronously on a thread. A run loop
works by monitoring one or more event sources for the thread. As events arrive, the system wakes up the
thread and dispatches the events to the run loop, which then dispatches them to the handlers you specify.
If no events are present and ready to be handled, the run loop puts the thread to sleep.

You are not required to use a run loop with any threads you create but doing so can provide a better
experience for the user. Run loops make it possible to create long-lived threads that use a minimal amount
of resources. Because a run loop puts its thread to sleep when there is nothing to do, it eliminates the need
for polling, which wastes CPU cycles and prevents the processor itself from sleeping and saving power.

To configure a run loop, all you have to do is launch your thread, get a reference to the run loop object,
install your event handlers, and tell the run loop to run. The infrastructure provided by both Cocoa and
Carbon handles the configuration of the main thread’s run loop for you automatically. If you plan to create
long-lived secondary threads, however, you must configure the run loop for those threads yourself.

Details about run loops and examples of how to use them are provided in “Run Loops” (page 33).

Synchronization Tools

One of the hazards of threaded programming is resource contention among multiple threads. If multiple
threads try to use or modify the same resource at the same time, problems can occur. One way to alleviate
the problem is to eliminate the shared resource altogether and make sure each thread has its own distinct
set of resources on which to operate. When maintaining completely separate resources is not an option
though, you may have to synchronize access to the resource using locks, conditions, atomic operations, and
other techniques.

Locks provide a brute force form of protection for code that can be executed by only one thread at a time.
The most common type of lock is mutual exclusion lock, also known as a mutex. When a thread tries to
acquire a mutex that is currently held by another thread, it blocks until the lock is released by the other
thread. Several system frameworks provide support for mutex locks, although they are all based on the same
underlying technology. In addition, Cocoa provides several variants of the mutex lock to support different
types of behavior, such as recursion. For more information about the available types of locks, see “Locks” (page
58).

In addition to locks, the system provides support for conditions, which ensure the proper sequencing of tasks
within your application. A condition acts as a gatekeeper, blocking a given thread until the condition it
represents becomes true. When that happens, the condition releases the thread and allows it to continue.
The POSIX layer and Foundation framework both provide direct support for conditions. (If you use operation
objects, you can configure dependencies among your operation objects to sequence the execution of tasks,
which is very similar to the behavior offered by conditions.)

Although locks and conditions are very common in concurrent design, atomic operations are another way
to protect and synchronize access to data. Atomic operations offer a lightweight alternative to locks in
situations where you can perform mathematical or logical operations on scalar data types. Atomic operations
use special hardware instructions to ensure that modifications to a variable are completed before other
threads have a chance to access it.

Threading Support 15
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About Threaded Programming

For more information about the available synchronization tools, see “Synchronization Tools” (page 57).

Interthread Communication

Although a good design minimizes the amount of required communication, at some point, communication
between threads becomes necessary. (A thread’s job is to do work for your application, but if the results of
that job are never used, what good is it?) Threads may need to process new job requests or report their
progress to your application’s main thread. In these situations, you need a way to get information from one
thread to another. Fortunately, the fact that threads share the same process space means you have lots of
options for communication.

There are many ways to communicate between threads, each with its own advantages and disadvantages.
“Configuring Thread-Local Storage” lists the most common communication mechanisms you can use in Mac
OS X. (With the exception of message queues and Cocoa distributed objects, these technologies are also
available in iOS.) The techniques in this table are listed in order of increasing complexity.

Table 1-3 Communication mechanisms

DescriptionMechanism

Cocoa applications support the ability to perform selectors directly on other threads.
This capability means that one thread can essentially execute a method on any other
thread. Because they are executed in the context of the target thread, messages sent
this way are automatically serialized on that thread. For information about input
sources, see “Cocoa Perform Selector Sources” (page 36).

Direct messaging

Another simple way to communicate information between two threads is to use a
global variable, shared object, or shared block of memory. Although shared variables
are fast and simple, they are also more fragile than direct messaging. Shared variables
must be carefully protected with locks or other synchronization mechanisms to ensure
the correctness of your code. Failure to do so could lead to race conditions, corrupted
data, or crashes.

Global variables,
shared memory,
and objects

Conditions are a synchronization tool that you can use to control when a thread
executes a particular portion of code. You can think of conditions as gate keepers,
letting a thread run only when the stated condition is met. For information on how
to use conditions, see “Using Conditions” (page 70).

Conditions

A custom run loop source is one that you set up to receive application-specific
messages on a thread. Because they are event driven, run loop sources put your thread
to sleep automatically when there is nothing to do, which improves your thread’s
efficiency. For information about run loops and run loop sources, see “Run Loops” (page
33).

Run loop sources

Port-based communication is a more elaborate way to communication between two
threads, but it is also a very reliable technique. More importantly, ports and sockets
can be used to communicate with external entities, such as other processes and
services. For efficiency, ports are implemented using run loop sources, so your thread
sleeps when there is no data waiting on the port. For information about run loops
and about port-based input sources, see “Run Loops” (page 33).

Ports and sockets

16 Threading Support
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About Threaded Programming

DescriptionMechanism

Multiprocessing Services defines a first-in, first-out (FIFO) queue abstraction for
managing incoming and outgoing data. Although message queues are simple and
convenient, they are not as efficient as some other communications techniques. For
more information about how to use message queues, see Multiprocessing Services
Programming Guide.

Message queues

Distributed objects is a Cocoa technology that provides a high-level implementation
of port-based communications. Although it is possible to use this technology for
interthread communication, doing so is highly discouraged because of the amount
of overhead it incurs. Distributed objects is much more suitable for communicating
with other processes, where the overhead of going between processes is already high.
For more information, see Distributed Objects Programming Topics.

Cocoa distributed
objects

Design Tips

The following sections offer guidelines to help you implement threads in a way that ensures the correctness
of your code. Some of these guidelines also offer tips for achieving better performance with your own
threaded code. As with any performance tips, you should always gather relevant performance statistics
before, during, and after you make changes to your code.

Avoid Creating Threads Explicitly

Writing thread-creation code manually is tedious and potentially error-prone and you should avoid it whenever
possible. Mac OS X and iOS provide implicit support for concurrency through other APIs. Rather than create
a thread yourself, consider using asynchronous APIs, GCD, or operation objects to do the work. These
technologies do the thread-related work behind the scenes for you and are guaranteed to do it correctly. In
addition, technologies such as GCD and operation objects are designed to manage threads much more
efficiently than your own code ever could by adjusting the number of active threads based on the current
system load. For more information about GCD and operation objects, see Concurrency Programming Guide.

Keep Your Threads Reasonably Busy

If you decide to create and manage threads manually, remember that threads consume precious system
resources. You should do your best to make sure that any tasks you assign to threads are reasonably long-lived
and productive. At the same time, you should not be afraid to terminate threads that are spending most of
their time idle. Threads use a nontrivial amount of memory, some of it wired, so releasing an idle thread not
only helps reduce your application’s memory footprint, it also frees up more physical memory for other
system processes to use.

Design Tips 17
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About Threaded Programming

Important: Before you start terminating idle threads, you should always record a set of baseline measurements
of your applications current performance. After trying your changes, take additional measurements to verify
that the changes are actually improving performance, rather than hurting it.

Avoid Shared Data Structures

The simplest and easiest way to avoid thread-related resource conflicts is to give each thread in your program
its own copy of whatever data it needs. Parallel code works best when you minimize the communication
and resource contention among your threads.

Creating a multithreaded application is hard. Even if you are very careful and lock shared data structures at
all the right junctures in your code, your code may still be semantically unsafe. For example, your code could
run into problems if it expected shared data structures to be modified in a specific order. Changing your
code to a transaction-based model to compensate could subsequently negate the performance advantage
of having multiple threads. Eliminating the resource contention in the first place often results in a simpler
design with excellent performance.

Threads and Your User Interface

If your application has a graphical user interface, it is recommended that you receive user-related events and
initiate interface updates from your application’s main thread. This approach helps avoid synchronization
issues associated with handling user events and drawing window content. Some frameworks, such as Cocoa,
generally require this behavior, but even for those that do not, keeping this behavior on the main thread
has the advantage of simplifying the logic for managing your user interface.

There are a few notable exceptions where it is advantageous to perform graphical operations from other
threads. For example, the QuickTime API includes a number of operations that can be performed from
secondary threads, including opening movie files, rendering movie files, compressing movie files, and
importing and exporting images. Similarly, in Carbon and Cocoa you can use secondary threads to create
and process images and perform other image-related calculations. Using secondary threads for these operations
can greatly increase performance. If you are not sure about a particular graphical operation though, plan on
doing it from your main thread.

For more information about QuickTime thread safety, see Technical Note TN2125: “Thread-Safe Programming
in QuickTime.” For more information about Cocoa thread safety, see “Thread Safety Summary” (page 73).
For more information about drawing in Cocoa, see Cocoa Drawing Guide.

Be Aware of Thread Behaviors at Quit Time

A process runs until all nondetached threads have exited. By default, only the application’s main thread is
created as nondetached, but you can create other threads that way as well. When the user quits an application,
it is usually considered appropriate behavior to terminate all detached threads immediately, because the
work done by detached threads is considered optional. If your application is using background threads to
save data to disk or do other critical work, however, you may want to create those threads as nondetached
to prevent the loss of data when the application exits.

18 Design Tips
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About Threaded Programming

Creating threads as nondetached (also known as joinable) requires extra work on your part. Because most
high-level thread technologies do not create joinable threads by default, you may have to use the POSIX API
to create your thread. In addition, you must add code to your application’s main thread to join with the
nondetached threads when they do finally exit. For information on creating joinable threads, see “Setting
the Detached State of a Thread” (page 27).

If you are writing a Cocoa application, you can also use the applicationShouldTerminate: delegate
method to delay the termination of the application until a later time or cancel it altogether. When delaying
termination, your application would need to wait until any critical threads have finished their tasks and then
invoke the replyToApplicationShouldTerminate: method. For more information on these methods,
see NSApplication Class Reference.

Handle Exceptions

Exception handling mechanisms rely on the current call stack to perform any necessary clean up when an
exception is thrown. Because each thread has its own call stack, each thread is therefore responsible for
catching its own exceptions. Failing to catch an exception in a secondary thread is the same as failing to
catch an exception in your main thread: the owning process is terminated. You cannot throw an uncaught
exception to a different thread for processing.

If you need to notify another thread (such as the main thread) of an exceptional situation in the current
thread, you should catch the exception and simply send a message to the other thread indicating what
happened. Depending on your model and what you are trying to do, the thread that caught the exception
can then continue processing (if that is possible), wait for instructions, or simply exit.

Note: In Cocoa, an NSException object is a self-contained object that can be passed from thread to thread
once it has been caught.

In some cases, an exception handler may be created for you automatically. For example, the @synchronized
directive in Objective-C contains an implicit exception handler.

Terminate Your Threads Cleanly

The best way for a thread to exit is naturally, by letting it reach the end of its main entry point routine.
Although there are functions to terminate threads immediately, those functions should be used only as a
last resort. Terminating a thread before it has reached its natural end point prevents the thread from cleaning
up after itself. If the thread has allocated memory, opened a file, or acquired other types of resources, your
code may be unable to reclaim those resources, resulting in memory leaks or other potential problems.

For more information on the proper way to exit a thread, see “Terminating a Thread” (page 30).

Thread Safety in Libraries

Although an application developer has control over whether an application executes with multiple threads,
library developers do not. When developing libraries, you must assume that the calling application is
multithreaded or could switch to being multithreaded at any time. As a result, you should always use locks
for critical sections of code.

Design Tips 19
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About Threaded Programming

For library developers, it is unwise to create locks only when an application becomes multithreaded. If you
need to lock your code at some point, create the lock object early in the use of your library, preferably in
some sort of explicit call to initialize the library. Although you could also use a static library initialization
function to create such locks, try to do so only when there is no other way. Execution of an initialization
function adds to the time required to load your library and could adversely affect performance.

Note: Always remember to balance calls to lock and unlock a mutex lock within your library. You should
also remember to lock library data structures rather than rely on the calling code to provide a thread-safe
environment.

If you are developing a Cocoa library, you can register as an observer for the
NSWillBecomeMultiThreadedNotification if you want to be notified when the application becomes
multithreaded. You should not rely on receiving this notification, though, as it might be dispatched before
your library code is ever called.

20 Design Tips
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

About Threaded Programming

Each process (application) in Mac OS X or iOS is made up of one or more threads, each of which represents
a single path of execution through the application's code. Every application starts with a single thread, which
runs the application's main function. Applications can spawn additional threads, each of which executes the
code of a specific function.

When an application spawns a new thread, that thread becomes an independent entity inside of the
application's process space. Each thread has its own execution stack and is scheduled for runtime separately
by the kernel. A thread can communicate with other threads and other processes, perform I/O operations,
and do anything else you might need it to do. Because they are inside the same process space, however, all
threads in a single application share the same virtual memory space and have the same access rights as the
process itself.

This chapter provides an overview of the thread technologies available in Mac OS X and iOS along with
examples of how to use those technologies in your applications.

Note: For a historical look at the threading architecture of Mac OS, and for additional background information
on threads, see Technical Note TN2028, “Threading Architectures”.

Thread Costs

Threading has a real cost to your program (and the system) in terms of memory use and performance. Each
thread requires the allocation of memory in both the kernel memory space and your program’s memory
space. The core structures needed to manage your thread and coordinate its scheduling are stored in the
kernel using wired memory. Your thread’s stack space and per-thread data is stored in your program’s memory
space. Most of these structures are created and initialized when you first create the thread—a process that
can be relatively expensive because of the required interactions with the kernel.

Table 2-1 quantifies the approximate costs associated with creating a new user-level thread in your application.
Some of these costs are configurable, such as the amount of stack space allocated for secondary threads.
The time cost for creating a thread is a rough approximation and should be used only for relative comparisons
with each other. Thread creation times can vary greatly depending on processor load, the speed of the
computer, and the amount of available system and program memory.

Table 2-1 Thread creation costs

NotesApproximate costItem

This memory is used to store the thread data structures and
attributes, much of which is allocated as wired memory and
therefore cannot be paged to disk.

Approximately 1 KBKernel data
structures

Thread Costs 21
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

NotesApproximate costItem

The minimum allowed stack size for secondary threads is 16
KB and the stack size must be a multiple of 4 KB. The space for
this memory is set aside in your process space at thread
creation time, but the actual pages associated with that
memory are not created until they are needed.

512 KB (secondary
threads)

8 MB (Mac OS X main
thread)

1 MB (iOS main thread)

Stack space

This value reflects the time between the initial call to create
the thread and the time at which the thread’s entry point
routine began executing. The figures were determined by
analyzing the mean and median values generated during
thread creation on an Intel-based iMac with a 2 GHz Core Duo
processor and 1 GB of RAM running Mac OS X v10.5.

Approximately 90
microseconds

Creation time

Note: Because of their underlying kernel support, operation objects can often create threads more quickly.
Rather than creating threads from scratch every time, they use pools of threads already residing in the kernel
to save on allocation time. For more information about using operation objects, see Concurrency Programming
Guide.

Another cost to consider when writing threaded code is the production costs. Designing a threaded application
can sometimes require fundamental changes to the way you organize your application’s data structures.
Making those changes might be necessary to avoid the use of synchronization, which can itself impose a
tremendous performance penalty on poorly designed applications. Designing those data structures, and
debugging problems in threaded code, can increase the time it takes to develop a threaded application.
Avoiding those costs can create bigger problems at runtime, however, if your threads spend too much time
waiting on locks or doing nothing.

Creating a Thread

Creating low-level threads is relatively simple. In all cases, you must have a function or method to act as your
thread’s main entry point and you must use one of the available thread routines to start your thread. The
following sections show the basic creation process for the more commonly used thread technologies. Threads
created using these techniques inherit a default set of attributes, determined by the technology you use. For
information on how to configure your threads, see “Configuring Thread Attributes” (page 26).

Using NSThread

There are two ways to create a thread using the NSThread class:

 ■ Use the detachNewThreadSelector:toTarget:withObject: class method to spawn the new thread.

 ■ Create a new NSThread object and call its start method. (Supported only in iOS and Mac OS X v10.5
and later.)

22 Creating a Thread
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

Both techniques create a detached thread in your application. A detached thread means that the thread’s
resources are automatically reclaimed by the system when the thread exits. It also means that your code
does not have to join explicitly with the thread later.

Because the detachNewThreadSelector:toTarget:withObject: method is supported in all versions
of Mac OS X, it is often found in existing Cocoa applications that use threads. To detach a new thread, you
simply provide the name of the method (specified as a selector) that you want to use as the thread’s entry
point, the object that defines that method, and any data you want to pass to the thread at startup. The
following example shows a basic invocation of this method that spawns a thread using a custom method of
the current object.

[NSThread detachNewThreadSelector:@selector(myThreadMainMethod:) toTarget:self
 withObject:nil];

Prior to Mac OS X v10.5, you used the NSThread class primarily to spawn threads. Although you could get
an NSThread object and access some thread attributes, you could only do so from the thread itself after it
was running. In Mac OS X v10.5, support was added for creating NSThread objects without immediately
spawning the corresponding new thread. (This support is also available in iOS.) This support made it possible
to get and set various thread attributes prior to starting the thread. It also made it possible to use that thread
object to refer to the running thread later.

The simple way to initialize an NSThread object in Mac OS X v10.5 and later is to use the
initWithTarget:selector:object: method. This method takes the exact same information as the
detachNewThreadSelector:toTarget:withObject: method and uses it to initialize a new NSThread
instance. It does not start the thread, however. To start the thread, you call the thread object’s startmethod
explicitly, as shown in the following example:

NSThread* myThread = [[NSThread alloc] initWithTarget:self
 selector:@selector(myThreadMainMethod:)
 object:nil];
[myThread start]; // Actually create the thread

Note: An alternative to using the initWithTarget:selector:object: method is to subclass NSThread
and override its main method. You would use the overridden version of this method to implement your
thread’s main entry point. For more information, see the subclassing notes in NSThread Class Reference.

If you have an NSThread object whose thread is currently running, one way you can send messages to that
thread is to use the performSelector:onThread:withObject:waitUntilDone:method of almost any
object in your application. Support for performing selectors on threads (other than the main thread) was
introduced in Mac OS X v10.5 and is a convenient way to communicate between threads. (This support is
also available in iOS.) The messages you send using this technique are executed directly by the other thread
as part of its normal run-loop processing. (Of course, this does mean that the target thread has to be running
in its run loop; see “Run Loops” (page 33).) You may still need some form of synchronization when you
communicate this way, but it is simpler than setting up communications ports between the threads.

Note: Although good for occasional communication between threads, you should not use the
performSelector:onThread:withObject:waitUntilDone: method for time critical or frequent
communication between threads.

For a list of other thread communication options, see “Setting the Detached State of a Thread” (page 27).

Creating a Thread 23
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

Using POSIX Threads

Mac OS X and iOS provide C-based support for creating threads using the POSIX thread API. This technology
can actually be used in any type of application (including Cocoa and Cocoa Touch applications) and might
be more convenient if you are writing your software for multiple platforms. The POSIX routine you use to
create threads is called, appropriately enough, pthread_create.

Listing 2-1 shows two custom functions for creating a thread using POSIX calls. The LaunchThread function
creates a new thread whose main routine is implemented in the PosixThreadMainRoutine function.
Because POSIX creates threads as joinable by default, this example changes the thread’s attributes to create
a detached thread. Marking the thread as detached gives the system a chance to reclaim the resources for
that thread immediately when it exits.

Listing 2-1 Creating a thread in C

#include <assert.h>
#include <pthread.h>

void* PosixThreadMainRoutine(void* data)
{
 // Do some work here.

 return NULL;
}

void LaunchThread()
{
 // Create the thread using POSIX routines.
 pthread_attr_t attr;
 pthread_t posixThreadID;
 int returnVal;

 returnVal = pthread_attr_init(&attr);
 assert(!returnVal);
 returnVal = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 assert(!returnVal);

 int threadError = pthread_create(&posixThreadID, &attr,
&PosixThreadMainRoutine, NULL);

 returnVal = pthread_attr_destroy(&attr);
 assert(!returnVal);
 if (threadError != 0)
 {
 // Report an error.
 }
}

If you add the code from the preceding listing to one of your source files and call the LaunchThread function,
it would create a new detached thread in your application. Of course, new threads created using this code
would not do anything useful. The threads would launch and almost immediately exit. To make things more
interesting, you would need to add code to the PosixThreadMainRoutine function to do some actual
work. To ensure that a thread knows what work to do, you can pass it a pointer to some data at creation
time. You pass this pointer as the last parameter of the pthread_create function.

24 Creating a Thread
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

To communicate information from your newly created thread back to your application’s main thread, you
need to establish a communications path between the target threads. For C-based applications, there are
several ways to communicate between threads, including the use of ports, conditions, or shared memory.
For long-lived threads, you should almost always set up some sort of interthread communications mechanism
to give your application’s main thread a way to check the status of the thread or shut it down cleanly when
the application exits.

For more information about POSIX thread functions, see the pthread man page.

Using NSObject to Spawn a Thread

In iOS and Mac OS X v10.5 and later, all objects have the ability to spawn a new thread and use it to execute
one of their methods. The performSelectorInBackground:withObject:method creates a new detached
thread and uses the specified method as the entry point for the new thread. For example, if you have some
object (represented by the variable myObj) and that object has a method called doSomething that you want
to run in a background thread, you could could use the following code to do that:

[myObj performSelectorInBackground:@selector(doSomething) withObject:nil];

The effect of calling this method is the same as if you called the
detachNewThreadSelector:toTarget:withObject: method of NSThread with the current object,
selector, and parameter object as parameters. The new thread is spawned immediately using the default
configuration and begins running. Inside the selector, you must configure the thread just as you would any
thread. For example, you would need to set up an autorelease pool (if you were not using garbage collection)
and configure the thread’s run loop if you planned to use it. For information on how to configure new threads,
see “Configuring Thread Attributes” (page 26).

Using Other Threading Technologies

Although the POSIX routines and NSThread class are the recommended technologies to use for creating
low-level threads, other C-based technologies are available in Mac OS X. Of these, the only other one you
might consider using is Multiprocessing Services, which is itself implemented on top of POSIX threads.
Multiprocessing Services was developed originally for earlier versions of Mac OS and was later made available
for Carbon applications in Mac OS X. If you have existing code that uses this technology, you can continue
to use it, although you should also consider porting your thread-related code to POSIX. This technology is
not available in iOS.

For information on how to use Multiprocessing Services, see Multiprocessing Services Programming Guide.

Using POSIX Threads in a Cocoa Application

Although the NSThread class is the main interface for creating threads in Cocoa applications, you are free
to use POSIX threads instead if doing so is more convenient for you. For example, you might use POSIX
threads if you already have code that uses them and you do not want to rewrite it. If you do plan to use the
POSIX threads in a Cocoa application, you should still be aware of the interactions between Cocoa and threads
and obey the guidelines in the following sections.

Creating a Thread 25
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

Protecting the Cocoa Frameworks

For multithreaded applications, Cocoa frameworks use locks and other forms of internal synchronization to
ensure they behave correctly. To prevent these locks from degrading performance in the single-threaded
case, however, Cocoa does not create them until the application spawns its first new thread using the
NSThread class. If you spawn threads using only POSIX thread routines, Cocoa does not receive the
notifications it needs to know that your application is now multithreaded. When that happens, operations
involving the Cocoa frameworks may destabilize or crash your application.

To let Cocoa know that you intend to use multiple threads, all you have to do is spawn a single thread using
the NSThread class and let that thread immediately exit. Your thread entry point need not do anything. Just
the act of spawning a thread using NSThread is enough to ensure that the locks needed by the Cocoa
frameworks are put in place.

If you are not sure if Cocoa thinks your application is multithreaded or not, you can use the isMultiThreaded
method of NSThread to check.

Mixing POSIX and Cocoa Locks

It is safe to use a mixture of POSIX and Cocoa locks inside the same application. Cocoa lock and condition
objects are essentially just wrappers for POSIX mutexes and conditions. For a given lock, however, you must
always use the same interface to create and manipulate that lock. In other words, you cannot use a Cocoa
NSLock object to manipulate a mutex you created using the pthread_mutex_init function, and vice versa.

Configuring Thread Attributes

After you create a thread, and sometimes before, you may want to configure different portions of the thread
environment. The following sections describe some of the changes you can make and when you might make
them.

Configuring the Stack Size of a Thread

For each new thread you create, the system allocates a specific amount of memory in your process space to
act as the stack for that thread. The stack manages the stack frames and is also where any local variables for
the thread are declared. The amount of memory allocated for threads is listed in “Thread Costs” (page 21).

If you want to change the stack size of a given thread, you must do so before you create the thread. All of
the threading technologies provide some way of setting the stack size, although setting the stack size using
NSThread is available only in iOS and Mac OS X v10.5 and later. Table 2-2 lists the different options for each
technology.

26 Configuring Thread Attributes
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

Table 2-2 Setting the stack size of a thread

OptionTechnology

In iOS and Mac OS X v10.5 and later, allocate and initialize an NSThread object
(do not use thedetachNewThreadSelector: toTarget:withObject:method).
Before calling the start method of the thread object, use the setStackSize:
method to specify the new stack size.

Cocoa

Create a new pthread_attr_t structure and use the pthread_attr_-
setstacksize function to change the default stack size. Pass the attributes to
the pthread_create function when creating your thread.

POSIX

Pass the appropriate stack size value to the MPCreateTask function when you
create your thread.

Multiprocessing
Services

Configuring Thread-Local Storage

Each thread maintains a dictionary of key-value pairs that can be accessed from anywhere in the thread. You
can use this dictionary to store information that you want to persist throughout the execution of your thread.
For example, you could use it to store state information that you want to persist through multiple iterations
of your thread’s run loop.

Cocoa and POSIX store the thread dictionary in different ways, so you cannot mix and match calls to the two
technologies. As long as you stick with one technology inside your thread code, however, the end results
should be similar. In Cocoa, you use the threadDictionary method of an NSThread object to retrieve an
NSMutableDictionary object, to which you can add any keys required by your thread. In POSIX, you use
the pthread_setspecific and pthread_getspecific functions to set and get the keys and values of
your thread.

Setting the Detached State of a Thread

Most high-level thread technologies create detached threads by default. In most cases, detached threads
are preferred because they allow the system to free up the thread’s data structures immediately upon
completion of the thread. Detached threads also do not require explicit interactions with your program. The
means of retrieving results from the thread is left to your discretion. By comparison, the system does not
reclaim the resources for joinable threads until another thread explicitly joins with that thread, a process
which may block the thread that performs the join.

You can think of joinable threads as akin to child threads. Although they still run as independent threads, a
joinable thread must be joined by another thread before its resources can be reclaimed by the system.
Joinable threads also provide an explicit way to pass data from an exiting thread to another thread. Just
before it exits, a joinable thread can pass a data pointer or other return value to the pthread_exit function.
Another thread can then claim this data by calling the pthread_join function.

Configuring Thread Attributes 27
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

Important: At application exit time, detached threads can be terminated immediately but joinable threads
cannot. Each joinable thread must be joined before the process is allowed to exit. Joinable threads may
therefore be preferable in cases where the thread is doing critical work that should not be interrupted, such
as saving data to disk.

If you do want to create joinable threads, the only way to do so is using POSIX threads. POSIX creates threads
as joinable by default. To mark a thread as detached or joinable, modify the thread attributes using the
pthread_attr_setdetachstate function prior to creating the thread. After the thread begins, you can
change a joinable thread to a detached thread by calling the pthread_detach function. For more information
about these POSIX thread functions, see the pthread man page. For information on how to join with a
thread, see the pthread_join man page.

Setting the Thread Priority

Any new thread you create has a default priority associated with it. The kernel’s scheduling algorithm takes
thread priorities into account when determining which threads to run, with higher priority threads being
more likely to run than threads with lower priorities. Higher priorities do not guarantee a specific amount of
execution time for your thread, just that it is more likely to be chosen by the scheduler when compared to
lower-priority threads.

Important: It is generally a good idea to leave the priorities of your threads at their default values. Increasing
the priorities of some threads also increases the likelihood of starvation among lower-priority threads. If your
application contains high-priority and low-priority threads that must interact with each other, the starvation
of lower-priority threads may block other threads and create performance bottlenecks.

If you do want to modify thread priorities, both Cocoa and POSIX provide a way to do so. For Cocoa threads,
you can use the setThreadPriority: class method of NSThread to set the priority of the currently running
thread. For POSIX threads, you use the pthread_setschedparam function. For more information, see
NSThread Class Reference or pthread_setschedparam man page.

Writing Your Thread Entry Routine

For the most part, the structure of your thread’s entry point routines is the same in Mac OS X as it is on other
platforms. You initialize your data structures, do some work or optionally set up a run loop, and clean up
when your thread’s code is done. Depending on your design, there may be some additional steps you need
to take when writing your entry routine.

Creating an Autorelease Pool

Applications that link in Objective-C frameworks typically must create at least one autorelease pool in each
of their threads. If an application uses the managed model—where the application handles the retaining
and releasing of objects—the autorelease pool catches any objects that are autoreleased from that thread.

28 Writing Your Thread Entry Routine
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

If an application uses garbage collection instead of the managed memory model, creation of an autorelease
pool is not strictly necessary. The presence of an autorelease pool in a garbage-collected application is not
harmful, and for the most part is simply ignored. It is allowed for cases where a code module must support
both garbage collection and the managed memory model. In such a case, the autorelease pool must be
present to support the managed memory model code and is simply ignored if the application is run with
garbage collection enabled.

If your application uses the managed memory model, creating an autorelease pool should be the first thing
you do in your thread entry routine. Similarly, destroying this autorelease pool should be the last thing you
do in your thread. This pool ensures that autoreleased objects are caught, although it does not release them
until the thread itself exits. Listing 2-2 shows the structure of a basic thread entry routine that uses an
autorelease pool.

Listing 2-2 Defining your thread entry point routine

- (void)myThreadMainRoutine
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init]; // Top-level
pool

 // Do thread work here.

 [pool release]; // Release the objects in the pool.
}

Because the top-level autorelease pool does not release its objects until the thread exits, long-lived threads
should create additional autorelease pools to free objects more frequently. For example, a thread that uses
a run loop might create and release an autorelease pool each time through that run loop. Releasing objects
more frequently prevents your application’s memory footprint from growing too large, which can lead to
performance problems. As with any performance-related behavior though, you should measure the actual
performance of your code and tune your use of autorelease pools appropriately.

For more information on memory management and autorelease pools, seeMemoryManagementProgramming
Guide.

Setting Up an Exception Handler

If your application catches and handles exceptions, your thread code should be prepared to catch any
exceptions that might occur. Although it is best to handle exceptions at the point where they might occur,
failure to catch a thrown exception in a thread causes your application to exit. Installing a final try/catch in
your thread entry routine allows you to catch any unknown exceptions and provide an appropriate response.

You can use either the C++ or Objective-C exception handling style when building your project in Xcode.
For information about setting how to raise and catch exceptions in Objective-C, see Exception Programming
Topics.

Writing Your Thread Entry Routine 29
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

Setting Up a Run Loop

When writing code you want to run on a separate thread, you have two options. The first option is to write
the code for a thread as one long task to be performed with little or no interruption, and have the thread
exit when it finishes. The second option is put your thread into a loop and have it process requests dynamically
as they arrive. The first option requires no special setup for your code; you just start doing the work you want
to do. The second option, however, involves setting up your thread’s run loop.

Mac OS X and iOS provide built-in support for implementing run loops in every thread. Cocoa, Carbon, and
UIKit start the run loop of your application’s main thread automatically, but if you create any secondary
threads, you must configure the run loop and start it manually.

For information on using and configuring run loops, see “Run Loops” (page 33).

Terminating a Thread

The recommended way to exit a thread is to let it exit its entry point routine normally. Although Cocoa,
POSIX, and Multiprocessing Services offer routines for killing threads directly, the use of such routines is
strongly discouraged. Killing a thread prevents that thread from cleaning up after itself. Memory allocated
by the thread could potentially be leaked and any other resources currently in use by the thread might not
be cleaned up properly, creating potential problems later.

If you anticipate the need to terminate a thread in the middle of an operation, you should design your threads
from the outset to respond to a cancel or exit message. For long-running operations, this might mean stopping
work periodically and checking to see if such a message arrived. If a message does come in asking the thread
to exit, the thread would then have the opportunity to perform any needed cleanup and exit gracefully;
otherwise, it could simply go back to work and process the next chunk of data.

One way to respond to cancel messages is to use a run loop input source to receive such messages. Listing
2-3 shows the structure of how this code might look in your thread’s main entry routine. (The example shows
the main loop portion only and does not include the steps for setting up an autorelease pool or configuring
the actual work to do.) The example installs a custom input source on the run loop that presumably can be
messaged from another one of your threads; for information on setting up input sources, see “Configuring
Run Loop Sources” (page 43). After performing a portion of the total amount of work, the thread runs the
run loop briefly to see if a message arrived on the input source. If not, the run loop exits immediately and
the loop continues with the next chunk of work. Because the handler does not have direct access to the
exitNow local variable, the exit condition is communicated through a key-value pair in the thread dictionary.

Listing 2-3 Checking for an exit condition during a long job

- (void)threadMainRoutine
{
 BOOL moreWorkToDo = YES;
 BOOL exitNow = NO;
 NSRunLoop* runLoop = [NSRunLoop currentRunLoop];

 // Add the exitNow BOOL to the thread dictionary.
 NSMutableDictionary* threadDict = [[NSThread currentThread] threadDictionary];
 [threadDict setValue:[NSNumber numberWithBool:exitNow]
forKey:@"ThreadShouldExitNow"];

 // Install an input source.

30 Terminating a Thread
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

 [self myInstallCustomInputSource];

 while (moreWorkToDo && !exitNow)
 {
 // Do one chunk of a larger body of work here.
 // Change the value of the moreWorkToDo Boolean when done.

 // Run the run loop but timeout immediately if the input source isn't
waiting to fire.
 [runLoop runUntilDate:[NSDate date]];

 // Check to see if an input source handler changed the exitNow value.
 exitNow = [[threadDict valueForKey:@"ThreadShouldExitNow"] boolValue];
 }
}

Terminating a Thread 31
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

32 Terminating a Thread
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Thread Management

Run loops are part of the fundamental infrastructure associated with threads. A run loop is an event processing
loop that you use to schedule work and coordinate the receipt of incoming events. The purpose of a run
loop is to keep your thread busy when there is work to do and put your thread to sleep when there is none.

Run loop management is not entirely automatic. You must still design your thread’s code to start the run
loop at appropriate times and respond to incoming events. Both Cocoa and Core Foundation provide run
loop objects to help you configure and manage your thread’s run loop. Your application does not need to
create these objects explicitly; each thread, including the application’s main thread, has an associated run
loop object. Only secondary threads need to run their run loop explicitly, however. In both Carbon and Cocoa
applications, the main thread automatically sets up and runs its run loop as part of the general application
startup process.

The following sections provide more information about run loops and how you configure them for your
application. For additional information about run loop objects, see NSRunLoopClass Reference and CFRunLoop
Reference.

Anatomy of a Run Loop

A run loop is very much like its name sounds. It is a loop your thread enters and uses to run event handlers
in response to incoming events. Your code provides the control statements used to implement the actual
loop portion of the run loop—in other words, your code provides the while or for loop that drives the run
loop. Within your loop, you use a run loop object to "run” the event-processing code that receives events
and calls the installed handlers.

A run loop receives events from two different types of sources. Input sources deliver asynchronous events,
usually messages from another thread or from a different application. Timer sources deliver synchronous
events, occurring at a scheduled time or repeating interval. Both types of source use an application-specific
handler routine to process the event when it arrives.

Figure 3-1 shows the conceptual structure of a run loop and a variety of sources. The input sources deliver
asynchronous events to the corresponding handlers and cause the runUntilDate: method (called on the
thread’s associated NSRunLoop object) to exit. Timer sources deliver events to their handler routines but do
not cause the run loop to exit.

Anatomy of a Run Loop 33
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

Figure 3-1 Structure of a run loop and its sources

Input sources

Timer sources

handlePort:

customSrc:

mySelector:

timerFired:

runUntilDate:

performSelector:onThread:...

Thread

Custom

EtherPort

Start

End

In addition to handling sources of input, run loops also generate notifications about the run loop’s behavior.
Registered run-loop observers can receive these notifications and use them to do additional processing on
the thread. You use Core Foundation to install run-loop observers on your threads.

The following sections provide more information about the components of a run loop and the modes in
which they operate. They also describe the notifications that are generated at different times during the
handling of events.

Run Loop Modes

A run loop mode is a collection of input sources and timers to be monitored and a collection of run loop
observers to be notified. Each time you run your run loop, you specify (either explicitly or implicitly) a particular
“mode” in which to run. During that pass of the run loop, only sources associated with that mode are monitored
and allowed to deliver their events. (Similarly, only observers associated with that mode are notified of the
run loop’s progress.) Sources associated with other modes hold on to any new events until subsequent passes
through the loop in the appropriate mode.

In your code, you identify modes by name. Both Cocoa and Core Foundation define a default mode and
several commonly used modes, along with strings for specifying those modes in your code. You can define
custom modes by simply specifying a custom string for the mode name. Although the names you assign to
custom modes are arbitrary, the contents of those modes are not. You must be sure to add one or more
input sources, timers, or run-loop observers to any modes you create for them to be useful.

You use modes to filter out events from unwanted sources during a particular pass through your run loop.
Most of the time, you will want to run your run loop in the system-defined “default” mode. A modal panel,
however, might run in the “modal” mode. While in this mode, only sources relevant to the modal panel would
deliver events to the thread. For secondary threads, you might use custom modes to prevent low-priority
sources from delivering events during time-critical operations.

34 Anatomy of a Run Loop
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

Note: Modes discriminate based on the source of the event, not the type of the event. For example, you
would not use modes to match only mouse-down events or only keyboard events. You could use modes to
listen to a different set of ports, suspend timers temporarily, or otherwise change the sources and run loop
observers currently being monitored.

Table 3-1 lists the standard modes defined by Cocoa and Core Foundation along with a description of when
you use that mode. The name column lists the actual constants you use to specify the mode in your code.

Table 3-1 Predefined run loop modes

DescriptionNameMode

The default mode is the one used for most operations.
Most of the time, you should use this mode to start your
run loop and configure your input sources.

NSDefaultRunLoopMode
(Cocoa)

kCFRunLoopDefaultMode
(Core Foundation)

Default

Cocoa uses this mode in conjunction with NSConnection
objects to monitor replies. You should rarely need to use
this mode yourself.

NSConnectionReplyMode
(Cocoa)

Connection

Cocoa uses this mode to identify events intended for
modal panels.

NSModalPanelRunLoopMode
(Cocoa)

Modal

Cocoa uses this mode to restrict incoming events during
mouse-dragging loops and other sorts of user interface
tracking loops.

NSEventTracking-
RunLoopMode (Cocoa)

Event
tracking

This is a configurable group of commonly used modes.
Associating an input source with this mode also associates
it with each of the modes in the group. For Cocoa
applications, this set includes the default, modal, and event
tracking modes by default. Core Foundation includes just
the default mode initially. You can add custom modes to
the set using the CFRunLoopAddCommonMode function.

NSRunLoopCommonModes
(Cocoa)

kCFRunLoopCommonModes
(Core Foundation)

Common
modes

Input Sources

Input sources deliver events asynchronously to your threads. The source of the event depends on the type
of the input source, which is generally one of two categories. Port-based input sources monitor your
application’s Mach ports. Custom input sources monitor custom sources of events. As far as your run loop is
concerned, it should not matter whether an input source is port-based or custom. The system typically
implements input sources of both types that you can use as is. The only difference between the two sources
is how they are signaled. Port-based sources are signaled automatically by the kernel, and custom sources
must be signaled manually from another thread.

When you create an input source, you assign it to one or more modes of your run loop. Modes affect which
input sources are monitored at any given moment. Most of the time, you run the run loop in the default
mode, but you can specify custom modes too. If an input source is not in the currently monitored mode, any
events it generates are held until the run loop runs in the correct mode.

Anatomy of a Run Loop 35
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

The following sections describe some of the input sources.

Port-Based Sources

Cocoa and Core Foundation provide built-in support for creating port-based input sources using port-related
objects and functions. For example, in Cocoa, you never have to create an input source directly at all. You
simply create a port object and use the methods of NSPort to add that port to the run loop. The port object
handles the creation and configuration of the needed input source for you.

In Core Foundation, you must manually create both the port and its run loop source. In both cases, you use
the functions associated with the port opaque type (CFMachPortRef, CFMessagePortRef, or CFSocketRef)
to create the appropriate objects.

For examples of how to set up and configure custom port-based sources, see “Configuring a Port-Based Input
Source” (page 49).

Custom Input Sources

To create a custom input source, you must use the functions associated with the CFRunLoopSourceRef
opaque type in Core Foundation. You configure a custom input source using several callback functions. Core
Foundation calls these functions at different points to configure the source, handle any incoming events,
and tear down the source when it is removed from the run loop.

In addition to defining the behavior of the custom source when an event arrives, you must also define the
event delivery mechanism. This part of the source runs on a separate thread and is responsible for providing
the input source with its data and for signaling it when that data is ready for processing. The event delivery
mechanism is up to you but need not be overly complex.

For an example of how to create a custom input source, see “Defining a Custom Input Source” (page 43).
For reference information for custom input sources, see also CFRunLoopSource Reference.

Cocoa Perform Selector Sources

In addition to port-based sources, Cocoa defines a custom input source that allows you to perform a selector
on any thread. Like a port-based source, perform selector requests are serialized on the target thread,
alleviating many of the synchronization problems that might occur with multiple methods being run on one
thread. Unlike a port-based source, a perform selector source removes itself from the run loop after it performs
its selector.

Note: Prior to Mac OS X v10.5, perform selector sources were used mostly to send messages to the main
thread, but in Mac OS X v10.5 and later and in iOS, you can use them to send messages to any thread.

When performing a selector on another thread, the target thread must have an active run loop. For threads
you create, this means waiting until your code explicitly starts the run loop. Because the main thread starts
its own run loop, however, you can begin issuing calls on that thread as soon as the application calls the
applicationDidFinishLaunching: method of the application delegate. The run loop processes all
queued perform selector calls each time through the loop, rather than processing one during each loop
iteration.

36 Anatomy of a Run Loop
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

Table 3-2 lists the methods defined on NSObject that can be used to perform selectors on other threads.
Because these methods are declared on NSObject, you can use them from any threads where you have
access to Objective-C objects, including POSIX threads. These methods do not actually create a new thread
to perform the selector.

Table 3-2 Performing selectors on other threads

DescriptionMethods

Performs the specified selector on the application’s
main thread during that thread’s next run loop cycle.
These methods give you the option of blocking the
current thread until the selector is performed.

performSelectorOnMainThread: withObject:
waitUntilDone:

performSelectorOnMainThread: withObject:
waitUntilDone:modes:

Performs the specified selector on any thread for
which you have an NSThread object. These
methods give you the option of blocking the current
thread until the selector is performed.

performSelector: onThread:withObject:
waitUntilDone:

performSelector: onThread:withObject:
waitUntilDone:modes:

Performs the specified selector on the current thread
during the next run loop cycle and after an optional
delay period. Because it waits until the next run loop
cycle to perform the selector, these methods
provide an automatic mini delay from the currently
executing code. Multiple queued selectors are
performed one after another in the order they were
queued.

performSelector: withObject: afterDelay:

performSelector: withObject:
afterDelay:inModes:

Lets you cancel a message sent to the current thread
using the performSelector: withObject:
afterDelay: or performSelector:
withObject: afterDelay:inModes: method.

cancelPreviousPerformRequestsWithTarget:

cancelPreviousPerformRequestsWithTarget:
selector:object:

For detailed information about each of these methods, see NSObject Class Reference.

Timer Sources

Timer sources deliver events synchronously to your threads at a preset time in the future. Timers are a way
for a thread to notify itself to do something. For example, a search field could use a timer to initiate an
automatic search once a certain amount of time has passed between successive key strokes from the user.
The use of this delay time gives the user a chance to type as much of the desired search string as possible
before beginning the search.

Although it generates time-based notifications, a timer is not a real-time mechanism. Like input sources,
timers are associated with specific modes of your run loop. If a timer is not in the mode currently being
monitored by the run loop, it does not fire until you run the run loop in one of the timer’s supported modes.
Similarly, if a timer fires when the run loop is in the middle of executing a handler routine, the timer waits
until the next time through the run loop to invoke its handler routine. If the run loop is not running at all,
the timer never fires.

Anatomy of a Run Loop 37
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

You can configure timers to generate events only once or repeatedly. A repeating timer reschedules itself
automatically based on the scheduled firing time, not the actual firing time. For example, if a timer is scheduled
to fire at a particular time and every 5 seconds after that, the scheduled firing time will always fall on the
original 5 second time intervals, even if the actual firing time gets delayed. If the firing time is delayed so
much that it misses one or more of the scheduled firing times, the timer is fired only once for the missed
time period. After firing for the missed period, the timer is rescheduled for the next scheduled firing time.

For more information on configuring timer sources, see “Configuring Timer Sources” (page 48). For reference
information, see NSTimer Class Reference or CFRunLoopTimer Reference.

Run Loop Observers

In contrast to sources, which fire when an appropriate asynchronous or synchronous event occurs, run loop
observers fire at special locations during the execution of the run loop itself. You might use run loop observers
to prepare your thread to process a given event or to prepare the thread before it goes to sleep. You can
associate run loop observers with the following events in your run loop:

 ■ The entrance to the run loop.

 ■ When the run loop is about to process a timer.

 ■ When the run loop is about to process an input source.

 ■ When the run loop is about to go to sleep.

 ■ When the run loop has woken up, but before it has processed the event that woke it up.

 ■ The exit from the run loop.

You can add run loop observers to both Cocoa and Carbon applications, but to define one and add it to your
run loop, you must use Core Foundation. To create a run loop observer, you create a new instance of the
CFRunLoopObserverRef opaque type. This type keeps track of your custom callback function and the
activities in which it is interested.

Similar to timers, run-loop observers can be used once or repeatedly. A one-shot observer removes itself
from the run loop after it fires, while a repeating observer remains attached. You specify whether an observer
runs once or repeatedly when you create it.

For an example of how to create a run-loop observer, see “Configuring the Run Loop” (page 40). For reference
information, see CFRunLoopObserver Reference.

The Run Loop Sequence of Events

Each time you run it, your thread’s run loop processes pending events and generates notifications for any
attached observers. The order in which it does this is very specific and is as follows:

1. Notify observers that the run loop has been entered.

2. Notify observers that any ready timers are about to fire.

3. Notify observers that any input sources that are not port based are about to fire.

4. Fire any non-port-based input sources that are ready to fire.

38 Anatomy of a Run Loop
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

5. If a port-based input source is ready and waiting to fire, process the event immediately. Go to step 9.

6. Notify observers that the thread is about to sleep.

7. Put the thread to sleep until one of the following events occurs:

 ■ An event arrives for a port-based input source.

 ■ A timer fires.

 ■ The timeout value set for the run loop expires.

 ■ The run loop is explicitly woken up.

8. Notify observers that the thread just woke up.

9. Process the pending event.

 ■ If a user-defined timer fired, process the timer event and restart the loop. Go to step 2.

 ■ If an input source fired, deliver the event.

 ■ If the run loop was explicitly woken up but has not yet timed out, restart the loop. Go to step 2.

10. Notify observers that the run loop has exited.

Because observer notifications for timer and input sources are delivered before those events actually occur,
there may be a gap between the time of the notifications and the time of the actual events. If the timing
between these events is critical, you can use the sleep and awake-from-sleep notifications to help you correlate
the timing between the actual events.

Because timers and other periodic events are delivered when you run the run loop, circumventing that loop
disrupts the delivery of those events. The typical example of this behavior occurs whenever you implement
a mouse-tracking routine by entering a loop and repeatedly requesting events from the application. Because
your code is grabbing events directly, rather than letting the application dispatch those events normally,
active timers would be unable to fire until after your mouse-tracking routine exited and returned control to
the application.

A run loop can be explicitly woken up using the run loop object. Other events may also cause the run loop
to be woken up. For example, adding another non-port-based input source wakes up the run loop so that
the input source can be processed immediately, rather than waiting until some other event occurs.

When Would You Use a Run Loop?

The only time you need to run a run loop explicitly is when you create secondary threads for your application.
The run loop for your application’s main thread is a crucial piece of infrastructure. As a result, both Cocoa
and Carbon provide the code for running the main application loop and start that loop automatically. The
run method of UIApplication in iOS (or NSApplication in Mac OS X) starts an application’s main loop
as part of the normal startup sequence. Similarly, the RunApplicationEventLoop function starts the main
loop for Carbon applications. If you use the Xcode template projects to create your application, you should
never have to call these routines explicitly.

When Would You Use a Run Loop? 39
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

For secondary threads, you need to decide whether a run loop is necessary, and if it is, configure and start
it yourself. You do not need to start a thread’s run loop in all cases. For example, if you use a thread to perform
some long-running and predetermined task, you can probably avoid starting the run loop. Run loops are
intended for situations where you want more interactivity with the thread. For example, you need to start a
run loop if you plan to do any of the following:

 ■ Use ports or custom input sources to communicate with other threads.

 ■ Use timers on the thread.

 ■ Use any of the performSelector… methods in a Cocoa application.

 ■ Keep the thread around to perform periodic tasks.

If you do choose to use a run loop, the configuration and setup is straightforward. As with all threaded
programming though, you should have a plan for exiting your secondary threads in appropriate situations.
It is always better to end a thread cleanly by letting it exit than to force it to terminate. Information on how
to configure and exit a run loop is described in “Using Run Loop Objects” (page 40).

Using Run Loop Objects

A run loop object provides the main interface for adding input sources, timers, and run-loop observers to
your run loop and then running it. Every thread has a single run loop object associated with it. In Cocoa, this
object is an instance of the NSRunLoop class. In a Carbon or BSD application, it is a pointer to a CFRunLoopRef
opaque type.

Getting a Run Loop Object

To get the run loop for the current thread, you use one of the following:

 ■ In a Cocoa application, use the currentRunLoop class method of NSRunLoop to retrieve an NSRunLoop
object.

 ■ Use the CFRunLoopGetCurrent function.

Although they are not toll-free bridged types, you can get a CFRunLoopRef opaque type from an NSRunLoop
object when needed. The NSRunLoop class defines a getCFRunLoop method that returns a CFRunLoopRef
type that you can pass to Core Foundation routines. Because both objects refer to the same run loop, you
can intermix calls to the NSRunLoop object and CFRunLoopRef opaque type as needed.

Configuring the Run Loop

Before you run a run loop on a secondary thread, you must add at least one input source or timer to it. If a
run loop does not have any sources to monitor, it exits immediately when you try to run it. For examples of
how to add sources to a run loop, see “Configuring Run Loop Sources” (page 43).

40 Using Run Loop Objects
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

In addition to installing sources, you can also install run loop observers and use them to detect different
execution stages of the run loop. To install a run loop observer, you create a CFRunLoopObserverRef
opaque type and use the CFRunLoopAddObserver function to add it to your run loop. Run loop observers
must be created using Core Foundation, even for Cocoa applications.

Listing 3-1 shows the main routine for a thread that attaches a run loop observer to its run loop. The purpose
of the example is to show you how to create a run loop observer, so the code simply sets up a run loop
observer to monitor all run loop activities. The basic handler routine (not shown) simply logs the run loop
activity as it processes the timer requests.

Listing 3-1 Creating a run loop observer

- (void)threadMain
{
 // The application uses garbage collection, so no autorelease pool is needed.
 NSRunLoop* myRunLoop = [NSRunLoop currentRunLoop];

 // Create a run loop observer and attach it to the run loop.
 CFRunLoopObserverContext context = {0, self, NULL, NULL, NULL};
 CFRunLoopObserverRef observer =
CFRunLoopObserverCreate(kCFAllocatorDefault,
 kCFRunLoopAllActivities, YES, 0, &myRunLoopObserver, &context);

 if (observer)
 {
 CFRunLoopRef cfLoop = [myRunLoop getCFRunLoop];
 CFRunLoopAddObserver(cfLoop, observer, kCFRunLoopDefaultMode);
 }

 // Create and schedule the timer.
 [NSTimer scheduledTimerWithTimeInterval:0.1 target:self
 selector:@selector(doFireTimer:) userInfo:nil repeats:YES];

 NSInteger loopCount = 10;
 do
 {
 // Run the run loop 10 times to let the timer fire.
 [myRunLoop runUntilDate:[NSDate dateWithTimeIntervalSinceNow:1]];
 loopCount--;
 }
 while (loopCount);
}

When configuring the run loop for a long-lived thread, it is better to add at least one input source to receive
messages. Although you can enter the run loop with only a timer attached, once the timer fires, it is typically
invalidated, which would then cause the run loop to exit. Attaching a repeating timer could keep the run
loop running over a longer period of time, but would involve firing the timer periodically to wake your thread,
which is effectively another form of polling. By contrast, an input source waits for an event to happen, keeping
your thread asleep until it does.

Starting the Run Loop

Starting the run loop is necessary only for the secondary threads in your application. A run loop must have
at least one input source or timer to monitor. If one is not attached, the run loop exits immediately.

Using Run Loop Objects 41
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

There are several ways to start the run loop, including the following:

 ■ Unconditionally

 ■ With a set time limit

 ■ In a particular mode

Entering your run loop unconditionally is the simplest option, but it is also the least desirable. Running your
run loop unconditionally puts the thread into a permanent loop, which gives you very little control over the
run loop itself. You can add and remove input sources and timers, but the only way to stop the run loop is
to kill it. There is also no way to run the run loop in a custom mode.

Instead of running a run loop unconditionally, it is better to run the run loop with a timeout value. When
you use a timeout value, the run loop runs until an event arrives or the allotted time expires. If an event
arrives, that event is dispatched to a handler for processing and then the run loop exits. Your code can then
restart the run loop to handle the next event. If the allotted time expires instead, you can simply restart the
run loop or use the time to do any needed housekeeping.

In addition to a timeout value, you can also run your run loop using a specific mode. Modes and timeout
values are not mutually exclusive and can both be used when starting a run loop. Modes limit the types of
sources that deliver events to the run loop and are described in more detail in “Run Loop Modes” (page 34).

Listing 3-2 shows a skeleton version of a thread’s main entry routine. The key portion of this example shows
the basic structure of a run loop. In essence, you add your input sources and timers to the run loop and then
repeatedly call one of the routines to start the run loop. Each time the the run loop routine returns, you check
to see if any conditions have arisen that might warrant exiting the thread. The example uses the Core
Foundation run loop routines so that it can check the return result and determine why the run loop exited.
You could also use the methods of the NSRunLoop class to run the run loop in a similar manner if you are
using Cocoa and do not need to check the return value. (For an example of a run loop that calls methods of
the NSRunLoop class, see Listing 3-14 (page 51).)

Listing 3-2 Running a run loop

- (void)skeletonThreadMain
{
 // Set up an autorelease pool here if not using garbage collection.
 BOOL done = NO;

 // Add your sources or timers to the run loop and do any other setup.

 do
 {
 // Start the run loop but return after each source is handled.
 SInt32 result = CFRunLoopRunInMode(kCFRunLoopDefaultMode, 10, YES);

 // If a source explicitly stopped the run loop, or if there are no
 // sources or timers, go ahead and exit.
 if ((result == kCFRunLoopRunStopped) || (result == kCFRunLoopRunFinished))
 done = YES;

 // Check for any other exit conditions here and set the
 // done variable as needed.
 }
 while (!done);

 // Clean up code here. Be sure to release any allocated autorelease pools.

42 Using Run Loop Objects
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

}

It is possible to run a run loop recursively. In other words, you can call CFRunLoopRun, CFRunLoopRunInMode,
or any of the NSRunLoop methods for starting the run loop from within the handler routine of an input
source or timer. When doing so, you can use any mode you want to run the nested run loop, including the
mode in use by the outer run loop.

Exiting the Run Loop

There are two ways to make a run loop exit before it has processed an event:

 ■ Configure the run loop to run with a timeout value.

 ■ Tell the run loop to stop.

Using a timeout value is certainly preferred, if you can manage it. Specifying a timeout value lets the run
loop finish all of its normal processing, including delivering notifications to run loop observers, before exiting.

Stopping the run loop explicitly with the CFRunLoopStop function produces a result similar to a timeout.
The run loop sends out any remaining run-loop notifications and then exits. The difference is that you can
use this technique on run loops you started unconditionally.

Although removing a run loop’s input sources and timers may also cause the run loop to exit, this is not a
reliable way to stop a run loop. Some system routines add input sources to a run loop to handle needed
events. Because your code might not be aware of these input sources, it would be unable to remove them,
which would prevent the run loop from exiting.

Thread Safety and Run Loop Objects

Thread safety varies depending on which API you are using to manipulate your run loop. The functions in
Core Foundation are generally thread-safe and can be called from any thread. If you are performing operations
that alter the configuration of the run loop, however, it is still good practice to do so from the thread that
owns the run loop whenever possible.

The Cocoa NSRunLoop class is not as inherently thread safe as its Core Foundation counterpart. If you are
using the NSRunLoop class to modify your run loop, you should do so only from the same thread that owns
that run loop. Adding an input source or timer to a run loop belonging to a different thread could cause your
code to crash or behave in an unexpected way.

Configuring Run Loop Sources

The following sections show examples of how to set up different types of input sources in both Cocoa and
Core Foundation.

Defining a Custom Input Source

Creating a custom input source involves defining the following:

Configuring Run Loop Sources 43
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

 ■ The information you want your input source to process.

 ■ A scheduler routine to let interested clients know how to contact your input source.

 ■ A handler routine to perform requests sent by any clients.

 ■ A cancellation routine to invalidate your input source.

Because you create a custom input source to process custom information, the actual configuration is designed
to be flexible. The scheduler, handler, and cancellation routines are the key routines you almost always need
for your custom input source. Most of the rest of the input source behavior, however, happens outside of
those handler routines. For example, it is up to you to define the mechanism for passing data to your input
source and for communicating the presence of your input source to other threads.

Figure 3-2 shows a sample configuration of a custom input source. In this example, the application’s main
thread maintains references to the input source, the custom command buffer for that input source, and the
run loop on which the input source is installed. When the main thread has a task it wants to hand off to the
worker thread, it posts a command to the command buffer along with any information needed by the worker
thread to start the task. (Because both the main thread and the input source of the worker thread have access
to the command buffer, that access must be synchronized.) Once the command is posted, the main thread
signals the input source and wakes up the worker thread’s run loop. Upon receiving the wake up command,
the run loop calls the handler for the input source, which processes the commands found in the command
buffer.

Figure 3-2 Operating a custom input source

Main Thread Worker Thread

Wake up

Signal source

Send command

Task

Command
buffer

Input source

Command
data

Run Loop
Source

The following sections explain the implementation of the custom input source from the preceding figure
and show the key code you would need to implement.

Defining the Input Source

Defining a custom input source requires the use of Core Foundation routines to configure your run loop
source and attach it to a run loop. Although the basic handlers are C-based functions, that does not preclude
you from writing wrappers for those functions and using Objective-C or C++ to implement the body of your
code.

44 Configuring Run Loop Sources
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

The input source introduced in Figure 3-2 (page 44) uses an Objective-C object to manage a command buffer
and coordinate with the run loop. Listing 3-3 shows the definition of this object. The RunLoopSource object
manages a command buffer and uses that buffer to receive messages from other threads. This listing also
shows the definition of the RunLoopContext object, which is really just a container object used to pass a
RunLoopSource object and a run loop reference to the application’s main thread.

Listing 3-3 The custom input source object definition

@interface RunLoopSource : NSObject
{
 CFRunLoopSourceRef runLoopSource;
 NSMutableArray* commands;
}

- (id)init;
- (void)addToCurrentRunLoop;
- (void)invalidate;

// Handler method
- (void)sourceFired;

// Client interface for registering commands to process
- (void)addCommand:(NSInteger)command withData:(id)data;
- (void)fireAllCommandsOnRunLoop:(CFRunLoopRef)runloop;

@end

// These are the CFRunLoopSourceRef callback functions.
void RunLoopSourceScheduleRoutine (void *info, CFRunLoopRef rl, CFStringRef
mode);
void RunLoopSourcePerformRoutine (void *info);
void RunLoopSourceCancelRoutine (void *info, CFRunLoopRef rl, CFStringRef mode);

// RunLoopContext is a container object used during registration of the input
source.
@interface RunLoopContext : NSObject
{
 CFRunLoopRef runLoop;
 RunLoopSource* source;
}
@property (readonly) CFRunLoopRef runLoop;
@property (readonly) RunLoopSource* source;

- (id)initWithSource:(RunLoopSource*)src andLoop:(CFRunLoopRef)loop;
@end

Although the Objective-C code manages the custom data of the input source, attaching the input source to
a run loop requires C-based callback functions. The first of these functions is called when you actually attach
the run loop source to your run loop, and is shown in Listing 3-4. Because this input source has only one
client (the main thread), it uses the scheduler function to send a message to register itself with the application
delegate on that thread. When the delegate wants to communicate with the input source, it uses the
information in RunLoopContext object to do so.

Listing 3-4 Scheduling a run loop source

void RunLoopSourceScheduleRoutine (void *info, CFRunLoopRef rl, CFStringRef
mode)

Configuring Run Loop Sources 45
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

{
 RunLoopSource* obj = (RunLoopSource*)info;
 AppDelegate* del = [AppDelegate sharedAppDelegate];
 RunLoopContext* theContext = [[RunLoopContext alloc] initWithSource:obj
andLoop:rl];

 [del performSelectorOnMainThread:@selector(registerSource:)
 withObject:theContext waitUntilDone:NO];
}

One of the most important callback routines is the one used to process custom data when your input source
is signaled. Listing 3-5 shows the perform callback routine associated with the RunLoopSource object. This
function simply forwards the request to do the work to the sourceFired method, which then processes
any commands present in the command buffer.

Listing 3-5 Performing work in the input source

void RunLoopSourcePerformRoutine (void *info)
{
 RunLoopSource* obj = (RunLoopSource*)info;
 [obj sourceFired];
}

If you ever remove your input source from its run loop using the CFRunLoopSourceInvalidate function,
the system calls your input source’s cancellation routine. You can use this routine to notify clients that your
input source is no longer valid and that they should remove any references to it. Listing 3-6 shows the
cancellation callback routine registered with the RunLoopSource object. This function sends another
RunLoopContext object to the application delegate, but this time asks the delegate to remove references
to the run loop source.

Listing 3-6 Invalidating an input source

void RunLoopSourceCancelRoutine (void *info, CFRunLoopRef rl, CFStringRef mode)
{
 RunLoopSource* obj = (RunLoopSource*)info;
 AppDelegate* del = [AppDelegate sharedAppDelegate];
 RunLoopContext* theContext = [[RunLoopContext alloc] initWithSource:obj
andLoop:rl];

 [del performSelectorOnMainThread:@selector(removeSource:)
 withObject:theContext waitUntilDone:YES];
}

Note: The code for the application delegate’s registerSource: and removeSource: methods is shown
in “Coordinating with Clients of the Input Source” (page 47).

Installing the Input Source on the Run Loop

Listing 3-7 shows the init and addToCurrentRunLoop methods of the RunLoopSource class. The init
method creates the CFRunLoopSourceRef opaque type that must actually be attached to the run loop. It
passes the RunLoopSource object itself as the contextual information so that the callback routines have a
pointer to the object. Installation of the input source does not occur until the worker thread invokes the
addToCurrentRunLoop method, at which point the RunLoopSourceScheduleRoutine callback function
is called. Once the input source is added to the run loop, the thread can run its run loop to wait on it.

46 Configuring Run Loop Sources
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

Listing 3-7 Installing the run loop source

- (id)init
{
 CFRunLoopSourceContext context = {0, self, NULL, NULL, NULL, NULL, NULL,
 &RunLoopSourceScheduleRoutine,
 RunLoopSourceCancelRoutine,
 RunLoopSourcePerformRoutine};

 runLoopSource = CFRunLoopSourceCreate(NULL, 0, &context);
 commands = [[NSMutableArray alloc] init];

 return self;
}

- (void)addToCurrentRunLoop
{
 CFRunLoopRef runLoop = CFRunLoopGetCurrent();
 CFRunLoopAddSource(runLoop, runLoopSource, kCFRunLoopDefaultMode);
}

Coordinating with Clients of the Input Source

For your input source to be useful, you need to manipulate it and signal it from another thread. The whole
point of an input source is to put its associated thread to sleep until there is something to do. That fact
necessitates having other threads in your application know about the input source and have a way to
communicate with it.

One way to notify clients about your input source is to send out registration requests when your input source
is first installed on its run loop. You can register your input source with as many clients as you want, or you
can simply register it with some central agency that then vends your input source to interested clients. Listing
3-8 shows the registration method defined by the application delegate and invoked when the RunLoopSource
object’s scheduler function is called. This method receives the RunLoopContext object provided by the
RunLoopSource object and adds it to its list of sources. This listing also shows the routine used to unregister
the input source when it is removed from its run loop.

Listing 3-8 Registering and removing an input source with the application delegate

- (void)registerSource:(RunLoopContext*)sourceInfo;
{
 [sourcesToPing addObject:sourceInfo];
}

- (void)removeSource:(RunLoopContext*)sourceInfo
{
 id objToRemove = nil;

 for (RunLoopContext* context in sourcesToPing)
 {
 if ([context isEqual:sourceInfo])
 {
 objToRemove = context;
 break;
 }
 }

Configuring Run Loop Sources 47
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

 if (objToRemove)
 [sourcesToPing removeObject:objToRemove];
}

Note: The callback functions that call the methods in the preceding listing are shown in Listing 3-4 (page
45) and Listing 3-6 (page 46).

Signaling the Input Source

After it hands off its data to the input source, a client must signal the source and wake up its run loop.
Signaling the source lets the run loop know that the source is ready to be processed. And because the thread
might be asleep when the signal occurs, you should always wake up the run loop explicitly. Failing to do so
might result in a delay in processing the input source.

Listing 3-9 shows the fireCommandsOnRunLoop method of the RunLoopSource object. Clients invoke this
method when they are ready for the source to process the commands they added to the buffer.

Listing 3-9 Waking up the run loop

- (void)fireCommandsOnRunLoop:(CFRunLoopRef)runloop
{
 CFRunLoopSourceSignal(runLoopSource);
 CFRunLoopWakeUp(runloop);
}

Note: You should never try to handle a SIGHUP or other type of process-level signal by messaging a custom
input source. The Core Foundation functions for waking up the run loop are not signal safe and should not
be used inside your application’s signal handler routines. For more information about signal handler routines,
see the sigaction man page.

Configuring Timer Sources

To create a timer source, all you have to do is create a timer object and schedule it on your run loop. In Cocoa,
you use the NSTimer class to create new timer objects, and in Core Foundation you use the
CFRunLoopTimerRef opaque type. Internally, the NSTimer class is simply an extension of Core Foundation
that provides some convenience features, like the ability to create and schedule a timer using the same
method.

In Cocoa, you can create and schedule a timer all at once using either of these class methods:

 ■ scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:

 ■ scheduledTimerWithTimeInterval:invocation:repeats:

These methods create the timer and add it to the current thread’s run loop in the default mode
(NSDefaultRunLoopMode). You can also schedule a timer manually if you want by creating your NSTimer
object and then adding it to the run loop using the addTimer:forMode: method of NSRunLoop. Both
techniques do basically the same thing but give you different levels of control over the timer’s configuration.
For example, if you create the timer and add it to the run loop manually, you can do so using a mode other

48 Configuring Run Loop Sources
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

than the default mode. Listing 3-10 shows how to create timers using both techniques. The first timer has
an initial delay of 1 second but then fires regularly every 0.1 seconds after that. The second timer begins
firing after an initial 0.2 second delay and then fires every 0.2 seconds after that.

Listing 3-10 Creating and scheduling timers using NSTimer

NSRunLoop* myRunLoop = [NSRunLoop currentRunLoop];

// Create and schedule the first timer.
NSDate* futureDate = [NSDate dateWithTimeIntervalSinceNow:1.0];
NSTimer* myTimer = [[NSTimer alloc] initWithFireDate:futureDate
 interval:0.1
 target:self
 selector:@selector(myDoFireTimer1:)
 userInfo:nil
 repeats:YES];
[myRunLoop addTimer:myTimer forMode:NSDefaultRunLoopMode];

// Create and schedule the second timer.
[NSTimer scheduledTimerWithTimeInterval:0.2
 target:self
 selector:@selector(myDoFireTimer2:)
 userInfo:nil
 repeats:YES];

Listing 3-11 shows the code needed to configure a timer using Core Foundation functions. Although this
example does not pass any user-defined information in the context structure, you could use this structure
to pass around any custom data you needed for your timer. For more information about the contents of this
structure, see its description in CFRunLoopTimer Reference.

Listing 3-11 Creating and scheduling a timer using Core Foundation

CFRunLoopRef runLoop = CFRunLoopGetCurrent();
CFRunLoopTimerContext context = {0, NULL, NULL, NULL, NULL};
CFRunLoopTimerRef timer = CFRunLoopTimerCreate(kCFAllocatorDefault, 0.1, 0.3,
0, 0,
 &myCFTimerCallback, &context);

CFRunLoopAddTimer(runLoop, timer, kCFRunLoopCommonModes);

Configuring a Port-Based Input Source

Both Cocoa and Core Foundation provide port-based objects for communicating between threads or between
processes. The following sections show you how to set up port communication using several different types
of ports.

Configuring an NSMachPort Object

To establish a local connection with an NSMachPort object, you create the port object and add it to your
primary thread's run loop. When launching your secondary thread, you pass the same object to your thread's
entry-point function. The secondary thread can use the same object to send messages back to your primary
thread.

Configuring Run Loop Sources 49
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

Implementing the Main Thread Code

Listing 3-12 shows the primary thread code for launching a secondary worker thread. Because the Cocoa
framework performs many of the intervening steps for configuring the port and run loop, the launchThread
method is noticeably shorter than its Core Foundation equivalent (Listing 3-17 (page 52)); however, the
behavior of the two is nearly identical. One difference is that instead of sending the name of the local port
to the worker thread, this method sends the NSPort object directly.

Listing 3-12 Main thread launch method

- (void)launchThread
{
 NSPort* myPort = [NSMachPort port];
 if (myPort)
 {
 // This class handles incoming port messages.
 [myPort setDelegate:self];

 // Install the port as an input source on the current run loop.
 [[NSRunLoop currentRunLoop] addPort:myPort forMode:NSDefaultRunLoopMode];

 // Detach the thread. Let the worker release the port.
 [NSThread detachNewThreadSelector:@selector(LaunchThreadWithPort:)
 toTarget:[MyWorkerClass class] withObject:myPort];
 }
}

In order to set up a two-way communications channel between your threads, you might want to have the
worker thread send its own local port to your main thread in a check-in message. Receiving the check-in
message lets your main thread know that all went well in launching the second thread and also gives you a
way to send further messages to that thread.

Listing 3-13 shows the handlePortMessage: method for the primary thread. This method is called when
data arrives on the thread's own local port. When a check-in message arrives, the method retrieves the port
for the secondary thread directly from the port message and saves it for later use.

Listing 3-13 Handling Mach port messages

#define kCheckinMessage 100

// Handle responses from the worker thread.
- (void)handlePortMessage:(NSPortMessage *)portMessage
{
 unsigned int message = [portMessage msgid];
 NSPort* distantPort = nil;

 if (message == kCheckinMessage)
 {
 // Get the worker thread’s communications port.
 distantPort = [portMessage sendPort];

 // Retain and save the worker port for later use.
 [self storeDistantPort:distantPort];
 }
 else
 {
 // Handle other messages.

50 Configuring Run Loop Sources
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

 }
}

Implementing the Secondary Thread Code

For the secondary worker thread, you must configure the thread and use the specified port to communicate
information back to the primary thread.

Listing 3-14 shows the code for setting up the worker thread. After creating an autorelease pool for the
thread, the method creates a worker object to drive the thread execution. The worker object’s
sendCheckinMessage: method (shown in Listing 3-15 (page 51)) creates a local port for the worker thread
and sends a check-in message back to the main thread.

Listing 3-14 Launching the worker thread using Mach ports

+(void)LaunchThreadWithPort:(id)inData
{
 NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];

 // Set up the connection between this thread and the main thread.
 NSPort* distantPort = (NSPort*)inData;

 MyWorkerClass* workerObj = [[self alloc] init];
 [workerObj sendCheckinMessage:distantPort];
 [distantPort release];

 // Let the run loop process things.
 do
 {
 [[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode
 beforeDate:[NSDate distantFuture]];
 }
 while (![workerObj shouldExit]);

 [workerObj release];
 [pool release];
}

When using NSMachPort, local and remote threads can use the same port object for one-way communication
between the threads. In other words, the local port object created by one thread becomes the remote port
object for the other thread.

Listing 3-15 shows the check-in routine of the secondary thread. This method sets up its own local port for
future communication and then sends a check-in message back to the main thread. The method uses the
port object received in the LaunchThreadWithPort: method as the target of the message.

Listing 3-15 Sending the check-in message using Mach ports

// Worker thread check-in method
- (void)sendCheckinMessage:(NSPort*)outPort
{
 // Retain and save the remote port for future use.
 [self setRemotePort:outPort];

 // Create and configure the worker thread port.
 NSPort* myPort = [NSMachPort port];

Configuring Run Loop Sources 51
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

 [myPort setDelegate:self];
 [[NSRunLoop currentRunLoop] addPort:myPort forMode:NSDefaultRunLoopMode];

 // Create the check-in message.
 NSPortMessage* messageObj = [[NSPortMessage alloc] initWithSendPort:outPort
 receivePort:myPort components:nil];

 if (messageObj)
 {
 // Finish configuring the message and send it immediately.
 [messageObj setMsgid:kCheckinMessage];
 [messageObj sendBeforeDate:[NSDate date]];
 }
}

Configuring an NSMessagePort Object

To establish a local connection with an NSMessagePort object, you cannot simply pass port objects between
threads. Remote message ports must be acquired by name. Making this possible in Cocoa requires registering
your local port with a specific name and then passing that name to the remote thread so that it can obtain
an appropriate port object for communication. Listing 3-16 shows the port creation and registration process
in cases where you want to use message ports.

Listing 3-16 Registering a message port

NSPort* localPort = [[[NSMessagePort alloc] init] retain];

// Configure the object and add it to the current run loop.
[localPort setDelegate:self];
[[NSRunLoop currentRunLoop] addPort:localPort forMode:NSDefaultRunLoopMode];

// Register the port using a specific name. The name must be unique.
NSString* localPortName = [NSString stringWithFormat:@"MyPortName"];
[[NSMessagePortNameServer sharedInstance] registerPort:localPort
 name:localPortName];

Configuring a Port-Based Input Source in Core Foundation

This section shows how to set up a two-way communications channel between your application’s main
thread and a worker thread using Core Foundation.

Listing 3-17 shows the code called by the application’s main thread to launch the worker thread. The first
thing the code does is set up a CFMessagePortRef opaque type to listen for messages from worker threads.
The worker thread needs the name of the port to make the connection, so that string value is delivered to
the entry point function of the worker thread. Port names should generally be unique within the current user
context; otherwise, you might run into conflicts.

Listing 3-17 Attaching a Core Foundation message port to a new thread

#define kThreadStackSize (8 *4096)

OSStatus MySpawnThread()
{
 // Create a local port for receiving responses.
 CFStringRef myPortName;

52 Configuring Run Loop Sources
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

 CFMessagePortRef myPort;
 CFRunLoopSourceRef rlSource;
 CFMessagePortContext context = {0, NULL, NULL, NULL, NULL};
 Boolean shouldFreeInfo;

 // Create a string with the port name.
 myPortName = CFStringCreateWithFormat(NULL, NULL,
CFSTR("com.myapp.MainThread"));

 // Create the port.
 myPort = CFMessagePortCreateLocal(NULL,
 myPortName,
 &MainThreadResponseHandler,
 &context,
 &shouldFreeInfo);

 if (myPort != NULL)
 {
 // The port was successfully created.
 // Now create a run loop source for it.
 rlSource = CFMessagePortCreateRunLoopSource(NULL, myPort, 0);

 if (rlSource)
 {
 // Add the source to the current run loop.
 CFRunLoopAddSource(CFRunLoopGetCurrent(), rlSource,
kCFRunLoopDefaultMode);

 // Once installed, these can be freed.
 CFRelease(myPort);
 CFRelease(rlSource);
 }
 }

 // Create the thread and continue processing.
 MPTaskID taskID;
 return(MPCreateTask(&ServerThreadEntryPoint,
 (void*)myPortName,
 kThreadStackSize,
 NULL,
 NULL,
 NULL,
 0,
 &taskID));
}

With the port installed and the thread launched, the main thread can continue its regular execution while it
waits for the thread to check in. When the check-in message arrives, it is dispatched to the main thread’s
MainThreadResponseHandler function, shown in Listing 3-18. This function extracts the port name for
the worker thread and creates a conduit for future communication.

Listing 3-18 Receiving the checkin message

#define kCheckinMessage 100

// Main thread port message handler
CFDataRef MainThreadResponseHandler(CFMessagePortRef local,
 SInt32 msgid,

Configuring Run Loop Sources 53
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

 CFDataRef data,
 void* info)
{
 if (msgid == kCheckinMessage)
 {
 CFMessagePortRef messagePort;
 CFStringRef threadPortName;
 CFIndex bufferLength = CFDataGetLength(data);
 UInt8* buffer = CFAllocatorAllocate(NULL, bufferLength, 0);

 CFDataGetBytes(data, CFRangeMake(0, bufferLength), buffer);
 threadPortName = CFStringCreateWithBytes (NULL, buffer, bufferLength,
kCFStringEncodingASCII, FALSE);

 // You must obtain a remote message port by name.
 messagePort = CFMessagePortCreateRemote(NULL,
(CFStringRef)threadPortName);

 if (messagePort)
 {
 // Retain and save the thread’s comm port for future reference.
 AddPortToListOfActiveThreads(messagePort);

 // Since the port is retained by the previous function, release
 // it here.
 CFRelease(messagePort);
 }

 // Clean up.
 CFRelease(threadPortName);
 CFAllocatorDeallocate(NULL, buffer);
 }
 else
 {
 // Process other messages.
 }

 return NULL;
}

With the main thread configured, the only thing remaining is for the newly created worker thread to create
its own port and check in. Listing 3-19 shows the entry point function for the worker thread. The function
extracts the main thread’s port name and uses it to create a remote connection back to the main thread. The
function then creates a local port for itself, installs the port on the thread’s run loop, and sends a check-in
message to the main thread that includes the local port name.

Listing 3-19 Setting up the thread structures

OSStatus ServerThreadEntryPoint(void* param)
{
 // Create the remote port to the main thread.
 CFMessagePortRef mainThreadPort;
 CFStringRef portName = (CFStringRef)param;

 mainThreadPort = CFMessagePortCreateRemote(NULL, portName);

 // Free the string that was passed in param.
 CFRelease(portName);

54 Configuring Run Loop Sources
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

 // Create a port for the worker thread.
 CFStringRef myPortName = CFStringCreateWithFormat(NULL, NULL,
CFSTR("com.MyApp.Thread-%d"), MPCurrentTaskID());

 // Store the port in this thread’s context info for later reference.
 CFMessagePortContext context = {0, mainThreadPort, NULL, NULL, NULL};
 Boolean shouldFreeInfo;
 Boolean shouldAbort = TRUE;

 CFMessagePortRef myPort = CFMessagePortCreateLocal(NULL,
 myPortName,
 &ProcessClientRequest,
 &context,
 &shouldFreeInfo);

 if (shouldFreeInfo)
 {
 // Couldn't create a local port, so kill the thread.
 MPExit(0);
 }

 CFRunLoopSourceRef rlSource = CFMessagePortCreateRunLoopSource(NULL, myPort,
 0);
 if (!rlSource)
 {
 // Couldn't create a local port, so kill the thread.
 MPExit(0);
 }

 // Add the source to the current run loop.
 CFRunLoopAddSource(CFRunLoopGetCurrent(), rlSource, kCFRunLoopDefaultMode);

 // Once installed, these can be freed.
 CFRelease(myPort);
 CFRelease(rlSource);

 // Package up the port name and send the check-in message.
 CFDataRef returnData = nil;
 CFDataRef outData;
 CFIndex stringLength = CFStringGetLength(myPortName);
 UInt8* buffer = CFAllocatorAllocate(NULL, stringLength, 0);

 CFStringGetBytes(myPortName,
 CFRangeMake(0,stringLength),
 kCFStringEncodingASCII,
 0,
 FALSE,
 buffer,
 stringLength,
 NULL);

 outData = CFDataCreate(NULL, buffer, stringLength);

 CFMessagePortSendRequest(mainThreadPort, kCheckinMessage, outData, 0.1, 0.0,
 NULL, NULL);

 // Clean up thread data structures.

Configuring Run Loop Sources 55
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

 CFRelease(outData);
 CFAllocatorDeallocate(NULL, buffer);

 // Enter the run loop.
 CFRunLoopRun();
}

Once it enters its run loop, all future events sent to the thread’s port are handled by the
ProcessClientRequest function. The implementation of that function depends on the type of work the
thread does and is not shown here.

56 Configuring Run Loop Sources
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Run Loops

The presence of multiple threads in an application opens up potential issues regarding safe access to resources
from multiple threads of execution. Two threads modifying the same resource might interfere with each
other in unintended ways. For example, one thread might overwrite another’s changes or put the application
into an unknown and potentially invalid state. If you are lucky, the corrupted resource might cause obvious
performance problems or crashes that are relatively easy to track down and fix. If you are unlucky, however,
the corruption may cause subtle errors that do not manifest themselves until much later, or the errors might
require a significant overhaul of your underlying coding assumptions.

When it comes to thread safety, a good design is the best protection you have. Avoiding shared resources
and minimizing the interactions between your threads makes it less likely for those threads to interfere with
each other. A completely interference-free design is not always possible, however. In cases where your threads
must interact, you need to use synchronization tools to ensure that when they interact, they do so safely.

Mac OS X and iOS provide numerous synchronization tools for you to use, ranging from tools that provide
mutually exclusive access to those that sequence events correctly in your application. The following sections
describe these tools and how you use them in your code to affect safe access to your program’s resources.

Synchronization Tools

To prevent different threads from changing data unexpectedly, you can either design your application to
not have synchronization issues or you can use synchronization tools. Although avoiding synchronization
issues altogether is preferable, it is not always possible. The following sections describe the basic categories
of synchronization tools available for you to use.

Atomic Operations

Atomic operations are a simple form of synchronization that work on simple data types. The advantage of
atomic operations is that they do not block competing threads. For simple operations, such as incrementing
a counter variable, this can lead to much better performance than taking a lock.

Mac OS X and iOS include numerous operations to perform basic mathematical and logical operations on
32-bit and 64-bit values. Among these operations are atomic versions of the compare-and-swap, test-and-set,
and test-and-clear operations. For a list of supported atomic operations, see the
/usr/include/libkern/OSAtomic.h header file or see the atomic man page.

Memory Barriers and Volatile Variables

In order to achieve optimal performance, compilers often reorder assembly-level instructions to keep the
instruction pipeline for the processor as full as possible. As part of this optimization, the compiler may reorder
instructions that access main memory when it thinks doing so would not generate incorrect data.

Synchronization Tools 57
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

Unfortunately, it is not always possible for the compiler to detect all memory-dependent operations. If
seemingly separate variables actually influence each other, the compiler optimizations could update those
variables in the wrong order, generating potentially incorrect results.

A memory barrier is a type of nonblocking synchronization tool used to ensure that memory operations
occur in the correct order. A memory barrier acts like a fence, forcing the processor to complete any load
and store operations positioned in front of the barrier before it is allowed to perform load and store operations
positioned after the barrier. Memory barriers are typically used to ensure that memory operations by one
thread (but visible to another) always occur in an expected order. The lack of a memory barrier in such a
situation might allow other threads to see seemingly impossible results. (For an example, see the Wikipedia
entry for memory barriers.) To employ a memory barrier, you simply call the OSMemoryBarrier function at
the appropriate point in your code.

Volatile variables apply another type of memory constraint to individual variables. The compiler often optimizes
code by loading the values for variables into registers. For local variables, this is usually not a problem. If the
variable is visible from another thread however, such an optimization might prevent the other thread from
noticing any changes to it. Applying the volatile keyword to a variable forces the compiler to load that
variable from memory each time it is used. You might declare a variable as volatile if its value could be
changed at any time by an external source that the compiler may not be able to detect.

Because both memory barriers and volatile variables decrease the number of optimizations the compiler can
perform, they should be used sparingly and only where needed to ensure correctness. For information about
using memory barriers, see the OSMemoryBarrier man page.

Locks

Locks are one of the most commonly used synchronization tools. You can use locks to protect a critical
section of your code, which is a segment of code that only one thread at a time is allowed access. For example,
a critical section might manipulate a particular data structure or use some resource that supports at most
one client at a time. By placing a lock around this section, you exclude other threads from making changes
that might affect the correctness of your code.

Table 4-1 lists some of the locks that are commonly used by programmers. Mac OS X and iOS provide
implementations for most of these lock types, but not all of them. For unsupported lock types, the description
column explains the reasons why those locks are not implemented directly on the platform.

Table 4-1 Lock types

DescriptionLock

A mutually exclusive (or mutex) lock acts as a protective barrier around a resource. A
mutex is a type of semaphore that grants access to only one thread at a time. If a mutex
is in use and another thread tries to acquire it, that thread blocks until the mutex is
released by its original holder. If multiple threads compete for the same mutex, only one
at a time is allowed access to it.

Mutex

A recursive lock is a variant on the mutex lock. A recursive lock allows a single thread to
acquire the lock multiple times before releasing it. Other threads remain blocked until
the owner of the lock releases the lock the same number of times it acquired it. Recursive
locks are used during recursive iterations primarily but may also be used in cases where
multiple methods each need to acquire the lock separately.

Recursive lock

58 Synchronization Tools
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

http://en.wikipedia.org/wiki/Memory_barrier

DescriptionLock

A read-write lock is also referred to as a shared-exclusive lock. This type of lock is typically
used in larger-scale operations and can significantly improve performance if the protected
data structure is read frequently and modified only occasionally. During normal operation,
multiple readers can access the data structure simultaneously. When a thread wants to
write to the structure, though, it blocks until all readers release the lock, at which point
it acquires the lock and can update the structure. While a writing thread is waiting for
the lock, new reader threads block until the writing thread is finished. The system supports
read-write locks using POSIX threads only. For more information on how to use these
locks, see the pthread man page.

Read-write lock

A distributed lock provides mutually exclusive access at the process level. Unlike a true
mutex, a distributed lock does not block a process or prevent it from running. It simply
reports when the lock is busy and lets the process decide how to proceed.

Distributed lock

A spin lock polls its lock condition repeatedly until that condition becomes true. Spin
locks are most often used on multiprocessor systems where the expected wait time for
a lock is small. In these situations, it is often more efficient to poll than to block the
thread, which involves a context switch and the updating of thread data structures. The
system does not provide any implementations of spin locks because of their polling
nature, but you can easily implement them in specific situations. For information on
implementing spin locks in the kernel, see Kernel Programming Guide.

Spin lock

A double-checked lock is an attempt to reduce the overhead of taking a lock by testing
the locking criteria prior to taking the lock. Because double-checked locks are potentially
unsafe, the system does not provide explicit support for them and their use is
discouraged.

Double-checked
lock

Note: Most types of locks also incorporate a memory barrier to ensure that any preceding load and store
instructions are completed before entering the critical section.

For information on how to use locks, see “Using Locks” (page 66).

Conditions

A condition is another type of semaphore that allows threads to signal each other when a certain condition
is true. Conditions are typically used to indicate the availability of a resource or to ensure that tasks are
performed in a specific order. When a thread tests a condition, it blocks unless that condition is already true.
It remains blocked until some other thread explicitly changes and signals the condition. The difference
between a condition and a mutex lock is that multiple threads may be permitted access to the condition at
the same time. The condition is more of a gatekeeper that lets different threads through the gate depending
on some specified criteria.

One way you might use a condition is to manage a pool of pending events. The event queue would use a
condition variable to signal waiting threads when there were events in the queue. If one event arrives, the
queue would signal the condition appropriately. If a thread were already waiting, it would be woken up
whereupon it would pull the event from the queue and process it. If two events came in to the queue at
roughly the same time, the queue would signal the condition twice to wake up two threads.

Synchronization Tools 59
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

The system provides support for conditions in several different technologies. The correct implementation of
conditions requires careful coding, however, so you should look at the examples in “Using Conditions” (page
70) before using them in your own code.

Perform Selector Routines

Cocoa applications have a convenient way of delivering messages in a synchronized manner to a single
thread. The NSObject class declares methods for performing a selector on one of the application’s active
threads. These methods let your threads deliver messages asynchronously with the guarantee that they will
be performed synchronously by the target thread. For example, you might use perform selector messages
to deliver results from a distributed computation to your application’s main thread or to a designated
coordinator thread. Each request to perform a selector is queued on the target thread’s run loop and the
requests are then processed sequentially in the order in which they were received.

For a summary of perform selector routines and more information about how to use them, see “Cocoa Perform
Selector Sources” (page 36).

Synchronization Costs and Performance

Synchronization helps ensure the correctness of your code, but does so at the expense of performance. The
use of synchronization tools introduces delays, even in uncontested cases. Locks and atomic operations
generally involve the use of memory barriers and kernel-level synchronization to ensure code is properly
protected. And if there is contention for a lock, your threads could block and experience even greater delays.

Table 4-2 lists some of the approximate costs associated with mutexes and atomic operations in the
uncontested case. These measurements represented average times taken over several thousand samples.
As with thread creation times though, mutex acquisition times (even in the uncontested case) can vary greatly
depending on processor load, the speed of the computer, and the amount of available system and program
memory.

Table 4-2 Mutex and atomic operation costs

NotesApproximate costItem

This is the lock acquisition time in an uncontested case. If the
lock is held by another thread, the acquisition time can be
much greater. The figures were determined by analyzing the
mean and median values generated during mutex acquisition
on an Intel-based iMac with a 2 GHz Core Duo processor and
1 GB of RAM running Mac OS X v10.5.

Approximately 0.2
microseconds

Mutex acquisition
time

This is the compare-and-swap time in an uncontested case.
The figures were determined by analyzing the mean and
median values for the operation and were generated on an
Intel-based iMac with a 2 GHz Core Duo processor and 1 GB
of RAM running Mac OS X v10.5.

Approximately 0.05
microseconds

Atomic
compare-and-swap

60 Synchronization Costs and Performance
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

When designing your concurrent tasks, correctness is always the most important factor, but you should also
consider performance factors as well. Code that executes correctly under multiple threads, but slower than
the same code running on a single thread, is hardly an improvement.

If you are retrofitting an existing single-threaded application, you should always take a set of baseline
measurements of the performance of key tasks. Upon adding additional threads, you should then take new
measurements for those same tasks and compare the performance of the multithreaded case to the
single-threaded case. If after tuning your code, threading does not improve performance, you may want to
reconsider your specific implementation or the use of threads altogether.

For information about performance and the tools for gathering metrics, see PerformanceOverview. For specific
information about the cost of locks and atomic operations, see “Thread Costs” (page 21).

Thread Safety and Signals

When it comes to threaded applications, nothing causes more fear or confusion than the issue of handling
signals. Signals are a low-level BSD mechanism that can be used to deliver information to a process or
manipulate it in some way. Some programs use signals to detect certain events, such as the death of a child
process. The system uses signals to terminate runaway processes and communicate other types of information.

The problem with signals is not what they do, but their behavior when your application has multiple threads.
In a single-threaded application, all signal handlers run on the main thread. In a multithreaded application,
signals that are not tied to a specific hardware error (such as an illegal instruction) are delivered to whichever
thread happens to be running at the time. If multiple threads are running simultaneously, the signal is
delivered to whichever one the system happens to pick. In other words, signals can be delivered to any thread
of your application.

The first rule for implementing signal handlers in applications is to avoid assumptions about which thread
is handling the signal. If a specific thread wants to handle a given signal, you need to work out some way of
notifying that thread when the signal arrives. You cannot just assume that installation of a signal handler
from that thread will result in the signal being delivered to the same thread.

For more information about signals and installing signal handlers, see signal and sigaction man pages.

Tips for Thread-Safe Designs

Synchronization tools are a useful way to make your code thread-safe, but they are not a panacea. Used too
much, locks and other types of synchronization primitives can actually decrease your application’s threaded
performance compared to its nonthreaded performance. Finding the right balance between safety and
performance is an art that takes experience. The following sections provide tips to help you choose the
appropriate level of synchronization for your application.

Thread Safety and Signals 61
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

Avoid Synchronization Altogether

For any new projects you work on, and even for existing projects, designing your code and data structures
to avoid the need for synchronization is the best possible solution. Although locks and other synchronization
tools are useful, they do impact the performance of any application. And if the overall design causes high
contention among specific resources, your threads could be waiting even longer.

The best way to implement concurrency is to reduce the interactions and inter-dependencies between your
concurrent tasks. If each task operates on its own private data set, it does not need to protect that data using
locks. Even in situations where two tasks do share a common data set, you can look at ways of partitioning
that set or providing each task with its own copy. Of course, copying data sets has its costs too, so you have
to weigh those costs against the costs of synchronization before making your decision.

Understand the Limits of Synchronization

Synchronization tools are effective only when they are used consistently by all threads in an application. If
you create a mutex to restrict access to a specific resource, all of your threads must acquire the same mutex
before trying to manipulate the resource. Failure to do so defeats the protection offered by the mutex and
is a programmer error.

Be Aware of Threats to Code Correctness

When using locks and memory barriers, you should always give careful thought to their placement in your
code. Even locks that seem well placed can actually lull you into a false sense of security. The following series
of examples attempt to illustrate this problem by pointing out the flaws in seemingly innocuous code. The
basic premise is that you have a mutable array containing a set of immutable objects. Suppose you want to
invoke a method of the first object in the array. You might do so using the following code:

NSLock* arrayLock = GetArrayLock();
NSMutableArray* myArray = GetSharedArray();
id anObject;

[arrayLock lock];
anObject = [myArray objectAtIndex:0];
[arrayLock unlock];

[anObject doSomething];

Because the array is mutable, the lock around the array prevents other threads from modifying the array until
you get the desired object. And because the object you retrieve is itself immutable, a lock is not needed
around the call to the doSomething method.

There is a problem with the preceding example, though. What happens if you release the lock and another
thread comes in and removes all objects from the array before you have a chance to execute the doSomething
method? In an application without garbage collection, the object your code is holding could be released,
leaving anObject pointing to an invalid memory address. To fix the problem, you might decide to simply
rearrange your existing code and release the lock after your call to doSomething, as shown here:

NSLock* arrayLock = GetArrayLock();
NSMutableArray* myArray = GetSharedArray();
id anObject;

62 Tips for Thread-Safe Designs
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

[arrayLock lock];
anObject = [myArray objectAtIndex:0];
[anObject doSomething];
[arrayLock unlock];

By moving the doSomething call inside the lock, your code guarantees that the object is still valid when the
method is called. Unfortunately, if the doSomething method takes a long time to execute, this could cause
your code to hold the lock for a long time, which could create a performance bottleneck.

The problem with the code is not that the critical region was poorly defined, but that the actual problem
was not understood. The real problem is a memory management issue that is triggered only by the presence
of other threads. Because it can be released by another thread, a better solution would be to retain anObject
before releasing the lock. This solution addresses the real problem of the object being released and does so
without introducing a potential performance penalty.

NSLock* arrayLock = GetArrayLock();
NSMutableArray* myArray = GetSharedArray();
id anObject;

[arrayLock lock];
anObject = [myArray objectAtIndex:0];
[anObject retain];
[arrayLock unlock];

[anObject doSomething];

Although the preceding examples are very simple in nature, they do illustrate a very important point. When
it comes to correctness, you have to think beyond the obvious problems. Memory management and other
aspects of your design may also be affected by the presence of multiple threads, so you have to think about
those problems up front. In addition, you should always assume that the compiler will do the worst possible
thing when it comes to safety. This kind of awareness and vigilance should help you avoid potential problems
and ensure that your code behaves correctly.

For additional examples of how to make your program thread-safe, see Technical Note TN2059: “Using Col-
lection Classes Safely in Multithreaded Applications.”

Watch Out for Deadlocks and Livelocks

Any time a thread tries to take more than one lock at the same time, there is a potential for a deadlock to
occur. A deadlock occurs when two different threads hold a lock that the other one needs and then try to
acquire the lock held by the other thread. The result is that each thread blocks permanently because it can
never acquire the other lock.

A livelock is similar to a deadlock and occurs when two threads compete for the same set of resources. In a
livelock situation, a thread gives up its first lock in an attempt to acquire its second lock. Once it acquires the
second lock, it goes back and tries to acquire the first lock again. It locks up because it spends all its time
releasing one lock and trying to acquire the other lock rather than doing any real work.

The best way to avoid both deadlock and livelock situations is to take only one lock at a time. If you must
acquire more than one lock at a time, you should make sure that other threads do not try to do something
similar.

Tips for Thread-Safe Designs 63
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

http://developer.apple.com/technotes/tn2002/tn2059.html
http://developer.apple.com/technotes/tn2002/tn2059.html

Use Volatile Variables Correctly

If you are already using a mutex to protect a section of code, do not automatically assume you need to use
the volatile keyword to protect important variables inside that section. A mutex includes a memory barrier
to ensure the proper ordering of load and store operations. Adding the volatile keyword to a variable
within a critical section forces the value to be loaded from memory each time it is accessed. The combination
of the two synchronization techniques may be necessary in specific cases but also leads to a significant
performance penalty. If the mutex alone is enough to protect the variable, omit the volatile keyword.

It is also important that you do not use volatile variables in an attempt to avoid the use of mutexes. In general,
mutexes and other synchronization mechanisms are a better way to protect the integrity of your data
structures than volatile variables. The volatile keyword only ensures that a variable is loaded from memory
rather than stored in a register. It does not ensure that the variable is accessed correctly by your code.

Using Atomic Operations

Nonblocking synchronization is a way to perform some types of operations and avoid the expense of locks.
Although locks are an effective way to synchronize two threads, acquiring a lock is a relatively expensive
operation, even in the uncontested case. By contrast, many atomic operations take a fraction of the time to
complete and can be just as effective as a lock.

Atomic operations let you perform simple mathematical and logical operations on 32-bit or 64-bit values.
These operations rely on special hardware instructions (and an optional memory barrier) to ensure that the
given operation completes before the affected memory is accessed again. In the multithreaded case, you
should always use the atomic operations that incorporate a memory barrier to ensure that the memory is
synchronized correctly between threads.

Table 4-3 lists the available atomic mathematical and logical operations and the corresponding function
names. These functions are all declared in the /usr/include/libkern/OSAtomic.h header file, where
you can also find the complete syntax. The 64-bit versions of these functions are available only in 64-bit
processes.

Table 4-3 Atomic math and logic operations

DescriptionFunction nameOperation

Adds two integer values together and stores the result
in one of the specified variables.

OSAtomicAdd32

OSAtomicAdd32Barrier

OSAtomicAdd64

OSAtomicAdd64Barrier

Add

Increments the specified integer value by 1.OSAtomicIncrement32

OSAtomicIncrement32Barrier

OSAtomicIncrement64

OSAtomicIncrement64Barrier

Increment

64 Using Atomic Operations
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

DescriptionFunction nameOperation

Decrements the specified integer value by 1.OSAtomicDecrement32

OSAtomicDecrement32Barrier

OSAtomicDecrement64

OSAtomicDecrement64Barrier

Decrement

Performs a logical OR between the specified 32-bit
value and a 32-bit mask.

OSAtomicOr32

OSAtomicOr32Barrier

Logical OR

Performs a logical AND between the specified 32-bit
value and a 32-bit mask.

OSAtomicAnd32

OSAtomicAnd32Barrier

Logical
AND

Performs a logical XOR between the specified 32-bit
value and a 32-bit mask.

OSAtomicXor32

OSAtomicXor32Barrier

Logical XOR

Compares a variable against the specified old value. If
the two values are equal, this function assigns the
specified new value to the variable; otherwise, it does
nothing. The comparison and assignment are done as
one atomic operation and the function returns a
Boolean value indicating whether the swap actually
occurred.

OSAtomicCompareAndSwap32

OSAtomicCompareAnd-
Swap32Barrier

OSAtomicCompareAndSwap64

OSAtomicCompareAnd-
Swap64Barrier

OSAtomicCompareAndSwapPtr

OSAtomicCompareAnd-
SwapPtrBarrier

OSAtomicCompareAndSwapInt

OSAtomicCompareAnd-
SwapIntBarrier

OSAtomicCompareAndSwapLong

OSAtomicCompareAnd-
SwapLongBarrier

Compare
and swap

Tests a bit in the specified variable, sets that bit to 1,
and returns the value of the old bit as a Boolean value.
Bits are tested according to the formula (0x80>>(n&-
7))of byte ((char*)address + (n >> 3)) where
n is the bit number and address is a pointer to the
variable. This formula effectively breaks up the variable
into 8-bit sized chunks and orders the bits in each
chunk in reverse. For example, to test the lowest-order
bit (bit 0) of a 32-bit integer, you would actually specify
7 for the bit number; similarly, to test the highest order
bit (bit 32), you would specify 24 for the bit number.

OSAtomicTestAndSet

OSAtomicTestAndSetBarrier

Test and set

Using Atomic Operations 65
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

DescriptionFunction nameOperation

Tests a bit in the specified variable, sets that bit to 0,
and returns the value of the old bit as a Boolean value.
Bits are tested according to the formula (0x80>>(n&-
7))of byte ((char*)address + (n >> 3)) where
n is the bit number and address is a pointer to the
variable. This formula effectively breaks up the variable
into 8-bit sized chunks and orders the bits in each
chunk in reverse. For example, to test the lowest-order
bit (bit 0) of a 32-bit integer, you would actually specify
7 for the bit number; similarly, to test the highest order
bit (bit 32), you would specify 24 for the bit number.

OSAtomicTestAndClear

OSAtomicTestAndClearBarrier

Test and
clear

The behavior of most atomic functions should be relatively straightforward and what you would expect.
Listing 4-1, however, shows the behavior of atomic test-and-set and compare-and-swap operations, which
are a little more complex. The first three calls to the OSAtomicTestAndSet function demonstrate how the
bit manipulation formula being used on an integer value and its results might differ from what you would
expect. The last two calls show the behavior of the OSAtomicCompareAndSwap32 function. In all cases,
these functions are being called in the uncontested case when no other threads are manipulating the values.

Listing 4-1 Performing atomic operations

int32_t theValue = 0;
OSAtomicTestAndSet(0, &theValue);
// theValue is now 128.

theValue = 0;
OSAtomicTestAndSet(7, &theValue);
// theValue is now 1.

theValue = 0;
OSAtomicTestAndSet(15, &theValue)
// theValue is now 256.

OSAtomicCompareAndSwap32(256, 512, &theValue);
// theValue is now 512.

OSAtomicCompareAndSwap32(256, 1024, &theValue);
// theValue is still 512.

For information about atomic operations, see the atomic man page and the
/usr/include/libkern/OSAtomic.h header file.

Using Locks

Locks are a fundamental synchronization tool for threaded programming. Locks enable you to protect large
sections of code easily so that you can ensure the correctness of that code. Mac OS X and iOS provide basic
mutex locks for all application types and the Foundation framework defines some additional variants of the
mutex lock for special situations. The following sections show you how to use several of these lock types.

66 Using Locks
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

Using a POSIX Mutex Lock

POSIX mutex locks are extremely easy to use from any application. To create the mutex lock, you declare and
initialize apthread_mutex_t structure. To lock and unlock the mutex lock, you use thepthread_mutex_lock
and pthread_mutex_unlock functions. Listing 4-2 shows the basic code required to initialize and use a
POSIX thread mutex lock. When you are done with the lock, simply call pthread_mutex_destroy to free
up the lock data structures.

Listing 4-2 Using a mutex lock

pthread_mutex_t mutex;
void MyInitFunction()
{
 pthread_mutex_init(&mutex, NULL);
}

void MyLockingFunction()
{
 pthread_mutex_lock(&mutex);
 // Do work.
 pthread_mutex_unlock(&mutex);
}

Note: The preceding code is a simplified example intended to show the basic usage of the POSIX thread
mutex functions. Your own code should check the error codes returned by these functions and handle them
appropriately.

Using the NSLock Class

An NSLock object implements a basic mutex for Cocoa applications. The interface for all locks (including
NSLock) is actually defined by the NSLocking protocol, which defines the lock and unlock methods. You
use these methods to acquire and release the lock just as you would any mutex.

In addition to the standard locking behavior, the NSLock class adds the tryLock and lockBeforeDate:
methods. The tryLock method attempts to acquire the lock but does not block if the lock is unavailable;
instead, the method simply returns NO. The lockBeforeDate: method attempts to acquire the lock but
unblocks the thread (and returns NO) if the lock is not acquired within the specified time limit.

The following example shows how you could use an NSLock object to coordinate the updating of a visual
display, whose data is being calculated by several threads. If the thread cannot acquire the lock immediately,
it simply continues its calculations until it can acquire the lock and update the display.

BOOL moreToDo = YES;
NSLock *theLock = [[NSLock alloc] init];
...
while (moreToDo) {
 /* Do another increment of calculation */
 /* until there’s no more to do. */
 if ([theLock tryLock]) {
 /* Update display used by all threads. */
 [theLock unlock];
 }

Using Locks 67
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

}

Using the @synchronized Directive

The @synchronized directive is a convenient way to create mutex locks on the fly in Objective-C code. The
@synchronized directive does what any other mutex lock would do—it prevents different threads from
acquiring the same lock at the same time. In this case, however, you do not have to create the mutex or lock
object directly. Instead, you simply use any Objective-C object as a lock token, as shown in the following
example:

- (void)myMethod:(id)anObj
{
 @synchronized(anObj)
 {
 // Everything between the braces is protected by the @synchronized
directive.
 }
}

The object passed to the @synchronized directive is a unique identifier used to distinguish the protected
block. If you execute the preceding method in two different threads, passing a different object for the anObj
parameter on each thread, each would take its lock and continue processing without being blocked by the
other. If you pass the same object in both cases, however, one of the threads would acquire the lock first
and the other would block until the first thread completed the critical section.

As a precautionary measure, the @synchronized block implicitly adds an exception handler to the protected
code. This handler automatically releases the mutex in the event that an exception is thrown. This means
that in order to use the @synchronized directive, you must also enable Objective-C exception handling in
your code. If you do not want the additional overhead caused by the implicit exception handler, you should
consider using the lock classes.

For more information about the @synchronized directive, see The Objective-C Programming Language.

Using Other Cocoa Locks

The following sections describe the process for using several other types of Cocoa locks.

Using an NSRecursiveLock Object

The NSRecursiveLock class defines a lock that can be acquired multiple times by the same thread without
causing the thread to deadlock. A recursive lock keeps track of how many times it was successfully acquired.
Each successful acquisition of the lock must be balanced by a corresponding call to unlock the lock. Only
when all of the lock and unlock calls are balanced is the lock actually released so that other threads can
acquire it.

As its name implies, this type of lock is commonly used inside a recursive function to prevent the recursion
from blocking the thread. You could similarly use it in the nonrecursive case to call functions whose semantics
demand that they also take the lock. Here’s an example of a simple recursive function that acquires the lock
through recursion. If you did not use an NSRecursiveLock object for this code, the thread would deadlock
when the function was called again.

68 Using Locks
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

NSRecursiveLock *theLock = [[NSRecursiveLock alloc] init];

void MyRecursiveFunction(int value)
{
 [theLock lock];
 if (value != 0)
 {
 --value;
 MyRecursiveFunction(value);
 }
 [theLock unlock];
}

MyRecursiveFunction(5);

Note: Because a recursive lock is not released until all lock calls are balanced with unlock calls, you should
carefully weigh the decision to use a performance lock against the potential performance implications.
Holding any lock for an extended period of time can cause other threads to block until the recursion completes.
If you can rewrite your code to eliminate the recursion or eliminate the need to use a recursive lock, you may
achieve better performance.

Using an NSConditionLock Object

An NSConditionLock object defines a mutex lock that can be locked and unlocked with specific values.
You should not confuse this type of lock with a condition (see “Conditions” (page 59)). The behavior is
somewhat similar to conditions, but is implemented very differently.

Typically, you use an NSConditionLock object when threads need to perform tasks in a specific order, such
as when one thread produces data that another consumes. While the producer is executing, the consumer
acquires the lock using a condition that is specific to your program. (The condition itself is just an integer
value that you define.) When the producer finishes, it unlocks the lock and sets the lock condition to the
appropriate integer value to wake the consumer thread, which then proceeds to process the data.

The locking and unlocking methods that NSConditionLock objects respond to can be used in any
combination. For example, you can pair a lock message with unlockWithCondition:, or a
lockWhenCondition: message with unlock. Of course, this latter combination unlocks the lock but might
not release any threads waiting on a specific condition value.

The following example shows how the producer-consumer problem might be handled using condition locks.
Imagine that an application contains a queue of data. A producer thread adds data to the queue, and consumer
threads extract data from the queue. The producer need not wait for a specific condition, but it must wait
for the lock to be available so it can safely add data to the queue.

id condLock = [[NSConditionLock alloc] initWithCondition:NO_DATA];

while(true)
{
 [condLock lock];
 /* Add data to the queue. */
 [condLock unlockWithCondition:HAS_DATA];
}

Using Locks 69
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

Because the initial condition of the lock is set to NO_DATA, the producer thread should have no trouble
acquiring the lock initially. It fills the queue with data and sets the condition to HAS_DATA. During subsequent
iterations, the producer thread can add new data as it arrives, regardless of whether the queue is empty or
still has some data. The only time it blocks is when a consumer thread is extracting data from the queue.

Because the consumer thread must have data to process, it waits on the queue using a specific condition.
When the producer puts data on the queue, the consumer thread wakes up and acquires its lock. It can then
extract some data from the queue and update the queue status. The following example shows the basic
structure of the consumer thread’s processing loop.

while (true)
{
 [condLock lockWhenCondition:HAS_DATA];
 /* Remove data from the queue. */
 [condLock unlockWithCondition:(isEmpty ? NO_DATA : HAS_DATA)];

 // Process the data locally.
}

Using an NSDistributedLock Object

The NSDistributedLock class can be used by multiple applications on multiple hosts to restrict access to
some shared resource, such as a file. The lock itself is effectively a mutex lock that is implemented using a
file-system item, such as a file or directory. For an NSDistributedLock object to be usable, the lock must
be writable by all applications that use it. This usually means putting it on a file system that is accessible to
all of the computers that are running the application.

Unlike other types of lock, NSDistributedLock does not conform to the NSLocking protocol and thus
does not have a lock method. A lock method would block the execution of the thread and require the
system to poll the lock at a predetermined rate. Rather than impose this penalty on your code,
NSDistributedLock provides a tryLock method and lets you decide whether or not to poll.

Because it is implemented using the file system, an NSDistributedLock object is not released unless the
owner explicitly releases it. If your application crashes while holding a distributed lock, other clients will be
unable to access the protected resource. In this situation, you can use the breakLock method to break the
existing lock so that you can acquire it. Breaking locks should generally be avoided, though, unless you are
certain the owning process died and cannot release the lock.

As with other types of locks, when you are done using an NSDistributedLock object, you release it by
calling the unlock method.

Using Conditions

Conditions are a special type of lock that you can use to synchronize the order in which operations must
proceed. They differ from mutex locks in a subtle way. A thread waiting on a condition remains blocked until
that condition is signaled explicitly by another thread.

70 Using Conditions
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

Due to the subtleties involved in implementing operating systems, condition locks are permitted to return
with spurious success even if they were not actually signaled by your code. To avoid problems caused by
these spurious signals, you should always use a predicate in conjunction with your condition lock. The
predicate is a more concrete way of determining whether it is safe for your thread to proceed. The condition
simply keeps your thread asleep until the predicate can be set by the signaling thread.

The following sections show you how to use conditions in your code.

Using the NSCondition Class

The NSCondition class provides the same semantics as POSIX conditions, but wraps both the required lock
and condition data structures in a single object. The result is an object that you can lock like a mutex and
then wait on like a condition.

Listing 4-3 shows a code snippet demonstrating the sequence of events for waiting on an NSCondition
object. The cocoaCondition variable contains an NSCondition object and the timeToDoWork variable
is an integer that is incremented from another thread immediately prior to signaling the condition.

Listing 4-3 Using a Cocoa condition

[cocoaCondition lock];
while (timeToDoWork <= 0)
 [cocoaCondition wait];

timeToDoWork--;

// Do real work here.

[cocoaCondition unlock];

Listing 4-4 shows the code used to signal the Cocoa condition and increment the predicate variable. You
should always lock the condition before signaling it.

Listing 4-4 Signaling a Cocoa condition

[cocoaCondition lock];
timeToDoWork++;
[cocoaCondition signal];
[cocoaCondition unlock];

Using POSIX Conditions

POSIX thread condition locks require the use of both a condition data structure and a mutex. Although the
two lock structures are separate, the mutex lock is intimately tied to the condition structure at runtime.
Threads waiting on a signal should always use the same mutex lock and condition structures together.
Changing the pairing can cause errors.

Listing 4-5 shows the basic initialization and usage of a condition and predicate. After initializing both the
condition and the mutex lock, the waiting thread enters a while loop using the ready_to_go variable as its
predicate. Only when the predicate is set and the condition subsequently signaled does the waiting thread
wake up and start doing its work.

Using Conditions 71
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

Listing 4-5 Using a POSIX condition

pthread_mutex_t mutex;
pthread_cond_t condition;
Boolean ready_to_go = true;

void MyCondInitFunction()
{
 pthread_mutex_init(&mutex);
 pthread_cond_init(&condition, NULL);
}

void MyWaitOnConditionFunction()
{
 // Lock the mutex.
 pthread_mutex_lock(&mutex);

 // If the predicate is already set, then the while loop is bypassed;
 // otherwise, the thread sleeps until the predicate is set.
 while(ready_to_go == false)
 {
 pthread_cond_wait(&condition, &mutex);
 }

 // Do work. (The mutex should stay locked.)

 // Reset the predicate and release the mutex.
 ready_to_go = false;
 pthread_mutex_unlock(&mutex);
}

The signaling thread is responsible both for setting the predicate and for sending the signal to the condition
lock. Listing 4-6 shows the code for implementing this behavior. In this example, the condition is signaled
inside of the mutex to prevent race conditions from occurring between the threads waiting on the condition.

Listing 4-6 Signaling a condition lock

void SignalThreadUsingCondition()
{
 // At this point, there should be work for the other thread to do.
 pthread_mutex_lock(&mutex);
 ready_to_go = true;

 // Signal the other thread to begin work.
 pthread_cond_signal(&condition);

 pthread_mutex_unlock(&mutex);
}

Note: The preceding code is a simplified example intended to show the basic usage of the POSIX thread
condition functions. Your own code should check the error codes returned by these functions and handle
them appropriately.

72 Using Conditions
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization

This appendix describes the high-level thread safety of some key frameworks in Mac OS X and iOS. The
information in this appendix is subject to change.

Cocoa

Guidelines for using Cocoa from multiple threads include the following:

 ■ Immutable objects are generally thread-safe. Once you create them, you can safely pass these objects
to and from threads. On the other hand, mutable objects are generally not thread-safe. To use mutable
objects in a threaded application, the application must synchronize appropriately. For more information,
see “Mutable Versus Immutable” (page 76).

 ■ Many objects deemed “thread-unsafe” are only unsafe to use from multiple threads. Many of these
objects can be used from any thread as long as it is only one thread at a time. Objects that are specifically
restricted to the main thread of an application are called out as such.

 ■ The main thread of the application is responsible for handling events. Although the Application Kit
continues to work if other threads are involved in the event path, operations can occur out of sequence.

 ■ If you want to use a thread to draw to a view, bracket all drawing code between the
lockFocusIfCanDraw and unlockFocus methods of NSView.

 ■ To use POSIX threads with Cocoa, you must first put Cocoa into multithreaded mode. For more
information, see “Using POSIX Threads in a Cocoa Application” (page 25).

Foundation Framework Thread Safety

There is a misconception that the Foundation framework is thread-safe and the Application Kit framework
is not. Unfortunately, this is a gross generalization and somewhat misleading. Each framework has areas that
are thread-safe and areas that are not thread-safe. The following sections describe the general thread safety
of the Foundation framework.

Thread-Safe Classes

The following classes and functions are generally considered to be thread-safe. You can use the same instance
from multiple threads without first acquiring a lock.

NSArray

NSAssertionHandler

NSAttributedString

NSCalendarDate

NSCharacterSet

Cocoa 73
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary

NSConditionLock

NSConnection

NSData

NSDate

NSDecimal functions
NSDecimalNumber

NSDecimalNumberHandler

NSDeserializer

NSDictionary

NSDistantObject

NSDistributedLock

NSDistributedNotificationCenter

NSException

NSFileManager (in Mac OS X v10.5 and later)
NSHost

NSLock

NSLog/NSLogv
NSMethodSignature

NSNotification

NSNotificationCenter

NSNumber

NSObject

NSPortCoder

NSPortMessage

NSPortNameServer

NSProtocolChecker

NSProxy

NSRecursiveLock

NSSet

NSString

NSThread

NSTimer

NSTimeZone

NSUserDefaults

NSValue

Object allocation and retain count functions
Zone and memory functions

Thread-Unsafe Classes

The following classes and functions are generally not thread-safe. In most cases, you can use these classes
from any thread as long as you use them from only one thread at a time. Check the class documentation for
additional details.

NSArchiver

NSAutoreleasePool

74 Cocoa
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary

NSBundle

NSCalendar

NSCoder

NSCountedSet

NSDateFormatter

NSEnumerator

NSFileHandle

NSFormatter

NSHashTable functions
NSInvocation

NSJavaSetup functions
NSMapTable functions
NSMutableArray

NSMutableAttributedString

NSMutableCharacterSet

NSMutableData

NSMutableDictionary

NSMutableSet

NSMutableString

NSNotificationQueue

NSNumberFormatter

NSPipe

NSPort

NSProcessInfo

NSRunLoop

NSScanner

NSSerializer

NSTask

NSUnarchiver

NSUndoManager

User name and home directory functions

Note that although NSSerializer, NSArchiver, NSCoder, and NSEnumerator objects are themselves
thread-safe, they are listed here because it is not safe to change the data objects wrapped by them while
they are in use. For example, in the case of an archiver, it is not safe to change the object graph being archived.
For an enumerator, it is not safe for any thread to change the enumerated collection.

Main Thread Only Classes

The following class must be used only from the main thread of an application.

NSAppleScript

Cocoa 75
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary

Mutable Versus Immutable

Immutable objects are generally thread-safe; once you create them, you can safely pass these objects to and
from threads. Of course, when using immutable objects, you still need to remember to use reference counts
correctly. If you inappropriately release an object you did not retain, you could cause an exception later.

Mutable objects are generally not thread-safe. To use mutable objects in a threaded application, the application
must synchronize access to them using locks. (For more information, see “Atomic Operations” (page 57)). In
general, the collection classes (for example, NSMutableArray, NSMutableDictionary) are not thread-safe
when mutations are concerned. That is, if one or more threads are changing the same array, problems can
occur. You must lock around spots where reads and writes occur to assure thread safety.

Even if a method claims to return an immutable object, you should never simply assume the returned object
is immutable. Depending on the method implementation, the returned object might be mutable or immutable.
For example, a method with the return type of NSString might actually return an NSMutableString due
to its implementation. If you want to guarantee that the object you have is immutable, you should make an
immutable copy.

Reentrancy

Reentrancy is only possible where operations “call out” to other operations in the same object or on different
objects. Retaining and releasing objects is one such “call out” that is sometimes overlooked.

The following table lists the portions of the Foundation framework that are explicitly reentrant. All other
classes may or may not be reentrant, or they may be made reentrant in the future. A complete analysis for
reentrancy has never been done and this list may not be exhaustive.

Distributed Objects
NSConditionLock

NSDistributedLock

NSLock

NSLog/NSLogv
NSNotificationCenter

NSRecursiveLock

NSRunLoop

NSUserDefaults

Class Initialization

The Objective-C runtime system sends an initializemessage to every class object before the class receives
any other messages. This gives the class a chance to set up its runtime environment before it’s used. In a
multithreaded application, the runtime guarantees that only one thread—the thread that happens to send
the first message to the class—executes the initialize method. If a second thread tries to send messages
to the class while the first thread is still in the initialize method, the second thread blocks until the
initialize method finishes executing. Meanwhile, the first thread can continue to call other methods on
the class. The initialize method should not rely on a second thread calling methods of the class; if it
does, the two threads become deadlocked.

76 Cocoa
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary

Due to a bug in Mac OS X version 10.1.x and earlier, a thread could send messages to a class before another
thread finished executing that class’s initialize method. The thread could then access values that have
not been fully initialized, perhaps crashing the application. If you encounter this problem, you need to either
introduce locks to prevent access to the values until after they are initialized or force the class to initialize
itself before becoming multithreaded.

Autorelease Pools

Each thread maintains its own stack of NSAutoreleasePool objects. Cocoa expects there to be an autorelease
pool always available on the current thread’s stack. If a pool is not available, objects do not get released and
you leak memory. An NSAutoreleasePool object is automatically created and destroyed in the main thread
of applications based on the Application Kit, but secondary threads (and Foundation-only applications) must
create their own before using Cocoa. If your thread is long-lived and potentially generates a lot of autoreleased
objects, you should periodically destroy and create autorelease pools (like the Application Kit does on the
main thread); otherwise, autoreleased objects accumulate and your memory footprint grows. If your detached
thread does not use Cocoa, you do not need to create an autorelease pool.

Run Loops

Every thread has one and only one run loop. Each run loop, and hence each thread, however, has its own
set of input modes that determine which input sources are listened to when the run loop is run. The input
modes defined in one run loop do not affect the input modes defined in another run loop, even though they
may have the same name.

The run loop for the main thread is automatically run if your application is based on the Application Kit, but
secondary threads (and Foundation-only applications) must run the run loop themselves. If a detached thread
does not enter the run loop, the thread exits as soon as the detached method finishes executing.

Despite some outward appearances, the NSRunLoop class is not thread safe. You should call the instance
methods of this class only from the thread that owns it.

Application Kit Framework Thread Safety

The following sections describe the general thread safety of the Application Kit framework.

Thread-Unsafe Classes

The following classes and functions are generally not thread-safe. In most cases, you can use these classes
from any thread as long as you use them from only one thread at a time. Check the class documentation for
additional details.

 ■ NSGraphicsContext. For more information, see “NSGraphicsContext Restrictions” (page 79).

 ■ NSImage. For more information, see “NSImage Restrictions” (page 79).

 ■ NSResponder

 ■ NSWindow and all of its descendants. For more information, see “Window Restrictions” (page 78).

Cocoa 77
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary

Main Thread Only Classes

The following classes must be used only from the main thread of an application.

 ■ NSCell and all of its descendants

 ■ NSView and all of its descendants. For more information, see “NSView Restrictions” (page 78).

Window Restrictions

You can create a window on a secondary thread. The Application Kit ensures that the data structures associated
with a window are deallocated on the main thread to avoid race conditions. There is some possibility that
window objects may leak in an application that deals with a lot of windows concurrently.

You can create a modal window on a secondary thread. The Application Kit blocks the calling secondary
thread while the main thread runs the modal loop.

Event Handling Restrictions

The main thread of the application is responsible for handling events. The main thread is the one blocked
in the runmethod of NSApplication, usually invoked in an application’s main function. While the Application
Kit continues to work if other threads are involved in the event path, operations can occur out of sequence.
For example, if two different threads are responding to key events, the keys could be received out of order.
By letting the main thread process events, you achieve a more consistent user experience. Once received,
events can be dispatched to secondary threads for further processing if desired.

You can call the postEvent:atStart: method of NSApplication from a secondary thread to post an
event to the main thread’s event queue. Order is not guaranteed with respect to user input events, however.
The main thread of the application is still responsible for handling events in the event queue.

Drawing Restrictions

The Application Kit is generally thread-safe when drawing with its graphics functions and classes, including
the NSBezierPath and NSString classes. Details for using particular classes are described in the following
sections. Additional information about drawing and threads is available in Cocoa Drawing Guide.

NSView Restrictions

The NSView class is generally thread-safe, with a few exceptions. You should create, destroy, resize, move,
and perform other operations on NSView objects only from the main thread of an application. Drawing from
secondary threads is thread-safe as long as you bracket drawing calls with calls to lockFocusIfCanDraw
and unlockFocus.

If a secondary thread of an application wants to cause portions of the view to be redrawn on the main thread,
it must not do so using methods like display, setNeedsDisplay:, setNeedsDisplayInRect:, or
setViewsNeedDisplay:. Instead, it should send a message to the main thread or call those methods using
the performSelectorOnMainThread:withObject:waitUntilDone: method instead.

The view system’s graphics states (gstates) are per-thread. Using graphics states used to be a way to achieve
better drawing performance over a single-threaded application but that is no longer true. Incorrect use of
graphics states can actually lead to drawing code that is less efficient than drawing in the main thread.

78 Cocoa
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary

NSGraphicsContext Restrictions

The NSGraphicsContext class represents the drawing context provided by the underlying graphics system.
Each NSGraphicsContext instance holds its own independent graphics state: coordinate system, clipping,
current font, and so on. An instance of the class is automatically created on the main thread for each NSWindow
instance. If you do any drawing from a secondary thread, a new instance of NSGraphicsContext is created
specifically for that thread.

If you do any drawing from a secondary thread, you must flush your drawing calls manually. Cocoa does not
automatically update views with content drawn from secondary threads, so you need to call the
flushGraphics method of NSGraphicsContext when you finish your drawing. If your application draws
content from the main thread only, you do not need to flush your drawing calls.

NSImage Restrictions

One thread can create an NSImage object, draw to the image buffer, and pass it off to the main thread for
drawing. The underlying image cache is shared among all threads. For more information about images and
how caching works, see Cocoa Drawing Guide.

Core Data Framework

The Core Data framework generally supports threading, although there are some usage caveats that apply.
For information on these caveats, see Multi-Threading with Core Data in Core Data Programming Guide.

Core Foundation

Core Foundation is sufficiently thread-safe that, if you program with care, you should not run into any problems
related to competing threads. It is thread-safe in the common cases, such as when you query, retain, release,
and pass around immutable objects. Even central shared objects that might be queried from more than one
thread are reliably thread-safe.

Like Cocoa, Core Foundation is not thread-safe when it comes to mutations to objects or their contents. For
example, modifying a mutable data or mutable array object is not thread-safe, as you might expect, but
neither is modifying an object inside of an immutable array. One reason for this is performance, which is
critical in these situations. Moreover, it is usually not possible to achieve absolute thread safety at this level.
You cannot rule out, for example, indeterminate behavior resulting from retaining an object obtained from
a collection. The collection itself might be freed before the call to retain the contained object is made.

In those cases where Core Foundation objects are to be accessed from multiple threads and mutated, your
code should protect against simultaneous access by using locks at the access points. For instance, the code
that enumerates the objects of a Core Foundation array should use the appropriate locking calls around the
enumerating block to protect against someone else mutating the array.

Core Foundation 79
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary

80 Core Foundation
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary

application A specific style of program that displays
a graphical interface to the user.

condition A construct used to synchronize access to
a resource. A thread waiting on a condition is not
allowed to proceed until another thread explicitly
signals the condition.

critical section A portion of code that must be
executed by only one thread at a time.

input source A source of asynchronous events for a
thread. Input sources can be port-based or manually
triggered and must be attached to the thread’s run
loop.

joinable thread A thread whose resources are not
reclaimed immediately upon termination. Joinable
threads must be explicitly detached or be joined by
another thread before the resources can be reclaimed.
Joinable threads provide a return value to the thread
that joins with them.

main thread A special type of thread created when
its owning process is created. When the main thread
of a program exits, the process ends.

mutex A lock that provides mutually exclusive access
to a shared resource. A mutex lock can be held by
only one thread at a time. Attempting to acquire a
mutex held by a different thread puts the current
thread to sleep until the lock is finally acquired.

operation object An instance of the NSOperation
class. Operation objects wrap the code and data
associated with a task into an executable unit.

operation queue An instance of the
NSOperationQueue class. Operation queues manage
the execution of operation objects.

process The runtime instance of an application or
program. A process has its own virtual memory space
and system resources (including port rights) that are
independent of those assigned to other programs. A
process always contains at least one thread (the main
thread) and may contain any number of additional
threads.

program A combination of code and resources that
can be run to perform some task. Programs need not
have a graphical user interface, although graphical
applications are also considered programs.

recursive lock A lock that can be locked multiple
times by the same thread.

run loop An event-processing loop, during which
events are received and dispatched to appropriate
handlers.

run loop mode A collection of input sources, timer
sources, and run loop observers associated with a
particular name. When run in a specific “mode,” a run
loop monitors only the sources and observers
associated with that mode.

run loop object An instance of the NSRunLoop class
orCFRunLoopRefopaque type. These objects provide
the interface for implementing an event-processing
loop in a thread.

run loop observer A recipient of notifications during
different phases of a run loop’s execution.

semaphore A protected variable that restricts access
to a shared resource. Mutexes and conditions are both
different types of semaphore.

81
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

Glossary

task A quantity of work to be performed. Although
some technologies (most notably Carbon
Multiprocessing Services) use this term differently,
the preferred usage is as an abstract concept
indicating some quantity of work to be performed.

thread A flow of execution in a process. Each thread
has its own stack space but otherwise shares memory
with other threads in the same process.

timer source A source of synchronous events for a
thread. Timers generate one-shot or repeated events
at a scheduled future time.

82
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to Threading Programming Guide.

NotesDate

Corrected typos.2010-04-28

Moved information about operation objects to the Concurrency Programming
Guide. Refocused this book solely on threads.

2009-05-22

Updated sample code pertaining to operation objects and operation queues.2008-10-15

Updated for iOS.2008-03-21

Performed a major rewrite and update of thread-related concepts and tasks.2008-02-08

Added more information about configuring threads.

Reorganized the synchronization tools sections into a chapter and added
information about atomic operations, memory barriers, and volatile variables.

Added more details regarding the use and configuration of run loops.

Changed document title from Multithreading Programming Topics.

Added information about the NSOperation and NSOperationQueue objects.2007-10-31

Added some new guidelines and updated the information about run loops.
Verified the accuracy of the distributed object code examples and updated the
code examples in several other articles.

2006-04-04

Updated port examples to use NSPort instead of NSMessagePort.2005-03-03

Reorganized articles and expanded document to cover more than just Cocoa
threading techniques.

2005-01-11

Updated thread conceptual information and added information covering the
different threading packages in Mac OS X.

Incorporated material from Core Foundation multithreading document.

Added information on performing socket-based communication between
threads.

Added sample code and information on creating and using Carbon threads.

Added thread safety guidelines.

Added information about POSIX threads and locks.

83
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Added sample code demonstrating port-based communications.

This document replaces information about threading that was published
previously in Multithreading.

Updated the advice for using locks in libraries in third-party libraries.2003-07-28

Restated information on lock/unlock balancing in third-party libraries.2003-04-08

Revision history was added to existing topic.2002-11-12

84
2010-04-28 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Threading Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	About Threaded Programming
	What Are Threads?
	Threading Terminology
	Alternatives to Threads
	Threading Support
	Threading Packages
	Run Loops
	Synchronization Tools
	Interthread Communication

	Design Tips
	Avoid Creating Threads Explicitly
	Keep Your Threads Reasonably Busy
	Avoid Shared Data Structures
	Threads and Your User Interface
	Be Aware of Thread Behaviors at Quit Time
	Handle Exceptions
	Terminate Your Threads Cleanly
	Thread Safety in Libraries

	Thread Management
	Thread Costs
	Creating a Thread
	Using NSThread
	Using POSIX Threads
	Using NSObject to Spawn a Thread
	Using Other Threading Technologies
	Using POSIX Threads in a Cocoa Application
	Protecting the Cocoa Frameworks
	Mixing POSIX and Cocoa Locks

	Configuring Thread Attributes
	Configuring the Stack Size of a Thread
	Configuring Thread-Local Storage
	Setting the Detached State of a Thread
	Setting the Thread Priority

	Writing Your Thread Entry Routine
	Creating an Autorelease Pool
	Setting Up an Exception Handler
	Setting Up a Run Loop

	Terminating a Thread

	Run Loops
	Anatomy of a Run Loop
	Run Loop Modes
	Input Sources
	Port-Based Sources
	Custom Input Sources
	Cocoa Perform Selector Sources

	Timer Sources
	Run Loop Observers
	The Run Loop Sequence of Events

	When Would You Use a Run Loop?
	Using Run Loop Objects
	Getting a Run Loop Object
	Configuring the Run Loop
	Starting the Run Loop
	Exiting the Run Loop
	Thread Safety and Run Loop Objects

	Configuring Run Loop Sources
	Defining a Custom Input Source
	Defining the Input Source
	Installing the Input Source on the Run Loop
	Coordinating with Clients of the Input Source
	Signaling the Input Source

	Configuring Timer Sources
	Configuring a Port-Based Input Source
	Configuring an NSMachPort Object
	Implementing the Main Thread Code
	Implementing the Secondary Thread Code

	Configuring an NSMessagePort Object
	Configuring a Port-Based Input Source in Core Foundation

	Synchronization
	Synchronization Tools
	Atomic Operations
	Memory Barriers and Volatile Variables
	Locks
	Conditions
	Perform Selector Routines

	Synchronization Costs and Performance
	Thread Safety and Signals
	Tips for Thread-Safe Designs
	Avoid Synchronization Altogether
	Understand the Limits of Synchronization
	Be Aware of Threats to Code Correctness
	Watch Out for Deadlocks and Livelocks
	Use Volatile Variables Correctly

	Using Atomic Operations
	Using Locks
	Using a POSIX Mutex Lock
	Using the NSLock Class
	Using the @synchronized Directive
	Using Other Cocoa Locks
	Using an NSRecursiveLock Object
	Using an NSConditionLock Object
	Using an NSDistributedLock Object

	Using Conditions
	Using the NSCondition Class
	Using POSIX Conditions

	Appendix A: Thread Safety Summary
	Cocoa
	Foundation Framework Thread Safety
	Thread-Safe Classes
	Thread-Unsafe Classes
	Main Thread Only Classes
	Mutable Versus Immutable
	Reentrancy
	Class Initialization
	Autorelease Pools
	Run Loops

	Application Kit Framework Thread Safety
	Thread-Unsafe Classes
	Main Thread Only Classes
	Window Restrictions
	Event Handling Restrictions
	Drawing Restrictions
	NSView Restrictions
	NSGraphicsContext Restrictions
	NSImage Restrictions

	Core Data Framework

	Core Foundation

	Glossary
	Revision History

