
Memory Management Programming Guide
Performance

2010-06-24

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa, iPhone,
Mac, Mac OS, Objective-C, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction 7

Who Should Read This Document 7
Organization of This Document 7

Memory Management Rules 9

Object Ownership and Disposal 11

Object Ownership Policy 11
Behind the Scenes: Retain Counts 12
Autorelease 12
Validity of Shared Objects 14
Accessor Methods 15
Deallocating an Object 15
Objects Returned by Reference 16
Retain Cycles 17
Weak References to Objects 17
Resource Management 18

Practical Memory Management 21

Basics 21
Simple Examples 22
Using Accessor Methods 23

Implementing a reset method 24
Common Mistakes 24

Cases which Often Cause Confusion 25
Using Collections 25
Returning Objects from Methods 26

Autorelease Pools 29

Overview of Autorelease Pools 29
Autorelease Pools in Non-AppKit Programs 30
Autorelease Pools and Threads 31
Scope of Autorelease Pools and Implications of Nested Autorelease Pools 31
Guaranteeing the Foundation Ownership Policy 32
Garbage Collection 32

3
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Accessor Methods 35

Declaring Accessor Methods 35
Implementing Accessor Methods 35

Technique 1 36
Technique 2 36
Technique 3 36

Value Objects and Copying 37

Implementing Object Copy 39

Deep Versus Shallow Copies 39
Independent Copy 40
Inheriting NSCopying from the Superclass 40

Using the “alloc, init...” Approach 41
Using NSCopyObject() 41
Copying Mutable Versus Immutable Objects 43

Memory Management of Core Foundation Objects in Cocoa 45

Memory Management of Nib Objects 47

Outlets 47
Mac OS X 47
iOS 48

Top-Level Objects 48
Memory Warnings 49

Document Revision History 51

4
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Figures and Listings

Object Ownership and Disposal 11

Figure 1 An illustration of retain cycles 17

Autorelease Pools 29

Listing 1 Example of a main function for a non-AppKit program 30

Implementing Object Copy 39

Figure 1 Copying instance variables both shallowly and deeply 40
Figure 2 Initialization of the reference count during a copy 43

5
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

6
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

In any program you write, you must ensure that you manage resources effectively and efficiently. One such
resource is your program’s memory. In an Objective-C program, you must make sure that objects you create
are disposed of when you no longer need them.

In a complex system, it could be difficult to determine exactly when you no longer need an object. Cocoa
defines some rules and principles that help making that determination easier.

Important: In Mac OS X v10.5 and later, you can use automatic memory management by adopting garbage
collection. This is described in Garbage Collection Programming Guide. Garbage collection is not available on
iOS.

Who Should Read This Document

You should read this document to learn about the object ownership policies and related techniques for
creating, copying, retaining, and disposing of objects in a reference-counted environment.

Note: If you are starting a new project targeted at Mac OS X v10.5 and later, you should typically use garbage
collection unless you have good reason to use the techniques described here.

This document does not describe details of allocating and initializing objects, and implementing initializer
methods. These tasks are discussed in “Allocating and Initializing Objects” in The Objective-C Programming
Language.

Organization of This Document

This document contains the following articles:

 ■ “Memory Management Rules” (page 9) summarizes the rules for object ownership and disposal.

 ■ “Object Ownership and Disposal” (page 11) describes the primary object-ownership policy.

 ■ “Practical Memory Management” (page 21) gives a practical perspective on memory management.

 ■ “Autorelease Pools” (page 29) describes the use of autorelease pools—a mechanism for deferred
deallocation—in Cocoa programs.

 ■ “Accessor Methods” (page 35) describes how to implement accessor methods.

 ■ “Implementing Object Copy” (page 39) discusses issues related to object copying, such as deciding
whether to implement a deep or shallow copy and approaches for implementing object copy in your
subclasses.

Who Should Read This Document 7
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Introduction

 ■ “Memory Management of Core Foundation Objects in Cocoa” (page 45) gives guidelines and techniques
for memory management of Core Foundation objects in Cocoa code.

 ■ “Memory Management of Nib Objects” (page 47) discusses memory management issues related to nib
files.

8 Organization of This Document
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Introduction

This article summarizes the rules for memory management in Objective-C.

This is the fundamental rule:

 ■ You only release or autorelease objects you own.

 ❏ You take ownership of an object if you create it using a method whose name begins with “alloc” or
“new” or contains “copy” (for example, alloc, newObject, or mutableCopy), or if you send it a
retain message.

 ❏ You use release or autorelease to relinquish ownership of an object. autorelease just means
“send a release message in the future” (to understand when this will be, see “Autorelease
Pools” (page 29)).

The following rules derive from the fundamental rule, or cope with edge cases:

 ■ As a corollary of the fundamental rule, if you need to store a received object as a property in an instance
variable, you must retain or copy it. (This is not true for weak references, described at “Weak References
to Objects” (page 17), but these are typically rare.) Generally you devolve responsibility for doing this
to accessor methods (see “Accessor Methods” (page 35)).

 ■ A received object is normally guaranteed to remain valid within the method it was received in, and that
method may also safely return the object to its invoker. Exceptions include multithreaded applications
and some Distributed Objects situations, although you must also take care if you modify an object from
which you received another object (see “Validity of Shared Objects” (page 14)). Use retain in combination
with release or autorelease when needed to prevent an object from being invalidated as a normal
side-effect of a message.

The reasoning behind these rules is discussed in “Object Ownership and Disposal” (page 11).

Important: There are similar memory management rules for Core Foundation objects (see Memory
ManagementProgrammingGuide forCoreFoundation). The naming conventions for Cocoa and Core Foundation,
however, are different. In particular, Core Foundation’s “create rule in Memory Management Programming
Guide for Core Foundation” does not apply to methods that return Objective-C objects. For example, in the
following code fragment, you are not responsible for relinquishing ownership of myInstance:

MyClass *myInstance = [MyClass createInstance];

See also “Memory Management of Core Foundation Objects in Cocoa” (page 45).

9
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Memory Management Rules

10
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Memory Management Rules

It is good practice for a program to use as little memory as possible. Environments therefore define mechanisms
and policies to allow you to manage your program’s memory. Although you can consider memory management
of an Objective-C program in terms of the underlying implementation (described in “Behind the Scenes:
Retain Counts” (page 12)) is typically easier to think of it in terms of object ownership.

In an Objective-C program, objects are created and destroyed. To ensure that your application does not use
more memory than necessary, objects should be destroyed when they are no longer needed. It is important
of course, however, that objects are not destroyed if they are still needed. To support these requirements,
Cocoa defines a mechanism, object ownership, by which you can specify when you need an object and when
you have finished with it.

To fully understand how the object ownership policy is implemented in Cocoa, you must also read “Autorelease
Pools” (page 29).

Object Ownership Policy

Any object may have one or more owner. As long as an object has at least one owner, it continues to exist.
If an object has no owners, the runtime system destroys it automatically (see “Deallocating an Object” (page
15)). To make sure it is clear when you own an object and when you do not, Cocoa sets the following policy:

 ■ You own any object you create.

You “create” an object using a method whose name begins with “alloc” or “new” or contains “copy” (for
example, alloc, newObject, or mutableCopy).

 ■ You can take ownership of an object using retain.

Remember that an object may have more than one owner. Taking ownership of an object is your way
of saying that you need it to be kept alive. (This is discussed in more detail in “Accessor Methods” (page
15).)

 ■ You must relinquish ownership of objects you own when you’re finished with them.

You relinquish ownership of an object by sending it a release message or an autorelease message
(autorelease is discussed in more detail in “Autorelease” (page 12)). In Cocoa terminology, relinquishing
ownership of an object is therefore typically referred to as “releasing” an object.

 ■ You must not relinquish ownership of an object you do not own.

This is primarily an implicit corollary of the previous policy rules, made explicit.

This policy applies both to GUI-based Cocoa applications and to command-line Foundation tools.

Consider the following code fragment:

{
 Thingamajig *myThingamajig = [[Thingamajig alloc] init];

Object Ownership Policy 11
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Object Ownership and Disposal

 // ...
 NSArray *sprockets = [myThingamajig sprockets];
 // ...
 [myThingamajig release];
}

This example properly adheres to the policy. You create the Thingamajig object using the alloc method,
so you subsequently send it a releasemessage when you’ve finished with it. When you obtain the sprockets
array from the Thingamajig object, you do not “create” the array, so you do not send it a release message.

Behind the Scenes: Retain Counts

The ownership policy is implemented through reference counting—typically called “retain count” after the
retain method. Each object has a retain count.

When you create an object, it has a retain count of 1.
When you send an object a retain message, its retain count is incremented by 1.
When you send an object a release message, its retain count is decremented by 1.
When you send an object a autorelease message, its retain count is decremented by 1 at some stage
in the future.
If an object’s retain count is reduced to 0, it is deallocated (see “Deallocating an Object” (page 15)).

Important: Typically there should be no reason to explicitly ask an object what its retain count is (see
retainCount). The result is often misleading, as you may be unaware of what framework objects have
retained an object in which you are interested. In debugging memory management issues, you should be
concerned only with ensuring that your code adheres to the ownership rules.

Autorelease

The autorelease method, defined by NSObject, marks the receiver for later release. By sending an object
an autorelease message, you declare that you don't want to own the object beyond the scope in which
you sent the message. The scope is defined by the current autorelease pool—see “Autorelease Pools” (page
29).

You could implement the sprockets method mentioned above in this way:

– (NSArray *)sprockets {

 NSArray *array = [[NSArray alloc] initWithObjects:mainSprocket,
 auxiliarySprocket, nil];
 return [array autorelease];
}

You create the array using alloc; you therefore own the array and are responsible for later relinquishing
ownership. This you do using autorelease.

12 Behind the Scenes: Retain Counts
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Object Ownership and Disposal

When another method gets the array of Sprocket objects, that method can assume that the array will be
disposed of when it is no longer needed, but can still be safely used anywhere within its scope (see “Validity
of Shared Objects” (page 14)). It can even return the array to its invoker, because the application object
defines the bottom of the call stack for your code.

The autorelease method makes it easy for you to return an object from a method and still abide by the
ownership policy. To illustrate, consider two incorrect implementations of the sprockets method:

1. This is wrong. Following the ownership policy, it would result in a memory leak.

– (NSArray *)sprockets {

 NSArray *array = [[NSArray alloc] initWithObjects:mainSprocket,
 auxiliarySprocket, nil];
 return array;
}

The object’s reference to the new array object is limited to the sprockets method. After the method
returns, the object loses its reference to the new object so cannot relinquish ownership. That in itself is
not a problem. However, following the naming convention set out earlier, the caller is given no indication
that it owns the returned object. The caller would therefore not relinquish ownership of the returned
object, leading to a memory leak.

2. This is also wrong. The object properly relinquishes ownership of the new array, however after the
release message is sent the new array has no owner so it is immediately disposed of by the system.
The method therefore returns an invalid (freed) object:

– (NSArray *)sprockets {

 NSArray *array = [[NSArray alloc] initWithObjects:mainSprocket,
 auxiliarySprocket, nil];
 [array release];
 return array; // array is invalid here
}

Finally, you could also implement the sprockets method correctly like this:

– (NSArray *)sprockets {

 NSArray *array = [NSArray arrayWithObjects:mainSprocket,
 auxiliarySprocket, nil];
 return array;
}

You don’t own the array returned from arrayWithObjects:, you are therefore not responsible for
relinquishing ownership. You can, though, safely return it from the sprockets method.

Autorelease 13
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Object Ownership and Disposal

Important: To understand this, it’s tempting to think of the arrayWithObjects: method itself being
implemented using autorelease. Although correct in this case, it’s strictly an implementation detail. Just
as you shouldn’t be concerned with an object’s actual retain count, you shouldn’t be concerned about whether
an object returned to you is autoreleased or not. The only concern is, do you own it or not.

Validity of Shared Objects

Cocoa’s ownership policy specifies that received objects should typically remain valid throughout the scope
of the calling method. It should also be possible to return a received object from the current scope without
fear of it being released. It should not matter to your application that the getter method of an object returns
a cached instance variable or a computed value. What matters is that the object remains valid for the time
you need it.

There are occasional exceptions to this rule, primarily falling into one of two categories.

1. When an object is removed from one of the fundamental collection classes.

heisenObject = [array objectAtIndex:n];
[array removeObjectAtIndex:n];
// heisenObject could now be invalid.

When an object is removed from one of the fundamental collection classes, it is sent a release (rather
than autorelease) message. If the collection was the only owner of the removed object, the removed
object (heisenObject in the example) is then immediately deallocated.

2. When a “parent object” is deallocated.

id parent = <#create a parent object#>;
// ...
heisenObject = [parent child] ;
[parent release]; // Or, for example: self.parent = nil;
// heisenObject could now be invalid.

In some situations you retrieve an object from another object, then directly or indirectly release the
parent object. If releasing the parent causes it to be deallocated, and the parent was the only owner of
the child, then the child (heisenObject in the example) will be deallocated at the same time (assuming
it is sent a release rather than an autorelease message in the parent’s dealloc method).

To protect against these situations, you retain heisenObject upon receiving it and release it when you
have finished with it, for example:

heisenObject = [[array objectAtIndex:n] retain];
[array removeObjectAtIndex:n];
// use heisenObject.
[heisenObject release];

14 Validity of Shared Objects
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Object Ownership and Disposal

Accessor Methods

If your class has an instance variable that is an object, you must make sure that any object that is set as the
value for the instance variable is not freed while you’re using it. You must therefore claim ownership of the
object when it is set. You must also make sure you then relinquish ownership of any currently-held value.

For example, if your object allows its main Sprocket to be set, you might implement setMainSprocket:
like this:

– (void)setMainSprocket:(Sprocket *)newSprocket {
 [mainSprocket autorelease];
 mainSprocket = [newSprocket retain]; /* Claim the new Sprocket. */
 return;
}

Now, setMainSprocket:might get invoked with a Sprocket that the invoker intends to keep around, which
means your object would be sharing the Sprocket with that other object. If that object changes the Sprocket,
your object’s main Sprocket changes. You might want that, but if your Thingamajig needs to have its own
Sprocket, the method should make a private copy (recall that copy also confers ownership):

– (void)setMainSprocket:(Sprocket *)newSprocket {
 [mainSprocket autorelease];
 mainSprocket = [newSprocket copy]; /* Make a private copy. */
 return;
}

Both of these implementations autorelease the original main sprocket. This avoids a problem that would
arise if newSprocket and mainSprocket are the same object, and the Thingamajig is the only object that
owns it: In this situation, when the sprocket is released, it is immediately deallocated, which causes an error
as soon as it is retained or copied. The following implementation also solves that problem:

– (void)setMainSprocket:(Sprocket *)newSprocket {
 if (mainSprocket != newSprocket) {
 [mainSprocket release];
 mainSprocket = [newSprocket retain]; /* Or copy, if appropriate. */
 }
}

In all of these cases, though, it may look as if the final mainSprocket set for your object is leaked, because
you don’t relinquish ownership of it. This is taken care of by the deallocmethod, described in “Deallocating
an Object” (page 15). Accessor methods and how you implement them are described in more detail in
“Accessor Methods” (page 35).

Deallocating an Object

When its retain count drops to 0, an object’s memory is reclaimed—in Cocoa terminology it is “freed” or
“deallocated.” When an object is deallocated, its dealloc method is invoked automatically. The role of the
dealloc method is to free the object's own memory, and dispose of any resources it holds, including
ownership of any object instance variables.

Accessor Methods 15
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Object Ownership and Disposal

If your class has object instance variables that it owns, you must implement a dealloc method that releases
them, and then invokes super’s implementation. For example, if the Thingamajig class had mainSprocket
and auxiliarySprocket instance variables, you would implement its dealloc method as follows:

- (void)dealloc {
 [mainSprocket release];
 [auxiliarySprocket release];
 [super dealloc];
}

Important: You should never invoke another object’s dealloc method directly.

You should not tie management of system resources to object lifetimes; see “Resource Management” (page
18).

When an application terminates, objects may not be sent a deallocmessage. Because the process’s memory
is automatically cleared on exit, it is more efficient simply to allow the operating system to clean up resources
than to invoke all the memory management methods.

Objects Returned by Reference

Some methods in Cocoa specify that an object is returned by reference (that is, ClassName ** or id *).
There are several examples that use an NSError object that contains information about an error if one occurs,
such as:

 ■ initWithContentsOfURL:options:error: (NSData)

 ■ initWithContentsOfFile:encoding:error: (NSString)

 ■ executeFetchRequest:error: (NSManagedObjectContext)

In these cases, the same rules apply as have already been described. When you invoke any of these methods,
you do not create the NSError object, so you do not own it—there is therefore no need to release it.

NSString *fileName = <#Get a file name#>;
NSError *error = nil;
NSString *string = [[NSString alloc] initWithContentsOfFile:fileName
 encoding:NSUTF8StringEncoding error:&error];
if (string == nil) {
 // deal with error ...
}
// ...
[string release];

If for any reason ownership of returned object does not follow the basic rules, this is stated explicitly in the
documentation for the method (see for example, dataFromPropertyList:format:errorDescription:).

16 Objects Returned by Reference
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Object Ownership and Disposal

Retain Cycles

In some situations, two objects may have cyclical references; that is, each object contains an instance variable
that refers to the other object. For example, consider a text program with the object relationships shown in
Figure 1 (page 17). The Document object creates a Page object for each page in the document. Each Page
object has an instance variable that keeps track of which document it is in. If the Document object retained
the Page object and the Page object retained the Document object, neither object would ever be released.
The Document’s reference count cannot become 0 until the Page object is released, and the Page object
won’t be released until the Document object is deallocated.

Figure 1 An illustration of retain cycles

text
parent

parent
paragraph

Paragraph

Page

page

Document

retain
don’t
retain

don’t
retain

retain

The solution to the problem of retain cycles is that the “parent” object should retain its “children,” but that
the children should not retain their parents. So, in Figure 1 (page 17) the document object retains its page
objects but the page object does not retain the document object. The child’s reference to its parent is an
example of a weak reference, which is described more fully in “Weak References to Objects” (page 17).

Weak References to Objects

Retaining an object creates a “strong” reference to that object. An object cannot be deallocated until all of
its strong references are released. An object’s lifetime is thereby determined by the owners of its strong
references. In some cases, this behavior may not be desired. You may want to have a reference to an object
without preventing the object from deallocating itself. For these cases, you can obtain a “weak” reference.
A weak reference is created by storing a pointer to an object without retaining the object.

Retain Cycles 17
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Object Ownership and Disposal

Weak references are essential in cases where a circular reference would otherwise be set up. For example, if
Object A and Object B communicate with each other, each needs a reference to the other. If each retains the
other, neither object ever gets deallocated until the connection is broken, but the connection is not broken
until one of the objects is deallocated. Catch-22. To break the circle, one object takes a subordinate role and
obtains a weak reference to the other. As a concrete example, in a view hierarchy, a parent view owns, and
hence retains, its child views, but a child view does not own its parent; the child still needs to know who its
parent is, so it keeps a weak reference to its parent.

Additional cases of weak references in Cocoa include, but are not restricted to, table data sources, outline
view items, notification observers, and miscellaneous targets and delegates.

Important: In Cocoa, references to table data sources, outline view items, notification observers, and delegates
are all considered weak (for example, an NSTableView object does not retain its data source and the
NSApplication object does not retain its delegate). The documentation only describes exceptions to this
convention.

You need to be careful about sending messages to objects for which you only hold a weak reference. If you
send a message to an object after it has been deallocated, your application will crash. You must have
well-defined conditions for when the object is valid. In most cases, the weak-referenced object is aware of
the other object’s weak reference to it, as is the case for circular references, and is responsible for notifying
the other object when it deallocates. For example, when you register an object with a notification center,
the notification center stores a weak reference to the object and sends messages to it when the appropriate
notifications are posted. When the object is deallocated, you need to unregister it with the notification center
to prevent the notification center from sending any further messages to the object, which no longer exists.
Likewise, when a delegate object is deallocated, you need to remove the delegate link by sending a
setDelegate: message with a nil argument to the other object. These messages are normally sent from
the object’s dealloc method.

Resource Management

You should typically not manage scarce resources such as file descriptors, network connections, and
buffers/caches in a deallocmethod. In particular, you should not design classes such that you are assuming
that dealloc will be invoked when you think it will be invoked. Invocation of dealloc might be delayed
or sidestepped, either because of a bug or because of application tear-down.

Instead, if you have a class whose instances manage scarce resources, you should design your application
such that you know when you no longer need the resources and can then tell the instance to “clean up” at
that point. You would typically then release the instance and dealloc would follow, but you will not suffer
additional problems if it does not.

Some of the problems that arise if you try to piggy-back resource management on top of dealloc include:

1. Order dependencies on object graph tear-down.

The object graph tear-down mechanism is inherently non-ordered. Although you might typically
expect—and get—a particular order, you are introducing fragility. If an object falls in an autorelease
pool unexpectedly, the tear-down order may change, which may lead to unexpected results.

2. Non-reclamation of scarce resources.

18 Resource Management
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Object Ownership and Disposal

Memory leaks are of course bugs that should be fixed, but they are generally not immediately fatal. If
scarce resources are not released when you expect them to be released, however, this can lead to much
more serious problems. If your application runs out of file descriptors, for example, the user may not be
able to save data.

3. Clean-up logic being executed on the wrong thread.

If an object falls into an autorelease pool at an unexpected time, it will be deallocated on whatever
thread’s pool it happens to be in. This can easily be fatal for resources that should only ever be touched
from one thread.

Resource Management 19
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Object Ownership and Disposal

20 Resource Management
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Object Ownership and Disposal

This article provides a practical perspective on memory management. It covers the fundamental concepts
described in “Object Ownership and Disposal” (page 11), but from a more code-oriented perspective.

Following a few simple rules can make memory management easy. Failure to adhere to the rules will almost
certainly lead at some point to memory leaks, or runtime exceptions due to messages being sent to freed
objects.

Basics

To keep memory consumption as low as possible in an application, you should get rid of objects that are not
being used, but you need to make sure that you don’t get rid of an object that is being used. You therefore
need a mechanism that allows you to mark an object as still being useful. In many respects, memory
management is thus best understood in terms of “object ownership.”

 ■ An object may have one or more owners.

By way of an analogy, consider a timeshare apartment.

 ■ When an object has no owners, it is destroyed.

To stretch the analogy, consider a timeshare complex that is not loved by the local population. If there
are no owners, the complex will be torn down.

 ■ To make sure an object you’re interested in is not destroyed, you must become an owner.

You can either build a new apartment, or take a stake in an existing one.

 ■ To allow an object in which you’re no longer interested to be destroyed, you relinquish ownership.

You can sell your timeshare apartment.

To support this model, Cocoa provides a mechanism called “reference counting” or “retain counting.” Every
object has a retain count. An object is created with a retain count of 1. When the retain count drops to 0, an
object is deallocated (destroyed). You manipulate the retain count (take and relinquish ownership) using a
variety of methods:

alloc
Allocates memory for an object, and returns it with retain count of 1.

You own objects you create using any method that starts with the word alloc or with the word new.

copy
Makes a copy of an object, and returns it with retain count of 1.

If you copy an object, you own the copy. This applies to any method that contains the word copy
where “copy” refers to the object being returned.

Basics 21
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Practical Memory Management

retain
Increases the retain count of an object by 1.

Takes ownership of an object.

release
Decreases the retain count of an object by 1.

Relinquishes ownership of an object.

autorelease
Decreases the reference count of an object by 1 at some stage in the future.

Relinquishes ownership of an object at some stage in the future.

The practical rules for memory management are as follows (see also “Memory Management Rules” (page
9)):

 ■ You only own objects you created using a method whose name begins with “alloc” or “new” or contains
“copy” (for example, alloc, newObject, or mutableCopy), or if you send it a retain message.

Many classes provide methods of the form +className... that you can use to obtain a new instance
of the class. Often referred to as “convenience constructors”, these methods create a new instance of
the class, initialize it, and return it for you to use. You do not own objects returned from convenience
constructors, or from other accessor methods.

 ■ Once you have finished with an object that you own, you should relinquish ownership using release
or autorelease.

Typically you should userelease rather thanautorelease. You useautoreleaseonly when immediate
deallocation of the object would be inappropriate, for example you are returning an object from a
method. (Note: this does not imply that release necessarily results in deallocation of an object—it will
only do so if the retain count drops to 0 as a result—but it might do, and sometimes you need to guard
against that: see “Returning Objects from Methods” (page 26) for an example.)

 ■ Implement a dealloc method to release the instance variables you own.

 ■ You should never invoke dealloc directly (other than when you invoke super’s implementation in a
custom dealloc method).

Simple Examples

The following simple examples illustrate the contrast between creating a new object using alloc, using a
convenience constructor, and using an accessor method.

The first example creates a new string object using alloc. It must therefore be released.

- (void)printHello {
 NSString *string;
 string = [[NSString alloc] initWithString:@"Hello"];
 NSLog(string);
 [string release];
}

The second example creates a new string object using a convenience constructor. There is no additional
work to do.

22 Simple Examples
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Practical Memory Management

- (void)printHello {
 NSString *string;
 string = [NSString stringWithFormat:@"Hello"];
 NSLog(string);
}

The third example retrieves a string object using an accessor method. As with the convenience constructor,
there is no additional work to do.

- (void)printWindowTitle {
 NSString *string;
 string = [myWindow title];
 NSLog(string);
}

Using Accessor Methods

Sometimes it might seem tedious or pedantic, but if you use accessor methods consistently the chances of
having problems with memory management decrease considerably. If you are using retain and release
on instance variables throughout your code, you are almost certainly doing the wrong thing.

Consider a Counter object whose count you want to set.

@interface Counter : NSObject {
 NSNumber *count;
}

To get and set the count, you define two accessor methods. (The following examples present a simple
perspective on accessor methods. They are described in greater detail in “Accessor Methods” (page 35).) In
the get accessor, you just pass back a variable so there is no need for retain or release:

- (NSNumber *)count {
 return count;
}

In the set method, if everyone else is playing by the same rules you have to assume the new count may be
disposed of at any time so you have to take ownership of the object—by sending it a retain message—to
ensure it won’t be. You must also relinquish ownership of the old count object here by sending it a release
message. (Sending a message to nil is allowed in Objective-C, so this will still work if count hasn't yet been
set.) You must send this after [newCount retain] in case the two are the same object—you don't want
to inadvertently cause it to be deallocated.

- (void)setCount:(NSNumber *)newCount {
 [newCount retain];
 [count release];
 // make the new assignment
 count = newCount;
}

The only places you shouldn’t use accessor methods to set an instance variable are in init methods and
dealloc. To initialize a counter object with a number object representing zero, you might implement an
init method as follows:

- init {

Using Accessor Methods 23
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Practical Memory Management

 self = [super init];
 if (self) {
 count = [[NSNumber alloc] initWithInteger:0];
 }
 return self;
}

To allow a counter to be initialized with a count other than zero, you might implement an initWithCount:
method as follows:

- initWithCount:(NSNumber *)startingCount {
 self = [super init];
 if (self) {
 count = [startingCount copy];
 }
 return self;
}

Since the Counter class has an object instance variable, you must also implement a dealloc method. It
should relinquish ownership of any instance variables by sending them a release message, and ultimately
it should invoke super’s implementation:

- (void)dealloc {
 [count release];
 [super dealloc];
}

Implementing a reset method

Suppose you want to implement a method to reset the counter. You have a couple of choices. The first uses
a convenience constructor to create a new NSNumber object—there is therefore no need for any retain or
release messages. Note that both use the class’s set accessor method.

- (void)reset {
 NSNumber *zero = [NSNumber numberWithInteger:0];
 [self setCount:zero];
}

The second creates the NSNumber instance with alloc, so you balance that with a release.

- (void)reset {
 NSNumber *zero = [[NSNumber alloc] initWithInteger:0];
 [self setCount:zero];
 [zero release];
}

Common Mistakes

The following sections illustrate common mistakes.

24 Using Accessor Methods
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Practical Memory Management

Accessor not used

The following will almost certainly work correctly for simple cases, but tempting as it may be to eschew
accessor methods, doing so will almost certainly lead to a mistake at some stage (when you forget to retain
or release, or if your memory management semantics for the instance variable change).

- (void)reset {
 NSNumber *zero = [[NSNumber alloc] initWithInteger:0];
 [count release];
 count = zero;
}

Note also that if you are using key-value observing (see Key-Value Observing Programming Guide), then
changing the variable in this way is not KVO-compliant.

Instance leaks

- (void)reset {
 NSNumber *zero = [[NSNumber alloc] initWithInteger:0];
 [self setCount:zero];
}

The retain count of the new number is 1 (from alloc) and is not balanced by a release within the scope of
the method. The new number is unlikely ever to be freed, which will result in a memory leak.

Instance you don’t own is sent release

- (void)reset {
 NSNumber *zero = [NSNumber numberWithInteger:0];
 [self setCount:zero];
 [zero release];
}

Absent of any other invocations of retain, this will fail the next time you access count after the current
autorelease pool has been released. The convenience constructor method returns an autoreleased object,
so you don't have to send another release. Doing so will mean that when the release due to autorelease
is sent, it will reduce the retain count to 0, and the object will be freed. When you next access count you will
be sending a message to a freed object (typically you'll get a SIGBUS 10 error).

Cases which Often Cause Confusion

Using Collections

When you add an object to a collection such as an array, dictionary, or set, the collection takes ownership of
it. The collection will relinquish ownership when the object is removed from the collection or when the
collection is itself released. Thus, for example, if you want to create an array of numbers you might do either
of the following:

NSMutableArray *array;
NSUInteger i;

Cases which Often Cause Confusion 25
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Practical Memory Management

// ...
for (i = 0; i < 10; i++) {
 NSNumber *convenienceNumber = [NSNumber numberWithInteger:i];
 [array addObject:convenienceNumber];
}

In this case, you didn’t invoke alloc, so there’s no need to call release. There is no need to retain the new
numbers (convenienceNumber), since the array will do so.

NSMutableArray *array;
NSUInteger i;
// ...
for (i = 0; i < 10; i++) {
 NSNumber *allocedNumber = [[NSNumber alloc] initWithInteger: i];
 [array addObject:allocedNumber];
 [allocedNumber release];
}

In this case you do need to send allocedNumber a release message within the scope of the for loop to
balance the alloc. Since the array retained the number when it was added by addObject:, it will not be
deallocated while it’s in the array.

To understand this, put yourself in the position of the person who implemented the collection class. You
want to make sure that no objects you’re given to look after disappear out from under you, so you send them
a retain message as they’re passed in. If they’re removed, you have to send a balancing release message,
and any remaining objects should be sent a release message during your own dealloc method.

Returning Objects from Methods

When you return a local variable from a method, you must ensure both that you adhere to the memory
management rules, and that the receiver gets an opportunity to use the object before it’s deallocated. When
you return a newly-created object (that you own), you should relinquish ownership using autorelease
rather than release.

Consider a simple fullName method that concatenates firstName and lastName. One possible correct
implementation (from the memory management perspective—it still leaves much to be desired from a
functional perspective) would be as follows:

- (NSString *)fullName {
 NSString *string = [NSString stringWithFormat:@"%@ %@", firstName, lastName];
 return string;
}

Following the basic rules, you don’t own the string returned by stringWithFormat, so you can safely return
it from the method.

The following implementation is also correct:

- (NSString *)fullName {
 NSString *string = [[[NSString alloc] initWithFormat:@"%@ %@", firstName,
lastName] autorelease];
 return string;
}

26 Cases which Often Cause Confusion
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Practical Memory Management

You own the string returned by alloc, but you then send it an autoreleasemessage, thereby relinquishing
ownership before you lose the reference to it and satisfying the memory management rules again. It’s
important, thought, to appreciate that this implementation uses autorelease rather than release.

By contrast, the following is wrong:

- (NSString *)fullName {
 NSString *string = [[[NSString alloc] initWithFormat:@"%@ %@", firstName,
lastName] release];
 return string;
}

Purely from the perspective of memory management, it looks correct: you own the string returned by alloc,
and send it a releasemessage to relinquish ownership. From a practical perspective, however, in all likelihood
the string is also deallocated at that stage (it’s unlikely to have any other owners), so the method’s caller will
receive an invalid object. This shows why autorelease is useful in allowing you to defer release until some
point in the future.

For completeness, the following is also wrong:

- (NSString *)fullName {
 NSString *string = [[NSString alloc] initWithFormat:@"%@ %@", firstName,
lastName];
 return string;
}

You own the string returned by alloc, but lose the reference to it before you get a chance to relinquish
ownership. Following the memory management rules, this would result in a memory leak, since the caller
has no indication that they own the returned object.

Cases which Often Cause Confusion 27
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Practical Memory Management

28 Cases which Often Cause Confusion
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Practical Memory Management

This document contains information on fine-tuning your application’s handling of autorelease pools; see the
document “Object Ownership and Disposal” (page 11) for general information on using the autorelease
mechanism.

Overview of Autorelease Pools

An autorelease pool is an instance of NSAutoreleasePool that “contains” other objects that have received
an autorelease message; when the autorelease pool is deallocated it sends a release message to each
of those objects. An object can be put into an autorelease pool several times, and receives a releasemessage
for each time it was put into the pool. Thus, sending autorelease instead of release to an object extends
the lifetime of that object at least until the pool itself is released (the object may survive longer if it is retained
in the interim).

Cocoa always expects there to be an autorelease pool available. If a pool is not available, autoreleased objects
do not get released and you leak memory. If you send an autorelease message when a pool is not available,
Cocoa logs a suitable error message.

You create an NSAutoreleasePool object with the usual alloc and init messages, and dispose of it with
drain (an exception is raised if you send autorelease or retain to an autorelease pool—to understand
the difference between release or drain, see “Garbage Collection” (page 32)). An autorelease pool should
always be drained in the same context (invocation of a method or function, or body of a loop) in which it
was created.

Autorelease pools are arranged in a stack, although they are commonly referred to as being “nested.” When
you create a new autorelease pool, it is added to the top of the stack. When pools are deallocated, they are
removed from the stack. When an object is sent an autoreleasemessage, it is added to the current topmost
pool for the current thread.

The ability to nest autorelease pools means that you can include them in any function or method. For example,
a main function may create an autorelease pool and call another function that creates another autorelease
pool. Or a single method might have an autorelease pool for an outer loop, and another autorelease pool
for an inner loop. The ability to nest autorelease pools is a definite advantage, but there are side effects when
exceptions occur (see “Scope of Autorelease Pools and Implications of Nested Autorelease Pools” (page 31)).

The Application Kit automatically creates a pool at the beginning of an event cycle (or event-loop iteration),
such as a mouse down event, and releases it at the end, so your code normally does not have to worry about
them. There are three cases, though, where you might use your own autorelease pools:

 ■ If you are writing a program that is not based on the Application Kit, such as a command-line tool, there
is no built-in support for autorelease pools; you must create them yourself.

 ■ If you spawn a secondary thread, you must create your own autorelease pool as soon as the thread
begins executing; otherwise, you will leak objects. (See “Autorelease Pools and Threads” (page 31) for
details.)

Overview of Autorelease Pools 29
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Autorelease Pools

 ■ If you write a loop that creates many temporary objects, you may create an autorelease pool inside the
loop to dispose of those objects before the next iteration. This can help reduce the maximum memory
footprint of the application.

Autorelease pools are used “in line.” There should typically be no reason why you should make an autorelease
pool an instance variable of an object.

Autorelease Pools in Non-AppKit Programs

Enabling the autorelease mechanism in a program that is not based on the Application Kit is easy. You can
simply create an autorelease pool at the beginning of the main() function, and release it at the end—this
is the pattern used by the Foundation Tool template in Xcode. This establishes a pool for the lifetime of the
task. However, this also means that any autoreleased objects created during the lifetime of the task are not
disposed of until the task completes. This may lead to the task's memory footprint increasing unnecessarily.
You can also consider creating pools with a narrower scope.

Many programs have high-level loops where they do much of their work. To reduce peak memory footprint,
you can create an autorelease pool at the beginning of an iteration through this loop and drain it at the end.

Your main function might look like the code in Listing 1.

Listing 1 Example of a main function for a non-AppKit program

void main()
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 NSArray *args = [[NSProcessInfo processInfo] arguments];

 for (NSString *fileName in args) {

 NSAutoreleasePool *loopPool = [[NSAutoreleasePool alloc] init];

 NSError *error = nil;
 NSString *fileContents = [[[NSString alloc]
initWithContentsOfFile:fileName
 encoding:NSUTF8StringEncoding
error:&error] autorelease];

 /* Process the string, creating and autoreleasing more objects. */

 [loopPool drain];
 }

 /* Do whatever cleanup is needed. */
 [pool drain];

 exit (EXIT_SUCCESS);
}

30 Autorelease Pools in Non-AppKit Programs
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Autorelease Pools

The for loop processes one file at a time. An NSAutoreleasePool object is created at the beginning of
this loop and released at the end. Therefore, any object sent an autorelease message inside the loop (such
as fileContents) is added to loopPool, and when loopPool is released at the end of the loop those
objects are also released (typically resulting in their deallocation and thus reducing the program’s memory
footprint).

Autorelease Pools and Threads

Each thread in a Cocoa application maintains its own stack of NSAutoreleasePool objects. When a thread
terminates, it automatically releases all of the autorelease pools associated with itself. Autorelease pools are
automatically created and destroyed in the main thread of applications based on the Application Kit, so your
code normally does not have to deal with them there. If you are making Cocoa calls outside of the Application
Kit's main thread, however, you need to create your own autorelease pool. This is the case if you are writing
a Foundation-only application or if you detach a thread.

If your application or thread is long-lived and potentially generates a lot of autoreleased objects, you should
periodically destroy and create autorelease pools (like the Application Kit does on the main thread); otherwise,
autoreleased objects accumulate and your memory footprint grows. If your detached thread does not make
Cocoa calls, you do not need to create an autorelease pool.

Note: If you create secondary threads using the POSIX thread APIs instead of NSThread, you cannot use
Cocoa—including NSAutoreleasePool—unless Cocoa is in multithreading mode. Cocoa enters
multithreading mode only after detaching its first NSThread object. To use Cocoa on secondary POSIX
threads, your application must first detach at least one NSThread object, which can immediately exit. You
can test whether Cocoa is in multithreading mode with the NSThread class method isMultiThreaded.

Scope of Autorelease Pools and Implications of Nested Autorelease
Pools

It is common to speak of autorelease pools as being nested because of the enclosure evident in code, as
illustrated in Listing 1 (page 30). But you can also think of nested autorelease pools as being on a stack, with
the “innermost” autorelease pool being on top of the stack. As noted earlier, this is actually how nested
autorelease pools are implemented: Each thread in a program maintains a stack of autorelease pools. When
you create an autorelease pool, it is pushed onto the top of the current thread’s stack. When an object is
autoreleased—that is, when an object is sent an autoreleasemessage or when it is passed as the argument to
the addObject: class method—it is always put in the autorelease pool at the top of the stack.

The scope of an autorelease pool is therefore defined by its position in the stack and the simple fact of its
existence. The topmost pool is the pool to which autoreleased objects are added. If another pool is created,
the current topmost pool effectively goes out of scope until the new pool is released (at which point the
original pool once again becomes the topmost pool). It (obviously) goes out of scope permanently when it
is itself released.

If you release an autorelease pool that is not the top of the stack, this causes all (unreleased) autorelease
pools above it on the stack to be released, along with all their objects. If you neglect to send release to an
autorelease pool when you are finished with it (something not recommended), it is released when one of
the autorelease pools in which it nests is released.

Autorelease Pools and Threads 31
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Autorelease Pools

This behavior has implications for exceptional conditions. If an exception occurs, and the thread suddenly
transfers out of the current context, the pool associated with that context is released. However, if that pool
is not the top pool on the thread’s stack, all the pools above the released pool are also released (releasing
all their objects in the process). The top autorelease pool on the thread’s stack then becomes the pool
previously underneath the released pool associated with the exceptional condition. Because of this behavior,
exception handlers do not need to release objects that were sent autorelease. Neither is it necessary or
even desirable for an exception handler to send release to its autorelease pool, unless the handler is
re-raising the exception.

Guaranteeing the Foundation Ownership Policy

By creating an autorelease pool instead of simply releasing objects, you extend the lifetime of temporary
objects to the lifetime of that pool. After an autorelease pool is deallocated, you should regard any object
that was autoreleased while that pool was active as “disposed of”, and not send a message to that object or
return it to the invoker of your method.

If you must use a temporary object beyond an autorelease context, you can do so by sending a retain
message to the object within the context and then send it autorelease after the pool has been released
as in:

– (id)findMatchingObject:(id)anObject
{
 id match = nil;

 while (match == nil) {
 NSAutoreleasePool *subPool = [[NSAutoreleasePool alloc] init];

 /* Do a search that creates a lot of temporary objects. */
 match = [self expensiveSearchForObject:anObject];

 if (match != nil) {
 [match retain]; /* Keep match around. */
 }
 [subPool release];
 }

 return [match autorelease]; /* Let match go and return it. */
}

By sending retain to match while subpool is in effect and sending autorelease to it after subpool has
been released, match is effectively moved from subpool to the pool that was previously active. This extends
the lifetime of match and allows it to receive messages outside the loop and be returned to the invoker of
findMatchingObject:.

Garbage Collection

Although the garbage collection system (described in Garbage Collection Programming Guide) does not use
autorelease pools per se, autorelease pools can be useful in providing hints to the collector if you are
developing a hybrid framework (that is, one that may be used in garbage-collected and reference-counted
environments).

32 Guaranteeing the Foundation Ownership Policy
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Autorelease Pools

Autorelease pools are released when you want to relinquish ownership of the objects that have been added
to the pool. This frequently has the effect of disposing of temporary objects that have accumulated up to
that point—for example, at the end of the event cycle, or during a loop when you create a large number of
temporary objects. These are typically also points at which it might be useful to hint to the garbage collector
that collection is likely to be warranted.

In a garbage collected environment, release is a no-op. NSAutoreleasePool therefore provides a drain
method that in a reference-counted environment behaves the same as calling release, but which in a
garbage collected environment triggers garbage collection (if the memory allocated since the last collection
is greater than the current threshold). Typically, therefore, you should use drain rather than release to
dispose of an autorelease pool.

Garbage Collection 33
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Autorelease Pools

34 Garbage Collection
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Autorelease Pools

This article describes why you should use accessor methods, and how you should declare and implement
them.

One of the principal reasons for using accessor methods is encapsulation (see “Encapsulation” inObject-Oriented
Programmingwith Objective-C). In a reference counted environment, a particular benefit is that they can take
care of most of the basic memory management for your classes.

Declaring Accessor Methods

You should typically use the Objective-C declared properties feature to declare accessor methods, for example:

@property (copy) NSString *firstName;
@property (readonly) NSString *fullName;
@property (retain) NSDate *birthday;
@property NSInteger luckyNumber;

The declaration makes explicit the memory management semantics for the property.

Implementing Accessor Methods

In many cases you can (and should) avoid implementing your own accessor methods by using the Objective-C
declared properties feature and asking the compiler to synthesize accessor methods for you:

@synthesize firstName;
@synthesize fullName;
@synthesize birthday;
@synthesize luckyNumber;

Even if you need to provide your own implementation, you should declare accessors using a declared
property—you must ensure, of course, that your implementation meets the specification you give. (Note in
particular that by default a declared property is atomic; if you don’t provide an atomic implementation, you
should specify nonatomic in the declaration.)

For simple object values, there are, broadly speaking, three ways to implement the accessors:

1. Getter retains and autoreleases the value before returning it; setter releases the old value and retains
(or copies) the new value.

2. Getter returns the value; setter autoreleases the old value and retains (or copies) the new value.

3. Getter returns the value; setter releases the old value and retains (or copies) the new value.

Declaring Accessor Methods 35
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Accessor Methods

Technique 1

In technique 1, values returned by the getter are autoreleased within the calling scope:

- (NSString*) title {
 return [[title retain] autorelease];
}

- (void) setTitle: (NSString*) newTitle {
 if (title != newTitle) {
 [title release];
 title = [newTitle retain]; // Or copy, depending on your needs.
 }
}

Because the object returned from the get accessor is autoreleased in the current scope, it remains valid if
the property value is changed. This makes the accessor more robust, but at the cost of additional overhead.
If you expect your getter method to be called frequently, the added cost of retaining and autoreleasing the
object may not be worth the performance cost.

Technique 2

Like technique 1, technique 2 also uses an autorelease technique, but this time does so in the setter method:

- (NSString*) title {
 return title;
}

- (void) setTitle: (NSString*) newTitle {
 [title autorelease];
 title = [newTitle retain]; // Or copy, depending on your needs.
}

The performance of technique 2 is significantly better than technique 1 in situations where the getter is
called much more often than the setter.

Technique 3

Technique 3 avoids the use of autorelease altogether:

- (NSString*) title {
 return title;
}

- (void) setTitle: (NSString*) newTitle {
 if (newTitle != title) {
 [title release];
 title = [newTitle retain]; // Or copy, depending on your needs.
 }
}

36 Implementing Accessor Methods
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Accessor Methods

The approach used by technique 3 is good for frequently called getter and setter methods. It is also good
for objects that do not want to extend the lifetime of their values, such as collection classes. Its disadvantage
is that the old value may be deallocated immediately (if there are no other owners), which will cause a
problem if another object is maintaining a non-owning reference to it. For example:

NSString *oldTitle = [anObject title];
[anObject setTitle:@"New Title"];
NSLog(@"Old title was: %@", oldTitle);

If anObject was the only object that owned the original title string, then the string will be deallocated after
the new title is set. The log statement would then cause a crash as oldTitle is a freed object.

Value Objects and Copying

It is common practice in Objective-C code to copy value objects—objects that represent attributes. C-type
variables can usually be substituted for value objects, but value objects have the advantage of encapsulating
convenient utilities for common manipulations. For example, NSString objects are used instead of character
pointers because they encapsulate encoding and storage.

When value objects are passed as method arguments or returned from a method, it is common to use a copy
instead of the object itself. For example, consider the following method for assigning a string to an object’s
name instance variable.

- (void)setName:(NSString *)aName {
 [name autorelease];
 name = [aName copy];
}

Storing a copy of aName has the effect of producing an object that is independent of the original, but has
the same contents. Subsequent changes to the copy don’t affect the original, and changes to the original
don’t affect the copy. Similarly, it is common to return a copy of an instance variable instead of the instance
variable itself. For example, this method returns a copy of the name instance variable:

- (NSString *)name {
 return [[name copy] autorelease];
}

Value Objects and Copying 37
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Accessor Methods

38 Value Objects and Copying
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Accessor Methods

This article describes two approaches to implementing the NSCopying protocol’s copyWithZone: method
for the purpose of copying objects.

There are two basic approaches to creating copies by implementing the NSCopying protocol’s
copyWithZone: method. You can use alloc and init..., or you can use NSCopyObject. To choose the
one that is right for your class, you need to consider the following questions:

 ■ Do I need a deep or shallow copy?

 ■ Do I inherit NSCopying behavior from my superclass?

These are described in the following sections.

Deep Versus Shallow Copies

Generally, copying an object involves creating a new instance and initializing it with the values in the original
object. Copying the values for non-pointer instance variables, such as booleans, integers, and floating points,
is straightforward. When copying pointer instance variables there are two approaches. One approach, called
a shallow copy, copies the pointer value from the original object into the copy. Thus, the original and the
copy share referenced data. The other approach, called a deep copy, duplicates the data referenced by the
pointer and assigns it to the copy’s instance variable.

The implementation of an instance variable’s set method should reflect the kind of copying you need to use.
You should deeply copy the instance variable if the corresponding set method copies the new value as in
this method:

- (void)setMyVariable:(id)newValue
{
 [myVariable autorelease];
 myVariable = [newValue copy];
}

You should shallowly copy the instance variable if the corresponding set method retains the new value as
illustrated by this method:

- (void)setMyVariable:(id)newValue
{
 [myVariable autorelease];
 myVariable = [newValue retain];
}

Similarly, you should shallowly copy the instance variable if its set method simply assigns the new value to
the instance variable without copying or retaining it as in the following example—although this is typically
rare:

Deep Versus Shallow Copies 39
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Implementing Object Copy

- (void)setMyVariable:(id)newValue
{
 myVariable = newValue;
}

Independent Copy

To produce a copy of an object that is truly independent of the original, the entire object must be deeply
copied. Every instance variable must be duplicated. If the instance variables themselves have instance variables,
those too must be duplicated, and so on. In many cases, a mixed approach is more useful. Pointer instance
variables that can be thought of as data containers are generally deeply copied, while more sophisticated
instance variables like delegates are shallowly copied.

@interface Product : NSObject <NSCopying>
{
 NSString *productName;
 float price;
 id delegate;
}

@end

For example, a Product class adopts NSCopying. Product instances have a name, a price, and a delegate as
declared in this interface.

Copying a Product instance produces a deep copy of productName because it represents a flat data value.
On the other hand, the delegate instance variable is a more complex object capable of functioning properly
for both Products. The copy and the original should therefore share the delegate. Figure 1 (page 40) represents
the images of a Product instance and a copy in memory.

Figure 1 Copying instance variables both shallowly and deeply

original 0xf2ae4

isa 0x8028
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
productName 0xe81f4
price 0.00
delegate 0xe83c8

The different pointer values for productName illustrate that the original and the copy each have their own
productName string object. The pointer values for delegate are the same, indicating that the two product
objects share the same object as their delegate.

Inheriting NSCopying from the Superclass

If the superclass does not implement NSCopying, your class’s implementation has to copy the instance
variables it inherits as well as those declared in your class. Generally, the safest way to do this is by using
alloc, init..., and set methods.

40 Deep Versus Shallow Copies
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Implementing Object Copy

On the other hand, if your class inherits NSCopying behavior and has declared additional instance variables,
you need to implement copyWithZone:, too. In this method, invoke the superclass’s implementation to
copy inherited instance variables and then copy the additional instance variables. How you handle the new
instance variables depends on your familiarity with the superclass’s implementation. If the superclass used
or might have used NSCopyObject, you must handle instance variables differently than you would if alloc
and init... were used.

Using the “alloc, init...” Approach

If a class does not inherit NSCopying behavior, you should implement copyWithZone: using alloc,
init..., and set methods. For example, an implementation of copyWithZone: for the Product class
described in “Independent Copy” (page 40) might be implemented in the following way:

- (id)copyWithZone:(NSZone *)zone
{
 Product *copy = [[[self class] allocWithZone: zone]
 initWithProductName:[self productName]
 price:[self price]];
 [copy setDelegate:[self delegate]];

 return copy;
}

Because implementation details associated with inherited instance variables are encapsulated in the superclass,
it is generally better to implement NSCopying with the alloc, init... approach. Doing so uses policy
implemented in set methods to determine the kind of copying needed of instance variables.

Using NSCopyObject()

When a class inherits NSCopying behavior, you must consider the possibility that the superclass’s
implementation uses the NSCopyObject function. NSCopyObject creates an exact shallow copy of an object
by copying instance variable values but not the data they point to. For example, NSCell's implementation
of copyWithZone: could be defined in the following way:

- (id)copyWithZone:(NSZone *)zone
{
 NSCell *cellCopy = NSCopyObject(self, 0, zone);
 /* Assume that other initialization takes place here. */

 cellCopy->image = nil;
 [cellCopy setImage:[self image]];

 return cellCopy;
}

In the implementation above, NSCopyObject creates an exact shallow copy of the original cell. This behavior
is desirable for copying instance variables that are not pointers or are pointers to non-retained data that is
shallowly copied. Pointer instance variables for retained objects need additional treatment.

Using the “alloc, init...” Approach 41
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Implementing Object Copy

In the copyWithZone: example above, image is a pointer to a retained object. The policy to retain the image
is reflected in the following implementation of the setImage: accessor method.

- (void)setImage:(NSImage *)anImage
{
 [image autorelease];
 image = [anImage retain];
}

Notice that setImage: autoreleases image before it reassigns it. If the above implementation of
copyWithZone: had not explicitly set the copy’s image instance variable to nil before invoking setImage:,
the image referenced by the copy and the original would be released without a corresponding retain.

Even though image points to the right object, it is conceptually uninitialized. Unlike the instance variables
that are created with alloc and init..., these uninitialized variables are not nil-valued. You should
explicitly assign initial values to these variables before using them. In this case, cellCopy’s image instance
variable is set to nil, then it is set using the setImage: method.

The effects of NSCopyObject extend to a subclass’s implementation. For example, an implementation of
NSSliderCell could copy a new titleCell instance variable in the following way.

- (id)copyWithZone:(NSZone *)zone
{
 id cellCopy = [super copyWithZone:zone];
 /* Assume that other initialization takes place here. */

 cellCopy->titleCell = nil;
 [cellCopy setTitleCell:[self titleCell]];

 return cellCopy;
}

where it is assumed the super’s copyWithZone: method does something like this:

id copy = [[[self class] allocWithZone: zone] init];

The superclass’s copyWithZone: method is invoked to copy inherited instance variables. When you invoke
a superclass’s copyWithZone: method, assume that new object instance variables are uninitialized if there
is any chance that the superclass implementation uses NSCopyObject. Explicitly assign a value to them
before using them. In this example, titleCell is explicitly set to nil before setTitleCell: is invoked.

The implementation of an object’s retain count is another consideration when using NSCopyObject. If an
object stores its retain count in an instance variable, the implementation of copyWithZone: must correctly
initialize the copy’s retain count. Figure 2 (page 43) illustrates the process.

42 Using NSCopyObject()
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Implementing Object Copy

Figure 2 Initialization of the reference count during a copy

original 0xf2ae4

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 1
productName 0xe81f4
price 0.00
delegate 0xe83c8

The copy produced by
NSCopyObject

The copy after unitialized
instance variables are assigned
in copyWithZone:

The first object in Figure 2 (page 43) represents a Product instance in memory. The value in refCount
indicates that the instance has been retained three times. The second object is a copy of the Product instance
produced with NSCopyObject. Its refCount value matches the original. The third object represents the
copy returned from copyWithZone: after refCount is correctly initialized. After copyWithZone: creates
the copy with NSCopyObject, it assigns the value 1 to the refCount instance variable. The sender of
copyWithZone: implicitly retains the copy and is responsible for releasing it.

Copying Mutable Versus Immutable Objects

Where the concept “immutable vs. mutable” applies to an object, NSCopying produces immutable copies
whether the original is immutable or not. Immutable classes can implement NSCopying very efficiently.
Since immutable objects don’t change, there is no need to duplicate them. Instead, NSCopying can be
implemented to retain the original. For example, copyWithZone: for an immutable string class can be
implemented in the following way.

- (id)copyWithZone:(NSZone *)zone {
 return [self retain];
}

Use the NSMutableCopying protocol to make mutable copies of an object. The object itself does not need
to be mutable to support mutable copying. The protocol declares the method mutableCopyWithZone:.
Mutable copying is commonly invoked with the convenience NSObject method mutableCopy, which
invokes mutableCopyWithZone: with the default zone.

Copying Mutable Versus Immutable Objects 43
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Implementing Object Copy

44 Copying Mutable Versus Immutable Objects
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Implementing Object Copy

A number of Core Foundation and Cocoa instances can simply be type-cast to each other, such as CFString
and NSString objects. This document explains how to manage Core Foundation objects in Cocoa. See
“Object Ownership and Disposal” (page 11) for general information on object ownership.

Important: This article describes using Cocoa and Core Foundation in a reference counted environment.
The semantics are different if you are using garbage collection—see Garbage Collection Programming Guide.

Core Foundation's memory allocation policy is that you need to release values returned by functions with
“Copy” or “Create” in their name; you should not release values returned by functions that do not have “Copy”
or “Create” in their name.

The conventions used by both Core Foundation and Cocoa are very similar, and because the
allocation/retain/release implementations are compatible—equivalent functions and methods from each
environment can be used in an intermixed fashion. So,

NSString *str = [[NSString alloc] initWithCharacters: ...];
...
[str release];

is equivalent to

CFStringRef str = CFStringCreateWithCharacters(...);
 ...
CFRelease(str);

and

NSString *str = (NSString *)CFStringCreateWithCharacters(...);
 ...
[str release];

and

 NSString *str = (NSString *)CFStringCreateWithCharacters(...);
 ...
[str autorelease];

As these code samples show, once created, the type-casted objects can be treated as Cocoa or Core Foundation
and look “native” in each environment.

45
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Memory Management of Core Foundation
Objects in Cocoa

46
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Memory Management of Core Foundation Objects in Cocoa

At various points in a Cocoa application’s runtime life, one or more nib files are loaded and the objects they
contain are unarchived. Responsibility for releasing those objects when they are no longer needed depends
on which platform you are developing for, and, on Mac OS X, which class your File’s Owner inherits from.

For a basic discussion of nib files and their memory management semantics, as well as definitions of nib-related
terms such as “outlet,” “File’s Owner,” and “top-level object,” see “Nib Files” in Resource Programming Guide.

Outlets

When a nib file is loaded and outlets established, the nib-loading mechanism always uses accessor methods
if they are present (on both Mac OS X and iOS). Therefore, whichever platform you develop for, you should
typically declare outlets using the Objective-C declared properties feature.

The general form of the declaration should be:

@property (attributes) IBOutlet UserInterfaceElementClass *anOutlet;

The behavior of outlets depends on the platform (see “Mac OS X” (page 47) and “iOS” (page 48)), so the
actual declaration differs:

 ■ For Mac OS X, you should use:

@property (assign) IBOutlet UserInterfaceElementClass *anOutlet;

 ■ For iOS, you should use:

@property (nonatomic, retain) IBOutlet UIUserInterfaceElementClass *anOutlet;

You should then either synthesize the corresponding accessor methods, or implement them according to
the declaration, and (in iOS) release the corresponding variable in dealloc.

This pattern also works if you use the modern runtime and synthesize the instance variables, so it remains
consistent across all situations.

Mac OS X

The File’s Owner of a nib file is by default responsible for releasing the top-level objects in a nib file as well
as any non-object resources created by the objects in the nib. The release of the root object of an object
graph sets in motion the release of all dependent objects. The File’s Owner of an application’s main nib file
(which contains the application menu and possibly other items) is the global application object NSApp.

Outlets 47
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Memory Management of Nib Objects

However, when a Cocoa application terminates, top level objects in the main nib do not automatically get
dealloc messages just because NSApp is being deallocated (see also “Deallocating an Object” (page 15)).
In other words, even in the main nib file, you have to manage the memory of top-level objects.

The Application Kit offers a couple of features that help to ensure that nib objects are properly released:

 ■ NSWindow objects (including panels) have an isReleasedWhenClosed attribute, which if set to YES
instructs the window to release itself (and consequently all dependent objects in its view hierarchy)
when it is closed. In Interface Builder, you set this option through the “Release when closed” check box
in the Attributes pane of the inspector.

 ■ If the File’s Owner of a nib file is an NSWindowController object (the default in document nibs in
document-based applications—recall that NSDocumentmanages an instance of NSWindowController),
it automatically disposes of the windows it manages.

So in general, you are responsible for releasing top-level objects in a nib file. But in practice, if your nib file’s
owner is an instance of NSWindowController it releases the top-level object for you. If one of your objects
loads the nib itself (and the owner is not an instance of NSWindowController), you can define outlets to
each top-level object so that at the appropriate time you can release them using those references. If you
don’t want to have outlets to all top-level objects, you can use the
instantiateNibWithOwner:topLevelObjects: method of the NSNib class to get an array of a nib file’s
top-level objects.

The issue of responsibility for nib object disposal becomes clearer when you consider the various kinds of
applications. Most Cocoa applications are of two kinds: single window applications and document-based
applications. In both cases, memory management of nib objects is automatically handled for you to some
degree. With single-window applications, objects in the main nib file persist through the runtime life of the
application and are released when the application terminates; however, dealloc is not guaranteed to be
automatically invoked on objects from the main nib file when an application terminates. In document-based
applications each document window is managed by an NSWindowController object which handles memory
management for a document nib file.

Some applications may have a more complex arrangement of nib files and top-level objects. For example,
an application could have multiple nib files with multiple window controllers, loadable panels, and inspectors.
But in most of these cases, if you use NSWindowController objects to manage windows and panels or if
you set the “released when closed” window attribute, memory management is largely taken care of. If you
decide against using window controllers and do not want to set the “release when closed” attribute, you
should explicitly free your nib file’s windows and other top-level objects when the window is closed. Also, if
your application uses an inspector panel, (after being lazily loaded) the panel should typically persist
throughout the lifetime of the application—there is no need to dispose of the inspector and its resources.

iOS

Top-Level Objects

Objects in the nib file are created with a retain count of 1 and then autoreleased. As it rebuilds the object
hierarchy, UIKit reestablishes connections between the objects using setValue:forKey:, which uses the
available setter method or retains the object by default if no setter method is available. This means that
(assuming you follow the pattern shown in “Outlets” (page 47)) any object forwhich youhave anoutlet remains

48 iOS
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Memory Management of Nib Objects

valid. If there are any top-level objects you do not store in outlets, however, you must retain either the array
returned by the loadNibNamed:owner:options: method or the objects inside the array to prevent those
objects from being released prematurely.

Memory Warnings

When a view controller receives a memory warning (didReceiveMemoryWarning), it should relinquish
ownership of resources that are currently not needed and that can be recreated later if required. One such
resource is the view controller's view itself. If it does not have a superview, the view is disposed of (in its
implementation of didReceiveMemoryWarning, UIViewController invokes [self setView:nil]).

Since outlets to elements within the nib file are typically retained (see “Outlets” (page 47)), however, even
though the main view is disposed of, absent any further action the outlets are not disposed of. This is not in
and of itself a problem—if and when the main view is reloaded, they will simply be replaced—but it does
mean that the beneficial effect of the didReceiveMemoryWarning is reduced. To ensure that you properly
relinquish ownership of outlets, in your custom view controller class you can implement viewDidUnload
to invoke your accessor methods to set outlets to nil.

- (void)viewDidUnload {
 self.anOutlet = nil;
 [super viewDidUnload];
}

Note: On iOS prior to 3.0, the viewDidUnload method is not available. Instead you should set outlets to
nil in setView:, as illustrated in this example:

- (void)setView:(UIView *)aView {
 if (!aView) { // View is being set to nil.
 // Set outlets to nil, e.g.
 self.anOutlet = nil;
 }
 // Invoke super's implementation last.
 [super setView:aView];
}

In addition, because of a detail of the implementation of dealloc in UIViewController, you should also
set outlet variables to nil in dealloc:

- (void)dealloc {
 // Release outlets and set outlet variables to nil.
 [anOutlet release], anOutlet = nil;
 [super dealloc];
}

iOS 49
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Memory Management of Nib Objects

50 iOS
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Memory Management of Nib Objects

This table describes the changes to Memory Management Programming Guide.

NotesDate

Minor rewording to memory management fundamental rule, to emphasize
simplicity. Minor additions to Practical Memory Management.

2010-06-24

Updated the description of handling memory warnings for iPhone OS 3.0;
partially rewrote "Object Ownership and Disposal."

2010-02-24

Augmented section on accessor methods in Practical Memory Management.2009-10-21

Added links to related concepts.2009-08-18

Updated guidance for declaring outlets on Mac OS X.2009-07-23

Corrected typographical errors.2009-05-06

Corrected typographical errors.2009-03-04

Updated "Nib Objects" article.2009-02-04

Added section on use of autorelease pools in a garbage collected environment.2008-11-19

Corrected missing image.2008-10-15

Corrected a broken link to the "Carbon-Cocoa Integration Guide."2008-02-08

Corrected typographical errors.2007-12-11

Updated for Mac OS X v10.5. Corrected minor typographical errors.2007-10-31

Corrected minor typographical errors.2007-06-06

Corrected typographical errors.2007-05-03

Added article on memory management of nib files.2007-01-08

Added a note about dealloc and application termination.2006-06-28

Reorganized articles in this document to improve flow; updated "Object
Ownership and Disposal."

2006-05-23

Clarified discussion of object ownership and dealloc. Moved discussion of
accessor methods to a separate article.

2006-03-08

Corrected typographical errors. Updated title from "Memory Management."2006-01-10

51
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Document Revision History

NotesDate

Changed Related Topics links and updated topic introduction.2004-08-31

Expanded description of what gets released when an autorelease pool is released
to include both explicitly and implicitly autoreleased objects in “Autorelease
Pools” (page 29).

2003-06-06

Added link in “Memory Management of Core Foundation Objects in Cocoa” (page
45) to Integrating Carbon and Cocoa in Your Application.

2003-06-03

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

52
2010-06-24 | © 2010 Apple Inc. All Rights Reserved.

Document Revision History

	Memory Management Programming Guide
	Contents
	Figures and Listings
	Introduction
	Memory Management Rules
	Object Ownership and Disposal
	Object Ownership Policy
	Behind the Scenes: Retain Counts
	Autorelease
	Validity of Shared Objects
	Accessor Methods
	Deallocating an Object
	Objects Returned by Reference
	Retain Cycles
	Weak References to Objects
	Resource Management

	Practical Memory Management
	Basics
	Simple Examples
	Using Accessor Methods
	Implementing a reset method
	Common Mistakes
	Accessor not used
	Instance leaks
	Instance you don’t own is sent release

	Cases which Often Cause Confusion
	Using Collections
	Returning Objects from Methods

	Autorelease Pools
	Overview of Autorelease Pools
	Autorelease Pools in Non-AppKit Programs
	Autorelease Pools and Threads
	Scope of Autorelease Pools and Implications of Nested Autorelease Pools
	Guaranteeing the Foundation Ownership Policy
	Garbage Collection

	Accessor Methods
	Declaring Accessor Methods
	Implementing Accessor Methods
	Technique 1
	Technique 2
	Technique 3

	Value Objects and Copying

	Implementing Object Copy
	Deep Versus Shallow Copies
	Independent Copy
	Inheriting NSCopying from the Superclass

	Using the “alloc, init...” Approach
	Using NSCopyObject()
	Copying Mutable Versus Immutable Objects

	Memory Management of Core Foundation Objects in Cocoa
	Memory Management of Nib Objects
	Outlets
	Mac OS X
	iOS
	Top-Level Objects
	Memory Warnings

	Revision History

