
Exception Programming Topics
Data Management: Event Handling

2010-02-24

Apple Inc.
© 2002, 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Objective-C, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Exception Programming Topics for Cocoa 7

Organization of This Document 7
See Also 8

Exceptions and the Cocoa Frameworks 9

Handling Exceptions 11

Handling Exceptions Using Compiler Directives 11
Exception Handling and Memory Management 14
Handling Exceptions Using Macros 16

Throwing Exceptions 19

Nesting Exception Handlers 21

Nested Exception Handlers With Compiler Directives 21
Nested Exception Handlers With Exception Macros 22

Uncaught Exceptions 25

Predefined Exceptions 27

Controlling a Program’s Response to Exceptions 29

Application Errors 29
Debugging Aids 30
Printing Symbolic Stack Traces 31

Exceptions in 64-Bit Executables 35

Zero-Cost @try Blocks 35
C++ Interoperability 35

Document Revision History 37

3
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

4
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Handling Exceptions 11

Figure 1 Flow of exception handling using compiler directives 12
Figure 2 Flow of exception handling using macros 17
Listing 1 Handling an exception using compiler directives 13
Listing 2 Converting an exception into an error 13
Listing 3 Sequence of exception handlers 14
Listing 4 Releasing an autorelease pool containing an exception object 16

Nesting Exception Handlers 21

Figure 1 Control flow with nested exception handlers—using directives 22
Figure 2 Control flow with nested exception handlers—using macros 23
Listing 1 Throwing and rethrowing an exception 21
Listing 2 Raising and re-raising an exception 22

Controlling a Program’s Response to Exceptions 29

Table 1 Exception-handling constants and defaults values 29
Table 2 Debugging constants and defaults values 30
Listing 1 A method that prints a symbolic back trace of an exception 32
Listing 2 Content of NSExceptionHandler log plus atos output 32

5
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

6
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

This document discusses how to raise and handle exceptions: special conditions that interrupt the normal
flow of program execution. The Objective-C directives and Foundation API for exceptions are available on
iOS and Mac OS X.

Important: You should reserve the use of exceptions for programming or unexpected runtime errors such
as out-of-bounds collection access, attempts to mutate immutable objects, sending an invalid message, and
losing the connection to the window server. You usually take care of these sorts of errors with exceptions
when an application is being created rather than at runtime.

If you have an existing body of code (such as third-party library) that uses exceptions to handle error conditions,
you may use the code as-is in your Cocoa application. But you should ensure that any expected runtime
exceptions do not escape from these subsystems and end up in the caller’s code. For example, a parsing
library might use exceptions internally to indicate problems and enable a quick exit from a parsing state that
could be deeply recursive; however, you should take care to catch such exceptions at the top level of the
library and translate them into an appropriate return code or state.

Instead of exceptions, error objects (NSError) and the Cocoa error-delivery mechanism are the recommended
way to communicate expected errors in Cocoa applications. For further information, see Error Handling
Programming Guide.

Organization of This Document

This document contains the following articles:

 ■ “Exceptions and the Cocoa Frameworks” (page 9) describes NSException objects and their general
use with the Cocoa frameworks.

 ■ “Handling Exceptions” (page 11) describes how to handle an exception using the compiler directives
@try, @catch, and @finally and the legacy macros NS_DURING, NS_HANDLER, and NS_ENDHANDLER..

 ■ “Throwing Exceptions” (page 19) describes how to throw (raise) an exception.

 ■ “Nesting Exception Handlers” (page 21) describes how exception handlers can be nested.

 ■ “Predefined Exceptions” (page 27) describes where to find exceptions defined by Cocoa.

 ■ “Uncaught Exceptions” (page 25) describes what happens to an exception not caught by an exception
handler.

 ■ “Controlling a Program’s Response to Exceptions” (page 29) describes how to use the Exception Handling
framework for monitoring and controlling the behavior of Cocoa programs in response to various types
of exceptions.

 ■ “Exceptions in 64-Bit Executables” (page 35) describes zero-cost @try blocks and C++ interoperability
in 64-bit executables.

Organization of This Document 7
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Introduction to Exception Programming
Topics for Cocoa

See Also

For information on originating, handling, and recovering from expected runtime errors, see Error Handling
ProgrammingGuide. Also see the related document,Assertions and LoggingProgrammingGuide, for information
on the Foundation framework's support for making assertions and logging error information.

8 See Also
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Introduction to Exception Programming Topics for Cocoa

Exceptions in Cocoa are represented by objects of the NSException class, which is part of the Foundation
framework. The methods of this class allow you to create exception objects, raise (throw) exceptions with
them, and get the call return addresses related to an exception. The attributes of an NSException object
are the following:

 ■ A name — a short string that is used to uniquely identify the exception. The name is required.

 ■ A reason — a longer string that contains a “human-readable” reason for the exception. The reason is
required.

 ■ An optional dictionary (userInfo) used to supply application-specific data to the exception handler.
For example, if the return value of a method causes an exception to be raised, you could pass the return
value to the exception handler through userInfo.

You may extract the information in an exception object and, if appropriate, present to the user in an alert
dialog, perhaps using an NSError object. See “Handling Exceptions” (page 11) for information on this subject.

The Cocoa frameworks require that all exceptions be instances of NSException or its subclasses. Do not
throw objects of other types.

The Cocoa frameworks are generally not exception-safe. The general pattern is that exceptions are reserved
for programmer error only, and the program catching such an exception should quit soon afterwards.

9
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Exceptions and the Cocoa Frameworks

10
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Exceptions and the Cocoa Frameworks

The exception handling mechanisms available to Objective-C programs are effective ways of dealing with
exceptional conditions. They decouple the detection and handling of these conditions and automate the
propagation of the exception from the point of detection to the point of handling. As a result, your code can
be much cleaner, easier to write correctly, and easier to maintain.

The following sections describe how to handle exceptions using compiler directives or, for appropriate
projects, the legacy mechanism of exception-handling macros.

Important: The Objective-C compiler directives discussed below were introduced in Mac OS X v10.3. An
application that uses these directives for exception handling cannot run on earlier versions of the operating
system.

Handling Exceptions Using Compiler Directives

Starting with version 3.3 of the GNU Compiler Collection (GCC), the compiler provides runtime support for
exception handling. To turn on this support, make sure the -fobj-exceptions flag is turned on; this is
enabled through the Enable Objective-C Exceptions build option in Xcode.

The compiler support for exceptions is based on four compiler directives:

 ■ @try —Defines a block of code that is an exception handling domain: code that can potentially throw
an exception.

 ■ @catch() —Defines a block containing code for handling the exception thrown in the @try block. The
parameter of @catch is the exception object thrown locally; this is usually an NSException object, but
can be other types of objects, such as NSString objects.

 ■ @finally — Defines a block of related code that is subsequently executed whether an exception is
thrown or not.

 ■ @throw — Throws an exception; this directive is almost identical in behavior to the raise method of
NSException. You usually throw NSException objects, but are not limited to them. For more information
about @throw, see “Throwing Exceptions” (page 19).

Handling Exceptions Using Compiler Directives 11
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Handling Exceptions

Important: Although you can throw and catch objects other than NSException objects, the Cocoa
frameworks themselves might only catch NSException objects for some conditions. So if you throw other
types of objects, the Cocoa handlers for that exception might not run, with undefined results. (Conversely,
non-NSException objects that you throw could be caught by some Cocoa handlers.) For these reasons, it
is recommended that you throw NSException objects only, while being prepared to catch exception objects
of all types..

The @try, @catch, and @finally directives constitute a control structure. The section of code between the
braces in @try is the exception handling domain; the code in a @catch block is a local exception handler;
the @finally block of code is a common “housekeeping” section. In Figure 1, the normal flow of program
execution is marked by the gray arrow; the code within the local exception handler is executed only if an
exception is thrown—either by the local exception handling domain or one further down the call sequence.
The throwing (or raising) of an exception causes program control to jump to the first executable line of the
local exception handler. After the exception is handled, control “falls through” to the @finally block; if no
exception is thrown, control jumps from the @try block to the @finally block.

Figure 1 Flow of exception handling using compiler directives

Method

Exception handling domain

Local exception handler

...
@try {
 if (/*error*/) {
 @throw exception;
 }
}
@catch (NSException *exception) {
 [self handleException:exception];
}
@finally {
 [self cleanup];
}

Where and how an exception is handled depends on the context where the exception was raised (although
most exceptions in most programs go uncaught until they reach the top-level handler installed by the shared
NSApplication or UIApplication object). In general, an exception object is thrown (or raised) within the
domain of an exception handler. Although you can throw an exception directly within a local exception
handling domain, an exception is more likely thrown (through @throw or raise) indirectly from a method
invoked from the domain. No matter how deep in a call sequence the exception is thrown, execution jumps
to the local exception handler (assuming there are no intervening exception handlers, as discussed in “Nesting
Exception Handlers” (page 21)). In this way, exceptions raised at a low level can be caught at a high level.

Listing 1 illustrates how you might use the @try, @catch, and @finally compiler directives. In this example,
the @catch block handles any exception thrown lower in the calling sequence as a consequence of the
setValue:forKeyPath: message by setting the affected property to nil instead. The message in the
@finally block is sent whether an exception is thrown or not.

12 Handling Exceptions Using Compiler Directives
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Handling Exceptions

Listing 1 Handling an exception using compiler directives

- (void)endSheet:(NSWindow *)sheet
{
 BOOL success = [predicateEditorView commitEditing];
 if (success == YES) {

 @try {
 [treeController setValue:[predicateEditorView predicate]
forKeyPath:@"selection.predicate"];
 }

 @catch (NSException *e) {
 [treeController setValue:nil forKeyPath:@"selection.predicate"];
 }

 @finally {
 [NSApp endSheet:sheet];
 }
 }
}

One way to handle exceptions is to “promote” them to error messages that either inform users or request
their intervention. You can convert an exception into an NSError object and then present the information
in the error object to the user in an alert panel. In Mac OS X, you could also hand this object over to the
Application Kit’s error-handling mechanism for display to users. You can also return them indirectly in methods
that include an error parameter. Listing 2 shows an example of the latter in an Automator action’s
implementation of runWithInput:fromAction:error: (in this case the error parameter is a pointer to
an NSDictionary object rather than an NSError object).

Listing 2 Converting an exception into an error

- (id)runWithInput:(id)input fromAction:(AMAction *)anAction error:(NSDictionary
 **)errorInfo {

 NSMutableArray *output = [NSMutableArray array];
 NSString *actionMessage = nil;
 NSArray *recipes = nil;
 NSArray *summaries = nil;

 // other code here....

 @try {
 if (managedObjectContext == nil) {
 actionMessage = @"accessing user recipe library";
 [self initCoreDataStack];
 }
 actionMessage = @"finding recipes";
 recipes = [self recipesMatchingSearchParameters];
 actionMessage = @"generating recipe summaries";
 summaries = [self summariesFromRecipes:recipes];
 }
 @catch (NSException *exception) {
 NSMutableDictionary *errorDict = [NSMutableDictionary dictionary];
 [errorDict setObject:[NSString stringWithFormat:@"Error %@: %@",
actionMessage, [exception reason]] forKey:OSAScriptErrorMessage];
 [errorDict setObject:[NSNumber numberWithInt:errOSAGeneralError]
forKey:OSAScriptErrorNumber];

Handling Exceptions Using Compiler Directives 13
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Handling Exceptions

 *errorInfo = errorDict;
 return input;
 }

 // other code here
}

Note: For more on the Application Kit’s error-handling mechanisms, see Error Handling Programming Guide.
To learn more about Automator actions, see Automator Programming Guide.

You can have a sequence of @catch error-handling blocks. Each block handles an exception object of a
different type. You should order this sequence of @catch blocks from the most-specific to the least-specific
type of exception object (the least specific type being id), as shown in Listing 3. This sequencing allows you
to tailor the processing of exceptions as groups.

Listing 3 Sequence of exception handlers

@try {
 // code that throws an exception
 ...
}
@catch (CustomException *ce) { // most specific type
 // handle exception ce
 ...
}
@catch (NSException *ne) { // less specific type
 // do whatever recovery is necessary at his level
 ...
 // rethrow the exception so it's handled at a higher level
 @throw;
}
@catch (id ue) { // least specific type
 // code that handles this exception
 ...
}
@finally {
 // perform tasks necessary whether exception occurred or not
 ...
}

Note: You cannot use the setjmp and longjmp functions if the jump entails crossing an @try block. Since
the code that your program calls may have exception-handling domains within it, avoid using setjmp and
longjmp in your application. However, you may use goto or return to exit an exception handling domain.

Exception Handling and Memory Management

Using the exception-handling directives of Objective-C can complicate memory management, but with a
little common sense you can avoid the pitfalls. To see how, let’s begin with the simple case: a method that,
for the sake of efficiency, creates an object, uses it, and then releases it explicitly:

- (void)doSomething {

14 Exception Handling and Memory Management
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Handling Exceptions

 NSMutableArray *anArray = [[NSMutableArray alloc] initWithCapacity:0];
 [self doSomethingElse:anArray];
 [anArray release];
}

The problem here is obvious: If the doSomethingElse: method throws an exception there is a memory
leak. But the solution is equally obvious: Move the release to a @finally block:

- (void)doSomething {
 NSMutableArray *anArray = nil;
 array = [[NSMutableArray alloc] initWithCapacity:0];
 @try {
 [self doSomethingElse:anArray];
 }
 @finally {
 [anArray release];
 }
}

This pattern of using @try...@finally to release objects involved in an exception applies to other resources
as well. If you have malloc’d blocks of memory or open file descriptors, @finally is a good place to free
those; it’s also the ideal place to unlock any locks you’ve acquired.

Another, more subtle memory-management problem is over-releasing an exception object when there are
internal autorelease pools. Almost all NSException objects (and other types of exception objects) are
created autoreleased, which assigns them to the nearest (in scope) autorelease pool. When that pool is
released, the exception is destroyed. A pool can be either released directly or as a result of an autorelease
pool further down the stack (and thus further out in scope) being popped (that is, released). Consider this
method:

- (void)doSomething {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 NSMutableArray *anArray = [[[NSMutableArray alloc] initWithCapacity:0]
autorelease];
 [self doSomethingElse:anArray];
 [pool release];
}

This code appears to be sound; if the doSomethingElse: message results in a thrown exception, the local
autorelease pool will be released when a lower (or outer) autorelease pool on the stack is popped. But there
is a potential problem. As explained in “Throwing Exceptions” (page 19), a rethrown exception causes its
associated @finally block to be executed as an early side effect. If an outer autorelease pool is released in
a @finally block, the local pool could be released before the exception is delivered, resulting in a “zombie”
exception.

There are several ways to resolve this problem. The simplest is to refrain from releasing local autorelease
pools in @finally blocks. Instead let a pop of a deeper pool take care of releasing the pool holding the
exception object. However, if no deeper pool is ever popped as the exception propagates up the stack, the
pools on the stack will leak memory; all objects in those pools remain unreleased until the thread is destroyed.

An alternative approach would be to catch any thrown exception, retain it, and rethrow it . Then, in the
@finally block, release the autorelease pool and autorelease the exception object. Listing 4 shows how
this might look in code.

Exception Handling and Memory Management 15
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Handling Exceptions

Listing 4 Releasing an autorelease pool containing an exception object

- (void)doSomething {
 id savedException = nil;
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 NSMutableArray *anArray = [[[NSMutableArray alloc] initWithCapacity:0]
autorelease];
 @try {
 [self doSomethingElse:anArray];
 }
 @catch (NSException *theException) {
 savedException = [theException retain];
 @throw;
 }
 @finally {
 [pool release];
 [savedException autorelease];
 }
}

Doing this retains the thrown exception across the release of the interior autorelease pool—the pool the
exception was put into on its way out of doSomethingElse:—and ensures that it is autoreleased in the
next autorelease pool outward to it in scope (or, in another perspective, the autorelease pool below it on
the stack). For things to work correctly, the release of the interior autorelease pool must occur before the
retained exception object is autoreleased.

Handling Exceptions Using Macros

An exception handler is contained within a control structure created by the macros NS_DURING, NS_HANDLER,
and NS_ENDHANDLER, as shown in Figure 2.

16 Handling Exceptions Using Macros
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Handling Exceptions

Important: The exception macros are a legacy mechanism that should only be used when binary compatibility
with versions of of the operating system prior to Mac OS X v10.3 is a concern.

Figure 2 Flow of exception handling using macros

Method

Exception handling domain

Local exception handler

...
NS_DURING
 ...
if(/”error”/) {
 [anException raise];
}
 ...
NS_HANDLER
 ...
NS_ENDHANDLER
...
return;

The section of code between NS_DURING and NS_HANDLER is the exception handling domain; the section
between NS_HANDLER and NS_ENDHANDLER is the local exception handler. The normal flow of program
execution is marked by the gray arrow; the code within the local exception handler is executed only if an
exception is raised. Sending a raise message to an exception object causes program control to jump to the
first executable line following NS_HANDLER.

Although you can raise an exception directly within the exception handling domain, raise is more often
invoked indirectly from a method invoked from the domain. No matter how deep in a call sequence the
exception is raised, execution jumps to the local exception handler (assuming there are no intervening
exception handlers, as discussed in “Nesting Exception Handlers” (page 21)). In this way, exceptions raised
at a low level can be caught at a high level.

For example, in the following program excerpt, the local exception handler displays an alert dialog after
detecting an exception having the name MyAppException. The local exception handler has access to the
raised exception object through a local variable localException.

NS_DURING
 ...
 if (someError)
 [anException raise];
 ...
NS_HANDLER
 if ([[localException name] isEqualToString:MyAppException]) {
 NSRunAlertPanel(@"Error Panel", @"%@", @"OK", nil, nil,
 localException);
 }
 [localException raise]; /* Re-raise the exception. */
NS_ENDHANDLER

Handling Exceptions Using Macros 17
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Handling Exceptions

You may leave the exception handling domain (the section of code between NS_DURING and NS_HANDLER)
by:

 ■ Raising an exception.

 ■ Calling NS_VALUERETURN()

 ■ Calling NS_VOIDRETURN

 ■ “Falling off the end”

The above example raises an exception when someError is YES. Alternatively, you can return control to the
caller from within the exception handling domain by calling either NS_VALUERETURN() or NS_VOIDRETURN.
“Falling off the end” is simply the normal path of execution—after all statements in the exception handling
domain are executed, execution continues on the line following NS_ENDHANDLER.

Note: You cannot use goto or return to exit an exception handling domain—errors will result. Nor can
you use the setjmp and longjmp functions if the jump entails crossing an NS_DURING statement. Since the
code that your program calls may have exception-handling domains within it, avoid using setjmp and
longjmp in your application.

Similarly, you can leave the local exception handler (the section of code between NS_HANDLER and
NS_ENDHANDLER) by raising an exception or simply “falling off the end”.

18 Handling Exceptions Using Macros
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Handling Exceptions

Once your program detects an exception, it must propagate the exception to code that handles it. This code
is called the exception handler. This entire process of propagating an exception is referred to as "throwing
an exception” (or "raising an exception"). You throw (or raise) an exception by instantiating an NSException
object and then doing one of two things with it:

 ■ Using it as the argument of a @throw compiler directive

 ■ Sending it a raise message

Important: The @throw compiler directives was introduced in Mac OS X v10.3. An application that uses this
directive for throwing exceptions cannot run on earlier versions of the operating system.

The following example shows how you throw an exception using the @throw directive (the raise alternative
is commented out):

NSException* myException = [NSException
 exceptionWithName:@"FileNotFoundException"
 reason:@"File Not Found on System"
 userInfo:nil];
@throw myException;
// [myException raise]; /* equivalent to above directive */

An important difference between @throw and raise is that the latter can be sent only to an NSException
object whereas @throw can take other types of objects as its argument (such as string objects). However,
because higher-level handlers in the Application Kit might use the exception-handling macros—and thus
can only deal with NSException objects—Cocoa applications should @throw only NSException objects.

Typically you throw or raise an exception inside an exception-handling domain, which is a block of code
marked off by one of the two sets of Cocoa APIs intended for exception handling:

 ■ The NS_DURING and NS_HANDLER macros (when developing for Mac OS X v10.2 and earlier).

 ■ The block of code marked off by the @try compiler directive. (@catch and @finally are the other
directives in this set.)

See “Handling Exceptions” (page 11) for details.

Within exception handling domains you can re-propagate exceptions caught by local exception handlers to
higher-level handlers either by sending the NSException object another raisemessage or by using it with
another @throw directive. Note that in @catch exception-handling blocks you can rethrow the exception
without explicitly specifying the exception object, as in the following example:

@try {
 NSException *e = [NSException
 exceptionWithName:@"FileNotFoundException"
 reason:@"File Not Found on System"
 userInfo:nil];

19
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Throwing Exceptions

 @throw e;
}
@catch(NSException *e) {
 @throw; // rethrows e implicitly
}

There is a subtle aspect of behavior involving rethrown exceptions. The @finally block associated with the
local @catch exception handler is executed before the @throw causes the next-higher exception handler to
be invoked. In a sense, the @finally block is executed as an early side effect of the @throw statement. This
behavior has implications for memory management (see “Exception Handling and Memory Management
” (page 14)).

20
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Throwing Exceptions

Exception handlers can be nested so that an exception raised in an inner domain can be treated by the local
exception handler and any number of encompassing exception handlers. This design allows an exception
to be handled by code that, although it is further from the code actually generating the exception ,might
have more knowledge about the conditions leading to the exception.

You can nest exception handlers using both the @try...@catch...@finally directives and the
NS_DURING...NS_HANDLER...NS_ENDHANDLER macros. There are some subtle differences in these
mechanisms between the flow of program control from inner exception handler to outer exception handler,
so the following sections discuss them separately.

Important: The compiler directives discussed below were introduced in Mac OS X v10.3. An application that
uses these directives for exception handling cannot run on earlier versions of the operating system.

Nested Exception Handlers With Compiler Directives

To understand how nested exception handlers defined with the compiler directives are invoked, consider
the code fragment in Listing 1.

Listing 1 Throwing and rethrowing an exception

@try {
 // ...
 if (someError) {
 NSException *theException = [NSException exceptionWithName:MyAppException
 reason:@"Some error just occurred!" userInfo:nil];
 @throw theException;
 }
}
@catch (NSException *exception) {
 if ([[exception name] isEqualToString:MyAppException]) {
 NSRunAlertPanel(@"Error Panel", @"%@", @"OK", nil, nil,
 localException);
 }
 @throw; // rethrow the exception
}
@finally {
 [self cleanUp];
}

In this code the exception (exception) is thrown again at the end of the local handler, allowing an
encompassing exception handler to take some additional action. Figure 1 illustrates the flow of program
control between nested exception handlers created with the @catch directive.

Nested Exception Handlers With Compiler Directives 21
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Nesting Exception Handlers

Figure 1 Control flow with nested exception handlers—using directives

UncaughtException Handler

Method 1
Method 2

Method 3
...
@try {
 ...
 @throw exception;
 ...
}
@catch (id e) {
 ...
 @throw;
}
@finally {
...
}

...
@try {
 ...
 Function3();
 ...
}
@catch (id e) {
 ...
 @throw;
}
@finally {
...
}

...
@try {
 ...
 Function2();
 ...
}
@catch (id e) {
 ...
 @throw;
}
@finally {
...
}

An exception raised within Method 3's domain causes execution to jump to its local exception handler. In a
typical application, this exception handler queries the exception object to determine the nature of the
exception. The local handler may handle exception types that it recognizes and then may rethrow the
exception object to pass notification of the exception to the handler nested above it—that is, the handler
in Method 2. However, before the next outer exception handler is invoked, the code in the @finally block
associated with the local exception handler is executed. (This has implications for memory management, as
discussed in “Exception Handling and Memory Management ” (page 14).)

An exception that is rethrown appears to the next higher handler just as if the initial exception had been
raised within its own exception handling domain. Method 2's exception handler again may handle the
exception and may rethrow the exception to Method 1's exception handler; Method 1’s handler does not
receive the rethrown exception until Method 2’s @finally block completes its task. Finally, Method 1’s
handler rethrows the exception. Because there is no exception handling domain above Method 1, the
exception passes to the uncaught exception handler (see “Uncaught Exceptions” (page 25)).

Nested Exception Handlers With Exception Macros

You program should use the exception-handling macros if it must be compatible with versions of the operating
system prior to Mac OS X v10.3. If you are using the exception-handling macros, the code equivalent to that
in Listing 1 (page 21) would look something like Listing 2.

Listing 2 Raising and re-raising an exception

NS_DURING
 ...
 if (someError) {

22 Nested Exception Handlers With Exception Macros
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Nesting Exception Handlers

 NSException *theException = [NSException exceptionWithName:MyAppException
 reason:@"Some error just occurred!" userInfo:nil];
 [theException raise];
 }
 [self cleanUp];
NS_HANDLER
 if ([[localException name] isEqualToString:MyAppException]) {
 NSRunAlertPanel(@"Error Panel", @"%@", @"OK", nil, nil,
 localException);
 }
 [self cleanUp];
 [localException raise]; /* Re-raise the exception. */
NS_ENDHANDLER

In this code the exception (exception or localException) is raised again at the end of the local handler,
allowing an encompassing exception handler to take some additional action. Figure 2 illustrates the use of
nested exception handlers, and is discussed in the text that follows.

Figure 2 Control flow with nested exception handlers—using macros

UncaughtException Handler

Method 1
Method 2

Method 3
...
NS_DURING
 ...
 [...raise];
 ...
NS_HANDLER
 ...
 [localException raise];
NS_ENDHANDLER
...
return;

...
NS_DURING
 ...
 Function3();
 ...
NS_HANDLER
 ...
 [localException raise];
NS_ENDHANDLER
...
return;

...
NS_DURING
 ...
 Function2();
 ...
NS_HANDLER
 ...
 [localException raise];
NS_ENDHANDLER
...
return;

An exception raised within Method 3’s domain causes execution to jump to its local exception handler. In a
typical application, this exception handler checks the object localException to determine the nature of
the exception. For exception types that it recognizes, the local handler responds and then may send raise
to localException to pass notification of the exception to the handler above, the handler in Method 2.
(An exception that is re-raised appears to the next higher handler just as if the initial exception had been
raised within its own exception handling domain.) Method 2’s exception handler does the same and then
re-raises the exception to Method 1’s handler. Finally, Method 1’s handler re-raises the exception. Since there
is no exception handling domain above Method 1, the exception is transferred to the uncaught exception
handler (see “Uncaught Exceptions” (page 25)).

Nested Exception Handlers With Exception Macros 23
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Nesting Exception Handlers

24 Nested Exception Handlers With Exception Macros
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Nesting Exception Handlers

If an exception is not caught, it is intercepted by a function called the uncaught exception handler. The
uncaught exception handler always causes the program to exit but may perform some task before this
happens.

The default uncaught exception handler logs a message to the console before it exits the program. On Mac
OS X, if the application was launched from the shell, the log messages are sent to the Terminal window.

You can set a custom function as the uncaught exception handler using the
NSSetUncaughtExceptionHandler function; you can obtain the current uncaught exception handler with
the NSGetUncaughtExceptionHandler function.

Note: Exceptions on the main thread of a Cocoa application do not typically rise to the level of the uncaught
exception handler because the global application object catches all such exceptions.

25
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Uncaught Exceptions

26
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Uncaught Exceptions

Cocoa predefines a number of generic exception names to identify exceptions that you can handle in your
own code or even raise and re-raise. You can also create and use custom exception names. The generic
exception names are string constants defined in NSException.h and documented in Foundation Constants
Reference. These constants include the following:

 ■ NSGenericException

 ■ NSRangeException

 ■ NSInvalidArgumentException

 ■ NSInternalInconsistencyException

 ■ NSObjectInaccessibleException

 ■ NSObjectNotAvailableException

 ■ NSDestinationInvalidException

 ■ NSPortTimeoutException

 ■ NSInvalidSendPortException

 ■ NSInvalidReceivePortException

 ■ NSPortSendException

 ■ NSPortReceiveException

In addition to the generic exception names, some subsystems of Cocoa define their own exception names,
such as NSInconsistentArchiveException and NSFileHandleOperationException. These are also
documented in Foundation Constants Reference.

You can identify caught exceptions in your exception handler by comparing the exception's name with these
predefined names. Then you can either handle the exception or, if it isn't one you are interested in, re-raise
it. Note that all predefined exceptions begin with the prefix "NS", so you should avoid using the same prefix
when creating new exception names.

27
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Predefined Exceptions

28
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Predefined Exceptions

This document describes some user defaults and the API of the Exception Handling framework that you can
use to control the behavior of applications in response to certain types of errors.

To use the services of the Exception Handling framework in your Cocoa project (whether application or
non-application), add ExceptionHandling.framework in /System/Library/Frameworks to your Xcode
project. Also insert the following import directive in the header or implementation file of the class that uses
the framework:

#import <ExceptionHandling/NSExceptionHandler.h>

Important: The Exception Handing framework is not available on iOS.

The services described below are made possible through an uncaught exception handler set by the Exception
Handling framework. These services won't be available if a custom uncaught exception handler is set through
the NSSetUncaughtExceptionHandler function.

Application Errors

Certain types of application errors typically cause Cocoa applications to exit abruptly. You can use a user
default, NSExceptionHandlingMask, to control this behavior (for Application Kit-based applications only)
for three of the most common classes of such errors:

 ■ uncaught NSExceptions;

 ■ system-level exceptions (such as invalid memory accesses)

 ■ Objective-C runtime errors (such as messages sent to freed objects).

For these error types you can set NSExceptionHandlingMask to do one of the following actions:

 ■ Print a descriptive log and a stack trace to the console when such an error occurs.

 ■ Handle the error in such a way as to prevent the resulting abrupt termination,

 ■ Do both of the above.

You construct the mask by adding the values corresponding to the types of errors to be logged or handled:

Table 1 Exception-handling constants and defaults values

Value for defaultsConstantType of Action

1NSLogUncaughtExceptionMaskLog uncaught NSExceptions

2NSHandleUncaughtExceptionMaskHandle uncaught NSExceptions

Application Errors 29
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Controlling a Program’s Response to
Exceptions

Value for defaultsConstantType of Action

4NSLogUncaughtSystemExceptionMaskLog system-level exceptions

8NSHandleUncaughtSystemExceptionMaskHandle system-level exceptions

16NSLogUncaughtRuntimeErrorMaskLog runtime errors

32NSHandleUncaughtRuntimeErrorMaskHandle runtime errors

Thus, if you enter the following on the command line (in the Terminal application):

defaults write NSGlobalDomain NSExceptionHandlingMask 63

you cause the logging and handling behavior described above for all uncaught exceptions, system-level
exceptions, and runtime errors in all applications.

The word "handle" in the exception-handling constants has a specific meaning depending on the type of
exception. The Exception Handling framework handles system-level exceptions and runtime errors by
converting them into NSException objects. These exception objects contain a stack trace in their
userInfodictionary under the key NSStackTraceKey. The framework handles uncaught NSException
objects by terminating the thread in which they occur. Exceptions on the main thread of a Cocoa application
are caught by the top-level handlers, which are usually installed by the Application Kit.

Instead of the NSExceptionHandlingMask user default, you can use the setExceptionHandlingMask:
method of the Exception Handling framework to get the same exception-handling behavior. For both
application and non-application Cocoa executables, link against the Exception Handling framework and send
the following message:

[[NSExceptionHandler defaultExceptionHandler] setExceptionHandlingMask: aMask]

The aMask parameter is a bit mask composed by bitwise-ORing the constants listed in the table above. See
the header files of the Exception Handling framework for more details on the NSExceptionHandler API.

Debugging Aids

For debugging purposes, it is also possible to use the same mechanisms to report on NSExceptions that
would otherwise be caught. You can also use either the NSExceptionHandlingMask property of the
defaults system for this purpose or the setExceptionHandlingMask:method of the NSExceptionHandler
class. The related constants and values are listed in the following table:

Table 2 Debugging constants and defaults values

Value for
defaults

ConstantType of Action

64NSLogTopLevelExceptionMaskLog exceptions that would be caught by the top-level
exception handlers in NSApplication. See note below.

128NSHandleTopLevel-
ExceptionMask

Handle exceptions that would be caught by the
top-level exception handlers in NSApplication

30 Debugging Aids
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Controlling a Program’s Response to Exceptions

Value for
defaults

ConstantType of Action

256NSLogOtherExceptionMaskLog exceptions that will be caught at lower levels

512NSHandleOtherExceptionMaskHandle exceptions that will be caught at lower levels

Note: When exception-handling domains are nested, log exceptions that make it to the top two levels. On
the main thread of a Cocoa application, this means log exceptions caught by NSApp.

In these cases, handling an exception means nothing more than adding a stack trace to its userInfo
dictionary under the key NSStackTraceKey. Note that caught exceptions should be logged or handled only
for debugging, not under normal circumstances, because doing so may generate large amounts of output,
or alter the normal behavior of applications.

For further debugging purposes, you can change the handling behavior for any condition handled by
NSExceptionHandler so that the application is instead halted so a debugger can be attached. You can control
this behavior with summed values for the NSExceptionHangingMask user default or with the bit mask
passed into the setExceptionHangingMask: of the NSExceptionHandler class. The following table lists
the valid constants and defaults values:

Value for
defaults

ConstantType of Action

1NSHangOnUncaughtExceptionMaskHang for uncaught exceptions

2NSHangOnUncaughtSystemExceptionMaskHang for system-level exceptions

4NSHangOnUncaughtRuntimeErrorMaskHang for runtime errors

8NSHangOnTopLevelExceptionMaskHang for top-level caught exceptions

16NSHangOnOtherExceptionMaskHang for other caught exceptions

Printing Symbolic Stack Traces

As a aid to debugging, you can use the atos command-line utility to convert numeric stack traces into
symbolic form. (See the atos(1) man page for details of this command-line utility.)

Note: You must install the Developer Tools package to have the atos utility installed. Also, the NSException
class provides the callStackReturnAddresses, which you can use for debugging in a manner similar to
atos.

Instead of switching between Xcode an a Terminal shell, you can add code to your program that uses atos
to print a symbolic stack trace to the console. Listing 1 shows how you do this. The method
printStackTrace: extracts the (numeric) stack trace from the passed-in NSException object and then

Printing Symbolic Stack Traces 31
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Controlling a Program’s Response to Exceptions

constructs an NSTask object that represents the atos command with the stack trace as a parameter. It
launches the subtask and the resulting symbolic backtrace is printed to standard output (which is the run
log in Xcode).

Listing 1 A method that prints a symbolic back trace of an exception

- (BOOL)exceptionHandler:(NSExceptionHandler *)sender
shouldLogException:(NSException *)exception mask:(unsigned int)mask
{
 [self printStackTrace:exception];
 return YES;
}

- (void)printStackTrace:(NSException *)e
{
 NSString *stack = [[e userInfo] objectForKey:NSStackTraceKey];
 if (stack) {
 NSTask *ls = [[NSTask alloc] init];
 NSString *pid = [[NSNumber numberWithInt:[[NSProcessInfo processInfo]
processIdentifier]] stringValue];
 NSMutableArray *args = [NSMutableArray arrayWithCapacity:20];

 [args addObject:@"-p"];
 [args addObject:pid];
 [args addObjectsFromArray:[stack componentsSeparatedByString:@" "]];
 // Note: function addresses are separated by double spaces, not a single
 space.

 [ls setLaunchPath:@"/usr/bin/atos"];
 [ls setArguments:args];
 [ls launch];
 [ls release];

 } else {
 NSLog(@"No stack trace available.");
 }
}

In this example, the delegate invokes the printStackTrace: method in its implementation of
exceptionHandler:shouldLogException:mask:; at this point, the exception is being handled, but has
not yet caused termination of the debugged executable. The output of the atos utility, when combined
with the NSExceptionHandler log information, looks similar to Listing 2.

Listing 2 Content of NSExceptionHandler log plus atos output

2006-08-21 12:18:19.727 ExceptionHandleTest[916] NSExceptionHandler has recorded
 the following exception:
NSInvalidArgumentException -- *** -[NSCFString count]: selector not recognized
 [self = 0x2a00c]
Stack trace: 0x9275c27b 0x92782fd7 0x9280b0be 0x9272f207 0x90a51ba1
0x0002995f 0x00023f81 0x00001ca6 0x00001bcd 0x00000001
__NSRaiseError (in Foundation)
+[NSException raise:format:] (in Foundation)
-[NSObject doesNotRecognizeSelector:] (in Foundation)
-[NSObject(NSForwardInvocation) forward::] (in Foundation)
__objc_msgForward (in libobjc.A.dylib)
-[ExceptionTest testException] (in ExceptionHandleTest) (ExceptionTest.m:31)

32 Printing Symbolic Stack Traces
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Controlling a Program’s Response to Exceptions

_main (in ExceptionHandleTest) (ExceptionHandleTest.m:10)
start (in ExceptionHandleTest)
start (in ExceptionHandleTest)
0x00000001 (in ExceptionHandleTest)

There are other ways of accomplishing the same result. For example, the method that prints the symbolic
stack trace could be on a category added to NSException instead of a method of the delegate’s class.

Printing Symbolic Stack Traces 33
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Controlling a Program’s Response to Exceptions

34 Printing Symbolic Stack Traces
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Controlling a Program’s Response to Exceptions

The Objective-C runtime has reimplemented the exception mechanism for 64-bit executables to provide
zero-cost @try blocks and interoperability with C++ exceptions.

Zero-Cost @try Blocks

64-bit processes that enter a zero-cost @try block incur no performance penalty. This is unlike the mechanism
for 32-bit processes, which calls setjmp() and performs additional “bookkeeping”. However, throwing an
exception is much more expensive in 64-bit executables. For best performance in 64-bit, you should throw
exceptions only when absolutely necessary.

C++ Interoperability

In 64-bit processes, Objective-C exceptions (NSException) and C++ exception are interoperable. Specifically,
C++ destructors and Objective-C @finally blocks are honored when the exception mechanism unwinds
an exception. In addition, default catch clauses—that is, catch(...) and @catch(...)—can catch and
rethrow any exception

On the other hand, an Objective-C catch clause taking a dynamically typed exception object (@catch(id
exception)) can catch any Objective-C exception, but cannot catch any C++ exceptions. So, for
interoperability, use @catch(...) to catch every exception and @throw; to rethrow caught exceptions. In
32-bit, @catch(...) has the same effect as @catch(id exception).

Zero-Cost @try Blocks 35
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Exceptions in 64-Bit Executables

36 C++ Interoperability
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Exceptions in 64-Bit Executables

This table describes the changes to Exception Programming Topics.

NotesDate

Removed misleading sentence from "Exceptions and the Cocoa Frameworks."2010-02-24

Updated for iOS and added links to Cocoa Core Competencies. Added
information on zero-cost @try blocks and C++ interoperability. Added "Exceptions
and the Cocoa Frameworks" chapter.

2009-07-28

Made several minor corrections.2007-10-02

Corrected typo.2007-01-08

Added information on @try, @catch, @finally, and @throw and made various
minor corrections.

2006-10-03

Fixed various bugs. Changed title from "Exceptions."2005-10-04

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

37
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Document Revision History

38
2010-02-24 | © 2002, 2010 Apple Inc. All Rights Reserved.

Document Revision History

	Exception Programming Topics
	Contents
	Figures, Tables, and Listings
	Introduction
	Exceptions and the Cocoa Frameworks
	Handling Exceptions
	Handling Exceptions Using Compiler Directives
	Exception Handling and Memory Management
	Handling Exceptions Using Macros

	Throwing Exceptions
	Nesting Exception Handlers
	Nested Exception Handlers With Compiler Directives
	Nested Exception Handlers With Exception Macros

	Uncaught Exceptions
	Predefined Exceptions
	Controlling a Program’s Response to Exceptions
	Application Errors
	Debugging Aids
	Printing Symbolic Stack Traces

	Exceptions in 64-Bit Executables
	Zero-Cost @try Blocks
	C++ Interoperability

	Revision History

