
Core Data Programming Guide
Data Management

2009-11-17

Apple Inc.
© 2004, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

iDisk is a registered service mark of Apple Inc.

Apple, the Apple logo, Cocoa, Finder,
Instruments, iTunes, Keynote, Mac, Mac OS,
Objective-C, Spotlight, WebObjects, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

Enterprise Objects is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other
countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Core Data Programming Guide 13

Who Should Read This Document 13
Organization of This Document 13
See Also 14

Technology Overview 15

Core Data Features 15
Why Should You Use Core Data? 16
What Core Data Is Not 16

Core Data Basics 19

Basic Core Data Architecture 19
Managed Objects and Contexts 21
Fetch Requests 22
Persistent Store Coordinator 23
Persistent Stores 24
Persistent Documents 24

Managed Objects and the Managed Object Model 24

Managed Object Models 27

Features of a Managed Object Model 27
Entities 27
Properties 28
Fetch Request Templates 29
User Info Dictionaries 30
Configurations 30

Using a Managed Object Model 31

Creating and Loading a Managed Object Model 31
Compiling a Data Model 31
Loading a Data Model 31

Changing a Model 32
Accessing and Using a Managed Object Model at Runtime 32

Creating Fetch Request Templates Programmatically 33
Accessing Fetch Request Templates 33

Localizing a Managed Object Model 34
Strings File 34

3
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Setting a Localization Dictionary Programmatically 35

Managed Objects 37

Basics 37
Properties and Data Storage 37

Non-Standard Attributes 38
Dates and Times 38

Custom Managed Object Classes 38
Overriding Methods 38
Modeled Properties 39

Object Life-Cycle—Initialization and Deallocation 39
Validation 40
Faulting 41

Managed Object Accessor Methods 43

Overview 43
Custom implementation 43
Key-value coding access pattern 44

Dynamically-Generated Accessor Methods 44
Declaration 44
Implementation 45
Inheritance 46

Custom Attribute and To-One Relationship Accessor Methods 46
Custom To-Many Relationship Accessor Methods 48
Custom Primitive Accessor Methods 50

Creating and Deleting Managed Objects 53

Creating, Initializing, and Saving a Managed Object 53
Behind the Scenes of Creating a Managed Object 54

The Managed Object Context 54
The Entity Description 54
Creating a Managed Object 55
Creating a Managed Object in Mac OS X v10.4 55

Assigning an Object to a Store 56
Deleting a Managed Object 57

Relationships 57
Deleted status and notifications 57

Fetching Managed Objects 59

Fetching Managed Objects 59
Retrieving Specific Objects 60
Fetching Specific Values 60

4
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Fetching and Entity Inheritance 62

Using Managed Objects 63

Accessing and Modifying Properties 63
Attributes and to-one relationships 63
To-many relationships 64

Saving Changes 65
Managed Object IDs and URIs 65
Copying and Copy and Paste 66

Copying Attributes 66
Copying Relationships 67

Drag and Drop 67
Validation 67
Undo Management 68
Faults 69
Ensuring Data Is Up-to-Date 70

Refreshing an object 70
Merging changes with transient properties 70

Memory Management Using Core Data 73

Instance and Data Life-Cycles 73
The Role of the Managed Object Context 73
Breaking Relationship Retain Cycles 74
Change and Undo Management 74

Relationships and Fetched Properties 77

Relationship Definitions in the Model 77
Relationship Fundamentals 77
Inverse Relationships 78
Relationship Delete Rules 78

Manipulating Relationships and Object Graph Integrity 79
Many-to-Many Relationships 80
Unidirectional Relationships 83
Cross-Store Relationships 84
Fetched Properties 84

Non-Standard Persistent Attributes 87

Introduction 87
Transformable Attributes 87
Custom Code 89

Basic Approach 89
Scalar Value Constraints 89

5
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

The Persistent Attribute 89
An Object Attribute 90
Scalar Values 92
A Non-Object Attribute 93

Type-Checking 95

Managed Object Validation 97

Core Data Validation 97
Property-Level Validation 97
Inter-Property validation 99
Combining Validation Errors 101

Faulting and Uniquing 103

Faulting Limits the Size of the Object Graph 103
Firing Faults 104
Turning Objects into Faults 104
Faults and KVO Notifications 105

Uniquing Ensures a Single Managed Object per Record per Context 105

Using Persistent Stores 107

Creating and Accessing a Store 107
Changing a Store’s Type and Location 107
Store Metadata 109

Core Data and Cocoa Bindings 111

Additions to Controllers 111
Automatically Prepares Content Flag 112
Entity Inheritance 112
Filter Predicate for a To-many Relationship 112

Change Management 115

Disjoint Edits 115
Conflict Detection and Optimistic Locking 116
Conflict Resolution 117
Snapshot Management 117

Communicating Changes Between Contexts 117

Persistent Store Features 121

Store Types and Behaviors 121
Store-specific behavior 121

6
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Custom store types 122
Security 122

Fetch Predicates and Sort Descriptors 122
SQLite Store 123

File-systems supported by the SQLite store 123
Configuring a SQLite Store’s Save Behavior 123

Multi-Threading with Core Data 125

Thread Safety Fundamentals 125
General Guidelines 126
Locking 126
Fetching in a Background Thread 127
Saving 127

Core Data Performance 129

Introduction 129
Fetching Managed Objects 129

Fetch Predicates 130
Fetch Limits 130

Faulting Behavior 130
Batch Faulting and Pre-fetching with the SQLite Store 131

Reducing Memory Overhead 133
Large Data Objects (BLOBs) 134
Analyzing Performance 134

Analyzing Fetch Behavior with SQLite 134
Instruments 135

Troubleshooting Core Data 137

Object Life-Cycle Problems 137
Merge errors 137
Assigning a managed object to a different store 137
Fault cannot be fulfilled 138
Managed object invalidated 139
Class is not key-value coding compliant 139
Entity class does not respond to invocations of custom methods 139
Custom accessor methods are not invoked, key dependencies are not obeyed 140

Problems with Fetching 140
SQLite store does not work with sorting 140

Problems with Saving 140
SQLite store takes a "long time" to save 140
Cannot save documents because entity is null 141
Exception generated in retainedDataForObjectID:withContext. 141

Debugging Fetching 142

7
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Models 142
My application generates the message "+entityForName: could not locate an
NSManagedObjectModel" 142

Bindings Integration 143
Custom relationship set mutator methods are not invoked by an array controller 143
Cannot access contents of an object controller after a nib is loaded 144
Cannot create new objects with array controller 144
A table view bound to an array controller doesn't display the contents of a relationship 144
A new object is not added to the relationship of the object currently selected in a table view
145
Table view or outline view contents not kept up-to-date when bound to an NSArrayController
or NSTreeController object 145

Efficiently Importing Data 147

Cocoa Fundamentals 147
Reducing Peak Memory Footprint 148

Importing in batches 148
Dealing with retain cycles 149
Document-based example 149

Implementing Find-or-Create Efficiently 151

Core Data FAQ 155

Where does a Managed Object Context Come From? 155
I have a to-many relationship from Entity A to Entity B. How do I fetch the instances of Entity B
related to a given instance of Entity A? 155
How do I fetch objects in the same order I created them? 156
How do I copy a managed object from one context to another? 156
I have a key whose value is dependent on values of attributes in a related entity—how do I ensure
it is kept up to date as the attribute values are changes and as the relationship is manipulated?
156

Mac OS X v10.5 and later for a to-one relationship 156
Mac OS X v10.4 and to-many relationships in Mac OS X v10.5 157

How do I use my existing SQLite database with Core Data? 158
How do I get undo/redo for free in my non-document-architecture-based app? 158
How do I create a user interface from an entity? 158
In Xcode’s predicate builder, why don’t I see any properties for a fetched property predicate? 159
When I remove objects from a detail table view managed by an array controller, why are they not
removed from the object graph? 159
How do I get the GUI to validate the data entered by the user? 159
How do I initialize a store with default data? 159
How efficient is Core Data? 160
Core Data looks similar to EOF. What are the differences? 160

Features Supported Only by EOF 161
Features Supported Only by Core Data 161
Class Mapping 161

8
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Change Management 161
Multi-Threading 161

Document Revision History 163

Glossary 165

9
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

10
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Core Data Basics 19

Figure 1 Document management using the standard Cocoa document architecture 20
Figure 2 Document management using Core Data 21
Figure 3 An example fetch request 22
Figure 4 Advanced persistence stack 23
Figure 5 Managed object model with two entities 25
Figure 6 Entity description with two attributes and a relationship 25

Managed Object Models 27

Figure 1 Selecting a parent entity in Xcode 28
Figure 2 Xcode predicate builder 30

Using a Managed Object Model 31

Table 1 Keys and values in a localization dictionary for a managed object model 34
Listing 1 Creating a fetch request template programmatically 33
Listing 2 Using a fetch request template 33
Listing 3 Creating a managed object model in code 35

Managed Object Accessor Methods 43

Listing 1 Implementation of a custom managed object class illustrating attribute accessor
methods 46

Listing 2 Implementation of a custom managed object class illustrating copying setter 47
Listing 3 Implementation of a custom managed object class illustrating a scalar attribute

value 48
Listing 4 A managed object class illustrating implementation of custom accessors for a

to-many relationship 49

Fetching Managed Objects 59

Listing 1 Example of creating and executing a fetch request 59

Relationships and Fetched Properties 77

Figure 1 Transferring an employee to a new department 80
Figure 2 Example of a reflexive many-to-many relationship 81
Figure 3 A model illustrating a “friends” relationship using an intermediate entity 82

11
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Validation 97

Listing 1 Inter-property validation for a Person entity 99
Listing 2 A method for combining two errors into a single multiple errors error 101

Faulting and Uniquing 103

Figure 1 A department represented by a fault 103
Figure 2 Independent faults for a department object 105
Figure 3 Uniqued fault for two employees working in the same department 106

Change Management 115

Figure 1 Managed object contexts with mutually inconsistent data values 116

12
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

The Core Data framework provides generalized and automated solutions to common tasks associated with
object life-cycle and object graph management, including persistence.

Who Should Read This Document

You should read this document to gain an understanding of the Core Data framework. You are expected to
be familiar with the basics of Cocoa development, including the Objective-C language and memory
management.

Important: Although this document provides a thorough treatment of the fundamentals of the Core Data
framework, simply reading from start to finish is not a good strategy for learning how to use the technology
effectively. Instead, you should typically augment your understanding by following the related tutorials
provided in the Reference Library. For a description of the recommended learning path, see Core Data
Overview.

Organization of This Document

The following articles explain the problems the Core Data Framework addresses, the solutions it provides,
its basic functionality, and common tasks you might perform:

 ■ “Technology Overview” (page 15) describes what Core Data is and why you might choose to use it.

 ■ “Core Data Basics” (page 19) describes the fundamental architecture of the technology.

 ■ “Managed Object Models” (page 27) describes the features of a managed object model.

 ■ “Using a Managed Object Model” (page 31) describes how you use a managed object model in your
application.

 ■ “Managed Objects” (page 37) describes the features of a managed object, the NSManagedObject class,
and how and why you might implement a custom class to represent an entity.

 ■ “Managed Object Accessor Methods” (page 43) describes how to write accessor methods for custom
managed objects.

 ■ “Creating and Deleting Managed Objects” (page 53) describes how to correctly instantiate and delete
managed objects programmatically.

 ■ “Fetching Managed Objects” (page 59) describes how to fetch managed objects, and some considerations
to ensure that fetches are efficient.

 ■ “Using Managed Objects” (page 63) describes issues related to manipulating managed objects in your
application.

Who Should Read This Document 13
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Introduction to Core Data Programming Guide

 ■ “Memory Management Using Core Data” (page 73) describes aspects of memory management when
using Core Data.

 ■ “Relationships and Fetched Properties” (page 77) describes relationships, how to model them, and issues
related to manipulating relationships between managed objects. It also describes fetched properties,
which are like weak unidirectional relationships.

 ■ “Non-Standard Persistent Attributes” (page 87) describes how to use attributes with non-standard value
types (such as colors and C-structures).

 ■ “Managed Object Validation” (page 97) describes types of validation, how to implement validation
methods, and when to use validation.

 ■ “Faulting and Uniquing” (page 103) describes how Core Data constrains the size of the object graph, and
ensures that each managed object within a managed object context is unique.

 ■ “Using Persistent Stores” (page 107) describes how you create a persistent store, how you can migrate a
store from one type to another, and manage store metadata.

 ■ “Core Data and Cocoa Bindings” (page 111) describes how Core Data integrates with and leverages Cocoa
bindings.

 ■ “Change Management” (page 115) describes the issues that may arise if you create multiple managed
object contexts or multiple persistence stacks.

 ■ “Persistent Store Features” (page 121) describes the features of the different types of store, and how you
can configure the behavior of the SQLite store.

 ■ “Multi-Threading with Core Data” (page 125) describes some issues related to multi-threading a Core
Data application.

 ■ “Core Data Performance” (page 129) describes techniques you can use to ensure a Core Data application
is as efficient as possible.

 ■ “Troubleshooting Core Data” (page 137) describes common errors developers make when using Core
Data, and how to correct them.

 ■ “Efficiently Importing Data” (page 147) describes how you can import data into a Core Data application.

 ■ “Core Data FAQ” (page 155) provides answers to questions frequently asked about Core Data.

 ■ “Glossary” (page 165) provides a glossary of terms used in Core Data.

See Also

You should also refer to:

 ■ Core Data Overview

 ■ Core Data Tutorial for iOS

 ■ Core Data Utility Tutorial

 ■ Creating a Managed Object Model with Xcode

 ■ Core Data Snippets

 ■ ManagedObjectDataFormatter (A plugin for Xcode)

14 See Also
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Introduction to Core Data Programming Guide

This article describes the basic features provided by Core Data, and reasons why it might be appropriate for
you to adopt the technology.

Core Data Features

The Core Data framework provides generalized and automated solutions to common tasks associated with
object life-cycle and object graph management, including persistence. Its features include:

 ■ Full, automatic, support for key-value coding and key-value observing.

In addition to synthesizing key-value coding and key-value observing compliant accessor methods for
attributes, Core Data synthesizes the appropriate collection accessors for to-many relationships.

 ■ Automatic validation of property values.

Core Data’s managed objects extend the standard key-value coding validation methods that ensure that
individual values lie within acceptable ranges to that combinations of values make sense.

 ■ Change tracking and undo support.

Core Data provides built-in management of undo and redo beyond basic text editing.

 ■ Relationship maintenance.

Core Data manages change propagation, including maintaining the consistency of relationships among
objects.

 ■ Grouping, filtering, and organizing data in memory and in the user interface.

 ■ Automatic support for storing objects in external data repositories.

 ■ Sophisticated query compilation.

Instead of writing SQL, you can create complex queries by associating an NSPredicate object with a
fetch request. NSPredicate provides support for basic functions, correlated subqueries, and other
advanced SQL. With Core Data, it also supports proper Unicode, locale-aware searching, sorting, and
regular expressions.

 ■ Futures (faulting).

Core Data can reduce the memory overhead of your program by lazily loading objects. It also supports
partially materialized futures, and copy-on-write data sharing.

 ■ Merge policies.

Core Data provides built in version tracking and optimistic locking to support automatic multi-writer
conflict resolution.

 ■ Schema migration.

Core Data Features 15
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Technology Overview

Dealing with a change to your application’s schema can be difficult, in terms of both development effort
and runtime resources. Core Data’s schema migration tools simplify the task of coping with schema
changes, and in some cases allow you to perform extremely efficient in-place schema migration.

 ■ Optional integration with the application’s controller layer to support user interface synchronization.

Core Data provides the NSFetchedResultsController object on iOS, and integrates with Cocoa
Bindings on Mac OS X.

Why Should You Use Core Data?

There are a number of reasons why it may be appropriate for you to use Core Data. One of the simplest
metrics is that, with Core Data, the amount of code you write to support the model layer of your application
is typically 50% to 70% smaller as measured by lines of code. This is primarily due to the features listed
above—the features Core Data provides are features you don’t have to implement yourself. Moreover they’re
features you don’t have to test yourself, and in particular you don’t have to optimize yourself.

Core Data has a mature code base whose quality is maintained through unit tests, and is used daily by millions
of customers in a wide variety of applications. The framework has been highly optimized over several releases.
It takes advantage of information provided in the model and runtime features not typically employed in
application-level code. Moreover, in addition to providing excellent security and error-handling, it offers best
memory scalability of any competing solution. Put another way: you could spend a long time carefully crafting
your own solution optimized for a particular problem domain, and not gain any performance advantage
over what Core Data offers for free for any application.

In addition to the benefits of the framework itself, Core Data integrates well with the Mac OS X tool chain.
The model design tools allow you to create your schema graphically, quickly and easily. You can use templates
in the Instruments application to measure Core Data’s performance, and to debug various problems. On
Mac OS X desktop, Core Data also integrates with Interface Builder to allow you to create user interfaces
from your model. These aspects help to further shorten your application design, implementation, and
debugging cycles.

What Core Data Is Not

Having given an overview of what Core Data is and does, and why it may be useful, it is also useful to correct
some common misperceptions and state what it is not.

 ■ Core Data is not a relational database or a relational database management system (RDBMS).

Core Data provides an infrastructure for change management and for saving objects to and retrieving
them from storage. It can use SQLite as one of its persistent store types. It is not, though, in and of itself
a database. (To emphasize this point: you could for example use just an in-memory store in your
application. You could use Core Data for change tracking and management, but never actually save any
data in a file.)

 ■ Core Data is not a silver bullet.

It does not remove the need to write code. Although it is possible to create a sophisticated application
solely using the Xcode data modeling tool and Interface Builder, for more real-world applications you
will still have to write code.

16 Why Should You Use Core Data?
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Technology Overview

 ■ Core Data does not rely on Cocoa bindings.

Core Data integrates well with Cocoa bindings and leverages the same technologies—and used together
they can significantly reduce the amount of code you have to write—but it is possible to use Core Data
without bindings. You can readily create a Core Data application without a user interface (see Core Data
Utility Tutorial).

What Core Data Is Not 17
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Technology Overview

18 What Core Data Is Not
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Technology Overview

This article describes the basic Core Data architecture, and the way you use the framework.

Basic Core Data Architecture

In most applications, you need a means to open a file containing an archive of objects, and a reference to at
least one root object. You also need to be able to archive all the objects to a file and—if you want to support
undo—to track changes to the objects. For example, in an employee management application, you need a
means to open a file containing an archive of employee and department objects, and a reference to at least
one root object—for example, the array of all employees—as illustrated in Figure 1 (page 20). You also need
to be able to archive to a file all the employees and all the departments.

Note : This document uses the employees example for reasons of expediency and clarity. It represents a rich
but easily understood problem domain. The utility of the Core Data framework, however, is not restricted to
database-style applications, nor is there an expectation of client-server behavior. The framework is equally
useful as the basis of a vector graphics application such as Sketch or a presentation application such as
Keynote.

You are responsible for writing the code that manages these tasks either in whole or in part. For example,
on Mac OS X desktop, the Cocoa document architecture provides an application structure and functionality
that helps to reduce the burden, but you still have to write methods to support archiving and unarchiving
of data, to keep track of the model objects, and to interact with an undo manager to support undo.

Basic Core Data Architecture 19
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Basics

Figure 1 Document management using the standard Cocoa document architecture

MyDocument

employees
departments
undoManager
fileName
...

open:
save:

Collection

Department

name:	 "Sales"
...

NSUndoManager

...

Employee

firstName:	 "Jo"
...

Collection

file

Department

Employee

Using the Core Data framework, most of this functionality is provided for you automatically, primarily through
an object known as a managed object context (or just “context”). The managed object context serves as
your gateway to an underlying collection of framework objects—collectively known as the persistence
stack—that mediate between the objects in your application and external data stores. At the bottom of the
stack are persistent object stores, as illustrated in Figure 2 (page 21).

20 Basic Core Data Architecture
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Basics

Figure 2 Document management using Core Data

Persistent Store Coordinator

...

Employee

firstName:	 "Jo"
...

Department

name:	 "Sales"
...

MyPersistentDocument

managedObjectContext

open:
save:

Persistent
Object Store

file

Department

Employee

NSManagedObjectContext

Core Data is not restricted to document-based applications—indeed it is possible to create a Core Data–based
utility with no user interface at all (see CoreDataUtility Tutorial). The same principles apply in other applications.

Managed Objects and Contexts

You can think of a managed object context as an intelligent scratch pad. When you fetch objects from a
persistent store, you bring temporary copies onto the scratch pad where they form an object graph (or a
collection of object graphs). You can then modify those objects however you like. Unless you actually save
those changes, however, the persistent store remains unaltered.

Model objects that tie into in the Core Data framework are known as managed objects. All managed objects
must be registered with a managed object context. You add objects to the graph and remove objects from
the graph using the context. The context tracks the changes you make, both to individual objects' attributes
and to the relationships between objects. By tracking changes, the context is able to provide undo and redo
support for you. It also ensures that if you change relationships between objects, the integrity of the object
graph is maintained.

If you choose to save the changes you've made, the context ensures that your objects are in a valid state. If
they are, then the changes are written to the persistent store (or stores) and new records added for objects
you created and records removed for objects you deleted.

Basic Core Data Architecture 21
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Basics

You may have more than one managed object context in your application. For every object in a persistent
store there may be at most one corresponding managed object associated with a given context (for more
details, see “Faulting and Uniquing” (page 103)). To consider this from a different perspective, a given object
in a persistent store may be edited in more than one context simultaneously. Each context, however, has its
own managed object that corresponds to the source object, and each managed object may be edited
independently. This can lead to inconsistencies during a save—Core Data provides a number of ways to deal
with this (see, for example, “Using Managed Objects” (page 63)).

Fetch Requests

To retrieve data using a managed object context, you create a fetch request. A fetch request is an object
that specifies what data you want, for example, “all Employees,” or “all Employees in the Marketing department
ordered by salary, highest to lowest.” A fetch request has three parts. Minimally it must specify the name of
an entity (by implication, you can only fetch one type of entity at a time). It may also contain a predicate
object that specifies conditions that objects must match and an array of sort descriptor objects that specifies
the order in which the objects should appear, as illustrated in Figure 3 (page 22).

Figure 3 An example fetch request

Fetch Request

Entity Name:	 "Employee"
Predicate:
Sort Orderings:

Predicate

Format:	 "department.name = 'Marketing'"

Sort Descriptor

Key:	 "salary"
Ascending:	 YES

Sort Descriptor

Key:	 "lastName"
Ascending:	 YES

Array

You send a fetch request to a managed object context, which returns the objects that match your request
(possibly none) from the data sources associated with its persistent stores. Since all managed objects must
be registered with a managed object context, objects returned from a fetch are automatically registered with
the context you used for fetching. Recall though that for every object in a persistent store there may be at
most one corresponding managed object associated with a given context (see “Faulting and Uniquing” (page
103)). If a context already contains a managed object for an object returned from a fetch, then the existing
managed object is returned in the fetch results.

The framework tries to be as efficient as possible. Core Data is demand driven, so you don't create more
objects than you actually need. The graph does not have to represent all the objects in the persistent store.
Simply specifying a persistent store does not bring any data objects into the managed object context. When
you fetch a subset of the objects from the persistent store, you only get the objects you asked for. If you

22 Basic Core Data Architecture
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Basics

follow a relationship to an object that hasn't been fetched, it is fetched automatically for you. If you stop
using an object, by default it will be deallocated. (This is of course not the same as removing it from the
graph.)

Persistent Store Coordinator

As noted earlier, the collection of framework objects that mediate between the objects in your application
and external data stores is referred to collectively as the persistence stack. At the top of the stack are managed
object contexts, at the bottom of the stack are persistent object stores. Between managed object contexts
and persistent object stores there is a persistent store coordinator.

In effect, a persistent store coordinator defines a stack. The coordinator is designed to present a façade to
the managed object contexts so that a group of persistent stores appears as a single aggregate store. A
managed object context can then create an object graph based on the union of all the data stores the
coordinator covers. A coordinator can only be associated with one managed object model. If you want to
put different entities into different stores, you must partition your model entities by defining configurations
within the managed object models (see “Configurations” (page 30)).

Figure 4 (page 23) shows an example where employees and departments are stored in one file, and customers
and companies in another. When you fetch objects, they are automatically retrieved from the appropriate
file, and when you save, they are archived to the appropriate file.

Figure 4 Advanced persistence stack

Persistent
Object Store

file

Department

Employee

Persistent
Object Store

file

Company

Customer

Persistent Store Coordinator

...

managedObjectContext

Employee Department

Customer

managedObjectContext

Employee Department

Company

Basic Core Data Architecture 23
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Basics

Persistent Stores

A given persistent object store is associated with a single file or other external data store and is ultimately
responsible for mapping between data in that store and corresponding objects in a managed object context.
Normally, the only interaction you have with a persistent object store is when you specify the location of a
new external data store to be associated with your application (for example, when the user opens or saves
a document). Most other interactions with the Core Data framework are through the managed object context.

Your application code—and in particular the application logic associated with managed objects—should
not make any assumptions about the persistent store in which data may reside. Core Data provides native
support for several file formats. You can choose which to use depending on the needs of your application.
If at some stage you decide to choose a different file format, your application architecture remains unchanged.
Moreover, if your application is suitably abstracted, then you will be able to take advantage of later
enhancements to the framework without any additional effort. For example—even if the initial implementation
is able to fetch records only from the local file system—if an application makes no assumptions about where
it gets its data from, then if at some later stage support is added for a new type of remote persistent store,
it should be able to use this new type with no code revisions.

Important: Although Core Data supports SQLite as one of its persistent store types, Core Data cannot manage
any arbitrary SQLite database. In order to use a SQLite database, Core Data must create and manage the
database itself. For more about store types, see “Persistent Store Features” (page 121).

Persistent Documents

You can create and configure the persistence stack programmatically. In many cases, however, you simply
want to create a document-based application able to read and write files. The NSPersistentDocument
class is a subclass of NSDocument that is designed to let you easily take advantage of the Core Data framework.
By default, an NSPersistentDocument instance creates its own ready-to-use persistence stack, including
a managed object context and a single persistent object store. There is in this case a one-to-one mapping
between a document and an external data store.

The NSPersistentDocument class provides methods to access the document’s managed object context
and provides implementations of the standard NSDocument methods to read and write files that use the
Core Data framework. By default you do not have to write any additional code to handle object persistence.
A persistent document’s undo functionality is integrated with the managed object context.

Managed Objects and the Managed Object Model

In order both to manage the object graph and to support object persistence, Core Data needs a rich description
of the objects it operates on. A managed object model is a schema that provides a description of the managed
objects, or entities, used by your application, as illustrated in Figure 5 (page 25). You typically create the
managed object model graphically using Xcode's Data Model Design tool. (If you wish you can construct the
model programmatically at runtime.)

24 Managed Objects and the Managed Object Model
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Basics

Figure 5 Managed object model with two entities

Entity Description

Name:	 "Employee"
Class Name:	 "Employee"
Properties:	 array
...

Entity Description

Name:	 "Department"
Class Name:	 "Department"
Properties:	 array
...

Managed Object Model

The model is composed of a collection of entity description objects that each provide metadata about an
entity, including the entity's name, the name of the class that represents it in your application (this does not
have to be the same as its name), and its attributes and relationships. The attributes and relationships in turn
are represented by attribute and relationship description objects, as illustrated in Figure 6 (page 25).

Figure 6 Entity description with two attributes and a relationship

Entity Description

Name: "Employee"
Class Name: "Employee"
Properties:
...

Attribute Description

Name: "firstName"
Type: string
Value Class: NSString
...

Attribute Description

Name: "salary"
Type: decimal number
Value Class: NSDecimalNumber
...

Relationship Description

Name: "department"
Max Count: 1
Destination Entity: Department
...

Collection

Managed objects must be instances of either NSManagedObject or of a subclass of NSManagedObject.
NSManagedObject is able to represent any entity. It uses a private internal store to maintain its properties
and implements all the basic behavior required of a managed object. A managed object has a reference to
the entity description for the entity of which it is an instance. It refers to the entity description to discover
metadata about itself, including the name of the entity it represents and information about its attributes and
relationships. You can also create subclasses of NSManagedObject to implement additional behavior.

Managed Objects and the Managed Object Model 25
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Basics

26 Managed Objects and the Managed Object Model
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Basics

Much of Core Data's functionality depends on the schema you create to describe your application's entities,
their properties, and the relationships between them. The schema is represented by a managed object
model—an instance of NSManagedObjectModel. In general, the richer the model, the better Core Data is
able to support your application. This article describes the features of a managed object model, how you
create one, and how you use it in your application.

Features of a Managed Object Model

A managed object model is an instance of the NSManagedObjectModel class. It describes a schema—a
collection of entities—that you use in your application. (If you do not understand the term "entity"—or the
related terms, "property," "attribute," and "relationship"—you should first read “Core Data Basics” (page 19)
and the "Object Modeling" section in Cocoa Design Patterns.)

Entities

A model contains NSEntityDescription objects that represent the model's entities. Two important features
of an entity are its name, and the name of the class used to represent the entity at runtime. You should be
careful to keep clear the differences between an entity, the class used to represent the entity, and the managed
objects that are instances of that entity.

An NSEntityDescription object may have NSAttributeDescription and
NSRelationshipDescription objects that represent the properties of the entity in the schema. An entity
may also have fetched properties, represented by instances of NSFetchedPropertyDescription, and the
model may have fetch request templates, represented by instances of NSFetchRequest.

In a model, entities may be arranged in an inheritance hierarchy, and entities may be specified as abstract.

Entity Inheritance

Entity inheritance works in a similar way to class inheritance, and is useful for the same reasons. If you have
a number of entities that are similar, you can factor the common properties into a super-entity. Rather than
specifying the same properties in several entities, you can define them in one and the sub-entities inherit
them. For example, you might define a Person entity with attributes firstName and lastName, and sub-entities
Employee and Customer which inherit those attributes.

In many cases, you also implement a custom class to correspond to the entity from which classes representing
the sub-entities also inherit. Rather than implementing business logic common to all the entities several
times over, you implement them in one place and they are inherited by the subclasses.

If you create a model using the data modeling tool in Xcode, you specify an entity's parent by selecting the
name of the entity from the Parent pop-up menu in the entity Info pane, as shown in Figure 1 (page 28).

Features of a Managed Object Model 27
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Models

Figure 1 Selecting a parent entity in Xcode

If you want to create an entity inheritance hierarchy in code, you must build it top-down. You cannot set an
entity’s super-entity directly, you can only set an entity’s sub-entities (using the method setSubentities:).
To set a super-entity for a given entity, you must therefore set an array of sub-entities for that super entity
and include the current entity in that array.

Abstract Entities

You can specify that an entity is abstract—that is, that you will not create any instances of that entity. You
typically make an entity abstract if you have a number of entities that all represent specializations of (inherit
from) a common entity which should not itself be instantiated. For example, in a drawing application you
might have a Graphic entity that defines attributes for x and y coordinates, color, and drawing bounds. You
never, though, instantiate a Graphic. Concrete sub-entities of Graphic might be Circle, TextArea, and Line.

Properties

An entity's properties are its attributes and relationships, including its fetched properties (if it has any).
Amongst other features, each property has a name and a type. Attributes may also have a default value. A
property name cannot be the same as any no-parameter method name of NSObject or
NSManagedObject—for example, you cannot give a property the name “description” (see
NSPropertyDescription).

Transient properties are properties that you define as part of the model, but which are not saved to the
persistent store as part of an entity instance's data. Core Data does track changes you make to transient
properties, so they are recorded for undo operations.

28 Features of a Managed Object Model
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Models

Note: If you undo a change to a transient property that uses non-modeled information, Core Data does not
invoke your set accessor with the old value—it simply updates the snapshot information.

Attributes

Core Data natively supports a variety of attribute types, such as string, date, and integer (represented as
instances of NSString, NSDate, and NSNumber respectively). If you want to use an attribute type that is not
natively supported, you can use one of the techniques described in Non-Standard Persistent Attributes (page
87).

You can specify that an attribute is optional—that is, it is not required to have a value. In general, however,
you are discouraged from doing so—especially for numeric values (typically you can get better results using
a mandatory attribute with a default value—in the model—of 0). The reason for this is that SQL has special
comparison behavior for NULL that is unlike Objective-C's nil. NULL in a database is not the same as 0, and
searches for 0 will not match columns with NULL.

false == (NULL == 0)
false == (NULL != 0)

Moreover, NULL in a database is not equivalent to an empty string or empty data blob, either:

false == (NULL == @"")
false == (NULL != @"")

This has no bearing on relationships.

Relationships

Core Data supports to-one and to-many relationships, and fetched properties. Fetched properties represent
weak, one-way relationships. In the employees and departments domain, a fetched property of a department
might be "recent hires" (employees do not have an inverse to the recent hires relationship).

You can specify the optionality and cardinality of a relationship, and its delete rule. You should typically
model a relationship in both directions. A many-to-many relationship is one in which a relationship and its
inverse are both to-many. Relationships are described in greater detail in “Relationships and Fetched
Properties” (page 77).

Fetch Request Templates

You use the NSFetchRequest class to describe fetch requests to retrieve objects from a persistent store. It
is often the case that you want to execute the same request on multiple occasions, or execute requests that
follow a given pattern but which contain variable elements (typically supplied by the user). For example, you
might want to be able to retrieve all publications written by a certain author, perhaps after a date specified
by the user at runtime.

You can predefine fetch requests and store them in a managed object model as named templates. This allows
you to pre-define queries that you can retrieve as necessary from the model. Typically, you define fetch
request templates using the Xcode data modeling tool (see Xcode Tools for Core Data). The template may
include variables, as shown in Figure 2.

Features of a Managed Object Model 29
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Models

Figure 2 Xcode predicate builder

For more about using fetch request templates, see “Accessing and Using a Managed Object Model at
Runtime” (page 32).

User Info Dictionaries

Many of the elements in a managed object model—entities, attributes, and relationships—have an associated
user info dictionary. You can put whatever information you want into a user info dictionary, as key-value
pairs. Common information to put into the user info dictionary includes version details for an entity, and
values used by the predicate for a fetched property.

Configurations

A configuration has a name and an associated set of entities. The sets may overlap—that is, a given entity
may appear in more than one configuration. You establish configurations programmatically using
setEntities:forConfiguration: or using the Xcode data modeling tool (see Xcode Tools for Core Data),
and retrieve the entities for a given configuration name using entitiesForConfiguration:.

You typically use configurations if you want to store different entities in different stores. A persistent store
coordinator can only have one managed object model, so by default each store associated with a given
coordinator must contain the same entities. To work around this restriction, you can create a model that
contains the union of all the entities you want to use. You then create configurations in the model for each
of the subsets of entities that you want to use. You can then use this model when you create a coordinator.
When you add stores, you specify the different store attributes by configuration. When you are creating your
configurations, though, remember that you cannot create cross-store relationships.

30 Features of a Managed Object Model
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Models

This article describes how you use a managed object model in your application.

Creating and Loading a Managed Object Model

You usually create a model in Xcode, as described in Creating a Managed Object Model with Xcode. You can
also create a model entirely in code, as show in Listing 3 (page 35) and described in Core Data Utility
Tutorial—typically, however, this is too long-winded to consider in anything but the most trivial application.
(You are nevertheless encouraged to review the tutorial to gain an understanding of what the modeling tool
does, and in particular to gain an appreciation that the model is simply a collection of objects.)

Compiling a Data Model

A data model is a deployment resource. In addition to details of the entities and properties in the model, a
model you create in Xcode contains information about the diagram—its layout, colors of elements, and so
on. This latter information is not needed at runtime. The model file is compiled to remove the extraneous
information and make runtime loading of the resource as efficient as possible. The xcdatamodel "source"
file is compiled into a mom deployment file using the model compiler, momc.

momc is located in /Library/Application Support/Apple/Developer
Tools/Plug-ins/XDCoreDataModel.xdplugin/Contents/Resources/. If you want to use it in your
own build scripts, its usage is momc source destination, where source is the path of the Core Data
model to compile and destination is the path of the output mom file.

Loading a Data Model

In some cases, you do not have to write any code to load a model. If you use a document-based application,
NSPersistentDocument manages the task of finding and loading your application’s model for you. If you
use Xcode to create a non-document application that uses Core Data (for Mac OS X or for iOS), the application
delegate includes code to retrieve the model. The name of a model—as represented by the filename used
to store it on disk—is not relevant at runtime. Once the model is loaded by Core Data, the filename is
meaningless and has no use, so you can name the model file whatever you like.

If you want to load a model yourself, there are two mechanisms you can use, each with its own benefits:

 ■ You can create a merged model from a specific collection of bundles, using the class method
mergedModelFromBundles:.

 ■ You can load a single model from a specific URL, using the instance method initWithContentsOfURL:.

Creating and Loading a Managed Object Model 31
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using a Managed Object Model

The class method is useful in cases where segregation of models is not important—for example, you may
know your application and a framework it links to both have models you need or want to load. The class
method allows you to easily load all of the models at once without having to consider what the names are,
or put in specialized initialization code to ensure all of your models are found

In cases where you have more than one model, however—and particularly in cases where the models
represent different versions of the same schema—knowing which model to load is essential (merging together
models with the same entities at runtime into a single collection would cause naming collisions and errors).
In these situations, you use the instance method. Additionally, there may be situations when you want to
store the model outside of the bundle for your application, thus requiring the need to reference it via a
file-system URL.

Note there is also a class method, modelByMergingModels:, which merges a given array of models much
like the mergedModelFromBundles: method does. Thus, you can still load individual models via URLs and
then unify them before instantiating a coordinator with them.

Changing a Model

Since a model describes the structure of the data in a persistent store, changing any parts of a model that
alters the schema renders it incompatible with (and so unable to open) the stores it previously created. If
you change your schema, you therefore need to migrate the data in existing stores to new version (see Core
DataModel Versioning andDataMigration ProgrammingGuide). For example, if you add a new entity or a new
attribute to an existing entity, you will not be able to open old stores; if you add a validation constraint or
set a new default value for an attribute, you will be able to open old stores.

Accessing and Using a Managed Object Model at Runtime

It is important to realize that, at runtime, a managed object model is simply a graph of objects. This knowledge
is especially useful if you need to gain access to details of the model programmatically. You might need to
do this either to modify the model (you can do this only before it is used at runtime, see
NSManagedObjectModel), or to retrieve information such as a localized entity name, the data type of an
attribute, or a fetch request template.

There are a number of ways you can access a managed object model at runtime. Through the persistence
stack you ultimately get the model from the persistent store coordinator. Thus to get the model from a
managed object context, you use the following code:

[[aManagedObjectContext persistentStoreCoordinator] managedObjectModel];

You can also retrieve the model from an entity description, so given a managed object you can retrieve its
entity description and hence the model, as shown in the following example.

[[aManagedObject entity] managedObjectModel];

In some cases, you maintain a "direct" reference to the model—that is, a method that returns the model
directly. NSPersistentDocument provides managedObjectModel that returns the model associated with
the persistent store coordinator used by the document's managed object context. If you use the Core Data
Application template, the application delegate maintains a reference to the model.

32 Changing a Model
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using a Managed Object Model

Creating Fetch Request Templates Programmatically

You can create fetch request templates programmatically and associate them with a model using
setFetchRequestTemplate:forName: as illustrated in Listing 1. Recall, though, that you can only modify
the model before it has been used by a store coordinator.

Listing 1 Creating a fetch request template programmatically

NSManagedObjectModel *model = ...;
NSFetchRequest *requestTemplate = [[NSFetchRequest alloc] init];
NSEntityDescription *publicationEntity =
 [[model entitiesByName] objectForKey:@"Publication"];
[requestTemplate setEntity:publicationEntity];

NSPredicate *predicateTemplate = [NSPredicate predicateWithFormat:
 @"(mainAuthor.firstName like[cd] $FIRST_NAME) AND \
 (mainAuthor.lastName like[cd] $LAST_NAME) AND \
 (publicationDate > $DATE)"];
[requestTemplate setPredicate:predicateTemplate];

[model setFetchRequestTemplate:requestTemplate
 forName:@"PublicationsForAuthorSinceDate"];
[requestTemplate release];

Accessing Fetch Request Templates

You can retrieve and use a fetch request template as illustrated in the code fragment in “Accessing and Using
a Managed Object Model at Runtime.” The substitution dictionary must contain keys for all the variables
defined in the template; if you want to test for a null value, you must use an NSNull object—see Using
Predicates.

Listing 2 Using a fetch request template

NSManagedObjectModel *model = ...;
NSError *error;
NSDictionary *substitutionDictionary = [NSDictionary dictionaryWithObjectsAndKeys:
 @"Fiona", @"FIRST_NAME", @"Verde", @"LAST_NAME",
 [NSDate dateWithTimeIntervalSinceNow:-31356000], @"DATE", nil];
NSFetchRequest *fetchRequest =
 [model fetchRequestFromTemplateWithName:@"PublicationsForAuthorSinceDate"
 substitutionVariables:substitutionDictionary];
NSArray *results =
 [aManagedObjectContext executeFetchRequest:fetchRequest error:&error];

If the template does not have substitution variables, you must either:

1. UsefetchRequestFromTemplateWithName:substitutionVariables: and passnil as the variables
argument; or

2. Use fetchRequestTemplateForName: and copy the result.

If you try to use the fetch request returned by fetchRequestTemplateForName:, this generates an
exception ("Can't modify a named fetch request in an immutable model").

Accessing and Using a Managed Object Model at Runtime 33
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using a Managed Object Model

Localizing a Managed Object Model

You can localize most aspects of a managed object model, including entity and property names and error
messages. It is important to consider that localization also includes "localization into your own language."
Even if you do not plan to provide foreign-language versions of your application, you can provide a better
experience for your users if error messages show "natural language" names rather than "computer language"
names (for example, "First Name is a required property" rather than "firstName is a required property").

You localize a model by providing a localization dictionary that follows the pattern shown in the table below.

Table 1 Keys and values in a localization dictionary for a managed object model

NoteValueKey

"LocalizedEntityName""Entity/NonLocalizedEntityName"

1"LocalizedPropertyName""Property/NonLocalizedPropertyName/Entity/EntityName"

"LocalizedPropertyName""Property/NonLocalizedPropertyName"

"LocalizedErrorString""ErrorString/NonLocalizedErrorString"

Note: (1) For properties in different entities with the same non-localized name but which should have different
localized names.

You can access the localization dictionary using the method localizationDictionary. Note, however,
that in the implementation in Mac OS X version 10.4, localizationDictionary may return nil until Core
Data lazily loads the dictionary for its own purposes (for example, reporting a localized error).

Strings File

The easiest way to localize a model is to create a corresponding strings file—the strings file name is the same
as the model file name, but with a .strings rather than a .xcdatamodel extension (for example, for a
model file named MyDocument.xcdatamodel the corresponding strings file is
MyDocumentModel.strings—if your model file name already includes the suffix "Model", you must append
a further "Model", so the strings file corresponding to JimsModel.xcdatamodel would be the rather
unlikely-looking JimsModelModel.strings). The file format is similar to a standard strings file you use for
localization (see Localizing String Resources) but the key and value pattern follows that shown in Table
1 (page 34).

A strings file for a model that includes an employee entity might contain the following:

"Entity/Emp" = "Employee";
"Property/firstName" = "First Name";
"Property/lastName" = "Last Name";
"Property/salary" = "Salary";

A further example is given in NSPersistentDocument Core Data Tutorial.

34 Localizing a Managed Object Model
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using a Managed Object Model

Setting a Localization Dictionary Programmatically

You can set a localization dictionary at runtime using the NSManagedObjectModel method
setLocalizationDictionary:. You must create a dictionary with keys and values as shown in Table
1 (page 34), and associate it with the model. You must ensure you do this before the model is used to fetch
or create managed objects, as the model is uneditable thereafter. The listing shown in Listing 3 (page 35)
illustrates the creation in code of a managed object model including a localization dictionary. The entity is
named "Run" and is represented at runtime by the Run class. The entity has two attributes, "date" and
"processID"—a date and an integer respectively. The process ID has a constraint that its value must not be
less than zero.

Listing 3 Creating a managed object model in code

NSManagedObjectModel *mom = [[NSManagedObjectModel alloc] init];
NSEntityDescription *runEntity = [[NSEntityDescription alloc] init];
[runEntity setName:@"Run"];
[runEntity setManagedObjectClassName:@"Run"];
[mom setEntities:[NSArray arrayWithObject:runEntity]];
[runEntity release];

NSMutableArray *runProperties = [NSMutableArray array];

NSAttributeDescription *dateAttribute = [[NSAttributeDescription alloc] init];
[runProperties addObject:dateAttribute];
[dateAttribute release];
[dateAttribute setName:@"date"];
[dateAttribute setAttributeType:NSDateAttributeType];
[dateAttribute setOptional:NO];

NSAttributeDescription *idAttribute= [[NSAttributeDescription alloc] init];
[runProperties addObject:idAttribute];
[idAttribute release];
[idAttribute setName:@"processID"];
[idAttribute setAttributeType:NSInteger32AttributeType];
[idAttribute setOptional:NO];
[idAttribute setDefaultValue:[NSNumber numberWithInt:0]];

NSPredicate *validationPredicate = [NSPredicate predicateWithFormat:@"SELF >= 0"];
NSString *validationWarning = @"Process ID < 0";
[idAttribute setValidationPredicates:[NSArray arrayWithObject:validationPredicate]
 withValidationWarnings:[NSArray arrayWithObject:validationWarning]];

[runEntity setProperties:runProperties];

NSMutableDictionary *localizationDictionary = [NSMutableDictionary dictionary];
[localizationDictionary setObject:@"Process ID"
 forKey:@"Property/processID/Entity/Run"];
[localizationDictionary setObject:@"Date"
 forKey:@"Property/date/Entity/Run"];
[localizationDictionary setObject:@"Process ID must not be less than 0"
 forKey:@"ErrorString/Process ID < 0"];
[mom setLocalizationDictionary:localizationDictionary];

Localizing a Managed Object Model 35
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using a Managed Object Model

36 Localizing a Managed Object Model
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using a Managed Object Model

This article provides basic information about what is a managed object, how its data is stored, how you
implement a custom managed object class, object life-cycle issues, and faulting. There are several other
articles in the Core Data Programming Guide that describe other aspects of using managed objects:

 ■ “Creating and Deleting Managed Objects” (page 53)

 ■ “Fetching Managed Objects” (page 59)

 ■ “Using Managed Objects” (page 63)

Basics

Managed objects are instances of the NSManagedObject class, or of a subclass of NSManagedObject, that
represent instances of an entity. NSManagedObject is a generic class that implements all the basic behavior
required of a managed object. You can create custom subclasses of NSManagedObject, although this is
often not required. If you do not need any custom logic for a given entity, you do not need to create a custom
class for that entity. You might implement a custom class, for example, to provide custom accessor or validation
methods, to use non-standard attributes, to specify dependent keys, to calculate derived values, or to
implement any other custom logic.

A managed object is associated with an entity description (an instance of NSEntityDescription) that
provides metadata about the object (including the name of the entity that the object represents and the
names of its attributes and relationships) and with a managed object context that tracks changes to the
object graph.

A managed object is also associated with a managed object context (“context”). In a given context, a managed
object provides a representation of a record in a persistent store. In a given context, for a given record in a
persistent store, there can be only one corresponding managed object, but there may be multiple contexts
each containing a separate managed object representing that record. Put another way, there is a to-one
relationship between a managed object and the data record it represents, but a to-many relationship between
the record and corresponding managed objects.

Properties and Data Storage

In some respects, an NSManagedObject acts like a dictionary—it is a generic container object that efficiently
provides storage for the properties defined by its associated NSEntityDescription object.
NSManagedObject provides support for a range of common types for attribute values, including string, date,
and number (see NSAttributeDescription for full details). There is therefore commonly no need to define
instance variables in subclasses. There are some performance considerations to bear in mind if you use large
binary data objects—see “Large Data Objects (BLOBs)” (page 134).

Basics 37
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Objects

Non-Standard Attributes

NSManagedObject provides support for a range of common types for attribute values, including string, date,
and number (see NSAttributeDescription for full details). By default, NSManagedObject stores its
properties as objects in an internal structure, and in general Core Data is more efficient working with storage
under its own control rather using custom instance variables.

Sometimes you want to use types that are not supported directly, such as colors and C structures. For example,
in a graphics application you might want to define a Rectangle entity that has attributes color and bounds
that are an instance of NSColor and an NSRect struct respectively. This may require you to create a subclass
of NSManagedObject, and is described in “Non-Standard Persistent Attributes” (page 87).

Dates and Times

NSManagedObject represents date attributes using NSDate objects, and stores times internally as an
NSTimeInterval value since the reference date (which has a time zone of GMT). Time zones are not explicitly
stored—indeed you should always represent a Core Data date attribute in GMT, this way searches are
normalized in the database. If you need to preserve the time zone information, you need to store a time zone
attribute in your model. This may again require you to create a subclass of NSManagedObject.

Custom Managed Object Classes

In combination with the entity description in the managed object model, NSManagedObject provides a rich
set of default behaviors including support for arbitrary properties and value validation. There are nevertheless
many reasons why you might wish to subclass NSManagedObject to implement custom features. There are
also, however, some things to avoid when subclassing. It’s also important to be aware that Core Data manages
the life-cycle of modeled properties.

Overriding Methods

NSManagedObject itself customizes many features of NSObject so that managed objects can be properly
integrated into the Core Data infrastructure. Core Data relies on NSManagedObject’s implementation of the
following methods, which you should therefore not override: primitiveValueForKey:,
setPrimitiveValue:forKey:, isEqual:, hash, superclass, class, self, zone, isProxy,
isKindOfClass:, isMemberOfClass:, conformsToProtocol:, respondsToSelector:, retain,
release, autorelease, retainCount, managedObjectContext, entity, objectID, isInserted,
isUpdated, isDeleted, and isFault. You are discouraged from overriding description—if this method
fires a fault during a debugging operation, the results may be unpredictable—and
initWithEntity:insertIntoManagedObjectContext:. You should typically not override the key-value
coding methods such as valueForKey: and setValue:forKeyPath:.

In addition to methods you should not override, there are others that if you do override you should invoke
the superclass’s implementation first, including awakeFromInsert, awakeFromFetch, and validation
methods such as validateForUpdate:.

38 Custom Managed Object Classes
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Objects

Modeled Properties

In Mac OS X v10.5 and later, Core Data dynamically generates efficient public and primitive get and set
attribute accessor methods and relationship accessor methods for properties that are defined in the entity
of a managed object’s corresponding managed object model. Typically, therefore, you don’t need to write
custom accessor methods for modeled properties.

In a managed object sub-class, you can declare the properties for modeled attributes in the interface file,
but you don’t declare instance variables:

@interface MyManagedObject : NSManagedObject {
}
@property (nonatomic, retain) NSString *title;
@property (nonatomic, retain) NSDate *date;
@end

Notice that the properties are declared as nonatomic, and retain. For performance reasons, Core Data
typically does not copy object values, even if the value class adopts the NSCopying protocol.

In the implementation file, you specify the properties as dynamic:

@implementation MyManagedObject
@dynamic title;
@dynamic date;
@end

Since Core Data takes care of the life-cycle of the modeled properties, in a reference-counted environment
you do not release modeled properties in dealloc. (If you add your own properties that are not specified in
the managed object model, then normal Cocoa rules apply.)

If you do need to implement custom accessor methods, there are several implementation patterns you must
follow—see “Managed Object Accessor Methods” (page 43).

Object Life-Cycle—Initialization and Deallocation

It is important to appreciate that Core Data “owns” the life-cycle of managed objects. With faulting and undo,
you cannot make the same assumptions about the life-cycle of a managed object as you would of a standard
Cocoa object—managed objects can be instantiated, destroyed, and resurrected by the framework as it
requires.

When a managed object is created, it is initialized with the default values given for its entity in the managed
object model. In many cases the default values set in the model may be sufficient. Sometimes, however, you
may wish to perform additional initialization—perhaps using dynamic values (such as the current date and
time) that cannot be represented in the model.

In a typical Cocoa class, you usually override the designated initializer (often the init method). In a subclass
of NSManagedObject, there are three different ways you can customize initialization —by overriding
initWithEntity:insertIntoManagedObjectContext:, awakeFromInsert, or awakeFromFetch. You
should not override init. You are discouraged from overriding
initWithEntity:insertIntoManagedObjectContext: as state changes made in this method may not
be properly integrated with undo and redo. The two other methods, awakeFromInsert and
awakeFromFetch, allow you to differentiate between two different situations:

Object Life-Cycle—Initialization and Deallocation 39
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Objects

 ■ awakeFromInsert is invoked only once in the lifetime of an object—when it is first created.

awakeFromInsert is invoked immediately after you invoke
initWithEntity:insertIntoManagedObjectContext: or
insertNewObjectForEntityForName:inManagedObjectContext:. You can useawakeFromInsert
to initialize special default property values, such as the creation date of an object, as illustrated in the
following example.

- (void) awakeFromInsert
{
 [super awakeFromInsert];
 [self setCreationDate:[NSDate date]];
}

 ■ awakeFromFetch is invoked when an object is re-initialized from a persistent store (during a fetch).

You can override awakeFromFetch to, for example, establish transient values and other caches. Change
processing is explicitly disabled around awakeFromFetch so that you can conveniently use public set
accessor methods without dirtying the object or its context. This does mean, however, that you should
not manipulate relationships, as changes will not be properly propagated to the destination object or
objects. Instead, you can override awakeFromInsert or employ any of the run loop related methods
such as performSelector:withObject:afterDelay:.

You should typically not override dealloc or finalize to clear transient properties and other variables.
Instead, you should override didTurnIntoFault. didTurnIntoFault is invoked automatically by Core
Data when an object is turned into a fault and immediately prior to actual deallocation. You might turn a
managed object into a fault specifically to reduce memory overhead (see “Reducing Memory Overhead” (page
133)), so it is important to ensure that you properly perform clean-up operations in didTurnIntoFault.

Validation

NSManagedObject provides consistent hooks for validating property and inter-property values. You typically
should not override validateValue:forKey:error:, instead you should implement methods of the form
validate<Key>:error:, as defined by the NSKeyValueCoding protocol. If you want to validate
inter-property values, you can override validateForUpdate: and/or related validation methods.

You should not call validateValue:forKey:error: within custom property validation methods—if you
do so you will create an infinite loop when validateValue:forKey:error: is invoked at runtime. If you
do implement custom validation methods, you should typically not call them directly. Instead you should
call validateValue:forKey:error: with the appropriate key. This ensures that any constraints defined
in the managed object model are applied.

If you implement custom inter-property validation methods (such as validateForUpdate:), you should
call the superclass’s implementation first. This ensures that individual property validation methods are also
invoked. If there are multiple validation failures in one operation, you should collect them in an array and
add the array—using the key NSDetailedErrorsKey—to the userInfo dictionary in the NSError object
you return.

40 Validation
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Objects

Faulting

Managed objects typically represent data held in a persistent store. In some situations a managed object
may be a “fault”—an object whose property values have not yet been loaded from the external data store—see
“Faulting and Uniquing” (page 103) for more details. When you access persistent property values, the fault
“fires” and the data is retrieved from the store automatically. This can be a comparatively expensive process
(potentially requiring a round trip to the persistent store), and you may wish to avoid unnecessarily firing a
fault (see “Faulting Behavior” (page 130)).

Although the description method does not cause a fault to fire, if you implement a custom description
method that accesses the object’s persistent properties, this will cause a fault to fire. You are strongly
discouraged from overriding description in this way.

There is no way to load individual attributes of a managed object on an as-needed basis. For patterns to deal
with large attributes, see “Large Data Objects (BLOBs)” (page 134).

Faulting 41
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Objects

42 Faulting
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Objects

This article explains why you might want to implement custom accessor methods for managed objects, and
how to implement them for attributes and for relationships. It also illustrates how to implement primitive
accessor methods.

Overview

In Mac OS X v10.5, Core Data dynamically generates efficient public and primitive get and set attribute
accessor methods and relationship accessor methods for managed object classes. Typically, therefore, there’s
no need for you to write accessor methods for properties that are defined in the entity of a managed object’s
corresponding managed object model—although you may use the Objective-C declared property feature
to declare properties to suppress compiler warnings. To get the best performance—and to benefit from
type-checking—you use the accessor methods directly, although they are also key-value coding (KVC)
compliant so if necessary you can use standard key-value coding methods such as valueForKey:. You do
need to write custom accessor methods if you use transient properties to support non-standard data types
(see “Non-Standard Persistent Attributes” (page 87)) or if you use scalar instance variables to represent an
attribute.

Custom implementation

The implementation of accessor methods you write for subclasses of NSManagedObject is typically different
from those you write for other classes.

 ■ If you do not provide custom instance variables, you retrieve property values from and save values into
the internal store using primitive accessor methods.

 ■ You must ensure that you invoke the relevant access and change notification methods
(willAccessValueForKey:, didAccessValueForKey:, willChangeValueForKey:,
didChangeValueForKey:, willChangeValueForKey:withSetMutation:usingObjects:, and
didChangeValueForKey:withSetMutation:usingObjects:).

NSManagedObject disables automatic key-value observing (KVO, see Key-ValueObserving Programming
Guide) change notifications, and the primitive accessor methods do not invoke the access and change
notification methods.

 ■ In accessor methods for properties that are not defined in the entity model, you can either enable
automatic change notifications or invoke the appropriate change notification methods.

You can use the Xcode data modeling tool to generate the code for accessor methods for any modeled
property.

Overview 43
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

Key-value coding access pattern

The access pattern key-value coding uses for managed objects is largely the same as that used for subclasses
of NSObject—see valueForKey:. The difference is that, if after checking the normal resolutions
valueForKey: would throw an unbound key exception, the key-value coding mechanism for
NSManagedObject checks whether the key is a modeled property. If the key matches an entity's property,
the mechanism looks first for an accessor method of the form primitiveKey, and if that is not found then
looks for a value for key in the managed object's internal storage. If these fail, NSManagedObject throws an
unbound key exception (just like valueForKey:).

Dynamically-Generated Accessor Methods

By default, Core Data dynamically creates efficient public and primitive get and set accessor methods for
modeled properties (attributes and relationships) of managed object classes. This includes the key-value
coding mutable proxy methods such as add<Key>Object: and remove<Key>s:, as detailed in the
documentation for mutableSetValueForKey:—managed objects are effectively mutable proxies for all
their to-many relationships.

Note: If you choose to implement your own accessors, the dynamically-generated methods never replace
your own code.

For example, given an entity with an attribute firstName, Core Data automatically generates firstName,
setFirstName:, primitiveFirstName, and setPrimitiveFirstName:. Core Data does this even for
entities represented by NSManagedObject. To suppress compiler warnings when you invoke these methods,
you should use the Objective-C 2.0 declared properties feature, as described in “Declaration” (page 44).

The property accessor methods Core Data generates are by default (nonatomic, retain)—this is the
recommended configuration. The methods are nonatomic because non-atomic accessors are more efficient
than atomic accessors, and in general it is not possible to assure thread safety in a Core Data application at
the level of accessor methods. (To understand how to use Core Data in a multi-threaded environment, see
Multi-Threading with Core Data (page 125).)

In addition to always being nonatomic, dynamic properties only honor retain or copy attributes—assign
is treated as retain. You should use copy sparingly as it increases overhead. You cannot use copy for
relationships because NSManagedObject does not adopt the NSCopying protocol, and it's irrelevant to the
behavior of to-many relationships.

Important: If you specify copy for a to-one relationship, you will generate a run-time error.

Declaration

You can use Objective-C 2 properties to declare properties of managed object classes—you typically do this
so that you can use the default accessors Core Data provides without generating compiler warnings. The
easiest way to generate the declarations is to select the relationship in the Xcodemodeling tool and choose Design
> Data Model > Copy Obj-C 2.0 Method Declarations to Clipboard. and then modify the code if necessary.

44 Dynamically-Generated Accessor Methods
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

You declare attributes and relationships as you would properties for any other object, as illustrated in the
following example. When you declare a to-many relationship, the property type should be NSSet *. (The
value returned from the get accessor is not a KVO-compliant mutable proxy—for more details, see “To-many
relationships” (page 64).)

@interface Employee : NSManagedObject
{ }
@property(nonatomic, retain) NSString* firstName, lastName;
@property(nonatomic, retain) Department* department;
@property(nonatomic, retain) Employee* manager;
@property(nonatomic, retain) NSSet* directReports;
@end

If you are not using a custom class, to suppress compiler warnings you can declare the properties in a category
of NSManagedObject:

@interface NSManagedObject (EmployeeAccessors)

@property(nonatomic, retain) NSString* firstName, lastName;
@property(nonatomic, retain) Department* department;
@property(nonatomic, retain) Employee* manager;
@property(nonatomic, retain) NSSet* directReports;
@end

You can use the same techniques to suppress compiler warnings for the automatically-generated to-many
relationship mutator methods, for example:

@interface Employee (DirectReportsAccessors)

- (void)addDirectReportsObject:(Employee *)value;
- (void)removeDirectReportsObject:(Employee *)value;
- (void)addDirectReports:(NSSet *)value;
- (void)removeDirectReports:(NSSet *)value;

@end

You typically retain attributes, although to preserve encapsulation where the attribute class has a mutable
subclass and it implements the NSCopying protocol you can also use copy, for example:

@property(nonatomic, copy) NSString* firstName, lastName;

Implementation

You can specify an implementation using the @dynamic keyword, as shown in the following
example—although since @dynamic is the default, there is no need to do so:

@dynamic firstName, lastName;
@dynamic department, manager;
@dynamic directReports;

There should typically be no need for you to provide your own implementation of these methods, unless
you want to support scalar values. The methods that Core Data generates at runtime are more efficient than
those you can implement yourself.

Dynamically-Generated Accessor Methods 45
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

Inheritance

If you have two subclasses of NSManagedObject where the parent class implements a dynamic property
and its subclass (the grandchild of NSManagedObject) overrides the methods for the property, those overrides
cannot call super.

@interface Parent : NSManagedObject
@property(nonatomic, retain) NSString* parentString;
@end

@implementation Parent
@dynamic parentString;
@end

@interface Child : Parent
@end

@implementation Child
- (NSString *)parentString
{
 // this throws a "selector not found" exception
 return parentString.foo;
}
@end

Custom Attribute and To-One Relationship Accessor Methods

Important: You are strongly encouraged to use dynamic properties (that is, properties whose implementation
you specify as @dynamic) instead of creating custom implementations for standard or primitive accessor
methods.

If you want to implement your own attribute or to-one relationship accessor methods, you use the primitive
accessor methods to get and set values from and to the managed object's private internal store. You must
invoke the relevant access and change notification methods, as illustrated in Listing 1 (page 46).
NSManagedObject's implementation of the primitive set accessor method handles memory management
for you.

Listing 1 Implementation of a custom managed object class illustrating attribute accessor methods

@interface Department : NSManagedObject
{
}
@property(nonatomic, retain) NSString *name;
@end

@interface Department (PrimitiveAccessors)
- (NSString *)primitiveName;
- (void)setPrimitiveName:(NSString *)newName;
@end

46 Custom Attribute and To-One Relationship Accessor Methods
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

@implementation Department

@dynamic name;

- (NSString *)name
{
 [self willAccessValueForKey:@"name"];
 NSString *myName = [self primitiveName];
 [self didAccessValueForKey:@"name"];
 return myName;
}

- (void)setName:(NSString *)newName
{
 [self willChangeValueForKey:@"name"];
 [self setPrimitiveName:newName];
 [self didChangeValueForKey:@"name"];
}
@end

The default implementation does not copy attribute values. If the attribute value may be mutable and
implements the NSCopying protocol (as is the case with NSString, for example), you can copy the value
in a custom accessor to help preserve encapsulation (for example, in the case where an instance of
NSMutableString is passed as a value). This is illustrated in Listing 2 (page 47). Notice also that (for the
purposes of illustration) in this example the get accessor is not implemented—since it’s not implemented,
Core Data will generate it automatically.

Listing 2 Implementation of a custom managed object class illustrating copying setter

@interface Department : NSManagedObject
{
}
@property(nonatomic, copy) NSString *name;
@end

@implementation Department

@dynamic name;

- (void)setName:(NSString *)newName
{
 [self willChangeValueForKey:@"name"];
 // NSString implements NSCopying, so copy the attribute value
 NSString *newNameCopy = [newName copy];
 [self setPrimitiveName:newNameCopy];
 [newNameCopy release];
 [self didChangeValueForKey:@"name"];
}
@end

If you choose to represent an attribute using a scalar type (such as NSInteger or CGFloat), or as one of the
structures supported by NSKeyValueCoding (NSRect, NSPoint, NSSize, NSRange), then you should
implement accessor methods as illustrated in Listing 3 (page 48). If you want to use any other attribute type,
then you should use a different pattern, described in Non-Standard Persistent Attributes (page 87).

Custom Attribute and To-One Relationship Accessor Methods 47
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

Listing 3 Implementation of a custom managed object class illustrating a scalar attribute value

@interface Circle : NSManagedObject
{
 CGFloat radius;
}
@property CGFloat radius;
@end

@implementation Circle

- (CGFloat)radius
{
 [self willAccessValueForKey:@"radius"];
 float f = radius;
 [self didAccessValueForKey:@"radius"];
 return f;
}

- (void)setRadius:(CGFloat)newRadius
{
 [self willChangeValueForKey:@"radius"];
 radius = newRadius;
 [self didChangeValueForKey:@"radius"];
}
@end

Custom To-Many Relationship Accessor Methods

Important: You are strongly encouraged to use dynamic properties (that is, properties whose implementation
you specify as @dynamic) instead of creating custom implementations for standard or primitive accessor
methods.

You usually access to-many relationships using mutableSetValueForKey:, which returns a proxy object
that both mutates the relationship and sends appropriate key-value observing notifications for you. There
should typically be little reason to implement your own collection accessor methods for to-many relationships.
If they are present, however, the framework calls the mutator methods (such as add<Key>Object: and
remove<Key>Object:) when modifying a collection that represents a persistent relationship. (Fetched
properties do not support the mutable collection accessor methods.) In order for this to work correctly, you
must implement an add<Key>Object:/remove<Key>Object: pair, an add<Key>:/remove<Key>: pair,
or both pairs. You may also implement other get accessors (such as countOf<Key>:, enumeratorOf<Key>:,
and memberOf<Key>:) and use these in your own code, however these are not guaranteed to be called by
the framework.

48 Custom To-Many Relationship Accessor Methods
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

Important: For performance reasons, the proxy object returned by managed objects for
mutableSetValueForKey: does not support set<Key>: style setters for relationships. For example, if you
have a to-many relationship employees of a Department class and implement accessor methods employees
and setEmployees:, then manipulate the relationship using the proxy object returned by
mutableSetValueForKey:@"employees", setEmployees: is not invoked. You should implement the
other mutable proxy accessor overrides instead.

If you do implement collection accessors for model properties, they must invoke the relevant KVO notification
methods. Listing 4 (page 49) illustrates the implementation of accessor methods for a to-many
relationship—employees—of a Department class. The easiest way to generate the implementation is to select
the relationship in the Xcode modeling tool and choose Design > Data Model > Copy Obj-C 2.0 Method
{Declarations/Implementations} to Clipboard.

Listing 4 A managed object class illustrating implementation of custom accessors for a to-many
relationship

@interface Department : NSManagedObject
{
}
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSSet *employees;
@end

@interface Department (DirectReportsAccessors)

- (void)addEmployeesObject:(Employee *)value;
- (void)removeEmployeesObject:(Employee *)value;
- (void)addEmployees:(NSSet *)value;
- (void)removeEmployees:(NSSet *)value;

- (NSMutableSet*)primitiveEmployees;
- (void)setPrimitiveEmployees:(NSMutableSet*)value;

@end

@implementation Department

@dynamic name;
@dynamic employees;

- (void)addEmployeesObject:(Employee *)value
{
 NSSet *changedObjects = [[NSSet alloc] initWithObjects:&value count:1];

 [self willChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueUnionSetMutation
 usingObjects:changedObjects];
 [[self primitiveEmployees] addObject:value];
 [self didChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueUnionSetMutation
 usingObjects:changedObjects];

 [changedObjects release];

Custom To-Many Relationship Accessor Methods 49
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

}

- (void)removeEmployeesObject:(Employee *)value
{
 NSSet *changedObjects = [[NSSet alloc] initWithObjects:&value count:1];

 [self willChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueMinusSetMutation
 usingObjects:changedObjects];
 [[self primitiveEmployees] removeObject:value];
 [self didChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueMinusSetMutation
 usingObjects:changedObjects];

 [changedObjects release];
}

- (void)addEmployees:(NSSet *)value
{
 [self willChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueUnionSetMutation
 usingObjects:value];
 [[self primitiveEmployees] unionSet:value];
 [self didChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueUnionSetMutation
 usingObjects:value];
}

- (void)removeEmployees:(NSSet *)value
{
 [self willChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueMinusSetMutation
 usingObjects:value];
 [[self primitiveEmployees] minusSet:value];
 [self didChangeValueForKey:@"employees"
 withSetMutation:NSKeyValueMinusSetMutation
 usingObjects:value];
}

Custom Primitive Accessor Methods

Primitive accessor methods are similar to "normal" or public key-value coding compliant accessor methods,
except that Core Data uses them as the most basic data methods to access data, consequently they do not
issue key-value access or observing notifications. Put another way, they are to primitiveValueForKey:
and setPrimitiveValue:forKey: what public accessor methods are to valueForKey: and
setValue:forKey:.

Typically there should be little reason to implement primitive accessor methods. They are, however, useful
if you want custom methods to provide direct access to instance variables for persistent Core Data properties.
The example below contrasts public and primitive accessor methods for an attribute, int16, of type Integer
16, stored in a custom instance variable, nonCompliantKVCivar.

// primitive get accessor
- (short)primitiveInt16 {

50 Custom Primitive Accessor Methods
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

 return nonCompliantKVCivar;
}

// primitive set accessor
- (void)setPrimitiveInt16:(short)newInt16 {
 nonCompliantKVCivar = newInt16;
}

// public get accessor
- (short)int16 {
 short tmpValue;
 [self willAccessValueForKey: @"int16"];
 tmpValue = nonCompliantKVCivar;
 [self didAccessValueForKey: @"int16"];
 return tmpValue;
}

// public set accessor
- (void)setInt16:(short)int16 {
 [self willChangeValueForKey: @"int16"];
 nonCompliantKVCivar = int16;
 [self didChangeValueForKey:@"int16"];
}

Custom Primitive Accessor Methods 51
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

52 Custom Primitive Accessor Methods
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Accessor Methods

The Core Data Framework relieves you from the need to implement many of the mechanisms needed to
manage data-bearing (model) objects. It does, though, impose the requirement that model objects are
instances of, or instances of classes that inherit from, NSManagedObject, and that the model objects are
properly integrated in to the Core Data infrastructure. This document first describes the basic pieces of the
infrastructure you need to create a managed object, and how to easily instantiate an instance of a managed
object and integrate it into that infrastructure. It then describes the processes that are abstracted by the
convenience methods you typically use to create a managed object; how to assign an object to a particular
store; and finally how to delete a managed object.

Creating, Initializing, and Saving a Managed Object

A managed object is an instance of an Objective-C class. From this perspective, it is no different from any
other object you use—you can simply create an instance using alloc. A managed object differs from other
objects in three main ways—a managed object:

 ■ Must be an instance of NSManagedObject or of a class that inherits from NSManagedObject

 ■ Exists in an environment defined by its managed object context

 ■ Has an associated entity description that describes the properties of the object

In principle, there is therefore a lot of work to do to create a new managed object and properly integrate it
into the Core Data infrastructure. In practice, however, this task is made easy by a convenience class method
(insertNewObjectForEntityForName:inManagedObjectContext:) of NSEntityDescription. The
following example shows the easiest way to create a new instance of an entity named “Employee”.

NSManagedObject *newEmployee = [NSEntityDescription
 insertNewObjectForEntityForName:@"Employee"
 inManagedObjectContext:context];

The method returns an instance of whatever class is defined in the managed object model to represent the
entity, initialized with the default values given for its entity in the model.

In many cases the default values you set in the model may be sufficient. Sometimes, however, you may wish
to perform additional initialization—perhaps using dynamic values (such as the current date and time) that
cannot be represented in the model. In a typical Cocoa application you would override the class’s init
method to provide this functionality. With NSManagedObject, you are discouraged from overriding
initWithEntity:insertIntoManagedObjectContext:; instead, Core Data provides several other means
of initializing values—these are described in “Object Life-Cycle—Initialization and Deallocation” (page 39).

Simply creating a managed object does not cause it to be saved to a persistent store. The managed object
context acts as a scratchpad. You can create and register objects with it, make changes to the objects, and
undo and redo changes as you wish. If you make changes to managed objects associated with a given context,

Creating, Initializing, and Saving a Managed Object 53
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Creating and Deleting Managed Objects

those changes remain local to that context until you commit the changes by sending the context a save:
message. At that point—provided that there are no validation errors—the changes are committed to the
store.

See also “Assigning an Object to a Store” (page 56).

Behind the Scenes of Creating a Managed Object

Although NSEntityDescription’s convenience method makes it easy to create and configure a new
managed object, it may be instructive to detail what is happening behind the scenes. If this is not of current
interest, you may safely skip this section (go to “Assigning an Object to a Store” (page 56))—you are
encouraged, however, to revisit this material to ensure that you fully understand the process.

In order to properly integrate a managed object into the Core Data infrastructure there are two elements
you need:

 ■ A managed object context

 ■ An entity description

The Managed Object Context

The context is responsible for mediating between its managed objects and the rest of the Core Data
infrastructure. The infrastructure is in turn responsible for, for example, translating changes to managed
objects into undo actions maintained by the context, and also into operations that need to be performed
on the persistent store with which the managed object is assigned.

The context is in effect also your gateway to the rest of the Core Data infrastructure. As such, it is expected
that you either keep a reference to the context, or you have a means of easily retrieving it—for example, if
you are developing a document-based application that uses NSPersistentDocument, you can use the
document class’s managedObjectContext method.

The Entity Description

An entity description specifies (amongst other things) the name of an entity, the class used to represent the
entity, and the entity’s properties. The entity description is important since a given class may be used to
represent more than one entity—by default all entities are represented by NSManagedObject. Core Data
uses the entity description to determine what properties a managed object has, what needs to be saved to
or retrieved from the persistent store, and what constraints there are on property values. Entity descriptions
are properties of a managed object model. For more information about creating a model, see Xcode Tools
for Core Data and Creating a Managed Object Model with Xcode.

Given a managed object context, you could retrieve the appropriate entity description through the persistent
store coordinator as illustrated in the following example:

NSManagedObjectContext *context = /* assume this exists */;
NSManagedObjectModel *managedObjectModel =
 [[context persistentStoreCoordinator] managedObjectModel];
NSEntityDescription *employeeEntity =

54 Behind the Scenes of Creating a Managed Object
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Creating and Deleting Managed Objects

 [[managedObjectModel entitiesByName] objectForKey:@"Employee"];

In practice, you would use the convenience method entityForName:inManagedObjectContext: of
NSEntityDescription which does the same thing—as illustrated in the following example:

NSManagedObjectContext *context = /* assume this exists */;
NSEntityDescription *employeeEntity = [NSEntityDescription
 entityForName:@"Employee"
 inManagedObjectContext:context];

Creating a Managed Object

Mac OS X v10.4: This section describes usage patterns for Mac OS X v10.5; if you are using Mac OS X v10.4,
see “Creating a Managed Object in Mac OS X v10.4” (page 55).

Fundamentally NSManagedObject is an Objective-C class like any other Objective-C class. You can create a
new instance using alloc.

Like various other classes, NSManagedObject imposes some constraints on instance creation. As described
earlier, you must associate the new managed object instance with the entity object that defines its properties
and with the managed object context that defines its environment. You cannot therefore initialize a managed
object simply by sending an init message, you must use the designated
initializer—initWithEntity:insertIntoManagedObjectContext:—which sets both the entity and
context:

NSManagedObject *newEmployee = [[NSManagedObject alloc]
 initWithEntity:employeeEntity
 insertIntoManagedObjectContext:context];

This is in effect what NSEntityDescription's convenience method
insertNewObjectForEntityForName:inManagedObjectContext: does for you (note though that
insertNewObjectForEntityForName:inManagedObjectContext: returns an autoreleased
object)—including the entity instance look-up described in “The Entity Description” (page 54). This is why
you should typically use that method rather than NSManagedObject's
initWithEntity:insertIntoManagedObjectContext:.

An important additional point here is that initWithEntity:insertIntoManagedObjectContext:
returns an instance of the class specified by the entity description to represent the entity. If you want to
create a new Employee object and in the model you specified that the Employee entity should be represented
by a custom class, say Employee, it returns an instance of Employee. If you specified that the Employee
entity should be represented by NSManagedObject, it returns an instance of NSManagedObject.

Creating a Managed Object in Mac OS X v10.4

Fundamentally NSManagedObject is an Objective-C class like any other Objective-C class. You can create a
new instance using alloc. To create a new managed object, you create an instance of the class you specified
for that entity in the managed object model. If you want to create a new Employee object and in the model
you specified that the Employee entity should be represented by a custom class, say Employee, you create
an instance of Employee. If you specified that the Employee entity should be represented by
NSManagedObject, you create an instance of NSManagedObject.

Behind the Scenes of Creating a Managed Object 55
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Creating and Deleting Managed Objects

Like various other classes, NSManagedObject imposes some constraints on instance creation. As described
earlier, you must associate the new managed object instance with the entity object that defines its properties
and with the managed object context that defines its environment. You cannot therefore initialize a managed
object simply by sending an init message, you must use the designated
initializer—initWithEntity:insertIntoManagedObjectContext:—which sets both the entity and
context:

NSManagedObject *newEmployee = [[NSManagedObject alloc]
 initWithEntity:employeeEntity
 insertIntoManagedObjectContext:context];

A complicating factor, however, is that a given entity may be represented by a different class at different
points in the life-cycle of your application. At the beginning, it may be that you represent all entities with
NSManagedObject. Later you may create a custom class—you may even rename it. It may be prudent,
therefore, to not hard-code the class name, but instead to create an instance of whatever class the entity
specifies should be used, as illustrated in the following example (typically you should not write this code
yourself).

NSString *className = [employeeEntity managedObjectClassName];
Class entityClass = NSClassFromString(className);
NSManagedObject *newEmployee = [[entityClass alloc]
 initWithEntity:employeeEntity
 insertIntoManagedObjectContext:context];

This is in effect what NSEntityDescription's convenience method
insertNewObjectForEntityForName:inManagedObjectContext: does for you (note though that
insertNewObjectForEntityForName:inManagedObjectContext: returns an autoreleased
object)—which is why you should typically use that method rather than NSManagedObject's
initWithEntity:insertIntoManagedObjectContext:.

Assigning an Object to a Store

Typically there is only one persistent store for a given entity, and Core Data automatically ensures that new
objects are saved to this store when the object's managed object context is saved. Sometimes, however, you
may have multiple writable stores for a given entity—for example you may store some data in a specific
document and some in a common global repository (say, a store in the user’s Application Support folder).
In this situation you must specify the store in which the object is to reside.

You specify the store for an object using the NSManagedObjectContext method,
assignObject:toPersistentStore:. This method takes as its second argument the identifier for a store.
You obtain the store identifier from the persistent store coordinator, using for example
persistentStoreForURL:. The following example illustrates the complete process of creating a new
managed object and assigning it to a global store.

NSURL *storeURL = ... ; // URL for path to global store

id globalStore = [[context persistentStoreCoordinator]
 persistentStoreForURL:storeURL];

NSManagedObject *newEmployee = [NSEntityDescription
 insertNewObjectForEntityForName:@"Employee"
 inManagedObjectContext:context];

56 Assigning an Object to a Store
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Creating and Deleting Managed Objects

[context assignObject:newEmployee toPersistentStore:globalStore];

Of course, the object is not saved to the store until the managed object context is saved.

Deleting a Managed Object

Deleting a managed object is straightforward. You simply send its managed object context a deleteObject:
message, passing the object you want to delete as the argument.

[aContext deleteObject:aManagedObject];

This removes the managed object from the object graph. Just as a new object is not saved to the store until
the context is saved, a deleted object is not removed from the store until the context is saved.

Relationships

When you delete a managed object it is important to consider its relationships and in particular the delete
rules specified for the relationships. If all of a managed object's relationship delete rules are Nullify, then for
that object at least there is no additional work to do (you may have to consider other objects that were at
the destination of the relationship—if the inverse relationship was either mandatory or had a lower limit on
cardinality, then the destination object or objects might be in an invalid state). If a relationship delete rule
is Cascade, then deleting one object may result in the deletion of others. If a rule is Deny, then before you
delete an object you must remove the destination object or objects from the relationship, otherwise you will
get a validation error when you save. If a delete rule is No Action, then you must ensure that you take whatever
steps are necessary to ensure the integrity of the object graph. For more details, see “Relationship Delete
Rules” (page 78).

Deleted status and notifications

You can find out if a managed object has been marked for deletion by sending it an isDeleted message.
If the return value is YES, this means that the object will be deleted during the next save operation, or put
another way, that the object is marked deleted for the current (pending) transaction. In addition, when you
send a managed object context a deleteObject: message, the context posts a
NSManagedObjectContextObjectsDidChangeNotificationnotification that includes the newly-deleted
object in its list of deleted objects. Note, however, that an object being marked for deletion from a context
is not the same as its being marked for deletion from a persistent store. If an object is created and deleted
within the same transaction—that is, without an intervening save operation—it will not appear in the array
returned by NSManagedObjectContext's deletedObjects method or in the set of deleted objects in a
NSManagedObjectContextDidSaveNotification notification.

Deleting a Managed Object 57
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Creating and Deleting Managed Objects

58 Deleting a Managed Object
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Creating and Deleting Managed Objects

This article describes how to fetch managed objects and discusses some considerations for ensuring that
fetching is efficient. It also shows how you can use NSExpressionDescription objects to retrieve particular
values. For code snippets that you can use for various scenarios, see Core Data Snippets.

Fetching Managed Objects

You fetch managed objects by sending a fetch request to a managed object context. You first create a fetch
request. As a minimum you must specify an entity for the request. You can get the entity from your managed
object model using the NSEntityDescription method entityForName:inManagedObjectContext:.
You may also set a predicate (for details about creating predicates, see Predicate Programming Guide), sort
descriptors, and other attributes if necessary. You retrieve objects from the context using
executeFetchRequest:error:, as illustrated in the example below.

Listing 1 Example of creating and executing a fetch request

NSManagedObjectContext *moc = [self managedObjectContext];
NSEntityDescription *entityDescription = [NSEntityDescription
 entityForName:@"Employee" inManagedObjectContext:moc];
NSFetchRequest *request = [[[NSFetchRequest alloc] init] autorelease];
[request setEntity:entityDescription];

// Set example predicate and sort orderings...
NSNumber *minimumSalary = ...;
NSPredicate *predicate = [NSPredicate predicateWithFormat:
 @"(lastName LIKE[c] 'Worsley') AND (salary > %@)", minimumSalary];
[request setPredicate:predicate];

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
 initWithKey:@"firstName" ascending:YES];
[request setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];
[sortDescriptor release];

NSError *error;
NSArray *array = [moc executeFetchRequest:request error:&error];
if (array == nil)
{
 // Deal with error...
}

You cannot fetch using a predicate based on transient properties (although you can use transient properties
to filter in memory yourself). Moreover, there are some interactions between fetching and the type of
store—for details, see “Store Types and Behaviors” (page 121). To summarize, though, if you execute a fetch
directly, you should typically not add Objective-C-based predicates or sort descriptors to the fetch request.

Fetching Managed Objects 59
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Fetching Managed Objects

Instead you should apply these to the results of the fetch. If you use an array controller, you may need to
subclass NSArrayController so you can have it not pass the sort descriptors to the persistent store and
instead do the sorting after your data has been fetched.

If you use multiple persistence stacks in your application, or if multiple applications might access (and modify)
the same store simultaneously, you can perform fetches to ensure that data values are current—see “Ensuring
Data Is Up-to-Date” (page 70).

Retrieving Specific Objects

If your application uses multiple contexts and you want to test whether an object has been deleted from a
persistent store, you can create a fetch request with a predicate of the form self == %@. The object you
pass in as the variable can be either a managed object or a managed object ID, as in the following example:

NSFetchRequest *request = [[[NSFetchRequest alloc] init] autorelease];
NSEntityDescription *entity =
 [NSEntityDescription entityForName:@"Employee"
 inManagedObjectContext:managedObjectContext];
[request setEntity:entity];

NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@"self == %@", targetObject];
[request setPredicate:predicate];

NSError *error;
NSArray *array = [managedObjectContext executeFetchRequest:request error:&error];
if (array != nil) {
 int count = [array count]; // may be 0 if the object has been deleted
 // …
}
else // deal with error…

The count of the array returned from the fetch will be 0 if the target object has been deleted. If you need to
test for the existence of several objects, it is more efficient to use the IN operator than it is to execute multiple
fetches for individual objects, for example:

NSPredicate *predicate = [NSPredicate predicateWithFormat:@"self IN %@",
 arrayOfManagedObjectIDs];

Fetching Specific Values

Sometimes you don’t want to fetch actual managed objects; instead, you just want to retrieve—for
example—the largest or smallest value of a particular attribute. In Mac OS X v10.6 and later and on iOS, you
can use NSExpressionDescription to directly retrieve values that meet your criteria.

You create a fetch request object and set its entity, just as you would for a normal fetch, but:

 ■ You specify that the fetch should return dictionaries.

You send the fetch request a setResultType:message with the argument NSDictionaryResultType.

60 Retrieving Specific Objects
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Fetching Managed Objects

 ■ You create instances of NSExpressionDescription specify the properties you want to retrieve.

If you just want a single value—such as the largest salary in an Employee table—then you just create a
single expression description.

There are a number of steps to follow to create and use the expression description.

1. First you need to create expressions (instances of NSExpression) to represent the key-path for the
value you’re interested in, and to represent the function you want to apply (such as max: or min:):

NSExpression *keyPathExpression = [NSExpression expressionForKeyPath:@"salary"];
NSExpression *maxSalaryExpression = [NSExpression expressionForFunction:@"max:"
 arguments:[NSArray
arrayWithObject:keyPathExpression]];

For a full list of supported functions, see expressionForFunction:arguments:.

2. You then create the expression description and set its name, expression, and result type.

The name is the key that will be used in the dictionary for the return value. If you want to retrieve multiple
values—such as the largest and the smallest salaries in an Employee table—the name of each expression
description must be unique for a given fetch request.

NSExpressionDescription *expressionDescription = [[NSExpressionDescription alloc]
 init];
[expressionDescription setName:@"maxSalary"];
[expressionDescription setExpression:maxSalaryExpression];
[expressionDescription setExpressionResultType:NSDecimalAttributeType];

3. Finally, you set the request’s properties to fetch just the property represented by the expression:

[request setPropertiesToFetch:[NSArray arrayWithObject:expressionDescription]];

You can then execute the fetch request just as you would any other (using executeFetchRequest:error:).
The request returns, though an array containing a dictionary whose keys and values correspond to the names
of the expression descriptions and the values you requested.

The following example illustrates how you can get the minimum value of an attribute “creationDate” in an
entity named “Event”.

NSFetchRequest *request = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"Event"
inManagedObjectContext:context];
[request setEntity:entity];

// Specify that the request should return dictionaries.
[request setResultType:NSDictionaryResultType];

// Create an expression for the key path.
NSExpression *keyPathExpression = [NSExpression
expressionForKeyPath:@"creationDate"];

// Create an expression to represent the minimum value at the key path
'creationDate'
NSExpression *minExpression = [NSExpression expressionForFunction:@"min:"
arguments:[NSArray arrayWithObject:keyPathExpression]];

Fetching Specific Values 61
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Fetching Managed Objects

// Create an expression description using the minExpression and returning a
date.
NSExpressionDescription *expressionDescription = [[NSExpressionDescription alloc]
 init];

// The name is the key that will be used in the dictionary for the return value.
[expressionDescription setName:@"minDate"];
[expressionDescription setExpression:minExpression];
[expressionDescription setExpressionResultType:NSDateAttributeType];

// Set the request's properties to fetch just the property represented by the
expressions.
[request setPropertiesToFetch:[NSArray arrayWithObject:expressionDescription]];

// Execute the fetch.
NSError *error;
NSArray *objects = [managedObjectContext executeFetchRequest:request
error:&error];
if (objects == nil) {
 // Handle the error.
}
else {
 if ([objects count] > 0) {
 NSLog(@"Minimum date: %@", [[objects objectAtIndex:0]
valueForKey:@"minDate"];
 }
}

[expressionDescription release];
[request release];

Fetching and Entity Inheritance

If you define an entity inheritance hierarchy (see “Entity Inheritance” (page 27)), when you specify a
super-entity as the entity for a fetch request, the request returns all matching instances of the super-entity
and of sub-entities. In some applications, you might specify a super-entity as being abstract (see “Abstract
Entities” (page 28)). To fetch matching instances of all concrete sub-entities of the abstract entity, you set
the entity for fetch specification to be the abstract entity. In the case of the domain described in “Abstract
Entities,” if you specify a fetch request with the Graphic entity, the fetch returns matching instances of Circle,
TextArea, and Line.

62 Fetching and Entity Inheritance
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Fetching Managed Objects

This document describes issues related to using and manipulating managed objects in your application.

Accessing and Modifying Properties

Core Data automatically generates efficient public and primitive get and set accessor methods for modeled
properties (attributes and relationships) of managed object classes (see “Managed Object Accessor
Methods” (page 43)). When you access or modify properties of a managed object, you should use these
methods directly.

Most relationships are inherently bidirectional. Any changes made to the relationships between objects
should maintain the integrity of the object graph. Provided that you have correctly modeled a relationship
in both directions and set the inverses, modifying one end of a relationship automatically updates the other
end—see “Manipulating Relationships and Object Graph Integrity” (page 79).

Attributes and to-one relationships

You access attributes and and to-one relationships of a managed object using standard accessor methods
or using the Objective-C 2.0 dot syntax (see “Dot Syntax” in The Objective-C Programming Language) as
illustrated in the following code fragment:

NSString *firstName = [anEmployee firstName];
Employee *manager = anEmployee.manager;

Similarly, you can use either standard accessor methods or the dot syntax to modify attributes; for example:

newEmployee.firstName = @"Stig";
[newEmployee setManager:manager];

In the cases of both getters and setters, the dot syntax is exactly equivalent to standard method invocation.
For example, the following two statements use identical codepaths:

[[aDepartment manager] setSalary:[NSNumber numberWithInteger:100000]];
aDepartment.manager.salary = [NSNumber numberWithInteger:100000];

You can also use key-value coding (KVC) to get or set the value of a simple attribute as illustrated in the
following code fragment. Using KVC, though, is considerably less efficient than using accessor methods, so
you should only use KVC when necessary (for example when you are choosing the key or keypath dynamically).

[newEmployee setValue:@"Stig" forKey:@"firstName"];
[aDepartment setValue:[NSNumber numberWithInteger:100000]
forKeyPath:@"manager.salary"];

You must, however, change attribute values in a KVC-compliant fashion. For example, the following typically
represents a programming error:

Accessing and Modifying Properties 63
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Managed Objects

NSMutableString *mutableString = [NSMutableString stringWithString:@"Stig"];
[newEmployee setFirstName:mutableString];
[mutableString setString:@"Laura"];

For mutable values, you should either transfer ownership of the value to Core Data, or implement custom
accessor methods to always perform a copy. The previous example may not represent an error if the class
representing the Employee entity declared the firstName property (copy) (or implemented a custom
setFirstName:method that copied the new value). It is important to note, of course, that after the invocation
of setString: (in the third code line) the value of firstName would still be “Laurie” and not “Laura”.

There should typically be no reason to invoke the primitive accessor methods except within custom accessor
methods (see “Managed Object Accessor Methods” (page 43)).

To-many relationships

To access a to-many relationship (whether the destination of a one-to-many relationship or a many-to-many
relationship), you use the standard get accessor method. A to-many relationship is represented by a set, as
illustrated in the following code fragment:

NSSet *managersPeers = [managersManager directReports];
NSSet *departmentsEmployees = aDepartment.employees;

When you access the destination of a relationship, you may initially get a fault object (see “Faulting and
Uniquing” (page 103))—the fault fires automatically if you make any changes to it. In Mac OS X v10.5 and
later, you check whether the relationship is a fault or not using NSManagedObject’s
hasFaultForRelationshipNamed: method.

You can in principle manipulate an entire to-many relationship in the same way you do a to-one relationship,
using either a custom accessor method or (more likely) key-value coding, as in the following example.

NSSet *newEmployees = [NSSet setWithObjects:employee1, employee2, nil];
[aDepartment setEmployees:newEmployees];

NSSet *newDirectReports = [NSSet setWithObjects:employee3, employee4, nil];
manager.directReports = newDirectReports;

Typically, however, you do not want to set an entire relationship, instead you want to add or remove a single
element at a time. To do this, you should use mutableSetValueForKey: or one of the
automatically-generated relationship mutator methods (see “Dynamically-Generated Accessor Methods” (page
44)):

NSMutableSet *employees = [aDepartment mutableSetValueForKey:@"employees"];
[employees addObject:newEmployee];
[employees removeObject:firedEmployee];

// or
[aDepartment addEmployeesObject:newEmployee];
[aDepartment removeEmployeesObject:firedEmployee];

It is important to understand the difference between the values returned by the dot accessor and by
mutableSetValueForKey:. mutableSetValueForKey: returns a mutable proxy object. If you mutate its
contents, it will emit the appropriate key-value observing (KVO) change notifications for the relationship.
The dot accessor simply returns a set. If you manipulate the set as shown in this code fragment:

[aDepartment.employees addObject:newEmployee]; // do not do this!

64 Accessing and Modifying Properties
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Managed Objects

then KVO change notifications are not emitted and the inverse relationship is not updated correctly.

Recall that the dot simply invokes the accessor method, so for the same reasons:

[[aDepartment employees] addObject:newEmployee]; // do not do this, either!

Saving Changes

Simply modifying a managed object does not cause the changes to be saved to a store. The managed object
context acts as a scratchpad. You can create and register managed objects with it, make changes to the
objects, and undo and redo changes as you wish. If you make changes to managed objects associated with
a given context, those changes remain local to that context until you commit the changes by sending the
context a save: message. At that point—provided that there are no validation errors—the changes are
committed to the store. As a corollary, simply creating a managed object does not cause it to be saved to a
persistent store, and deleting a managed object does not cause the record to be removed from the store—you
must save the context to commit the change.

See also “Ensuring Data Is Up-to-Date” (page 70).

Managed Object IDs and URIs

An NSManagedObjectID object is a universal identifier for a managed object, and provides basis for uniquing
in the Core Data Framework. A managed object ID uniquely identifies the same managed object both between
managed object contexts in a single application, and in multiple applications (as in distributed systems). Like
the primary key in the database, an identifier contains the information needed to exactly describe an object
in a persistent store, although the detailed information is not exposed. The framework completely encapsulates
the “external” information and presents a clean object oriented interface.

NSManagedObjectID *moID = [managedObject objectID];

There are two forms of an object ID. When a managed object is first created, Core Data assigns it a temporary
ID; only if it is saved to a persistent store does Core Data assign a managed object a permanent ID. You can
readily discover whether an ID is temporary:

BOOL isTemporary = [[managedObject objectID] isTemporaryID];

You can also transform an object ID into a URI representation:

NSURL *moURI = [[managedObject objectID] URIRepresentation];

Given a managed object ID or a URI, you can retrieve the corresponding managed object using
managedObjectIDForURIRepresentation: or objectWithID:.

An advantage of the URI representation is that you can archive it—although in many cases you should not
archive a temporary ID since this is obviously subject to change. You could, for example, store archived URIs
in your application’s user defaults to save the last selected group of objects in a table view. You can also use
URIs to support copy and paste operations (see “Copying and Copy and Paste” (page 66)) and drag and drop
operations (see “Drag and Drop” (page 67)).

Saving Changes 65
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Managed Objects

You can use object IDs to define “weak” relationships across persistent stores (where no hard join is possible).
For example, for a weak to-many relationship you store as archived URIs the IDs of the objects at the destination
of the relationship, and maintain the relationship as a transient attribute derived from the object IDs.

You can sometimes benefit from creating your own unique ID (UUID) property which can be defined and set
for newly inserted objects. This allows you to efficiently locate specific objects using predicates (though
before a save operation new objects can be found only in their original context).

Copying and Copy and Paste

It is difficult to solve the problem of copying, or supporting copy and paste, in a generic way for managed
objects. You need to determine on a case-by-case basis what properties of a managed object you actually
want to copy.

Copying Attributes

If you just want to copy a managed object’s attributes, then in many cases the best strategy may be in the
copy operation to create a dictionary (property list) representation of a managed object, then in the paste
operation to create a new managed object and populate it using the dictionary. For an example, see
NSPersistentDocument Core Data Tutorial—see also Copying in Model Object Implementation Guide. You can
use the managed object’s ID (described in “Managed Object IDs and URIs” (page 65)) to support copy and
paste. Note, however, that the technique needs to be adapted to allow for copying of new objects.

A new, unsaved, managed object has a temporary ID. If a user performs a copy operation and then a save
operation, the managed object’s ID changes and the ID recorded in the copy will be invalid in a subsequent
paste operation. To get around this, you use a "lazy write" (as described in Implementing Copy and Paste).
In the copy operation, you declare your custom type but if the managed object’s ID is temporary you do not
write the data—but you do keep a reference to the original managed object. In the
pasteboard:provideDataForType: method you then write the current ID for the object.

As a further complication, it is possible that the ID is still temporary during the paste operation, yet you must
still allow for the possibility of future paste operations after an intervening save operation. You must therefore
re-declare the type on the pasteboard to set up lazy pasting again, otherwise the pasteboard will retain the
temporary ID. You cannot invoke addTypes:owner: during pasteboard:provideDataForType:, so you
must use a delayed perform—for example:

- (void)pasteboard:(NSPasteboard *)sender provideDataForType:(NSString *)type
{
 if ([type isEqualToString:MyMOIDType]) {
 // assume cachedManagedObject is object originally copied
 NSManagedObjectID *moID = [cachedManagedObject objectID];
 NSURL *moURI = [moID URIRepresentation];
 [sender setString:[moURI absoluteString] forType:MyMOIDType];
 if ([moID isTemporaryID]) {
 [self performSelector:@selector(clearMOIDInPasteboard:)
 withObject:sender afterDelay:0];
 }
 }
 // implementation continues...
}

66 Copying and Copy and Paste
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Managed Objects

- (void)clearMOIDInPasteboard:(NSPasteboard *)pb
{
 [pb addTypes:[NSArray arrayWithObject:MyMOIDType] owner:self];
}

Copying Relationships

If you want to copy relationships you also need to consider the objects related to those first tier of related
objects—if you are not careful, it is possible that you will copy the whole object graph (which may not be
what you want!). If you want to copy a to-one relationship, you need to decide whether the copy of the
destination should be a new object or a reference. If it is a reference, what should happen to the inverse
relationship to the original object—should making a copy redefine relationships between other objects? You
need to make similar decisions for to-many relationships.

Drag and Drop

You can perform drag and drop operations with managed objects—such as, for example, transferring an
object from one relationship to another—using a URI representation, as described in “Managed Object IDs
and URIs” (page 65).

NSURL *moURI = [[managedObject objectID] URIRepresentation];

You can put the URI on a dragging pasteboard, from which you can later retrieve it and recreate a reference
to the original managed object using the persistent store coordinator, as illustrated in the following code
sample.

NSURL *moURL = // get it from the pasteboard ...
NSManagedObjectID *moID = [[managedObjectContext persistentStoreCoordinator]
 managedObjectIDForURIRepresentation:moURL];
// assume moID non-nil...
NSManagedObject *mo = [managedObjectContext objectWithID:moID];

This assumes that drag and drop is "within a single persistence stack"—that is, that if there is more than one
managed object context involved that they use a shared persistent store coordinator—or that the object(s)
being dragged and dropped are in a store referenced by the persistent store coordinators.

If you want to copy-and-paste via drag-and-drop then you must put a suitable representation of the managed
object onto the pasteboard, get the representation during the drop method, and initialize a new managed
object using the representation (see “Copying and Copy and Paste” (page 66)).

Validation

The Core Data framework provides a clean infrastructure for supporting validation, both through logic
encapsulated in the object model and through custom code. In the managed object model, you can specify
constraints on values that a property may have (for example, an Employee's salary cannot be negative, or
that every employee must belong to a Department). There are two forms of custom validation methods—those
that follow standard key-value coding conventions (see Key-Value Validation) to validate a value for a single
attribute, and a special set (validateForInsert:, validateForUpdate:, and validateForDelete:)

Drag and Drop 67
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Managed Objects

for validating the whole object at different stages of its life-cycle (insertion, update, and deletion). The latter
may be particularly useful for validating combinations of values—for example, to ensure that an employee
can be entered into a stock purchase plan only if their period of service exceeds a given length and their pay
grade is at or above a certain level.

Model-based constraints are checked and validation methods are invoked automatically before changes are
committed to the external store to prevent invalid data being saved. You can also invoke them
programmatically whenever necessary. You validate individual values usingvalidateValue:forKey:error:.
The managed object compares the new value with the constraints specified in the model, and invokes any
custom validation method (of the form validate<Key>:error:) you have implemented. Even if you
implement custom validation methods, you should typically not call custom validation methods directly.
This ensures that any constraints defined in the managed object model are applied.

For more about implementing validation methods, see Model Object Validation.

Undo Management

The Core Data framework provides automatic support for undo and redo. Undo management even extends
to transient properties (properties that are not saved to persistent store, but are specified in the managed
object model).

Managed objects are associated with a managed object context. Each managed object context maintains
an undo manager. The context uses key-value observing to keep track of modifications to its registered
objects. You can make whatever changes you want to a managed object’s properties using normal accessor
methods, key-value coding, or through any custom key-value-observing compliant methods you define for
custom classes, and the context registers appropriate events with its undo manager.

To undo an operation, you simply send the context an undo message and to redo it send the context a redo
message. You can also roll back all changes made since the last save operation using rollback (this also
clears the undo stack) and reset a context to its base state using reset.

You also can use other standard undo manager functionality, such grouping undo events. Core Data, though,
queues up the undo registrations and adds them in a batch (this allows the framework to coalesce changes,
negate contradictory changes, and perform various other operations that work better with hindsight than
immediacy). If you use methods other than beginUndoGrouping and endUndoGrouping, to ensure that
any queued operations are properly flushed you must first therefore send the managed object context a
processPendingChanges message.

For example, in some situations you want to alter—or, specifically, disable—undo behavior. This may be
useful if you want to create a default set of objects when a new document is created (but want to ensure
that the document is not shown as being dirty when it is displayed), or if you need to merge new state from
another thread or process. In general, to perform operations without undo registration, you send an undo
manager a disableUndoRegistration message, make the changes, and then send the undo manager an
enableUndoRegistration message. Before each, you send the context a processPendingChanges
message, as illustrated in the following code fragment:

NSManagedObjectContext *moc = ...;
[moc processPendingChanges]; // flush operations for which you want undos
[[moc undoManager] disableUndoRegistration];
// make changes for which undo operations are not to be recorded
[moc processPendingChanges]; // flush operations for which you do not want
undos

68 Undo Management
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Managed Objects

[[moc undoManager] enableUndoRegistration];

Faults

Managed objects typically represent data held in a persistent store. In some situations a managed object
may be a “fault”—an object whose property values have not yet been loaded from the external store. When
you access persistent property values, a fault “fires” and its persistent data is retrieved automatically from
the store. In some circumstances you may explicitly turn a managed object into a fault (typically to ensure
that its values are up to date, using NSManagedObjectContext's refreshObject:mergeChanges:). More
commonly you encounter faults when traversing relationships.

When you fetch a managed object, Core Data does not automatically fetch data for other objects to which
it has relationships (see “Limiting the Size of the Object Graph: Faulting” (page 103)). Initially, an object's
relationships are represented by faults (unless the destination object has already been fetched—see “Ensuring
a Single Managed Object per Record per Context: Uniquing” (page 105)). If, however, you access the
relationship's destination object or objects, their data are retrieved automatically for you. For example,
suppose you fetch a single Employee object from a persistent store when an application first launches, then
(assuming these exist in the persistent store) its manager and department relationships are represented
by faults. You can nevertheless ask for the employee’s manager’s last name as shown in the following code
example:

NSString *managersName =
 [[anEmployee valueForKey:@"manager"] valueForKey:@"lastName];

or more easily using key paths:

NSString *managersName =
 [anEmployee valueForKeyPath:@"manager.lastName"];

In this case, the data for destination Employee object (the manager) is retrieved for you automatically.

There is a subtle but important point here. Notice that, in order to traverse a relationship—in this example
to find an employee’s manager—you do not have to explicitly fetch the related objects (that is, you do not
create and execute a fetch request). You simply use key-value coding (or if you have implemented them,
accessor methods) to retrieve the destination object (or objects) and they are created for you automatically
by Core Data. For example, you could ask for an employee’s manager’s manager’s department’s name like
this:

NSString *departmentName = [anEmployee
valueForKeyPath:@"manager.manager.department.name"];

(This assumes, of course, that the employee is at least two levels deep in the management hierarchy.) You
can also use collection operator methods. You could find the salary overhead of an employee's department
like this:

NSNumber *salaryOverhead = [anEmployee
valueForKeyPath:@"department.employees.@sum.salary"];

In many cases, your initial fetch retrieves a starting node in the object graph and thereafter you do not
execute fetch requests, you simply follow relationships.

Faults 69
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Managed Objects

Ensuring Data Is Up-to-Date

If two applications are using the same data store, or a single application has multiple persistence stacks, it
is possible for managed objects in one managed object context or persistent object store to get out of sync
with the contents of the repository. If this occurs, you need to “refresh” the data in the managed objects,
and in particular the persistent object store (the snapshots) to ensure that the data values are current.

Refreshing an object

Managed objects that have been realized (their property values have been populated from the persistent
store) as well as pending updated, inserted, or deleted objects, are never changed by a fetch operation
without developer intervention. For example, consider a scenario in which you fetch some objects and modify
them in one editing context; meanwhile in another editing context you edit the same data and commit the
changes. If in the first editing context you then execute a new fetch which returns the same objects, you do
not see the newly-committed data values—you see the existing objects in their current in-memory state.

To refresh a managed object's property values, you use the managed object context method
refreshObject:mergeChanges:. If the mergeChanges flag is YES, the method merges the object's
property values with those of the object available in the persistent store coordinator; if the flag is NO, the
method simply turns an object back into a fault without merging (which also causes other related managed
objects to be released, so you can use this method to trim the portion of your object graph you want to hold
in memory).

Note that an object's staleness interval is the time that has to pass until the store re-fetches the snapshot.
This therefore only affects firing faults—moreover it is only relevant for SQLite stores (the other stores never
re-fetch because the entire data set is kept in memory).

Merging changes with transient properties

If you use refreshObject:mergeChanges:with the mergeChanges flag YES, then any transient properties
are restored to their pre-refresh value after awakeFromFetch is invoked. This means that, if you have a
transient property with a value that depends on a property that is refreshed, the transient value may become
out of sync.

Consider an application in which you have a Person entity with attributes firstName and lastName, and
a cached transient derived property, fullName (in practice it might be unlikely that a fullName attribute
would be cached, but the example is easy to understand). Suppose also that fullName is calculated and
cached in a custom awakeFromFetch method.

A Person, currently named "Sarit Smith" in the persistent store, is edited in two managed object contexts:

 ■ In context one, the corresponding instance's firstName is changed to "Fiona" (which causes the cached
fullName to be updated to "Fiona Smith") and the context saved.

In the persistent store, the person is now “Fiona Smith”.

 ■ In context two, corresponding instance's lastName is changed to "Jones", which causes the cached
fullName to be updated to "Sarit Jones".

The object is then refreshed with the mergeChanges flag YES. The refresh fetches “Fiona Smith” from
the store.

70 Ensuring Data Is Up-to-Date
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Managed Objects

 ❏ firstName was not changed prior to the refresh; the refresh causes it to be updated to the new
value from the persistent store, so it is now "Fiona".

 ❏ lastName was changed prior to the refresh; so, after the refresh, it is set back to its modified
value—"Jones".

 ❏ The transient value, fullName, was also changed prior to the refresh. After the refresh, its value is
restored to "Sarit Jones" (to be correct, it should be "Fiona Jones").

The example shows that, because pre-refresh values are applied after awakeFromFetch, you cannot use
awakeFromFetch to ensure that a transient value is properly updated following a refresh (or if you do, the
value will subsequently be overwritten). In these circumstances, the best solution is to use an additional
instance variable to note that a refresh has occurred and that the transient value should be recalculated. For
example, in the Person class you could declare an instance variable fullNameIsValid of type BOOL and
implement the didTurnIntoFault method to set the value to NO. You then implement a custom accessor
for the fullName attribute that checks the value of fullNameIsValid—if it is NO, then the value is
recalculated.

Ensuring Data Is Up-to-Date 71
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Managed Objects

72 Ensuring Data Is Up-to-Date
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Managed Objects

In general, when you use Core Data you should follow the traditional Cocoa guidelines relating to memory
management. There are, however, some additional considerations.

Note: In Mac OS X v10.5 and later, you can use Core Data in a garbage-collected environment (see Garbage
Collection Programming Guide). Discussion in this article that is strictly related to a reference counted
environment does not apply if you use garbage collection (for example, if you use garbage collection then
retain cycles—as discussed in “Breaking Relationship Retain Cycles” (page 74)—are not a problem).

Instance and Data Life-Cycles

It is important to understand that the life-cycle of the data a managed object represents is largely independent
of the lifetime of individual managed object instances. In order to add a record to a persistent store, you
must allocate and initialize a managed object—and then save the managed object context. When you remove
a record from a persistent store, you should ensure its corresponding managed object is eventually deallocated.
In between these events, however, you can create and destroy any number of instances of a managed object
that represent the same record in a given persistent store.

NSEntityDescription provides a convenience
method—insertNewObjectForEntityForName:inManagedObjectContext:—to create a new managed
object and insert it into an editing context. Because the method name does not begin with the word “new”,
in a reference counted environment you do not own the returned object (see Memory Management Rules).

The Role of the Managed Object Context

Managed objects know what managed object context they’re associated with, and managed object contexts
know what managed objects they contain. By default, though, the references between a managed object
and its context are weak—in a managed memory environment, neither object retains the other.

This means that in general you cannot rely on a context to ensure the longevity of a managed object instance,
and you cannot rely on the existence of a managed object to ensure the longevity of a context. Put another
way, just because you fetched an object doesn’t mean it will stay around. In a reference-counted application,
a managed object's lifetime is by default determined by the run loop—autoreleased managed objects will
be deallocated when the run loop's autorelease pool is released.

The exception to this rule is that a managed object context maintains a strong reference to (in a reference
counted environment it retains) any changed (inserted, deleted, and updated) objects until the pending
transaction is committed (with a save:) or discarded (with a reset or rollback). Note that the undo
manager may also retain changed objects—see “Change and Undo Management” (page 74).

Instance and Data Life-Cycles 73
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Memory Management Using Core Data

You can change a context’s default behavior such that it does retain its managed objects by sending it a
setRetainsRegisteredObjects: message (with the argument YES)—this makes the managed objects’
lifetimes depend on the context’s. This can be a convenience if you are caching smaller data sets in
memory—for example if the context controls a temporary set of objects that may persist beyond a single
event cycle, such as when editing in a sheet. It can also be useful if you are using multiple threads and passing
data between them—for example if you are performing a background fetch and passing object IDs to the
main thread. The background thread needs to retain the objects it pre-fetched for the main thread until it
knows the main thread has actually used the object IDs to fault local instances into itself.

You should typically use a separate container to retain only those managed objects you really need. You can
use an array or dictionary, or an object controller (for example an NSArrayController instance) that
explicitly retains the objects it manages. The managed objects you don't need will then be deallocated when
possible (for example, when relationships are cleared).

If you have finished with a managed object context, or for some other reason you want to “disconnect” a
context from its persistent store coordinator, you should not set the context’s coordinator to nil:

// this will raise an exception
[myManagedObjectContext setPersistentStoreCoordinator:nil];

Instead, you should simply relinquish ownership of the context (in a managed memory environment you
send it a release message) and allow it to be deallocated normally.

Breaking Relationship Retain Cycles

When you have relationships between managed objects, each object maintains a strong reference to the
object or objects to which it is related. In a managed memory environment, this causes retain cycles (see
Object Ownership and Disposal) that can prevent deallocation of unwanted objects. To ensure that retain
cycles are broken, when you're finished with an object you can use the managed object context method
refreshObject:mergeChanges: to turn it into a fault.

You typically use refreshObject:mergeChanges: to refresh a managed object's property values. If the
mergeChanges flag is YES, the method merges the object's property values with those of the object available
in the persistent store coordinator. If the flag is NO, however, the method simply turns an object back into a
fault without merging, which causes it to release related managed objects. This breaks the retain cycle
between that managed object and the other managed objects it had retained.

Note that, of course, before the objects are deallocated everything outside the graph that is retaining them
must release them. See also “Change and Undo Management” (page 74).

Change and Undo Management

Managed objects that have pending changes (insertions, deletions, or updates) are retained by their context
until their context is sent a save:, reset , rollback, or dealloc message, or the appropriate number of
undos to undo the change.

74 Breaking Relationship Retain Cycles
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Memory Management Using Core Data

The undo manager associated with a context retains any changed managed objects. By default, the context's
undo manager keeps an unlimited undo/redo stack. To limit your application's memory footprint, you should
make sure that you scrub (using removeAllActions) the context's undo stack as and when appropriate.
Unless you retain a context's undo manager, it is deallocated with its context.

If you do not intend to use Core Data's undo functionality, you can reduce your application's resource
requirements by setting the context’s undo manager to nil. This may be especially beneficial for background
worker threads, as well as for large import or batch operations.

Change and Undo Management 75
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Memory Management Using Core Data

76 Change and Undo Management
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Memory Management Using Core Data

There are a number of things you have to decide when you create a relationship. What is the destination
entity? Is it a to-one or a to-many? Is it optional? If it’s a to-many, are there maximum or minimum numbers
of objects that can be in the relationship? What should happen when the source object is deleted? You can
provide answers to all these in the model. One of the particularly interesting cases is a many-to-many
relationship; there are two ways to model these, and which one you choose will depend on the semantics
of your schema.

When you modify an object graph, it is important to maintain referential integrity. Core Data makes it easy
for you to alter relationships between managed objects without causing referential integrity errors. Much of
this behavior derives from the relationship descriptions specified in the managed object model.

Core Data does not let you create relationships that cross stores. If you need to create a relationship from
objects in one store to objects in another, you should consider using fetched properties.

Relationship Definitions in the Model

Creating a relationship in a managed object model is straightforward, but there are a number of aspects of
a relationship that you need to specify properly. The most immediately obvious features are the relationship's
name, the destination entity, and the cardinality (is it a to-one relationship, or a to-many relationship). The
most important features with respect to object graph integrity, however, are the inverse relationship and
the delete rule. The validity of the graph is affected by the settings for optionality and for maximum and
minimum count.

Relationship Fundamentals

A relationship specifies the entity, or the parent entity, of the objects at the destination. This can be the same
as the entity at the source (a reflexive relationship). Relationships do not have to be homogeneous. If the
Employee entity has two sub-entities, say Manager and Flunky, then a given department's employees may
be made up of Employees (assuming Employee is not an abstract entity), Managers, Flunkies, or any
combination thereof.

You can specify a relationship as being to-one or to-many. To-one relationships are represented by a reference
to the destination object. To-many relationships are represented by mutable sets (although fetched properties
are represented by arrays). Implicitly, “to-one” and “to-many” typically refer to “one-to-one” and “one-to-many”
relationships respectively. A many-to-many relationship is one where a relationship and its inverse are both
to-many. These present some additional considerations, and are discussed in greater detail in “Many-to-Many
Relationships” (page 80).

Relationship Definitions in the Model 77
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Relationships and Fetched Properties

You can also put upper and lower limits on the number of objects at the destination of a to-many relationship.
The lower limit does not have to be zero. You can if you want specify that the number of employees in a
department must lie between 3 and 40. You also specify a relationship as either optional or not optional. If
a relationship is not optional, then in order to be valid there must be an object or objects at the destination
of the relationship.

Cardinality and optionality are orthogonal properties of a relationship. You can specify that a relationship is
optional, even if you have specified upper and/or lower bounds. This means that there do not have to be
any objects at the destination, but if there are then the number of objects must lie within the bounds specified.

It is important to note that simply defining a relationship does not cause a destination object to be created
when a new source object is created. In this respect, defining a relationship is akin to declaring an instance
variable in a standard Objective-C class. Consider the following example.

@interface Widget : NSObject
{
 Sprocket *sprocket;
}

If you create an instance of Widget, an instance of Sprocket is not created unless you write code to cause it
to happen (for example, by overriding the init method). Similarly, if you define an Address entity, and a
non-optional to-one relationship from Employee to Address, then simply creating an instance of Employee
does not create a new Address instance. Likewise, if you define a non-optional to-many relationship from
Employee to Address with a minimum count of 1, then simply creating an instance of Employee does not
create a new Address instance.

Inverse Relationships

Most relationships are inherently bi-directional. If a Department has a to-many relationship to the Employees
that work in a Department, there is an inverse relationship from an Employee to the Department. The major
exception is a fetched property, which represents a weak one-way relationship—there is no relationship
from the destination to the source (see “Fetched Properties” (page 84)).

You should typically model relationships in both directions, and specify the inverse relationships appropriately.
Core Data uses this information to ensure the consistency of the object graph if a change is made (see
“Manipulating Relationships and Object Graph Integrity” (page 79)). For a discussion of some of the reasons
why you might want to not model a relationship in both directions, and some of the problems that might
arise if you don’t, see “Unidirectional Relationships” (page 83).

Relationship Delete Rules

A relationship's delete rule specifies what should happen if an attempt is made to delete the source object.
Note the phrasing in the previous sentence—"if an attempt is made…". If a relationship's delete rule is set
to Deny, it is possible that the source object will not be deleted. Consider again a department's employees
relationship, and the effect that the different delete rules have.

Deny
If there is at least one object at the relationship destination, then the source object cannot be deleted.

For example, if you want to remove a department, you must ensure that all the employees in that
department are first transferred elsewhere (or fired!) otherwise the department cannot be deleted.

78 Relationship Definitions in the Model
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Relationships and Fetched Properties

Nullify
Set the inverse relationship for objects at the destination to null.

For example, if you delete a department, set the department for all the current members to null. This
only makes sense if the department relationship for an employee is optional, or if you ensure that
you set a new department for each of the employees before the next save operation.

Cascade
Delete the objects at the destination of the relationship.

For example, if you delete a department, fire all the employees in that department at the same time.

No Action
Do nothing to the object at the destination of the relationship.

For example, if you delete a department, leave all the employees as they are, even if they still believe
they belong to that department.

It should be clear that the first three of these rules are useful in different circumstances. For any given
relationship it is up to you to choose which is most appropriate, depending on the business logic. It is less
obvious why the No Action rule might be of use, since if you use it you have the possibility of leaving the
object graph in an inconsistent state (employees having a relationship to a deleted department).

If you use the No Action rule, it is up to you to ensure that the consistency of the object graph is maintained.
You are responsible for setting any inverse relationship to a meaningful value. This may be of benefit in a
situation where you have a to-many relationship and there may be a large number of objects at the destination.

Manipulating Relationships and Object Graph Integrity

In general, programmatically manipulating relationships is straightforward. For examples of how to manipulate
relationships programmatically, see “Accessing and Modifying Properties” (page 63)

Since Core Data takes care of the object graph consistency maintenance for you, you only need to change
one end of a relationship and all other aspects are managed for you. This applies to to-one, to-many, and
many-to-many relationships. Consider the following examples.

An employee’s relationship to a manager implies a reverse relationship between a manager and the manager’s
employees. If a new employee is assigned to a particular manager, it is important that the manager be made
aware of this responsibility. The new employee must be added to the manager’s list of reports. Similarly, if
an employee is transferred from one department to another, a number of modifications must be made, as
illustrated in Figure 1 (page 80). The employee’s new department is set, the employee is removed from the
previous department’s list of employees, and the employee is added to the new department’s list of employees.

Manipulating Relationships and Object Graph Integrity 79
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Relationships and Fetched Properties

Figure 1 Transferring an employee to a new department

Department

name:	 "Sales"

employees

Department

name:	 "Events"

employees

Collection Collection

Employee

lastName:	 "Jackson"

department

Department

name:	 "Events"

employees

Collection

Department

name:	 "Sales"

employees

Collection

Employee

lastName:	 "Jackson"

department

Before After

Without the Core Data framework, you must write several lines of code to ensure that the consistency of the
object graph is maintained. Moreover you must be familiar with the implementation of the Department class
to know whether or not the inverse relationship should be set (this may change as the application evolves).
Using the Core Data framework, all this can be accomplished with a single line of code:

anEmployee.department = newDepartment;

By reference to the managed object model, the framework automatically determines from the current state
of the object graph which relationships must be established and which must be broken.

Many-to-Many Relationships

You define a many-to-many relationship using two to-many relationships. The first to-many relationship goes
from the first entity to the second entity. The second to-many relationship goes from the second entity to
the first entity. You then set each to be the inverse of the other. (If you have a background in database
management and this causes you concern, don't worry: if you use a SQLite store, Core Data automatically
creates the intermediate join table for you.)

Important: You must define many-to-many relationships in both directions—that is, you must specify two
relationships, each being the inverse of the other. You can’t just define a to-many relationship in one direction
and try to use it as a many-to-many. If you do, you will end up with referential integrity problems.

This works even for relationships back to the same entity (often called “reflexive” relationships). For example,
if an employee may have more than one manager (and a manager can have more than one direct report),
then you can define a to-many relationship directReports from Employee to itself that is the inverse of
another to-many relationship, employees, again from Employee to itself. This is illustrated in Figure 2 (page
81).

80 Many-to-Many Relationships
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Relationships and Fetched Properties

Figure 2 Example of a reflexive many-to-many relationship

A relationship can also be the inverse of itself. For example, a Person entity may have a cousins relationship
that is the inverse of itself.

Important: In Mac OS X v10.4, many-to-many relationships do not work with SQLite stores if the relationship
is an inverse of itself (such as is the case with cousins).

You should also consider, though, the semantics of the relationship and how it should be modeled. A common
example of a relationship that is initially modeled as a many-to-many relationship that’s the inverse of itself
is “friends”. Although it’s the case that you are your cousin’s cousin whether they like it or not, it’s not
necessarily the case that you are your friend’s friend. For this sort of relationship, you should use an
intermediate (“join”) entity. An advantage of the intermediate entity is that you can also use it to add more
information to the relationship—for example a “FriendInfo” entity might include some indication of the
strength of the friendship with a “ranking” attribute. This is illustrated in Figure 3 (page 82)

Many-to-Many Relationships 81
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Relationships and Fetched Properties

Figure 3 A model illustrating a “friends” relationship using an intermediate entity

In this example, Person has two to-many relationships to FriendInfo: friends represents the source person’s
friends, and befriendedBy represents those who count the source as their friend. FriendInfo represents
information about one friendship, “in one direction.” A given instance notes who the source is, and one
person they consider to be their friend. If the feeling is mutual, then there will be a corresponding instance
where source and friend are swapped. There are several other considerations when dealing with this sort
of model:

 ■ To establish a friendship from one person to another, you have to create an instance of FriendInfo. If
both people like each other, you have to create two instances of FriendInfo.

 ■ To break a friendship, you must delete the appropriate instance of FriendInfo.

 ■ The delete rule from Person to FriendInfo should be cascade. If a person is removed from the store, then
the FriendInfo instance becomes invalid, so must also be removed.

As a corollary, the relationships from FriendInfo to Person must not be optional—an instance of FriendInfo
is invalid if the source or friend is null.

 ■ To find out who one person’s friends are, you have to aggregate all the friend destinations of the
friends relationship, for example:

NSSet *personsFriends = [aPerson valueForKeyPath:@"friends.friend"];

Conversely, to find out who consider a given person to be their friends, you have to aggregate all the
source destinations of the befriendedBy relationship, for example:

NSSet *befriendedByPerson = [aPerson valueForKeyPath:@"befriendedBy.source"];

82 Many-to-Many Relationships
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Relationships and Fetched Properties

Unidirectional Relationships

It is not strictly necessary to model a relationship in both directions. In some cases it may be useful not to,
for example when a to-many relationship may have a very large number of destination objects and you are
rarely likely to traverse the relationship (you may want to ensure that you do not unnecessarily fault in a
large number of objects at the destination of a relationship). Not modeling a relationship in both directions,
however, imposes on you a great number of responsibilities, to ensure the consistency of the object graph,
for change tracking, and for undo management. For this reason, the practice is strongly discouraged. It
typically only makes sense to model a to-one relationship in one direction.

If you create a model with unidirectional relationships (relationships where you have specified no inverse),
your object graph may end up in an inconsistent state.

The following example illustrates a situation where only modeling a relationship in one directions might
cause problems. Consider a model in which you have two entities, Employee and Department, with a to-one
relationship, "department", from Employee to Department. The relationship is non-optional and has a "deny"
delete rule. The relationship does not have an inverse. Now consider the following code sample:

Employee *employee;
Department *department;
// assume entity instances correctly instantiated
[employee setDepartment:department];
[managedObjectContext deleteObject:department];
BOOL saved = [managedObjectContext save:&error];

The save succeeds (despite the fact that the relationship is non-optional) as long as employee is not changed
in any other way. Because there is no inverse for the Employee.department relationship, employee is not
marked as changed when department is deleted (and therefore employee is not validated for saving).

If you then add the following line of code:

id x = [employee department];

x will be a fault to "nowhere" rather than nil.

If, on the other hand, the "department" relationship has an inverse (and the delete rule is not No Action),
everything behaves "as expected" since employee is marked as changed during delete propagation.

This illustrates why, in general, you should avoid using unidirectional relationships. Bidirectional relationships
provide the framework with additional information with which to better maintain the object graph. If you
do want to use unidirectional relationships, you need to do some of this maintenance yourself. In the case
above, this would mean that after this line of code:

[managedObjectContext deleteObject:department];

you should write:

[employee setValue:nil forKey:@"department"]

The subsequent save will now (correctly) fail because of the non-optional rule for the relationship.

Unidirectional Relationships 83
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Relationships and Fetched Properties

Cross-Store Relationships

You must be careful not to create relationships from instances in one persistent store to instances in another
persistent store, as this is not supported by Core Data. If you need to create a relationship between entities
in different stores, you typically use fetched properties (see “Fetched Properties” (page 84)).

Fetched Properties

Fetched properties represent weak, one-way relationships. In the employees and departments domain, a
fetched property of a department might be "recent hires" (employees do not have an inverse to the recent
hires relationship). In general, fetched properties are best suited to modeling cross-store relationships, "loosely
coupled" relationships, and similar transient groupings.

A fetched property is like a relationship, but it differs in several important ways:

 ■ Rather than being a "direct" relationship, a fetched property's value is calculated using a fetch request.
(The fetch request typically uses a predicate to constrain the result.)

 ■ A fetched property is represented by an array, not a set. The fetch request associated with the property
can have a sort ordering, and thus the fetched property may be ordered.

 ■ A fetched property is evaluated lazily, and is subsequently cached.

In some respects you can think of a fetched property as being similar to a smart playlist, but with the important
constraint that it is not dynamic. If objects in the destination entity are changed, you must reevaluate the
fetched property to ensure it is up-to-date. You use refreshObject:mergeChanges: to manually refresh
the properties—this causes the fetch request associated with this property to be executed again when the
object fault is next fired.

There are two special variables you can use in the predicate of a fetched property—$FETCH_SOURCE and
$FETCHED_PROPERTY. The source refers to the specific managed object that has this property, and you can
create key-paths that originate with this, for example university.name LIKE [c]
$FETCH_SOURCE.searchTerm. The $FETCHED_PROPERTY is the entity's fetched property description. The
property description has a userInfo dictionary that you can populate with whatever key-value pairs you want.
You can therefore change some expressions within a fetched property's predicate or (via key-paths) any
object to which that object is related.

To understand how the variables work, consider a fetched property with a destination entity Author and a
predicate of the form, (university.name LIKE [c] $FETCH_SOURCE.searchTerm) AND
(favoriteColor LIKE [c] $FETCHED_PROPERTY.userInfo.color). If the source object had an
attribute searchTerm equal to "Cambridge", and the fetched property had a user info dictionary with a key
"color" and value "Green", then the resulting predicate would be (university.name LIKE [c]
"Cambridge") AND (favoriteColor LIKE [c] "Green"). This would match any Authors at Cambridge
whose favorite color is green. If you changed the value of searchTerm in the source object to, say, "Durham",
then the predicate would be (university.name LIKE [c] "Durham") AND (favoriteColor LIKE
[c] "Green").

84 Cross-Store Relationships
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Relationships and Fetched Properties

The most significant constraint is that you cannot use substitutions to change the structure of the
predicate—for example you cannot change a LIKE predicate to a compound predicate, nor can you change
the operator (in this example, LIKE [c]). Moreover, in Mac OS X version 10.4, this only works with the XML
and Binary stores as the SQLite store will not generate the appropriate SQL.

Fetched Properties 85
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Relationships and Fetched Properties

86 Fetched Properties
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Relationships and Fetched Properties

Core Data supports a range of common types for values of persistent attributes, including string, date, and
number. Sometimes, however, you want an attribute's value to be a type that is not supported directly. For
example, in a graphics application you might want to define a Rectangle entity that has attributes color
and bounds that are an instance of NSColor and an NSRect struct respectively. This article describes the
two ways in which you can use non-standard attribute types: using transformable attributes, or by using a
transient property to represent the non-standard attribute backed by a supported persistent property.

Introduction

Persistent attributes must be of a type recognized by the Core Data framework so that they can be properly
stored to and retrieved from a persistent store. Core Data provides support for a range of common types for
persistent attribute values, including string, date, and number (see NSAttributeDescription for full
details). Sometimes, however, you want to use types that are not supported directly, such as colors and C
structures.

You can use non-standard types for persistent attributes either by using transformable attributes or by using
a transient property to represent the non-standard attribute backed by a supported persistent property. The
principle behind the two approaches is the same: you present to consumers of your entity an attribute of
the type you want, and “behind the scenes” it’s converted into a type that Core Data can manage. The
difference between the approaches is that with transformable attributes you specify just one attribute and
the conversion is handled automatically. In contrast, with transient properties you specify two attributes and
you have to write code to perform the conversion.

Transformable Attributes

The idea behind transformable attributes is that you access an attribute as a non-standard type, but behind
the scenes Core Data uses an instance of NSValueTransformer to convert the attribute to and from an
instance of NSData. Core Data then stores the data instance to the persistent store.

By default, Core Data uses the NSKeyedUnarchiveFromDataTransformerName transformer, however you
can specify your own transformer if you want. If you specify a custom transformer, it must transform an
instance of the non-standard data type into an instance of NSData and support reverse transformation. You
should not specify a name if you are using the default transformer.

Introduction 87
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Non-Standard Persistent Attributes

Important: Although the default transformer is the transformer specified by
NSKeyedUnarchiveFromDataTransformerName, this transformer is actually used in reverse. If you specify
the default transformer explicitly, Core Data would use it “in the wrong direction.”

You specify that an attribute is transformable and the name of the transformer to use in the model editor in
Xcode or programmatically:

 ■ If you are using the model editor in Xcode, select Transformable in the attribute’s Type popup and type
the name in the Value Transformer Name text field.

 ■ If you are setting the type programmatically, use setAttributeType: and pass
NSTransformableAttributeType as the parameter, then (if appropriate) use
setValueTransformerName: to specify the name of the transformer.

In principle, you don’t have to do anything else. In practice, to suppress compiler warnings you should declare
a property for the attribute as shown in the following example (notice favoriteColor):

@interface Person : NSManagedObject
{
}

@property (nonatomic, retain) NSString * firstName;
@property (nonatomic, retain) NSString * lastName;

@property (nonatomic, retain) NSColor * favoriteColor;

@end

To suppress compiler warnings, you can also add an implementation directive:

@implementation Person

@dynamic firstName;
@dynamic lastName;

@dynamic favoriteColor;

@end

You can now use the attribute as you would any other standard attribute, as illustrated in the following code
fragment:

Employee *newEmployee =
 [NSEntityDescription insertNewObjectForEntityForName:@"Employee"
 inManagedObjectContext:myManagedObjectContext];

newEmployee.firstName = @"Captain";
newEmployee.lastName = @"Scarlet";
newEmployee.favoriteColor = [NSColor redColor];

88 Transformable Attributes
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Non-Standard Persistent Attributes

Custom Code

The following sections illustrate implementations for object and scalar values. Both start, however, with a
common task—you must specify a persistent attribute.

Note: The example for an object value uses an instance of NSColor; if you are using Mac OS X v10.5, you
should typically use a transformable attribute instead.

Basic Approach

To use non-supported types, in the managed object model you define two attributes. One is the attribute
you actually want (its value is for example a color object or a rectangle struct). This attribute is transient. The
other is a "shadow" representation of that attribute. This attribute is persistent.

You specify the type of the transient attribute as undefined (NSUndefinedAttributeType). Since Core
Data does not need to store and retrieve transient properties, you can use any object type you want for the
attribute in your implementation. Core Data does, though, track the state of transient properties so that they
can participate in the object graph management (for example, for undo and redo).

The type of the shadow attribute must be one of the "concrete" supported types. You then implement a
custom managed object class with suitable accessor methods for the transient attribute that retrieve the
value from and store the value to the persistent attribute.

The basic approach for object and scalar values is the same—you must find a way to represent the unsupported
data type as one of the supported data types—however there is a further constraint in the case of scalar
values.

Scalar Value Constraints

A requirement of the accessor methods you write is that they must be key-value coding (and key-value
observing) compliant. Key-value coding only supports a limited number of structures—NSPoint, NSSize,
NSRect, and NSRange.

If you want to use a scalar type or structure that is not one of those supported directly by Core Data and not
one of the structures supported by key-value coding, you must store it in your managed object as an
object—typically an NSValue instance, although you can also define your own custom class. You will then
treat it as an object value as described later in this article. It is up to users of the object to extract the required
structure from the NSValue (or custom) object when retrieving the value, and to transform a structure into
an NSValue (or custom) object when setting the value.

The Persistent Attribute

For any non-standard attribute type you want to use, you must choose a supported attribute type that you
will use to store the value. Which supported type you choose depends on the non-standard type and what
means there are of transforming it into a supported type. In many cases you can easily transform a
non-supported object into an NSData object using an archiver. For example, you can archive a color object

Custom Code 89
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Non-Standard Persistent Attributes

as shown in the following code sample. The same technique can be used if you represent the attribute as
an instance of NSValue or of a custom class (your custom class would, of course, need to adopt the NSCoding
protocol or provide some other means of being transformed into a supported data type).

NSData *colorAsData = [NSKeyedArchiver archivedDataWithRootObject:aColor];

You are free to use whatever means you wish to effect the transformation. For example, you could transform
an NSRect structure into a string object (strings can of course be used in a persistent store).

NSRect aRect; // instance variable
NSString *rectAsString = NSStringFromRect(aRect);

You can transform the string back into a rectangle using NSRectFromString. You should bear in mind,
however, that since the transformation process may happen frequently, you should ensure that it is as efficient
as possible.

Typically you do not need to implement custom accessor methods for the persistent attribute. It is an
implementation detail, the value should not be accessed other than by the entity itself. If you do modify this
value directly, it is possible that the entity object will get into an inconsistent state.

An Object Attribute

If the non-supported attribute is an object, then in the managed object model you specify its type as undefined,
and that it is transient. When you implement the entity’s custom class, there is no need to add an instance
variable for the attribute—you can use the managed object's private internal store. A point to note about
the implementations described below is that they cache the transient value. This makes accessing the value
more efficient—it is also necessary for change management. If you define custom instance variables, you
should clean up these variables in didTurnIntoFault rather than dealloc or finalize.

There are two strategies both for getting and for setting the transient value. You can retrieve the transient
value either "lazily" (on demand—described in “The On-demand Get Accessor” (page 90)) or during
awakeFromFetch (described in “The Pre-calculated Get” (page 91)). It may be preferable to retrieve it lazily
if the value may be large (if for example it is a bitmap). For the persistent value, you can either update it
every time the transient value is changed (described in “The Immediate-Update Set Accessor” (page 91)), or
you can defer the update until the object is saved (described in “The Delayed-Update Set Accessor” (page
92)).

The On-demand Get Accessor

In the get accessor, you retrieve the attribute value from the managed object's private internal store. If the
value is nil, then it is possible it has not yet been cached, so you retrieve the corresponding persistent value,
then if that value is not nil, transform it into the appropriate type and cache it. The following example
illustrates the on-demand get accessor for a color attribute.

- (NSColor *)color
{
 [self willAccessValueForKey:@"color"];
 NSColor *color = [self primitiveColor];
 [self didAccessValueForKey:@"color"];
 if (color == nil)
 {
 NSData *colorData = [self colorData];
 if (colorData != nil)

90 Custom Code
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Non-Standard Persistent Attributes

 {
 color = [NSKeyedUnarchiver unarchiveObjectWithData:colorData];
 [self setPrimitiveColor:color];
 }
 }
 return color;
}

The Pre-calculated Get

Using this approach, you retrieve and cache the persistent value in awakeFromFetch.

- (void)awakeFromFetch
{
 [super awakeFromFetch];
 NSData *colorData = [self colorData];
 if (colorData != nil)
 {
 NSColor *color;
 color = [NSKeyedUnarchiver unarchiveObjectWithData:colorData];
 [self setPrimitiveColor:color];
 }
}

In the get accessor you then simply return the cached value.

- (NSColor *)color
{
 [self willAccessValueForKey:@"color"];
 NSColor *color = [self primitiveColor];
 [self didAccessValueForKey:@"color"];
 return color;
}

This technique is useful if you are likely to access the attribute frequently—you avoid the conditional statement
in the get accessor.

The Immediate-Update Set Accessor

In this set accessor, you set the value for both the transient and the persistent attributes at the same time.
You transform the unsupported type into the supported type to set as the persistent value. You must ensure
that you invoke the key-value observing change notification methods, so that objects observing the managed
object—including the managed object context—are notified of the modification. The following example
illustrates the set accessor for a color attribute.

- (void)setColor:(NSColor *)aColor
{
 [self willChangeValueForKey:@"color"];
 [self setPrimitiveValue:aColor forKey:@"color"];
 [self didChangeValueForKey:@"color"];
 [self setValue:[NSKeyedArchiver archivedDataWithRootObject:aColor]
 forKey:@"colorData"];
}

The main disadvantage with this approach is that the persistent value is recalculated each time the transient
value is updated, which may be a performance issue.

Custom Code 91
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Non-Standard Persistent Attributes

The Delayed-Update Set Accessor

In this technique, in the set accessor you only set the value for the transient attribute. You implement a
willSave method that updates the persistent value just before the object is saved.

- (void)setColor:(NSColor *)aColor
{
 [self willChangeValueForKey:@"color"];
 [self setPrimitiveValue:aColor forKey:@"color"];
 [self didChangeValueForKey:@"color"];
}

- (void)willSave
{
 NSColor *color = [self primitiveValueForKey:@"color"];
 if (color != nil)
 {
 [self setPrimitiveValue:[NSKeyedArchiver archivedDataWithRootObject:color]
 forKey:@"colorData"];
 }
 else
 {
 [self setPrimitiveValue:nil forKey:@"colorData"];
 }
 [super willSave];
}

If you adopt this approach, you must take care when specifying your optionality rules. If color is a required
attribute, then (unless you take other steps) you must specify the color attribute as not optional, and the
color data attribute as optional. If you do not, then the first save operation may generate a validation error.

When the object is first created, the value of colorData is nil. When you update the color attribute, the
colorData attribute is unaffected (that is, it remains nil). When you save, validateForUpdate: is invoked
before willSave. In the validation stage, the value of colorData is still nil, and therefore validation fails.

Scalar Values

You can declare properties as scalar values, but for scalar values Core Data cannot dynamically generate
accessor methods—you must provide your own implementations (see Managed Object Accessor
Methods (page 43)). Core Data automatically synthesizes the primitive accessor methods (primitiveLength
and setPrimitiveLength:), but you need to declare them to suppress compiler warnings.

For objects that will be used in either a Foundation collection or an AppKit view, you should typically allow
Core Data to use its default storage instead of creating scalar instances to hold property values:

 ■ There is CPU and memory overhead in creating and destroying autoreleased NSNumber object wrappers
for your scalars;

 ■ Core Data optimizes at runtime any accessor methods you do not override—for example, it inlines the
access and change notification method calls.

The advantages of allowing Core Data to manage its own storage usually outweigh any advantages of
interacting directly with scalar values, although if you suspect that this is not true for your application you
should use performance analysis tools to check.

92 Custom Code
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Non-Standard Persistent Attributes

You can declare properties as scalar values. Core Data cannot, though, dynamically generate accessor methods
for scalar values—you must provide your own implementations. If you have an attribute length that is
specified in the model as a double (NSDoubleAttributeType), in the interface file you declare length
as:

@property double length;

In the implementation file, you implement accessors that invoke the relevant access and change notification
methods, and the primitive accessors. Core Data automatically synthesizes the primitive accessor methods
(primitiveLength and setPrimitiveLength:), but you need to declare them to suppress compiler
warnings (you can declare them using a property).

@interface MyManagedObject (PrimitiveAccessors)
@property (nonatomic, retain) NSNumber primitiveLength;
@end

- (double)length
{
 [self willAccessValueForKey:@"length"];
 NSNumber *tmpValue = [self primitiveLength];
 [self didAccessValueForKey:@"length"];
 return (tmpValue!=nil) ? [tmpValue doubleValue] : 0.0; // Or a suitable
representation for nil.
}

- (void)setLength:(double)value
{
 NSNumber* temp = [[NSNumber alloc] initWithDouble: value];
 [self willChangeValueForKey:@"length"];
 [self setPrimitiveLength:temp];
 [self didChangeValueForKey:@"length"];
 [temp release];
}

A Non-Object Attribute

If the non-supported attribute is one of the structures supported by key-value coding (NSPoint, NSSize,
NSRect, or NSRange), then in the managed object model you again specify its type as undefined, and that
it is transient. When you implement the entity’s custom class, you typically add an instance variable for the
attribute. For example, given an attribute called bounds that you want to represent using an NSRect structure,
your class interface might be like that shown in the following example.

@interface MyManagedObject : NSManagedObject
{
 NSRect bounds;
}
@property (nonatomic, assign) NSRect bounds;
@end

If you use an instance variable to hold an attribute, you must also implement primitive get and set accessors
(see “Custom Primitive Accessor Methods” (page 50)), as shown in the following example.

@interface MyManagedObject : NSManagedObject
{

Custom Code 93
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Non-Standard Persistent Attributes

 NSRect myBounds;
}
@property (nonatomic, assign) NSRect bounds;
@property (nonatomic, assign) NSRect primitiveBounds;
@end

The primitive methods simply get and set the instance variable—they do not invoke key-value observing
change or access notification methods—as shown in the following example.

- (NSRect)primitiveBounds
{
 return myBounds;
}
- (void)setPrimitiveBounds:(NSRect)aRect
 myBounds = aRect;
}

Whichever strategy you adopt, you then implement accessor methods mostly as described for the object
value. For the get accessor you can adopt either the lazy or pre-calculated technique, and for the set accessor
you can adopt either the immediate update or delayed update technique. The following sections illustrate
only the former versions of each.

The Get Accessor

In the get accessor, you retrieve the attribute value from the managed object's private internal store. If the
value has not yet been set, then it is possible it has not yet been cached, so you retrieve the corresponding
persistent value, then if that value is not nil, transform it into the appropriate type and cache it. The following
example illustrates the get accessor for a rectangle (this example makes a simplifying assumption that the
bounds width cannot be 0, so if the value is 0 then the bounds has not yet been unarchived).

- (NSRect)bounds
{
 [self willAccessValueForKey:@"bounds"];
 NSRect aRect = bounds;
 [self didAccessValueForKey:@"bounds"];
 if (aRect.size.width == 0)
 {
 NSString *boundsAsString = [self boundsAsString];
 if (boundsAsString != nil)
 {
 bounds = NSRectFromString(boundsAsString);
 }
 }
 return bounds;
}

The Set Accessor

In the set accessor, you must set the value for both the transient and the persistent attributes. You transform
the unsupported type into the supported type to set as the persistent value. You must ensure that you invoke
the key-value observing change notification methods, so that objects observing the managed
object—including the managed object context—are notified of the modification. The following example
illustrates the set accessor for a rectangle.

- (void)setBounds:(NSRect)aRect

94 Custom Code
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Non-Standard Persistent Attributes

{
 [self willChangeValueForKey:@"bounds"];
 bounds = aRect;
 [self didChangeValueForKey:@"bounds"];
 NSString *rectAsString = NSStringFromRect(aRect);
 [self setValue:rectAsString forKey:@"boundsAsString"]; }

Type-Checking

If you define an attribute to use a non-standard type, you can also specify the name of the class used to
represent the value, using setAttributeValueClassName:. If you do, Core Data automatically checks any
value set and throws an exception if it is an instance of the wrong class.

You can only set the value class name in code. The following example shows how you can modify the managed
object model of a subclass of NSPersistentDocument to include a value class name for a non-standard
attribute (favoriteColor) represented in this case by a an instance of a custom class, MyColor. Notice the
subsequent programming error in setting the Captain Scarlet’s favorite color to an instance of NSColor.

- (NSManagedObjectModel *)managedObjectModel
{
 if (myManagedObjectModel == nil)
 {
 NSBundle *bundle = [NSBundle bundleForClass:[self class]];
 NSString *path = [bundle pathForResource:@"MyDocument" ofType:@"mom"];
 NSURL *url = [NSURL fileURLWithPath:path];
 myManagedObjectModel = [[NSManagedObjectModel alloc]
initWithContentsOfURL:url];

 NSEntityDescription *employeeEntity =
 [[myManagedObjectModel entitiesByName] objectForKey:@"Employee"];
 NSAttributeDescription *favoriteColorAttribute =
 [[employeeEntity attributesByName] objectForKey:@"favoriteColor"];

 // set the attribute value class to MyColor
 [favoriteColorAttribute setAttributeValueClassName:@"MyColor"];
 }

 return myManagedObjectModel;
}

- (void)windowControllerDidLoadNib:(NSWindowController *)windowController
{
 [super windowControllerDidLoadNib:windowController];

 Employee *newEmployee =
 [NSEntityDescription insertNewObjectForEntityForName:@"Employee"
 inManagedObjectContext:[self managedObjectContext]];

 newEmployee.firstName = @"Captain";
 newEmployee.lastName = @"Scarlet";
 newEmployee.favoriteColor = [NSColor redColor]; // exception thrown here
}

Type-Checking 95
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Non-Standard Persistent Attributes

The attribute value class must actually exist at runtime. If you misspell the class name itself (for example,
MyColour instead of MyColor), the check succeeds silently.

96 Type-Checking
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Non-Standard Persistent Attributes

There are two types of validation—property-level and inter-property. You use property-level validation to
ensure the correctness of individual values; you use inter-property validation to ensure the correctness of
combinations of values.

Core Data Validation

Cocoa provides a basic infrastructure for model value validation described in Model Object Validation in
Model Object Implementation Guide. This approach, however, requires you to write code for all the constraints
you want to apply. Core Data allows you to put validation logic into the managed object model. You can
specify maximum and minimum values for numeric and date attributes; maximum and minimum lengths
for string attributes, and a regular expression that a string attribute must match. You can also specify
constraints on relationships, for example that they are mandatory or cannot exceed a certain number. You
can therefore specify most common constraints on attribute values without writing any code.

If you do want to customize validation of individual properties, you use standard validation methods as
defined by the NSKeyValueCoding protocol and described in “Property-Level Validation” (page 97)). Core
Data also extends validation to validation of relationships and inter-property values. These are described in
“Inter-Property validation” (page 99).

It is important to understand that how to validate is a model decision, when to validate is a user interface or
controller-level decision (for example, a value binding for a text field might have its “validates immediately”
option enabled). Moreover, at various times, inconsistencies are expected to arise in managed objects and
object graphs.

There is nothing to disallow an in-memory object from becoming inconsistent on a temporary basis. The
validation constraints are applied by Core Data only during a “save” operation or upon request (you can
invoke the validation methods directly as and when you wish). Sometimes it may be useful to validate changes
as soon as they are made and to report errors immediately. This can prevent the user being presented with
a long list of errors when they finally come to save their work. If managed objects were required to be always
in a valid state, it would amongst other things force a particular workflow on the end-user. This also underpins
the idea of a managed object context representing a "scratch pad"—in general you can bring managed
objects onto the scratch pad and edit them however you wish before ultimately either committing the
changes or discarding them.

Property-Level Validation

The NSKeyValueCoding protocol specifies a method—validateValue:forKey:error:—that provides
general support for validation methods in a similar way to that in which valueForKey: provides support
for accessor methods.

Core Data Validation 97
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Validation

If you want to implement logic in addition to the constraints you provide in the managed object model, you
should not override validateValue:forKey:error:. Instead you should implement methods of the form
validate<Key>:error:.

Important: If you do implement custom validation methods, you should typically not invoke them directly.
Instead you should call validateValue:forKey:error: with the appropriate key. This ensures that any
constraints defined in the managed object model are also applied.

In the method implementation, you check the proposed new value and if it does not fit your constraints you
return NO. If the error parameter is not null, you also create an NSError object that describes the problem,
as illustrated in this example.

-(BOOL)validateAge:(id *)ioValue error:(NSError **)outError {
 if (*ioValue == nil) {
 // trap this in setNilValueForKey? new NSNumber with value 0?
 return YES;
 }
 if ([*ioValue floatValue] <= 0.0) {
 if (outError != NULL) {
 NSString *errorStr = NSLocalizedStringFromTable(
 @"Age must greater than zero", @"Employee",
 @"validation: zero age error");
 NSDictionary *userInfoDict = [NSDictionary
dictionaryWithObject:errorStr
 forKey:NSLocalizedDescriptionKey];
 NSError *error = [[[NSError alloc]
initWithDomain:EMPLOYEE_ERROR_DOMAIN
 code:PERSON_INVALID_AGE_CODE
 userInfo:userInfoDict] autorelease];
 *outError = error;
 }
 return NO;
 }
 else {
 return YES;
 }
 // . . .

The input value is a pointer to object reference (an id *). This means that in principle you can change the
input value. Doing so is, however, strongly discouraged, as there are potentially serious issues with memory
management (see Key-Value Validation in Key-Value Coding Programming Guide). Moreover, you should not
call validateValue:forKey:error:within custom property validation methods. If you do, you will create
an infinite loop when validateValue:forKey:error: is invoked at runtime.

If you change the input value in a validate<Key>:error: method, you must ensure that you only change
the value if it is invalid or uncoerced. The reason is that, since the object and context are now dirtied, Core
Data may validate that key again later. If you keep performing a coercion in a validation method, this can
therefore produce an infinite loop. Similarly, you should also be careful if you implement validation and
willSave methods that produce mutations or side effects—Core Data will revalidate those changes until
a stable state is reached.

98 Property-Level Validation
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Validation

Inter-Property validation

It is possible for the values of all the individual attributes of an object to be valid and yet for the combination
of values to be invalid. Consider, for example, an application that stores information about people including
their age and whether or not they have a driving license. For a Person object, 12 might be a valid value for
an age attribute, and YES is a valid value for a hasDrivingLicense attribute, but (in most countries at
least) this combination of values would be invalid.

NSManagedObject provides additional loci for validation—update, insertion, and deletion—through the
validateFor…methods such as validateForUpdate:. If you implement custom inter-property validation
methods, you call the superclass’s implementation first to ensure that individual property validation methods
are also invoked. If the superclass's implementation fails (that is, if there is an invalid attribute value), then
you can:

1. Return NO and the error created by the superclass's implementation.

2. Continue to perform validation, looking for inconsistent combinations of values.

If you continue, you must make sure that any values you use in your logic are not themselves invalid in such
a way that your code might itself cause errors (for example, if there is an attribute whose value is required
to be greater than 0, which is actually 0 so fails validation but which you use as a divisor in a computation).
Moreover, if you discover further validation errors, you must combine them with the existing error and return
a “multiple errors error” as described in “Combining Validation Errors” (page 101).

The following example shows the implementation of an inter-property validation method for a Person entity
that has two attributes, birthday and hasDrivingLicense. The constraint is that a person aged less than
16 years cannot have a driving license. This constraint is checked in both validateForInsert: and
validateForUpdate:, so the validation logic itself is factored into a separate method.

Listing 1 Inter-property validation for a Person entity

- (BOOL)validateForInsert:(NSError **)error
{
 BOOL propertiesValid = [super validateForInsert:error];
 // could stop here if invalid
 BOOL consistencyValid = [self validateConsistency:error];
 return (propertiesValid && consistencyValid);
}

- (BOOL)validateForUpdate:(NSError **)error
{
 BOOL propertiesValid = [super validateForUpdate:error];
 // could stop here if invalid
 BOOL consistencyValid = [self validateConsistency:error];
 return (propertiesValid && consistencyValid);
}

- (BOOL)validateConsistency:(NSError **)error
{
 static NSCalendar *gregorianCalendar;

 BOOL valid = YES;
 NSDate *myBirthday = [self birthday];

Inter-Property validation 99
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Validation

 if ((myBirthday != nil) && ([[self hasDrivingLicense] boolValue] == YES))
{

 if (gregorianCalendar == nil) {
 gregorianCalendar = [[NSCalendar alloc]
initWithCalendarIdentifier:NSGregorianCalendar];
 }
 NSDateComponents *components = [gregorianCalendar
components:NSYearCalendarUnit
 fromDate:myBirthday
 toDate:[NSDate
date]
 options:0];
 int years = [components year];

 if (years < 16) {

 valid = NO;

 // don't create an error if none was requested
 if (error != NULL) {

 NSBundle *myBundle = [NSBundle bundleForClass:[self class]];
 NSString *drivingAgeErrorString = [myBundle
localizedStringForKey:@"TooYoungToDriveError"
 value:@"Person is too young to have a driving
 license."
 table:@"PersonErrorStrings"];

 NSMutableDictionary *userInfo = [NSMutableDictionary dictionary];
 [userInfo setObject:drivingAgeErrorString
forKey:NSLocalizedFailureReasonErrorKey];
 [userInfo setObject:self forKey:NSValidationObjectErrorKey];

 NSError *drivingAgeError = [NSError errorWithDomain:PERSON_DOMAIN

code:NSManagedObjectValidationError
 userInfo:userInfo];

 // if there was no previous error, return the new error
 if (*error == nil) {
 *error = drivingAgeError;
 }
 // if there was a previous error, combine it with the existing
 one
 else {
 *error = [self errorFromOriginalError:*error
error:drivingAgeError];
 }
 }
 }
 }
 return valid;
}

100 Inter-Property validation
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Validation

Combining Validation Errors

If there are multiple validation failures in a single operation, you create and return a "multiple errors
error"—that is, an NSError object with the code NSValidationMultipleErrorsError. You add individual
errors to an array and add the array—using the key NSDetailedErrorsKey—to the user info dictionary in
the NSError object. This pattern also applies to errors returned by the superclass's validation method.
Depending on how many tests you perform, it may be convenient to define a method that combines an
existing NSError object (which may itself be a multiple errors error) with a new one and returns a new
multiple errors error.

The following example shows the implementation of a simple method to combine two errors into a single
multiple errors error. How the combination is made depends on whether or not the original error was itself
a multiple errors error.

Listing 2 A method for combining two errors into a single multiple errors error

- (NSError *)errorFromOriginalError:(NSError *)originalError error:(NSError
*)secondError
{
 NSMutableDictionary *userInfo = [NSMutableDictionary dictionary];
 NSMutableArray *errors = [NSMutableArray arrayWithObject:secondError];

 if ([originalError code] == NSValidationMultipleErrorsError) {

 [userInfo addEntriesFromDictionary:[originalError userInfo]];
 [errors addObjectsFromArray:[userInfo objectForKey:NSDetailedErrorsKey]];
 }
 else {
 [errors addObject:originalError];
 }

 [userInfo setObject:errors forKey:NSDetailedErrorsKey];

 return [NSError errorWithDomain:NSCocoaErrorDomain
 code:NSValidationMultipleErrorsError
 userInfo:userInfo];
}

Combining Validation Errors 101
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Validation

102 Combining Validation Errors
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Managed Object Validation

Faulting is a mechanism Core Data employs to reduce your application’s memory usage. A related feature
called uniquing ensures that, in a given managed object context, you never have more than one managed
object to represent a given record.

Faulting Limits the Size of the Object Graph

Faulting reduces the amount of memory your application consumes. A fault is a placeholder object that
represents a managed object that has not yet been fully realized, or a collection object that represents a
relationship:

 ■ A managed object fault is an instance of the appropriate class, but its persistent variables are not yet
initialized.

 ■ A relationship fault is a subclass of the collection class that represents the relationship.

Faulting allows Core Data to put boundaries on the object graph. Because a fault is not realized, a managed
object fault consumes less memory, and managed objects related to a fault are not required to be represented
in memory at all.

To illustrate, consider an application that allows a user to fetch and edit details about a single employee. The
employee has a relationship to a manager and to a department, and these objects in turn have other
relationships. If you retrieve just a single Employee object from a persistent store, its manager, department,
and reports relationships are initially represented by faults. Figure 1 shows an employee’s department
relationship represented by a fault.

Figure 1 A department represented by a fault

Department

name:
budget:

employees

Employee

firstName:	 "Toni"
lastName:	 "Lau"
salary:	 7000

manager
department
reports

department

Although the fault is an instance of the Department class, it has not yet been realized—none of its persistent
instance variables have yet been set. This means that not only does the department object consume less
memory itself, but there’s no need to populate its employees relationship. If it were a requirement that the
object graph be complete, then to edit a single attribute of a single employee, it would ultimately be necessary
to create objects to represent the whole corporate structure.

Faulting Limits the Size of the Object Graph 103
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Faulting and Uniquing

Fault handling is transparent—you do not have to execute a fetch to realize a fault. If at some stage a persistent
property of a fault object is accessed, then Core Data automatically retrieves the data for the object and
initializes the object (see NSManagedObject Class Reference for a list of methods that do not cause faults to
fire). This process is commonly referred to as firing the fault. If you send the Department object a message
to get, say, its name, then the fault fires—and in this situation Core Data executes a fetch for you to retrieve
all the object's attributes.

Firing Faults

Core Data automatically fires faults when necessary (when a persistent property of a fault is accessed).
However, firing faults individually can be inefficient, and there are better strategies for getting data from the
persistent store (see “Batch Faulting and Pre-fetching with the SQLite Store” (page 131)). For more about how
to efficiently deal with faults and relationships, see “Fetching Managed Objects” (page 129).

When a fault is fired, Core Data does not go back to the store if the data is available in its cache. With a cache
hit, converting a fault into a realized managed object is very fast—it is basically the same as normal
instantiation of a managed object. If the data is not available in the cache, Core Data automatically executes
a fetch for the fault object; this results in a round trip to the persistent store to fetch the data, and again the
data is cached in memory.

The corollary of this point is that whether an object is a fault is not the same as whether its data has been
retrieved from the store. Whether or not an object is a fault simply means whether or not a given managed
object has all its attributes populated and is ready to use. If you need to determine whether an object is a
fault, you can send it an isFault message without firing the fault. If isFault returns NO, then the data
must be in memory. However, if isFault returns YES, it does not imply that the data is not in memory. The
data may be in memory, or it may not, depending on many factors influencing caching.

Turning Objects into Faults

Turning a realized object into a fault can be useful in pruning the object graph (see “Reducing Memory
Overhead” (page 133)), as well as ensuring property values are current (see “Ensuring Data Is Up-to-Date” (page
70)).Turning a managed object into a fault releases unnecessary memory, sets its in-memory property values
to nil, and releases any retains on related objects.

You can turn a realized object into a fault with the refreshObject:mergeChanges: method. If you pass
NO as the mergeChanges argument, you must be sure that there are no changes to that object's relationships.
If there are, and you then save the context, you will introduce referential integrity problems to the persistent
store.

When an object turns into a fault, it is sent a didTurnIntoFault message. You may implement a custom
didTurnIntoFaultmethod to perform various “housekeeping” functions (see, for example, “Ensuring Data
Is Up-to-Date” (page 70)).

104 Faulting Limits the Size of the Object Graph
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Faulting and Uniquing

Note: Core Data avoids the term unfaulting because it is confusing. There's no “unfaulting” a virtual memory
page fault. Page faults are triggered, caused, fired, or encountered. Of course, you can release memory back
to the kernel in a variety of ways (using the functions vm_deallocate, munmap, or sbrk). Core Data describes
this as “turning an object into a fault”.

Faults and KVO Notifications

When Core Data turns an object into a fault, key-value observing (KVO) change notifications (see Key-Value
Observing ProgrammingGuide) are sent for the object’s properties. If you are observing properties of an object
that is turned into a fault and the fault is subsequently realized, you receive change notifications for properties
whose values have not in fact changed.

Although the values are not changing semantically from your perspective, the literal bytes in memory are
changing as the object is materialized. The key-value observing mechanism requires Core Data to issue the
notification whenever the values change as considered from the perspective of pointer comparison. KVO
needs these notifications to track changes across keypaths and dependent objects.

Uniquing Ensures a Single Managed Object per Record per Context

Core Data ensures that—in a given managed object context—an entry in a persistent store is associated
with only one managed object. The technique is known as uniquing. Without uniquing, you might end up
with a context maintaining more than one object to represent a given record.

For example, consider the situation illustrated in Figure 2; two employees have been fetched into a single
managedobject context. Each has a relationship to a department, but the department is currently represented
by a fault.

Figure 2 Independent faults for a department object

Department

name:
budget:

employees

Employee

firstName:	 "Toni"
lastName:	 "Lau"
salary:	 7000

manager
department
reports

Department

name:
budget:

employees

Employee

firstName:	 "Jo"
lastName:	 "Jackson"
salary:	 5000

manager
department
reports	 nil

department

department

Uniquing Ensures a Single Managed Object per Record per Context 105
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Faulting and Uniquing

It would appear that each employee has a separate department, and if you asked each employee for their
department in turn—turning the faults into regular objects—you would have two separate Department
objects in memory. However, if both employees belong to the same department (for example, "Marketing"),
then Core Data ensures that (in a given managed object context) only one object representing the Marketing
department is ever created. If both employees belong to the same department, their department relationships
would both therefore reference the same fault, as illustrated in Figure 3.

Figure 3 Uniqued fault for two employees working in the same department

Employee

firstName:	 "Toni"
lastName:	 "Lau"
salary:	 7000

manager
department
reports

Department

name:
budget:

employees
Employee

firstName:	 "Jo"
lastName:	 "Jackson"
salary:	 5000

manager
department
reports	 nil

department

department

If Core Data did not use uniquing, then if you fetched all the employees and asked each in turn for their
department—thereby firing the corresponding faults—a new Department object would be created every
time. This would result in a number of objects, each representing the same department, that could contain
different and conflicting data. When the context was saved, it would be impossible to determine which is
the correct data to commit to the store.

More generally, all the managed objects in a given context that refer to the Marketing Department object
refer to the same instance—they have a single view of Marketing’s data—even if it is a fault.

Note: This discussion has focused on a single managed object context. Each managed object context
represents a different view of the data. If the same employees are fetched into a second context, then
they—and the corresponding Department object—are all represented by different objects in memory. The
objects in different contexts may have different and conflicting data. It is precisely the role of the Core Data
architecture to detect and resolve these conflicts at save time.

106 Uniquing Ensures a Single Managed Object per Record per Context
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Faulting and Uniquing

This article describes how you create a persistent store, and how you can migrate a store from one type to
another, and manage store metadata. For more about persistent store types, the differences between them,
and how you can configure aspects of their behavior, see “Persistent Store Features” (page 121).

Creating and Accessing a Store

Access to stores is mediated by an instance of NSPersistentStoreCoordinator. You should not need to
directly access a file containing a store. From a persistent store coordinator, you can retrieve an object that
represents a particular store on disk. In Mac OS X v10.5 and later, Core Data provides an NSPersistentStore
class to represent persistent stores.

To create a store, you use a persistent store coordinator. You must specify the type of the store to be created,
optionally a configuration of managed object model associated with the coordinator, and its location if it is
not an in-memory store. The following code fragment illustrates how you can create a read-only XML store:

NSManagedObjectContext *moc = /* get a context from somewhere */ ;
NSPersistentStoreCoordinator *psc = [moc persistentStoreCoordinator];
NSError *error;
NSDictionary *options =
 [NSDictionary dictionaryWithObject:[NSNumber numberWithBool:1]
 forKey:NSReadOnlyPersistentStoreOption];

NSPersistentStore *roStore =
 [psc addPersistentStoreWithType:NSXMLStoreType
 configuration:nil URL:url
 options:options error:&error];

To retrieve a store object from a coordinator, you use the method persistentStoreForURL:. You can use
a store to restrict a fetch request to a specific store, as shown in the following code fragment:

NSPersistentStoreCoordinator *psc = /* get a coordinator from somewhere */ ;
NSURL *myURL = ...; // assume this exists
NSPersistentStore *myStore = [psc persistentStoreForURL:myURL];
NSFetchRequest *request = [[NSFetchRequest alloc] init];
[request setAffectedStores:[NSArray arrayWithObject:myStore]];

Changing a Store’s Type and Location

You can migrate a store from one type or location to another (for example, for a Save As operation) using
the NSPersistentStoreCoordinator method
migratePersistentStore:toURL:options:withType:error:. After invocation of this method, the

Creating and Accessing a Store 107
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Persistent Stores

original store is removed from the coordinator, thus store is therefore no longer a useful reference. The
method is illustrated in the following code fragment, which shows how you can migrate a store from one
location to another. If the old store type is XML, then the example also converts the store to SQLite

NSPersistentStoreCoordinator *psc = [aManagedObjectContext persistentStoreCoordinator];
NSURL *oldURL, *newURL; // define URLs...
NSError *error;
NSPersistentStore *xmlStore = [psc persistentStoreForURL:oldURL];
NSPersistentStore *sqLiteStore = [psc migratePersistentStore:xmlStore
 toURL:newURL
 options:nil
 withType:NSSQLiteStoreType
 error:&error];

Core Data follows the procedure below to migrate a store:

1. Create a temporary persistence stack

2. Mount the old and new stores

3. Load all objects from the old store

4. Migrate the objects to the new store

The objects are given temporary IDs, then assigned to the new store. The new store then saves the newly
assigned objects (committing them to the external repository).

Core Data then informs other stacks that the object IDs have changed (from the old to the new stores),
which is how things "keep running" after a migration.

5. Unmount old store

6. Return the new store

An error can occur if:

 ■ You provide invalid parameters to the method

 ■ Core Data cannot add the new store

 ■ Core Data cannot remove the old store

In the latter two cases, you get the same errors you would if you called addPersistentStore: or
removePersistentStore: directly. if an error occurs when adding or removing the store, you should treat
this as an exception since the persistence stack is likely to be in an inconsistent state.

If something fails during the migration itself, instead of an error you get an exception. In these cases, Core
Data unwinds cleanly and there should be no repair work necessary. You can examine the exception description
to determine what went wrong—there is a wide variety of possible errors, ranging from "disk is full" and
"permissions problems" to "The SQLite store became corrupted" and "Core Data does not support cross store
relationships".

108 Changing a Store’s Type and Location
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Persistent Stores

Store Metadata

You can associate metadata with a store so that (if you write a suitable importer) it can be efficiently indexed
by Spotlight. NSPersistentStoreCoordinator provides a class method,
metadataForPersistentStoreWithURL:error:, that allows you to retrieve metadata from a store
without the overhead of creating a persistence stack. In Mac OS X v10.5 and later, you can also use the
NSPersistentStore method metadataForPersistentStoreWithURL:error:.

In Mac OS X v10.5 and later, you set the metadata for a store using the NSPersistentStore method
setMetadata:forPersistentStoreWithURL:error:.

The metadata is a dictionary of key-value pairs, where a key may be either custom for your application, or
one of the standard set of Spotlight keys such as kMDItemKeywords. Core Data automatically sets values
for NSStoreType and NSStoreUUID, so you should make a mutable copy of the existing metadata then
add your own keys and values, as illustrated in the following code fragment.

NSError *error;
NSURL *storeURL = /* URL for persistent store */ ;

NSDictionary *metadata =
 [NSPersistentStore metadataForPersistentStoreWithURL:storeURL error:&error]
if (metadata == nil)
{
 /* deal with the error */
}
else
{
 NSMutableDictionary *newMetadata =
 [[metadata mutableCopy] autorelease];
 [newMetadata setObject:[NSArray arrayWithObject:@"MyKeyWord"]
 forKey:(NSString *)kMDItemKeywords];
 // set additional key-value pairs as appropriate
 [NSPersistentStore setMetadata:newMetadata
 forPersistentStoreWithURL:storeURL
 error:&error];
}

Store Metadata 109
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Persistent Stores

Mac OS X v10.4: In Mac OS X v10.4, you set the metadata for a store using
NSPersistentStoreCoordinator’s setMetadata:forPersistentStore: method. This takes as its
second argument a store identifier. You retrieve a store identifier from the persistent store coordinator, using
the URL as an identifier, as illustrated in the following code fragment.

NSURL *url = /* the URL for a store */ ;
NSManagedObjectContext *managedObjectContext =
 /* get a managed object context from somewhere */ ;
NSPersistentStoreCoordinator *psc =
 [managedObjectContext persistentStoreCoordinator];
id pStore = [psc persistentStoreForURL:url];

If pStore is not nil, you can set the metadata.

if (pStore != nil) {
 NSMutableDictionary *metadata =
 [[[psc metadataForPersistentStore:pStore] mutableCopy] autorelease];
 [metadata setObject:[NSArray arrayWithObject:@"MyKeyWord"]
 forKey:(NSString *)kMDItemKeywords];
 // set additional key-value pairs
 [psc setMetadata:metadata forPersistentStore:pStore];
}

Setting the metadata for a store does not change the information on disk until the store is actually saved.

You should be careful about what information you put into metadata. First, Spotlight imposes a limit to the
size of metadata. Second, replicating an entire document in metadata is probably not useful. Note, though,
that is is possible to create a URL to identify a particular object in a store (using URIRepresentation)—the
URL may be useful to include as metadata.

An example of setting metadata and writing an importer is given in NSPersistentDocument Core Data Tutorial.

110 Store Metadata
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Using Persistent Stores

Changes made to objects’ property values should be propagated to the user interface, and user interface
elements displaying the same property should be kept synchronized. Cocoa bindings provides a control layer
for Cocoa but, whereas the Core Data framework focuses on the model, Cocoa bindings focus on the user
interface. In many situations, Cocoa bindings makes it easy to keep the user interface properly synchronized.
The Core Data framework is designed to interoperate seamlessly with, and enhance the utility of, Cocoa
bindings.

iOS: Note that Cocoa bindings are not available on iOS.

Cocoa bindings and Core Data are largely orthogonal. In general, Cocoa bindings work in exactly the same
way with managed objects as with other Cocoa model objects. You can also use the same predicate objects
and sort descriptors as you use to fetch objects from the persistent store to filter and sort objects in
memory—for example to present in a table view. This gives you a consistent API set to use throughout your
application. There, however, are a few (typically self-evident) differences in configuration and operation.

In addition to the issues described in this article, there are a few other areas where the interaction between
Core Data and Cocoa Bindings may cause problems; these are described in “Troubleshooting Core Data” (page
137), in particular:

 ■ “Custom relationship set mutator methods are not invoked by an array controller” (page 143)

 ■ “Cannot access contents of an object controller after a nib is loaded” (page 144)

 ■ “Table view or outline view contents not kept up-to-date when bound to an NSArrayController or
NSTreeController object” (page 145)

Modulo these exceptions, everything that is discussed and described in Cocoa Bindings Programming Topics
applies equally to Core Data-based applications and you should use the same techniques for configuring
and debugging bindings when using Core Data as you would if you were not using Core Data.

Additions to Controllers

The main area where Core Data adds to Cocoa bindings is in the configuration of the controller objects such
as NSObjectController and NSArrayController. Core Data adds the following features to those classes:

 ■ A reference to a managed object context that is used for all fetches, insertions, and deletions.

If a controller's content is a managed object or collection of managed objects, you must either bind or
set the managed object context for the controller.

 ■ An entity name that is used instead of the content object class to create new objects

 ■ A reference to a fetch predicate that constrains what is fetched to set the content if the content is not
set directly

Additions to Controllers 111
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data and Cocoa Bindings

 ■ A content binding option ("Deletes Objects On Remove") that—if the content is bound to a
relationship—specifies whether objects removed from the controller are deleted in addition to being
removed from the relationship

Automatically Prepares Content Flag

If the "automatically prepares content" flag (see, for example, setAutomaticallyPreparesContent:) is
set for a controller, the controller's initial content is fetched from its managed object context using the
controller's current fetch predicate. It is important to note that the controller's fetch is executed as a delayed
operation performed after its managed object context is set (by nib loading)—this therefore happens after
awakeFromNib and windowControllerDidLoadNib:. This can create a problem if you want to perform
an operation with the contents of an object controller in either of these methods, since the controller's
content is nil. You can work around this by executing the fetch "manually" with
fetchWithRequest:merge:error:. You pass nil as the fetch request argument to use the default request,
as illustrated in the following code fragment.

- (void)windowControllerDidLoadNib:(NSWindowController *) windowController
{
 [super windowControllerDidLoadNib:windowController];

 NSError *error;
 BOOL ok = [arrayController fetchWithRequest:nil merge:NO error:&error];
 // ...

Entity Inheritance

If you specify a super entity as the entity for a fetch request, the fetch returns matching instances of the
entity and sub-entities (see “Fetching and Entity Inheritance” (page 62)). As a corollary, if you specify a super
entity as the entity for a controller, it fetches matching instances of the entity and any sub-entities. If you
specify an abstract super-entity, the controller fetches matching instances of concrete sub-entities.

Filter Predicate for a To-many Relationship

Sometimes you may want to set up a filter predicate for a search field that lets a user filter the contents of
an array controller based on the destination of a to-many relationship. If you want to search a to-many
relationship, you need to use an ANY or ALL in the predicate. For instance, if you want to fetch Departments
in which at least one of the employees has the first name "Matthew", you use an ANY operator as shown in
the following example:

NSPredicate *predicate = [NSPredicate predicateWithFormat:
 @"ANY employees.firstName like 'Matthew'"];

You use the same syntax in a search field's predicate binding:

ANY employees.firstName like $value

112 Automatically Prepares Content Flag
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data and Cocoa Bindings

Note: You cannot use the contains operator (for example, ANY employees.firstName contains
'Matthew') because the contains operator does not work with the ANY operator.

Things are more complex, however, if you want to match prefix and/or suffix—for instance, if you want to
look for Departments in which at least one of the employees has the first name “Matt”, “Matthew”, “Mattie”,
or any other name beginning with “Matt”. Fundamentally you simply need to add wildcard matching:

NSPredicate *predicate = [NSPredicate predicateWithFormat:
 @"ANY employees.firstName like 'Matt*'"];

You cannot, though, use the same syntax within a search field's predicate binding:

// does not work
ANY employees.firstName like '$value*'

The reasons for this are described in Predicate Programming Guide—putting quotes in the predicate format
prevents the variable substitution from happening. Instead, you must use substitute any wildcards first as
illustrated in this example:

NSString *value = @"Matt";
NSString *wildcardedString = [NSString stringWithFormat:@"%@*", value];
[[NSPredicate predicateWithFormat:@"ANY employees.firstName like %@",
wildcardedString];

By implication, therefore, you must write some code to support this behavior.

Note: You may find that search field predicate bindings filter results inconsistently with wildcard characters.
This is due to a bug in NSArrayController. The workaround is to create a subclass of NSArrayController
and override arrangeObjects: to simply invoke super‘s implementation.

Filter Predicate for a To-many Relationship 113
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data and Cocoa Bindings

114 Filter Predicate for a To-many Relationship
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data and Cocoa Bindings

If your application contains more than one managed object context and you allow objects to be modified
in more than context, then you need to be able to reconcile the changes.

Disjoint Edits

The object graph associated with any given managed object context must be internally consistent. If you
have multiple managed object contexts in the same application, however, it is possible that may each contain
objects that represent the same entries in the persistent store, but whose characteristics are mutually
inconsistent. In an employee application, for example, you might have two separate windows that display
the same set of employees, but distributed between different departments and with different managers, as
shown in Figure 1.

Disjoint Edits 115
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Change Management

Figure 1 Managed object contexts with mutually inconsistent data values

Managed Object Context 1

Employee

lastName:	 "Lau"
salary:	 8000

Employee

lastName:	 "Jackson"
salary:	 4500

Employee

lastName:	 "Weiss"
salary:	 8000

manager

File

Employee

lastName:	 "Lau"
salary:	 8000

Employee

lastName:	 "Jackson"
salary:	 4500

Employee

lastName:	 "Weiss"
salary:	 8000

manager

Managed Object Context 1

Employee

lastName:	 "Lau"
salary:	 8000

Employee

lastName:	 "Jackson"
salary:	 5000

Employee

lastName:	 "Weiss"
salary:	 8000

manager

Ultimately though there can only be one “truth,” and differences between these views must be detected and
reconciled when data is saved. When one of the managed object contexts is saved, its changes are pushed
through the persistent store coordinator to the persistent store. When the second managed object context
is saved, conflicts are detected using a mechanism called optimistic locking; how the conflicts are resolved
depends on how you have configured the context.

Conflict Detection and Optimistic Locking

When Core Data fetches an object from a persistent store, it takes a snapshot of its state. A snapshot is a
dictionary of an object’s persistent properties—typically all its attributes and the global IDs of any objects
to which it has a to-one relationship. Snapshots participate in optimistic locking. When the framework saves,
it compares the values in each edited object’s snapshot with the then-current corresponding values in the
persistent store.

 ■ If the values are the same, then the store has not been changed since the object was fetched, so the
save proceeds normally. As part of the save operation, the snapshots' values are updated to match the
saved data.

116 Disjoint Edits
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Change Management

 ■ If the values differ, then the store has been changed since the object was fetched or last saved; this
represents an optimistic locking failure.

Conflict Resolution

You can get an optimistic locking failure if more than one persistence stack references the same external
data store (whether you have multiple persistence stacks in a single application or you have multiple
applications). In this situation there is the possibility that the same conceptual managed object will be edited
in two persistence stacks simultaneously. In many cases, you want to ensure that subsequent changes made
by the second stack do not overwrite changes made by the first, but there are other behaviors that may be
appropriate. You can choose the behavior by choosing for the managed object context a merge policy that
is suitable for your situation.

The default behavior is defined by the NSErrorMergePolicy. This policy causes a save to fail if there are
any merge conflicts. In the case of failure, the save method returns with an error with a userInfo dictionary
that contains the key @"conflictList"; the corresponding value is an array of conflict records. You can
use the array to tell the user what differences there are between the values they are trying to save and those
current in the store. Before you can save you must either fix the conflicts (by re-fetching objects so that the
snapshots are updated) or choose a different policy. The NSErrorMergePolicy is the only policy that
generates an error. Other policies—NSMergeByPropertyStoreTrumpMergePolicy,
NSMergeByPropertyObjectTrumpMergePolicy, and NSOverwriteMergePolicy—allow the save to
proceed by merging the state of the edited objects with the state of the objects in the store in different ways.
The NSRollbackMergePolicy discards in-memory state changes for objects in conflict and uses the
persistent store’s version of the objects’ state.

Snapshot Management

An application that fetches hundreds of rows of data can build up a large cache of snapshots. Theoretically,
if enough fetches are performed, a Core Data-based application can contain all the contents of a store in
memory. Clearly, snapshots must be managed in order to prevent this situation.

Responsibility for cleaning up snapshots rests with a mechanism called snapshot reference counting. This
mechanism keeps track of the managed objects that are associated with a particular snapshot—that is,
managed objects that contain data from a particular snapshot. When there are no remaining managed object
instances associated with a particular snapshot (which Core Data determines by maintaining a list of these
references), that snapshot is released.

Communicating Changes Between Contexts

If you use more than one managed object context in an application, Core Data does not automatically notify
one context of changes made to objects in another. In general, this is because a context is intended to provide
a scratch pad where you can make changes to objects in isolation, and if you wish you can discard the changes
without affecting other contexts. If you do need to synchronize changes between contexts, how a change
should be handled depends on the user visible semantics you want in the second context, and on the state
of the objects in the second context.

Communicating Changes Between Contexts 117
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Change Management

Consider an application with two managed object contexts and a single persistent store coordinator. If a
user deletes an object in the first context (moc1), you may need to inform the second context (moc2) that
has been deleted. In all cases, moc1 posts an NSManagedObjectContextDidSave notification that your
application should register for and use as the trigger for whatever actions it needs to take. This notification
contains information not only about deleted objects, but also about changed objects. You need to handle
these changes since they may be the result of the delete (most of the ways this can happen involve transient
relationships or fetched properties).

There are multiple axes you must consider when deciding how you want to handle your delete notification.
The important ones are:

 ■ What other changes exist in the second context?

 ■ Does the instance of the object that was deleted have changes in the second context?

 ■ Can the changes made in the second context be undone?

These are somewhat orthogonal, and what actions you take to synchronize the contexts depend on the
semantics of your application. The following three strategies are presented in order of increasing complexity.

1. The simplest case is when the object itself has not changed in moc2 and you do not have to worry about
undo; in this situation, you can just delete the object. The next time moc2 saves, the framework will
notice that you are trying to re-delete an object, ignore the optimistic locking warning, and continue
without error.

2. If you do not care about the contents of moc2, you can simply reset it (using reset) and refetch any
data you need after the reset. This will reset the undo stack as well, and the deleted object is now gone.
The only issue here is determining what data to refetch. You can do this by, before you reset, collecting
the IDs (objectID) of the managed objects you still need and using those to reload once the reset has
happened (you must exclude the deleted IDs, and it is best to create fetch requests with IN predicates
to avoid problems will not being able to fulfill faults for deleted IDs).

3. If the object has changed in moc2, but you do not care about undo, your strategy depends on what it
means for the semantics of your application. If the object that was deleted in moc1 has changes in moc2,
should it be deleted from moc2 as well? Or should it be resurrected and the changes saved? What happens
if the original deletion triggered a cascade delete for objects that have not been faulted into moc2? What
if the object was deleted as part of a cascade delete?

There are two workable options (a third, unsatisfactory option is described later):

a. The simplest strategy is to just discard the changes by deleting the object.

b. Alternatively, if the object is standalone, you can set the merge policy on the context to
NSMergePolicyOverwrite. This will cause the changes in the second context to overwrite the
delete in the database.

Note that this will cause all changes in moc2 to overwrite any changes made in moc1.

The preceding are the best solutions, and are least likely to leave your object graph in an unsustainable state
as a result of something you missed. There are various other strategies, but all are likely to lead to
inconsistencies and errors. They are listed here as examples so that you can recognize them and avoid them.
If you find yourself trying to adopt any of these strategies, you should redesign your application's architecture to
follow one of the patterns described previously.

118 Communicating Changes Between Contexts
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Change Management

1. If you have a situation like 3(b) above, but the object not standalone, and for some reason you want to
save those changes, the best you're likely to be able to do is to resurrect the part of the graph that had
been loaded into moc2, which may or may not make sense in the context of your application. Again you
do this by setting the merge policy to NSMergePolicyOverwrite, but you also need some up-front
application design, and some meddling with the objects in the 'deleted' object's relationships.

In order for the world to make some amount of sense later, you need to automatically fault in any
relationships that might need to be resurrected when you fault in the object. Then, when you get a
delete notification, you need to make the context think all the objects related to the deleted object have
changed, so that they will be saved as well. This will bloat your application's memory use, since you'll
end up with possibly irrelevant data as a precaution against something that may not happen, and if
you're not careful, you can end up with your database in a hybrid state where it is neither what moc1
tried to create, nor what moc2 would expect (for example, if you missed a relationship somewhere and
you now have partial relationships, or orphaned nodes).

2. The second worst of all worlds is when you have changes to other objects you can't blow away in the
second MOC, the object itself has changes that you are willing to discard, and you care about undo. You
can't reset the context, because that loses the changes. If you delete the object, the delete will get pushed
onto the undo stack and will be undoable, so the user could undo, resave, and run into the semantic
problems mentioned in 3 above, only worse because you have not planned for them.

The only real way to solve this is to—separately, in your application code—keep track of the objects
which are changed as a result of the delete. You then need to track user undo events, and when the
user undoes past a delete, you can then "rerun" the deletion. This is likely to be complex and inefficient
if a significant number of changes are propagated.

3. The worst case is you have changes to other objects you cannot discard, the object has changes you
want to keep, and you care about undo. There may be a way to deal with this, but it will require
considerable effort and any solution is likely to be complicated and fragile.

Communicating Changes Between Contexts 119
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Change Management

120 Communicating Changes Between Contexts
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Change Management

Core Data provides several types of persistent store. This article describes the features and benefits of each,
and how you can migrate from one type of store to another.

Important: In Mac OS X v10.4, there is no explicit class for persistent stores—you can only type a store
instance as an id—consequently there is also no API for persistent store objects in Mac OS X v10.4. The
techniques described below generally also apply to Mac OS X v10.4, but where a type is given as
NSPersistentStore * you should use id.

Store Types and Behaviors

Core Data provides three sorts of disk-based persistent store—XML, atomic, and SQLite—and an in-memory
store. (Core Data provides the binary store type—NSBinaryStoreType—as a built-in atomic store; you can
also create your own atomic store types—see “Custom store types” (page 122).) From the application code
perspective, in general you should not be concerned about implementation details for any particular store.
You should interact with managed objects and the persistence stack. There are, however, some behavioral
differences between the types of store that you should consider when deciding what type of store to use.

iOS: The XML store is not available on iOS.

In-MemorySQLiteAtomicXML

FastFastFastSlowSpeed

WholePartialWholeWholeObject Graph

No backing requiredExternally parseableOther Factors

Important: Although Core Data supports SQLite as a store type, the store format is private. You cannot
create a SQLite database using native SQLite API and use it directly with Core Data (nor should you manipulate
an existing Core Data SQLite store using native SQLite API). If you have an existing SQLite database, you need
to import it into a Core Data store (see “Efficiently Importing Data” (page 147)).

Store-specific behavior

Given the abstraction that Core Data offers, there is typically no need to use the same store throughout the
development process. It is common, for example, to use the XML store early in a project life-cycle, since it is
fairly human-readable and you can inspect a file to determine whether or not it contains the data you expect.
In a deployed application that uses a large data set, you typically use an SQLite store, since this offers high

Store Types and Behaviors 121
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Persistent Store Features

performance and does not require that the entire object graph reside in memory. You might use the binary
store if you want store writes to be atomic. There are, however, some features and considerations that are
specific to particular store types. These are described in following sections.

Custom store types

In Mac OS X v10.5 and later you can create your own atomic store types. For details, see Atomic Store
Programming Topics.

In Mac OS X v10.4 , you cannot write your own object store which interoperates transparently with the Core
Data stack. You can, however, manage object persistence yourself by using an in-memory store. Before you
load your data, you create an in-memory store. When you load your data, you create instances of the
appropriate model classes and insert them into a managed object context, associate them with the in-memory
store (see insertObject: and assignObject:toPersistentStore:). The managed objects are then
fully integrated into the Core Data stack and benefit from features such as undo management. You are also
responsible, however, for saving the data. You must register to receive
NSManagedObjectContextDidSaveNotification notifications from the managed object context, and
upon receipt of the notification save the managed objects to the persistent store.

Security

Core Data makes no guarantees regarding the security of persistent stores from untrusted sources and cannot
detect whether files have been maliciously modified. The SQLite store offers slightly better security than the
XML and binary stores, but it should not be considered inherently secure. Note that you should also consider
the security of store metadata since it is possible for data archived in the metadata to be tampered with
independently of the store data. If you want to ensure data security, you should use a technology such as
an encrypted disk image.

Fetch Predicates and Sort Descriptors

There are some interactions between fetching and the type of store. In the XML, binary, and in-memory
stores, evaluation of the predicate and sort descriptors is performed in Objective-C with access to all Cocoa's
functionality, including the comparison methods on NSString. The SQL store, on the other hand, compiles
the predicate and sort descriptors to SQL and evaluates the result in the database itself. This is done primarily
for performance, but it means that evaluation happens in a non-Cocoa environment, and so sort descriptors
(or predicates) that rely on Cocoa cannot work. The supported sort selectors are compare: and
caseInsensitiveCompare:, localizedCompare:, localizedCaseInsensitiveCompare:, and
localizedStandardCompare: (the latter is Finder-like sorting, and what most people should use most of
the time). In addition you cannot sort on transient properties using the SQLite store.

There are additional constraints on the predicates you can use with the SQLite store:

 ■ You cannot necessarily translate “arbitrary” SQL queries into predicates.

 ■ Prior to Mac OS X v10.6, Core Data’s SQL store did not support the MATCHES operator (you could use
the MATCHES operator to perform in-memory filtering of results returned from the store).

 ■ You can only have one to-many element in a keypath in a predicate.

122 Fetch Predicates and Sort Descriptors
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Persistent Store Features

For example, no toOne.toMany.toMany, or toMany.toOne.toMany type constructions (they evaluate
to sets of sets). As a consequence, in any predicate sent to the SQL store, there may be only one operator
(and one instance of that operator) from ALL, ANY, and IN.

- CoreData supports a noindex: (see NSPredicate documentation re: function expressions) that can be used
to drop indices in queries passed to SQLite. This is done primarily for performance reasons: SQLite uses a
limited number of indices per query, and noindex: allows the user to preferentially specify which indexes
should not be used.

SQLite Store

File-systems supported by the SQLite store

The SQLite store supports reading data from a file that resides on any type of file-system. The SQLite store
does not in general, however, support writing directly to file-systems which do not implement byte-range
locking. For DOS filesystems and for some NFS file system implementations that do not support byte-range
locking correctly, SQLite will use "<dbfile>.lock" locking, and for SMB file systems it uses flock-style locking.

To summarize: byte-range locking file systems have the best concurrent read/write support; these include
HFS+, AFP, and NFS. File systems with simplistic file locking are also supported but do not allow for as much
concurrent read/write access by multiple processes; these include SMB, and DOS. The SQLite store does not
support writing to WebDAV file-systems (this includes iDisk).

Configuring a SQLite Store’s Save Behavior

When Core Data saves a SQLite store, SQLite updates just part of the store file. Loss of that partial update
would be catastrophic, so you may want to ensure that the file is written correctly before your application
continues. Unfortunately, doing so means that in some situations saving even a small set of changes to an
SQLite store can take considerably longer than saving to, say, an XML store. (For example, where saving to
an XML file might take less than a hundredth of a second, saving to an SQLite store may take almost half a
second. This is not an issue for XML or Binary stores—since they are atomic, there is a much lower likelihood
of data loss that involves corruption of the file, especially since the writes are typically atomic and the old
file is not deleted until the new has been successfully written.)

fsync in Mac OS X: Since in Mac OS X the fsync command does not make the guarantee that bytes are
written, SQLite sends a F_FULLFSYNC request to the kernel to ensures that the bytes are actually written
through to the drive platter. This causes the kernel to flush all buffers to the drives and causes the drives to
flush their track caches. Without this, there is a significantly large window of time within which data will
reside in volatile memory—and in the event of system failure you risk data corruption.

Core Data provides a way to control sync behavior in SQLite using two independent pragmas, giving you
control over the tradeoff between performance and reliability:

 ■ synchronous controls the frequency of disk-syncing

PRAGMA synchronous FULL [2] / NORMAL [1] / OFF [0]

 ■ full_fsync controls the type of disk-sync operation performed

SQLite Store 123
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Persistent Store Features

PRAGMA fullfsync 1 / 0

In Mac OS X v10.5, the default is 0.

The pragmas are publicly documented at http://sqlite.org/pragma.html.

You can set both pragmas using the key NSSQLitePragmasOption in the options dictionary when opening
the store. The NSSQLitePragmasOption dictionary contains pragma names as keys and string values as
objects, as illustrated in the following example:

NSPersistentStoreCoordinator *psc = /* assume this exists */ ;

NSMutableDictionary *pragmaOptions = [NSMutableDictionary dictionary];
[pragmaOptions setObject:@"NORMAL" forKey:@"synchronous"];
[pragmaOptions setObject:@"1" forKey:@"fullfsync"];

NSDictionary *storeOptions =
 [NSDictionary dictionaryWithObject:pragmaOptions
forKey:NSSQLitePragmasOption];
NSPersistentStore *store;
NSError *error;
store = [psc addPersistentStoreWithType:NSSQLiteStoreType
 configuration: nil
 URL:url
 options:storeOptions
 error:&error];

Mac OS X v10.4: Mac OS X v10.4 uses full_fsync by default. Since the fsync command does not make
the guarantee that bytes are written, SQLite sends a F_FULLFSYNC request to the kernel. This causes the
kernel to flush all buffers to the drives and causes the drives to flush their track caches.

In Mac OS X v10.4, there are only two settings to control the way in which data in a SQLite-based store is
written to disk. If you want to trade risk of data corruption against the time taken to save a file, you can set
the defaults key com.apple.CoreData.SQLiteDebugSynchronous to one of three values:

0: Disk syncing is switched off

1: Normal

2 (The default): Disk syncing is performed via the fctl FULL_FSYNC command—a costly operation but one
that guarantees data is written to disk

Important: The default behaviors in Mac OS X v10.4 an 10.5 are different. In Mac OS X v10.4, SQLite uses
FULL_FSYNC by default; in Mac OS X v10.5 it does not.

124 SQLite Store
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Persistent Store Features

http://sqlite.org/pragma.html

There may be perceived performance advantages that accrue from using multiple threads with Core Data.
In particular, if you execute a large or complex fetch that takes some time, you might execute the full fetch
on a background thread. It is important to consider, however, that most of the Application Kit is not thread
safe and that you need to take considerable care that object graphs do not get into an inconsistent state.

Thread Safety Fundamentals

There are several issues to bear in mind when using multi-threading in a Core Data application:

 ■ Any time you manipulate or access your object graph, you may be using the associated managed object
context.

Core Data does not present a situation where reads are "safe" but changes are "dangerous"—every
operation is "dangerous" because every operation can trigger faulting.

 ■ Managed objects themselves are not thread safe.

If you want to work with a managed object across different threads, you must lock its context (see
NSLocking). If you try to pass actual objects, share contexts between threads, and so on, you must be
extremely careful about locking (and as a consequence you are likely to negate any benefit you may
otherwise derive from multi-threading). Working with a managed object across different threads is
therefore strongly discouraged, as described in “General Guidelines” (page 126).

 ■ Passing object IDs (which are immutable) across thread boundaries makes dealing with threading much
easier.

To make a managed object from one context visible in another, you pass its managed object ID and use
objectWithID: on the receiving thread's managed object context to get a local version of the managed
object. Note that the corresponding managed objects must have been saved—you cannot pass the ID
of a newly-inserted managed object to another context.

In Mac OS X v10.5, you can use the API provided by NSFetchRequest to facilitate working with data
across threads. For example, you can configure a fetch request to return objectIDs but include the row
data (and update the row cache)—this can be useful if you're just going to pass those object IDs from
a background thread to another thread.

 ■ A persistent store coordinator provides to its managed object contexts the façade of one virtual store.

For completely concurrent operations you need a different coordinator for each thread.

 ■ In Mac OS X v10.5, executeFetchRequest:error: intrinsically scales its behavior appropriately for
the hardware and work load.

If necessary, the Core Data will create additional private threads to optimize fetching performance. You
will not improve absolute fetching speed by creating background threads for the purpose (although it
may still be appropriate to fetch in a background thread for enhanced responsiveness—that is, to prevent
your application from blocking).

 ■ It is important to consider the application environment.

Thread Safety Fundamentals 125
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Multi-Threading with Core Data

For the most part, the Application Kit is not thread safe; in particular, Cocoa bindings and controllers are
not thread safe—if you are using these technologies, multi-threading may be complex.

General Guidelines

In general, you should not use any given managed object or managed object context in more than one
thread. Instead, you should give each thread its own entirely private managed object context and keep their
associated object graphs separated on a per-thread basis. If you do this, there is no need to lock contexts
during access. You can use one persistent store coordinator per group of cooperating threads (for example,
for your application or for each document).

There are three patterns you can adopt to support multi-threading in a Core Data application; in order of
preference they are:

1. Create a separate managed object context for each thread and share a single persistent store coordinator.

If you need to “pass” managed objects between threads, you just pass their object IDs.

If you want to aggregate a number of operations in one context together as if a virtual single transaction,
you can lock the persistent store coordinator to prevent other managed object contexts using the
persistent store coordinator over the scope of several operations.

2. Create a separate managed object context and persistent store coordinator for each thread.

If you need to “pass” managed objects between threads, you just pass their object IDs.

Using a separate persistent store coordinator for each thread allows for completely concurrent operations.

3. Pass managed objects or managed object contexts between threads.

This approach is strongly discouraged. You must ensure that you apply locks as appropriate and necessary.

Locking

Generally, you only need to lock a managed object context (and not even then if you ensure that each thread
has its own private context, as described in “General Guidelines” (page 126)). If you do choose to share a
managed object context or a persistent store coordinator between threads, you must ensure that any method
invocations are made from a thread-safe scope. For locking, you should use the NSLocking methods on
managed object context and persistent store coordinator instead of implementing your own mutexes. These
methods help provide contextual information to the framework about the application's intent—that is, in
addition to providing a mutex, they help scope clusters of operations.

Typically you lock the context or coordinator using tryLock or lock. If you do this, the framework will ensure
that what it does behind the scenes is also thread-safe. For example, if you create one context per thread,
but all pointing to the same persistent store coordinator, Core Data takes care of accessing the coordinator
in a thread-safe way (NSManagedObjectContext's lock and unlock methods handle recursivity).

126 General Guidelines
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Multi-Threading with Core Data

If you lock (or successfully tryLock) a context, that context must be retained until you invoke unlock. If
you don’t properly retain a context in a multi-threaded environment, you may cause a deadlock.

Fetching in a Background Thread

One of the simplest multi-threading techniques you can use with Core Data to improve application
responsiveness is to execute a fetch request on a background thread. (Note that this technique is only useful
if you are using an SQLite store, since data from binary and XML stores is read into memory immediately on
open.) This means that if a fetch is complicated or returns a large amount of data, you can return control to
the user and display results as they arrive.

You use two managed object contexts associated with a single persistent store coordinator. You fetch in one
managed object context on a background thread, and pass the object IDs of the fetched objects to another
thread. In the second thread (typically the application's main thread, so that you can then display the results),
you use the second context to fault in objects with those object IDs (you use objectWithID: to instantiate
the object).

Saving

Performing a save operation in a detached thread is error-prone unless you take additional steps to prevent
the application from quitting before the save is completed. Specifically, all NSThread-based threads are
"detached" (see the documentation for pthread for complete details) and a process runs only until all
not-detached threads have exited. The work a detached thread is performing is therefore considered optional,
and the process may terminate at any time. (Most users do not consider saving to be optional work!) In Cocoa,
only the main thread is not-detached. If you need to save on other threads, you must write additional code
such that the main thread prevents the application from quitting until all the save operation is complete.

Fetching in a Background Thread 127
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Multi-Threading with Core Data

128 Saving
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Multi-Threading with Core Data

In general, Core Data is very efficient. For many applications, an implementation that uses Core Data may be
more efficient than a comparable application that does not. It is possible, however, to use the framework in
such a way that its efficiency is reduced. This article describes how to get the most out of Core Data.

Introduction

Core Data is a rich and sophisticated object graph management framework capable of dealing with large
volumes of data. The SQLite store can scale to terabyte sized databases with billions of rows/tables/columns.
Unless your entities themselves have very large attributes (although see “Large Data Objects (BLOBs)” (page
134)) or large numbers of properties, 10,000 objects is considered to be a fairly small size for a data set.

For a very simple application it is certainly the case that Core Data adds some overhead (compare a vanilla
Cocoa document-based application with a Cocoa Core Data document-based application), however Core
Data adds significant functionality. For a small overhead, even a simple Core Data-based application supports
undo and redo, validation, object graph maintenance, and provides the ability to save objects to a persistent
store. If you implemented this functionality yourself, it is quite likely that the overhead would exceed that
imposed by Core Data. As the complexity of an application increases, so the proportionate overhead that
Core Data imposes typically decreases while at the same time the benefit typically increases (supporting
undo and redo in a large application, for example, is usually hard).

NSManagedObject uses an internal storage mechanism for data that is highly optimized. In particular, it
leverages the information about the types of data that is available through introspecting the model. When
you store and retrieve data in a manner that is key-value coding and key-value observing compliant, it is
likely that using NSManagedObject will be faster than any other storage mechanism—including for the the
simple get/set cases. In a modern Cocoa application that leverages Cocoa Bindings, given that Cocoa Bindings
is reliant upon key-value coding and key-value observing it would be difficult to build a raw data storage
mechanism that provides the same level of efficiency as Core Data.

Like all technologies, however, Core Data can be abused. Using Core Data does not free you from the need
to consider basic Cocoa patterns, such as memory management. You should also consider how you fetch
data from a persistent store. If you find that your application is not performing as well as you would like, you
should use profiling tools such as Shark to determine where the problem lies (see Performance & Debugging).

Fetching Managed Objects

Each round trip to the persistent store (each fetch) incurs an overhead, both in accessing the store and in
merging the returned objects into the persistence stack. You should avoid executing multiple requests if you
can instead combine them into a single request that will return all the objects you require. You can also
minimize the number of objects you have in memory.

Introduction 129
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Performance

http://developer.apple.com/tools/performance/

Fetch Predicates

How you use predicates can significantly affect the performance of your application. If a fetch request requires
a compound predicate, you can make the fetch more efficient by ensuring that the most restrictive predicate
is the first, especially if the predicate involves text matching (contains, endsWith, like, and matches)
since correct Unicode searching is slow. If the predicate combines textual and non-textual comparisons, then
it is likely to be more efficient to specify the non-textual predicates first, for example (salary > 5000000)
AND (lastName LIKE 'Quincey') is better than (lastName LIKE 'Quincey') AND (salary >
5000000). For more about creating predicates, see Predicate Programming Guide.

Fetch Limits

You can set a limit to the number of objects a fetch will return using the method setFetchLimit: as shown
in the following example.

NSFetchRequest *request = [[[NSFetchRequest alloc] init] autorelease];
[request setFetchLimit:100];

If you are using the SQLite store, you can use a fetch limit to minimize the working set of managed objects
in memory, and so improve the performance of your application.

If you do need to retrieve a large number of objects, you can make your application appear more responsive
by executing two fetches. In the first fetch, you retrieve a comparatively small number of objects—for example,
100—and populate the user interface with these objects. You then execute a second fetch to retrieve the
complete result set (that is, you execute a fetch without a fetch limit).

Prior to Mac OS X v10.6, there is no way to “batch” fetches (or in database terms, to set a cursor). That is, you
cannot fetch the “first” 100 objects, then the second 100, then the third, and so on. In Mac OS X v10.6 and
later and on iOS, you can use fetchOffset to manage a subrange of an arbitrary result set.

In general, however, you are encouraged to use predicates to ensure that you retrieve only those objects
you require.

Faulting Behavior

Firing faults can be a comparatively expensive process (potentially requiring a round trip to the persistent
store), and you may wish to avoid unnecessarily firing a fault. You can safely invoke the following methods
on a fault without causing it to fire: isEqual:, hash, superclass, class, self, zone, isProxy,
isKindOfClass:, isMemberOfClass:, conformsToProtocol:, respondsToSelector:, retain,
release, autorelease, retainCount, description, managedObjectContext, entity, objectID,
isInserted, isUpdated, isDeleted, and isFault.

Since isEqual and hash do not cause a fault to fire, managed objects can typically be placed in collections
without firing a fault. Note, however, that invoking key-value coding methods on the collection object might
in turn result in an invocation of valueForKey: on a managed object, which would fire a fault. In addition,
although the default implementation of description does not cause a fault to fire, if you implement a
custom description method that accesses the object’s persistent properties, this will cause a fault to fire.

130 Faulting Behavior
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Performance

Note that just because a managed object is a fault, it does not necessarily mean that the data for the object
are not in memory—see the definition for isFault.

Batch Faulting and Pre-fetching with the SQLite Store

When you execute a fetch, Core Data fetches just instances of the entity you specify. In some situations (see
“Limiting the Size of the Object Graph: Faulting” (page 103)), the destination of a relationship is represented
by a fault. Core Data automatically resolves (fires) the fault when you access data in the fault. This lazy loading
of the related objects is much better for memory use, and much faster for fetching objects related to rarely
used (or very large) objects. It can also, however, lead to a situation where Core Data executes separate fetch
requests for a number of individual objects, which incurs a comparatively high overhead. For example, given
a model:

1 department employees * 0..1 manager

* directReports

Department

name
budget

Employee

firstName
lastName
salary

you might fetch a number of Employees and ask each in turn for their Department's name, as shown in the
following code fragment.

NSFetchRequest * employeesFetch = <#A fetch request for Employees#>
// The request should include a predicate -- if you don't have a predicate here,
// you should probably just fetch all the Departments.
NSArray *fetchedEmployees = [moc executeFetchRequest:employeesFetch error:&error];
for (Employee *employee in fetchedEmployees)
{
 NSLog(@"%@ -> %@ department", employee.name, employee.department.name);
}

This might lead to the following behavior:

Jack -> Sales [fault fires]
Jill -> Marketing [fault fires]
Benjy -> Sales
Gillian -> Sales
Hector -> Engineering [fault fires]
Michelle -> Marketing

Here, there are four round trips to the persistent store (one for the original fetch of Employees, and three for
individual Departments) which represents a considerable overhead on top of the minimum (two—one for
each entity).

There are two techniques you can use to mitigate this effect—batch faulting and pre-fetching.

Batch faulting

You can batch fault a collection of objects by executing a fetch request using a predicate with an IN operator,
as illustrated by the following example. (In a predicate, self represents the object being evaluated—see
Predicate Format String Syntax.)

Faulting Behavior 131
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Performance

NSArray *array = [NSArray arrayWithObjects:fault1, fault2, ..., nil];
NSPredicate *predicate = [NSPredicate predicateWithFormat:@"self IN %@", array];

In Mac OS X v10.5 and later, when you create a fetch request you can use the NSFetchRequest method
setReturnsObjectsAsFaults: to ensure that managed objects are not returned as faults.

Pre-fetching

Pre-fetching is in effect a special case of batch-faulting, performed immediately after another fetch. The idea
behind pre-fetching is the anticipation of future needs. When you fetch some objects, sometimes you know
that soon after you will also need related objects which may be represented by faults. To avoid the inefficiency
of individual faults firing, you can pre-fetch the objects at the destination.

In Mac OS X v10.5 and later, you can use the NSFetchRequest method
setRelationshipKeyPathsForPrefetching: to specify an array of relationship keypaths to prefetch
along with the entity for the request. For example, given an Employee entity with a relationship to a
Department entity: if you fetch all the employees then for each print out their name and the name of the
department to which they belong, you can avoid the possibility of a fault being fired for each Department
instance by prefetching the department relationship, as illustrated in the following code fragment:

NSManagedObjectContext *context = /* get the context */;
NSEntityDescription *employeeEntity = [NSEntityDescription
 entityForName:@"Employee" inManagedObjectContext:context];
NSFetchRequest *request = [[NSFetchRequest alloc] init];
[request setEntity:employeeEntity];
[request setRelationshipKeyPathsForPrefetching:
 [NSArray arrayWithObject:@"department"]];

In Mac OS X v10.4, you create a fetch request to fetch just those instances of the destination entity that are
related to the source objects you just retrieved, this reduces the number of fetches to two (the minimum).
How (or whether) you implement the pre-fetch depends on the cardinality of the relationship.

 ■ If the inverse relationship is a to-one, you can use a predicate with the format, @"%K IN %@" where the
first argument is the key name for the inverse relationship, and the second argument an array of the
original objects.

 ■ If the inverse relationship is a to-many, you first collect the object IDs from the faults you care about
(being careful not touch other attributes). You then create a predicate with the format, @"SELF IN %@",
where the argument is the array of object IDs.

 ■ If the relationship is a many-to-many, pre-fetching is not recommended.

You could implement pre-fetching for the department relationship in the previous example as follows.

NSEntityDescription *deptEntity = [NSEntityDescription entityForName:@"Department"
 inManagedObjectContext:moc];
NSArray *deptOIDs = [fetchedEmployees valueForKeyPath:@"department.objectID"];
NSPredicate *deptsPredicate = [NSPredicate predicateWithFormat:
 @"SELF in %@", deptOIDs];
NSFetchRequest *deptFetch = [[[NSFetchRequest alloc] init] autorelease];
[deptFetch setEntity:deptEntity];
[deptFetch setPredicate:deptsPredicate];
// execute fetch...

132 Faulting Behavior
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Performance

If you know something about how the data will be accessed or presented, you can further refine the fetch
predicate to reduce the number of objects fetched. Note, though, that this technique can be fragile—if the
application changes and needs a different set of data, then you can end up pre-fetching the wrong objects.

For more about faulting, and in particular the meaning of the value returned from isFault, see “Faulting
and Uniquing” (page 103).

Reducing Memory Overhead

It is sometimes the case that you want to use managed objects on a temporary basis, for example to calculate
an average value for a particular attribute. This causes your object graph, and memory consumption, to grow.
You can reduce the memory overhead by re-faulting individual managed objects that you no longer need,
or you can reset a managed object context to clear an entire object graph. You can also use patterns that
apply to Cocoa programming in general.

 ■ You can re-fault an individual managed object using NSManagedObjectContext's
refreshObject:mergeChanges:method. This has the effect of clearing its in-memory property values
thereby reducing its memory overhead. (Note that this is not the same as setting the property values to
nil—the values will be retrieved on demand if the fault is fired—see “Faulting and Uniquing” (page
103).)

 ■ In Mac OS X v10.5, when you create a fetch request you can set includesPropertyValues to NO to
reduce memory overhead by avoiding creation of objects to represent the property values. You should
typically only do so, however, if you are sure that either you will not need the actual property data or
you already have the information in the row cache, otherwise you will incur multiple trips to the persistent
store.

 ■ You can use the resetmethod of NSManagedObjectContext to remove all managed objects associated
with a context and "start over" as if you'd just created it. Note that any managed object associated with
that context will be invalidated, and so you will need to discard any references to and re-fetch any objects
associated with that context in which you are still interested.

 ■ Objects returned by fetching and other API are usually autoreleased as required by the Cocoa
programming guidelines. If you iterate over a lot of objects, you may need to allocate and release your
own autorelease pools to gain a finer-grain level of memory management.

 ■ If you do not intend to use Core Data’s undo functionality, you can reduce your application's resource
requirements by setting the context’s undo manager to nil. This may be especially beneficial for
background worker threads, as well as for large import or batch operations.

 ■ Finally, Core Data does not by default retain managed objects (unless they have unsaved changes). If
you have lots of objects in memory, you should determine why they are still retained. Managed objects
do retain each other through relationships, which can easily create cycles. You can break retain cycles
by re-faulting objects (again by using the refreshObject:mergeChanges: method of
NSManagedObjectContext).

Reducing Memory Overhead 133
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Performance

Large Data Objects (BLOBs)

If your application uses large BLOBs ("Binary Large OBjects" such as image and sound data), you need to take
care to minimize overheads. The exact definition of "small", "modest", and "large" is fluid and depends on an
application's usage. A loose rule of thumb is that objects in the order of kilobytes in size are of a "modest"
sized and those in the order of megabytes in size are "large" sized. Some developers have achieved good
performance with 10MB BLOBs in a database. On the other hand, if an application has millions of rows in a
table, even 128 bytes might be a "modest" sized CLOB (Character Large OBject) that needs to be normalized
into a separate table.

In general, if you need to store BLOBs in a persistent store, you should use an SQLite store. The XML and
binary stores require that the whole object graph reside in memory, and store writes are atomic (see “Persistent
Store Features” (page 121)) which means that they do not efficiently deal with large data objects. SQLite can
scale to handle extremely large databases. Properly used, SQLite provides good performance for databases
up to 100GB, and a single row can hold up to 1GB (although of course reading 1GB of data into memory is
an expensive operation no matter how efficient the repository).

A BLOB often represents an attribute of an entity—for example, a photograph might be an attribute of an
Employee entity. For small to modest sized BLOBs (and CLOBs), you should create a separate entity for the
data and create a to-one relationship in place of the attribute. For example, you might create Employee and
Photograph entities with a one-to-one relationship between them, where the relationship from Employee
to Photograph replaces the Employee's photograph attribute. This pattern maximizes the benefits of object
faulting (see “Faulting and Uniquing” (page 103)). Any given photograph is only retrieved if it is actually
needed (if the relationship is traversed).

It is better, however, if you are able to store BLOBs as resources on the filesystem, and to maintain links (such
as URLs or paths) to those resources. You can then load a BLOB as and when necessary.

Analyzing Performance

Analyzing Fetch Behavior with SQLite

With Mac OS X version 10.4.3 and later, you can use the user default com.apple.CoreData.SQLDebug to
log to stderr the actual SQL sent to SQLite. (Note that user default names are case sensitive.) For example,
you can pass the following as an argument to the application:

-com.apple.CoreData.SQLDebug 1

Higher levels of debug numbers produce more information, although this is likely to be of diminishing utility.

The information the output provides can be useful when debugging performance problems—in particular
it may tell you when Core Data is performing a large number of small fetches (such as when firing faults
individually). The output differentiates between fetches that you execute using a fetch request and fetches
that are performed automatically to realize faults.

134 Large Data Objects (BLOBs)
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Performance

Instruments

With Mac OS X version 10.5 and later, you can use the Instruments application (by default in
/Developer/Applications/) to analyze the behavior of your application. There are several Instruments probes
specific to Core Data:

 ■ Core Data Fetches

Records invocations of executeFetchRequest:error:, providing information about the entity against
which the request was made, the number of objects returned, and the time taken for the fetch.

 ■ Core Data Saves

Records invocations of save: and the time taken to do the save.

 ■ Core Data Faults

Records information about object and relationship fault firing. For object faults, records the object being
faulted; for relationship faults, records the source object and the relationship being fired. In both cases,
records the time taken to fire the fault.

 ■ Core Data Cache Misses

Traces fault behavior that specifically results in filesystem activity—indicating that a fault was fired for
which no data was available—and records the time taken to retrieve the data.

All the instruments provide a stack trace for each event so that you can see what caused it to happen.

When analyzing your application, you should of course also take into account factors not directly related to
Core Data, such as overall memory footprint, object allocations, use and abuse of other API such as the
key-value technologies and so on.

Analyzing Performance 135
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Performance

136 Analyzing Performance
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data Performance

This article outlines some of the common issues encountered in applications that use Core Data and provides
clues as to correcting the problem.

When troubleshooting Core Data-based applications, it is important to consider that Core Data provides
functionality that builds on top of functionality provided by other parts of Cocoa. When attempting to
diagnose a problem with an application that uses Core Data, you should take care to distinguish between
issues that are specific to Core Data and those that arise because of an error with another framework or to
an implementation or architectural patten. Poor performance, for example, may not be due to Core Data per
se, but instead are due to a failure to observe standard Cocoa techniques of memory management or resource
conservation; or if a user interface does not update properly, this may be due to an error in how you have
configured Cocoa bindings.

Object Life-Cycle Problems

Merge errors

Problem: You see the error message, "Could not merge changes".

Cause: Two different managed object contexts tried to change the same data. This is also known as an
optimistic locking failure.

Remedy: Either set a merge policy on the context, or manually (programmatically) resolve the failure. You
can retrieve the currently committed values for an object using committedValuesForKeys:, and you can
re-fault the object (so that when it is next accessed its data values are retrieved from its persistent store)
using refreshObject:mergeChanges:.

Assigning a managed object to a different store

Problem: You see an exception that looks similar to this example.

<NSInvalidArgumentException> [<MyMO 0x3036b0>_assignObject:toPersistentStore:]:
Can’t reassign an object to a different store once it has been saved.

Cause: The object you are trying to assign to a store has already been assigned and saved to a different store.

Remedy: To move an object from one store to another, you must create a new instance, copy the information
from the old object, save it to the appropriate store, and then delete the old instance.

Object Life-Cycle Problems 137
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Core Data

Fault cannot be fulfilled

Problem: You see the error message, "Core Data could not fulfill a fault".

Cause: The corresponding object's underlying data has been deleted from the persistent store.

Remedy: You should discard this object.

This problem can occur in at least two situations:

First:

 ■ Start with a retained reference to a managed object.

 ■ Delete the managed object via the managed object context.

 ■ Save changes on the object context.

At this point, the deleted object has been turned into a fault. It isn't destroyed because doing so would
violate the rules of memory management.

 ■ Try to retrieve an attribute or relationship from the previously retained reference.

Core Data will try to fault the faulted managed object but will fail to do so because the object has been
deleted from the store. That is, there is no longer an object with the same global ID in the store.

Second:

 ■ Delete an object from a managed object context.

 ■ Fail to break all relationships from other objects to that object.

 ■ Save changes.

At this point, if you try to fire the relationship from some other object to that object, it may fail (this depends
on the details of the configuration of the relationship as that affects how the relationship is stored).

The delete rules for relationships affect relationships only from the source object to other objects (including
inverses). Without potentially fetching large numbers of objects, possibly without reason, there is no way for
Core Data to efficiently clean up the relationships to the object.

Keep in mind that a Core Data object graph is directional. That is, a relationship has a source and a destination.
Following a source to a destination does not necessarily mean that there is an inverse relationship. So, in
that sense, you need to ensure that you are properly maintaining the object graph across deletes.

In practice, a well-designed object graph does not require much manual post-deletion clean up. If you consider
that most object graphs have "entry points" that in effect act as a root node for navigating the graph and
that most insertion and deletion events are rooted at those nodes just like fetches, then delete rules take
care of most of the work for you. Similarly, since smart groups and other "casual" relationships are generally
best implemented with fetched properties, various ancillary collections of entry points into the object graph
generally do not need to be maintained across deletes because fetched relationships have no notion of
permanence when it comes to objects found via the fetched relationship.

138 Object Life-Cycle Problems
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Core Data

Managed object invalidated

Problem: You see an exception that looks similar to this example:

<NSObjectInaccessibleException> [<MyMO 0x3036b0>_assignObject:toPersistentStore:]:
The NSManagedObject with ID:#### has been invalidated.

Cause: Either you have removed the store for the fault you are attempting to fire, or the managed object's
context has been sent a reset message.

Remedy: You should discard this object. If you add the store again, you can try to fetch the object again.

Class is not key-value coding compliant

Problem: You see an exception that looks similar to the following example.

<NSUnknownKeyException> [<MyMO 0x3036b0> valueForUndefinedKey:]:
this class is not key value coding-compliant for the key randomKey.

Cause: Either you used an incorrect key, or you initialized your managed object with init instead of
initWithEntity:inManagedObjectContext:.

Remedy: Use a valid key (check the spelling and case carefully—also review the rules for key-value coding
compliance in Key-Value Coding Programming Guide), or ensure that you use the designated initializer for
NSManagedObject (see initWithEntity:insertIntoManagedObjectContext:).

Entity class does not respond to invocations of custom methods

Problem: You define an entity that uses a custom subclass of NSManagedObject, then in code you create
an instance of the entity and invoke a custom method, as illustrated in this code fragment:

NSManagedObject *entityInstance =
 [NSEntityDescription insertNewObjectForEntityForName:@"MyEntity"
 inManagedObjectContext:managedObjectContext];
[entityInstance setAttribute: newValue];

You get a runtime error like this:

"2005-05-05 15:44:51.233 MyApp[1234] ***
 -[NSManagedObject setNameOfEntity:]: selector not recognized [self = 0x30e340]

Cause: In the model, you may have misspelled the name of the custom class for the entity.

Remedy: Ensure that the spelling of name of the custom class in the model matches the spelling of the custom
class you implement.

Object Life-Cycle Problems 139
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Core Data

Custom accessor methods are not invoked, key dependencies are
not obeyed

Problem: You define a custom subclass of NSManagedObject for a particular entity and implement custom
accessors methods (and perhaps dependent keys). At runtime, the accessor methods are not called and the
dependent key is not updated.

Cause: In the model, you did not specify the custom class for the entity.

Remedy: Ensure that the model specifies of name of the custom class for the entity (that is, that it is not
NSManagedObject).

Problems with Fetching

SQLite store does not work with sorting

Problem: You create a sort descriptor that uses a comparison method defined by NSString, such as the
following:

NSSortDescriptor *mySortDescriptor = [[NSSortDescriptor alloc]
 initWithKey:@"lastName" ascending:YES
 selector:@selector(localizedCaseInsensitiveCompare:)];

You then either use this descriptor with a fetch request or as one of an array controller's sort descriptors. At
runtime, you might see an error message that looks similar to the following:

NSRunLoop ignoring exception 'unsupported NSSortDescriptor selector:
 localizedCaseInsensitiveCompare:' that raised during posting of
 delayed perform with target 3e2e42 and selector 'invokeWithTarget:'

Cause: Exactly how a fetch request is executed depends on the store—see “Fetching Managed Objects” (page
59).

Remedy: If you are executing the fetch directly, you should not use Cocoa-based sort operators—instead you
should sort the returned array in memory. If you are using an array controller, you may need to subclass
NSArrayController so you can have it not pass the sort descriptors to the database and instead do the
sorting after your data has been fetched.

Problems with Saving

SQLite store takes a "long time" to save

Problem: You are using an SQLite store and notice that it takes longer to save to the SQLite store than it does
to save the same data to an XML store.

Cause: This is probably expected behavior. The SQLite store ensures that all data is written correctly to
disk—see “Configuring a SQLite Store’s Save Behavior” (page 123).

140 Problems with Fetching
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Core Data

Remedy: First determine whether the time taken to save will be noticeable to the user. This is typically likely
to be the case only if you configure your application to frequently save automatically—for example, after
every edit that the user makes. First, consider changing the store’s save behavior (switch off full sync). Then
consider saving data only after a set period (for example, every 15 seconds) instead of after every edit. If
necessary, consider choosing a different store—for example, the binary store.

Cannot save documents because entity is null

Problem: You have Core Data document-based application that is unable to save. When you try to save the
document you get an exception:

Exception raised during posting of notification. Ignored. exception: Cannot
perform operation since entity with name 'Wxyz' cannot be found

Cause: This error is emitted by an instance of NSObjectController (or one of its subclasses) that is set in
Entity mode but can’t access the entity description in the managed object model associated with the entity
name specified in Interface Builder. In short, you have a controller in entity mode with an invalid entity name.

Remedy: Select in turn each of your controllers in Interface Builder, and press Command-1 to show the
inspector. For each controller, ensure you have a valid entity name in the "Entity Name" field at the top.

Exception generated in retainedDataForObjectID:withContext.

Problem: You add an object to a context. When you try to save the document you get an error that looks like
this:

[date] My App[2529:4b03] cannot find data for a temporary oid: 0x60797a0
<<x-coredata:///MyClass/t8BB18D3A-0495-4BBE-840F-AF0D92E549FA195>x-coredata:///MyClass/t8BB18D3A-0495-4BBE-840F-AF0D92E549FA195>

an exception in -[NSSQLCore retainedDataForObjectID:withContext:], and the backtrace looks
like:

#1 0x9599a6ac in -[NSSQLCore retainedDataForObjectID:withContext:]
#2 0x95990238 in -[NSPersistentStoreCoordinator(_NSInternalMethods)
_conflictsWithRowCacheForObject:andStore:]
#3 0x95990548 in -[NSPersistentStoreCoordinator(_NSInternalMethods)
_checkRequestForStore:originalRequest:andOptimisticLocking:]
#4 0x9594e8f0 in -[NSPersistentStoreCoordinator(_NSInternalMethods)
executeRequest:withContext:]
#5 0x959617ec in -[NSManagedObjectContext save:]

The call to _conflictsWithRowCacheForObject: is comparing the object you're trying to save with its
last cached version from the database. Basically, it's checking to see if any other code (thread, process, or
just a different managed object context) changed this object out from underneath you.

Core Data does not do this check on newly inserted objects because they could not have existed in any other
scope. They haven't been written to the database yet.

Cause: You may have forced a newly inserted object to "lose" its inserted status and then changed or deleted
it. This could happen if you passed a temporary object ID to objectWithID:. You may have passed an
inserted object to another managed object context.

Remedy: There are a number of possible remedies, depending on what was the root cause:

Problems with Saving 141
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Core Data

 ■ Do not pass an inserted (not yet saved) object to another context. Only objects that have been saved
can be passed between contexts.

 ■ Do not invoke refreshObject: on a newly-inserted object.

 ■ Do not make a relationship to an object that you never insert into the context.

 ■ Ensure that you use the designated initializer for instances of NSManagedObject.

Before you save (frame #6 in the stack trace), the context’s updatedObjects and deletedObjects sets
should only have members whose object ID returns NO from isTemporaryID.

Debugging Fetching

With Mac OS X version 10.4.3 and later, you can use the user default com.apple.CoreData.SQLDebug to
log to stderr the actual SQL sent to SQLite. (Note that user default names are case sensitive.) For example,
you can pass the following as an argument to the application:

-com.apple.CoreData.SQLDebug 1

Higher levels of debug numbers produce more information, although using higher numbers is likely to be
of diminishing utility.

The information the output provides can be useful when debugging performance problems—in particular
it may tell you when Core Data is performing a large number of small fetches (such as when firing faults
individually). Like file I/O, executing many small fetches is expensive compared to executing a single large
fetch. For examples of how to correct this situation, see “Faulting Behavior” (page 130).

Important: Using this information for reverse engineering to facilitate direct access to the SQLite file is not
supported. It is exclusively a debugging tool.

As this is for debugging, the exact format of the logging is subject to change without notice. You should not,
for example, pipe the output into an analysis tool with the expectation that it will work on all OS versions.

Managed Object Models

My application generates the message "+entityForName: could not
locate an NSManagedObjectModel"

Problem: The error states clearly the issue—the entity description cannot find a managed object model from
which to access the entity information.

Cause: The model may not be included in your application resources. You may be trying to access the model
before it has been loaded. The reference to the context may be nil.

Remedy: Be sure that the model is included in your application resources and that the corresponding "project
target" option in Xcode is selected.

142 Debugging Fetching
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Core Data

The class method you invoked requires an entity name and context, and it is through the context that the
entity gets the model. Basically, it looks like:

context ---> coordinator ---> model

In general, when working with Core Data and you have problems like these, you should ensure:

 ■ That the managed object context is not nil

If you are setting the reference to the context in a nib file, make sure the appropriate outlet or binding
is set correctly.

 ■ If you are managing your own Core Data stack, that the managed object context has an associated
coordinator (setPersistentStoreCoordinator: after allocating)

 ■ That the persistent store coordinator has a valid model

If you are using NSPersistentDocument, then the managed object model is instantiated using the
mergedModelFromBundles: method when the document is initialized.

The documentation also gives you enough information on how to debug and hooks for debugging: there
are a handful of methods listed in the "Getting and setting the persistence objects" section of the API reference
for NSPersistentDocument for either modifying or inspecting the Core Data objects your document is
working with. Simply overriding the implementations, calling super, and inspecting the returned values
would give you more information about what may (or may not) be occurring.

Bindings Integration

Many problems relating to bindings are not specific to Core Data, and are discussed in Troubleshooting
Cocoa Bindings. This section describes some additional problems that could be caused by the interaction of
Core Data and bindings.

Custom relationship set mutator methods are not invoked by an
array controller

Problem: You have implemented set mutator methods for a relationship as described in “Custom To-Many
Relationship Accessor Methods,” and have bound the contentSet binding of an NSArrayController
instance to a relationship (as illustrated by the Employees array controller in NSPersistentDocument Core Data
Tutorial), but the set mutator methods are not invoked when you add objects to and remove objects from
the array controller.

Cause: This is a bug.

Remedy: You can work around this by adding self to the contentSet binding's key path. For example,
instead of binding to [Department Object Controller].selection.employees, you would bind to [Department
Object Controller].selection.self.employees.

Bindings Integration 143
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Core Data

Cannot access contents of an object controller after a nib is loaded

Problem: You want to perform an operation with the contents of an object controller (an instance of
NSObjectController, NSArrayController, or NSTreeController) after a nib file has been loaded, but
the controller's content is nil.

Cause: The controller's fetch is executed as a delayed operation performed after its managed object context
is set (by nib loading)—the fetch therefore happens after awakeFromNib and
windowControllerDidLoadNib:.

Remedy: You can execute the fetch “manually” with fetchWithRequest:merge:error:—see “Core Data
and Cocoa Bindings” (page 111).

Cannot create new objects with array controller

Problem: You cannot create new objects using an NSArrayController. For example, when you click the
button assigned to the add: action, you get an error similar to the following:

2005-05-05 12:00:)).000 MyApp[1234] *** NSRunLoop
ignoring exception 'Failed to create new object' that raised
during posting of delayed perform with target 123456
and selector 'invokeWithTarget:'

Cause: In your managed object model, you may have specified a custom class for the entity, but you have
not implemented the class.

Remedy: Implement the custom class, or specify that the entity is represented by NSManagedObject.

A table view bound to an array controller doesn't display the contents
of a relationship

Problem: You have a table view bound to an array controller that you want to display the contents of a
relationship, but nothing is displayed and you get an error similar to the following:

2005-05-27 14:13:39.077 MyApp[1234] *** NSRunLoop ignoring exception
'Cannot create NSArray from object <_NSFaultingMutableSet: 0x3818f0> ()
of class _NSFaultingMutableSet - consider using contentSet
binding instead of contentArray binding' that raised during posting of
delayed perform with target 385350 and selector 'invokeWithTarget:'

Cause: You bound the controller's contentArray binding to a relationship. Relationships are represented
by sets.

Remedy: Bind the controller's contentSet binding to the relationship.

144 Bindings Integration
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Core Data

A new object is not added to the relationship of the object currently
selected in a table view

Problem: You have a table view that displays a collection of instances of an entity. The entity has a relationship
to another entity, instances of which are displayed in a second table view. Each table view is managed by
an array controller. When you add new instances of the second entity, they are not added to the relationship
of the currently-selected instance of the first.

Cause: The two array controllers are not related. There is nothing to tell the second array controller about
the first.

Remedy: Bind the second array controller's contentSet binding to the key path that specifies the relationship
of the selection in the first array controller. For example, if the first array controller manages the Department
entity, and the second the Employee entity, then the contentSet binding of the second array controller
should be [Department Controller].selection.employees.

Table view or outline view contents not kept up-to-date when bound
to an NSArrayController or NSTreeController object

Problem: You have a table view or outline view that displays a collection of instances of an entity. As new
instances of the entity are added and removed, the table view is not kept in sync.

Cause: If the controller's content is an array that you manage yourself, then it is possible you are not modifying
the array in a way that is key-value observing compliant.

If the controller's content is fetched automatically, then you have probably not set the controller to
"Automatically prepare content."

Alternatively, the controller may not be properly configured.

Remedy: If the controller's content is a collection that you manage yourself, then ensure you modify the
collection in a way that is key-value observing compliant—see Troubleshooting Cocoa Bindings.

If the controller's content is fetched automatically, set the "Automatically prepares content" switch for the
controller in the Attributes inspector in Interface Builder (see also automaticallyPreparesContent).
Doing so means that the controller tracks inserts into and deletions from its managed object context for its
entity.

If neither of these is a factor, check to see that the controller is properly configured (for example, that you
have set the entity correctly).

Bindings Integration 145
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Core Data

146 Bindings Integration
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Core Data

This article describes how you can efficiently import data into a Core Data application and turn the data into
managed objects to save to a persistent store. It discusses some of the fundamental Cocoa patterns you
should follow, and patterns that are specific to Core Data.

Cocoa Fundamentals

In common with many other situations, when you use Core Data to import a data file it is important to
remember "normal rules" of Cocoa application development apply, particularly if you are using a managed
memory environment (as opposed to garbage collection). If you import a data file that you have to parse in
some way, it is likely you will create a large number of autoreleased objects. These can take up a lot of memory
and lead to paging. Just as you would with a non-Core Data application, you can use local autorelease pools
to put a bound on how many additional objects reside in memory (for example, if you create a loop to iterate
over data you can use an inner autorelease pool that you release and re-create every few times through your
main loop). You can also create objects using alloc and init and then release them when you no longer
need them—this avoids putting them in an autorelease pool in the first place. For more about the interaction
between Core Data and memory management, see “Reducing Memory Overhead” (page 133).

You should also avoid repeating work unnecessarily. One subtle case lies in creating a predicate containing
a variable. If you create the predicate as shown in the following example, you are not only creating a predicate
every time through your loop, you are parsing one.

// loop over employeeIDs
// anID = ... each employeeID in turn
// within body of loop
NSString *predicateString = [NSString stringWithFormat:
 @"employeeID == %@", anID];

NSPredicate *predicate = [NSPredicate predicateWithFormat:predicateString];

To create a predicate from a formatted string, the framework must parse the string and create instances of
predicate and expression objects. If you are using the same form of a predicate many times over but changing
the value of one of the constant value expressions on each use, it is more efficient to create a predicate once
and then use variable substitution (see Creating Predicates). This technique is illustrated in the following
example.

// before loop
NSString *predicateString = [NSString stringWithFormat
 @"employeeID == $EMPLOYEE_ID"];
NSPredicate *predicate = [NSPredicate predicateWithFormat:predicateString];

// within body of loop
NSDictionary *variables = [NSDictionary dictionaryWithObject:anID
 forKey:@"EMPLOYEE_ID"];
NSPredicate *localPredicate = [predicate
predicateWithSubstitutionVariables:variables];

Cocoa Fundamentals 147
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Efficiently Importing Data

Reducing Peak Memory Footprint

If you import a large amount of data into a Core Data application, you should make sure you keep your
application’s peak memory footprint low by importing the data in batches and purging the Core Data stack
between batches. The relevant issues and techniques are discussed in “Core Data Performance” (page 129)
(particularly “Reducing Memory Overhead” (page 133)) and “Memory Management Using Core Data” (page
73), but they’re summarized here for convenience.

Importing in batches

First, you should typically create a separate managed object context for the import, and set its undo manager
to nil. (Contexts are not particularly expensive to create, so if you cache your persistent store coordinator
you can use different contexts for different working sets or distinct operations.)

NSManagedObjectContext *importContext = [[NSManagedObjectContext alloc] init];
NSPersistentStoreCoordinator *coordinator = /* retrieve the coordinator */ ;
[importContext setPersistentStoreCoordinator:coordinator];
[importContext setUndoManager:nil];

(If you have an existing Core Data stack, you can get the persistent store coordinator from another managed
object context.) Setting the undo manager to nil means that:

1. You don’t waste effort recording undo actions for changes (such as insertions) that will not be undone;

2. The undo manager doesn’t maintain strong references to changed objects and so prevent them from
being deallocated (see “Change and Undo Management” (page 74)).

You should import data and create corresponding managed objects in batches (the optimum size of the
batch will depend on how much data is associated with each record and how low you want to keep the
memory footprint). At the beginning of each batch you create a new autorelease pool. At the end of each
batch you need to save the managed object context (using save:) and then drain the pool. (Until you save,
the context needs to retain all the pending changes you've made to the inserted objects.)

The process is illustrated in the following example, although note that you would typically include suitable
error-checking.

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
NSUInteger count = 0, LOOP_LIMIT = 1000;
NSDictionary *newRecord;
NSManagedObject *newMO;

// assume a method 'nextRecord' that returns a dictionary representing the next
// set of data to be imported from the file

while (newRecord = [self nextRecord]) {
 // create managed object(s) from newRecord

 count++;
 if (count == LOOP_LIMIT) {
 [importContext save:outError];
 [importContext reset];
 [pool drain];

148 Reducing Peak Memory Footprint
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Efficiently Importing Data

 pool = [[NSAutoreleasePool alloc] init];
 count = 0;
 }
}
// Save any remaining records
if (count != 0) {
 [importContext save:outError];
 [importContext reset];
}
[pool drain];

Dealing with retain cycles

There is an additional issue that complicates matters in a managed memory environment (it doesn’t affect
applications that use garbage collection). Managed objects with relationships nearly always create
unreclaimable retain cycles. If during the import you create relationships between objects, you need to break
the retain cycles so that the objects can be deallocated when they’re no longer needed. To do this, you can
either turn the objects into faults, or reset the whole context. For a complete discussion, see “Breaking
Relationship Retain Cycles” (page 74).

Document-based example

The following example illustrates how you could implement a subclass of NSDocumentController to allow
your application to open a legacy file format and import the data into a new Core Data store. It assumes
three additional methods: openURLForReadingLegacyData:error: to open the legacy file, nextRecord
that returns a dictionary containing the data from the next record in the file, and closeLegacyFile to close
the legacy file. As a further simplification, it assumes that the legacy file contains data for only one entity.

NSString *CORE_DATA_DOCUMENT_TYPE = @"CoreDataStoreDocumentType";
NSString *ENTITY_NAME = @"MyEntity";
NSUInteger LOOP_LIMIT = 5000;

@implementation MyDocumentController

- (id)openDocumentWithContentsOfURL:(NSURL *)absoluteURL
 display:(BOOL)displayDocument error:(NSError **)outError {

 NSString *filePath = [absoluteURL relativePath];
 NSString *fileExtension = [filePath pathExtension];
 NSString *type = [self typeFromFileExtension:fileExtension];

 if ([type isEqualToString:CORE_DATA_DOCUMENT_TYPE]) {
 return [super openDocumentWithContentsOfURL:absoluteURL
 display:displayDocument error:outError];
 }

 BOOL ok = [self openURLForReadingLegacyData:absoluteURL error:outError];
 if (!ok) {
 return nil;
 }

Reducing Peak Memory Footprint 149
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Efficiently Importing Data

 NSString *extension = [[self fileExtensionsFromType:CORE_DATA_DOCUMENT_TYPE]
 objectAtIndex:0];
 NSString *storePath = [[filePath stringByDeletingPathExtension]
 stringByAppendingPathExtension:extension];

 NSFileManager *fm = [NSFileManager defaultManager];
 if ([fm fileExistsAtPath:storePath]) {
 ok = [fm removeItemAtPath:storePath error:outError];
 if (!ok) {
 return nil;
 }
 }

 NSURL *storeURL = [NSURL fileURLWithPath:storePath];

 NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"MyDocument"
 ofType:@"mom"];
 NSURL *modelURL = [NSURL fileURLWithPath:modelPath];

 NSManagedObjectModel *model = [[[NSManagedObjectModel alloc]
 initWithContentsOfURL:modelURL] autorelease];

 NSPersistentStoreCoordinator *psc = [[[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel:model] autorelease];

 NSPersistentStore *store = [psc addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil URL:storeURL options:0 error:outError];
 if (store == nil) {
 return nil;
 }

 NSManagedObjectContext *importContext = [[NSManagedObjectContext alloc] init];
 [importContext setPersistentStoreCoordinator:psc];
 [importContext setUndoManager:nil];

 NSEntityDescription *entity = [NSEntityDescription entityForName:ENTITY_NAME
 inManagedObjectContext:importContext];

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 NSUInteger count = 0;
 NSDictionary *newRecord;
 NSManagedObject *newMO;

 while (newRecord = [self nextRecord]) {
 /*
 It is more efficient to cache the entity and use initWithEntity:
 insertIntoManagedObjectContext: than to use the typically-more-convenient
 NSEntityDescription method
insertNewObjectForEntityForName:inManagedObjectContext:.
 It is also more efficient to release the new managed object than it is to add
 it
 to the autorelease pool. It can safely be released here since, because
 it's a newly-inserted object, the managed object context retains it.
 */
 newMO = [[NSManagedObject alloc] initWithEntity:entity
 insertIntoManagedObjectContext:importContext];
;

150 Reducing Peak Memory Footprint
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Efficiently Importing Data

 [newMO setValuesForKeysWithDictionary:newRecord];

 [newMO release];

 count++;
 if (count == LOOP_LIMIT) {

 ok = [importContext save:outError];
 if (!ok) {
 [importContext release];
 [pool drain];
 [self closeLegacyFile];
 return nil;
 }
 /*
 reset is not actually needed in this example since we're not creating
 any relationships but this would be one place to put it if we were
 [importContext reset];
 or:
 for (NSManagedObject* mo in [importContext registeredObjects]) {
 [importContext refreshObject:mo mergeChanges:NO];
 }
 */

 [pool drain];

 pool = [[NSAutoreleasePool alloc] init];
 count = 0;
 }
 }

 // Save any remaining elements
 if (count != 0) {
 ok = [importContext save:outError];
 }
 [self closeLegacyFile];
 [importContext release];
 [pool drain];

 if (!ok) {
 return nil;
 }
 return [super openDocumentWithContentsOfURL:storeURL
 display:displayDocument error:outError];
}

Implementing Find-or-Create Efficiently

A common technique when importing data is to follow a "find-or-create" pattern, where you set up some
data from which to create a managed object, determine whether the managed object already exists, and
create it if it does not.

There are many situations where you may need to find existing objects (objects already saved in a store) for
a set of discrete input values. A simple solution is to create a loop, then for each value in turn execute a fetch
to determine whether there is a matching persisted object and so on. This pattern does not scale well. If you

Implementing Find-or-Create Efficiently 151
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Efficiently Importing Data

profile your application with this pattern, you typically find the fetch to be one of the more expensive
operations in the loop (compared to just iterating over a collection of items). Even worse, this pattern turns
an O(n) problem into an O(n^2) problem.

It is much more efficient—when possible—to create all the managed objects in a single pass, and then fix
up any relationships in a second pass. For example, if you import data that you know does not contain any
duplicates (say because your initial data set is empty), you can just create managed objects to represent your
data and not do any searches at all. Or if you import "flat" data with no relationships, you can create managed
objects for the entire set and weed out (delete) any duplicates before save using a single large IN predicate.

If you do need to follow a find-or-create pattern—say because you're importing heterogeneous data where
relationship information is mixed in with attribute information—you can optimize how you find existing
objects by reducing to a minimum the number of fetches you execute. How to accomplish this depends on
the amount of reference data you have to work with. If you are importing 100 potential new objects, and
only have 2000 in your database, fetching all of the existing and caching them may not represent a significant
penalty (especially if you have to perform the operation more than once). However, if you have 100,000 items
in your database, the memory pressure of keeping those cached may be prohibitive.

You can use a combination of an IN predicate and sorting to reduce your use of Core Data to a single fetch
request. Suppose, for example, you want to take a list of employee IDs (as strings) and create Employee
records for all those not already in the database. Consider this code, where Employee is an entity with a name
attribute, and listOfIDsAsString is the list of IDs for which you want to add objects if they do not already
exist in a store.

First, separate and sort the IDs (strings) of interest.

// get the names to parse in sorted order
NSArray *employeeIDs = [[listOfIDsAsString componentsSeparatedByString:@"\n"]
 sortedArrayUsingSelector: @selector(compare:)];

Next, create a predicate using IN with the array of name strings, and a sort descriptor which ensures the
results are returned with the same sorting as the array of name strings. (The IN is equivalent to an SQL IN
operation, where the left-hand side must appear in the collection specified by the right-hand side.)

// create the fetch request to get all Employees matching the IDs
NSFetchRequest *fetchRequest = [[[NSFetchRequest alloc] init] autorelease];
[fetchRequest setEntity:
 [NSEntityDescription entityForName:@"Employee"
inManagedObjectContext:aMOC]];
[fetchRequest setPredicate: [NSPredicate predicateWithFormat: @"(employeeID IN
 %@)", employeeIDs]];

// make sure the results are sorted as well
[fetchRequest setSortDescriptors: [NSArray arrayWithObject:
 [[[NSSortDescriptor alloc] initWithKey: @"employeeID"
 ascending:YES] autorelease]]];

Finally, execute the fetch.

NSError *error;
NSArray *employeesMatchingNames = [aMOC
 executeFetchRequest:fetchRequest error:&error];

You end up with two sorted arrays—one with the employee IDs passed into the fetch request, and one with
the managed objects that matched them. To process them, you walk the sorted lists following these steps:

152 Implementing Find-or-Create Efficiently
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Efficiently Importing Data

1. Get the next ID and Employee. If the ID doesn't match the Employee ID, create a new Employee for that
ID.

2. Get the next Employee: if the IDs match, move to the next ID and Employee.

Regardless of how many IDs you pass in, you only execute a single fetch, and the rest is just walking the
result set.

The listing below shows the complete code for the example in the previous section.

// get the names to parse in sorted order
NSArray *employeeIDs = [[listOfIDsAsString componentsSeparatedByString:@"\n"]
 sortedArrayUsingSelector: @selector(compare:)];

// create the fetch request to get all Employees matching the IDs
NSFetchRequest *fetchRequest = [[[NSFetchRequest alloc] init] autorelease];
[fetchRequest setEntity:
 [NSEntityDescription entityForName:@"Employee"
inManagedObjectContext:aMOC]];
[fetchRequest setPredicate: [NSPredicate predicateWithFormat: @"(employeeID IN
 %@)", employeeIDs]];

// make sure the results are sorted as well
[fetchRequest setSortDescriptors: [NSArray arrayWithObject:
 [[[NSSortDescriptor alloc] initWithKey: @"employeeID"
 ascending:YES] autorelease]]];
// Execute the fetch
NSError *error;
NSArray *employeesMatchingNames = [aMOC
 executeFetchRequest:fetchRequest error:&error];

Implementing Find-or-Create Efficiently 153
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Efficiently Importing Data

154 Implementing Find-or-Create Efficiently
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Efficiently Importing Data

This document provides answers to questions frequently asked about Core Data.

Where does a Managed Object Context Come From?

Where a managed object context comes from is entirely application-dependent. In a Cocoa document-based
application using NSPersistentDocument, the persistent document typically creates the context, and gives
you access to it through the managedObjectContext method.

In a single-window application, if you create your project using the standard project assistant, the application
delegate (the instance of the AppDelegate class) again creates the context, and gives you access to it through
the managedObjectContext method. In this case, however, the code to create the context (and the rest of
the Core Data stack) is explicit. It is written for you automatically as part of the template.

Note that you should not use instances of subclasses of NSController directly to execute fetches (for
example, you should not create an instance of NSArrayController specifically to execute a fetch). Controllers
are for managing the interaction between your model objects and your human interface. At the model object
level, you should just use a managed object context to perform the fetches directly.

I have a to-many relationship from Entity A to Entity B. How do I
fetch the instances of Entity B related to a given instance of Entity
A?

You don’t. More specifically, there is no need to explicitly fetch the destination instances, you simply invoke
the appropriate key-value coding or accessor method on the instance of Entity A. If the relationship is called
“widgets”, then if you have implemented a custom class with a similarly named accessor method, you simply
write:

NSSet *asWidgets = [instanceA widgets];

Otherwise you use key-value coding:

NSMutableSet *asWidgets = [instanceA mutableSetValueForKey:@"widgets"];

Where does a Managed Object Context Come From? 155
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data FAQ

How do I fetch objects in the same order I created them?

Objects in a persistent store are unordered. Typically you should impose order at the controller or view layer,
based on an attribute such as creation date. If there is order inherent in your data, you need to explicitly
model that.

How do I copy a managed object from one context to another?

First, note that in a strict sense you are not copying the object. You are conceptually creating an additional
reference to the same underlying data in the persistent store.

To copy a managed object from one context to another, you can use the object’s object ID, as illustrated in
the following example.

NSManagedObjectID *objectID = [managedObject objectID];
NSManagedObject *copy = [context2 objectWithID:objectID];

I have a key whose value is dependent on values of attributes in a
related entity—how do I ensure it is kept up to date as the attribute
values are changes and as the relationship is manipulated?

There are many situations in which the value of one property depends on that of one or more other attributes
in another entity. If the value of one attribute changes, then the value of the derived property should also
be flagged for change. How you ensure that key-value observing notifications are posted for these dependent
properties depends on which version of Mac OS X you’re using and the cardinality of the relationship.

Mac OS X v10.5 and later for a to-one relationship

If you are targeting Mac OS X v10.5 and later, and there is a to-one relationship to the related entity, then to
trigger notifications automatically you should either overridekeyPathsForValuesAffectingValueForKey:
or implement a suitable method that follows the pattern it defines for registering dependent keys.

For example, you could override keyPathsForValuesAffectingValueForKey: as shown in the following
example:

+ (NSSet *)keyPathsForValuesAffectingValueForKey:(NSString *)key
{
 NSSet *keyPaths = [super keyPathsForValuesAffectingValueForKey:key];

 if ([key isEqualToString:@"fullNameAndDepartment"])
 {
 NSSet *affectingKeys = [NSSet setWithObjects:@"lastName", @"firstName",
 @"department.deptName",
nil];
 keyPaths = [keyPaths setByAddingObjectsFromSet:affectingKeys];

156 How do I fetch objects in the same order I created them?
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data FAQ

 }
 return keyPaths;
}

Or, to achieve the same result, you could just implement
keyPathsForValuesAffectingFullNameAndDepartment as illustrated in the following example:

+ (NSSet *)keyPathsForValuesAffectingFullNameAndDepartment
{
 return [NSSet setWithObjects:@"lastName", @"firstName",
 @"department.deptName", nil];
}

Mac OS X v10.4 and to-many relationships in Mac OS X v10.5

If you are targeting Mac OS X v10.4, setKeys:triggerChangeNotificationsForDependentKey: does
not allow key-paths, so you cannot follow the pattern described above.

If you are targeting Mac OS X v10.5,keyPathsForValuesAffectingValueForKey:does not allow key-paths
that include a to-many relationship. For example, suppose you have an Department entity with a to-many
relationship (employees) to a Employee, and Employee has a salary attribute. You might want the
Department entity have a totalSalary attribute that is dependent upon the salaries of all the Employees
in the relationship. You can not do this with, for example, keyPathsForValuesAffectingTotalSalary
and returning employees.salary as a key.

There are two possible solutions in both situations:

1. You can use key-value observing to register the parent (in this example, Department) as an observer of
the relevant attribute of all the children (Employees in this example). You must add and remove the
parent as an observer as child objects are added to and removed from the relationship (see Registering
for Key-Value Observing). In the observeValueForKeyPath:ofObject:change:context: method
you update the dependent value in response to changes, as illustrated in the following code fragment:

- (void)observeValueForKeyPath:(NSString *)keyPath ofObject:(id)object
change:(NSDictionary *)change context:(void *)context
{
 if (context == totalSalaryContext) {
 [self updateTotalSalary];
 }
 else
 // deal with other observations and/or invoke super...
}
- (void)updateTotalSalary
{
 [self setTotalSalary:[self valueForKeyPath:@"employees.@sum.salary"]];
}
- (void)setTotalSalary:(NSNumber *)newTotalSalary
{
 if (totalSalary != newTotalSalary) {
 [self willChangeValueForKey:@"totalSalary"];
 [totalSalary release];
 totalSalary = [newTotalSalary retain];
 [self didChangeValueForKey:@"totalSalary"];
 }
}

I have a key whose value is dependent on values of attributes in a related entity—how do I ensure it is kept
up to date as the attribute values are changes and as the relationship is manipulated? 157
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data FAQ

- (NSNumber *)totalSalary
{
 return totalSalary;
}

2. You can register the parent with the application's notification center as an observer of its managed
object context. The parent should respond to relevant change notifications posted by the children in a
manner similar to that for key-value observing.

How do I use my existing SQLite database with Core Data?

Although Core Data supports SQLite as one of its persistent store types, the database format is private. You
cannot create a SQLite database using native SQLite API and use it directly with Core Data (nor should you
manipulate an existing Core Data SQLite store using native SQLite API). If you have an existing SQLite database,
you need to import it into a Core Data store (see “Efficiently Importing Data” (page 147)).

How do I get undo/redo for free in my
non-document-architecture-based app?

In a Core Data document-based application, the standard NSDocument undo manager is replaced by the
document’s managed object context’s undo manager. In a non-document-based application for desktop
Mac OS X, your window’s delegate can supply the managed object context’s undo manager using the
windowWillReturnUndoManager: delegate method. If your window delegate has an accessor method for
the managed object context (as is the case if you use the Core Data Application template), your implementation
of windowWillReturnUndoManager: might be as follows.

- (NSUndoManager *)windowWillReturnUndoManager:(NSWindow *)sender {
 return [[self managedObjectContext] undoManager];
}

How do I create a user interface from an entity?

There are two ways to create a user interface from an entity: in Mac OS X v10.4 and later you use the Xcode
modeling tool in conjunction with Interface Builder; in Mac OS X v10.5 and later you can also use just Interface
Builder.

In Mac OS X v10.4 and later, in the Data Modeling Tool, you can Option-click an entity in the Data Modeling
tool in Xcode and drag it to a window or box in Interface Builder. See NSPersistentDocument CoreData Tutorial
for an example. You must make sure that Xcode is the foreground application when you do
this—Option-clicking on Xcode while it is not foreground will make it foreground and hide all other
applications, including Interface Builder.

In Mac OS X v10.5 and later, in Interface Builder you can drag a Core Data Entity item from the Library onto
a window or box. Interface Builder then presents a panel that allows you to select the entity you want from
the currently-open Xcode projects.

158 How do I use my existing SQLite database with Core Data?
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data FAQ

Note that you can also create and configure an NSController instance in Interface Builder. As in the case
of creating a user interface, you Option-click an entity in the Data Modeling tool in Xcode (or select the Core
Data Entity item from the Library), but you drag it to a the Interface Builder file window. For editing one
object, an NSObjectController instance is created; for editing many objects, an NSArrayController
instance is created.

It is important to realize that neither Xcode nor Interface Builder does anything “special” when you create
an interface this way. You could create and configure the interface yourself if you wanted—it would just take
longer.

In Xcode’s predicate builder, why don’t I see any properties for a
fetched property predicate?

If you want to create a predicate for a fetched property in the predicate builder in Xcode, but don’t see any
properties, you have probably not set the destination entity for the fetched property.

When I remove objects from a detail table view managed by an
array controller, why are they not removed from the object graph?

If an array controller manages the collection of objects at the destination of a relationship, then by default
the remove method simply removes the current selection from the relationship. If you want removed objects
to be deleted from the object graph, then you need to enable the “Deletes Objects On Remove” option for
the contentSet binding.

(This is particularly relevant if you create a user interface by dragging entities from the Xcode data modeling
tool. See NSPersistentDocument Core Data Tutorial for an example.)

How do I get the GUI to validate the data entered by the user?

Core Data validates all managed objects when a managed object context is sent a save: message. In a Core
Data document-based application, this is when the user saves the document. You can have the GUI validate
it as the data is being entered by selecting the “Validates Immediately” option for a value binding in the
Interface Builder bindings inspector. If you establish the binding programmatically, you supply in the binding
options dictionary a value of YES (as an NSNumber object) for the key
NSValidatesImmediatelyBindingOption (see Binding Options).

For details of how to write custom validation methods, see the subclassing notes for NSManagedObject.

How do I initialize a store with default data?

There are two issues here: creating the data, and ensuring the data is imported only once.

In Xcode’s predicate builder, why don’t I see any properties for a fetched property predicate? 159
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data FAQ

There are several ways to create the data.

 ■ You can create the managed objects directly in code (as trivially illustrated in NSPersistentDocument Core
Data Tutorial).

 ■ You can create a property list—or some other file-based representation—of the data, and store it as an
application resource. When you want to use it, you must open the file and parse the representation to
create managed objects.

 ■ You can create a separate persistent store that contains the default data. When you want to use it, you
must copy the objects from the defaults store to the newly-created store.

There are also several ways to ensure that the defaults are imported only once. If you are creating a
document-based application using , you can follow the guideline described in NSPersistentDocument Core
Data Tutorial (that is, you initialize the defaults in initWithType:error:).

If you are using a non-document-based application and started with the standard application template then
after these lines of code:

if (![fileManager fileExistsAtPath:applicationSupportFolder isDirectory:NULL]
)
{
 [fileManager createDirectoryAtPath:applicationSupportFolder attributes:nil];
}
url = [NSURL fileURLWithPath: [applicationSupportFolder
stringByAppendingPathComponent: @"Delete.xml"]];

you can add a check to determine whether the file at the url exists. If it doesn't, you need to import the data.

If there is some reason that there might be a possibility that the store (hence file) gets created but the data
is not imported, then you might consider adding a metadata flag to the store. You can check the metadata
(using metadataForPersistentStoreWithURL:error:) more efficiently than executing a fetch (and it
does not require you to hard code any default data values).

How efficient is Core Data?

Throughout the development of Core Data, the engineering team compared the runtime performance of a
generic Core Data application with that of a similar application developed without using Core Data. In general,
the Core Data implementation performed better. There may nevertheless be opportunities for further
optimization, and the team continues to pursue performance aggressively. For a discussion of how you can
ensure you use Core Data as efficiently as possible, see “Core Data Performance” (page 129).

Core Data looks similar to EOF. What are the differences?

Core Data and EOF (the Enterprise Objects Framework that ships with WebObjects) share a common heritage,
but have different goals. EOF is a Java-based framework that connects as a client to a database server. Core
Data is an Objective-C-based framework designed to support desktop application development. Core Data
supports a number of features not supported by EOF, and vice-versa.

160 How efficient is Core Data?
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data FAQ

Features Supported Only by EOF

EOF allows you to use custom SQL, shared editing contexts, and nested editing contexts. Core Data does not
provide the equivalent of an EOModelGroup—the NSManagedObjectModel class provides methods for
merging models from existing models, and for retrieving merged models from bundles.

EOF supports pre-fetching and batch faulting of relationships, in Mac OS X v10.4 Core Data does not. In
Mac OS X v10.5, when you create a fetch request, you can use
setRelationshipKeyPathsForPrefetching: to specify key paths for relationships that should be fetched
with the target entity.

Features Supported Only by Core Data

Core Data supports fetched properties; multiple configurations within a managed object model; local stores;
store aggregation (the data for a given entity may be spread across multiple stores); customization and
localization of property names and validation warnings; and the use of predicates for property validation.

Class Mapping

There are parallels between many of the classes in Core Data and EOF.

 ■ NSManagedObject corresponds to EOGenericRecord.

 ■ NSManagedObjectContext corresponds to EOEditingContext.

 ■ NSManagedObjectModel corresponds to EOModel.

 ■ NSPersistentStoreCoordinator corresponds to EOObjectStoreCoordinator.

 ■ NSEntityDescription, NSPropertyDescription, NSRelationshipDescription, and
NSAttributeDescription correspond to EOEntity, EOProperty, EORelationship, and
EOAttribute respectively.

Change Management

There is an important behavioral difference between EOF and Core Data with respect to change propagation.
In Core Data, peer managed object contexts are not "kept in sync" in the same way as editing contexts in
EOF. Given two managed object contexts connected to the same persistent store coordinator, and with the
"same" managed object in both contexts, if you modify one of the managed objects then save, the other is
not re-faulted (changes are not propagated from one context to another). If you modify then save the other
managed object, then (at least if you use the default merge policy) you will get an optimistic locking failure.

Multi-Threading

The policy for locking a Core Data managed object context in a multithreaded environment is not the same
policy as for an editing context in EOF.

Core Data looks similar to EOF. What are the differences? 161
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data FAQ

162 Core Data looks similar to EOF. What are the differences?
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Core Data FAQ

This table describes the changes to Core Data Programming Guide.

NotesDate

Corrected example implementation of scalar value accessor methods; revised
Faulting and Uniquing article.

2009-11-17

Incorporated editorial changes.2009-10-19

Corrected typographical errors.2009-08-25

Minor editorial changes.2009-08-20

Added discussion of using NSExpressionDescription to retrieve specific values.2009-06-04

First release of this document for iOS.2009-02-26

Enhanced discussion of managing undo operations.2008-11-19

Enhanced the discussions of legacy data importing and memory management.2008-02-08

Added a discussion of many-to-many relationships in “Relationships and Fetched
Properties” (page 77).

Corrected typographical errors.2007-12-11

Updated for Mac OS X v10.5. Made several minor enhancements.2007-10-31

Made major changes to content and added information on persistent store
features.

2007-08-30

Enhanced memory management article; noted that NSManagedObject subclasses
do not use all accessor methods with mutableSetValueForKey:.

2007-08-23

Enhanced discussion of threading options; added note about constraints of use
of relationship accessor methods.

2007-07-16

Noted the file systems supported by the SQLite store.2007-03-15

Clarified the behavior of entity inheritance in fetching; split "Managed Object
Models" into two articles.

2007-02-08

Updated FAQ, "Memory Management Using Core Data", and "Core Data and
Cocoa Bindings".

2007-01-08

Added a discussion of faulting and KVO notifications to "Faulting and Uniquing."2006-12-05

163
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Document Revision History

NotesDate

Enhanced discussion of accessing and modifying properties and of creating and
initializing managed objects.

2006-11-09

Enhanced the discussion of copying managed objects.2006-10-03

Enhanced troubleshooting and multi-threading articles; incorporated validation
article.

2006-09-05

Made minor revisions to "Persistent Stores."2006-07-24

Corrected minor typographical errors.2006-06-28

Added links to sample code and detail to the section on copy and paste.2006-05-23

Added "Before You Start" article.

Added section on fetch request templates to Managed Object Models. Enhanced
description of managed object lifecycle.

2006-04-04

Enhanced "Change Management" and "Faulting and Uniquing" articles; clarified
meaning of SQLite debugging flag.

2006-03-08

Added notes about SQL logging to "Fetching Managed Objects" and about
test-driven development to "Versioning."

2006-02-07

Added a new, preliminary article on threading. Added a new article, "Managed
Objects," taken mainly from the NSManagedObject API reference.

2006-01-10

Augmented the articles "Faulting and Uniquing" and "Persistent Stores."2005-12-06

Added article on importing legacy files.2005-11-09

Corrected various minor typographical errors.2005-10-04

Added new articles to describe managed object models and versioning.2005-09-08

Added articles on memory management and fetching managed objects.
Streamlined the introduction to "Managed Object Accessor Methods."

2005-08-11

Corrected various minor typographic errors, made several clarifications. Added
article on Troubleshooting.

2005-07-07

Added article on managed object accessor methods. Corrected method listings
in "Non-Standard Attributes" article; other minor enhancements.

2005-06-04

Update to include discussion of relationship manipulation, and enhancement
to discussion of memory management.

2005-04-29

Updated for public release of Mac OS X v10.4. Changed title from "Core Data."
First public version.

164
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Document Revision History

attribute A simple property of an entity that is
typically not another entity (for example, an Employee
object’s first name).

core data stack The ordered collection of objects
from a managed object context, through a persistent
object store coordinator, to a persistent store or
collection of persistent stores. A stack is effectively
defined by a persistent store coordinator (see
persistent store coordinator)—there is one and only
one per stack. Creating a new persistent store
coordinator implies creating a new stack.

entity An abstract description of a data-bearing
object equivalent to “model” in the
Model-View-Controller design pattern. The
components of an entity are called attributes, and the
references to other models are called relationships.
Together, attributes and relationships are known as
properties. Entities are to managed objects what Class
is to instances of a class, or—using a database
analogy—entities are to managed objects what tables
are to rows.

fault A placeholder object that represents an object
that has not yet been loaded from an external data
store. A fault may represent a single object in the case
of a to-one relationship, or a collection in the case of
a to-many relationship.

faulting Transparent loading of objects on demand
from an external data store.

fetch To retrieve data from a persistent store—akin
to a database SELECT operation. The result of a fetch
is the creation of a collection of managed objects that
are registered with the managed object context used
to issue the request.

fetch request An instance of NSFetchRequest that
specifies an entity and optionally a set of constraints,
represented by an NSPredicate object , and an array

of sort descriptors (instances of NSSortDescriptor).
These are akin to the table name, WHERE clause, and
ORDER BY clauses of a database SELECT statement
respectively. A fetch request is executed by being
sent to a managed object context.

fetched property A property of an entity that is
defined by a fetch request. Fetched properties allow
a weak, unidirectional relationship. An example is a
dynamic iTunes playlist, if expressed as a property of
a containing object. Songs don’t “belong” to a
particular playlist, especially when they’re on a remote
server. The playlist may remain even after the songs
have been deleted or the remote server has become
inaccessible. (Consider also a Spotlight live query.)

inserting The process of adding a managed object
to a managed object context so that the object
becomes part of the object graph and will be
committed to a persistent store.Typically “insertion”
refers only to the initial creation of a managed object.
Thereafter, managed objects retrieved from a
persistent store (see persistent store) are considered
as being fetched (see fetch). There is a special method
(awakeFromInsert) that is invoked only once during
the lifetime of a managed object when it is first
inserted into a managed object context (see managed
object context). A managed object must be inserted
into a managed object context before it is considered
part of the object graph. A managed object context
is responsible for observing changes to managed
objects (for the purposes of undo support and
maintaining the integrity of the object graph), and
can only do so if new objects are inserted.

key-value coding A mechanism for accessing an
object’s properties indirectly.

managed object An object that is an instance of
NSManagedObject or a subclass of
NSManagedObject. After creation it should be
registered with a managed object context.

165
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

Glossary

managed object context An object that is an
instance of NSManagedObjectContext. An
NSManagedObjectContext object represents a
single “object space” or scratch pad in an application.
Its primary responsibility is to manage a collection of
managed objects. These objects form a group of
related model objects that represent an internally
consistent view of one or more persistent stores. The
context is a powerful object with a central role in the
life-cycle of managed objects, with responsibilities
from life-cycle management (including faulting) to
validation, inverse relationship handling, and
undo/redo.

managed object model An object that is an instance
of NSManagedObjectModel. An
NSManagedObjectModel object describes a schema,
a collection of entities (data models) that you use in
your application.

object graph A collection of interrelated objects. In
Core Data, an object graph is associated with a
managed object context. Moreover, when using Core
Data, the object graph may be incomplete, with the
edges represented by faults (see fault).

optimistic locking You can consider optimistic
locking to be akin to specifying a WHERE clause in a
database UPDATE statement... WHERE clause
determined by constituents of snapshot(s)
corresponding to object(s) being updated.

persistent store A repository in which objects may
be stored. A repository is typically a file, which may
be XML, binary, or a SQL database. The store format
is transparent to the application. Core Data also
provides an in-memory store that lasts no longer than
the lifetime of a process.

persistent store coordinator An object that is an
instance of NSPersistentStoreCoordinator. A
coordinator associates persistent stores and a
configuration of a managed object model and
presents a facade to managed object contexts such
that a group of persistent stores appears as a single
aggregate store.

primitive accessor An accessor method that gets or
sets a variable directly, without invoking access or
change notification methods (such as
willAccessValueForKey: and
didChangeValueForKey:). Primitive accessors are
typically used to initialize an object’s variables when

it is fetched from a persistent store. In this way, any
side effects from any custom accessor methods are
avoided.

property A component of an entity that is either an
attribute or a relationship. Properties are to entities
what instance variables are to classes.

refault Turn an object into a fault. The next time it
is accessed, its variables may be re-fetched from the
relevant persistent store, depending on the caching
mechanism.

relationship In one entity, a reference to one
instance of another entity (a to-one relationship) or
to a collection of instances of another entity (a
to-many relationship). For example, an Employee
object’s manager is an example of a to-one
relationship.

snapshot A record of the state of an entry fetched
from a persistent store at the time is it fetched. The
information in a snapshot is used to support the
framework’s optimistic locking mechanism. In some
persistent stores it is also used when changes are
committed back to a data source to update only the
attributes that were changed since the last fetch.

transient property A property of an entity that is
not saved to a persistent data store, but which is
recorded for undo and redo operations in memory.

uniquing Ensuring that an object graph does not
have multiple objects representing the same entry in
a persistent store. Core Data accomplishes uniquing
by using the information it maintains in the mapping
of each managed object to its corresponding entry
in a persistent store.

validation The process of ensuring that a property
value is valid—for example, that it is of the correct
type, and its value lies within a prescribed range. The
Core Data framework provides an infrastructure to
allow values to be tested for validity before they can
be applied to an object. There are three aspects to
validation: model-based validation, attribute
validation using custom validation methods,
inter-attribute validation (consistency checking) for
update, insert, and delete.

166
2009-11-17 | © 2004, 2009 Apple Inc. All Rights Reserved.

	Core Data Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Technology Overview
	Core Data Features
	Why Should You Use Core Data?
	What Core Data Is Not

	Core Data Basics
	Basic Core Data Architecture
	Managed Objects and Contexts
	Fetch Requests
	Persistent Store Coordinator
	Persistent Stores
	Persistent Documents

	Managed Objects and the Managed Object Model

	Managed Object Models
	Features of a Managed Object Model
	Entities
	Entity Inheritance
	Abstract Entities

	Properties
	Attributes
	Relationships

	Fetch Request Templates
	User Info Dictionaries
	Configurations

	Using a Managed Object Model
	Creating and Loading a Managed Object Model
	Compiling a Data Model
	Loading a Data Model

	Changing a Model
	Accessing and Using a Managed Object Model at Runtime
	Creating Fetch Request Templates Programmatically
	Accessing Fetch Request Templates

	Localizing a Managed Object Model
	Strings File
	Setting a Localization Dictionary Programmatically

	Managed Objects
	Basics
	Properties and Data Storage
	Non-Standard Attributes
	Dates and Times

	Custom Managed Object Classes
	Overriding Methods
	Modeled Properties

	Object Life-Cycle—Initialization and Deallocation
	Validation
	Faulting

	Managed Object Accessor Methods
	Overview
	Custom implementation
	Key-value coding access pattern

	Dynamically-Generated Accessor Methods
	Declaration
	Implementation
	Inheritance

	Custom Attribute and To-One Relationship Accessor Methods
	Custom To-Many Relationship Accessor Methods
	Custom Primitive Accessor Methods

	Creating and Deleting Managed Objects
	Creating, Initializing, and Saving a Managed Object
	Behind the Scenes of Creating a Managed Object
	The Managed Object Context
	The Entity Description
	Creating a Managed Object
	Creating a Managed Object in Mac OS X v10.4

	Assigning an Object to a Store
	Deleting a Managed Object
	Relationships
	Deleted status and notifications

	Fetching Managed Objects
	Fetching Managed Objects
	Retrieving Specific Objects
	Fetching Specific Values
	Fetching and Entity Inheritance

	Using Managed Objects
	Accessing and Modifying Properties
	Attributes and to-one relationships
	To-many relationships

	Saving Changes
	Managed Object IDs and URIs
	Copying and Copy and Paste
	Copying Attributes
	Copying Relationships

	Drag and Drop
	Validation
	Undo Management
	Faults
	Ensuring Data Is Up-to-Date
	Refreshing an object
	Merging changes with transient properties

	Memory Management Using Core Data
	Instance and Data Life-Cycles
	The Role of the Managed Object Context
	Breaking Relationship Retain Cycles
	Change and Undo Management

	Relationships and Fetched Properties
	Relationship Definitions in the Model
	Relationship Fundamentals
	Inverse Relationships
	Relationship Delete Rules

	Manipulating Relationships and Object Graph Integrity
	Many-to-Many Relationships
	Unidirectional Relationships
	Cross-Store Relationships
	Fetched Properties

	Non-Standard Persistent Attributes
	Introduction
	Transformable Attributes
	Custom Code
	Basic Approach
	Scalar Value Constraints
	The Persistent Attribute
	An Object Attribute
	The On-demand Get Accessor
	The Pre-calculated Get
	The Immediate-Update Set Accessor
	The Delayed-Update Set Accessor

	Scalar Values
	A Non-Object Attribute
	The Get Accessor
	The Set Accessor

	Type-Checking

	Managed Object Validation
	Core Data Validation
	Property-Level Validation
	Inter-Property validation
	Combining Validation Errors

	Faulting and Uniquing
	Faulting Limits the Size of the Object Graph
	Firing Faults
	Turning Objects into Faults
	Faults and KVO Notifications

	Uniquing Ensures a Single Managed Object per Record per Context

	Using Persistent Stores
	Creating and Accessing a Store
	Changing a Store’s Type and Location
	Store Metadata

	Core Data and Cocoa Bindings
	Additions to Controllers
	Automatically Prepares Content Flag
	Entity Inheritance
	Filter Predicate for a To-many Relationship

	Change Management
	Disjoint Edits
	Conflict Detection and Optimistic Locking
	Conflict Resolution
	Snapshot Management

	Communicating Changes Between Contexts

	Persistent Store Features
	Store Types and Behaviors
	Store-specific behavior
	Custom store types
	Security

	Fetch Predicates and Sort Descriptors
	SQLite Store
	File-systems supported by the SQLite store
	Configuring a SQLite Store’s Save Behavior

	Multi-Threading with Core Data
	Thread Safety Fundamentals
	General Guidelines
	Locking
	Fetching in a Background Thread
	Saving

	Core Data Performance
	Introduction
	Fetching Managed Objects
	Fetch Predicates
	Fetch Limits

	Faulting Behavior
	Batch Faulting and Pre-fetching with the SQLite Store
	Batch faulting
	Pre-fetching

	Reducing Memory Overhead
	Large Data Objects (BLOBs)
	Analyzing Performance
	Analyzing Fetch Behavior with SQLite
	Instruments

	Troubleshooting Core Data
	Object Life-Cycle Problems
	Merge errors
	Assigning a managed object to a different store
	Fault cannot be fulfilled
	Managed object invalidated
	Class is not key-value coding compliant
	Entity class does not respond to invocations of custom methods
	Custom accessor methods are not invoked, key dependencies are not obeyed

	Problems with Fetching
	SQLite store does not work with sorting

	Problems with Saving
	SQLite store takes a "long time" to save
	Cannot save documents because entity is null
	Exception generated in retainedDataForObjectID:withContext.

	Debugging Fetching
	Managed Object Models
	My application generates the message "+entityForName: could not locate an NSManagedObjectModel"

	Bindings Integration
	Custom relationship set mutator methods are not invoked by an array controller
	Cannot access contents of an object controller after a nib is loaded
	Cannot create new objects with array controller
	A table view bound to an array controller doesn't display the contents of a relationship
	A new object is not added to the relationship of the object currently selected in a table view
	Table view or outline view contents not kept up-to-date when bound to an NSArrayController or NSTreeController object

	Efficiently Importing Data
	Cocoa Fundamentals
	Reducing Peak Memory Footprint
	Importing in batches
	Dealing with retain cycles
	Document-based example

	Implementing Find-or-Create Efficiently

	Core Data FAQ
	Where does a Managed Object Context Come From?
	I have a to-many relationship from Entity A to Entity B. How do I fetch the instances of Entity B related to a given instance of Entity A?
	How do I fetch objects in the same order I created them?
	How do I copy a managed object from one context to another?
	I have a key whose value is dependent on values of attributes in a related entity—how do I ensure it is kept up to date as the attribute values are changes and as the relationship is manipulated?
	Mac OS X v10.5 and later for a to-one relationship
	Mac OS X v10.4 and to-many relationships in Mac OS X v10.5

	How do I use my existing SQLite database with Core Data?
	How do I get undo/redo for free in my non-document-architecture-based app?
	How do I create a user interface from an entity?
	In Xcode’s predicate builder, why don’t I see any properties for a fetched property predicate?
	When I remove objects from a detail table view managed by an array controller, why are they not removed from the object graph?
	How do I get the GUI to validate the data entered by the user?
	How do I initialize a store with default data?
	How efficient is Core Data?
	Core Data looks similar to EOF. What are the differences?
	Features Supported Only by EOF
	Features Supported Only by Core Data
	Class Mapping
	Change Management
	Multi-Threading

	Revision History
	Glossary

