
Blocks Programming Topics
Tools & Languages: Objective-C

2010-07-08

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPhone, Mac,
Objective-C, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 5

Organization of This Document 5

Getting Started with Blocks 7

Declaring and Using a Block 7
Using a Block Directly 8
Blocks with Cocoa 8
__block Variables 9

Chapter 1 Conceptual Overview 11

Block Functionality 11
Usage 11

Chapter 2 Declaring and Creating Blocks 13

Declaring a Block Reference 13
Creating a Block 13
Global Blocks 14

Blocks and Variables 15

Types of Variable 15
The __block Storage Type 16
Object and Block Variables 17

Objective-C Objects 17
C++ Objects 18
Blocks 18

Chapter 3 Using Blocks 19

Invoking a Block 19
Using a Block as a Function Argument 19
Using a Block as a Method Argument 20
Copying Blocks 21
Patterns to Avoid 21
Debugging 22

Document Revision History 23

3
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

4
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Block objects are a C-level syntactic and runtime feature. They are similar to standard C functions, but in
addition to executable code they may also contain variable bindings to automatic (stack) or managed (heap)
memory. A block can therefore maintain a set of state (data) that it can use to impact behavior when executed.

You can use blocks to compose function expressions that that can be passed to API, optionally stored, and
used by multiple threads. Blocks are particular useful as a callback because the block carries both the code
to be executed on callback and the data needed during that execution.

Blocks are available in GCC and Clang as shipped with the Mac OS X v10.6 Xcode developer tools. You can
use blocks with Mac OS X v10.6 and later, and iOS 4.0 and later. The blocks runtime is open source and can
be found in LLVM’s compiler-rt subproject repository. Blocks have also been presented to the C standards
working group as N1370: Apple’s Extensions to C (which also includes Garbage Collection). As Objective-C
and C++ are both derived from C, blocks are designed to work with all three languages (as well as
Objective-C++). (The syntax reflects this goal).

You should read this document to learn what block objects are and how you can use them from C, C++, or
Objective-C to make your program more efficient and more maintainable.

Organization of This Document

This document contains the following chapters:

 ■ “Getting Started with Blocks” (page 7) provides a quick, practical, introduction to blocks.

 ■ “Conceptual Overview” (page 11) provides a conceptual introduction to blocks.

 ■ “Declaring and Creating Blocks” (page 13) shows you how to declare block variables and how to
implement blocks.

 ■ “Blocks and Variables” (page 15) describes the interaction between blocks and variables, and defines
the the __block storage type modifier.

 ■ “Using Blocks” (page 19) illustrates various usage patterns.

Organization of This Document 5
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://clang.llvm.org/
http://llvm.org/svn/llvm-project/compiler-rt/trunk/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1370.pdf

6 Organization of This Document
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

The following sections help you to get started with blocks using practical examples.

Declaring and Using a Block

You use the ^ operator to declare a block variable and to indicate the beginning of a block literal (as usual
with C, ; indicates the end of the expression), as shown in this example:

int multiplier = 7;
int (^myBlock)(int) = ^(int num) {
 return num * multiplier;
};

The example is explained in the following illustration:

We’re declaring a variable “myBlock.”
The “^” declares this to be a block.

This is a literal block definition,
assigned to variable myBlock.

int multiplier = 7;

int (^myBlock)(int) = ^(int num) { return num * multiplier; };

myBlock is a block
that returns an int.

It takes a single
argument, also an int.

The argument is
named num.

This is the body
of the block.

Notice that the block is able to make use of variables from the same scope in which it was defined.

If you declare a block as a variable, you can then use it just as you would a function:

int multiplier = 7;
int (^myBlock)(int) = ^(int num) {
 return num * multiplier;
};

printf("%d", myBlock(3));
// prints "21"

Declaring and Using a Block 7
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

Getting Started with Blocks

Using a Block Directly

In many cases, you don’t need to declare block variables; instead you simply write a block literal inline where
it’s required as an argument. The following example uses the qsort_b function. qsort_b is similar to the
standard qsort_r function, but takes a block as its final argument.

char *myCharacters[3] = { "TomJohn", "George", "Charles Condomine" };

qsort_b(myCharacters, 3, sizeof(char *), ^(const void *l, const void *r) {
 char *left = *(char **)l;
 char *right = *(char **)r;
 return strncmp(left, right, 1);
});

// myCharacters is now { "Charles Condomine", "George", TomJohn" }

Blocks with Cocoa

Several methods in the Cocoa frameworks take a block as an argument, typically either to perform an
operation on a collection of objects, or to use as a callback after an operation has finished. The following
example shows how to use a block with the NSArray method sortedArrayUsingComparator:. The
method takes a single argument—the block. For illustration, in this case the block is defined as an
NSComparator local variable:

NSArray *stringsArray = [NSArray arrayWithObjects:
 @"string 1",
 @"String 21",
 @"string 12",
 @"String 11",
 @"String 02", nil];

static NSStringCompareOptions comparisonOptions = NSCaseInsensitiveSearch |
NSNumericSearch |
 NSWidthInsensitiveSearch | NSForcedOrderingSearch;
NSLocale *currentLocale = [NSLocale currentLocale];

NSComparator finderSortBlock = ^(id string1, id string2) {

 NSRange string1Range = NSMakeRange(0, [string1 length]);
 return [string1 compare:string2 options:comparisonOptions range:string1Range
 locale:currentLocale];
};

NSArray *finderSortArray = [stringsArray
sortedArrayUsingComparator:finderSortBlock];
NSLog(@"finderSortArray: %@", finderSortArray);

/*
Output:
finderSortArray: (
 "string 1",
 "String 02",

8 Using a Block Directly
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

Getting Started with Blocks

 "String 11",
 "string 12",
 "String 21"
)
*/

__block Variables

A powerful feature of blocks is that they can modify variables in the same lexical scope. You signal that a
block can modify a variable using the __block storage type modifier. Adapting the example shown in “Blocks
with Cocoa” (page 8), you could use a block variable to count how many strings are compared as equal as
shown in the following example. For illustration, in this case the block is used directly and uses currentLocale
as a read-only variable within the block:

NSArray *stringsArray = [NSArray arrayWithObjects:
 @"string 1",
 @"String 21", // <-
 @"string 12",
 @"String 11",
 @"Strîng 21", // <-
 @"Striñg 21", // <-
 @"String 02", nil];

NSLocale *currentLocale = [NSLocale currentLocale];
__block NSUInteger orderedSameCount = 0;

NSArray *diacriticInsensitiveSortArray = [stringsArray
sortedArrayUsingComparator:^(id string1, id string2) {

 NSRange string1Range = NSMakeRange(0, [string1 length]);
 NSComparisonResult comparisonResult = [string1 compare:string2
options:NSDiacriticInsensitiveSearch range:string1Range locale:currentLocale];

 if (comparisonResult == NSOrderedSame) {
 orderedSameCount++;
 }
 return comparisonResult;
}];

NSLog(@"diacriticInsensitiveSortArray: %@", diacriticInsensitiveSortArray);
NSLog(@"orderedSameCount: %d", orderedSameCount);

/*
Output:

diacriticInsensitiveSortArray: (
 "String 02",
 "string 1",
 "String 11",
 "string 12",
 "String 21",
 "Str\U00eeng 21",
 "Stri\U00f1g 21"
)
orderedSameCount: 2

__block Variables 9
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

Getting Started with Blocks

*/

10 __block Variables
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

Getting Started with Blocks

Block objects provide a way for you to create an ad hoc function body as an expression in C, and C-derived
languages such as Objective-C and C++. In other languages and environments, a block object is sometimes
also called a “closure”. Here, they are typically referred to colloquially as “blocks”, unless there is scope for
confusion with the standard C term for a block of code.

Block Functionality

A block is an anonymous inline collection of code that:

 ■ Has a typed argument list just like a function

 ■ Has an inferred or declared return type

 ■ Can capture state from the lexical scope within which it is defined

 ■ Can optionally modify the state of the lexical scope

 ■ Can share the potential for modification with other blocks defined within the same lexical scope

 ■ Can continue to share and modify state defined within the lexical scope (the stack frame) after the lexical
scope (the stack frame) has been destroyed

You can copy a block and even pass it to other threads for deferred execution (or, within its own thread, to
a runloop). The compiler and runtime arrange that all variables referenced from the block are preserved for
the life of all copies of the block. Although blocks are available to pure C and C++, a block is also always an
Objective-C object.

Usage

Blocks represent typically small, self-contained pieces of code. As such, they’re particularly useful as a means
of encapsulating units of work that may be executed concurrently, or over items in a collection, or as a callback
when another operation has finished.

Blocks are a useful alternative to traditional callback functions for two main reasons:

1. They allow you to write code at the point of invocation that is executed later in the context of the method
implementation.

Blocks are thus often parameters of framework methods.

2. They allow access to local variables.

Block Functionality 11
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Conceptual Overview

Rather than using callbacks requiring a data structure that embodies all the contextual information you
need to perform an operation, you simply access local variables directly.

12 Usage
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Conceptual Overview

Declaring a Block Reference

Block variables hold references to blocks. You declare them using syntax similar to that you use to declare a
pointer to a function, except that you use ^ instead of *. The block type fully interoperates with the rest of
the C type system. The following are all valid block variable declarations:

void (^blockReturningVoidWithVoidArgument)(void);
int (^blockReturningIntWithIntAndCharArguments)(int, char);
void (^arrayOfTenBlocksReturningVoidWithIntArgument[10])(int);

Blocks also support variadic (...) arguments. A block that takes no arguments must specify void in the
argument list.

Blocks are designed to be fully type safe by giving the compiler a full set of metadata to use to validate use
of blocks, parameters passed to blocks, and assignment of the return value. You can cast a block reference
to a pointer of arbitrary type and vice versa. You cannot, however, dereference a block reference via the
pointer dereference operator (*)—a block's size cannot be computed at compile time.

You can also create types for blocks—doing so is generally considered to be best practice when you use a
block with a given signature in multiple places:

typedef float (^MyBlockType)(float, float);

MyBlockType myFirstBlock = // ... ;
MyBlockType mySecondBlock = // ... ;

Creating a Block

You use the ^ operator to indicate the beginning of a block literal expression and ; to indicate the end of a
block expression. The following example declares a simple block and assigns it to a previously declared
variable (oneFrom):

int (^oneFrom)(int);

oneFrom = ^(int anInt) {
 return anInt - 1;
};

If you don’t explicitly declare the return value of a block expression, it can be automatically inferred from the
contents of the block. If the return type is inferred and the parameter list is void, then you can omit the
(void) parameter list as well. If or when multiple return statements are present, they must exactly match
(using casting if necessary).

Declaring a Block Reference 13
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Declaring and Creating Blocks

Global Blocks

At a file level, you can use a block as a global literal:

#import <stdio.h>

int GlobalInt = 0;
int (^getGlobalInt)(void) = ^{ return GlobalInt; };

14 Global Blocks
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Declaring and Creating Blocks

This article describes the interaction between blocks and variables, including memory management.

Types of Variable

Within the block object’s body of code, variables may be treated in five different ways.

You can reference three standard types of variable, just as you would from a function:

 ■ Global variables, including static locals

 ■ Global functions (which aren’t technically variables)

 ■ Local variables and parameters from an enclosing scope

Blocks also support two other types of variable:

1. At function level are __block variables. These are mutable within the block (and the enclosing scope)
and are preserved if any referencing block is copied to the heap.

2. const imports.

Finally, within a method implementation, blocks may reference Objective-C instance variables—see “Object
and Block Variables” (page 17).

The following rules apply to variables used within a block:

1. Global variables are accessible, including static variables that exist within the enclosing lexical scope.

2. Parameters passed to the block are accessible (just like parameters to a function).

3. Stack (non-static) variables local to the enclosing lexical scope are captured as const variables.

Their values are taken at the point of the block expression within the program. In nested blocks, the
value is captured from the nearest enclosing scope.

4. Variables local to the enclosing lexical scope declared with the __block storage modifier are provided
by reference and so are mutable.

Any changes are reflected in the enclosing lexical scope, including any other blocks defined within the
same enclosing lexical scope. These are discussed in more detail in “The __block Storage Type” (page
16).

5. Local variables declared within the lexical scope of the block, which behave exactly like local variables
in a function.

Types of Variable 15
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

Blocks and Variables

Each invocation of the block provides a new copy of that variable. These variables can in turn be used
as const or by-reference variables in blocks enclosed within the block.

The following example illustrates the use of local non-static variables:

int x = 123;

void (^printXAndY)(int) = ^(int y) {

 printf("%d %d\n", x, y);
};

printXAndY(456); // prints: 123 456

As noted, trying to assign a new value to x within the block would result in an error:

int x = 123;

void (^printXAndY)(int) = ^(int y) {

 x = x + y; // error
 printf("%d %d\n", x, y);
};

To allow a variable to be changed within a block, you use the __block storage type modifier—see “The
__block Storage Type” (page 16).

The __block Storage Type

You can specify that an imported variable be mutable—that is, read-write— by applying the __block storage
type modifier. __block storage is similar to, but mutually exclusive of, the register, auto, and
static storage types for local variables.

__block variables live in storage that is shared between the lexical scope of the variable and all blocks and
block copies declared or created within the variable’s lexical scope. Thus, the storage will survive the
destruction of the stack frame if any copies of the blocks declared within the frame survive beyond the end
of the frame (for example, by being enqueued somewhere for later execution). Multiple blocks in a given
lexical scope can simultaneously use a shared variable.

As an optimization, block storage starts out on the stack—just like blocks themselves do. If the block is copied
using Block_copy (or in Objective-C when the block is sent a copy), variables are copied to the heap. Thus,
the address of a __block variable can change over time.

There are two further restrictions on __block variables: they cannot be variable length arrays, and cannot
be structures that contain C99 variable-length arrays.

The following example illustrates use of a __block variable:

__block int x = 123; // x lives in block storage

void (^printXAndY)(int) = ^(int y) {

 x = x + y;

16 The __block Storage Type
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

Blocks and Variables

 printf("%d %d\n", x, y);
};
printXAndY(456); // prints: 579 456
// x is now 579

The following example shows the interaction of blocks with several types of variable:

extern NSInteger CounterGlobal;
static NSInteger CounterStatic;

{
 NSInteger localCounter = 42;
 __block char localCharacter;

 void (^aBlock)(void) = ^(void) {
 ++CounterGlobal;
 ++CounterStatic;
 CounterGlobal = localCounter; // localCounter fixed at block creation
 localCharacter = 'a'; // sets localCharacter in enclosing scope
 };

 ++localCounter; // unseen by the block
 localCharacter = 'b';

 aBlock(); // execute the block
 // localCharacter now 'a'
}

Object and Block Variables

Blocks provide support for Objective-C and C++ objects, and other blocks, as variables.

Objective-C Objects

In a reference-counted environment, by default when you reference an Objective-C object within a block, it
is retained. This is true even if you simply reference an instance variable of the object. Object variables marked
with the __block storage type modifier, however, are not retained.

Note: In a garbage-collected environment, if you apply both __weak and __block modifiers to a variable,
then the block will not ensure that it is kept alive.

If you use a block within the implementation of a method, the rules for memory management of object
instance variables are more subtle:

 ■ If you access an instance variable by reference, self is retained;

 ■ If you access an instance variable by value, the variable is retained.

The following examples illustrate the two different situations:

dispatch_async(queue, ^{

Object and Block Variables 17
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

Blocks and Variables

 // instanceVariable is used by reference, self is retained
 doSomethingWithObject(instanceVariable);
});

id localVariable = instanceVariable;
dispatch_async(queue, ^{
 // localVariable is used by value, localVariable is retained (not self)
 doSomethingWithObject(localVariable);
});

C++ Objects

In general you can use C++ objects within a block. Within a member function, references to member variables
and functions are via an implicitly imported this pointer and thus appear mutable. There are two
considerations that apply if a block is copied:

 ■ If you have a __block storage class for what would have been a stack-based C++ object, then the usual
copy constructor is used.

 ■ If you use any other C++ stack-based object from within a block, it must have a const copy constructor.
The C++ object is then copied using that constructor.

Blocks

When you copy a block, any references to other blocks from within that block are copied if necessary—an
entire tree may be copied (from the top). If you have block variables and you reference a block from with
the block, that block will be copied.

When you copy a stack-based block, you get a new block. If you copy a heap-based block, however, you
simply increment the retain count of that block and get it back as the returned value of the copy function
or method.

18 Object and Block Variables
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

Blocks and Variables

Invoking a Block

If you declare a block as a variable, you can use it as you would a function, as shown in these two examples:

int (^oneFrom)(int) = ^(int anInt) {
 return anInt - 1;
};

printf("1 from 10 is %d", oneFrom(10));
// Prints "1 from 10 is 9"

float (^distanceTraveled) (float, float, float) =
 ^(float startingSpeed, float acceleration, float time)
 {

 float distance = (startingSpeed * time) + (0.5 * acceleration * time * time);
 return distance;
};

float howFar = distanceTraveled(0.0, 9.8, 1.0);
// howFar = 4.9

Frequently, however, you pass a block as the argument to a function or a method. In these cases, you usually
create a block “inline”.

Using a Block as a Function Argument

You can pass a block as function argument just as you would any other argument. In many cases, however,
you don’t need to declare blocks; instead you simply implement them inline where they’re required as an
argument. The following example uses the qsort_b function. qsort_b is similar to the standard qsort_r
function, but takes a block as its final argument.

char *myCharacters[3] = { "TomJohn", "George", "Charles Condomine" };

qsort_b(myCharacters, 3, sizeof(char *), ^(const void *l, const void *r) {
 char *left = *(char **)l;
 char *right = *(char **)r;
 return strncmp(left, right, 1);
});
// Block implementation ends at "}"

// myCharacters is now { "Charles Condomine", "George", TomJohn" }

Notice that the block is contained within the function’s argument list.

Invoking a Block 19
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Using Blocks

The next example shows how to use a block with the dispatch_apply function. dispatch_apply is
declared as follows:

void dispatch_apply(size_t iterations, dispatch_queue_t queue, void
(^block)(size_t));

The function submits a block to a dispatch queue for multiple invocations. It takes three arguments; the first
specifies the number of iterations to perform; the second specifies a queue to which the block is submitted;
and the third is the block itself, which in turn takes a single argument—the current index of the iteration.

You can use dispatch_apply trivially just to print out the iteration index, as shown:

#include <dispatch/dispatch.h>
size_t count = 10;
dispatch_queue_t queue =
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_apply(count, queue, ^(size_t i) {
 printf("%u\n", i);
});

Using a Block as a Method Argument

Cocoa provides a number of methods that use blocks. You pass a block as method argument just as you
would any other argument.

The following example determines the indexes of any of the first five elements in an array that appear in a
given filter set.

NSArray *array = [NSArray arrayWithObjects: @"A", @"B", @"C", @"A", @"B",
@"Z",@"G", @"are", @"Q", nil];
NSSet *filterSet = [NSSet setWithObjects: @"A", @"Z", @"Q", nil];

BOOL (^test)(id obj, NSUInteger idx, BOOL *stop);

test = ^ (id obj, NSUInteger idx, BOOL *stop) {

 if (idx < 5) {
 if ([filterSet containsObject: obj]) {
 return YES;
 }
 }
 return NO;
};

NSIndexSet *indexes = [array indexesOfObjectsPassingTest:test];

NSLog(@"indexes: %@", indexes);

/*
Output:
indexes: <NSIndexSet: 0x10236f0>[number of indexes: 2 (in 2 ranges), indexes:
(0 3)]
*/

20 Using a Block as a Method Argument
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Using Blocks

The following example determines whether an NSSet object contains a word specified by a local variable
and sets the value of another local variable (found) to YES (and stops the search) if it does. Notice that found
is also declared as a __block variable, and that the block is defined inline:

__block BOOL found = NO;
NSSet *aSet = [NSSet setWithObjects: @"Alpha", @"Beta", @"Gamma", @"X", nil];
NSString *string = @"gamma";

[aSet enumerateObjectsUsingBlock:^(id obj, BOOL *stop) {
 if ([obj localizedCaseInsensitiveCompare:string] == NSOrderedSame) {
 *stop = YES;
 found = YES;
 }
}];

// At this point, found == YES

Copying Blocks

Typically, you shouldn’t need to copy (or retain) a block. You only need to make a copy when you expect the
block to be used after destruction of the scope within which it was declared. Copying moves a block to the
heap.

You can copy and release blocks using C functions:

Block_copy();
Block_release();

If you are using Objective-C, you can send a block copy, retain, and release (and autorelease) messages.

To avoid a memory leak, you must always balance a Block_copy() with Block_release(). You must
balance copy or retain with release (or autorelease)—unless in a garbage-collected environment.

Patterns to Avoid

A block literal (that is, ^{ ... }) is the address of a stack-local data structure that represents the block. The
scope of the stack-local data structure is therefore the enclosing compound statement, so you should avoid
the patterns shown in the following examples:

void dontDoThis() {
 void (^blockArray[3])(void); // an array of 3 block references

 for (int i = 0; i < 3; ++i) {
 blockArray[i] = ^{ printf("hello, %d\n", i); };
 // WRONG: The block literal scope is the "for" loop
 }
}

void dontDoThisEither() {
 void (^block)(void);

Copying Blocks 21
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Using Blocks

 int i = random():
 if (i > 1000) {
 block = ^{ printf("got i at: %d\n", i); };
 // WRONG: The block literal scope is the "then" clause
 }
 // ...
}

Debugging

You can set breakpoints and single step into blocks. You can invoke a block from within a GDB session using
invoke-block, as illustrated in this example:

$ invoke-block myBlock 10 20

If you want to pass in a C string, you must quote it. For example, to pass this string into
the doSomethingWithString block, you would write the following:

$ invoke-block doSomethingWithString "\"this string\""

22 Debugging
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Using Blocks

This table describes the changes to Blocks Programming Topics.

NotesDate

Corrected typographical errors.2010-07-08

Updated for iOS 4.0.2010-03-14

Clarified aspects of memory management and type inferencing.2009-10-19

New document that describes the Blocks feature for the C programming
language.

2009-05-28

23
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

24
2010-07-08 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Blocks Programming Topics
	Contents
	Introduction
	Getting Started with Blocks
	Declaring and Using a Block
	Using a Block Directly
	Blocks with Cocoa
	__block Variables

	Conceptual Overview
	Block Functionality
	Usage

	Declaring and Creating Blocks
	Declaring a Block Reference
	Creating a Block
	Global Blocks

	Blocks and Variables
	Types of Variable
	The __block Storage Type
	Object and Block Variables
	Objective-C Objects
	C++ Objects
	Blocks

	Using Blocks
	Invoking a Block
	Using a Block as a Function Argument
	Using a Block as a Method Argument
	Copying Blocks
	Patterns to Avoid
	Debugging

	Revision History

