
Binary Data Programming Guide
Data Management: Data Types & Collections

2009-08-06

Apple Inc.
© 2003, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Binary Data Programming Guide for Cocoa 7

Organization of This Document 7

Data Objects 9

Working With Binary Data 11

Creating Data Objects From Raw Bytes 11
Creating Data Objects From Files or URLs 11
Accessing and Comparing Bytes 12
Copying Data Objects 12
Saving Data Objects 13

Working With Mutable Binary Data 15

Modifying Bytes 15
Appending Bytes 16
Replacing Bytes 16

Document Revision History 19

3
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

4
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Listings

Working With Mutable Binary Data 15

Listing 1 Modifying bytes 15
Listing 2 Appending bytes 16
Listing 3 Replacing bytes 16

5
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

6
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Binary data can be wrapped inside of Foundation and Core Foundation data objects which provides
object-oriented behaviors for manipulating the data. Because data objects are bridged objects, you can use
the Foundation and Core Foundation data objects interchangeably. Data objects can manage the allocation
and deallocation of byte buffers automatically. Among other things, data objects can be stored in collections,
written to property lists, saved to files, and transmitted over communication ports.

Organization of This Document

The following article explains how data objects work:

 ■ “Data Objects” (page 9) describes how data objects are used as wrappers for byte buffers.

The following articles cover common tasks:

 ■ “Working With Binary Data” (page 11) explains how to create and use binary data objects.

 ■ “Working With Mutable Binary Data” (page 15) explains how to modify the bytes in mutable binary data
objects.

Organization of This Document 7
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Introduction to Binary Data Programming
Guide for Cocoa

8 Organization of This Document
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Introduction to Binary Data Programming Guide for Cocoa

Data objects are object-oriented wrappers for byte buffers. In these data objects, simple allocated buffers
(that is, data with no embedded pointers) take on the behavior of other objects—that is, they encapsulate
data and provide operations to manipulate that data. Data objects are typically used to store data. They are
also useful in internet and intranet applications because the data contained in data objects can be copied
or moved between applications.

Important: Data objects are available to Cocoa and Carbon developers. The Cocoa Foundation classes,
NSData and NSMutableData, are “toll-free bridged” with their Core Foundation counterparts, CFData (see
CFData Reference) and CFMutableData (see CFMutableData Reference). This means that the Core Foundation
opaque type is interchangeable in function or method calls with the bridged Foundation object. In other
words, in an API having an NSData * parameter, you can pass in a CFDataRef, and in an API having a
CFDataRef parameter, you can pass in an NSData instance. You cannot, however, pass an NSData object
to an API that expects a mutable CFData reference; you must use an NSMutableData object instead. This
document refers to these objects as simply data objects or mutable data objects for objects that can be
changed after creation.

The size of the data that an instance of NSData or NSMutableData can wrap is subject to platform-dependent
limitations—see NSData. When the data size is more than a few memory pages, the object uses virtual
memory management. A data object can also wrap preexisting data, regardless of how the data was allocated.
The object contains no information about the data itself (such as its type); the responsibility for deciding
how to use the data lies with the client. In particular, it will not handle byte-order swapping when distributed
between big-endian and little-endian machines. (In Cocoa, use NSValue for typed data.)

Data objects provide an operating system–independent way to benefit from copy-on-write memory. The
copy-on-write technique means that when data is copied through a virtual memory copy, an actual copy of
the data is not made until there is an attempt to modify it.

Typically, you specify the bytes and the length of the bytes stored in a data object when creating that object.
You can also extract bytes of a given range from a data object, compare data stored in two data objects, and
write data to a URL. You use mutable data objects when you need to modify the data after creation. You can
truncate, extend the length of, append data to, and replace a range of bytes in a mutable data object.

9
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Data Objects

10
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Data Objects

This article contains code examples of common tasks that apply to both immutable and mutable data objects,
NSData and NSMutableData objects. Because of the nature of class clusters in Foundation, data objects are
not actual instances of the NSData or NSMutableData classes but instead are instances of one of their
private subclasses. Although a data object’s class is private, its interface is public, as declared by these abstract
superclasses, NSData and NSMutableData.

Creating Data Objects From Raw Bytes

Generally, you create a data object from raw bytes using one of the data... class messages to either the
NSData or NSMutableData class object. These methods return a data object containing the bytes you
specify.

Typically, the creation methods (such as dataWithBytes:length:) make a copy of the bytes you pass as
an argument. In this case, the copied bytes are owned by the data object and are freed when the data object
is released. It is your responsibility to free the original bytes.

However, if you create an NSData object with one of the methods whose name includes NoCopy (such as
dataWithBytesNoCopy:length:), the bytes are not copied. Instead, the data object takes ownership of
the bytes passed in as an argument and frees them when the object is released. (NSMutableData responds
to these methods, too, but the bytes are copied anyway and the buffer is freed immediately.) For this reason,
the bytes you pass to the NoCopy methods must have been allocated using malloc.

If you prefer that the bytes not be copied or freed when the object is released, you can use the
dataWithBytesNoCopy:length:freeWhenDone: or initWithBytesNoCopy:length:freeWhenDone:
methods passing NO as the freeWhenDone: argument.

In Mac OS X v10.1 and earlier, use the CFData bridged Core Foundation opaque type as follows. Because
data objects are bridged, you can create a no-copy, no-free CFData object and use it anywhere NSData can
be used. You create a no-copy, no-free data object by using the CFDataCreateWithBytesNoCopy function
and requesting kCFAllocatorNull as the deallocator:

NSData *data = (NSData *)CFDataCreateWithBytesNoCopy(
 NULL, bytes, length, kCFAllocatorNull);

Creating Data Objects From Files or URLs

You use the dataWithContentsOfFile: or dataWithContentsOfURL: class methods to create a data
object containing the contents of a file or URL. The following code example creates a data object, myData,
initialized with the contents of myFile.txt. The path must be absolute.

NSString *thePath = @"/u/smith/myFile.txt";

Creating Data Objects From Raw Bytes 11
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Working With Binary Data

NSData *myData = [NSData dataWithContentsOfFile:thePath];

Accessing and Comparing Bytes

The two NSData primitive methods—bytes and length—provide the basis for all other methods in the
class. The bytes method returns a pointer to the bytes contained in the data object. The length method
returns the number of bytes contained in the data object.

NSData provides access methods for copying bytes from a data object into a specified buffer. The getBytes:
method copies all of the bytes into a buffer. For example, the following code fragment initializes a data
object, myData, with the string myString. It then uses getBytes: to copy the contents of myData into
aBuffer.

unsigned char aBuffer[20];
NSString *myString = @"Test string.";
const char *utfString = [myString UTF8String];
NSData *myData = [NSData dataWithBytes: utfString length: strlen(utfString)];

[myData getBytes:aBuffer];

If you use getBytes:, you must ensure that the buffer is large enough to contain the data—the buffer must
be at least as large as the length of the data object. The getBytes:length: method copies bytes into a
buffer of a given length. The getBytes:range:method copies a range of bytes from a starting point within
the bytes themselves.

To extract a data object that contains a subset of the bytes in another data object, use the
subdataWithRange: method. For example, the following code fragment initializes a data object, data2,
to contain a subrange of data1:

NSString *myString = @"ABCDEFG";
const char *utfString = [myString UTF8String];
NSRange range = {2, 4};
NSData *data1, *data2;

data1 = [NSData dataWithBytes:utfString length:strlen(utfString)];

data2 = [data1 subdataWithRange:range];

To determine if two data objects are equal, use the isEqualToData: method, which does a byte-for-byte
comparison.

Copying Data Objects

You can copy data objects to create a read-only copy or to create a mutable copy. NSData and NSMutableData
adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert between efficient,
read-only data objects and mutable data objects. You use copy to create a read-only copy, and mutableCopy
to create a mutable copy.

12 Accessing and Comparing Bytes
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Working With Binary Data

Saving Data Objects

You can save data objects to a local file or to the internet. The writeToFile:atomically: method lets
you write the contents of a data object to a local file. The writeToURL:atomically:method lets you write
the contents of a data object to a location on the Internet.

Saving Data Objects 13
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Working With Binary Data

14 Saving Data Objects
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Working With Binary Data

This article contains code examples of common tasks that apply specifically to mutable data objects,
NSMutableData objects. Basically, you can change the bytes in a mutable binary data object by getting the
byte array to modify directly, appending bytes to them, or replacing a range of bytes.

Modifying Bytes

The two NSMutableData methods—mutableBytes and setLength:—provide the basis for all other
methods in the class. The mutableBytes method returns a pointer for writing into the bytes contained in
the mutable data object. The setLength: method allows you to truncate or extend the length of a mutable
data object. The increaseLengthBy: method also allows you to change the length of a mutable data
object.

In Listing 1 (page 15), mutableBytes is used to return a pointer to the bytes in data2. The bytes in data2
are then overwritten with the contents of data1.

Listing 1 Modifying bytes

NSMutableData *data1, *data2;
NSString *myString = @"string for data1";
NSString *yourString = @"string for data2";
const char *utfMyString = [myString UTF8String];
const char *utfYourString = [yourString UTF8String];
unsigned char *firstBuffer, secondBuffer[20];

/* initialize data1, data2, and secondBuffer... */
data1 = [NSMutableData dataWithBytes:utfMyString length:strlen(utfMyString)+1];
data2 = [NSMutableData dataWithBytes:utfYourString
length:strlen(utfYourString)+1];

[data2 getBytes:secondBuffer];
NSLog(@"data2 before: \"%s\"\n", (char *)secondBuffer);

firstBuffer = [data2 mutableBytes];
[data1 getBytes:firstBuffer];
NSLog(@"data1: \"%s\"\n", (char *)firstBuffer);

[data2 getBytes:secondBuffer];
NSLog(@"data2 after: \"%s\"\n", (char *)secondBuffer);

This is the output from Listing 1 (page 15):

Oct 3 15:59:51 [1113] data2 before: "string for data2"
Oct 3 15:59:51 [1113] data1: "string for data1"
Oct 3 15:59:51 [1113] data2 after: "string for data1"

Modifying Bytes 15
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Working With Mutable Binary Data

Appending Bytes

The appendBytes:length: and appendData: methods lets you append bytes or the contents of another
data object to a mutable data object. For example, Listing 2 (page 16) copies the bytes in data2 into aBuffer,
and then appends aBuffer to data1:

Listing 2 Appending bytes

NSMutableData *data1, *data2;
NSString *firstString = @"ABCD";
NSString *secondString = @"EFGH";
const char *utfFirstString = [firstString UTF8String];
const char *utfSecondString = [secondString UTF8String];
unsigned char *aBuffer;
unsigned len;

data1 = [NSMutableData dataWithBytes:utfFirstString
length:strlen(utfFirstString)];
data2 = [NSMutableData dataWithBytes:utfSecondString
length:strlen(utfSecondString)];

len = [data2 length];
aBuffer = malloc(len);

[data2 getBytes:aBuffer];
[data1 appendBytes:aBuffer length:len];

The final value of data1 is the series of ASCII characters "ABCDEFGH".

Replacing Bytes

You can replace a range of bytes in a mutable data object with zeros (using the resetBytesInRange:
method) or with different bytes (using the replaceBytesInRange:withBytes:method). In Listing 3 (page
16), a range of bytes in data1 is replaced by the bytes in data2, and the content of data1 changes from
“Liz and John” to “Liz and Larry”:

Listing 3 Replacing bytes

NSMutableData *data1, *data2;
NSString *myString = @"Liz and John";
NSString *yourString = @"Larry";
const char *utfMyString = [myString UTF8String];
const char *utfYourString = [yourString UTF8String];
unsigned len;
unsigned char *aBuffer;
NSRange range = {8, strlen(utfYourString)};

data1 = [NSMutableData dataWithBytes:utfMyString length:strlen(utfMyString)];
data2 = [NSMutableData dataWithBytes:utfYourString length:strlen(utfYourString)];

len = [data2 length];
aBuffer = malloc(len);

16 Appending Bytes
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Working With Mutable Binary Data

[data2 getBytes:aBuffer];
[data1 replaceBytesInRange:range withBytes:aBuffer];

Replacing Bytes 17
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Working With Mutable Binary Data

18 Replacing Bytes
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Working With Mutable Binary Data

This table describes the changes to Binary Data Programming Guide.

NotesDate

Added links to Cocoa Core Competencies.2009-08-06

Corrected the code listing under Modifying Bytes to account for the null
terminator on the strings.

2009-05-06

Clarified note about limits on data size using NSData.2007-03-06

Changed title from "Binary Data."2006-01-10

Corrected results from sample code in “Working With Mutable Binary Data” (page
15).

2003-10-27

Revised content and added more code examples.2003-08-07

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

19
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Document Revision History

20
2009-08-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Binary Data Programming Guide
	Contents
	Listings
	Introduction
	Data Objects
	Working With Binary Data
	Creating Data Objects From Raw Bytes
	Creating Data Objects From Files or URLs
	Accessing and Comparing Bytes
	Copying Data Objects
	Saving Data Objects

	Working With Mutable Binary Data
	Modifying Bytes
	Appending Bytes
	Replacing Bytes

	Revision History

