
Animation Programming Guide for Cocoa
Graphics & Animation: Animation

2006-05-23

Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Animation Programming Guide for Cocoa 7

Organization of This Document 7
See Also 7

Using an NSAnimation Object 9

Creating and Configuring an Animation Timer 9
Setting and Handling Progress Marks 10
Subclassing NSAnimation 11

Smooth Animations 12
Custom Run-Loop Mode Sets 12

Linking Animations 13

Animating Views and Windows 15

The View Animation Process 15
Changing the Frame Rectangle 15
Fading Objects In and Out 16

A View Animation Example 16

Document Revision History 19

3
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

4
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Tables and Listings

Using an NSAnimation Object 9

Listing 1 Initializing an NSAnimation object 9
Listing 2 Setting the progress marks of an NSAnimation object 10
Listing 3 Delegate implementation of animation:didReachProgressMark: 11
Listing 4 Overriding the setCurrentProgress: method 12
Listing 5 Returning run-loop modes from runLoopModesForAnimating 12
Listing 6 Linking two animations 13
Listing 7 Handling progress marks of simultaneously running animations 13

Animating Views and Windows 15

Table 1 Keys for resizing or repositioning a view or window. 15
Table 2 Keys for fading a view or window. 16
Listing 1 Animating two NSView objects 16

5
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Cocoa provides facilities for animating certain types of operations over a finite or indefinite amount of time.
The basic animation support provided by the NSAnimation class focuses on providing you with a source
for animation timing and management. Although the word "animation" may make you think of cartoons or
other forms of movies, animation objects are more designed for animating portions of your program's user
interface. For example, you can use the NSViewAnimation class (a subclass of NSAnimation) to create
smooth transitions in the size, position, or opacity of a view or window. This animated appearance lets you
create a user interface with a more fluid appearance.

This document describes the fundamental concepts involved in using Cocoa animation objects and also
provides examples of how to use them in your own applications.

Organization of This Document

This document contains the following articles:

 ■ "Using an NSAnimation Object" (page 9) describes the basic features of animation objects and how
you customize them.

 ■ "Animating Views and Windows" (page 15) describes the use of view animation objects, which provide
a high-level interface for smoothly resizing, repositioning, and changing the opacity of view and window
objects.

See Also

Sample code is available that provides examples for using the Cocoa animation classes:

 ■ Reducer implements a reusable collapsible view (using NSViewAnimation) and an animated tab view
class subclass of NSAnimation.

 ■ iSpend implements an expanding view using NSViewAnimation.

Organization of This Document 7
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Animation Programming
Guide for Cocoa

8 See Also
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Animation Programming Guide for Cocoa

The NSAnimation class provides sophisticated behavior for animations that occur over a finite length of
time. Mac OS X uses animation objects to implement transition animations for user interface elements. You
can define custom animation objects to implement animations for your own code. Unlike NSTimer, animation
notifications can occur at irregular intervals, allowing you to create animations that appear to speed up or
slow down.

The sections that follow cover the basic steps for creating a custom NSAnimation object and using it to
manage your animated content. If you want to animate your views and windows, you should see if the
NSViewAnimation class (which is a subclass of NSAnimation) offer the behavior you need. View animation
objects provide sophisticated behavior for resizing and moving views over time and are described in
"Animating Views and Windows" (page 15).

Note: Animation objects are available in Mac OS X v10.4 and later.

Creating and Configuring an Animation Timer

An NSAnimation object has several important attributes:

 ■ Current progress—A value between 0.0 and 1.0 that indicates the percentage of the animation completed.

 ■ Frame rate—The number of updates per second.

 ■ Duration—The period (in seconds) over which the animation occurs.

 ■ Animation curve—The relative speed of the animation over its course; for example, the animation could
slowly speed up at the beginning, gradually slow down near its end, or remain the same speed throughout.

 ■ Blocking mode—The mode in which the animation runs in terms of the application’s responsiveness to
user actions.

When you configure a new NSAnimation object, you must, at a minimum, set its duration, animation curve,
frame rate, and blocking mode attributes. You should also assign a delegate to monitor the progress of the
animation. When the animation begins, ends, is explicitly stopped, or reaches a progress mark, the animation
object sends a message to the current delegate. (See "Setting and Handling Progress Marks" (page 10) for
information about progress marks). If you do not want to use a delegate, you must subclass NSAnimation
to receive progress information; see "Subclassing NSAnimation" (page 11).

Listing 1 shows a sample method that creates and configures a standard NSAnimation object. The object
that created the animation acts as the delegate and handles any progress messages.

Listing 1 Initializing an NSAnimation object

- (id)init
{

Creating and Configuring an Animation Timer 9
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using an NSAnimation Object

 self = [super init];
 if (self)
 {
 // theAnim is an NSAnimation instance variable.
 theAnim = [[NSAnimation alloc] initWithDuration:10.0
 animationCurve:NSAnimationEaseIn];
 [theAnim setFrameRate:20.0];
 [theAnim setAnimationBlockingMode:NSAnimationNonblocking];
 [theAnim setDelegate:self];
 }
 return self;
}

The initWithDuration:animationCurve: method is the designated initializer for the NSAnimation
class. This method lets you set two of the animation attributes. For the other attributes, you can use the
default values or set the attribute value explicitly using the appropriate accessor methods. The default
attributes are as follows:

 ■ The default animation curve is NSAnimationEaseInOut.

 ■ The default blocking mode is NSAnimationBlocking.

 ■ The default frame rate is a reasonable value. This frame rate is usually 60 Hz, but the exact value should
not be relied upon.

Once you have prepared an NSAnimation object for use, you can run it by sending it a startAnimation
message. If you need to stop it before the animation completes its scheduled duration, send the object a
stopAnimation message. The delegate of the NSAnimation object (if one exists) receives messages
informing it of both of these events, as well as a message that tells it if the animation completed as scheduled.

Setting and Handling Progress Marks

NSAnimation has the notion of progress marks—floating-point values (of type NSAnimationProgress)
that indicate the percentage amount of the animation that is complete. When you start an animation and it
reaches a progress mark (specifically, its current progress is equal to the progress mark), the animation object
sends a message to its delegate. The delegate can then update a custom progress indicator, play a sound,
or accomplish some other effect appropriate to that point of the animation.

Important: Although you can use progress marks to “time-slice” the animation of an object, it is not an ideal
way to achieve a smooth animation. A recommended alternative is to subclass NSAnimation and redraw
an object at each change of frame; see "Smooth Animations" (page 12) for more information.

Usually you set the progress marks for an animation object when you first create and initialize the object.
Listing 2 shows one approach that sets 20 equally spaced progress marks.

Listing 2 Setting the progress marks of an NSAnimation object

- (void)awakeFromNib
{
 NSAnimationProgress progMarks[] = {
 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5,
 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0 };

10 Setting and Handling Progress Marks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using an NSAnimation Object

 int i, count = 20;
 // theAnim is an NSAnimation instance variable
 theAnim = [[NSAnimation alloc] initWithDuration:10.0
 animationCurve:NSAnimationEaseInOut];
 [theAnim setFrameRate:20.0];
 [theAnim setDelegate:self];

 for (i=0; i<count; i++)
 [theAnim addProgressMark:progMarks[i]];
}

Instead of adding progress-mark values in a loop, as in this example, you can set them in one invocation by
using the setProgressMarks: method, which takes an array of NSNumber objects encapsulating float
values.

When a running animation object reaches a progress mark, it sends ananimation:didReachProgressMark:
message to its delegate. The delegate should handle this message in a way appropriate to the progress mark
passed in. Listing 3 illustrates how the delegate implements this method to play a train sound at regular
intervals.

Listing 3 Delegate implementation of animation:didReachProgressMark:

- (void)animation:(NSAnimation *)animation
 didReachProgressMark:(NSAnimationProgress)progress
{
 if (animation == theAnim)
 [[NSSound soundNamed:@"chug"] play];
}

Subclassing NSAnimation

Although you can use an NSAnimation object as-is for many purposes, subclassing it is a more common
scenario. There are three major reasons to subclass NSAnimation:

 ■ To achieve smooth animations by redrawing at per-frame intervals

 ■ To specify valid run-loop modes when running an animation on the main thread in nonblocking mode

 ■ To return custom curve values without the overhead of a delegate that responds to
animation:valueForProgress:

The procedures for accomplishing the first two of these objectives are described in the following sections.
To return custom curve values without implementing the delegate method, you must override the
currentValue method. See the NSAnimation class documentation for further information.

Subclassing NSAnimation 11
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using an NSAnimation Object

Smooth Animations

As mentioned in "Setting and Handling Progress Marks" (page 10), you can attach a series of progress marks
to an NSAnimation object and have the delegate implement the animation:didReachProgressMark:
method to redraw an object at each progress mark. However, this is not the best way to animate an object.
Unless you set a large number of progress marks (30 per second or more), the animation is probably going
to appear jerky.

A better approach is to subclassNSAnimation and override thesetCurrentProgress:method, as illustrated
in Listing 4. The NSAnimation object invokes this method after each frame to change the progress value.
By intercepting this message, you can perform any redrawing or updating you need for that frame. If you do
override this method, be sure to invoke the implementation of super so that it can update the current
progress.

Listing 4 Overriding the setCurrentProgress: method

- (void)setCurrentProgress:(NSAnimationProgress)progress
{
 // Call super to update the progress value.
 [super setCurrentProgress:progress];

 // Update the window position.
 NSRect theWinFrame = [[NSApp mainWindow] frame];
 NSRect theScreenFrame = [[NSScreen mainScreen] visibleFrame];
 theWinFrame.origin.x = progress *
 (theScreenFrame.size.width - theWinFrame.size.width);
 [[NSApp mainWindow] setFrame:theWinFrame display:YES animate:YES];
}

Custom Run-Loop Mode Sets

An NSAnimation object with a blocking mode of NSAnimationNonblocking runs in the main thread of
the process in a run-loop mode that accepts user input. Before it runs the animation, the animation object
sends itself a runLoopModesForAnimation message to get the currently valid run-loop modes. By default,
this method returns nil, which tells NSAnimation to use the default mode (NSDefaultRunLoopMode),
modal panel mode (NSModalPanelRunLoopMode), and event tracking run-loop mode
(NSEventTrackingRunLoopMode).

You can override this method to return a different set of run loop modes, which can include custom modes.
Listing 5 shows an implementation that returns the default array of modes minus the event-tracking mode
(NSEventTrackingRunLoopMode).

Listing 5 Returning run-loop modes from runLoopModesForAnimating

- (NSArray *)runLoopModesForAnimating
{
 return [NSArray arrayWithObjects: NSDefaultRunLoopMode,
 NSModalPanelRunLoopMode, nil];
}

12 Subclassing NSAnimation
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using an NSAnimation Object

Linking Animations

You can link two animation objects so that one of them starts running (or stops running) when the other
reaches a specified animation mark. This feature of NSAnimation is useful for coordinating different effects.
Listing 6 illustrates how thestartWhenAnimation:reachesProgress:method is used to start an animation
when another animation reaches the midway point.

Listing 6 Linking two animations

- (IBAction)startAnim:(id)sender
{
 // theAnim and theOtherAnim are variables of type NSAnimation.
 [theOtherAnim startWhenAnimation:theAnim reachesProgress:0.5];
 [theAnim startAnimation];
}

If you want instead to stop an animation when another animation reaches a progress mark, use the
stopWhenAnimation:reachesProgess: method. You can link animations indefinitely, one after another.
However, there can be only one “start” and one “stop” animation at any given time.

If you have a delegate that is responding to animation:didReachProgressMark: messages, it has to
distinguish among the multiple animations, as in Listing 7.

Listing 7 Handling progress marks of simultaneously running animations

- (void)animation:(NSAnimation *)animation
 didReachProgressMark:(NSAnimationProgress)progress
{
 if (animation == theOtherAnim)
 {
 // Do an effect appropriate to progress mark.
 }
 else if (animation == theAnim)
 {
 // Do an effect appropriate to progress mark.
 }
}

Linking Animations 13
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using an NSAnimation Object

14 Linking Animations
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using an NSAnimation Object

The NSViewAnimation class is a subclass of NSAnimation that provides a convenient way to animate
aspects of your view and window objects, including the following:

 ■ Change the position of the frame.

 ■ Change the size of the frame

 ■ Change the opacity of the object and fade it in or out.

The View Animation Process

You use view animation objects in a slightly different way than you do regular NSAnimation objects. A single
view animation object can manage the animation process for multiple views and windows simultaneously.
Rather than setting the attributes using methods of the animation object, you instead create a dictionary of
animation attributes for each view or window you want to modify. Each dictionary specifies the target of the
action (the view or window), and the effects you want to apply to that target. To set other factors, such as
the duration and timing curve of the animation, you continue to use the methods of NSAnimation.

An animation attributes dictionary has only one required value: the target object. You add this object to the
dictionary using the NSViewAnimationTargetKey key. The presence of this key alone, though, does not
change the view or window. To make changes, you must include one or more additional keys to specify the
desired behavior.

You can perform multiple actions on a single target object simultaneously, if you choose. For example, you
can resize a view, change its position on the screen, and fade it in or out all at once. The following sections
show you how to perform each of these actions separately, for simplicity. To perform them both, simply add
all of the relevant keys to the attributes dictionary.

Changing the Frame Rectangle

Changing the frame rectangle of a view or window lets you resize and reposition that object relative to its
parent. In the case of views, this means changing the position and size of the view in its superview. In the
case of windows, it means changing the position and size of the window on the desktop. Table 1 lists the
keys and values you would put into the attributes dictionary to change the frame rectangle.

Table 1 Keys for resizing or repositioning a view or window.

DescriptionValueKey

Identifies the NSView or NSWindow object to resize or reposition.
This key is required.

idNSViewAnimation-
TargetKey

The View Animation Process 15
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Animating Views and Windows

DescriptionValueKey

Contains the starting frame rectangle of the target object. The
NSValue object should contain an encoded NSRect data type. This
value is typically equal to the current frame of the view or window.
This key is optional and defaults to the current frame rectangle of
the target object.

NSValueNSViewAnimation-
StartFrameKey

Contains the ending frame rectangle of the target object. The
NSValue object should contain an encoded NSRect data type. This
key is recommended; if not present, it defaults to the current frame
rectangle of the target object.

NSValueNSViewAnimation-
EndFrameKey

Fading Objects In and Out

If you want to hide a view or window, rather than have the object suddenly disappear, you can use a view
animation to make that object gradually fade away. Similarly, you can use a similar type of view animation
to make the object visible again. When fading a view back in, the size of the ending frame rectangle must
be non-zero; if it is not, the view remains hidden. Table 2 lists the keys and values you would put into the
attributes dictionary to fade an object in or out.

Table 2 Keys for fading a view or window.

DescriptionValueKey

Identifies the NSView or NSWindow object to modify. This key is
required.

idNSViewAnimation-
TargetKey

Contains one of the following string constants:
NSViewAnimationFadeInEffectmakes the object visible and
NSViewAnimationFadeOutEffect hides it. These effects
change the opacity of the object over the course of the animation.

NSStringNSViewAnimation-
EffectKey

A View Animation Example

Listing 1 illustrates the basic use of a view animation object. The action method sets up attribute dictionaries
for two different view objects and then runs the animation whenever the action occurs. For the first view
object, the animation object shifts the origin of the view by 50 units along each axis. For the second view,
the animation object shrinks the frame size to zero while simultaneously fading the view out until it is
completely hidden. The animation uses a custom timing curve and duration but uses the default blocking
mode, which blocks user input on the main thread until the animation is complete.

Listing 1 Animating two NSView objects

- (IBAction)startAnimations:(id)sender
{
 // firstView, secondView are outlets
 NSViewAnimation *theAnim;
 NSRect firstViewFrame;

16 A View Animation Example
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Animating Views and Windows

 NSRect newViewFrame;
 NSMutableDictionary* firstViewDict;
 NSMutableDictionary* secondViewDict;

 {
 // Create the attributes dictionary for the first view.
 firstViewDict = [NSMutableDictionary dictionaryWithCapacity:3];
 firstViewFrame = [firstView frame];

 // Specify which view to modify.
 [firstViewDict setObject:firstView forKey:NSViewAnimationTargetKey];

 // Specify the starting position of the view.
 [firstViewDict setObject:[NSValue valueWithRect:firstViewFrame]
 forKey:NSViewAnimationStartFrameKey];

 // Change the ending position of the view.
 newViewFrame = firstViewFrame;
 newViewFrame.origin.x += 50;
 newViewFrame.origin.y += 50;
 [firstViewDict setObject:[NSValue valueWithRect:newViewFrame]
 forKey:NSViewAnimationEndFrameKey];
 }

 {
 // Create the attributes dictionary for the second view.
 secondViewDict = [NSMutableDictionary dictionaryWithCapacity:3];

 // Set the target object to the second view.
 [secondViewDict setObject:secondView forKey:NSViewAnimationTargetKey];

 // Shrink the view from its current size to nothing.
 NSRect viewZeroSize = [secondView frame];
 viewZeroSize.size.width = 0;
 viewZeroSize.size.height = 0;
 [secondViewDict setObject:[NSValue valueWithRect:viewZeroSize]
 forKey:NSViewAnimationEndFrameKey];

 // Set this view to fade out
 [secondViewDict setObject:NSViewAnimationFadeOutEffect
 forKey:NSViewAnimationEffectKey];
 }

 // Create the view animation object.
 theAnim = [[NSViewAnimation alloc] initWithViewAnimations:[NSArray
 arrayWithObjects:firstViewDict, secondViewDict, nil]];

 // Set some additional attributes for the animation.
 [theAnim setDuration:1.5]; // One and a half seconds.
 [theAnim setAnimationCurve:NSAnimationEaseIn];

 // Run the animation.
 [theAnim startAnimation];

 // The animation has finished, so go ahead and release it.
 [theAnim release];
}

A View Animation Example 17
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Animating Views and Windows

18 A View Animation Example
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Animating Views and Windows

This table describes the changes to Animation Programming Guide for Cocoa.

NotesDate

Corrected source code in "Animating Views and Windows."2006-05-23

New document that describes the use of Cocoa animation objects.2006-04-04

19
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

20
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	Animation Programming Guide for Cocoa
	Contents
	Tables and Listings
	Introduction
	Using an NSAnimation Object
	Creating and Configuring an Animation Timer
	Setting and Handling Progress Marks
	Subclassing NSAnimation
	Smooth Animations
	Custom Run-Loop Mode Sets

	Linking Animations

	Animating Views and Windows
	The View Animation Process
	Changing the Frame Rectangle
	Fading Objects In and Out

	A View Animation Example

	Revision History

