
Accessibility Programming Guidelines for
Cocoa
User Experience: Accessibility

2007-02-08

Apple Inc.
© 2004, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, and Safari are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Accessibility Programming Guidelines for Cocoa 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 8

Accessibility Objects and the Accessibility Hierarchy 9

Attributes 9
Actions 11
The Accessibility Hierarchy 12

Hit-Testing and Keyboard Focus 15

Hit-Testing 15
Determining Keyboard Focus 15

Accessibility Notifications 17

Access Enabling a Cocoa Application 19

Provide Descriptive Information for All Elements 19
Link Conceptually Related Elements 20
Make Substructure Accessible 20
Make Custom Classes and Subclasses Accessible 21

Supporting Attributes 23

Using a Convenience Method to Support Attributes 23
Overriding Methods to Support Attributes 23

Supporting Actions 27

Manipulating the Accessibility Hierarchy 29

Document Revision History 31

3
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

4
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Accessibility Objects and the Accessibility Hierarchy 9

Figure 1 View hierarchy versus accessibility hierarchy 13

Access Enabling a Cocoa Application 19

Table 1 AppKit classes and default accessibility support 21

Supporting Attributes 23

Listing 1 Supporting an additional attribute 24
Listing 2 Supplying information about an added attribute 24

Supporting Actions 27

Listing 1 Supporting a new action 27

Manipulating the Accessibility Hierarchy 29

Listing 1 Returning attribute values for unignored children 30

5
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

6
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

All Cocoa applications can and should be accessible to users with disabilities. The process of making an
application accessible is called access enabling. In Cocoa applications, accessibility is achieved by user interface
classes adopting the NSAccessibility informal protocol. Because standard Cocoa controls and views
automatically adopt the NSAccessibility protocol, there is very little you have to do to access enable your
application if you rely only on standard control and view objects.

If your application implements custom controls or views, however, you need to provide additional accessibility
information to make your application completely accessible.

This topic discusses how Cocoa implements accessibility and describes specific tasks you need to perform
to access enable your application.

Who Should Read This Document?

All Cocoa application developers should read this document to learn how to access enable their applications.
Even if your application uses only standard Cocoa views and controls, there is some information you need
to supply to ensure your application is both completely accessible and provides a good user experience. If
you’re new to accessibility or if you’re unsure why your application should be accessible, you should read
Accessibility Overview to learn how applications make themselves accessible to assistive technologies in Mac
OS X.

If you’re an assistive application developer, you don’t need to read this document. Instead, you should read
Accessibility Overview to become familiar with the Mac OS X accessibility architecture and learn about the
attributes associated with each type of accessibility object.

Organization of This Document

The following articles describe how Cocoa implements accessibility:

 ■ "Accessibility Objects and the Accessibility Hierarchy" (page 9) describes the accessibility object as it
is implemented by the Application Kit. It also describes the accessibility hierarchy that represents an
application and discusses how an assistive application interacts with the accessibility objects in your
application.

 ■ "Hit-Testing and Keyboard Focus" (page 15) discusses how an assistive application can access user
interface objects by screen position and by keyboard focus.

 ■ "Accessibility Notifications" (page 17) discusses how an application notifies assistive applications that
some change has occurred in the user interface, such as a new window opening.

The following articles describe how to access enable your application:

Who Should Read This Document? 7
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Introduction to Accessibility Programming
Guidelines for Cocoa

 ■ "Access Enabling a Cocoa Application" (page 19) provides guidance on which tasks you may need to
perform to access enable your application.

 ■ "Supporting Attributes" (page 23) describes how to add an attribute to a custom accessible object.

 ■ "Supporting Actions" (page 27) describes how to add an action to a custom accessible object.

 ■ "Manipulating the Accessibility Hierarchy" (page 29) describes how to change an accessibility object’s
status in the accessibility hierarchy.

See Also

The Accessibility Reference Library contains several documents that cover accessibility.

 ■ Getting Startedwith Accessibility provides a brief introduction to accessibility and describes learning paths
you might choose to follow.

 ■ Accessibility Overview describes the Mac OS X accessibility architecture.

 ■ NSAccessibility Reference describes the NSAccessibility protocol and its methods and constants.

 ■ Accessibility Programming Guidelines for Carbon describes how to access-enable a Carbon application.

 ■ CarbonAccessibility Reference describes the functions, data types, and constants used in accessible Carbon
applications.

In addition to these documents, Apple maintains a website devoted to accessibility in Mac OS X, with links
to more information about compatible assistive technologies:

 ■ http://www.apple.com/accessibility

8 See Also
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Introduction to Accessibility Programming Guidelines for Cocoa

http://www.apple.com/accessibility

At the heart of Mac OS X accessibility is the accessibility object. This object represents a user-accessible
element in your application, such as a button or a menu item, regardless of the application framework on
which your application depends. An assistive application uses an accessibility object to make the user interface
element it represents accessible to users and to manage the user’s interaction with that element.

This article describes the accessibility object as it is implemented by the Application Kit. It describes the
components of accessibility objects and the hierarchy in which they are arranged. It also describes the
methods to which accessibility objects can respond.

Attributes

Accessibility objects are described by a set of attributes. These attributes include the type of object, the
object’s place in the accessibility hierarchy (described in “The Accessibility Hierarchy” (page 12)), its value,
its size and position on the display screen, and so on. In Cocoa, attributes are identified by NSString values,
such as NSAccessibilityWindowAttribute and NSAccessibilityZoomButtonAttribute (see
NSAccessibility.h for the complete list of attribute names).

Each attribute has a value that provides an assistive application with information about the user interface
element the accessibility object represents. For example, the value of a button’s role attribute is
NSAccessibilityButtonRole and the value of its enabled attribute might be YES (if the button is enabled).
In addition, many accessibility objects include a value attribute (NSAccessibilityValueAttribute) that
contains the current value of a user interface object. For example, the value of a text field object is the contents
of the text field and the value of a selected radio button is true.

Attribute values are always handled as objects. They must be either accessibility objects or one of the following
types of objects:

 ■ NSString

 ■ NSNumber (for Boolean, integer, and floating point values)

 ■ NSValue (for point, size, rectangle, and range values)

 ■ NSArray (which can contain only the three types of objects listed here, in addition to other NSArray
objects)

The NSValue objects must be created with the appropriate convenience methods, such as valueWithPoint:,
to be properly recognized and transmitted to an assistive application. An attribute value can also be nil,
although this causes a “No Value” error to be seen by an assistive application.

An assistive application needs to know which attributes a given accessibility object supports to be able to
accurately represent the user interface object to the user. This is because an assistive application uses the
values of supported attributes to manipulate the object and give the user information about it. An accessibility

Attributes 9
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Accessibility Objects and the Accessibility
Hierarchy

object returns a list of its supported attributes in the accessibilityAttributeNames method. When an
assistive application needs to get the value of a specific attribute, an accessibility object returns it in the
accessibilityAttributeValue: method.

Some attributes are read-only, such as the role, but others, such as a slider’s value, can be modified by the
assistive application. An attribute whose value is modifiable by an assistive application is called settable. The
modification of attribute values is one way an assistive application can manipulate the user interface of
another application (the other way is through actions, described in “Actions” (page 11)).

An accessibility object indicates that a specific attribute’s value can be modified by an assistive application
by returning YES from the accessibilityIsAttributeSettable: method. An assistive application
modifies the value of a specific attribute using the accessibilitySetValue:forAttribute: method.

Note: Accessibility methods, such as the ones described in this section, are automatically invoked by the
Cocoa framework when an assistive application requests the information. As a Cocoa application developer,
you do not call these methods yourself.

In NSAccessibility.h, Cocoa defines a large number of constants for standard attributes, many of which
are relevant to only a few classes. For example, there are a large set of attributes that are for use with objects
that handle text. A few of the attributes, however, are required for every accessibility object. If you must
create an accessibility object to represent a custom user interface element, you should at a minimum
implement the following attributes. (See “Make Custom Classes and Subclasses Accessible” (page 21) for
details.)

 ■ NSAccessibilityRoleAttribute. This required attribute identifies the type of the accessibility object.
Cocoa defines a large number of role values, such as NSAccessibilityApplicationRole,
NSAccessibilityRadioButtonRole, and NSAccessibilityScrollAreaRole. The value of the
role attribute is for programmatic identification purposes only (an assistive application will never present
the value of the role attribute to a user) and therefore does not need to be localized. See the
NSAccessibility protocol description for a list of all the roles defined in Cocoa.

 ■ NSAccessibilityRoleDescriptionAttribute. This attribute holds a localized string describing the
object’s role. It is intended to be readable by (or speakable to) the user. For example, the role description
string attribute for a button should be “button”. This allows an assistive application accurately to identify
the object’s type to the user.

 ■ NSAccessibilityTitleAttribute. This attribute is required for any user interface object that displays
a visible text title as part of its visual interface. For example, the display of a Cancel button includes the
title “Cancel”. Therefore, the accessibility object representing this button must include the title attribute
with the string value cancel. This enables an assistive application accurately to convey the purpose of
the object to the user. If, for example, the Cancel button does not include the title attribute, an assistive
application may be able to describe it to the user only as “button”.

Note that the title attribute is not intended to contain static text that serves as the title for a user interface
element, but that is not part of its visual interface. For objects that are accompanied by separate static
text titles and descriptions, use the NSAccessibilityTitleUIElementAttribute and
NSAccessibilityServesAsTitleForUIElementsAttribute attributes (described in “Provide
Descriptive Information for All Elements” (page 19)).

 ■ NSAccessibilityDescriptionAttribute. Available in Mac OS X version 10.4 and later, this attribute
contains a localized string that describes the object’s purpose. All user interface objects that do not
display a text title (and therefore do not include the title attribute) should include the description attribute
to allow an assistive application to describe the purpose of the object to the user. For example, an OK
button does not have to include the description attribute because it already includes the title attribute

10 Attributes
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Accessibility Objects and the Accessibility Hierarchy

with the string value ok. A print button that displays a printer icon instead of the title “Print”, however,
must include the description attribute with a string value, such as print. If such a button does not
include the description attribute, an assistive application will be able to describe it to the user only as
“button”.

 ■ NSAccessibilityParentAttribute. This attribute is required for all accessibility objects except the
application-level object. The value of this attribute is the accessibility object that contains this one. For
example, the value of the parent attribute in a button cell’s accessibility object is the accessibility object
that represents the button’s control object. Frequently, the parent of an accessibility object is the ancestor
of the user interface object it represents. Sometimes, however, the ancestor of an object might not be
interesting to an assistive application. An example of this is the NSButton that contains an NSButtonCell.
In such cases, the uninteresting parent object may be marked as “ignored”, which makes it invisible to
an assistive application. For more information about how the accessibility hierarchy can differ from the
inheritance hierarchy, see “The Accessibility Hierarchy” (page 12).

When returning an object’s parent, respect the ignored state of objects by using the
NSAccessibilityUnignoredAncestor function to return the first unignored parent for the object.
For more information on this function, see “Manipulating the Accessibility Hierarchy” (page 29).

 ■ NSAccessibilityChildrenAttribute. This optional attribute identifies accessibility objects contained
within this one. For example, the value of the children attribute in a control’s accessibility object contains
the control’s cells. Similarly, the children attribute in an accessibility object representing a view contains
the view’s subviews. As with the parent attribute, not all children of an object are interesting to an
assistive application and some may be marked as “ignored” in the accessibility hierarchy. For more
information on this, see “The Accessibility Hierarchy” (page 12).

When returning an object’s children, respect the ignored state of objects by using the
NSAccessibilityUnignoredChildren function to return the unignored children for the object. For
more information on this function, see “Manipulating the Accessibility Hierarchy” (page 29).

 ■ NSAccessibilitySizeAttribute. This required attribute contains an NSValue object giving the size
of the user interface object in pixels. This attribute is required so that assistive applications can do such
things as display a focus ring around a user interface object.

 ■ NSAccessibilityHelpAttribute. This optional attribute is a localized string that describes the
purpose of the object. The string should be a short phrase that provides a hint to the user for how to
handle the object. For NSView objects, the default implementation returns the view’s help tag (tool tip)
string.

For more information on the required and optional attributes associated with each role, see the appendix
“Roles and Associated Attributes” in Accessibility Overview.

Actions

Accessibility objects can have actions associated with them. These actions are the generic actions a user can
take on the user interface object the accessibility object represents. This means that accessibility actions are
not context-specific. Because an assistive application is driving the user interface of your application, actions
typically correspond to a single mouse click or key press. For example, a Print button supports the generic
press action, not a context-specific print action. Actions are identified by NSString values, such as
NSAccessibilityPressAction.

Actions 11
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Accessibility Objects and the Accessibility Hierarchy

An accessibility object returns a list of its supported actions in the accessibilityActionNames method.
When an assistive application needs to cause your application to perform a specific action, it sends the
accessibilityPerformAction: message. When your application receives the
accessibilityPerformAction:message, it performs the requested action in the same way it does when
the request comes directly from the mouse or keyboard.

In NSAccessibility.h, Cocoa defines a small number of constants for standard actions. If you are creating
(or extending) an accessibility object, you must restrict yourself to these actions. If you do not, an assistive
application is likely to be unable to handle your custom action.

 ■ NSAccessibilityConfirmAction. This action simulates pressing the Enter key, such as in a text field.

 ■ NSAccessibilityDecrementAction. This action decrements the value of an object, such as a slider.

 ■ NSAccessibilityIncrementAction. This action increments the value of an object, such as a slider.

 ■ NSAccessibilityPickAction. This action selects a menu item.

 ■ NSAccessibilityPressAction. This action simulates a single mouse click, such as on a button.

 ■ NSAccessibilityCancelAction. This action simulates pressing a Cancel button.

 ■ NSAccessibilityRaiseAction. This action makes the application window frontmost (behind, perhaps,
any floating or system-modal windows that are currently displayed).

 ■ NSAccessibilityDeleteAction. Simulates a delete action for items that must otherwise be dragged
to a destination (such as Trash) to be deleted.

 ■ NSAccessibilityShowMenuAction. This action opens a contextual menu in the element represented
by this accessibility object. (This action can also be used to display a menu that is pre-associated with
an element, such as the menu that displays when a user clicks Safari’s back button slowly.)

See “Supporting Actions” (page 27) for details on implementing an action.

The Accessibility Hierarchy

Accessibility objects are arranged into a hierarchy that represents your application’s user interface. The
application-level accessibility object (representing the NSApplication object) is at the top of the hierarchy
and its first-order children are the accessibility objects that represent the main application windows and the
menu bar. An assistive application can traverse the hierarchy using various attributes, primarily
NSAccessibilityParentAttribute and NSAccessibilityChildrenAttribute (see “Attributes” (page
9) for more information on specific attributes).

Assistive applications can also move through the hierarchy using attributes that lead to accessibility objects
not related by containment. If, for example, an application displays a list of documents in one view and the
contents of a selected document in another view, the application can use the
NSAccessibilityLinkedUIElementsAttribute attribute (introduced in Mac OS X version 10.4) to link
these two views. Using the value of this attribute, an assistive application can allow a user to jump easily
between the related views. Other attributes, such as NSAccessibilityMenuBarAttribute and
NSAccessibilityTopLevelUIElementAttribute, provide direct, convenient access to specific objects
in the application’s user interface.

The accessibility hierarchy is built into the object hierarchy that already exists in a Cocoa application. For
example, the top-level NSApplication object manages a collection of windows. An assistive application
accesses these windows by asking the accessibility object representing the NSApplication object for the

12 The Accessibility Hierarchy
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Accessibility Objects and the Accessibility Hierarchy

value of its NSAccessibilityWindowsAttribute attribute. (The windows can also be obtained by
requesting the value of the children attribute, but the menu bar is included in this value.) Each of these
windows contains a view hierarchy wherein the window’s top view, the content view, contains any number
of subviews, each of which can contain even more subviews, and so on. This hierarchy can be traversed by
asking for the value of each object’s NSAccessibilityChildrenAttribute. At the bottom of the hierarchy
are the objects with which the user usually interacts, such as buttons and text fields.

In some cases, however, an object needed in the Cocoa object hierarchy is not interesting to an assistive
application. For example, the top-level view inside a window (the content view) is just a container for other
views, which are the real objects that make up the user interface. Because a user never interacts directly with
the content view itself, this implementation detail is hidden from the assistive application by marking the
accessibility object representing the view as “ignored”. Therefore, when a window is asked for its children,
instead of returning its content view, the window should return the content view’s children.

NSControl objects are also often hidden. An NSControl usually has a one-to-one relationship to an NSCell
object, which implements the majority of the control’s behavior. In these cases, the NSControl object is
ignored and the accessibility hierarchy jumps from the view that contains the control to the control’s cell.
Controls that can represent more than one cell, however, such as NSMatrix or NSTableView, are not ignored.

It’s important to note that ignored accessibility objects are not excised from an application’s accessibility
hierarchy; rather, they are not reported to an assistive application. An ignored object must remain in its place
in the accessibility hierarchy to provide a bridge between its surrounding objects and to implement the
functions and attributes needed by its children.

Figure 1 (page 13) compares the view hierarchy for a window and the accessibility hierarchy for the same
window. The content view and the button control (an NSButton) are ignored objects, which are in the view
hierarchy but not the accessibility hierarchy. The accessibility hierarchy skips the content view and goes
directly to its children and the button is replaced by the button’s cell (an NSButtonCell).

Figure 1 View hierarchy versus accessibility hierarchy

View hierarchy Accessibility hierarchy

Window

Button
cell

Content view

MatrixButton

Window

Matrix
Button

cell

CellCell Cell CellCell Cell

Objects indicate that they should be ignored by implementing the accessibilityIsIgnored method
and returning YES. In fact, the default NSView implementation returns YES. To make themselves visible to
an assistive application, therefore, NSView subclasses must override the accessibilityIsIgnoredmethod
and return NO. For details on working with ignored objects, see “Manipulating the Accessibility Hierarchy” (page
29).

The Accessibility Hierarchy 13
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Accessibility Objects and the Accessibility Hierarchy

14 The Accessibility Hierarchy
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Accessibility Objects and the Accessibility Hierarchy

Assistive applications frequently need to be able to access the user interface object that is at a specific screen
location or that currently has keyboard focus. The NSAccessibility protocol defines methods an assistive
application uses to get this information from your application.

Hit-Testing

Hit-testing identifies the deepest member of the accessibility hierarchy that is located at a particular point
on the screen. For example, an assistive application may want to identify the user-accessible object that lies
beneath the current cursor position.

The NSAccessibility protocol defines the accessibilityHitTest:method which, similarly to the standard
hitTest: view method, returns the farthest descendent of the accessibility hierarchy that contains the
specified point (in bottom-left relative screen coordinates). Unlike the standard hitTest: view method,
however, the accessibilityHitTest:method is never called unless the Cocoa accessibility implementation
has already determined that the point lies within the receiver. This means that a class needs to override this
method only when it contains child accessibility objects; childless accessibility objects never have to override
this method.

When an accessibility object receives the accessibilityHitTest: method, therefore, it knows that the
specified point lies somewhere within it. The accessibility object then has the opportunity to perform deeper
hit-testing by identifying which child accessibility object, if any, contains the point. NSMatrix, for example,
identifies which of its cells contains the point and propagates the accessibilityHitTest: message to
it. Eventually, a childless accessibility object acknowledges that it is the object at the specified point and
returns self from the method. An ignored accessibility object without any children does not return self;
instead, it returns its first unignored ancestor.

Determining Keyboard Focus

Focus-testing identifies the deepest member of the accessibility hierarchy that has the keyboard focus. The
NSAccessibility protocol defines the accessibilityFocusedUIElement method an assistive application
can send to determine which object has keyboard focus.

As with the accessibilityHitTest: method, the accessibilityFocusedUIElement method is never
called unless the Cocoa accessibility implementation has already determined that the receiver has keyboard
focus somewhere within it. This means that a class needs to override this method only when it contains child
accessibility objects; childless accessibility objects never have to override this method.

When an accessibility object receives the accessibilityFocusedUIElementmessage, therefore, it knows
that it (or one of its children) has keyboard focus. The accessibility object then has the opportunity to perform
deeper focus-testing by determining which of its children has keyboard focus and sending to it the
accessibilityFocusedUIElement message. NSMatrix, for example, identifies which of its cells has the

Hit-Testing 15
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Hit-Testing and Keyboard Focus

focus and propagates the accessibilityFocusedUIElement message to it. Eventually, a childless
accessibility object acknowledges that it has keyboard focus and returns self from the method. An ignored
object without any children returns its first unignored ancestor instead of self.

16 Determining Keyboard Focus
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Hit-Testing and Keyboard Focus

Assistive applications need to be notified when something in the user interface of your application changes,
such as a new window appearing or a control changing its value. An assistive application can then query an
accessibility object in your application for its new state and present the information to the user.

NSAccessibility defines a number of notifications such as NSAccessibilityWindowResizedNotification
and NSAccessibilityFocusedUIElementChangedNotification. The assistive application can register
to receive notifications coming from a particular accessibility object or from any accessibility object in your
application.

NSAccessibility notifications require special handling, so they cannot be sent using an NSNotificationCenter
like regular notifications. Instead, notifications are sent with the following function:

void NSAccessibilityPostNotification(id element, NSString *notification);

The element argument is the affected accessibility object and notification is the notification name
describing the event.

If you implement custom objects, you may need to send the
NSAccessibilityValueChangedNotification; it is not likely you will ever need to send any others.

Note: Cocoa sends notifications automatically for its user interface objects.

17
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Accessibility Notifications

18
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Accessibility Notifications

This article describes the tasks you may have to perform to access enable a Cocoa application. Because many
Cocoa classes support accessibility by adopting the NSAccessibility protocol, standard objects are already
accessible to a great degree. For the most part, you have to add code for only the application-specific
information that Cocoa cannot automatically supply.

This article is divided into sections that describe the tasks associated with specific scenarios in your application.
Read this article to find out which of the tasks described in each section are necessary in your application.
For example, the tasks in the first section, “Provide Descriptive Information for All Elements,” are required
for all applications. The tasks in “Make Custom Classes and Subclasses Accessible” (page 21), on the other
hand, are required for only those applications that define custom classes or subclasses.

Provide Descriptive Information for All Elements

An assistive application needs to be able to describe all accessible user interface elements to the user. Often,
an assistive application can present the title of the element to the user, but sometimes an element’s title is
either unavailable or not sufficiently descriptive. Therefore, you must examine your application and ensure
that all accessibility objects supply descriptive information about themselves in either the title or description
attributes.

First, determine if a given accessibility object already includes the title attribute. An object that displays a
text title as part of its visual interface, such as an OK button, already includes the title attribute with the value
of the displayed text. Such an object does not need a description attribute because its title is sufficient to
convey its purpose to the user.

A button that displays an icon instead of a text title, however, does not have a title attribute. An example of
such an object is a “back” button that displays a left-pointing arrow instead of the word “Back”. An assistive
application cannot describe such a button’s purpose to a user unless the accessibility object representing
the button includes the description attribute. If you have such an object in your application, you must supply
an appropriate description in the description attribute.

Some user interface elements do not display a title, but are accompanied by a piece of static text that serves
as a title. An example of this is a set of editable text fields accompanied by the string “Address:”. To a sighted
user, the proximity of the string to the text fields implies that “Address:” serves as the title for the entire set
of text fields. An assistive application, however, cannot make this determination. If you use static text objects
to title user interface elements (or sets of user interface elements), you must make the relationship between
them clear to assistive applications.

To do this, you create an accessibility object to represent the static text object. Then, in each accessibility
object representing one of the titled user interface elements (each of the address fields, in this example),
you add the NSAccessibilityTitleUIElementAttribute attribute. The value of this attribute is the
accessibility object representing the static text title. Finally, in the static text title accessibility object, add the
NSAccessibilityServesAsTitleForUIElementsAttribute attribute. The value of this attribute is an
array of the accessibility objects for which this static text object serves as title (in this example, the array
comprises the set of editable text fields).

Provide Descriptive Information for All Elements 19
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Access Enabling a Cocoa Application

The title and description attributes provide information about the layout of your application’s user interface
and so their values are static and not settable by an assistive application. This means you can choose to use
a convenience method to provide these values instead of having to subclass the accessibility object and
override the appropriate methods. See “Supporting Attributes” (page 23) for details on the two techniques
you can use to support these descriptive attributes.

Link Conceptually Related Elements

In Mac OS X version 10.4, the NSAccessibility protocol introduced two new attributes that allow you to
describe conceptual links between accessibility objects. Conceptual links are those that are visually implied
onscreen, but that are difficult for an assistive application to determine. An example of such a link is in the
Mail application where the main window’s upper view contains a list of message headers and the lower view
displays the content of a selected message. It is obvious to a sighted user that the text in the lower view is
the contents of the selected message header in the upper view, but an assistive application cannot make
this determination. Another example is the relationship between a search field and the view containing the
search results. An assistive application has no way to know where you display search results unless you make
clear the relationship between the search field and the results view.

If your application includes elements that are linked conceptually, you should ensure that the accessibility
objects representing those elements include theNSAccessibilityLinkedUIElementsAttribute attribute.
The value of this attribute is an array of accessibility objects to which the element is linked. An assistive
application can use the accessibility objects in the array to provide to the user a shortcut between the linked
objects. Without this attribute, a user has to know which views are conceptually linked and must step through
every intervening object to move between them.

Like the description and title attributes, the value of the linked-elements attribute is part of the layout of
your application’s user interface. An assistive application does not need to set the value of this attribute, so
you have the option of using a convenience method to supply the value or of subclassing the accessibility
objects and overriding the appropriate methods. For more details on both these techniques, see “Supporting
Attributes” (page 23).

Make Substructure Accessible

Sometimes, your application uses a view object that contains substructure you need to make accessible.
However, some NSView objects are implemented as monolithic objects; objects that, as far as Cocoa is
concerned, contain no substructure. NSScrollBar is an example of such an object. Even though a sighted user
can manipulate separately the parts of a scroll bar (the scroller, the page-up and page-down regions in the
scroll track, and the scroll arrows), Cocoa does not represent these parts as separate objects. Therefore, an
assistive application cannot make any of these subviews directly accessible to a user. This also affects the
determination of mouse location and keyboard focus. A scroll bar can tell an assistive application that it has
keyboard focus, for example, but not the precise part of itself that has keyboard focus.

If you use an object, such as an NSScrollBar, in your application and you need to make its substructure
accessible, you must create an accessibility object to represent each part. The accessibility object must, of
course, implement the NSAccessibility protocol, but it can be very lightweight. This is because it can ask its
parent (the NSScrollBar object, in this example) to supply most of the information for which it might be asked,
such as its containing window or position. This accessibility object’s main responsibility is to allow an otherwise
inaccessible part of the user interface to be represented in the application’s accessibility hierarchy.

20 Link Conceptually Related Elements
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Access Enabling a Cocoa Application

The most efficient way to create these accessibility objects is to define a utility class that implements the
NSAccessibility protocol. Then, you create an instance of this class as needed and allow it to provide only
the information that is specific to the subview it represents. In particular, the utility class should implement
the hit-test and focus-test methods. This way, the accessibility object representing a subview can return itself
when it receives a hit-test or focus-test message.

In most cases, it works well to create these accessibility objects as they are asked for; it’s not necessary to
create and store them in advance. This is because these accessibility objects will never be asked for (and
therefore never created) if the user has not enabled access by assistive applications in the Universal Access
System Preferences.

Your utility class should create an instance given the parent accessibility object of the subview and its role.
This allows you easily to provide some of the required attributes for the new accessibility object. In the
NSScrollBar example, the parent object is the accessibility object representing the NSScrollBar as a whole
and the role is NSAccessibilityScrollBarRole.

Make Custom Classes and Subclasses Accessible

If you implement custom classes or custom subclasses of Cocoa classes in your application, you may need
to create accessibility objects to represent them. Any custom subclass of NSObject, for example, does not
inherit any accessibility support and must implement the methods to supply supported attributes and actions
and to return hit-test and focus-test information.

Although NSObject does not adopt the NSAccessibility protocol, the following common base classes do:

 ■ NSApplication

 ■ NSWindow

 ■ NSView

 ■ NSControl

 ■ NSCell

Although all the classes listed above implement the NSAccessibility protocol, they each support a different
set of attributes, actions, and methods and each has its own default ignored status. It’s important to be aware
of the base set of functionality of these classes so you can determine what your subclass needs to override.
Table 1 shows the default accessibility support of each class.

Table 1 AppKit classes and default accessibility support

Ignored by
default

Implemented methodsSupported attributesClass

Nohit-testing, focus testingrole, role description, menu bar, windows,
active, main window, key window, focused
accessibility object (UIElement)

NSApplication

Nohit-testing, focus testingrole, role description, title, focused, parent,
position, size, main, key

NSWindow

Make Custom Classes and Subclasses Accessible 21
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Access Enabling a Cocoa Application

Ignored by
default

Implemented methodsSupported attributesClass

Yeshit-testing, focus testing,
keystroke handling

role, role description, help, focused, parent,
children, window, position, size

NSView

Yes, unless
control has
multiple child
cells

position and size of child
methods

role, role description, help, focused, parent,
children, window, position, size, enabled

NSControl

Nohit-testing, focus-testingrole, role description, help, focused, parent,
children, window, position, size, enabled,
value

NSCell

When you need to make a custom class or subclass accessible, you create an accessibility object to represent
it, as described in “Make Substructure Accessible” (page 20). Be sure to take into account the default ignored
status of your chosen base class so you can override this value if appropriate for your subclass.

22 Make Custom Classes and Subclasses Accessible
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Access Enabling a Cocoa Application

This article describes two techniques you can use to support additional attributes and provide values for
individual attributes. For more information on why you might need to do this, see “Access Enabling a Cocoa
Application” (page 19).

Using a Convenience Method to Support Attributes

Mac OS X version 10.4 introduced the accessibilitySetOverrideValue:forAttribute: convenience
method, which allows you to add an attribute or change the value of an existing attribute without subclassing
the accessibility object. Use this method only for adding attributes and supplying values that are unchanging
and pertain to the layout of your application, such as titles, descriptions, and links between conceptually
related elements.

Don’t use this method to add attributes that should be settable by an assistive application. Attributes you
add using the accessibilitySetOverrideValue:forAttribute: method are unsettable by default
and will remain unsettable even if you subclass the accessibility object and override the
accessibilityIsAttributeSettable: method. For information on the methods to override to support
attributes that can be settable, see “Overriding Methods to Support Attributes.”

Overriding Methods to Support Attributes

NSAccessibility defines four methods for accessing an object’s attributes:

 ■ accessibilityAttributeNames

 ■ accessibilityAttributeValue:

 ■ accessibilityIsAttributeSettable:

 ■ accessibilitySetValue:forAttribute:

The first method returns an array of attribute names supported by the accessibility object. An assistive
application uses this method to determine which attributes an accessibility object supports, so it can later
get information about specific ones. The other three methods each operate on an individual attribute,
querying or setting the attribute’s value.

When supporting an additional attribute in a subclass, you must override the
accessibilityAttributeNames method and append the attribute to the array of attributes already
supported by the superclass. For example, if your accessibility object needs to support the
NSAccessibilityLinkedUIElementsAttribute, you override this method and insert the attribute into
the array. This method is likely to be called numerous times and there could be a large number of attributes,
so it should be efficient.

Using a Convenience Method to Support Attributes 23
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Supporting Attributes

Listing 1 shows an implementation that adds the @"MyAttribute" attribute, initializing a static variable
with the array of attribute names the first time the method is invoked:

Listing 1 Supporting an additional attribute

static NSString *MyAttributeName = @"MyAttribute";

- (NSArray *)accessibilityAttributeNames
{
 static NSArray *attributes = nil;
 if (attributes == nil) {
 attributes = [[[super accessibilityAttributeNames]
 arrayByAddingObject:MyAttributeName] retain];
 }
 return attributes;
}

When a subclass supports an additional attribute, it must also override the methods that can get that attribute’s
value, determine if it is settable, and set its value. Listing 2 shows possible implementations for these methods,
using the @"MyAttribute" attribute added in Listing 1 (page 24).

Listing 2 Supplying information about an added attribute

- (id)accessibilityAttributeValue:(NSString *)attribute
{
 // Determine if the attribute being asked about is the newly added one.
 if ([attribute isEqualToString:MyAttributeName])
 return [NSNumber numberWithInt:_MyAttribute];
 else
 // The attribute in question is not the added one, so let
 // the superclass handle it.
 return [super accessibilityAttributeValue:attribute];
}

- (BOOL)accessibilityIsAttributeSettable:(NSString *)attribute
{
 // Determine if the attribute being asked about is the newly added one.
 if ([attribute isEqualToString:MyAttributeName])
 return YES; // YES if MyAttribute is settable, NO if it is not.
 else
 // The attribute in question is not the added one, so let
 // the superclass handle it.
 return [super accessibilityIsAttributeSettable:attribute];
}

- (void)accessibilitySetValue:(id)value
 forAttribute:(NSString *)attribute
{
 // Determine if the attribute being asked about is the newly added one.
 if ([attribute isEqualToString:MyAttributeName])
 // Call the subclass’s method to set the attribute’s value.
 [self setMyAttributeValue:[value intValue]];
 else
 // The attribute in question is not the added one, so let
 // the superclass handle it.
 [super accessibilitySetValue:value forAttribute:attribute];
}

24 Overriding Methods to Support Attributes
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Supporting Attributes

When setting an attribute, the implementation ideally should invoke the same methods that would have
been invoked if the attribute was modified directly from the user interface.

Overriding Methods to Support Attributes 25
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Supporting Attributes

26 Overriding Methods to Support Attributes
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Supporting Attributes

NSAccessibility defines three methods for accessing an object’s actions:

 ■ accessibilityActionNames

 ■ accessibilityActionDescription:

 ■ accessibilityPerformAction:

The first method returns an array of action names supported by the accessibility object, the second returns
a localized string describing a particular action, and the third performs a particular action.

When supporting an action in a subclass, you need to override all three methods. In the
accessibilityActionNames method, you need to invoke the superclass’s implementation and append
your new action. This allows an assistive application to get an accurate list of all actions you support. In the
other two methods, compare the action name to those your subclass supports; if no match is found, invoke
the superclass’s implementation. Listing 1 shows sample implementations of these methods that add a new
action named @"Boing".

Listing 1 Supporting a new action

static NSString *MyBoingActionName = @"Boing";

- (NSArray *)accessibilityActionNames
{
 static NSArray *actions = nil;
 if (actions == nil) {
 actions = [[[super accessibilityActionNames]
 arrayByAddingObject:MyBoingActionName] retain];
 }
 return actions;
}

- (NSString *)accessibilityActionDescription:(NSString *)action
{
 if ([action isEqualToString:MyBoingActionName])
 return NSLocalizedString(@"BoingDescription",
 @"Performs the Boing action");
 else
 return [super accessibilityActionDescription:action];
}

- (void)accessibilityPerformAction:(NSString *)action
{
 if ([action isEqualToString:MyBoingActionName])
 [self doBoing];
 else
 [super accessibilityPerformAction:action];
}

27
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Supporting Actions

When performing an action, the subclass’s implementation ideally should invoke the same methods that are
invoked if the action is performed directly from the user interface.

28
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Supporting Actions

As described in “The Accessibility Hierarchy” (page 12), some accessibility objects are uninteresting to assistive
applications and are designated as ignored. An ignored accessibility object is never exposed to an assistive
application, but it does participate in the accessibility hierarchy. As you develop your Cocoa application, you
may find that you need to adjust the accessibility hierarchy to present a cleaner representation to assistive
applications. This article describes how to manipulate the accessibility hierarchy.

Any object indicates that it should not be visible to assistive applications by implementing the
accessibilityIsIgnored method and returning YES. Because an ignored object still participates in the
internal parent-child hierarchy, however, it must implement the NSAccessibilityParentAttribute and
NSAccessibilityChildrenAttribute attributes to provide a link between the objects above and below
it.

When an attribute value, hit-test, or focus test would otherwise return an ignored object, the object must
be replaced by an unignored object. Depending on the situation, the object should be replaced either by an
ancestor or by one or more descendants. The search for replacement objects iterates through the internal
hierarchy until all ignored objects are eliminated. For example, when an object’s children are requested, a
child that is ignored is replaced by the child’s children. If one of those children is also ignored, it is replaced
by its children, and so on. Likewise, when asking for an object’s parent, an ignored parent is skipped and the
first unignored ancestor is returned.

To help manage ignored objects, Cocoa provides several functions that perform the necessary
search-and-replace procedures. The following two functions test whether the given object is ignored and
returns either that object, if not ignored, or the first unignored parent (ancestor) or child (descendant), if the
object is ignored:

id NSAccessibilityUnignoredDescendant(id element);
id NSAccessibilityUnignoredAncestor(id element);

You use these utility functions to ensure that you return an unignored object in response to, for example, a
request for the value of the NSAccessibilityChildrenAttribute attribute. The
NSAccessibilityUnignoredDescendant function returns the first unignored object it finds as it checks
the accessibility object passed to it and works its way down the object’s descendant chain. If an ignored
object has either no unignored children or multiple unignored children, this function fails and returns nil.

This does not mean that you should return nil in response to a hit-testing or focus-testing method, however.
For hit-testing and focus-testing, you should return either an unignored child or self.

Similarly, the NSAccessibilityUnignoredAncestor function returns the first unignored object it finds
as it checks the accessibility object passed to it and works its way up the object’s ancestor chain.

Cocoa also provides the following two convenience functions that replace ignored objects with their unignored
children:

NSArray *NSAccessibilityUnignoredChildren(NSArray *originalChildren);
NSArray *NSAccessibilityUnignoredChildrenForOnlyChild(id originalChild);

29
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Manipulating the Accessibility Hierarchy

The NSAccessibilityUnignoredChildren function takes a set of accessibility objects and replaces any
ignored objects with their children, recursing if necessary. The
NSAccessibilityUnignoredChildrenForOnlyChild function replaces a single child with its unignored
children. It is equivalent to the following usage of the NSAccessibilityUnignoredChildren function:

NSAccessibilityUnignoredChildren([NSArray arrayWithObject:originalChild])

You can use these convenience functions to make it easier to respect the ignored status of the accessibility
objects you return to assistive applications. Listing 1 shows one way to do this.

Listing 1 Returning attribute values for unignored children

- (id)accessibilityAttributeValue:(NSString *)attribute
{
 if ([attribute isEqualToString:NSAccessibilityChildrenAttribute])
 return NSAccessibilityUnignoredChildren(_children);

 else if ([attribute isEqualToString:NSAccessibilityParentAttribute])
 return NSAccessibilityUnignoredAncestor(_parent);

 else
 return [super accessibilityAttributeValue:attribute];
}

In the code in Listing 1, _children and _parent represent the objects immediately above and below the
given object, regardless of their ignored status. For an NSView object, for example, these are the subviews
and superview, respectively.

30
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Manipulating the Accessibility Hierarchy

This table describes the changes to Accessibility Programming Guidelines for Cocoa.

NotesDate

Added recommended usage of the linked UI element attribute for search fields
and results.

2007-02-08

Updated for Mac OS X v10.4. Changed title from "Accessibility."2005-04-29

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

31
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Document Revision History

32
2007-02-08 | © 2004, 2007 Apple Inc. All Rights Reserved.

Document Revision History

	Accessibility Programming Guidelines for Cocoa
	Contents
	Figures, Tables, and Listings
	Introduction
	Accessibility Objects and the Accessibility Hierarchy
	Attributes
	Actions
	The Accessibility Hierarchy

	Hit-Testing and Keyboard Focus
	Hit-Testing
	Determining Keyboard Focus

	Accessibility Notifications
	Access Enabling a Cocoa Application
	Provide Descriptive Information for All Elements
	Link Conceptually Related Elements
	Make Substructure Accessible
	Make Custom Classes and Subclasses Accessible

	Supporting Attributes
	Using a Convenience Method to Support Attributes
	Overriding Methods to Support Attributes

	Supporting Actions
	Manipulating the Accessibility Hierarchy
	Revision History

