
Spotlight Importer Programming Guide
Data Management: File Management

2009-10-11

Apple Inc.
© 2004, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Finder, iCal,
iTunes, Mac, Mac OS, Objective-C, Quartz,
QuickTime, Rosetta, Spotlight, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Spotlight Importer Programming Guide 7

Who Should Read This Document 7
Organization of This Document 7
See Also 7

Extracting Metadata from Documents 9

What Is a Spotlight Importer? 9
Associating a Spotlight Importer With Documents 9
Additional Guidelines 10

Assigning Values to Metadata Attributes 11

Spotlight’s Metadata Attributes 11
Localizing Metadata Attribute Values 11
Defining Custom Attributes 12

Attribute Naming Conventions 12
Defining the Value Object Type 12
Returning Multiple Values in an Attribute 12
Attribute Display Names and Descriptions 12

Spotlight Importer Schema Format 13

The Schema.xml File 13
Specifying Custom Attributes 13
Specifying the Attributes for a Document 14

Writing a Spotlight Importer 17

Creating the Metadata Importer Project 17
Assigning a Unique ID to the Import Function 17
Associating an Importer with Document Types 19
Specifying Metadata Attributes 20
Assigning Values to Metadata Attributes 22

Spotlight Importer Performance 25

Troubleshooting Spotlight Importers 27

Where should I install my Spotlight importer? 27
When will the Spotlight importer in my application bundle re-index files? 27

3
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

How can I determine if my Spotlight importer is being found? 27
Why isn’t my bundled importer being found? 28
I've updated my importer and copied it to a Spotlight directory, but the old importer is still being
used 28
How do I test my importer? 28
How do I debug my importer using gdb? 29
What does the system think the UTI is for a document? 29
Running mdimport returns nothing 30
Running mdimport returns an unexpected UTI 30
mdimport does not return my metadata attributes 31
What are the imported metadata attributes for a specific file? 32
Why isn’t Spotlight finding my document bundles when they are saved by my application? 33

Document Revision History 35

4
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Tables and Listings

Assigning Values to Metadata Attributes 11

Listing 1 Sample importer’s schema.strings file 12

Spotlight Importer Schema Format 13

Table 1 Attributes of attribute element 14
Table 2 Attributes of type element 14

Writing a Spotlight Importer 17

Listing 1 Metadata importer Info.plist template 17
Listing 2 Setting the importer ID in main.c 18
Listing 3 UTExportedTypeDeclarations format 19
Listing 4 Metadata Importer schema.xml template 20
Listing 5 schema.xml file for the sample metadata importer 21
Listing 6 Sample importer’s schema.strings file 21
Listing 7 GetMetadataForFile template implementation 22
Listing 8 Objective-C implementation of GetMetadataForFile for the sample metadata

importer 22

5
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

6
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Spotlight metadata importers allow Mac OS X to extract metadata from custom document formats.

Who Should Read This Document

You should read this document if your application saves custom document types to disk. All applications
that support saving documents to disk should consider providing Spotlight support by implementing a
metadata importer.

Organization of This Document

The following articles cover key concepts in understanding how metadata importers work:

 ■ “Extracting Metadata from Documents” (page 9) describes the role of the metadata importer and its
components.

 ■ “Assigning Values to Metadata Attributes” (page 11) provides an overview of the Spotlight metadata
attributes and creating your own custom attributes.

 ■ “Spotlight Importer Schema Format” (page 13) describes the format of a Spotlight importer schema file.

These articles contain tasks that teach you how to implement metadata importers:

 ■ “Spotlight Importer Performance” (page 25) describes important performance considerations.

 ■ “Writing a Spotlight Importer” (page 17) describes how to write a metadata importer.

 ■ “Troubleshooting Spotlight Importers” (page 27) describes how to test and diagnose problems with
your Spotlight importers.

See Also

There are other aspects of Spotlight metadata, not covered by this document,that are fundamental to
implementing a metadata importer. For example, this document does not explain the commonly used
metadata keys or provide guidelines on using those keys to their full potential. Refer to these documents for
more details:

 ■ Spotlight Overview provides a conceptual overview of Spotlight.

 ■ Spotlight Metadata Attributes Reference describes the metadata keys Apple provides.

Who Should Read This Document 7
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Introduction to Spotlight Importer
Programming Guide

8 See Also
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Introduction to Spotlight Importer Programming Guide

For Spotlight searching to work, it has to have metadata. While some metadata (modification dates, display
name, path name) is easy to gather for a given file, most of the interesting data is embedded inside the file.
To gather this embedded information you must provide a Spotlight importer.

What Is a Spotlight Importer?

A Spotlight importer is a small plug-in bundle that you create to extract information from files created by
your application. Spotlight importers are used by the Spotlight engine to gather information about new and
existing files.

Note: It is imperative that developers provide metadata importers for their own custom document formats.
Spotlight metadata importers improve the user experience greatly by making sure your documents can be
found during searches.

Spotlight importers parse your document format for relevant information and assigning that information to
the appropriate metadata keys. Keys help index the content in the data store and facilitate searches. Xcode
includes a project template that provides the required CFPlugin support, as well as templates for the required
schema file.

Spotlight importers typically reside within your application’s bundle in the subdirectory
MyApp.app/Contents/Library/Spotlight. They can also be installed in ~/Library/Spotlight,
/Library/Spotlight, and Framework/PlugIn. System provided importers reside in
/System/Library/Spotlight.

Associating a Spotlight Importer With Documents

Spotlight importers are associated with document types by specifying the uniform type identifiers (UTIs)
from which they extract data. For more information on Uniform Type Identifiers see Uniform Type Identifiers
Overview.

The supported UTI types are specified in the importer’s Info.plist file, contained within the plug-in bundle.
An importer can support a single document type or multiple document types. The function in the importer
that is called for each file is passed the UTI type of the file and can adjust its extraction means as appropriate.

What Is a Spotlight Importer? 9
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Extracting Metadata from Documents

Additional Guidelines

Avoid the use of external files to store metadata content. All critical metadata should be in the same file as
the data. The system store of metadata should be considered volatile.

A Spotlight importer must run entirely without interaction. You should not attempt to present any user
interface or expect that the window server is running.

You should not expect your application to be running when your metadata importer is called. Importers can
be called at any time to extract metadata from a file. Your metadata importer should be able to extract the
information without any assistance from the application that created the file.

It is important to let users know what metadata you include in your file formats and what information you
extract for searching. For example, users may not want their user ID or other personal information embedded
in files they distribute externally. Consider giving the user an option to save a copy of the file without metadata
for external distribution, or disable the extraction of metadata that has security implications.

10 Additional Guidelines
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Extracting Metadata from Documents

Spotlight defines standard metadata attributes that provide a wide range of options for storing your
document's metadata. In order for users to be able to find data easily, it is important to use existing keys
whenever possible.

Spotlight’s Metadata Attributes

Spotlight provides predefined metadata attributes for the following:

 ■ File system attributes. For example, file size, owner, and modification date. These are extracted from the
file system automatically by Spotlight.

 ■ Image related attributes. For example, bits per sample, color space, pixel height, and width.

 ■ Video related attributes. For example, codec, video bit rate, and audio bit rate.

 ■ Audio related attributes. For example, sample rate, track number, composer, and time signature.

 ■ Attributes common to many applications. For example, authors, city, organization, email addresses, and
headline.

The Spotlight provided metadata attributes are documented in Spotlight Metadata Attributes Reference.

In addition to the data-specific attributes Spotlight provides a general text attribute (kMDItemTextContent)
that importers can populate with a text representation of a document's content. Applications can create
queries that reference this attribute, but are not able to read the value of this attribute directly.

You should avoid creating new metadata attributes if an existing key would be appropriate. For example, if
your document tracks the photographer of an image, use the kMDItemAuthors attribute rather than defining
a custom photographer key. Or, if your document includes a company name, use the kMDItemOrganizations
attribute.

See “Assigning Values to Metadata Attributes” (page 22) in “Writing a Spotlight Importer” (page 17) for an
example of how to assign values to metadata attributes.

Localizing Metadata Attribute Values

A Spotlight importer can provide localized values for an attribute by returning a dictionary object instead of
a string value. The dictionary must contain keys that correspond to the localized languages. For example
“en” for English, “fr” for French, etc. The value for each key should be the corresponding localized attribute
value.

Spotlight’s Metadata Attributes 11
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Assigning Values to Metadata Attributes

Note: In Mac OS X v10.4 only attributes that return a single string value can provide localized attribute values.
Attributes that return multiple values in an array can not be localized.

Defining Custom Attributes

If none of the existing Spotlight attributes are appropriate or adaptable to your metadata, you can define a
custom metadata attribute. An importer specifies the name of the custom attribute, as well as the type of
data it contains, in its schema.xml file.

Attribute Naming Conventions

Custom metadata attributes must have unique names. To ensure this you use the reverse DNS naming
convention as a prefix for keys that are specific to your document types, replacing “.” with “_” characters. For
example, the Mail program would prefix its custom attributes with com_apple_mail.

Defining the Value Object Type

You must specify the type of object that is returned in your custom attribute. The supported types are:
CFString, CFNumber, CFBoolean, and CFDate.

Returning Multiple Values in an Attribute

Attributes that return an array of objects rather than a single object are said to be multivalued. If your custom
attributes can contain multiple objects, you should declare them as multivalue in your importer's schema
file and always return an array, even if it contains only a single instance.

Attribute Display Names and Descriptions

Spotlight importers that declare custom metadata attributes should also provide a display name and
description for each attribute. These strings are contained in the file schema.strings in your importer
bundle.

The file must be UTF-16 text encoded formatted as a standard strings file. The display name keys correspond
to the custom metadata attribute’s name. The description string is specified by appending “.Description”
to the key name. Listing 1 shows a sample schema.strings file.

Listing 1 Sample importer’s schema.strings file

"com_apple_myCocoaDocumentApp_myCustomDocument_notes" = "Notes";
"com_apple_myCocoaDocumentApp_myCustomDocument_notes.Description" = "What it is
 you're supposed to remember.";

You can localize schema.strings files using the standard conventions.

12 Defining Custom Attributes
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Assigning Values to Metadata Attributes

For Spotlight to know what attributes an importer supports, it must provide a schema file. The schema file
describes the attributes that the importer populates, describes the attributes that applications should use
to provide a preview of the document’s metadata, and specifies any custom metadata attributes that your
documents require.

The Schema.xml File

The schema is specified in an XML schema file called schema.xml within your Spotlight importer bundle.

The following XML fragment shows the general format of the file.

<?xml version="1.0" encoding="UTF-8"?>
<schema version="1.0" xmlns="http://www.apple.com/metadata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.apple.com/metadata
file:///System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/
Resources/MetadataSchema.xsd">
 <attributes>
 ...
 </attributes>
 <types>
 <type name="SUPPORTED_UTI_TYPE">
 <allattrs>
 ...
 </allattrs>
 <displayattrs>
 ...
 </displayattrs>
 </type>
 </types>
</schema>

Specifying Custom Attributes

Custom attributes for your Spotlight importer are declared as attribute elements that are children of the
attributes element. The XML attributes for the attribute element are shown in Table 1.

The Schema.xml File 13
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Spotlight Importer Schema Format

Table 1 Attributes of attribute element

DescriptionAttributes

The name of the custom metadata attribute. The metadata attributes are prefixed with the
reverse DNS naming schema, replacing “.” with “_” for key-value coding compatibility.

name

The data type that the attribute returns. Only the following CF types are supported: CFString,
CFNumber, CFBoolean and CFDate.

type

If the importer returns an array of values for this metadata attribute this attribute should be
“true”. If this attribute is omitted, “false” is assumed.

multivalued

If the importer returns only a small number of possible values for an attribute, space in the
system store can be saved by setting this attribute to “true”. If this attribute is omitted, “false”
is assumed. This attribute is optional, and should only be specified when there is a very small
number of values possible for the attribute.

uniqued

If set to “true” this attribute is only searched when it is specifically declared as a target
metadata attribute in the search string. If this attribute is omitted, “false” is assumed and all
wildcard attribute searches will include the values of this metadata attribute.

nosearch

The following is an example XML fragment for the attributes element of a schema.

<attributes>
 <attribute name="com_apple_myCocoaDocumentApp_myCustomDocument_notes"
multivalued="false" type="CFString"/>
</attributes>

Specifying the Attributes for a Document

There is a single type element for each document type that your importer can read. The XML attributes for
the type element are shown in Table 2 (page 14).

Table 2 Attributes of type element

DescriptionAttributes

The Uniform Type Identifier declared for the document type.name

A type element specifies the metadata attributes that it returns in the allattrs element, separating each
name with whitespace. The allattrs element should contain all the elements related to your custom
document.

The metadata attributes to be displayed for previewing for a document—for example in Finder’s Get Info
panel—are listed within the displayattrs element, separating each name with whitespace.

The following is an example XML fragment for a types element of a schema.

<types>
 <type name="com.apple.mycocoadocumentapp.mycustomdocument">

14 Specifying the Attributes for a Document
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Spotlight Importer Schema Format

 <allattrs>
 com_apple_myCocoaDocumentApp_myCustomDocument_notes
 </allattrs>
 <displayattrs>
 com_apple_myCocoaDocumentApp_myCustomDocument_notes
 </displayattrs>
 </type>
</types>

Specifying the Attributes for a Document 15
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Spotlight Importer Schema Format

16 Specifying the Attributes for a Document
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Spotlight Importer Schema Format

Spotlight importers should be provided by all applications that support custom document formats. A Spotlight
importer parses your document format for relevant information and assigning that information to the
appropriate metadata keys.

An example metadata importer that extracts metadata from a custom document is included in the
/Developer/Examples/Metadata/ImporterExample. This example is referred to throughout this article.

Creating the Metadata Importer Project

Xcode provides a project template, Metadata Importer, that provides the functionality commonly shared by
importers.

This template creates a project with the required frameworks, a template for the Info.plist, a template
for the schema file, a template for the localizable schema.strings file, a template for the main.c file that
contains the necessary CFPlugin implementation and GetMetadataForFile.c, a skeleton implementation
of the required callback function. The target creates a CFPlugin bundle with an mdimporter extension.

In addition to writing the extraction code, you’ll need to modify the templates to specify the document types
your importer handles and list the keys your importer provides.

Assigning a Unique ID to the Import Function

Each plug-in factory that can import metadata must have a unique identification number associated with it.
Typically, there is only a single plug-in factory for each metadata importer, as a single function can handle
many document types.

When you create a new metadata importer project, Xcode creates a UUID for your importer. Here is the UUID
xCode generated for the sample metadata importer.

8AED83B3-C412-11D8-85A3-000393D59866

This value is used in the importer’s Info.plist, as well as the main.c file. Listing 1 shows the Info.plist
template that was generated by Xcode.

Listing 1 Metadata importer Info.plist template

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CFBundleDevelopmentRegion</key>

Creating the Metadata Importer Project 17
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing a Spotlight Importer

 <string>English</string>
 <key>CFBundleDocumentTypes</key>
 <array>
 <dict>
 <key>CFBundleTypeRole</key>
 <string>MDImporter</string>
 <key>LSItemContentTypes</key>
 <array>
 <string>SUPPORTED_UTI_TYPE</string>
 </array>
 </dict>
 </array>
 <key>CFBundleExecutable</key>
 <string>MyCustomImporter</string>
 <key>CFBundleIconFile</key>
 <string></string>
 <key>CFBundleIdentifier</key>
 <string>com.apple.yourcfbundle</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundlePackageType</key>
 <string>BNDL</string>
 <key>CFBundleSignature</key>
 <string>????</string>
 <key>CFBundleVersion</key>
 <string>1.0</string>
 <key>CFPlugInDynamicRegisterFunction</key>
 <string></string>
 <key>CFPlugInDynamicRegistration</key>
 <string>NO</string>
 <key>CFPlugInFactories</key>
 <dict>
 <key>8AED83B3-C412-11D8-85A3-000393D59866</key>
 <string>MetadataImporterPluginFactory</string>
 </dict>
 <key>CFPlugInTypes</key>
 <dict>
 <key>8B08C4BF-415B-11D8-B3F9-0003936726FC</key>
 <array>
 <string>8AED83B3-C412-11D8-85A3-000393D59866</string>
 </array>
 </dict>
 <key>CFPlugInUnloadFunction</key>
 <string></string>
</dict>
</plist>

The CFPlugInFactories entry is a dictionary that associates the metadata importer host ID to the UUIDs
of the plug-in factory function an importer requires. The CFPluginInTypes dictionary contains keys that
associate the UUID of the factory function to the function. In both locations, Xcode inserted the newly
generated UUID.

Here is the relevant line from the main.c template that Xcode created.

Listing 2 Setting the importer ID in main.c

#define PLUGIN_ID "8AED83B3-C412-11D8-85A3-000393D59866"

18 Assigning a Unique ID to the Import Function
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing a Spotlight Importer

Associating an Importer with Document Types

An importer must be associated with the document types that it can import. You do this by specifying the
Uniform Type Identifiers (UTIs) that correspond to the supported documents.

The supported UTIs are specified in the LSItemContentTypes array in the importer’s Info.plist. The
template in Listing 1 (page 17) includes a placeholder, SUPPORTED_UTI_TYPE, that you should replace with
the UTI that your importer handles. If more than one document type is supported you can add additional
string entries to the LSItemContentTypes array in the Info.plist. In the example importer, the
SUPPORTED_UTI_Type is com.apple.mycocoadocumentapp.mycustomdocument.

Note: If an importer reads metadata from a document package you must add com.apple.package to the
array of UTIs declared in the UTTypeConformsTo entry.

If your application does not define a UTI for its document types, you can declare one in your importer's
Info.plistby adding theUTExportedTypeDeclarations key. Standalone importers that don't correspond
to an application should declare the UTIs that they support by specifying a UTImportedTypeDeclarations
key. The UTImportedTypeDeclarations format is the same as the UTExportedDeclarations format
shown in Listing 3 (page 19). See “Uniform Type Identifier Concepts” for more information on declaring UTIs.

Listing 3 UTExportedTypeDeclarations format

<key>UTExportedTypeDeclarations</key>
<array>
 <dict>
 <key>UTTypeIdentifier</key>
 <string>com.yourcompany.yourUTI</string>
 <key>UTTypeReferenceURL</key>
 <string>http://www.company.com/yourproduct</string>
 <key>UTTypeDescription</key>
 <string>Your Document Kind String</string>
 <key>UTTypeConformsTo</key>
 <array>
 <string>public.data</string>
 <string>public.content</string>
 </array>
 <key>UTTypeTagSpecification</key>
 <dict>
 <key>com.apple.ostype</key>
 <string>XXXX</string>
 <key>public.filename-extension</key>
 <array>
 <string>xxxx</string>
 </array>
 </dict>
 </dict>
</array>

Associating an Importer with Document Types 19
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing a Spotlight Importer

Specifying Metadata Attributes

You need to specify the metadata attributes that your metadata importer returns by modifying the project’s
schema.xml file. This is an XML Schema document that provides details on the returned attributes and
allows you to specify custom metadata keys as well.

Listing 4 shows the schema.xml template generated by Xcode.

Listing 4 Metadata Importer schema.xml template

<?xml version="1.0" encoding="UTF-8"?>

<schema version="1.0" xmlns="http://www.apple.com/metadata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.apple.com/metadata
file:///System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Resources/MetadataSchema.xsd">
 <note>
 Custom attributes that this metadata importer supports. Below
 is an example of a multivalued string attribute. Other types
 are CFNumber, CFDate, CFBoolean and CFData.
 </note>
 <attributes>
 <attribute name="com_Foo_YourAttrName" multivalued="true"
type="CFString"/>
 </attributes>

 <types>
 <type name="SUPPORTED_UTI_TYPE">
 <note>
 The keys that this metadata importer handles.
 </note>
 <allattrs>
 com_Foo_YourAttrName
 </allattrs>
 <displayattrs>
 com_Foo_YourAttrName
 </displayattrs>
 </type>
 </types>
</schema>

You must edit this template to suit your metadata importer.

1. Replace the SUPPORTED_UTI_TYPE placeholder with the appropriate UTI type for your document.

2. Edit the attributes element, editing or removing the attribute elements as required.

The metadata keys are prefixed with the reverse DNS naming schema, replacing “_” with “.” for key-value
coding compatibility. Each of these custom metadata values return a single CFString as specified by the
type attribute of the attribute element.

Metadata importers can only return the following CF types: CFString, CFNumber, CFBoolean, and CFDate.
If a key returns an array of values, the type attribute specifies the CF type and the attribute element
must include a multivalued attribute with a value of true.

20 Specifying Metadata Attributes
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing a Spotlight Importer

If your importer does not require custom metadata keys, you can remove the attributes element
entirely.

3. Edit the allattrs element so that it contains all your metadata keys.

4. Edit the displayattrs element so that it contains a subset of your metadata keys that are recommended
for previewing.

5. Edit the schema.strings file to provide display name and description strings for your custom metadata
keys.

Listing 5 shows the schema.xml file that is included with the sample metadata importer project.

Listing 5 schema.xml file for the sample metadata importer

<?xml version="1.0" encoding="UTF-8"?>

<schema version="1.0" xmlns="http://www.apple.com/metadata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.apple.com/metadata
file:///System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Resources/MetadataSchema.xsd">
 <note>
 Custom attributes that this metadata importer supports. Below
 is an example of a multivalued string attribute. Other types
 are CFNumber, CFDate, CFBoolean and CFData.
 </note>
 <attributes>
 <attribute name="com_apple_myCocoaDocumentApp_myCustomDocument_notes"
multivalued="false" type="CFString"/>
 </attributes>

 <types>
 <type name="com.apple.mycocoadocumentapp.mycustomdocument">
 <note>
 The keys that this metadata importer handles.
 </note>
 <allattrs>
 com_apple_myCocoaDocumentApp_myCustomDocument_notes
 </allattrs>
 <displayattrs>
 com_apple_myCocoaDocumentApp_myCustomDocument_notes
 </displayattrs>
 </type>
 </types>
</schema>

The sample metadata importer declares one new attribute key,
com_apple_myCocoaDocumentApp_myCustomDocument_notes. The key name is prefixed with the reverse
DNS naming schema, replacing “_” with “.” for key-value coding compatibility. Each of these custom metadata
values return a single CFString as specified by the type attribute of the attribute element.

Listing 6 shows the schema.strings file for the sample metadata importer.

Listing 6 Sample importer’s schema.strings file

"com_apple_myCocoaDocumentApp_myCustomDocument_notes" = "Notes";

Specifying Metadata Attributes 21
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing a Spotlight Importer

"com_apple_myCocoaDocumentApp_myCustomDocument_notes.Description" = "What it is
 you're supposed to remember.";

The command-line tool mdcheckschema performs a simple validation on a schema and is useful when testing
your own importer schema for validity.

Assigning Values to Metadata Attributes

When metadata is extracted for a file, the GetMetadataForFile function is called. The function is passed
the plug-in interface, a mutable dictionary that you’ll add the metadata attribute keys and values to, the UTI
type of the target file, and the full path to the target file.

Listing 7 shows the GetMetadataForFile skeleton implementation provided by Xcode in
GetMetadataForFile.c.

Listing 7 GetMetadataForFile template implementation

Boolean GetMetadataForFile(void* thisInterface,
 CFMutableDictionaryRef attributes,
 CFStringRef contentTypeUTI,
 CFStringRef pathToFile)
{
 /* Pull any available metadata from the file at the specified path */
 /* Return the attribute keys and attribute values in the dict */
 /* Return true if successful, false if there was no data provided */

 #warning To complete your importer please implement the function
GetMetadataForFile in GetMetadataForFile.c
 return false;
}

Your implementation of this function should extract the metadata from the file and insert it into the dictionary
with the appropriate keys and values. If it successfully returns metadata, the function should return with a
value of true. If no metadata was extracted, you should return false.

The example’s custom document format is a simple property list containing the author, title and reminder
notes. Note that the example makes use of Objective-C and the Foundation class NSDictionary to read the
dictionary from the file. In order to use Objective-C in your GetMetadataForFile implementation you must
rename GetMetadataForFile.c to GetMetadataForFile.m. Listing 8 shows the GetMetadataForFile
implementation of the example metadata importer.

Listing 8 Objective-C implementation of GetMetadataForFile for the sample metadata importer

Boolean GetMetadataForFile(void* thisInterface,
 CFMutableDictionaryRef attributes,
 CFStringRef contentTypeUTI,
 CFStringRef pathToFile)
{
 /* Pull any available metadata from the file at the specified path */
 /* Return the attribute keys and attribute values in the dict */
 /* Return true if successful, false if there was no data provided */
 Boolean success=NO;
 NSDictionary *tempDict;

22 Assigning Values to Metadata Attributes
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing a Spotlight Importer

 NSAutoreleasePool *pool;

 // Don't assume that there is an autorelease pool around the calling of this
 function.
 pool = [[NSAutoreleasePool alloc] init];
 // load the document at the specified location
 tempDict=[[NSDictionary alloc] initWithContentsOfFile:(NSString *)pathToFile];
 if (tempDict)
 {
 // set the kMDItemTitle attribute to the Title
 [(NSMutableDictionary *)attributes setObject:[tempDict objectForKey:@"title"]
 forKey:(NSString *)kMDItemTitle];

 // set the kMDItemAuthors attribute to an array containing the single Author
 // value
 [(NSMutableDictionary *)attributes setObject:[NSArray
arrayWithObject:[tempDict objectForKey:@"author"]]
 forKey:(NSString *)kMDItemAuthors];

 // set our custom document notes attribute to the Notes value
 // (in the real world, you'd likely use the kMDItemTextContent attribute,
however that
 // would make it hard to demonstrate using a custom key!)
 [(NSMutableDictionary *)attributes setObject:[tempDict objectForKey:@"notes"]

forKey:@"com_apple_myCocoaDocumentApp_myCustomDocument_notes"];

 // return YES so that the attributes are imported
 success=YES;

 // release the loaded document
 [tempDict release];
 }
 [pool release];
 return success;
}

Assigning Values to Metadata Attributes 23
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing a Spotlight Importer

24 Assigning Values to Metadata Attributes
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing a Spotlight Importer

A Spotlight importer is called upon as files are created, copied, and modified, so performance is crucial.
Importers should be able to extract metadata from documents quickly and with minimal effort.

Avoid burying metadata deep inside a file, especially if finding that metadata would be computationally
intensive later. If needed, define your file format so that relevant information is in the header or in an easily
accessible location.

It is also vital that your importer does not leak memory, as this can contribute to performance problems.

25
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Spotlight Importer Performance

26
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Spotlight Importer Performance

Rare is the project that is flawless from the start. Troubleshooting a Spotlight importer can be difficult given
that it is run by the system automatically as required and is run outside the development environment.

This article describes how to explicitly run your metadata importer for testing and provides a number of
techniques for troubleshooting problems.

Where should I install my Spotlight importer?

Your Spotlight importer typically resides within your application’s bundle in the subdirectory
MyApp.app/Contents/Library/Spotlight. Importers can also be installed in one of the following
locations:

~/Library/Spotlight
/Library/Spotlight

If your importer is not part of an application bundle, you should create an installer package that installs the
importer in one of the above locations. In order to have existing files imported, you will need to have a
postinstall script for your installer that includes the following command, specifying your importer install
location:

/usr/bin/mdimport -r InstallDirectory/YourPlug-In

When will the Spotlight importer in my application bundle re-index
files?

When a user first runs your application, the Spotlight importer is found and Spotlight will begin importing
any existing documents. If you update your application and the Spotlight importer, you should ensure that
the importer bundle has a different date stamp. When the updated application is run for the first time Spotlight
will re-index the existing files with the new importer.

Note: This behavior was added in the Mac OS X 10.4.1.

How can I determine if my Spotlight importer is being found?

Running the mdimport command (located in /usr/bin) with the -L option returns a list of all the currently
recognized importers and their paths.

Where should I install my Spotlight importer? 27
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Spotlight Importers

/usr/bin/mdimport -L

2005-01-16 02:56:37.634 mdimport[673] Paths: id(501) (
 "/System/Library/Spotlight/RichText.mdimporter",
 "/System/Library/Spotlight/Image.mdimporter",
 "/System/Library/Spotlight/Audio.mdimporter",
 "/System/Library/Spotlight/Font.mdimporter",
 "/System/Library/Spotlight/PDF.mdimporter",
 "/System/Library/Spotlight/Chat.mdimporter",
 "/System/Library/Spotlight/iCal.mdimporter",
 "/System/Library/Spotlight/Mail.mdimporter",
 "/System/Library/Spotlight/QuickTime.mdimporter",
 "/System/Library/Spotlight/vCard.mdimporter",
 "/Users/me/Library/Spotlight/MyCustomImporter.mdimporter",
 "/System/Library/Spotlight/QuartzComposer.mdimporter",
 "/System/Library/Spotlight/PS.mdimporter",
 "/System/Library/Spotlight/SystemPrefs.mdimporter",
 "/System/Library/Spotlight/Application.mdimporter"
)

Why isn’t my bundled importer being found?

If your importer resides within your application’s wrapper, it may not be found automatically during testing.
Importers are detected when the bundle’s modification date is changed. You can explicitly register your
application by specifying the -f flag to lsregister. The lsregister tool is found in
/System/Library/Frameworks/CoreServices.framework/Frameworks/LaunchServices.framework/Versions/A/Support/
on Mac OS X v10.5 and later.

lsregister -f MyApp.app

Another possibility is that your application may be untrusted. Spotlight importers are not loaded from
untrusted applications. Launching the application for the first time causes the application to be trusted.

I've updated my importer and copied it to a Spotlight directory, but
the old importer is still being used

New Spotlight importers are detected by comparing the date of the top-level .mdimporter directory. If the
date is the same as a previously loaded importer, the new importer is not detected. If you copy the updated
importer to the Spotlight directory using cp -r the change is not noted by Spotlight. The solution is to
either remove the existing importer before copying the updated version, or use the touch command on the
importer's .mdimporter directory to explicitly update the date.

How do I test my importer?

You can test your Spotlight importer using the mdimport command (located in /usr/bin). Run mdimport
with the debug level set to 2 and specify a file that you can import data from:

28 Why isn’t my bundled importer being found?
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Spotlight Importers

/usr/bin/mdimport -d2 test.myCustomDocument

This command produces out like this:

2005-01-16 02:59:04.930 mdimport[678] Import
'/Users/me/Documents/test.myCustomDocument'
type 'com.apple.mycocoadocumentapp.mycustomdocument'
using 'file://localhost/Users/me/Library/Spotlight/MyCustomImporter.mdimporter/'
2005-01-16 02:59:04.931 mdimport[678] Sending attributes
of '/Users/me/Documents/test.myCustomDocument' to server.
Attributes: '{
 "_kMDItemImporterCrashed" = <null>;
 "com_apple_metadata_modtime" = 127555123.1940155;
 "com_apple_myCocoaDocumentApp_myCustomDocument_notes" = "Remember to feed
the cats!";
 kMDItemAuthors = ("Tori”,”Simon",”Daniel”);
 kMDItemContentType = "com.apple.mycocoadocumentapp.mycustomdocument";
 kMDItemContentTypeTree = ("com.apple.mycocoadocumentapp.mycustomdocument",
 "public.data", "public.item");
 kMDItemDisplayName = {"" = "test.myCustomDocument"; };
 kMDItemKind = {en = DocumentType; };
 kMDItemTitle = "Be sure to remember to...";
}'

The first line of the output indicates the file that is being imported, as well as the UTI that the file maps to.
The remaining lines list the attribute keys and values that were imported from the file.

You should ensure that all the appropriate metadata keys that your importer returns are present in the output.
You'll notice that a number of metadata keys specific to the file system are also available for each file. These
are provided by the metadata system and are not your responsibility.

How do I debug my importer using gdb?

You can debug your importer by running mdimport under gdb.

The following command will load mdimport under gdb:

gdb mdimport

Once mdimport has started set a breakpoint on your import function:

b MyImporterGetAttributesFromFileFunction

Then start the mdimport process, specifying the file to import:

r /path/to/my/test/file

What does the system think the UTI is for a document?

You can determine the UTI that the system thinks belongs to your file by using the mdimport command
with a debug level of 1:

How do I debug my importer using gdb? 29
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Spotlight Importers

/usr/bin/mdimport -d1 test.myCustomDocument

The output shows the UTI type that the system has determined for the file:

 2005-01-16 03:00:07.212 mdimport[683] Import '/Users/me/Documents/
test.myCustomDocument'
 type 'com.apple.mycocoadocumentapp.mycustomdocument' using
'file://localhost/Users/me/Library/Spotlight/MyCustomImporter.mdimporter/'

The type should match the UTI that your importer supports.

Running mdimport returns nothing

If running mdimport with a debug level of 1 returns no output, you should ensure that the file you're
attempting to import is not in the /tmp directory or some other System directory. Files in those locations
are not imported.

Running mdimport returns an unexpected UTI

If running mdimport returns a UTI other than one you expect, you'll need to ensure that the file you're
attempting to import is actually the type of file you think it is. The UTI of a file is determined by the extension
or file type.

It is also possible that a dynamic UTI is returned:

2005-01-16 03:01:16.989 mdimport[691] Import
'/Users/me/Documents/test.myCustomDocument'
 type 'dyn.ah62d4rv4ge8048pdsz31k55rqv10g7prqz1hkqu' no mdimporter

Typically, the return of a dynamic UTI indicates that the file is not mapping to a known UTI. You should check
that:

1. The test file is the correct file type.

2. The test file has the correct filename extension or file type set.

3. If your application is declaring the UTI type for the document, that the application's Info.plist file
has the correct entries in the UTExportedTypeDeclarations entry as shown here:

 <key>UTExportedTypeDeclarations</key>
 <array>
 <dict>
 <key>UTTypeConformsTo</key>
 <array>
 <string>public.data</string>
 </array>
 <key>UTTypeDescription</key>
 <string>My Document Type</string>
 <key>UTTypeIdentifier</key>
 <string>com.apple.mycocoadocumentapp.mycustomdocument</string>
 <key>UTTypeTagSpecification</key>

30 Running mdimport returns nothing
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Spotlight Importers

 <dict>
 <key>public.filename-extension</key>
 <array>
 <string>myCustomDocument</string>
 </array>
 <key>com.apple.ostype</key>
 <string>T78q</string>
 </dict>
 </dict>
 </array>

4. Ensure that your application lives in a location where Launch Services can detect the mappings. Running
the application also ensures that the mappings are made.

mdimport does not return my metadata attributes

If running mdimportwith a debug level of 3 does not list any of your custom metadata attributes, you should
check that:

1. Your metadata importer is being found using the mdimport -L command.

2. Your metadata importer's Info.plist file has the correct plug-in type for metadata importers in the
CFPlugInTypes entry. The key should be 8B08C4BF-415B-11D8-B3F9-0003936726FC:

 <key>CFPlugInTypes</key>
 <dict>
 <key>8B08C4BF-415B-11D8-B3F9-0003936726FC</key>
 <array>
 <string>8AED83B3-C412-11D8-85A3-000393D59866</string>
 </array>
 </dict>

3. The UUID that you created for your importer is unique and is in both the CFPlugInFactories and
CFPluginTypes entries of the importer's Info.plist file. Here, the UUID is
8AED83B3-C412-11D8-85A3-000393D59866:

 <key>CFPlugInFactories</key>
 <dict>
 <key>8AED83B3-C412-11D8-85A3-000393D59866</key>
 <string>MetadataImporterPluginFactory</string>
 </dict>
 <key>CFPlugInTypes</key>
 <dict>
 <key>8B08C4BF-415B-11D8-B3F9-0003936726FC</key>
 <array>
 <string>8AED83B3-C412-11D8-85A3-000393D59866</string>
 </array>
 </dict>

4. You have the correct UTI type for your importer listed in the LSItemContentTypes entry in the importer's
Info.plist file:

 <key>CFBundleDocumentTypes</key>
 <array>

mdimport does not return my metadata attributes 31
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Spotlight Importers

 <dict>
 <key>CFBundleTypeRole</key>
 <string>MDImporter</string>
 <key>LSItemContentTypes</key>
 <array>
 <string>com.apple.mycocoadocumentapp.mycustomdocument</string>
 </array>
 </dict>
 </array>

5. Your UTI is all lowercase in the Info.plist and the schema.xml files.

6. If your importer reads metadata from a document package ensure that the UTTypeConformsTo entry
in the importer's Info.plist includes com.apple.package as a UTI.

7. Your schema.xml file is valid.

You can test whether your schema.xml file is well formed by running the command mdcheckschema
(located in /usr/bin).

/usr/bin/mdcheckschema
~/Library/Spotlight/MyCustomImporter.mdimporter/Contents/Resources/schema.xml

/Users/me/Library/Spotlight/MyCustomImporter.mdimporter/Contents/Resources/schema.xml
 : succesfully parsed.

8. Your implementation of GetMetadataForFile is populating the dictionary with the correct metadata
entries and is returning true.

9. You return only CFTypes of CFString, CFNumber, CFBoolean, and CFDate as attribute values. If an attribute
is specified as multivalued, you must return a CFArray of the expected CFType.

What are the imported metadata attributes for a specific file?

You can determine the metadata attributes and values in the system store for a file by using the mdls
command:

mdls /Applications/iTunes.app

/Applications/iTunes.app -------------
kMDItemAttributeChangeDate = 2005-01-16 03:03:14 -0500
kMDItemContentType = "com.apple.application-bundle"
kMDItemContentTypeTree = (
 "com.apple.application-bundle",
 "com.apple.application",
 "public.executable",
 "com.apple.bundle",
 "public.directory",
 "public.item",
 "com.apple.package"
)
kMDItemCopyright = "iTunes 4.7, Copyright 2000-2004 Apple Computer,
Inc."
kMDItemDisplayName = "iTunes"

32 What are the imported metadata attributes for a specific file?
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Spotlight Importers

kMDItemFSContentChangeDate = 2005-01-08 18:17:52 -0500
kMDItemFSCreationDate = 2005-01-08 18:17:52 -0500
kMDItemFSCreatorCode = 0
kMDItemFSFinderFlags = 0
kMDItemFSInvisible = 0
kMDItemFSLabel = 0
kMDItemFSName = "iTunes.app"
kMDItemFSNodeCount = 1
kMDItemFSOwnerGroupID = 80
kMDItemFSOwnerUserID = 0
kMDItemFSSize = 0
kMDItemFSTypeCode = 0
kMDItemID = 64286
kMDItemKind = "Application"
kMDItemLastUsedDate = 2005-01-16 01:01:10 -0500
kMDItemUsedDates = (
 2005-01-08 18:17:52 -0500,
 2005-01-13 19:00:00 -0500,
 2005-01-15 19:00:00 -0500
)
kMDItemVersion = "4.7"

You can also specify a specific metadata attribute to return the value of:

mdls -name kMDItemContentType /Applications/iTunes.app

/Applications/iTunes.app -------------
kMDItemContentType = "com.apple.application-bundle"

Why isn’t Spotlight finding my document bundles when they are
saved by my application?

If your application saves its documents as a bundle, you must take precautions to ensure that Spotlight
doesn’t attempt to import your document before all the data is written to the bundle.

See “Spotlight and Document Bundles” for additional details.

Why isn’t Spotlight finding my document bundles when they are saved by my application? 33
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Spotlight Importers

34 Why isn’t Spotlight finding my document bundles when they are saved by my application?
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Troubleshooting Spotlight Importers

This table describes the changes to Spotlight Importer Programming Guide.

NotesDate

Updated location of lsregister.2009-10-11

Added additional debugging information to the Troubleshooting article.2006-11-07

Added discussion of the kMDItemTextContent attribute to "Assigning Values to
Metadata Attributes." Clarified that the GetMetdataForFile example is Objective-C.

2006-04-04

Updated to reflect Spotlight compatibility with Rosetta.2006-03-08

Added note about recompiling as a universal binary.2006-02-07

Added new troubleshooting information about Spotlight importer bundle
timestamps and document packaging UTI types.

2005-09-08

Added discussion about localizing attribute values. Added template for
UTExportedDeclarations. Added note about Objective-C use in importers.

2005-08-11

Added additional Schema.xml attributes. Added Installer.app package post-install
script information for standalone importers.

2005-07-07

Updated to reflect the current Xcode project template. Added troubleshooting
information. Changed title from "Metadata Importers." First public version.

2005-04-29

Corrected reference to MetadataImporterPluginFactory in “Writing a
Spotlight Importer” (page 17).

2004-06-29

Added schema.xml template listing to “Writing a Spotlight Importer” (page 17).

New document that describes the role of metadata importers and how to write
them.

2004-06-28

35
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Document Revision History

36
2009-10-11 | © 2004, 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Spotlight Importer Programming Guide
	Contents
	Tables and Listings
	Introduction
	Extracting Metadata from Documents
	What Is a Spotlight Importer?
	Associating a Spotlight Importer With Documents
	Additional Guidelines

	Assigning Values to Metadata Attributes
	Spotlight’s Metadata Attributes
	Localizing Metadata Attribute Values
	Defining Custom Attributes
	Attribute Naming Conventions
	Defining the Value Object Type
	Returning Multiple Values in an Attribute
	Attribute Display Names and Descriptions

	Spotlight Importer Schema Format
	The Schema.xml File
	Specifying Custom Attributes
	Specifying the Attributes for a Document

	Writing a Spotlight Importer
	Creating the Metadata Importer Project
	Assigning a Unique ID to the Import Function
	Associating an Importer with Document Types
	Specifying Metadata Attributes
	Assigning Values to Metadata Attributes

	Spotlight Importer Performance
	Troubleshooting Spotlight Importers
	Where should I install my Spotlight importer?
	When will the Spotlight importer in my application bundle re-index files?
	How can I determine if my Spotlight importer is being found?
	Why isn’t my bundled importer being found?
	I've updated my importer and copied it to a Spotlight directory, but the old importer is still being used
	How do I test my importer?
	How do I debug my importer using gdb?
	What does the system think the UTI is for a document?
	Running mdimport returns nothing
	Running mdimport returns an unexpected UTI
	mdimport does not return my metadata attributes
	What are the imported metadata attributes for a specific file?
	Why isn’t Spotlight finding my document bundles when they are saved by my application?

	Revision History

