
XML-RPC and SOAP Programming Guide
Tools & Languages: Other Languages

2005-03-03

Apple Inc.
© 2001, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, Mac, and Mac OS are trademarks of
Apple Inc., registered in the United States and
other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to XML-RPC and SOAP Programming Guide 7

Who Should Read This Document 7
Organization of This Document 7

Chapter 1 About AppleScript’s Support for XML-RPC and SOAP 9

The XML-RPC and SOAP Protocols 9
AppleScript Support for Remote Procedure Calls 10

Remote Procedure Calls From Scripts 11
Remote Procedure Calls From Applications 14

Chapter 2 Making Remote Procedure Calls From Scripts 19

Scripting an XML-RPC Call 19
Scripting a SOAP Request 22

A Simple Translation Script 22
A More Complex Translation Script 23

Chapter 3 Making Remote Procedure Calls From Applications 27

Making an XML-RPC Call 27
Setting Up a Project 27
Includes, Constants, and Declarations 28
A Main Function That Makes an XML-RPC Call 28
Displaying XML-RPC Debug Information 31

Making a SOAP Request 33
Setting Up a Project 33
Includes, Constants, and Declarations 33
A Main Function That Makes a SOAP Request 34
Creating Parameter List Records 37
Displaying SOAP Request Debug Information 38

Document Revision History 41

3
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 1 About AppleScript’s Support for XML-RPC and SOAP 9

Figure 1-1 The Apple Event Manager processing a remote procedure call Apple Event. 10
Listing 1-1 Sample list of misspelled words returned by spellCheck remote procedure call.

12
Listing 1-2 Event class and event ID constants for remote procedure call Apple events. 15
Listing 1-3 Address descriptor type for remote procedure call Apple events. 15
Listing 1-4 Constants for specifying a SOAP schema. 15
Listing 1-5 Constants used in constructing an XML-RPC or SOAP request in a remote procedure

call Apple event. 16
Listing 1-6 Constants for turning on the Apple Event Manager’s remote procedure call

debugging. 16
Listing 1-7 Key constants for remote procedure call debugging attributes. 16

Chapter 2 Making Remote Procedure Calls From Scripts 19

Listing 2-1 A script that makes an XML-RPC request to check the spelling of a text phrase.
19

Listing 2-2 A simple script that calls a SOAP translation server. 22
Listing 2-3 A more detailed script that calls a SOAP translation server. 24

Chapter 3 Making Remote Procedure Calls From Applications 27

Listing 3-1 Includes, constants, and declarations for making an XML-RPC call. 28
Listing 3-2 main function to send an XML-RPC Apple event. 29
Listing 3-3 A function to display debug information from an XML-RPC reply Apple event. 31
Listing 3-4 Sample header and data from an XML-RPC post and the reply. 32
Listing 3-5 Includes, constants, and declarations for making a SOAP request. 34
Listing 3-6 main function to send a SOAP Apple event. 35
Listing 3-7 A function to create a parameter list record for a SOAP request Apple event. 37
Listing 3-8 Sample header and data from a SOAP post and the reply. 38

5
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES AND LISTINGS

Note: This document was previously titled “XML-RPC and SOAP Support.”

XML-RPC and SOAP Programming Guide describes how to use Apple Script and the Apple Event Manager in
Mac OS X to make remote procedure calls using the XML-RPC and SOAP (Simple Object Access Protocol)
protocols.

XML-RPC is a protocol for using XML and HTTP to make remote procedure calls over the Internet. SOAP
(Simple Object Access Protocol) is a remote procedure call protocol designed for exchanging information
in a distributed environment, where a server may consist of a hierarchy of objects.

This book describes only how to send XML-RPC and SOAP requests, not how to serve them.

Note: Web service protocols such as XML-RPC and SOAP are evolving, as is the support for them in Mac OS
X. The scripts and code samples in this document depend on third-party web services that are also subject
to change. Though the samples have been tested as published, your experience may vary.

The sample code in this book can be adapted for Carbon applications, Cocoa applications, simple tools, or
other code. However, there is no specific Cocoa class support provided.

Who Should Read This Document

To take full advantage of this document, you should be familiar with AppleScript, either through writing
AppleScript scripts or creating scriptable applications. You can learn more about these topics in AppleScript
Documentation. In particular, see AppleScript Overview and Apple Events Programming Guide.

You should also be familiar with the XML-RPC and SOAP protocols. You can find information on these protocols
at third-party websites. For example, the XML-RPC specification is currently described at http://www.xmlr-
pc.com/spec and the SOAP specification at http://www.w3.org/TR/.

Organization of This Document

This document is organized into the following chapters:

 ■ “About AppleScript’s Support for XML-RPC and SOAP” (page 9) provides a brief introduction to the
XML-RPC and SOAP protocols, then describes the scripting support in Mac OS X version 10.1 (and later)
for these protocols, including the syntax for script statements and the APIs for making remote procedure
calls from applications or other code.

Who Should Read This Document 7
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to XML-RPC and SOAP
Programming Guide

http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec
http://www.w3.org/TR/

 ■ “Making Remote Procedure Calls From Scripts” (page 19) provides sample scripts and step by step
descriptions for making XML-RPC and SOAP requests from scripts.

 ■ “Making Remote Procedure Calls From Applications” (page 27) provides sample code and step by step
descriptions for making XML-RPC and SOAP requests from applications and other code.

 ■ “Document Revision History” (page 41) describes the history of this book.

8 Organization of This Document
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to XML-RPC and SOAP Programming Guide

Starting with Mac OS X version 10.1, AppleScript and the Apple Event Manager provide XML-RPC and SOAP
support such that:

 ■ Scripters can make XML-RPC calls and SOAP requests from scripts.

 ■ Developers can make XML-RPC calls and SOAP requests from applications or other code by sending
Apple events.

The XML-RPC and SOAP Protocols

A remote procedure call is a request to a server application at another location to perform operations and
return information. XML-RPC is a simple protocol that allows software running in different environments to
make remote procedure calls over the Internet. XML-RPC uses two industry standards: XML (extensible markup
language) for encoding messages, and HTTP (hypertext transfer protocol) for transporting them. A properly
formatted XML-RPC message is an HTTP POST request whose body is in XML. The specified remote server
executes the requested call and returns any requested data in XML format.

XML-RPC recognizes procedure parameters by position. Parameters and return values can be simple types
such as numbers, strings, and dates, or more complex types such as structures and arrays. To learn more
about XML-RPC messages, see the XML-RPC specification at http://www.xmlrpc.com/spec.

SOAP (Simple Object Access Protocol) is an RPC protocol designed for a distributed environment, where a
server may consist of a hierarchy of objects whose methods can be called over the Internet. A goal of SOAP
is to establish a standard protocol that will serve both web service providers and service users. As with other
remote procedure call protocols, SOAP uses XML to encode messages and HTTP to transport them. A SOAP
request contains a header and an envelope; the envelope in turn contains the body of the request.

One key difference between the SOAP and XML-RPC protocols is that with SOAP, parameters are notational
(a request must encode the method parameter names within its XML), rather than positional (recognized by
position). To learn more about SOAP messages, see the SOAP specification at http://www.w3.org/TR/.

Remote procedure calls provide a powerful tool for accessing services over the Internet. For example, there
are already a variety of web-based servers that can check spelling, translate text between languages, provide
stock prices, supply weather and traffic information, and more. You can find available services at sites such
as XMethods at http://www.xmethods.net/. There you can also find information you’ll need to make remote
procedure calls to these services.

The XML-RPC and SOAP Protocols 9
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript’s Support for XML-RPC and
SOAP

http://www.xmlrpc.com/spec
http://www.w3.org/TR/
http://www.xmethods.net/

AppleScript Support for Remote Procedure Calls

This section describes how to make XML-RPC and SOAP requests from scripts and from applications or other
code. Using this support, both scripters and developers can take advantage of the growing number of
XML-RPC and SOAP servers available on the Internet.

With Mac OS X version 10.1, the Apple Event Manager is able to process Apple events that encapsulate remote
procedure calls, whether the events originate from scripts or applications. Figure 2-1 (page 10) shows a
simplified view of this process.

Figure 1-1 The Apple Event Manager processing a remote procedure call Apple Event.

 Apple Event
Manager

Internet
server

XML

XML

 Apple event

Reply event

Application Script

Or

The Apple Event Manager recognizes a remote procedure call Apple event by its address descriptor, which
uses the descriptor type typeApplicationURL. To process a remote procedure call Apple event (assuming
the event and the XML it contains are properly formatted), the Apple Event Manager performs these basic
steps:

10 AppleScript Support for Remote Procedure Calls
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript’s Support for XML-RPC and SOAP

1. It uses information from the Apple event to build the XML that represents the remote procedure call.

2. It opens a connection to the specified server.

3. It sends the XML via HTTP POST request.

4. It waits for a response.

5. It parses the XML of the response.

6. It constructs a reply Apple event.

7. It returns the reply.

Scripters can take advantage of this capability by adding statements to their scripts that specify XML-RPC or
SOAP requests. Application developers can create and send Apple events directly to invoke XML-RPC or SOAP
requests.

Remote Procedure Calls From Scripts

When you compile and execute a script, the AppleScript component works with the Apple Event Manager
to convert script statements into Apple events that are sent to the specified applications. The following
sections describe the terminology and syntax for making XML-RPC calls and SOAP requests from scripts.

AppleScript Terminology for Remote Procedure Calls

AppleScript 1.7 for Mac OS X version 10.1 can specify Internet applications as targets of Tell statements or
within Using Terms From blocks. When you specify an XML-RPC server or a SOAP server in one of these
statements, the Apple Event Manager generates a dictionary that makes the terminology for remote procedure
calls available to your script. That terminology includes the following terms that specify XML-RPC and SOAP
requests:

 ■ call xmlrpc

 ■ call soap

The next sections describe how to use AppleScript’s remote procedure call terminology.

XML-RPC Script Statements

To make an XML-RPC request from a script, you must specify an XML-RPC server as the target application for
the request. To do so, you use a statement like the following, which specifies an XML-RPC server that provides
spell-checking services over the Internet:

tell application "http://www.stuffeddog.com/speller/speller-rpc.cgi"

In this statement, the XML-RPC server application is speller-rpc.cgi and the remote location is specified
by the URL http://www.stuffeddog.com/speller/. You can also use the following alternate syntax
(where the symbol ¬ (Option-l) denotes a continuation of one script statement onto more than one line),
but this form is converted to the above form when the script is compiled:

tell application "speller-rpc.cgi" of machine ¬

AppleScript Support for Remote Procedure Calls 11
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript’s Support for XML-RPC and SOAP

 "http://www.stuffeddog.com/speller"

Once you have specified an XML-RPC server, you can make remote procedure calls within a script block (such
as a Tell statement) that specifies that server:

tell application "http://www.stuffeddog.com/speller/speller-rpc.cgi"
 -- remote procedure calls here
end tell

To specify a name and parameters for the remote procedure call, you use script statements like the following:

set returnValue to¬
 call xmlrpc {method name:"someMethod",¬
 parameters: {parameter1, parameter2} }

This statement specifies a remote procedure call with two parameters. (You use the same terminology,
method name:, whether specifying a function or method.) The parameters are represented as a list. The
returned information is stored in the variable returnValue. Because XML-RPC parameter syntax is positional,
you don’t need to provide the parameter names for a given procedure call. An XML-RPC server returns an
error if the passed XML is not properly formatted.

The following example combines a Tell block with a remote procedure call to the spell-checking server
specified earlier.

set myText to "My frst naem is John"
tell application "http://www.stuffeddog.com/speller/speller-rpc.cgi"
 set returnValue to call xmlrpc {method name:"speller.spellCheck",¬
 parameters: {myText} }
end tell

This sample shows how easy it can be to set up a remote procedure call from a script. The first line sets a
local variable to a text string to be checked. Then the Tell statement specifies an Internet spell-checking
server. The single statement in the Tell block calls the speller.spellCheck function, passing the local
string variable as the single parameter (the text to be checked) and storing the result in a second local variable.
This particular remote procedure returns a list that contains, for each misspelled word, a list of suggested
corrections, the location of the word in the text, and the misspelled word itself. Listing 2-1 (page 12) shows
an example of such a list.

Listing 1-1 Sample list of misspelled words returned by spellCheck remote procedure call.

 {{suggestions:{"fast", "fest", "first", "fist", "Forst",
 "frat", "fret", "frist", "frit", "frost", "frot", "fust"},
 location:4, |word|:"frst"}, {suggestions:{"haem", "na em",
 "na-em", "naam", "nae", "nae m", "nae-m", "nael", "Naim",
 "nam", "name", "neem"}, location:9, |word|:"naem"}}

Note that this is not the raw data returned from the remote procedure call. When you execute the script
shown above, the AppleScript component calls on the Apple Event Manager to convert the call xmlrpc
statement to an Apple event and send the event to the specified server. The Apple Event Manager recognizes
the event and processes it by formatting the remote procedure call into proper XML, opening a connection,
sending the message, waiting for a reply, formatting the returned XML into an Apple event, and returning
the event.

For a complete script that uses remote procedure calls to check spelling, see “Scripting an XML-RPC Call” (page
19).

12 AppleScript Support for Remote Procedure Calls
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript’s Support for XML-RPC and SOAP

SOAP Script Statements

The process for making SOAP requests in AppleScript scripts is very similar to the process for XML-RPC, though
it uses the term call soap rather than call xmlrpc. To specify a SOAP server as the target application
for a SOAP request, you use a statement like the following:

tell application "http://services.xmethods.net:80/perl/soaplite.cgi"

In this statement, the SOAP server application is soaplite.cgi, a server that can perform English to French
translation, and the remote location is specified by the URL http://services.xmethods.net:80/perl/.
Once you have specified a SOAP server on a remote machine, you can make SOAP requests within a script
block that specifies that server:

tell application "http://services.xmethods.net:80/perl/soaplite.cgi"
 -- SOAP requests here
end tell

To specify a method name and parameters for the SOAP request, you use script statements like the following
(where the symbol ¬ (Option-l) denotes a continuation of one script statement onto more than one line):

 set returnValue to call soap {method name:"BabelFish", ¬
 method namespace uri:"urn:xmethodsBabelFish", ¬
 parameters:{translationmode:direction as string, ¬
 sourcedata:theText as string}, ¬
 SOAPAction:"urn:xmethodsBabelFish#BabelFish"}

This statement specifies a SOAP request to a method named BabelFish with two parameters,
translationmode (such as English to French) and sourcedata (the text to be translated). The returned
information (translated text) is stored in the variable returnValue. Unlike the case with XML-RPC calls, for
a SOAP request you must specify the names of the parameters for the specified method. While an XML-RPC
call represents parameters as a list, a SOAP request represents them as a record. The server will return an
error if the passed XML is not properly formatted.

The following example combines a Tell block with a SOAP request to the translation server specified earlier.

set theText to "The spirit is willing but the flesh is weak."
set direction to "en_fr"
tell application "http://services.xmethods.net:80/perl/soaplite.cgi"
 set resultText to call soap {method name:"BabelFish", ¬
 method namespace uri:"urn:xmethodsBabelFish", ¬
 parameters:{translationmode:direction as string, ¬
 sourcedata:theText as string}, ¬
 SOAPAction:"urn:xmethodsBabelFish#BabelFish"}
end tell

The first two lines set local variables for the text to be translated and the direction of translation (from English
to French). The Tell statement specifies an Internet language translation server. The call soap statement
in the Tell block calls the BabelFish function, specifying two parameters by name (translationmode and
sourcedata), and passing the local variables as the parameter values. All the terms shown in the call
soap statement in this example are required except parameters: (because a SOAP method may have no
parameters). The resulting translated text is stored in another local variable.

You obtain values for the method namespace uri: and SOAPAction: terms from the services themselves.
For example, many SOAP services publish the information needed to use their services at sites such as
XMethods at http://www.xmethods.net/. You can learn more about SOAP name spaces and SOAPAction in
the SOAP specification at http://www.w3.org/TR/.

AppleScript Support for Remote Procedure Calls 13
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript’s Support for XML-RPC and SOAP

http://www.xmethods.net/
http://www.w3.org/TR/

When you execute this script, AppleScript and the Apple Event Manager take care of formatting the SOAP
request into proper XML, opening a connection, sending the message, waiting for a reply, formatting the
returned XML into an Apple event, and returning the event.

For a complete script that uses SOAP requests to translate English text to French, see “Scripting a SOAP
Request” (page 22).

Remote Procedure Calls From Applications

As described earlier, the Apple Event Manager is now able (in Mac OS X version 10.1) to process Apple events
that encapsulate remote procedure calls, whether the events originate from scripts or applications. Assuming
the Apple event and the XML it contains are properly formatted, the Apple Event Manager extracts the XML,
establishes a connection to the specified server, sends the request via HTTP, waits for a response, parses the
XML of the response, constructs a reply Apple event, and returns the reply.

To take advantage of this support, applications and other code can create Apple events to send either
XML-RPC or Soap requests. The process includes the following steps:

1. Link with Carbon.framework.

2. Prepare any necessary Apple event descriptors, including an address descriptor of type
typeApplicationURL that specifies the target for the request (a remote server).

3. Create an Apple event with event class kAERPCClass and event type kAEXMLRPCScheme (for XML-RPC)
or kAESOAPScheme (for SOAP), and with the target address descriptor created previously.

4. Create the direct object for the Apple event and insert parameters for the method name, method
parameter list, and any other required information for the remote procedure call.

5. Insert the direct object into the Apple event.

6. Send the Apple event with AESend.

7. Process the reply Apple event to extract any needed information.

More detailed steps for sending an XML-RPC Apple event are shown in “Sending an XML-RPC Apple
Event” (page 16) and for a SOAP request in “Sending a SOAP Apple Event” (page 17). For examples with
sample code, see “Making Remote Procedure Calls From Applications” (page 27).

There is some overhead in creating Apple events to send remote procedure calls and in extracting information
from the reply Apple event, but you gain the advantage of having the Apple Event Manager build the required
XML for you. If, however, you already have code that, for example, automatically generates XML for remote
procedure calls, it may be more efficient for you to write your own code to make the remote procedure calls
as well.

Apple Event Manager API for Remote Procedure Calls

This section describes some of the key constants used to construct remote procedure call Apple events. These
constants are defined in AEDataModel.h (in AE.framework, a subframework of
ApplicationServices.framework). For step-by-step instructions that show how to create Apple events
using these constants, see “Making Remote Procedure Calls From Applications” (page 27).

14 AppleScript Support for Remote Procedure Calls
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript’s Support for XML-RPC and SOAP

The Apple Event Manager defines one event class constant and two event ID constants for remote procedure
call Apple events. These constants are shown in Listing 2-2 (page 15). You use the constant kAERPCClass
as the event class for both XML-RPC and SOAP requests. To specify the request type, you use either
kAEXMLRPCScheme or kAESOAPScheme for the event ID.

Listing 1-2 Event class and event ID constants for remote procedure call Apple events.

 kAERPCClass = 'rpc ', /* for outgoing XML events */
 kAEXMLRPCScheme = 'RPC2', /* event ID: send to XMLRPC endpoint */
 kAESOAPScheme = 'SOAP', /* event ID: send to SOAP endpoint */

Listing 2-3 (page 15) shows the constant typeApplicationURL. An Apple event for a remote procedure
call must have an address descriptor of this type that specifies the target for the request. The Apple Event
Manager recognizes this type as a remote procedure call and processes it appropriately.

Listing 1-3 Address descriptor type for remote procedure call Apple events.

enum {
 //...some constants not shown
 typeApplicationURL = 'aprl',
 //...
};

The SOAP specification defines a schema for encoding (or serializing) information. The Apple Event Manager
can work with both the 1999 (or SOAP specification version 1.1) and 2001 (SOAP specification version 1.2)
schemas. Listing 2-4 (page 15) shows the constants for specifying the SOAP schema used to format the SOAP
request in a remote procedure call Apple event.

You can specify a serialization schema by adding a parameter of type typeType and key
keySOAPSchemaVersion to the direct object of a SOAP request Apple event. If you do not specify a schema,
the default is kSOAP1999Schema.

Listing 1-4 Constants for specifying a SOAP schema.

enum {
 kSOAP1999Schema = 'ss99',
 kSOAP2001Schema = 'ss01',
 //...
 keySOAPSchemaVersion = 'ssch'
};

Listing 2-5 (page 16) shows some of the constants you use to identify the components of an XML-RPC or
SOAP request. When you create a remote procedure call Apple event, you use these constants to add various
information about the request to the direct object of the Apple event:

 ■ You use the key keyRPCMethodName to add an Apple event parameter that specifies the procedure or
method name for the request.

 ■ After you build a descriptor list that describes the parameters for a remote procedure call, you insert it
into the direct object for the Apple event using the key keyRPCMethodParam.

 ■ For a SOAP request, you add the required SOAPAction header to the direct object using the key
keySOAPAction.

 ■ For a SOAP request, you add the required SOAP name space URI to the direct object using the key
keySOAPMethodNameSpaceURI.

AppleScript Support for Remote Procedure Calls 15
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript’s Support for XML-RPC and SOAP

Listing 1-5 Constants used in constructing an XML-RPC or SOAP request in a remote procedure call Apple
event.

 keyRPCMethodName = 'meth', /* name of the method to call */
 keyRPCMethodParam = 'parm', /* the list (or structure) of parameters*/
 keySOAPAction = 'sact', /* the SOAPAction header */
 keySOAPMethodNameSpaceURI= 'mspu',/* Required namespace URI */

Listing 2-6 (page 16) shows constants you can specify in an attribute to a remote procedure call Apple event
to turn on Apple Event Manager debugging. Depending on which debug information you specify with these
constants, the reply Apple event from an XML-RPC or SOAP request can supply the header or the body of
the outgoing request, or of the reply.

Listing 1-6 Constants for turning on the Apple Event Manager’s remote procedure call debugging.

enum {
 kAEDebugPOSTHeader = (1 << 0), /* headers of the HTTP post - typeChar */
 kAEDebugReplyHeader = (1 << 1), /* headers returned by the server */
 kAEDebugXMLRequest = (1 << 2), /* the XML request we sent */
 kAEDebugXMLResponse = (1 << 3), /* the XML reply from the server */
 kAEDebugXMLDebugAll = 0xffffffff/* everything! */
};

Depending on which debugging flags you specify with the constants shown in Listing 2-6 (page 16), one or
more attributes is added to the Apple event. You can extract those attributes using the keys shown in Listing
2-7 (page 16).

Listing 1-7 Key constants for remote procedure call debugging attributes.

 keyAEPOSTHeaderData = 'phed', /* header of request to the server */
 keyAEReplyHeaderData = 'rhed', /* header of server reply */
 keyAEXMLRequestData = 'xreq', /* body of request to the server */
 keyAEXMLReplyData = 'xrep', /* body of server reply */

Sending an XML-RPC Apple Event

To make an XML-RPC request from your application or other code, you’ll need to create an Apple event that
encapsulates the procedure call and call AESend to send it. This section describes the steps you need to
follow. To see those steps implemented in code, see “Making an XML-RPC Call” (page 27).

To use an Apple event to execute an XML-RPC request, you do the following:

1. Link with Carbon.framework.

2. Create a target address descriptor of type typeApplicationURL that specifies the target for the request
(a remote server).

3. Create an Apple event with event class kAERPCClass, event ID KAEXMLRPCScheme, and with the target
address descriptor created in a previous step.

4. Create the direct object for the Apple event.

5. Insert the method name, using the key keyRPCMethodName.

6. Create a list descriptor for the remote procedure call parameters and insert each parameter (using the
key keyRPCMethodParam).

16 AppleScript Support for Remote Procedure Calls
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript’s Support for XML-RPC and SOAP

7. Add the parameter list to the direct object.

8. Insert the direct object into the Apple event.

9. Optionally turn on debugging by adding an attribute to the event with key keyXMLDebuggingAttr.

10. Send the Apple event with AESend.

11. Process the reply Apple event to extract any needed information. If you turned on debugging, you can
extract debugging information, according to which of the debugging constants (described above) you
specified. For example, you can examine the header or the body of the posted message, or of the reply.

Sending a SOAP Apple Event

To make a SOAP request from your application or other code, you’ll need to create an Apple event that
encapsulates the request and call AESend to send it. This section describes the steps you need to follow. To
see those steps implemented in code, see “Making a SOAP Request” (page 33).

To use an Apple event to execute a SOAP request, you do the following:

1. Link with Carbon.framework.

2. Create a target address descriptor of type typeApplicationURL that specifies the target for the request
(a remote server).

3. Create an Apple event with event class kAERPCClass, event ID kAESOAPScheme, and with the target
address descriptor created in a previous step.

4. Create the direct object for the Apple event.

5. Insert the method name, using the key keyRPCMethodName.

6. Create a list descriptor for the SOAP method parameters and insert each parameter as character data.

7. Add the parameter list to the direct object, using the key keyRPCMethodParam.

8. Add the SOAP name space URI to the direct object, using the key keySOAPMethodNameSpaceURI.

9. Insert the direct object into the Apple event.

10. Optionally turn on debugging by adding an attribute to the event with key keyXMLDebuggingAttr.

11. Send the Apple event with AESend.

12. Process the reply Apple event to extract any needed information. If you turned on debugging, you can
extract debugging information, according to which of the constants described above you specified. For
example, you may be able to examine the header or the body of the posted message, or of the reply.

AppleScript Support for Remote Procedure Calls 17
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript’s Support for XML-RPC and SOAP

18 AppleScript Support for Remote Procedure Calls
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript’s Support for XML-RPC and SOAP

Starting with Mac OS X version 10.1, the Apple Event Manager provides support for using the XML-RPC and
SOAP protocols to make remote procedure calls from AppleScript scripts and from applications. This chapter
provides sample scripts that show how to make remote procedure calls from scripts.

This chapter assumes you are familiar with the material in “Introduction to XML-RPC and SOAP Programming
Guide” (page 7). To test any of the scripts shown in this chapter, you must have an Internet connection.

Warning: The script examples in this chapter may not work because the web services they rely on may
no longer be available. You can find additional script samples that make use of web services at
/Library/Scripts/Internet Services. For example, the Stock Quote script uses a web service
to look up the price for a stock specified by its symbol, while the Current Temperature by Zipcode
script looks up the temperature for a specified Zip code.

Scripting an XML-RPC Call

To make an XML-RPC request from a script, you use the AppleScript term call xmlrpc. The syntax for this
term is described in “XML-RPC Script Statements” (page 11). You can find available XML-RPC services at sites
such as XMethods at http://www.xmethods.net/. There you can also find information about the parameters
and return values for remote procedure calls to these services.

Listing 3-1 (page 19) shows a script that prompts a user for text, makes an XML-RPC request to an Internet
server to check the spelling for that text, prompts the user to correct any words that may have been misspelled,
and displays the final text.

Listing 2-1 A script that makes an XML-RPC request to check the spelling of a text phrase.

---- Main script --
-- Supply default text to spell check.
set spellCheckText to "My frst naem is John"

----Query user for different text to check.
set dialogResult to display dialog ¬
 "Enter a phrase to spell check:" default answer spellCheckText

if button returned of dialogResult is "OK" then
 set spellCheckText to text returned of dialogResult
 -- Call spellCheck handler.
 set resultList to spellCheck(spellCheckText)
 (*
 The returned data looks something like this:
 {{suggestions:{"fast", "fest", "first", "fist", "Forst",
 "frat", "fret", "frist", "frit", "frost", "frot", "fust"},
 location:4, |word|:"frst"}, {suggestions:{"haem", "na em",
 "na-em", "naam", "nae", "nae m", "nae-m", "nael", "Naim",

Scripting an XML-RPC Call 19
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making Remote Procedure Calls From Scripts

http://www.xmethods.net/

 "nam", "name", "neem"}, location:9, |word|:"naem"}}
 *)
 -- Make list of words to spellcheck.
 set wordList to every word of spellCheckText

 -- Give user chance to correct each misspelled word.
 repeat with eachItem in resultList
 set newWord to choose from list suggestions of eachItem ¬
 with prompt "You misspelled \"" & |word| of eachItem & ¬
 "\"" without multiple selections allowed

 -- If user selected a corrected word, insert it into list
 if (newWord as string) is not equal to "false" then
 set wordIndex to ¬
 findIt(every word of spellCheckText, location of eachItem)
 copy newWord to item wordIndex of wordList
 end if
 end repeat

 -- Display corrected text.
 set spellCheckText to ""
 repeat with oneWord in wordList
 set spellCheckText to spellCheckText & oneWord & " "
 end repeat

 display dialog "Corrected text: " & spellCheckText
end if

-- spellCheck handler --
-- This handler makes the remote procedure call.
on spellCheck(sentence)
 tell application "http://www.stuffeddog.com/speller/speller-rpc.cgi"
 return call xmlrpc {method name:"speller.spellCheck", ¬
 parameters:sentence}
 end tell
end spellCheck

-- findIt handler ------------------------------------
-- The "textList" parameter is a list of the words in the original text.
-- The "index" parameter is the character index of a misspelled word.
-- This handler returns the word at that index.
-- For example, the misspelled word at character index four is "frst".
-- Its word index is 2 (the 2nd word in the original text).
on findIt(textList, index)
 set curLength to 0
 set ixWord to 1

 repeat with oneWord in textList
 set curLength to curLength + (length of oneWord) + 1
 if curLength ≥ index then
 exit repeat
 end if
 set ixWord to ixWord + 1
 end repeat
 log ixWord
 return ixWord
end findIt

20 Scripting an XML-RPC Call
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making Remote Procedure Calls From Scripts

This script has a main section and two handlers. In the main section, it performs the following actions:

1. It sets a default text string to be checked.

2. It displays a dialog that prompts the user to enter different text.

3. If the user accepts the dialog, it calls the spellCheck handler to check the spelling. That handler,
described below, contains the only script statements needed to make a remote procedure call to a
spell-checking server.

The handler returns a list that contains, for each misspelled word, a list of suggested corrections, the
character location of the word in the text, and the misspelled word itself. The returned list looks something
like this:

The returned data looks something like this:
 {{suggestions:{"fast", "fest", "first", "fist", "Forst",
 "frat", "fret", "frist", "frit", "frost", "frot", "fust"},
 location:4, |word|:"frst"}, {suggestions:{"haem", "na em",
 "na-em", "naam", "nae", "nae m", "nae-m", "nael", "Naim",
 "nam", "name", "neem"}, location:9, |word|:"naem"}}

Note that this is not the raw data returned from the remote procedure call. Rather, the Apple Event
Manager has interpreted the XML returned by the procedure call and built an Apple event to encapsulate
it. This list of records is the result. Because word is a reserved word in AppleScript, it is enclosed in vertical
bars (|word|) when used as an identifier (in this case as a label in a record).

4. For each word (if any) in the returned list of misspelled words, it lets the user choose a correction (using
the standard scripting addition choose from list).

It then calls the findIt handler to find the location of the misspelled word in the text phrase and
replaces it with the user choice.

5. It displays the corrected text (possibly the same as the original text, if no corrections were made).

The spellCheck handler contains the one and only statement in the script that makes a remote procedure
call. It performs the following operations:

1. It uses a Tell statement to identify the location of the remote XML-RPC server
(http://www.stuffeddog.com/speller/speller-rpc.cgi).

2. It uses the AppleScript term call xmlrpc to make the remote procedure call, specifying the method
name (speller.spellCheck) and passing the specified text for the single parameter.

3. It returns the result of the remote procedure call. That consists of a list that contains, for each misspelled
word, a list of suggested corrections, the location of the word in the text, and the misspelled word itself.

Note that AppleScript, working through the Apple Event Manager, did all the work of formatting the call
xmlrpc script statement into proper XML, opening a connection to the specified server, sending the message,
waiting for a reply, formatting the returned XML into an Apple event, and returning the event.

The findIt handler merely returns the word position in the original text of the word that corresponds to
the passed character index of a misspelled word (returned by the remote procedure handler). For example,
the character index of the first misspelled word (frst) is 4. That word is the second word in the original text,
so findit would return the value 2.

Scripting an XML-RPC Call 21
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making Remote Procedure Calls From Scripts

For a script that shows a more flexible type of handler and includes error handling, see Listing 3-3 (page 24).

Scripting a SOAP Request

To make a SOAP request from a script, you use the AppleScript term call soap. The syntax for these calls
is described in “SOAP Script Statements” (page 13). You can find available SOAP services at sites such as
XMethods at http://www.xmethods.net/. There you can also find information about the parameters and
return values for SOAP requests to these services.

A Simple Translation Script

Listing 3-2 (page 22) shows a script that prompts a user for text, makes a SOAP request to an Internet server
to translate that text to French, and displays the translated text.

Listing 2-2 A simple script that calls a SOAP translation server.

---- Main script --
-- Supply default text to translate.
set defaultText to "The spirit is willing but the mind is weak"

--Display dialog and let user type different text to translate.
display dialog "Enter the text to translate into French:" ¬
 default answer defaultText
set this_text to the text returned of the result

-- Call translation handler
set the new_text to translate("en_fr", this_text)

--Show translated text and allow user to copy it to Clipboard.
display dialog new_text buttons {"Clipboard", "OK"} default button 2
if the button returned of the result is "Clipboard" then
 set the clipboard to new_text
end if

-- translate handler --
-- This handler makes the SOAP request.
on translate(direction, theText)
 tell application "http://services.xmethods.net:80/perl/soaplite.cgi"
 return call soap {method name:"BabelFish", ¬
 method namespace uri:"urn:xmethodsBabelFish", ¬
 parameters:{translationmode:direction as string, ¬
 sourcedata:theText as string}, ¬
 SOAPAction:"urn:xmethodsBabelFish#BabelFish"}
 end tell
end translate

This script starts has a main section and one handler to make the translation SOAP request. In the main
section, it performs the following actions:

1. It sets a default text string to be translated from English to French.

2. It displays a dialog that prompts the user to enter different text.

22 Scripting a SOAP Request
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making Remote Procedure Calls From Scripts

http://www.xmethods.net/

3. It calls the translate handler to translate the text. That handler, described below, contains the only
script statements needed to make a SOAP request to a translation server.

The handler returns the translated text.

4. It displays the translated text and allows the user to copy it to the Clipboard.

The translate handler contains the one and only statement in the script that makes a SOAP request. It
performs the following operations:

1. It uses a Tell statement to identify the location of the remote SOAP server
(http://services.xmethods.net:80/perl/soaplite.cgi).

2. It uses the AppleScript term call soap to make the SOAP request. You can obtain certain values you
need to make a SOAP request from the service itself. In this example, the call includes the following:

 ■ method name:"BabelFish" specifies the required method name

 ■ method namespace uri:"urn:xmethodsBabelFish" specifies the required method namespace
URI

 ■ parameters:{translationmode:direction as string, sourcedata:theText as string}
specifies the parameter names and the values to pass for those parameters; a method may have no
parameters

 ■ SOAPAction:"urn:xmethodsBabelFish#BabelFish" specifies the required SOAPAction value

3. It returns the result of the SOAP request. That consists of a text string that contains the translated text.

Note that AppleScript, working through the Apple Event Manager, did all the work of formatting the call
soap script statement into proper XML, opening a connection to the specified server, sending the message,
waiting for a reply, formatting the returned XML into an Apple event, and returning the event.

A More Complex Translation Script

The script in Listing 3-3 (page 24) performs the same task as the script in Listing 3-2 (page 22), translating
an English phrase to French. However, it is more flexible and sophisticated in several ways:

1. It turns the translation handler into a flexible SOAP request routine that can call different SOAP servers
and different methods depending on the parameters passed to it.

2. It uses error handling in the SOAP request handler and sets a boolean parameter value so that the caller
can check for success. The main script checks that parameter and displays an error message if the SOAP
request was unsuccessful.

3. The main script also shows how to use a try block to handle errors. In this case, it checks for errors while
displaying a dialog: for any returned error number except -128 (the user cancelled), it beeps.

4. It defines property values to make the script more readable and easier to modify.

Scripting a SOAP Request 23
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making Remote Procedure Calls From Scripts

Listing 2-3 A more detailed script that calls a SOAP translation server.

-- Use properties to store default values.
property SOAP_app : "http://services.xmethods.net:80/perl/soaplite.cgi"
property method_name : "BabelFish"
property method_namespace_URI : "urn:xmethodsBabelFish"
property SOAP_action : "urn:xmethodsBabelFish#BabelFish"
property English_to_French : "en_fr"

---- Main script --
--Query user for text to translate.
set this_text to "Hello my friend!"
repeat
 try
 display dialog ¬
 "Enter the text to translate into French:" ¬
 default answer this_text
 set this_text to the text returned of the result
 if this_text is not "" then
 set this_text to this_text as string
 exit repeat
 end if
 on error number error_number
 -- Don't show error if user just cancelled.
 if the error_number is -128 then error number -128
 beep
 end try
end repeat

-- Create the parameter record.
set the method_parameters to {translationmode:English_to_French, ¬
 sourcedata:this_text}

-- Call the SOAP handler.
copy my SOAP_call(SOAP_app, method_name, ¬
 method_namespace_URI, method_parameters, SOAP_action) ¬
 to {call_indicator, call_result}

-- Check for error return from SOAP handler.
if the call_indicator is false then
 beep
 display dialog "An error occurred." & return & return ¬
 & call_result buttons {"Cancel"} default button 1
else
 --Show translated text and allow user to copy it to Clipboard.
 display dialog call_result buttons {"Clipboard", "OK"} ¬
 default button 2
 if the button returned of the result is "Clipboard" then
 set the clipboard to the call_result
 end if
end if

-- SOAP translation handler ------------------------------
on SOAP_call(SOAP_app, method_name, ¬
 method_namespace_URI, method_parameters, SOAP_action)
 try
 using terms from application "http://www.apple.com/placebo"
 tell application SOAP_app

24 Scripting a SOAP Request
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making Remote Procedure Calls From Scripts

 set this_result to call soap ¬
 {method name:method_name ¬
 , method namespace uri:method_namespace_URI ¬
 , parameters:method_parameters ¬
 , SOAPAction:SOAP_action}
 end tell
 end using terms from
 return {true, this_result}
 on error error_message
 return {false, error_message}
 end try
end SOAP_call

Scripting a SOAP Request 25
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making Remote Procedure Calls From Scripts

26 Scripting a SOAP Request
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making Remote Procedure Calls From Scripts

Starting with Mac OS X version 10.1, the Apple Event Manager provides support for using the XML-RPC and
SOAP protocols to make remote procedure calls from AppleScript scripts and from applications. This chapter
provides sample code that show how to make remote procedure calls from applications or other code.

This chapter assumes you are familiar with the conceptual material in “Introduction to XML-RPC and SOAP
Programming Guide” (page 7). To test any of the sample code shown in this book, you must have an Internet
connection.

Making an XML-RPC Call

To make an XML-RPC call from an application or other code, you create an Apple event that describes the
remote procedure call, use the AESend function to send it, and extract any returned information from the
reply Apple event. This process, along with the Apple Event Manager API you use, is described in “Remote
Procedure Calls From Applications” (page 14).

This section provides sample code you can use from an application, tool, or other code to send an XML-RPC
request to a server. The sample code calls an Internet server that returns the state name for the passed state
index. That is, for an index value of 1 it returns Alabama, for 2 it returns Alaska, for 50 it returns Wyoming,
and so on.

Setting Up a Project

You can use the sample code in this section in a number of ways. The following steps show one approach:
creating a C++ tool with Project Builder:

1. Launch Project Builder.

2. Choose New Project from the File menu.

3. Choose the C++ tool template.

4. Replace the code in the automatically generated main.cpp file with the sample code in Listing 4-1 (page
28), Listing 4-2 (page 29), and Listing 4-3 (page 31), in that order.

5. Use Add Frameworks from the Project menu to add Carbon.framework to the project.

Once you’ve built the tool, you can run it in Project Builder and examine its output in the Console pane, or
run it in a Terminal window.

You can also build this code directly in a Terminal window with the following compile line:

cc -g -o xmlrpc xmlrpc.cp -framework Carbon

Making an XML-RPC Call 27
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From
Applications

If you want to compile with a C compiler, rather than a C++ compiler, you’ll have to modify the code so that
all variables are declared at the beginning of functions, rather than where they are used.

Includes, Constants, and Declarations

Listing 4-1 (page 28) shows include statements, constants, and declarations to place at the beginning of
your code file. This code

 ■ includes Carbon.h to gain access to the scripting API it needs

 ■ defines a simple error macro that uses fprintf to show an error number and line number, then exits
the application

 ■ defines constants that specify the server and method name to call to get state name information

 ■ declares a debug function that is defined later

Listing 3-1 Includes, constants, and declarations for making an XML-RPC call.

#include <Carbon/Carbon.h>

// Define a simple error macro that just shows the error and line number
#define checkErr(err) \
 while (err != noErr) \
 { fprintf(stderr, "Failed at line %d, error %d\n", __LINE__, err);\
 exit(-1); }

// Define constants for the XML-RPC server and method.
static const char* serverURL = "http://betty.userland.com/RPC2";
static const char* methodName = "examples.getStateName";

// Declare our debug function.
static void dumpDebug(const char* msg, const AppleEvent* replyEvent,
 OSType debugDataKey);

A Main Function That Makes an XML-RPC Call

Listing 4-2 (page 29) shows a main function that prepares an XML-RPC Apple event, sends it, and displays
information from the reply Apple event. To do so, it performs the following steps:

1. It calls AECreateDesc to create a target address descriptor of type typeApplicationURL that specifies
the target for the request (a remote server). It uses the constant serverURL defined previously to specify
the desired Internet server.

2. It calls AECreateAppleEvent to create an Apple event with event class kAERPCClass, event ID
KAEXMLRPCScheme, and with the target address descriptor from step 1.

3. It calls AECreateList to create the direct object for the Apple event.

4. It calls AEPutParamPtr to insert the method name, using the key keyRPCMethodName and the constant
methodName defined previously.

5. It calls AECreateList to create a list descriptor for the remote procedure call parameters.

28 Making an XML-RPC Call
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

6. It calls AEPutPtr to insert the only parameter for the examples.getStateName function, the state
index, into the parameter list. It passes typeSInt32 for the type code and an index value of 41. The
index number was chosen randomly from the legal values of 1 to 50 (the fifty states).

7. It calls AEPutParamDesc to add the parameter list to the Apple event’s direct object.

8. It calls AEPutParamDesc to insert the direct object into the Apple event.

9. It calls AEPutAttributePtr to turn on debugging by adding an attribute to the event with key
keyXMLDebuggingAttr and the value kAEDebugXMLDebugAll. This step is optional.

10. It initializes a reply Apple event.

11. It calls AESend to send the Apple event, passing kAEWaitReply to indicate it will wait for a reply.

12. If the previous call succeeds, it calls AEGetParamPtr with key keyDirectObject and desired type of
typeChar to extract the direct object of the reply Apple event. For a successful call with state index 41,
the returned value is the string “South Dakota”.

It calls fprintf to display the state name. For example

 State is South Dakota!

Note: Starting in Mac OS X version 10.3, typeChar is deprecated in favor of one of the Unicode string
types. For details, see the descriptions for typeChar and for the Unicode string types in Apple Event
Manager Reference.

13. The main function then calls the function dumpDebug, shown in Listing 4-3 (page 31), once each to
display the header and data for the original XML-RPC request and for the reply from the server. Listing
4-4 (page 32) shows the possible result of these calls.

Listing 3-2 main function to send an XML-RPC Apple event.

//------------------------- main ----------------------------------
// Builds and sends an XML-RPC Apple event.
// Sends the Apple event to a server that returns the state
// name corresponding to the passed number; e.g., the number
// 5 corresponds to the state California.
// Prints the returned state name, then calls function
// to dump debug information from reply
int main()
{
 OSErr err;
 AEDesc targetAddress;

 // Create the target address.
 // Using type typeApplicationURL makes it a remote procedure call event.
 err = AECreateDesc(typeApplicationURL, serverURL, strlen(serverURL),
&targetAddress);
 checkErr(err);

 // Create an XML-RPC Apple event
 AppleEvent xmlrpcEvent;
 err = AECreateAppleEvent(kAERPCClass, kAEXMLRPCScheme, &targetAddress,

Making an XML-RPC Call 29
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

 kAutoGenerateReturnID, kAnyTransactionID, &xmlrpcEvent);
 checkErr(err);
 AEDisposeDesc(&targetAddress);

 // Create the parameters for the event - the direct object is a record
 // that contains the method name, and a list of parameters
 AEDesc directObject;
 err = AECreateList(NULL, 0, true, &directObject);
 checkErr(err);

 // Insert the method name
 err = AEPutParamPtr(&directObject, keyRPCMethodName, typeChar,
 methodName, strlen(methodName));
 checkErr(err);

 // Create the list for the actual parameters
 AEDesc paramList;
 err = AECreateList(NULL, 0, false, ¶mList);
 checkErr(err);

 // Put the state index into the parameter array
 SInt32 stateIndex = 41; // Should correspond to South Dakota
 err = AEPutPtr(¶mList, 0, typeSInt32, &stateIndex,
 sizeof(stateIndex));
 checkErr(err);

 // Put the parameter list into the direct object
 err = AEPutParamDesc(&directObject, keyRPCMethodParam, ¶mList);
 checkErr(err);
 AEDisposeDesc(¶mList);

 // Put the direct object into the event
 err = AEPutParamDesc(&xmlrpcEvent, keyDirectObject, &directObject);
 checkErr(err);
 AEDisposeDesc(&directObject);

 // Request all available debugging information. That will include
 // the header and body for both the XML-RPC request and the reply
 // from the server.
 SInt32 debugAttr = kAEDebugXMLDebugAll;
 err = AEPutAttributePtr(&xmlrpcEvent, keyXMLDebuggingAttr, typeSInt32,
 &debugAttr, sizeof(debugAttr));

 // Send the event
 AppleEvent replyEvent;
 AEInitializeDescInline(&replyEvent);
 err = AESend(&xmlrpcEvent, &replyEvent, kAEWaitReply, kAENormalPriority,
 kAEDefaultTimeout, NULL, NULL);
 checkErr(err);

 // The direct object of the reply Apple event contains
 // our result (the name of the state)
 char buffer[255];
 Size actualSize;
 err = AEGetParamPtr(&replyEvent, keyDirectObject, typeChar, NULL,
 buffer, sizeof(buffer), &actualSize);
 checkErr(err);

30 Making an XML-RPC Call
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

 fprintf(stderr, "State is %.*s!\n", actualSize, buffer);

 // Dump debug information
 dumpDebug("HTTP POST header", &replyEvent, keyAEPOSTHeaderData);
 dumpDebug("XML Request", &replyEvent, keyAEXMLRequestData);
 dumpDebug("HTTP Reply header", &replyEvent, keyAEReplyHeaderData);
 dumpDebug("XML Reply", &replyEvent, keyAEXMLReplyData);

 return 0;
}

Displaying XML-RPC Debug Information

Listing 4-3 (page 31) shows a function that extracts debug information from a passed Apple event and
displays it with fprintf. The information displayed depends on the key passed in the debugDataKey
parameter. To display debug data, this function:

1. Calls AEGetParamDesc, passing the key specified by the debugDataKey parameter and the desired
type typeChar, to extract character data for that debug key.

The possible debug keys are shown in “Apple Event Manager API for Remote Procedure Calls” (page 14).

2. If step 1 fails, it uses fprintf to display an error message.

Otherwise, it formats the retrieved character data to show tabs, carriage returns, and line feeds, and
displays it with fprintf.

Listing 3-3 A function to display debug information from an XML-RPC reply Apple event.

// ------------------------- dumpDebug ----------------------------------
// Extract and display debug information from a reply Apple event.

static void dumpDebug(const char* msg, const AppleEvent* replyEvent,
 OSType debugDataKey)
{
 fprintf(stderr, "%s:\n", msg);

 AEDesc paramDesc;
 OSErr err = AEGetParamDesc(replyEvent, debugDataKey,
 typeChar, ¶mDesc);
 if (err != noErr)
 fprintf(stderr, "\tCan't get debug data %4.4s - %d returned\n",
 &debugDataKey, err);
 else
 {
 int len = AEGetDescDataSize(¶mDesc);
 char* buffer = new char[len];
 AEGetDescData(¶mDesc, buffer, len);

 char* p = buffer;
 char* pEnd = buffer + len;

 while (p < pEnd)
 {
 char* pNext = strpbrk(p, "\r\n");

Making an XML-RPC Call 31
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

 if (pNext == NULL)
 pNext = pEnd;
 else
 {
 while (pNext < pEnd && (*pNext == '\r' || *pNext == '\n'))
 {
 *pNext++ = '\0';
 }
 }
 fprintf(stderr, "\t%.*s\n", pNext - p, p);
 p = pNext;
 }

 AEDisposeDesc(¶mDesc);
 delete[] buffer;
 }
 fprintf(stderr, "\n\n");
}

The following listing shows sample output from the dumpDebug function for an XML-RPC Apple event.

Listing 3-4 Sample header and data from an XML-RPC post and the reply.

HTTP POST header:
 POST /RPC2 HTTP/1.0
 User-Agent: Mac OS X; AEServer (1.0)
 Host: betty.userland.com
 Content-Type: text/xml
 Content-length: 216

XML Request:
 <?xml version="1.0" encoding="UTF-8"?>
 <methodCall>
 <methodName>examples.getStateName</methodName>
 <params>
 <param>
 <value>
 <i4>41</i4>
 </value>
 </param>
 </params>
 </methodCall>

HTTP Reply header:
 HTTP/1.1 200 OK
 Connection: close
 Content-Length: 141
 Content-Type: text/xml
 Date: Mon, 13 Aug 2001 03:56:34 GMT
 Server: UserLand Frontier/7.0.1-WinNT

XML Reply:
 <?xml version="1.0"?>
 <methodResponse>
 <params>

32 Making an XML-RPC Call
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

 <param>
 <value>South Dakota</value>
 </param>
 </params>
 </methodResponse>

Making a SOAP Request

To make a SOAP request from an application or other code, you create an Apple event that describes the
request, use the AESend function to send it, and extract any returned information from the reply Apple event.
This process, along with the Apple Event Manager API you use, is described in “Remote Procedure Calls From
Applications” (page 14).

This section provides sample code for sending a SOAP request to a server. Like the sample code in “Making
an XML-RPC Call” (page 27), it makes a request to an Internet server that returns the state name for the
passed state index. That is, for an index value of 1 it returns Alabama, for 2 it returns Alaska, and so on. In
this case, however, the sample code calls the getStateNamemethod, a SOAP method on an entirely different
server.

Setting Up a Project

You can use the sample code in this task in a number of ways. The following steps show how to create a C++
tool with Project Builder:

1. Launch Project Builder.

2. Choose New Project from the File menu.

3. Choose the C++ tool template.

4. Replace the code in the automatically generated main.cpp file with the sample code in Listing 4-5 (page
34), Listing 4-6 (page 35), Listing 4-7 (page 37), and Listing 4-3 (page 31), in that order.

5. Use Add Frameworks from the Project menu to add Carbon.framework to the project.

Once you’ve built the tool, you can run it in Project Builder and examine its output in the Console pane, or
run it in a Terminal window.

You can also build this code directly in a Terminal window with the following compile line:

cc -g -o soap soap.cp -framework Carbon

If you want to compile with a C compiler, rather than a C++ compiler, you’ll have to modify the code so that
all variables are declared at the beginning of functions, rather than where they are used.

Includes, Constants, and Declarations

Listing 4-5 (page 34) shows include statements, constants, and declarations to place at the beginning of
your code file. This code

Making a SOAP Request 33
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

 ■ includes Carbon.h to gain access to the scripting API it needs

 ■ defines a simple error macro that uses fprintf to show an error number and line number, then exits
the application

 ■ defines constants that specify the server and method name to call to get state name information

 ■ declares a function (defined later) that creates a parameter list record

 ■ declares a debug function that is defined later

Listing 3-5 Includes, constants, and declarations for making a SOAP request.

#include <Carbon/Carbon.h>

#define checkErr(err) \
 while (err != noErr) \
 { fprintf(stderr, "Failed at line %d, error %d\n", __LINE__, err); \
 exit(-1); }

static const char* serverURL = "http://www.soapware.org/examples";
static const char* methodName = "getStateName";
static const char* methodNameSpaceURI = "http://www.soapware.org/";

static OSStatus createUserRecord(AEDesc* desc, const char* paramName,
 OSType dataType, const void* data, UInt32 dataSize);
static void dumpDebug(const char* msg, const AppleEvent* reply,
 OSType debugDataKey);

A Main Function That Makes a SOAP Request

Listing 4-2 (page 29) shows a main function that prepares a SOAP request Apple event, sends it, and displays
information from the reply Apple event. To do so, it performs the following steps:

1. It calls AECreateDesc to create a target address descriptor of type typeApplicationURL that specifies
the target for the request (a remote server). It uses the constant serverURL defined previously to specify
the desired Internet server.

2. It calls AECreateAppleEvent to create an Apple event with event class kAERPCClass, event ID
kAESOAPScheme, and with the target address descriptor from step 1.

3. It calls AECreateList to create the direct object for the Apple event.

4. It calls AEPutParamPtr to insert the method name, using the key keyRPCMethodName and the constant
methodName defined previously.

5. It calls the function createUserRecord, shown in Listing 4-7 (page 37), to create an AEDesc record
that stores the parameter name and value for a method that has one of each.

6. It calls AEPutParamDesc to add the parameter record to the Apple event’s direct object.

7. It calls AEPutParamPtr to insert the method namespace URI, using the key
keySOAPMethodNameSpaceURI and the constant methodNameSpaceURI defined previously.

8. It calls AEPutParamDesc to insert the direct object into the Apple event.

34 Making a SOAP Request
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

9. It calls AEPutAttributePtr to turn on debugging by adding an attribute to the event with key
keyXMLDebuggingAttr and the value kAEDebugXMLDebugAll. This step is optional.

10. It initializes a reply Apple event.

11. It calls AESend to send the Apple event, passing kAEWaitReply to indicate it will wait for a reply.

12. If the previous call succeeds, it calls AEGetParamPtr with key keyDirectObject and desired type of
typeChar to extract the direct object of the reply Apple event. For a successful call with state index 41,
the returned value is the string “South Dakota”.

It calls fprintf to display the state name. For example

 State is South Dakota!

13. The main function then calls the function dumpDebug, shown in Listing 4-3 (page 31), once each to
display the header and data for the original XML-RPC request and for the reply from the server. Listing
4-8 (page 38) shows the possible result of these calls.

Listing 3-6 main function to send a SOAP Apple event.

//------------------------- main ----------------------------------
// Builds and sends a SOAP request Apple event.
// Sends the Apple event to a server that returns the state
// name corresponding to the passed number; e.g., the number
// 5 corresponds to the state California.
// Prints the returned state name, then calls function
// to dump debug information from reply
int main()
{
 OSErr err;
 AEDesc targetAddress;

 // Create the target address
 // Using type typeApplicationURL makes it a remote procedure
 // call event.
 err = AECreateDesc(typeApplicationURL, serverURL, strlen(serverURL),
 &targetAddress);
 checkErr(err);

 // Create a SOAP request Apple event
 AppleEvent event;
 err = AECreateAppleEvent(kAERPCClass, kAESOAPScheme, &targetAddress,
 kAutoGenerateReturnID, kAnyTransactionID, &event);
 checkErr(err);
 AEDisposeDesc(&targetAddress);

 // Create the parameters for the event - the direct object is a
 // record that contains the method name, and a list of parameters

 AEDesc directObject;
 err = AECreateList(NULL, 0, true, &directObject);
 checkErr(err);

 // Put the method name
 err = AEPutParamPtr(&directObject, keyRPCMethodName, typeChar,

Making a SOAP Request 35
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

 methodName, strlen(methodName));
 checkErr(err);

 // The parameters for a SOAP request are a record. We use the
 // "AppleScript" format for records that contain user readable
 // names, and call a helper routine to construct this record.
 AEDesc paramRecord;
 SInt32 stateIndex = 41;
 err = createUserRecord(¶mRecord, "statenum", typeSInt32,
 &stateIndex, sizeof(stateIndex));
 checkErr(err);

 // Put the parameter record into the direct object
 err = AEPutParamDesc(&directObject, keyRPCMethodParam,
 ¶mRecord);
 checkErr(err);
 AEDisposeDesc(¶mRecord);

 // Additional pieces for soap are the SOAP schema, method
 // namespaceURI and SOAPAction.
 // If the SOAP schema is not explicitly specified, it defaults
 // to kSOAP1999Schema for the 1999 schema
 // (corresponding to the 1.1 specification).
 // If the SOAPAction is not explicitly specified, it will be
 // the path part of the URL (in this case, "/examples")

 err = AEPutParamPtr(&directObject, keySOAPMethodNameSpaceURI,
 typeChar, methodNameSpaceURI, strlen(methodNameSpaceURI));
 checkErr(err);

 // Put the direct object into the event
 err = AEPutParamDesc(&event, keyDirectObject, &directObject);
 checkErr(err);
 AEDisposeDesc(&directObject);

 // Request debugging information
 SInt32 debugAttr = kAEDebugXMLDebugAll;
 err = AEPutAttributePtr(&event, keyXMLDebuggingAttr, typeSInt32,
 &debugAttr, sizeof(debugAttr));

 // Send the event
 AppleEvent reply;
 AEInitializeDescInline(&reply);
 err = AESend(&event, &reply, kAEWaitReply, kAENormalPriority,
 kAEDefaultTimeout, NULL, NULL);
 checkErr(err);

 // The direct object contains our result (the name of the state)
 char buffer[255];
 Size actualSize;
 err = AEGetParamPtr(&reply, keyDirectObject, typeChar, NULL,
 buffer, sizeof(buffer), &actualSize);
 checkErr(err);

 fprintf(stderr, "State is %.*s!\n", actualSize, buffer);

 // Dump debug information
 dumpDebug("HTTP POST header", &reply, keyAEPOSTHeaderData);

36 Making a SOAP Request
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

 dumpDebug("XML Request", &reply, keyAEXMLRequestData);
 dumpDebug("HTTP Reply header", &reply, keyAEReplyHeaderData);
 dumpDebug("XML Reply", &reply, keyAEXMLReplyData);

 return 0;
}

Creating Parameter List Records

Listing 4-7 (page 37) shows a function that creates a record containing the parameter name and value for
a SOAP method with one parameter.

To prepare a parameter list record, this function performs the following steps:

1. It calls AECreateList to create a list descriptor record for the SOAP request parameters.

2. It calls AECreateList again to create a list descriptor for the parameter name and value.

3. Calls AEPutPtr to insert the passed parameter name in the parameter name and value list, with the
type typeChar.

4. Calls AEPutPtr again to insert the passed parameter data in the parameter name and value list, with
the type specified the passed type.

5. It calls AEPutParamDesc to add the parameter name and value list to the parameter list record.

If you need to create a parameter list record for a SOAP request with multiple parameters, you can define a
function with a variable length argument list. The function can iterate over the arguments, performing steps
3 and 4 (adding the name and data) for each pair of parameter arguments.

Listing 3-7 A function to create a parameter list record for a SOAP request Apple event.

// -------------------- createUserRecord -----------------------------
// Creates a record containing the parameters for a SOAP request.
// Uses the "AppleScript" format for records that contain user readable
// names.

static OSStatus createUserRecord(AEDesc* desc, const char* paramName,
 OSType dataType, const void* data, UInt32 dataSize)
{
 OSErr err = AECreateList(0, NULL, true, desc);
 if (err == noErr) {
 AEDesc termsList;
 err = AECreateList(0, NULL, false, &termsList);

 if (err == noErr)
 err = AEPutPtr(&termsList, 0, typeChar,
 paramName, strlen(paramName));
 if (err == noErr)
 err = AEPutPtr(&termsList, 0, dataType,
 data, dataSize);

 if (err == noErr)
 err = AEPutParamDesc(desc, keyASUserRecordFields,

Making a SOAP Request 37
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

 &termsList);

 AEDisposeDesc(&termsList);
 }
 return err;
}

Displaying SOAP Request Debug Information

The sample code to display debug information from a SOAP request Apple event uses the same dumpDebug
function as the sample code for making an XML-RPC call. That code is shown in Listing 4-3 (page 31). However,
because the XML-RPC and SOAP protocols are different, the requests, the Apple events that represent them,
and the debug output are all different. Listing Listing 4-8 (page 38) shows sample output from the dumpDebug
function for a SOAP request Apple event.

Listing 3-8 Sample header and data from a SOAP post and the reply.

HTTP POST header:
 POST /examples HTTP/1.0
 Host: www.soapware.org
 SOAPAction: "/examples"
 User-Agent: Mac OS X; AEServer (1.0)
 Content-Type: text/xml
 Content-length: 538

XML Request:
 <?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:getStateName xmlns:m="http://www.soapware.org/">
 <statenum xsi:type="xsd:int">41</statenum>
 </m:getStateName>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

HTTP Reply header:
 HTTP/1.1 200 OK
 Connection: close
 Content-Length: 499
 Content-Type: text/xml; charset="us-ascii"
 Date: Mon, 13 Aug 2001 05:07:46 GMT
 Server: UserLand Frontier/7.0.1-WinNT

XML Reply:
 <?xml version="1.0"?>
 <SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

38 Making a SOAP Request
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://
 schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">
 <SOAP-ENV:Body>
 <getStateNameResponse>
 <Result xsi:type="xsd:string">South Dakota</Result>
 </getStateNameResponse>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Making a SOAP Request 39
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

40 Making a SOAP Request
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Making Remote Procedure Calls From Applications

This table describes the changes to XML-RPC and SOAP Programming Guide.

NotesDate

Made minor changes to first two chapters. Changed title from "XML-RPC and
SOAP Support."

2005-03-03

In “Making Remote Procedure Calls From Scripts” (page 19), added warning
that the script samples may not work because the web services they rely on
may no longer be available. Also provided the location of some additional sample
scripts.

First version.2001-09-07

41
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

42
2005-03-03 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	XML-RPC and SOAP Programming Guide
	Contents
	Figures and Listings
	Introduction
	About AppleScript’s Support for XML-RPC and SOAP
	The XML-RPC and SOAP Protocols
	AppleScript Support for Remote Procedure Calls
	Remote Procedure Calls From Scripts
	AppleScript Terminology for Remote Procedure Calls
	XML-RPC Script Statements
	SOAP Script Statements

	Remote Procedure Calls From Applications
	Apple Event Manager API for Remote Procedure Calls
	Sending an XML-RPC Apple Event
	Sending a SOAP Apple Event

	Making Remote Procedure Calls From Scripts
	Scripting an XML-RPC Call
	Scripting a SOAP Request
	A Simple Translation Script
	A More Complex Translation Script

	Making Remote Procedure Calls From Applications
	Making an XML-RPC Call
	Setting Up a Project
	Includes, Constants, and Declarations
	A Main Function That Makes an XML-RPC Call
	Displaying XML-RPC Debug Information

	Making a SOAP Request
	Setting Up a Project
	Includes, Constants, and Declarations
	A Main Function That Makes a SOAP Request
	Creating Parameter List Records
	Displaying SOAP Request Debug Information

	Revision History

