
AppleScript Language Guide
Tools & Languages: Other Languages

2008-03-11

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, AppleScript
Studio, AppleShare, AppleTalk, Bonjour, eMac,
iTunes, iWork, Leopard, Logic, Mac, Mac OS,
and Macintosh are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder, Numbers, and Spotlight are trademarks
of Apple Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to AppleScript Language Guide 13

Who Should Read This Document? 14
Organization of This Document 14
Conventions Used in This Guide 15
See Also 16

Chapter 1 AppleScript Lexical Conventions 17

Character Set 17
Identifiers 18
Keywords 18
Comments 19
The Continuation Character 20
Literals and Constants 20

Boolean 20
Constant 20
List 21
Number 21
Record 21
Text 21

Operators 22
Variables 22
Expressions 22
Statements 23
Commands 23
Results 24
Raw Codes 24

Chapter 2 AppleScript Fundamentals 25

Script Editor Application 25
AppleScript and Objects 26

What Is in a Script Object 27
Properties 28
Elements 28

Object Specifiers 29
What Is in an Object Specifier 29
Containers 30
Absolute and Relative Object Specifiers 30
Object Specifiers in Reference Objects 31

Coercion (Object Conversion) 32

3
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Scripting Additions 34
Commands Overview 34

Types of Commands 35
Target 35
Direct Parameter 36
Parameters That Specify Locations 36

AppleScript Error Handling 36
Global Constants in AppleScript 37

AppleScript Constant 37
current application Constant 39
missing value Constant 40
true, false Constants 40

The it and me Keywords 40
Aliases and Files 41

Specifying Paths 42
Working With Aliases 42
Working With Files 43

Remote Applications 44
Enabling Remote Applications 44
eppc-Style Specifiers 44
Targeting Remote Applications 44

Debugging AppleScript Scripts 45
Feedback From Your Script 45
Logging 46
Third Party Debuggers 46

Chapter 3 Variables and Properties 47

Defining Properties 47
Declaring Variables 48

Local Variables 48
Global Variables 49
Using the copy and set Commands 49

Scope of Variables and Properties 51
Scope of Properties and Variables Declared in a Script Object 52
Scope of Variables Declared in a Handler 55

Chapter 4 Script Objects 57

Defining Script Objects 57
Initializing Script Objects 59
Sending Commands to Script Objects 59
Inheritance in Script Objects 60

The AppleScript Inheritance Chain 60
Defining Inheritance Through the parent Property 61
Some Examples of Inheritance 61

4
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Using the continue Statement in Script Objects 63

Chapter 5 About Handlers 67

Handler Basics 67
Defining a Simple Handler 68
Handlers with Labeled Parameters 68
Handlers with Positional Parameters 69
Handlers with Patterned Positional Parameters 70
Recursive Handlers 71
Errors in Handlers 71
Passing by Reference Versus Passing by Value 71
Calling Handlers in a tell Statement 72

Saving and Loading Libraries of Handlers 72
Handlers in Script Applications 73

run Handlers 74
open Handlers 75
idle and quit Handlers for Stay-Open Applications 76

Calling a Script Application From a Script 77

Chapter 6 Class Reference 79

alias 79
application 80
boolean 82
class 83
constant 84
date 85
file 88
integer 89
list 89
number 92
POSIX file 93
real 93
record 94
reference 95
RGB color 96
script 97
text 97
unit types 103

Chapter 7 Commands Reference 105

activate 108
ASCII character 108
ASCII number 109

5
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

beep 110
choose application 110
choose color 111
choose file 112
choose file name 114
choose folder 115
choose from list 116
choose remote application 118
choose URL 119
clipboard info 120
close access 120
copy 121
count 122
current date 123
delay 123
display alert 124
display dialog 125
do shell script 128
get 129
get eof 131
get volume settings 131
info for 132
launch 134
list disks 134
list folder 135
load script 135
localized string 136
log 138
mount volume 138
offset 139
open for access 140
open location 141
path to (application) 142
path to (folder) 143
path to resource 145
random number 146
read 147
round 149
run 151
run script 151
say 152
scripting components 153
set 154
set eof 155
set the clipboard to 156
set volume 157

6
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

store script 158
summarize 159
system attribute 160
system info 161
the clipboard 162
time to GMT 163
write 163

Chapter 8 Reference Forms 167

Arbitrary 167
Every 168
Filter 169
ID 171
Index 172
Middle 173
Name 173
Property 174
Range 175
Relative 176

Chapter 9 Operators Reference 179

& (concatenation) 187
text 187
record 187
All Other Classes 187

a reference to 188
Examples 188

contains, is contained by 189
list 189
record 189
text 190

equal, is not equal to 190
list 190
record 190
text 191

greater than, less than 191
date 191
integer, real 191
text 191

starts with, ends with 192
list 192
text 192

7
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 10 Control Statements Reference 193

considering and ignoring Statements 193
considering / ignoring (text comparison) 193
considering / ignoring (application responses) 195

error Statements 196
error 196

if Statements 197
if (simple) 198
if (compound) 198

repeat Statements 199
exit 199
repeat (forever) 199
repeat (number) times 200
repeat until 201
repeat while 202
repeat with loopVariable (from startValue to stopValue) 202
repeat with loopVariable (in list) 203

tell Statements 205
tell (simple) 206
tell (compound) 206

try Statements 207
try 207

using terms from Statements 209
using terms from 209

with timeout Statements 210
with timeout 210

with transaction Statements 211
with transaction 211

Chapter 11 Handler Reference 213

continue 213
return 214
Handler Syntax (Labeled Parameters) 215
Calling a Handler with Labeled Parameters 216
Handler Syntax (Positional Parameters) 218
Calling a Handler with Positional Parameters 218

Chapter 12 Folder Actions Reference 221

adding folder items to 222
closing folder window for 223
moving folder window for 223
opening folder 224
removing folder items from 225

8
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Appendix A AppleScript Keywords 227

Appendix B Error Numbers and Error Messages 233

AppleScript Errors 233
Operating System Errors 234

Appendix C Working with Errors 237

Catching Errors in a Handler 237
Simplified Error Checking 238

Appendix D Double Angle Brackets 241

When a Dictionary Is Not Available 241
When AppleScript Displays Data in Raw Format 241
Entering Script Information in Raw Format 242
Sending Raw Apple Events From a Script 242

Appendix E Unsupported Terms 243

List of Unsupported Terms 243

Glossary 245

Document Revision History 251

Index 253

9
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

10
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 AppleScript Lexical Conventions 17

Table 1-1 AppleScript reserved words, listed alphabetically 18

Chapter 2 AppleScript Fundamentals 25

Figure 2-1 The Finder dictionary in Script Editor (in Mac OS X v10.5) 26
Table 2-1 Default coercions supported by AppleScript 32

Chapter 3 Variables and Properties 47

Table 3-1 Scope of property and variable declarations at the top level in a script object 53
Table 3-2 Scope of variable declarations within a handler 55

Chapter 4 Script Objects 57

Listing 4-1 A pair of script objects with a simple parent-child relationship 61

Chapter 6 Class Reference 79

Table 6-1 Special characters in text 100
Table 6-2 White space constants 100

Chapter 7 Commands Reference 105

Figure 7-1 Bundle structure with localized string data 137
Figure 7-2 Key/value pair for localized string data 137
Table 7-1 AppleScript commands 105

Chapter 8 Reference Forms 167

Table 8-1 Boolean expressions and tests in filter references 170

Chapter 9 Operators Reference 179

Table 9-1 AppleScript operators 179
Table 9-2 Operator precedence 186

Appendix A AppleScript Keywords 227

Table A-1 AppleScript reserved words, with descriptions 227

11
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Appendix B Error Numbers and Error Messages 233

Table B-1 AppleScript errors 233
Table B-2 Mac OS errors 234

12
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

This document is a guide to the AppleScript language—its lexical conventions, syntax, keywords, and other
elements. It is intended primarily for use with AppleScript 2.0 or later and Mac OS X version 10.5 or later.

AppleScript 2.0 can use scripts developed for any version of AppleScript from 1.1 through 1.10.7, any scripting
addition created for AppleScript 1.5 or later for Mac OS X, and any scriptable application for Mac OS v7.1 or
later. A script created with AppleScript 2.0 can be used by any version of AppleScript back to version 1.1,
provided it does not use features of AppleScript, scripting additions, or scriptable applications that are
unavailable in that version.

Important: Descriptions and examples for the terms in this document have been tested with AppleScript
2.0 in Mac OS X v10.5 (Leopard). Except for terms that are noted as being new in Leopard, most descriptions
and examples work with previous system versions, but have not been tested against all of them.

If you need detailed information about prior system and AppleScript versions, see AppleScript Release Notes
(Mac OS X 10.4 and earlier).

What Is AppleScript?

AppleScript is a scripting language created by Apple. It allows users to directly control scriptable Macintosh
applications, as well as parts of Mac OS X itself. You can create scripts—sets of written instructions—to
automate repetitive tasks, combine features from multiple scriptable applications, and create complex
workflows.

Note: Apple also provides the Automator application, which allows users to automate common tasks by
hooking together ready-made actions in a graphical environment. For more information, see Automator
Documentation.

A scriptable application is one that can be controlled by a script. For AppleScript, that means being responsive
to interapplication messages, called Apple events, sent when a script command targets the application.
(Apple events can also be sent directly from other applications and Mac OS X.)

AppleScript itself provides a very small number of commands, but it provides a framework into which you
can plug many task-specific commands—those provided by scriptable applications and scriptable parts of
Mac OS X.

Most script samples and script fragments in this guide use scriptable features of the Finder application,
scriptable parts of Mac OS X, or scriptable applications distributed with Mac OS X, such as TextEdit (located
in /Applications).

What Is AppleScript? 13
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to AppleScript Language Guide

Who Should Read This Document?

You should use this document if you write or modify AppleScript scripts, or if you create scriptable applications
and need to know how scripts should work.

AppleScript LanguageGuide assumes you are familiar with the high-level information about AppleScript found
in AppleScript Overview.

Organization of This Document

This guide describes the AppleScript language in a series of chapters and appendixes.

The first five chapters introduce components of the language and basic concepts for using it, then provide
additional overview on working with script objects and handler routines:

 ■ “AppleScript Lexical Conventions” (page 17) describes the characters, symbols, keywords, and other
language elements that make up statements in an AppleScript script.

 ■ “AppleScript Fundamentals” (page 25) describes basic concepts that underly the terminology and rules
covered in the rest of this guide.

 ■ “Variables and Properties” (page 47) describes common issues in working with variables and properties,
including how to declare them and how AppleScript interprets their scope.

 ■ “Script Objects” (page 57) describes how to define, initialize, send commands to, and use inheritance
with script objects.

 ■ “About Handlers” (page 67) provides information on using handlers (a type of function available in
AppleScript) to factor and reuse code.

The following chapters provide reference for the AppleScript Language:

 ■ “Class Reference” (page 79) describes the classes AppleScript defines for common objects used in scripts.

 ■ “Commands Reference” (page 105) describes the commands that are available to any script.

 ■ “Reference Forms” (page 167) describes the syntax for specifying an object or group of objects in an
application or other container.

 ■ “Operators Reference” (page 179) provides a list of the operators AppleScript supports and the rules for
using them, along with sections that provide additional detail for commonly used operators.

 ■ “Control Statements Reference” (page 193) describes statements that control when and how other
statements are executed. It covers standard conditional statements, as well as statements used in error
handling and other operations.

 ■ “Handler Reference” (page 213) shows the syntax for defining and calling handlers and describes other
statements you use with handlers.

The following chapter describes an AppleScript-related feature of Mac OS X:

 ■ “Folder Actions Reference” (page 221) describes how you can write and attach script handlers to specific
folders, such that the handlers are invoked when the folders are modified.

14 Who Should Read This Document?
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to AppleScript Language Guide

The following appendixes provide additional information about the AppleScript language and how to work
with errors in scripts:

 ■ “AppleScript Keywords” (page 227) lists the keywords of the AppleScript language, provides a brief
description for each, and points to related information.

 ■ “Error Numbers and Error Messages” (page 233) describes error numbers and error messages you may
see in working with AppleScript scripts.

 ■ “Working with Errors” (page 237) provides detailed examples of handling errors with “try Statements” (page
207) and “error Statements” (page 196).

 ■ “Double Angle Brackets” (page 241) describes when you are likely to see double angle brackets (or
chevrons—«») in scripts and how you can work with them.

 ■ “Unsupported Terms” (page 243) lists terms that are no longer supported in AppleScript.

Conventions Used in This Guide

Glossary terms are shown in boldface where they are defined.

Important: This document sometimes uses the continuation character (¬) for sample statements that don’t
fit on one line on a document page. It also uses the continuation character in some syntax statements to
identify an item that, if included, must appear on the same line as the previous item. The continuation
character itself is not a required part of the syntax—it is merely a mechanism for including multiple lines in
one statement.

The following conventions are used in syntax descriptions:

Plain computer font indicates an element that you type exactly as shown. If there
are special symbols (for example, + or &), you also type them exactly as shown.

language element

Italic text indicates a placeholder that you replace with an appropriate value.placeholder

Brackets indicate that the enclosed language element or elements are optional.[optional]

Parentheses group elements together.

However, the parentheses shown in “Handler Syntax (Positional Parameters)” (page
218) are part of the syntax.

(a group)

Three ellipsis points (...) after a group defined by brackets indicate that you can
repeat the group of elements within brackets 0 or more times.

[optional]...

Vertical bars separate elements in a group from which you must choose a single
element. The elements are often grouped within parentheses or brackets.

a | b | c

Most filenames shown in examples in this document include extensions, such as
rtf for a TextEdit document. Use of extensions in scripts is generally dependent
on the “Show all file extensions” setting in the Advanced pane of Finder Preferences.

To work with the examples on your computer, you may need to modify either that
setting or the filenames.

Filenames shown in
scripts

Conventions Used in This Guide 15
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to AppleScript Language Guide

See Also

These Apple documents provide additional information for working with AppleScript:

 ■ See Getting Started with AppleScript for a guided quick start, useful to both scripters and developers.

 ■ See AppleScript Overview, including the chapter Scripting With AppleScript, for a high-level overview of
AppleScript and its related technologies.

 ■ See Getting StartedWith Scripting & Automation for information on the universe of scripting technologies
available in Mac OS X.

 ■ See AppleScript Terminology and Apple Event Codes for a list of many of the scripting terms defined by
Apple.

For additional information on working with the AppleScript language and creating scripts, see one of the
comprehensive third-party documents available in bookstores and online.

16 See Also
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to AppleScript Language Guide

http://developer.apple.com/releasenotes/AppleScript/ASTerminology_AppleEventCodes/TermsAndCodes.html

This chapter provides an overview of the vocabulary and conventions of the AppleScript Language. It starts
with the character set and introduces elements of increasing complexity.

After reading this chapter, you should have an understanding of the basic language components used to
construct AppleScript expressions and statements.

AppleScript Lexical Conventions contains the following sections:

 ■ “Character Set” (page 17)

 ■ “Identifiers” (page 18)

 ■ “Keywords” (page 18)

 ■ “Comments” (page 19)

 ■ “The Continuation Character” (page 20)

 ■ “Literals and Constants” (page 20)

 ■ “Operators” (page 22)

 ■ “Variables” (page 22)

 ■ “Expressions” (page 22)

 ■ “Statements” (page 23)

 ■ “Commands” (page 23)

 ■ “Results” (page 24)

 ■ “Raw Codes” (page 24)

Character Set

Starting in Mac OS X v10.5 (AppleScript 2.0), the character set for AppleScript is Unicode. AppleScript preserves
all characters correctly worldwide, and comments and text constants in scripts may contain any Unicode
characters.

AppleScript syntax uses several non-ASCII characters, which can be typed using special key combinations.
For information on characters that AppleScript treats specially, see the sections “Identifiers” (page 18),
“Comments” (page 19), “Text” (page 21), “The Continuation Character” (page 20), and “Raw Codes” (page
24) in this chapter, as well as Table 9-1 (page 179) in “Operators Reference” (page 179).

Character Set 17
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

AppleScript Lexical Conventions

Identifiers

An AppleScript identifier is a series of characters that identifies a class name, variable, or other language
element, such as labels for properties and handlers.

An identifier must begin with a letter and can contain any of these characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_

Identifiers are not case sensitive. For example, the identifiers myvariable and MyVariable are equivalent.

AppleScript remembers and enforces the first capitalization it comes across for an identifier. So if it first
encounters an identifier as myAccount, it will later, during compilation, change versions such as MyAccount
and myaccount to myAccount.

The following are examples of valid identifiers: areaOfCircle, Agent007, axis_of_rotation.

The following are not valid identifiers: C-, back&forth, 999, Why^Not.

AppleScript provides a loophole to the preceding rules: identifiers whose first and last characters are vertical
bars (|) can contain any characters. The leading and trailing vertical bars are not considered part of the
identifier.

Important: This use of vertical bars can make scripts difficult to read, and is not recommended.

The following are legal identifiers: |back&forth|, |Right*Now!|.

An identifier can contain additional vertical bars preceded by a backslash (\) character, as in the identifier
|This\|Or\|That|. Use of the backslash character is described further in the Special String Characters
section of the text (page 97) class.

Keywords

A keyword is a reserved word in the AppleScript language. Keywords consist of lower-case, alphabetic
characters: abcdefghijklmnopqrstuvwxyz. In a few cases, such as aside from, they come in pairs.

Important: You should not attempt to reuse keywords in your scripts for variable names or other purposes.
Developers should not re-define keywords in the terminology for their scriptable applications.

Table 1-1 lists the keywords reserved in AppleScript 2.0 (which are the same as those used in AppleScript
1.x). For additional information, see Table A-1 (page 227), which provides a brief description for each keyword
and points to related information, where available.

Table 1-1 AppleScript reserved words, listed alphabetically

apart fromandagainstafteraboveabout

beforebackataside fromasaround

18 Identifiers
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

AppleScript Lexical Conventions

betweenbesidebeneathbelowbehindbeginning

containscontainscontainconsideringbybut

elseeighthdoesdivcopycontinue

exiteveryerrorequalsequalend

fromfourthforfirstfifthfalse

ignoringifglobalgivengetfront

itsitisintoinstead ofin

mymodmiddlemelocallast

orontoonofnotninth

refputpropertypropoverout of

secondscriptreturningreturnrepeatreference

tellsomesixthsinceseventhset

throughthirdthenthethattenth

truetransactiontotimestimeoutthru

withwhosewhilewhereuntiltry

without

Comments

A comment is text that is ignored by AppleScript when a script is executed. You can use comments to describe
what is happening in the script or make other kinds of notes. There are three kinds of comments:

 ■ A block comment begins with the characters (* and ends with the characters *). Block comments must
be placed between other statements. That means they can be placed on the same line at the beginning
or end of a statement, but cannot be embedded within a simple (one-line) statement.

 ■ An end-of-line comment begins with the characters -- (two hyphens) and ends with the end of the line:

--end-of-line comments extend to the end of the line

 ■ Starting in version 2.0, AppleScript also supports use of the # symbol as an end-of-line comment. This
allows you to make a plain AppleScript script into a Unix executable by beginning it with the following
line and giving it execute permission:

#!/usr/bin/osascript

Comments 19
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

AppleScript Lexical Conventions

Compiled scripts that use # will run normally on pre-2.0 systems, and if edited will display using --.
Executable text scripts using #!/usr/bin/osascript will not run on pre-2.0 systems, since the # will
be considered a syntax error.

You can nest comments—that is, comments can contain other comments, as in this example:

(* Here are some
 --nested comments
 (* another comment within a comment *)
*)

The Continuation Character

A simple AppleScript statement must normally be entered on a single line. You can extend a statement to
the next line by ending it with the continuation character, ¬. With a U.S. keyboard, you can enter this
character by typing Option-l (lower-case L). In Script Editor, you can type Option-Return, which inserts the
continuation character and moves the insertion point to the next line.

Here is a single statement displayed on two lines:

display dialog "This is just a test." buttons {"Great", "OK"} ¬
default button "OK" giving up after 3

A continuation character within a quoted text string is treated like any other character.

Literals and Constants

A literal is a value that evaluates to itself—that is, it is interpreted just as it is written. In AppleScript, for
example, "Hello" is a text literal. A constant is a word with a predefined value. For example, AppleScript
defines a number of enumerated constants for use with the path to (folder) (page 143) command, each
of which specifies a location for which to obtain the path.

Boolean

AppleScript defines the Boolean values true and false and supplies the boolean (page 82) class.

Constant

“Global Constants in AppleScript” (page 37) describes constants that can be used throughout your scripts.
For related information, see the constant (page 84) class.

20 The Continuation Character
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

AppleScript Lexical Conventions

List

A list defines an ordered collection of values, known as items, of any class. As depicted in a script, a list consists
of a series of expressions contained within braces and separated by commas, such as the following:

{1, 7, "Beethoven", 4.5}

A list can contain other lists. An empty list (containing no items) is represented by a pair of empty braces:
{}.

AppleScript provides the list (page 89) class for working with lists.

Number

A numeric literal is a sequence of digits, possibly including other characters, such as a unary minus sign,
period (in reals), or "E+" (in exponential notation). The following are some numeric literals:

-94596
3.1415
9.9999999999E+10

AppleScript defines classes for working with real (page 93) and integer (page 89) values, as well as the
number class, which serves as a synonym for either real or integer.

Record

A record is an unordered collection of labeled properties. A record appears in a script as a series of property
definitions contained within braces and separated by commas. Each property definition consists of a unique
label, a colon, and a value for the property. For example, the following is a record with two properties:

{product:"pen", price:2.34}

Text

A text literal consists of a series of Unicode characters enclosed in a pair of double quote marks, as in the
following example:

"A basic string."

AppleScript text objects are instances of the text (page 97) class, which provides mechanisms for working
with text. The Special String Characters section of that class describes how to use white space, backslash
characters, and double quotes in text.

Literals and Constants 21
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

AppleScript Lexical Conventions

Operators

An operator is a symbol, word, or phrase that derives a value from another value or pair of values. For example,
the multiplication operator (*) multiplies two numeric operands, while the concatenation operator (&) joins
two objects (such as text strings). The is equal operator performs a test on two Boolean values.

For detailed information on AppleScript’s operators, see “Operators Reference” (page 179).

Variables

A variable is a named container in which to store a value. Its name, which you specify when you create the
variable, follows the rules described in “Identifiers” (page 18). You can declare and initialize a variable at the
same time with a copy (page 121) or set (page 154) command. For example:

set myName to "John"
copy 33 to myAge

Statements that assign values to variables are known as assignment statements.

When AppleScript encounters a variable, it evaluates the variable by getting its value. A variable is contained
in a script and its value is normally lost when you close the script that contains it.

AppleScript variables can hold values of any class. For example, you can assign the integer value 17 to a
variable, then later assign the Boolean value true to the same variable.

For more information, see “Variables and Properties” (page 47).

Expressions

An expression is any series of lexical elements that has a value. Expressions are used in scripts to represent
or derive values. The simplest kinds of expressions, called literal expressions, are representations of values
in scripts. More complex expressions typically combine literals, variables, operators, and object specifiers.

When you run a script, AppleScript converts its expressions into values. This process is known as evaluation.
For example, when the following simple expression is evaluated, the result is 21:

3 * 7 --result: 21

An object specifier specifies some or all of the information needed to find another object. For example, the
following object specifier specifies a named document:

document named "FavoritesList"

For more information, see “Object Specifiers” (page 29).

22 Operators
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

AppleScript Lexical Conventions

Statements

A statement is a series of lexical elements that follows a particular AppleScript syntax. Statements can include
keywords, variables, operators, constants, expressions, and so on.

Every script consists of statements. When AppleScript executes a script, it reads the statements in order and
carries out their instructions.

A control statement is a statement that determines when and how other statements are executed. AppleScript
defines standard control statements such as if, repeat, and while statements, which are described in
detail in “Control Statements Reference” (page 193).

A simple statement is one that can be written on a single line:

set averageTemp to 63 as degrees Fahrenheit

Note: You can use a continuation character (¬) to extend a simple statement onto a second line.

A compound statement is written on more than one line, can contain other statements, and has the word
end (followed, optionally, by the first word of the statement) in its last line. For example the following is a
compound tell statement:

tell application "Finder"
 set savedName to name of front window
 close window savedName
end tell

A compound statement can contain other compound statements.

Commands

A command is a word or series of words used in an AppleScript statement to request an action. Every
command is directed at a target, which is the object that responds to the command. The target is usually
an application object or an object in Mac OS X, but it can also be a script object or a value in the current
script.

The following statement uses AppleScript’s get (page 129) command to obtain the name of a window; the
target is the front window of the Finder application:

get name of front window of application "Finder"

For more information on command types, parameters, and targets, see “Commands Overview” (page 34).

Statements 23
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

AppleScript Lexical Conventions

Results

The result of a statement is the value generated, if any, when the statement is executed. For example,
executing the statement 3 + 4 results in the value 7. The result of the statement set myText to
"keyboard" is the text object "keyboard". A result can be of any class. AppleScript stores the result in the
globally available property result, described in “AppleScript Constant” (page 37).

Raw Codes

When you open, compile, edit, or run scripts with a script editor, you may occasionally see terms enclosed
in double angle brackets, or chevrons («»), in a script window or in another window. These terms are called
raw format or raw codes, because they represent the underlying Apple event codes that AppleScript uses to
represent scripting terms.

For compatibility with Asian national encodings, “ ”and “ ”are allowed as synonyms for “«” and “»” ((Option-
\ and Option-Shift- \, respectively, on a U.S. keyboard), since the latter do not exist in some Asian encodings.

For more information on raw codes, see “Double Angle Brackets” (page 241).

24 Results
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

AppleScript Lexical Conventions

This chapter describes basic concepts that underlie the terminology and rules covered in the rest of this
guide.

 ■ “Script Editor Application” (page 25)

 ■ “AppleScript and Objects” (page 26)

 ■ “Object Specifiers” (page 29)

 ■ “Coercion (Object Conversion)” (page 32)

 ■ “Scripting Additions” (page 34)

 ■ “Commands Overview” (page 34)

 ■ “AppleScript Error Handling” (page 36)

 ■ “Global Constants in AppleScript” (page 37)

 ■ “The it and me Keywords” (page 40)

 ■ “Aliases and Files” (page 41)

 ■ “Remote Applications” (page 44)

 ■ “Debugging AppleScript Scripts” (page 45)

Script Editor Application

The Script Editor application is located in /Applications/Utilities. It provides the ability to edit, compile,
and execute scripts, display application scripting terminologies, and save scripts in a variety of formats, such
as compiled scripts, applications, and plain text.

Script Editor can display the result of executing an AppleScript script and can display a log of the Apple
events that are sent during execution of a script. In the Script Editor Preferences, you can also choose to keep
a history of recent results or event logs.

Script Editor has text formatting preferences for various types of script text, such as language keywords,
comments, and so on. You can also turn on or off the Script Assistant, a code completion tool that can suggest
and fill in scripting terms as you type. In addition, Script Editor provides a contextual menu to insert many
types of boilerplate script statements, such as conditionals, comments, and error handlers.

A dictionary is the part of a scriptable application that specifies the scripting terms it understands. You can
choose File > Open Dictionary in Script Editor to display the dictionary of a scriptable application or scripting
addition on your computer. Or you can drag an application icon to the Script Editor icon to display its
dictionary (if it has one).

Script Editor Application 25
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

To display a list that includes just the scriptable applications and scripting additions provided by Mac OS X,
choose Window > Library. Double-click an item in the list to display its dictionary. Figure 2-1 shows the
dictionary for the Finder application in Mac OS X v10.5. The dictionary is labeled as “Finder.sdef”. The sdef
format, along with other terminology formats, is described in “Specifying Scripting Terminology” in AppleScript
Overview.

Figure 2-1 The Finder dictionary in Script Editor (in Mac OS X v10.5)

There are also third-party editors for AppleScript.

AppleScript and Objects

AppleScript is an object-oriented language. When you write, compile, and execute scripts, everything you
work with is an object. An object is an instantiation of a class definition, which can include properties and
actions. AppleScript defines classes for the objects you most commonly work with, starting with the top-level
script (page 97) object, which is the overall script you are working in.

Within in a script object, you work with other objects, including:

 ■ AppleScript objects:

26 AppleScript and Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

AppleScript defines classes for boolean values, scripts, text, numbers, and other kinds of objects for
working in scripts; for a complete list, see “Class Reference” (page 79).

 ■ Mac OS X objects:

Scriptable parts of Mac OS X and applications distributed with it, such as Finder, System Events, and
Database Events (located in /System/Library/CoreServices), define many useful classes.

 ■ Application objects:

Third-party scriptable applications define classes that support a wide variety of features.

The following sections provide more detail about objects:

 ■ “What Is in a Script Object” (page 27)

 ■ “Properties” (page 28)

 ■ “Elements” (page 28)

What Is in a Script Object

When you enter AppleScript statements in script window in Script Editor, you are working in a top-level
script object. All script object definitions follow the same syntax, except that a top-level script object
does not have statements marking its beginning and end.

A script object can contain the following:

 ■ Property definitions (optional):

A property is a labeled container in which to store a value.

 ■ An explicit run handler (optional):

A run handler contains statements AppleScript executes when the script is run. (For more information,
see “run Handlers” (page 74).)

 ■ An implicit run handler (optional):

An implicit run handler consists of any statements outside of any contained handlers or script objects.

 ■ Additional handlers (optional):

A handler is the equivalent of a subroutine. (For details, see “About Handlers” (page 67).)

 ■ Additional script objects (optional):

A script object can contain nested script objects, each of which is defined just like a top-level script
object, except that a nested script object is bracketed with statements that mark its beginning and
end. (For details, see “Script Objects” (page 57).)

Here is an example of a simple script with one property, one handler, one nested script object, and an
implicit run handler with two statements:

property defaultClientName : "Mary Smith"

on greetClient(nameOfClient)
 display dialog ("Hello " & nameOfClient & "!")
end greetClient

AppleScript and Objects 27
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

script testGreet
 greetClient(defaultClientName)
end script

run testGreet --result: "Hello Mary Smith!"
greetClient("Joe Jones") --result: "Hello Joe Jones!"

The first statement in the run handler is run testGreet, which runs the nested script object testGreet.
That script object calls the handler greetClient(), passing the property defaultClientName. The
handler displays a dialog, greeting the default client, Mary Smith.

The second statement in the run handler calls greetClient() directly, passing the string "Joe Jones".

Properties

A property of an object is a characteristic that has a single value and a label, such as the name property of a
window or the month property of a date. The definition for any AppleScript class includes the name and class
for each of its properties. Property names must be unique within a class. Property values can be read/write
or read only.

The AppleScript date (page 85) class, for example, defines both read/write and read only properties. These
include the weekday property, which is read only, and the month, day, and year properties, which are
read/write. That’s because the value of the weekday property depends on the other properties—you can’t
set an arbitrary weekday for an actual date.

The class of a property can be a simple class such as boolean (page 82) or integer (page 89), a composite
class such as a point class (made up of two integers), or a more complex class.

Most classes only support predefined properties. However, for the script (page 97) class, AppleScript lets
you to define additional properties. For information on how to do this, see “Defining Properties” (page 47).
You can also define properties for record (page 94) objects.

Elements

An element is an object contained within another object. The definition for any AppleScript class includes
the element types it can contain. An object can typically contain zero or more of each of its elements.

For a given element type, an object can contain many elements or none, and the number of elements that
it contains may change over time. For example, it is possible for a list (page 89) object to contain no items
(it can be an empty list). At a later time, the same list might contain many items.

Whether you can add elements to or remove elements from an object depends on the class and the element.
For example, a text object is immutable—you cannot add or remove text once the object is created. For a
list object, you cannot remove items, but you can use the set command to add an item to the beginning
or end:

set myList to {1, "what", 3} --result: {1, "what", 3}
set beginning of myList to 0
set end of myList to "four"
myList --result: {0, 1, "what", 3, "four"}

28 AppleScript and Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

Object Specifiers

An object specifier specifies the information needed to find another object in terms of the objects in which
it is contained. An object specifier can refer to an application object, such as a window or file, or to an
AppleScript object, such as an item in a list or a property in a record.

An object specifier is fully evaluated (or resolved) only when a script is run, not when it is compiled. A script
can contain a valid object specifier (such as third document of application "TextEdit" that causes
an error when the script is executed (because, for example, there may be less than three documents open).

Applications typically return object specifiers in response to commands. For example, if you ask the Finder
for a window, it returns information that specifies the window object your script asked for (if it exists). The
top-level container in an object specifier is typically the application itself.

You create an object specifier every time your script uses a phrase that describes the path to an object or
property, such as name of window 1 of application "Finder". When you use the a reference
to (page 188) operator, it creates a reference (page 95) object that wraps an object specifier.

The difference between an object specifier and the object it refers to is like the difference between a building
address and the building itself. The address is a series of words and numbers, such as “2121 Oak Street, San
Francisco, CA” that identifies a location (on a street, in a city, in a state). It is distinct from the building itself.
If the building at that location is torn down and replaced with a new building, the address remains the same.

What Is in an Object Specifier

An object specifier describes an object type, a location, and how to distinguish the object from other objects
of the same type in that location. These three types of information—the type, or class; the location, or
container; and the distinguishing information, or reference form—allow you to specify any object.

In the following example, the class of the object is paragraph. The container is the phrase of document
1. Because this phrase is inside a tell statement, the tell statement provides the top-level container, of
application "TextEdit". The distinguishing information (the reference form) is the combination of the
class, paragraph, and an index value, 1, which together indicate the first paragraph.

tell application "TextEdit"
 paragraph 1 of document 1
end tell

Note: If you examine the dictionary for the TextEdit application, you might think this script should say
paragraph 1 of text of document 1. However, where the meaning is unambiguous, some applications
make life easier for scripters by allowing them to omit a container from an object specifier. TextEdit uses this
feature in supplying an implicitly specified subcontainer for the text in a document. That is, if an object specifier
identifies an object, such as a word or paragraph, that is contained in a document’s text, TextEdit automatically
supplies the of text part of the object specifier.

In addition to the index reference form, you can specify objects in a container by name, by range, by ID, and
by the other forms described in “Reference Forms” (page 167).

Object Specifiers 29
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

Containers

A container is an object that contains one or more objects or properties. In an object specifier, a container
specifies where to find an object or a property. To specify a container, use the word of or in, as in the
following statement (from a Finder tell block):

folder "Applications" of startup disk

A container can be an object or a series of objects, listed from the innermost to the outermost containing
object, as in the following:

tell application "Finder"
 first item of first folder of first disk
end tell

You can also use the possessive form ('s) to specify containers. In the following example, the innermost
container is first window and the object it contains is a name property:

tell application "TextEdit"
 first window's name
end tell

In this example, the target of the tell statement ("TextEdit") is the outer container for the object specifier.

Absolute and Relative Object Specifiers

An absolute object specifier has enough information to identify an object or objects uniquely. It can be
used unambiguously anywhere in a script. For a reference to an application object to be absolute, its outermost
container must be the application itself, as in:

version of application "Finder" --result: "10.5.1"

In contrast, a relative object specifier does not specify enough information to identify an object or objects
uniquely; for example:

name of item 1 of disk 2

When AppleScript encounters a relative object specifier in a tell statement, it attempts to use the default
target specified by the statement to complete the object specifier. Though it isn’t generally needed, this
implicit target can be specified explicitly using the keyword it, which is described in “The it and me
Keywords” (page 40).

The default target of a tell statement is the object that receives commands if no other object is specified.
For example, the following tell statement tells the Finder to get a name using the previous relative object
specifier.

tell application "Finder"
 name of item 1 of disk 2
end tell

When AppleScript encounters a relative object specifier outside any tell statement, it tries to complete the
object specifier by looking up the inheritance chain described in “Inheritance in Script Objects” (page 60).

30 Object Specifiers
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

Object Specifiers in Reference Objects

When you can create a reference (page 95) object with the a reference to (page 188) operator, it
contains an object specifier. For example:

tell application "TextEdit"
 set docRef to a reference to the first document
 --result: document 1 of application "TextEdit"
 -- an object specifier
 name of docRef --result: "New Report.rtf"
 -- name of the specified object
end tell

In this script, the variable docRef is a reference whose object specifier refers to the first document of the
application TextEdit—which happens to be named “New Report.rtf” in this case. However, the object that
docRef refers to can change. If you open a second TextEdit document called “Second Report.rtf” so that its
window is in front of the previous document, then run this script again, it will return the name of the
now-frontmost document, “Second Report.rtf”.

You could instead create a reference with a more specific object specifier:

tell application "TextEdit"
 set docRef to a reference to document "New Report.rtf"
 --result: document "New Report.rtf" of application "TextEdit"
 name of docRef --result: "New Report.rtf"
end tell

If you run this script after opening a second document, it will still return the name of the original document,
“New Report.rtf”, if the document exists.

After you create a reference object with the a reference to operator, you can use the contents
property to get the value of the object that it refers to. That is, using the contents property causes the
reference’s object specifier to be evaluated. In the following script, for example, the content of the variable
myWindow is the window reference itself.

set myWindow to a ref to window "Q1.rtf" of application "TextEdit"
myWindow
 -- result: window "Q1.rtf" of application "TextEdit" (object specifier)
contents of myWindow
 --result: window id 283 of application "TextEdit" (an evaluated window)
get myWindow
 -- result: window "Q1.rtf" of application "TextEdit" (object specifier)

Note that the result of the get command is to return the reference’s object specifier, not to resolve the
specifier to the object it specifies.

When it can, AppleScript will implicitly dereference a reference object (without use of the contents property),
as in the following example:

set myWindow to a ref to window 1 of application "TextEdit"
name of myWindow --result: "Q1.rtf" (if that is the first window's name)

For related information, see the Discussion section for the reference (page 95) class.

Object Specifiers 31
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

Coercion (Object Conversion)

Coercion (also known as object conversion) is the process of converting objects from one class to another.
AppleScript converts an object to a different class in either of these circumstances:

 ■ in response to the as operator

 ■ automatically, when an object is of a different class than was expected for a particular command or
operation

Not all classes can be coerced to all other class types. Table 2-1 summarizes the coercions that AppleScript
supports for commonly used classes. For more information about each coercion, see the corresponding class
definition in “Class Reference” (page 79).

AppleScript provides many coercions, either as a built-in part of the language or through the Standard
Additions scripting addition. You can use these coercions outside of a tell block in your script. However,
coercion of application class types may be dependent on the application and require a tell block that
targets the application.

The as operator specifies a specific coercion. For example, the following statement coerces the integer 2
into the text "2" before storing it in the variable myText:

set myText to 2 as text

If you provide a command parameter or operand of the wrong class, AppleScript automatically coerces the
operand or parameter to the expected class, if possible. If the conversion can’t be performed, AppleScript
reports an error.

When coercing text strings to values of class integer, number, or real, or vice versa, AppleScript uses the
current Numbers settings in the Formats pane in International preferences to determine what separators to
use in the string. When coercing strings to values of class date or vice versa, AppleScript uses the current
Dates settings in the Formats pane.

Table 2-1 Default coercions supported by AppleScript

NotesTo classConvert from class

list (single-item)

text

alias (page 79)

This is both an AppleScript class and an
application class.

list (single-item)application (page 80)

integer

list (single-item)

text

boolean (page 82)

list (single-item)

text

class (page 83)

32 Coercion (Object Conversion)
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

NotesTo classConvert from class

list (single-item)

text

constant (page 84)

list (single-item)

text

date (page 85)

list (single-item)

text

file (page 88)

Coercing an integer to a number does
not change its class.

list (single-item)

real

text

integer (page 89)

any class to which the item can be
coerced if it is not part of a list

list (page 89) (single-item)

text, if each of the items in the list
can be coerced to a text object

list (page 89)
(multiple-item)

Values identified as values of class
number are really values of either class
integer or class real.

integer

list (single-item)

real

text

number (page 92)

POSIX file is a pseudo-class
equivalent to the file class.

see filePOSIX file (page 93)

In coercing to integer, any fractional
part is rounded.

Coercing a real to a number does not
change its class.

integer

list (single-item)

real (page 93)

All labels are lost in the coercion and
the resulting list cannot be coerced
back to a record.

listrecord (page 94)

any class to which the referenced
object can be coerced

reference (page 95)

list (single-item)script (page 97)

Can coerce to integer or real only if
the text object represents an
appropriate number.

integer

list (single-item)

real

text (page 97)

Coercion (Object Conversion) 33
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

NotesTo classConvert from class

Can coerce between unit types in the
same category, such as inches to
kilometers (length) or gallons to
liters (liquid volume).

integer

list (single-item)

real

text

unit types (page 103)

Scripting Additions

A scripting addition is a file or bundle that provides handlers you can use in scripts to perform commands
and coercions.

Many of the commands described in this guide are defined in the Standard Additions scripting addition in
Mac OS X. These commands are stored in the file StandardAdditions.osax in
/System/Library/ScriptingAdditions, and are available to any script. You can examine the terminology
for the Standard Additions by opening this file in Script Editor.

Note: A script can obtain the location of the Standard Additions with this script statement, which uses the
path to (folder) (page 143) command:

path to scripting additions as text
 --result: "Hard_Disk:System:Library:ScriptingAdditions:"

Scripting additions can be embedded within bundled script applets by placing them in a folder named
Scripting Additions (note the space between “Scripting” and “Additions”) inside the bundle’ s
Contents/Resources/ folder. Note that Script Editor does not look for embedded scripting additions when
editing bundled applets. During script development, any required scripting additions must be properly
installed in /System/ScriptingAdditions, /Library/ScriptingAdditions, or
~/Library/ScriptingAdditions so that Script Editor can find them.

Developers can create their own scripting additions, as described in Technical Note TN1164, ScriptingAdditions
forMacOSX. For related conceptual information, see AppleScriptOverview, particularly the section “Extending
AppleScript with Coercions, Scripting Additions, and Faceless Background Applications” in the chapter Open
Scripting Architecture.

Commands Overview

A command is a word or a series of words used in AppleScript statements to request an action. Every command
is directed at a target, which is the object that responds to the command. The target is often an application
object (one that is stored in an application or its documents and managed by the application, such as a
window or document) or an object in Mac OS X. However, it can also be a script object or a value in the
current script.

34 Scripting Additions
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

Commands often return results. For example, the display dialog (page 125) command returns a record
that may contain text, a button name, and other information. Your script can examine this record to determine
what to do next. You can assign the result of a command to a variable you define, or access it through the
predefined AppleScript result variable.

Types of Commands

Scripts can make use of the following kinds of commands:

 ■ An AppleScript command is one that is built into the AppleScript language. There currently are five
such commands: get (page 129) , set (page 154), count (page 122), copy (page 121), and run (page 151).
Except for copy , each of these commands can also be implemented by applications. That is, there is an
AppleScript version of the command that works on AppleScript objects, but an application can define
its own version that works on the object types it defines.

 ■ A scripting addition command is one that is implemented through the mechanism described in “Scripting
Additions” (page 34)). Although anyone can create a scripting addition (see Technical Note TN1164,
Scripting Additions for Mac OS X), this guide documents only the scripting addition commands from the
Standard Additions, supplied by Apple as part of Mac OS X. These commands are available to all scripts.

 ■ A user-defined command is one that is implemented by a handler defined in a script object. To invoke
a user-defined command outside of a tell statement, simply use its name and supply values for any
parameters it requires. The command will use the current script as its target.

To invoke a user-defined command inside a tell statement, see “Calling Handlers in a tell
Statement” (page 72).

 ■ An application command is one that is defined by scriptable application to provide access to a scriptable
feature. They are typically enclosed in a tell statement that targets the application. You can determine
which commands an application supports by examining its dictionary in Script Editor.

Scriptable applications that ship with Mac OS X, such as the Finder and System Events applications
(located in /System/Library/CoreServices), provide many useful scripting commands.

Third-party scriptable applications also provide commands you can use in scripts. Many support all or a
subset of the Standard commands, described in Technical Note TN2106, Scripting Interface Guidelines.
These include commands such as delete, duplicate, exists, and move, as well as application
implementations of AppleScript commands, such as get and set.

Target

There are two ways to specify an object as the target of a command: by supplying it as the direct parameter
of the command (described in the next section) or by specifying it as the target of a tell statement that
contains the command. If a script doesn’t explicitly specify the target with a tell statement, and it isn’t
handled by a handler in the script or by AppleScript itself, it is sent to the next object in the inheritance chain
(see “The AppleScript Inheritance Chain” (page 60)).

In the following script, the target of the get (page 129) command is the object specifier name of first
window. Because the enclosing tell statement specifies the Finder application, the full specifier is name
of first window of application "Finder", and it is the Finder application which obtains and returns
the requested information.

tell application "Finder"

Commands Overview 35
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

 get name of first window
end tell

When a command targets an application, the result may be an application object. If so, subsequent statements
that target the result object are sent to the application.

Direct Parameter

The direct parameter is a value, usually an object specifier, that appears immediately after a command and
specifies the target of the command. Not all commands have a direct parameter. If a command can have a
direct parameter, it is noted in the command’s definition.

In the following statement, the object specifier last file of window 1 of application "Finder"
is the direct parameter of the duplicate command:

duplicate last file of window 1 of application "Finder"

A tell statement specifies a default target for all commands contained within it, so the direct parameter is
optional. The following example has the same result as the previous example:

tell last file of window 1 of application "Finder"
 duplicate
end tell

Parameters That Specify Locations

Many commands have parameters that specify locations. A location can be either an insertion point or another
object. An insertion point is a location where an object can be added.

In the following example, the to parameter specifies the location to which to move the first paragraph. The
value of the to parameter of the duplicate command is the relative object specifier before paragraph
4, which is an insertion point. AppleScript completes the specifier with the target of the tell statement,
front document of application "TextEdit".

tell front document of application "TextEdit"
 duplicate paragraph 1 to before paragraph 4
end tell

The phrases paragraph 1 and before paragraph 4 are called index and relative references, respectively.
For more information, see “Reference Forms” (page 167).

AppleScript Error Handling

During script execution, errors may occur due to interaction with Mac OS X, problems encountered in an
application script command, or problems caused by statements in the script itself. When an error occurs,
AppleScript stops execution at the current location, signals an error, and looks up the calling chain for script
statements that can handle the error. That is, it looks for the nearest error-handling code block that surrounds
the location where the error occurred.

36 AppleScript Error Handling
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

Scripts can handle errors by enclosing statements that may encounter an error within a try (page 207)
statement. The try statement includes an on error section that is invoked if an error occurs. AppleScript
passes information about the error, including an error number and an error message, to the on error
section. This allows scripts to examine the error number and to display information about it.

If the error occurs within a handler that does not provide a try statement, AppleScript looks for an enclosing
try statement where the handler was invoked. If none of the calls in the call chain is contained in a try
statement, AppleScript stops execution of the script and displays an error message (for any error number
other than -128, described below).

A script can use an error (page 196) statement to signal an error directly. Doing so invokes the AppleScript
error handling mechanism, which looks for an enclosing try statement to handle the error.

Some “errors” are the result of the normal operation of a command. For example, commands such as display
dialog (page 125) and choose file (page 112) signal error –128 (User canceled), if the user clicks the
Cancel button. Scripts routinely handle the user canceled error to ensure normal operation. For an example
of how to do this, see the Examples section for the display dialog command. If no try statement in a
script handles the -128 error, AppleScript halts execution of the script without displaying any error message.

For related information, see “Results” (page 24), “error Statements” (page 196), “try Statements” (page 207),
“Error Numbers and Error Messages” (page 233), and “Working with Errors” (page 237).

Global Constants in AppleScript

AppleScript defines a number of global constants that you can use anywhere in a script.

AppleScript Constant

The global constant AppleScript provides access to properties you can use throughout your scripts.

You can use the AppleScript identifier itself to distinguish an AppleScript property from a property of the
current target with the same name, as shown in the section “version” (page 39).

The following sections describe additional properties of AppleScript.

pi

This mathematical value represents the ratio of a circle's circumference to its diameter. It is defined as a
real number with the value 3.14159265359.

For example, the following statement computes the area of a circle with radius 7:

set circleArea to pi * 7 * 7 --result: 153.9380400259

Global Constants in AppleScript 37
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

result

When a statement is executed, AppleScript stores the resulting value, if any, in the predefined property
result. The value remains there until another statement is executed that generates a value. Until a statement
that yields a result is executed, the value of result is undefined. You can examine the result in Script Editor
by looking in the Result pane of the script window.

Note: When an error occurs during script execution, AppleScript signals an error. It doesn’t return error
information in the result property. For more information, see “AppleScript Error Handling” (page 36).

Text Constants

AppleScript defines the text properties space, tab, return, linefeed, and quote. You effectively use these
properties as text constants to represent white space or a double quote (") character. They are described in
the Special String Characters section of the text (page 97) class.

text item delimiters

AppleScript provides the text item delimiters property for use in processing text. This property consists
of a list of strings used as delimiters by AppleScript when it coerces a list to text or gets text items from text
strings. AppleScript currently uses only the first delimiter in the list.

Because text item delimiters respect considering and ignoring attributes in AppleScript 2.0,
delimiters are case-insensitive by default. Formerly, they were always case-sensitive. To enforce the previous
behavior, add an explicit considering case statement.

You can get and set the current value of the text item delimiters property. Normally, AppleScript
doesn’t use any delimiters. For example, if the text delimiters have not been explicitly changed, the statement

{"bread", "milk", "butter", 10.45} as string

returns the following:

"breadmilkbutter10.45"

For printing or display purposes, it is usually preferable to set text item delimiters to something that’s
easier to read. For example, the script

set AppleScript's text item delimiters to {", "}
{"bread", "milk", "butter", 10.45} as string

returns this result:

"bread, milk, butter, 10.45"

The text item delimiters property can be used to extract individual names from a pathname. For
example, the script

set AppleScript's text item delimiters to {":"}
get last text item of "Hard Disk:CD Contents:Release Notes"

returns the result "Release Notes".

38 Global Constants in AppleScript
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

If you change the text item delimiters property in Script Editor, it remains changed until you restore
its previous value or until you quit Script Editor and launch it again. If you change text item delimiters
in a script application, it remains changed in that application until you restore its previous value or until the
script application quits; however, the delimiters are not changed in Script Editor or in other script applications
you run.

Scripts commonly use an error handler to reset the text item delimiters property to its former value
if an error occurs (for more on dealing with errors, see “AppleScript Error Handling” (page 36)):

set savedDelimiters to AppleScript's text item delimiters
try
 set AppleScript's text item delimiters to {"**"}
 --other script statements...
 --now reset the text item delimiters:
 set AppleScript's text item delimiters to savedDelimiters
on error m number n
 --also reset text item delimiters in case of an error:
 set AppleScript's text item delimiters to savedDelimiters
 --and resignal the error:
 error m number n
end try

version

This property provides the current version of AppleScript. The following script shows how to check for a
version greater than or equal to version 1.9. The if statement is wrapped in a considering numeric
strings statement so that an AppleScript version such as 1.10.6 compares as larger than, say, version
1.9.

considering numeric strings
 if version of AppleScript as string ≥ "1.9" then
 -- Perform operations that depend on version 1.9 or greater
 else
 -- Handle case where version is not high enough
 end if
end considering

Applications can have their own version property, so to access the AppleScript version explicitly, you use
the phrase version of AppleScript. This will work inside a tell block that targets another application,
such as the following:

tell application "Finder"
 version --result: "10.5.1"
 version of AppleScript --result: "2.0"
end tell

current application Constant

The current application constant refers to the application that is executing the current AppleScript
script (for example, Script Editor). Because the current application is the parent of AppleScript (see “The
AppleScript Inheritance Chain” (page 60)), it gets a chance to handle commands that aren’t handled by the
current script or by AppleScript.

Global Constants in AppleScript 39
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

The current application constant is an object specifier—if you ask AppleScript for its value, the result
is the object specifier:

get current application --result: current application

However, if you ask for name of current application, AppleScript resolves the object specifier and
returns the current application’s name:

name of current application --result: "Script Editor"

missing value Constant

The missing value constant is a placeholder for missing or uninitialized information.

For example, the following statements use the missing value constant to determine if a variable has
changed:

set myVariable to missing value
 -- perform operations that might change the value of myVariable
if myVariable is equal to missing value then
 -- the value of the variable never changed
else
 -- the value of the variable did change
end if

true, false Constants

AppleScript defines the Boolean constants true and false. These constants are described with the
boolean (page 82) class.

The it and me Keywords

AppleScript defines the keyword me to refer to the current script and the keyword it to refer to the current
target. (The current script is the one that is currently being executed; the current target is the object that
is the current default target for commands.) It also defines my as a synonym for of me and its as a synonym
for of it.

If a script hasn’t targeted anything, it and me refer to the same thing—the script—as shown in the following
example:

-- At the top-level of the script:
me --result: «script» (the top-level script object)
it --result: «script» (same as it, since no target set yet)

A tell statement specifies a default target. In the following example, the default target is the Finder
application:

-- Within a tell block:
tell application "Finder" -- sets target
 me --result: «script» (still the top-level script object)

40 The it and me Keywords
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

 it --result: application "Finder" (target of the tell statement)
end tell

You can use the words of me or my to indicate that the target of a command is the current script and not
the target of the tell statement. In the following example, the word my indicates that minimumValue()
handler is defined by the script, not by Finder:

tell application "Finder"
 set fileCount to count files in front window
 set myCount to my minimumValue(fileCount, 100)
 --do something with up to the first 100 files…
end tell

You can also use of me or my to distinguish script properties from object properties. Suppose there is a
TextEdit document open named “Simple.rtf”:

tell document 1 of application "TextEdit"
 name --result: "Simple.rtf" (implicitly uses target of tell)
 name of it --result: "Simple.rtf" (specifies target of tell)
 me --result: «script» (top-level script object, not target of tell)
end tell

The following example shows how to specify different version properties in a Finder tell statement. The
Finder is the default target, but using version of me, my version, or version of AppleScript allows
you to specify the version of the top-level script object. (The top-level script object returns the AppleScript
version, because it inherits from AppleScript, as described in “The AppleScript Inheritance Chain” (page 60).)

tell application "Finder"
 version --result: "10.5.1" (Finder version is the default in tell block)
 its version --result: "10.5.1" (specifically asks for Finder version)
 version of me --result: "2.0" (AppleScript version)
 my version --result: "2.0" (AppleScript version)
 version of AppleScript --result: "2.0" (AppleScript version)
end tell

For information on using it in a filter reference, see the Discussion section for the “Filter” (page 169) reference
form.

Aliases and Files

To refer to items and locations in the Mac OS X file system, you use alias (page 79) objects and file (page
88) objects.

An alias object is a dynamic reference to an existing file system object. Because it is dynamic, it can maintain
the link to its designated file system object even if that object is moved or renamed.

A file object represents a specific file at a specific location in the file system. It can refer to an item that
does not currently exist, such as the name and location for a file that is to be created. A file object is not
dynamic, and always refers to the same location, even if a different item is moved into that place. The POSIX
file (page 93) pseudo-class is roughly synonymous with file: POSIX file specifiers evaluate to a file
object, but they use different semantics for the name, as described in “Specifying Paths” (page 42).

The following is the recommended usage for these types:

Aliases and Files 41
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

 ■ Use an alias object to refer to existing file system objects.

 ■ Use a file object to refer to a file that does not yet exist.

 ■ Use a POSIX file specifier if you want to specify the file using a POSIX path.

The following sections describe how to specify file system objects by path and how to work with them in
your scripts.

Specifying Paths

You can create alias objects and file objects by supplying a name specifier, where the name is the path
to an item in the file system.

For alias and file specifiers, the path is an HFS path, which takes the form
"disk:item:subitem:subsubitem:...:item". For example,"Hard_Disk:Applications:Mail.app"
is the HFS path to the Mail application, assuming your boot drive is named "Hard_Disk".

HFS paths with a leading colon, such as ":folder:file", are resolved relative to the HFS working directory.
However, their use is discouraged, because the location of the HFS working directory is unspecified, and
there is no way to control it from AppleScript.

For POSIX file specifiers, the path is a POSIX path, which takes the form
"/item/subitem/subsubitem/.../item". The disk name is not required for the boot disk. For example,
"/Applications/Mail.app" is the POSIX path to the Mail application. You can see the POSIX path of an
item in Finder in the "Where" field of its Get Info window. Despite the name, POSIX file specifiers may refer
to folders or disks. Use of "~" to specify a home directory is not supported.

POSIX paths without a leading slash, such as "folder/file", are resolved relative to the POSIX working
directory. This is supported, but only is useful for scripts run from the shell—the working directory is the
current directory in the shell. The location of the POSIX working directory for applications is unspecified.

Working With Aliases

AppleScript defines the alias (page 79) class to represent aliases. An alias can be stored in a variable and
used throughout a script.

The following script first creates an alias to an existing file in the variable notesAlias, then uses the variable
in a tell statement that opens the file. It uses a try (page 207) statement to check for existence of the alias
before creating it, so that the alias is only created once, even if the script is run repeatedly.

try
 notesAlias -- see if we've created the alias yet
on error
 -- if not, create it in the error branch
 set notesAlias to alias "Hard_Disk:Users:myUser:Feb_Notes.rtf"
end try
-- now open the file from the alias:
tell application "TextEdit" to open notesAlias

42 Aliases and Files
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

Finding the object an alias refers to is called resolving an alias. AppleScript 2.0 attempts to resolve aliases
only when you run a script. However, in earlier versions, AppleScript attempts to resolve aliases at compile
time.

Once you run the previous example, creating the alias, the script will be able to find the original file when
you run it again, even if the file’s name or location changes. (However, if you run the script again after
recompiling it, it will create a new alias.)

You can get the HFS path from an alias by coercing it to text:

notesAlias as text --result: "Hard_Disk:Users:myUser:Feb_Notes.rtf"

You can use the POSIX path property to obtain a POSIX-style path to the item referred to by an alias:

POSIX path of notesAlias --result: "/Feb_Notes.rtf"

If an alias doesn’t refer to an existing file system object then it is broken. You can’t create an alias to an object
that doesn’t exist, such as a file you plan to create. For that you use a file object, described in the next
section.

For a sample script that shows how a script application can process a list of aliases it receives when a user
drops one or more file icons on it, see “open Handlers” (page 75).

Working With Files

AppleScript uses file objects to represent files in scripts. A file object can be stored in a variable and used
throughout a script. The following script first creates a file object for an existing file in the variable
notesFile, then uses the variable in a tell statement that opens the file:

set notesFile to POSIX file "/Users/myUser/Feb_Meeting_Notes.rtf"
tell application "TextEdit" to open notesFile

You can use a file object to specify a name and location for a file that may not exist:

set newFile to POSIX file "/Users/myUser/BrandNewFile.rtf"

Similarly, you can let a user specify a new file with the choose file name (page 114) command, then use
the returned file object to create the file. In the following example, if the user cancels the choose file
name dialog, the rest of the script is not executed. If the user does supply a file name, the script opens the
file, creating it if necessary, then uses a try statement to make sure it closes the file when it is finished writing
to it.

set theFile to choose file name
set referenceNumber to open for access theFile with write permission
try
 -- statements to write to the file
on error
 close access referenceNumber
end try
close access referenceNumber

Typically, when you pass a file object to a command that uses it to operate on a new or existing item in
the file system, the components of the path must exist for the command to succeed.

Aliases and Files 43
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

Remote Applications

A script can target an application on a remote computer if remote applications are enabled on that computer,
and if the script specifies the computer with an eppc-style specifier.

Enabling Remote Applications

For a script to send commands to a remote application, the following conditions must be satisfied:

 ■ The computer that contains the application and the computer on which the script is run must be
connected to each other through a network.

 ■ Remote Apple Events (set in the Sharing preferences pane) must be enabled on the remote computer
and user access must be provided (you can allow access for all users or for specified users only).

 ■ If the specified remote application is not running, you must run it.

 ■ You must authenticate as admin when you compile or run the script.

eppc-Style Specifiers

An eppc-style specifier takes the following format:

eppc://[user[:password]@]IP_address

ip_address
Either a numeric IP address in dotted decimal form (four numbers, from 0 to 255, separated by periods;
for example, 123.23.23.123) or a hostname. A hostname can be a Bonjour name.

The following are examples of valid eppc-style specifiers. If you supply the user name and password, no
authentication is required. If you do not supply it, authentication may be required.

"eppc://myCoolMac.local" -- hostname, no user or pwd
"eppc://myUserName:pwd@myCoolMac.local" -- user, pwd, and hostname
"eppc://123.23.23.123" -- IP address, no user or pwd
"eppc://myUserName:pwd@123.23.23.123" -- user, pwd, and IP address
"eppc://myUserName@server.company.com" -- server address, user

Important: If a part of the eppc-style specifier contains non-UTF-8 characters or white space, it must be
URL-encoded: for example, here is a user name that contains a space:

 John%20Smith.

Targeting Remote Applications

You can target an application that is running on a remote machine and you can launch applications on
remote machines that are not currently running.

44 Remote Applications
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

The following example uses an eppc-style specifier to target the Finder on a remote computer. It includes a
user name and password, so no authentication is required.

set remoteMachine to "eppc://userName:pwd@MacName.local"
tell app "Finder" of machine remoteMachine to close front window

Important: If you compile an erroneous eppc-style address, you will have to quit and relaunch Script Editor
for changes to that address to take effect.

In some cases, you’ll need to use a using terms from (page 209) statement to tell AppleScript to compile
against the local version of an application. The following example uses that technique in telling the remote
Finder application to open the TextEdit application:

set remoteFinder to application "Finder" of machine ¬
 "eppc://myUserName:pwd@123.23.23.123"

using terms from application "Finder"
 tell remoteFinder
 open application file id "com.apple.TextEdit"
 end tell
end using terms from

If you omit the password (pwd) in the previous script, you will have to authenticate when you run the script.

Debugging AppleScript Scripts

AppleScript does not include a built-in debugger, but it does provide several simple mechanisms to help
you debug your scripts or just observe how they are working.

Feedback From Your Script

You can insert various statements into a script to indicate the current location and other information. In the
simplest case, you can insert a beep command in a location of interest:

beep 3 -- three beeps; a very important part of the script!

A display dialog (page 125) command can display information about what’s happening in a script and,
like a breakpoint, it halts execution until you dismiss it (or until it times out, depending on the parameters
you pass). The following example displays the current script location and the value of a variable:

display dialog "In factorial routine; x = " & (x as string)

The say (page 152) command can get your attention by speaking the specified text. In the following example,
currentClient is a text object that stores a client name:

say "I'm in the clientName handler. The client is " & currentClient

Debugging AppleScript Scripts 45
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

Logging

Script Editor can display a log of the Apple events that are sent during execution of a script. In the Script
Editor Preferences, you can also choose to keep a history of recent results or event logs.

In addition, you can insert log (page 138) statements into a script. Log output is shown in the Event Log pane
of a script window, and also in the Event Log History window, if it is open.

The following simple example logs the current word in a repeat with loopVariable (in list) (page
203) statement:

set wordList to words in "Where is the hammer?"
repeat with currentWord in wordList
 log currentWord
 if contents of currentWord is equal to "hammer" then
 display dialog "I found the hammer!"
 end if
end repeat

The following shows how the words appear in the log when the script is run:

 (*Where*)
 (*is*)
 (*the*)
 (*hammer*)

Third Party Debuggers

If you need full-featured debugging capabilities, there are powerful, third-party AppleScript debuggers
available.

46 Debugging AppleScript Scripts
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

AppleScript Fundamentals

Variables and properties are introduced in previous chapters in this document. You use them in script
objects to store and manipulate values.

Important: In reading this chapter, you should be familiar with the information on implicit and explicit run
handlers in “run Handlers” (page 74).

The following sections cover common issues in working with variables and properties, including how to
declare them and how AppleScript interprets their scope in a script:

 ■ “Defining Properties” (page 47)

 ■ “Declaring Variables” (page 48)

 ■ “Scope of Variables and Properties” (page 51)

Defining Properties

Property labels follow the rules described in “Identifiers” (page 18).

Property definitions use the following syntax:

property propertyLabel : expression

propertyLabel
An identifier.

expression
An AppleScript expression that sets the initial value for the property. Property definitions are evaluated
before variable assignments, so property definitions cannot contain variables.

The following are examples of valid property definitions:

property windowCount : 0
property defaultName : "Barry"
property strangeValue : (pi * 7)^2

After you define a property, you can change its value with the copy (page 121) or set (page 154) command.

The value set by a property definition is not reset each time the script is run; instead, it persists until the script
is recompiled.

You cannot declare a property in a handler but a handler can access a property defined in its containing
script object.

Defining Properties 47
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Variables and Properties

Declaring Variables

Variable names follow the rules described in “Identifiers” (page 18).

To create a variable in AppleScript, you assign it a value using the copy (page 121) or set (page 154) command.
For example, the following statements create and initialize two variables, one named circumference and
one named savedResult:

set circumference to pi * 3.5 --result: 10.995574287564
copy circumference to savedResult --result: 10.995574287564 (copy of 1st variable)

As shown in this example, a variable assignment can make use of a previously defined variable. It can also
make use of properties declared in the same script object.

There are some obvious, and some more subtle, differences in using copy and set to create a variable—see
“Using the copy and set Commands” (page 49) for more information.

If you assign a new value to a variable that is already in use, it replaces the old value. You can assign a simple
value, an expression, or an object specifier—expressions are evaluated and object specifiers are resolved to
obtain the value to assign. To create a variable whose value is an object specifier itself, rather than the value
of the object specified, use the a reference to (page 188) operator.

The next two sections describe how you can explicitly define a local or a global variable. These variable
types differ primarily in their scope. Scope, which refers to where a variable is accessible within a script, is
described in detail in “Scope of Variables and Properties” (page 51).

Local Variables

You can declare explicit local variables using the following syntax:

local variableName [, variableName]…

variableName
An identifier.

The following are examples of valid local variable declarations:

local windowCount -- defines one variable
local agentName, agentNumber, agentHireDate -- defines three variables

You cannot assign an initial value to a local variable in its declaration, nor can you declare a class for the
variable. Instead, you use the copy (page 121) or set (page 154) command to initialize a variable and set its
class. For example:

set windowCount to 0 -- initialize to zero; an integer
set agentName to "James Smith" -- assign agent name; a text string
set agentNumber to getAgentNumber(agentName) -- call handler; an integer
copy current date to agentHireDate -- call current date command; a date

48 Declaring Variables
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Variables and Properties

Global Variables

The syntax for global variables is nearly identical to that for local variables:

global variableName [, variableName]…

variableName
An identifier.

The following are examples of valid global variable declarations:

global gAgentCount
global gStatementDate, gNextAgentNumber

As with local variables, you use the copy (page 121) or set (page 154) command to initialize global variables
and set their class types. For example:

set gAgentCount to getCurrentAgentCount() -- call handler to get count
set gStatementDate to current date -- get date from current date command
set gNextAgentNumber to getNextAvailNumber() -- call handler to get number

Using the copy and set Commands

As its name implies, when you use the copy (page 121) command to create a variable, it always creates a
separate copy (though note that a copy of an object specifier still specifies the same object). However, when
you use the set (page 154) command to create a variable, the new variable always refers to the original object
or value. You have essentially created another name for the same object.

When more than one variable refers to a changeable (or mutable) object, a change to the object is observable
through any of the variables. The types of AppleScript objects that are mutable are date (page 85), list (page
89), record (page 94), and script (page 97) objects.

For objects that cannot be modified (immutable objects), variables created with the set command may
seem like copies—there’s no way to change the object the variables point to, so they seem independent.
This is demonstrated in the example in the next section that creates the variables myName and yourName.

Declaring Variables with the set Command

You can use the set command to set a variable to any type of object. If the variable doesn’t exist, it is created;
if it does exist, its current value is replaced:

set numClowns to 5 --result: 5
set myList to { 1, 2, "four" } --result: {1, 2, "four"}
tell application "TextEdit"
 set word1 to word 1 of front document --result: some word
end tell

The following example uses a mutable object. It creates two variables that refer to the same list, then modifies
the list through one of the variables:

set myList to { 1, 2, 3 }
set yourList to myList
set item 1 of myList to 4

Declaring Variables 49
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Variables and Properties

After executing these statements, the statements item 1 of myList and item 1 of yourList both
yield 4, because both variables refer to the same list.

Now suppose you’re working with an immutable object, such as a text object:

set myName to "Sheila"
set yourName to myName

Both variables refer to the same text object, but text objects are not mutable, so there is no way to change
the the value myName such that it affects the value of yourName. (If you assign new text to one of the variables,
you are just creating a new, separate text object.)

The set command can assign several variables at once using a pattern, which may be a list or record: a list
or record of variables on one side, and a list or record of values on the other. Values are matched to variables
based on their position for a list, or based on their keys for a record. Not having enough values is an error; if
there are too many values, the extra ones are ignored. The order in which the values are evaluated and the
variables are assigned is unspecified, but all values are evaluated before any assignments are made.

The Examples section of the set (page 154) command shows some simple pattern assignments. Here is an
example with more complex patterns:

set x to {8, 94133, {firstName:"John", lastName:"Chapman"}}
set {p, q, r} to x
(* now p, q, and r have these values:
 p = 8
 q = 94133
 r = {firstName:"John", lastName:"Chapman"} *)
set {p, q, {lastName:r}} to x
(* now p, q, and r have these values: p = 8
 q = 94133
 r = "Chapman" *)

In the final assignment statement above, {lastName:r} is a record that hasn’t been used before in the
script, and contains an item with label lastName and value r (a previously defined variable). The variable x
has previously been set to have a record that has an item with label lastName and value "Chapman". During
the assignment, the value of the item labeled lastName in the new record is set to the value of the item
labeled lastName in x—hence it now has the value "Chapman".

As this example demonstrates, the properties of a record need not be given in the same order and need not
all be used when you set a pattern to a pattern, as long as the patterns match. For details, see the set (page
154) command.

Note: Using patterns with the set command is similar to using patterned parameters with handlers, which
is described in “Handlers with Patterned Positional Parameters” (page 70).

Declaring Variables with the copy Command

You can use the copy command to set a variable to any type of object. If the variable doesn’t exist, it is
created; if it does exist, its current value is replaced. The copy command creates a new copy that is independent
of the original—a subsequent change does not change the original value (though note that a copy of an
object specifier still specifies the same object).

50 Declaring Variables
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Variables and Properties

To copy within an application, you should use the application’s duplicate command, if it has one. To copy
between applications, you can use the get (page 129) command to obtain information from one application
and the set (page 154) command to set it in another.

The copy command creates a deep copy—that is, if you copy a nested data structure, such as a list that
contains another list, the entire structure is copied, as shown in the following example. This example creates
a record (alpha), then a list (beta), then a list that contains the first record and list (gamma), then finally a
copy of gamma (delta). It then changes a property in the original record, alpha. The result shows that the
property is changed wherever alpha appears, except in the copy, delta:

set alpha to {property1:10, property2:20}
set beta to {1, 2, "Hello"}
set gamma to {alpha, beta, "Goodbye"}
copy gamma to delta
set property1 of alpha to 42

{alpha, beta, gamma, delta} -- List variables to show contents
(*result: {{property1:42, property2:20}, {1, 2, "Hello"}, {{property1:42,
property2:20}, {1, 2, "Hello"}, "Goodbye"}, {{property1:10, property2:20}, {1,
 2, "Hello"}, "Goodbye"}} *)

If you make a copy of a reference object, it refers to the same object as the original (because both contain
the same object specifier):

set windowRef to a reference to window 1 of application "Finder"
name of windowRef --result: "Script testing folder"
copy windowRef to currentWindowRef --result: a new object specifier
name of currentWindowRef --result: "Script testing folder"

Scope of Variables and Properties

The declaration of a variable or property identifier is the first valid occurrence of the identifier in a script
object. The form and location of the declaration determine how AppleScript treats the identifier in that
script object.

The scope is the range over which AppleScript recognizes a declared identifier within a script object. The
scope of a variable depends on where you declare it and whether you declare it as global or local. The
scope of a property extends to the entire script object in which it is declared. After declaring a property,
you can reuse the same identifier as a separate variable only if you first declare it as a local variable.

Lifetime refers to the period of time over which a variable or property is in existence. Only the values of
properties and global variables can persist after a script is run.

In the discussions that follow, declarations and statements in a script object that occur outside of any
handlers or nested script objects are identified as outside.

The following examples show the four basic forms for declaring variables and properties in AppleScript:

 ■ property x: 3

The scope of a property definition is the script object in which it is declared, including any handlers
or nested script objects. A property definition specifies an initial value. You cannot declare a property
in a handler.

Scope of Variables and Properties 51
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Variables and Properties

The value set by a property definition is not reset each time the script is run; instead, it persists until the
script is recompiled.

 ■ global x

The scope of a global variable can be limited to specific handlers or contained script objects or it
can extend throughout a top-level script object. A global declaration doesn’t set an initial value—it
must be initialized by a copy (page 121) or set (page 154) command before a script can access its value.

The value of a global variable is not reset each time a script is run, unless its initialization statement is
executed.

 ■ local x

The scope of a local variable can be limited to specific handlers or contained script objects or it can
extend throughout a top-level script object. A local declaration doesn’t set an initial value—it must
be initialized by a copy or set command before a script can access its value.

The value of a local variable is reset each time the handler is run (either the run handler for the script,
or the specific handler in which the variable is declared).

 ■ set x to 3

In the absence of a global variable declaration, the scope of a variable declared with the copy or set
command is normally restricted to the run handler for the script, making it implicitly local to that run
handler. However, a handler or nested script object can declare the same variable with a global
declaration to gain access to it.

The value of a variable declared with the copy or set command is reset each time a script is run.

If you want to use the same identifier in several different places in a script, you should either declare it as a
property or as a global variable.

It is often convenient to limit the scope of a particular identifier to a single handler or nested script object,
which you can do by defining it as a local variable in the handler or script object. Outside, the identifier
has no value associated with it and can be reused elsewhere in the script. When used this way, a local
variable is said to shadow (or block access to) a global variable or property with the same name, making
the global version inaccessible in the scope of the handler or script object where the local variable is
declared.

Note: If you save a script as a script application, then run the application on read-only media, the value of
a modified property or global variable is not saved.

The following sections provide additional information about scope:

 ■ “Scope of Properties and Variables Declared in a Script Object” (page 52)

 ■ “Scope of Variables Declared in a Handler” (page 55)

Scope of Properties and Variables Declared in a Script Object

Table 3-1 shows the scope and lifetime for variables and properties that are declared at the top level in a
script object (outside any handlers or nested script objects).

52 Scope of Variables and Properties
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Variables and Properties

Table 3-1 Scope of property and variable declarations at the top level in a script object

LifetimeScope (visibility)Declaration type

Reset when script is recompiledEverywhere in scriptproperty x: 3

Reset when reinitialized in script or when script is recompiledEverywhere in scriptglobal x

Reset when script is runWithin run handler onlylocal x

Reset when script is runWithin run handler onlyset x to 3

The scope of a property in a script object extends to any subsequent statements anywhere in the script.
Consider the following example:

property currentCount : 0
increment()

on increment()
 set currentCount to currentCount + 1
 display dialog "Count is now " & currentCount & "."
end increment

When it encounters the identifier currentCount anywhere in this script, AppleScript associates it with the
currentCount property.

The value of a property persists after the script in which the property is defined has been run. Thus, the value
of currentCount is 0 the first time this script is run, 1 the next time it is run, and so on. The property’s
current value is saved with the script object and is not reset to 0 until the script is recompiled—that is,
modified and then run again, saved, or checked for syntax.

The value of a global variable also persists after the script in which it is defined has been run. However,
depending on how it is initialized, a global variable may be reset each time the script is run again. The next
example shows how to initialize a global variable so that it is initialized only the first time a script is run,
and thus produces the same result as using a property in the previous example:

global currentCount
increment()

on increment()
 try
 set currentCount to currentCount + 1
 on error
 set currentCount to 1
 end try
 display dialog "Count is now " & currentCount & "."
end increment

The first time the script is run, the statement set currentCount to currentCount + 1 generates an
error because the global variable currentCount has not been initialized. When the error occurs, the on
error block initializes currentCount. When the script is run again, the variable has already been initialized,
so the error branch is not executed, and the variable keeps its previous value. Persistence is accomplished,
but not as simply as in the previous example.

Scope of Variables and Properties 53
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Variables and Properties

If you don’t want the value associated with an identifier to persist after a script is run but you want to use
the same identifier throughout a script, declare a global variable and use the set command to set its value
each time the script is run:

global currentCount
set currentCount to 0
on increment()
 set currentCount to currentCount + 1
end increment

increment() --result: 1
increment() --result: 2

Each time the on increment handler is called within the script, the global variable currentCount increases
by 1. However, when you run the entire script again, currentCount is reset to 0.

In the absence of a global variable declaration, the scope of a variable declaration using the set command
is normally restricted to the run handler for the script. For example, this script declares two separate
currentCount variables:

set currentCount to 10
on increment()
 set currentCount to 5
end increment

increment() --result: 5
currentCount --result: 10

The scope of the first currentCount variable’s declaration is limited to the run handler for the script. Because
this script has no explicit run handler, outside statements are part of its implicit run handler, as described
in “run Handlers” (page 74). The scope of the second currentCount declaration, within the on increment
handler, is limited to that handler. AppleScript keeps track of each variable independently.

To associate a variable in a handler with the same variable declared with the set command outside the
handler, you can use a global declaration in the handler, as shown in the next example. (This approach also
works to associate a variable in a nested script object.)

set currentCount to 0
on increment()
 global currentCount
 set currentCount to currentCount + 1
end increment

increment() --result: 1
currentCount --result: 1

To restrict the context of a variable to a script’s run handler regardless of subsequent global declarations,
you must declare it explicitly as a local variable, as shown in this example:

local currentCount
set currentCount to 10
on increment()
 global currentCount
 set currentCount to currentCount + 2
end increment

increment() --error: "The variable currentCount is not defined"

54 Scope of Variables and Properties
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Variables and Properties

Because the currentCount variable in this example is declared as local to the script, and hence to its implicit
run handler, any subsequent attempt to declare the same variable as global results in an error.

If you declare an outside variable with the set command and then declare the same identifier as a property,
the declaration with the set command overrides the property definition. For example, the following script
returns 10, not 5. This occurs because AppleScript evaluates property definitions before it evaluates set
command declarations:

set numClowns to 10 -- evaluated after property definition
property numClowns: 5 -- evaluated first
numClowns --result: 10

The next example, shows how to use a global variable declaration in a script object to associate a global
variable with an outside property:

property currentCount : 0
script Paula
 property currentCount : 20
 script Joe
 global currentCount
 on increment()
 set currentCount to currentCount + 1
 return currentCount
 end increment
 end script
 tell Joe to increment()
end script
run Paula --result: 1
run Paula --result: 2
currentCount --result: 2
currentCount of Paula --result: 20

This script declares two separate currentCount properties: one outside any handlers (and script objects)
in the main script and one in the script object Paula but outside of any handlers or script objects within
Paula. Because the script Joe declares the global variable currentCount, AppleScript looks for
currentCount at the top level of the script, thus treating Joe’s currentCount and currentCount at the
top level of the script as the same variable.

Scope of Variables Declared in a Handler

A handler can’t declare a property, although it can refer to a property that is declared outside any handler
in the script object. (A handler can contain script objects, but it can’t contain another handler, except in a
contained script object.)

Table 3-2 (page 55) summarizes the scope of variables declared in a handler. Examples of each form of
declaration follow.

Table 3-2 Scope of variable declarations within a handler

LifetimeScope (visibility)Declaration type

Reset when script is recompiled; if initialized in handler, then reset
when handler is run

Within handler onlyglobal x

Scope of Variables and Properties 55
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Variables and Properties

LifetimeScope (visibility)Declaration type

Reset when handler is runWithin handler onlylocal x

Reset when handler is runWithin handler onlyset x to 3

The scope of a global variable declared in a handler is limited to that handler, although AppleScript looks
beyond the handler when it tries to locate an earlier occurrence of the same variable. Here’s an example:

set currentCount to 10
on increment()
 global currentCount
 set currentCount to currentCount + 2
end increment

increment() --result: 12
currentCount --result: 12

When AppleScript encounters the currentCount variable within the on increment handler, it doesn’t
restrict its search for a previous occurrence to that handler but keeps looking until it finds the declaration
outside any handler. However, the use of currentCount in any subsequent handler in the script is local to
that handler unless the handler also explicitly declares currentCount as a global variable.

The scope of a local variable declaration in a handler is limited to that handler, even if the same identifier
has been declared as a property outside the handler:

property currentCount : 10
on increment()
 local currentCount
 set currentCount to 5
end increment

increment() --result: 5
currentCount --result: 10

The scope of a variable declaration using the set command in a handler is limited to that handler:

script Henry
 set currentCount to 10 -- implicit local variable in script object
 on increment()
 set currentCount to 5-- implicit local variable in handler
 end increment
 return currentCount
end script

tell Henry to increment() --result: 5
run Henry --result: 10

The scope of the first declaration of the first currentCount variable in the script object Henry is limited
to the run handler for the script object (in this case, an implicit run handler, consisting of the last two
statements in the script). The scope of the second currentCount declaration, within the on increment
handler, is limited to that handler. The two instances of currentCount are independent variables.

56 Scope of Variables and Properties
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Variables and Properties

This chapter describes the script object, which is used to implement all AppleScript scripts. Before reading
this chapter, you should be familiar with the information in “AppleScript and Objects” (page 26).

A script object is a user-defined object that can combine data (in the form of properties) and actions (in the
form of handlers and additional script objects). Script objects support inheritance, allowing you to define
a hierarchy of objects that share properties and handlers. You can also extend or modify the behavior of a
handler in one script object when calling it from another script object.

The top-level script (page 97) object is the one that implements the overall script you are working on. Any
script object can contain nested script objects, each of which is defined just like a top-level script
object, except that a nested script object is bracketed with statements that mark its beginning and end.

This chapter describes script objects in the following sections:

 ■ “Defining Script Objects” (page 57) shows the syntax for defining script objects and includes a simple
example .

 ■ “Initializing Script Objects” (page 59) describes how AppleScript creates a script object with the
properties and handlers you have defined.

 ■ “Sending Commands to Script Objects” (page 59) describes how you use tell statements to send
commands to script objects.

 ■ “Inheritance in Script Objects” (page 60) describes inheritance works and how you can use it to share
functionality in the script objects you define.

Defining Script Objects

Each script object definition (except for the top-level script object) begins with the keyword script,
followed by a variable name, and ends with the keyword end (or end script). The statements in between
can be any combination of property definitions, handler definitions, nested script object definitions, and
other AppleScript statements.

The syntax of a script object definition is as follows:

script variableName

 [(property | prop) parent : parentSpecifier]

 [(property | prop) propertyLabel : initialValue]...

 [handlerDefinition]...

 [statement]...

Defining Script Objects 57
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Script Objects

end [script]

variableName
A variable identifier for the script. You can refer to a script object by this name elsewhere in a script.

parentSpecifier
Specifies the parent of the script object, typically another script object.

For more information, see “Inheritance in Script Objects” (page 60).

propertyLabel
An identifier, unique within the script object, that specifies a characteristic of the object; equivalent
to an instance variable.

initialValue
The value that is assigned to the property each time the script object is initialized. script objects
are initialized when compiled. initialValue is required in property definitions.

handlerDefinition
A handler for a command the script object can respond to; equivalent to a method. For more
information, see “About Handlers” (page 67) and “Handler Reference” (page 213).

statement
Any AppleScript statement. Statements other than handler and property definitions are treated as if
they were part of an implicit handler definition for the run command; they are executed when a
script object receives the run command.

Here is a simple script object definition:

script John
 property HowManyTimes : 0

 to sayHello to someone
 set HowManyTimes to HowManyTimes + 1
 return "Hello " & someone
 end sayHello

end script

It defines a script object that can handle the sayHello command. It assigns the script object to the
variable John. The definition includes a handler for the sayHello command. It also includes a property,
called HowManyTimes, that indicates how many times the sayHello command has been called.

A handler within a script object definition follows the same syntax rules as any other handler.

You can use a tell statement to send commands to a script object. For example, the following statement
sends the sayHello command the script object defined above.

tell John to sayHello to "Herb" --result: "Hello Herb"

You can manipulate the properties of script objects by using the get command to get the value of a
property and the set or copy command to change the value. The value of a property is persistent—it gets
reset every time you compile the script, but not when you run it.

58 Defining Script Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Script Objects

Initializing Script Objects

When you define a script object, it can contain properties, handlers, and nested script object definitions.
When you execute the script containing it, AppleScript creates a script object with the defined properties,
handlers, and nested script objects. The process of creating an instance of a script object from its definition
is called initialization. A script object must be initialized before it can respond to commands.

A top-level script object is initialized each time the script’s run handler is executed. Similarly, if you define
a script within a handler, AppleScript initializes a script object each time the handler is called. The parameter
variables in the handler definition become local variables of the script object.

For example, the makePoint handler in the following script contains a script object definition for the
script object thePoint:

on makePoint(x, y)
 script thePoint
 property xCoordinate:x
 property yCoordinate:y
 end script
 return thePoint
end makePoint

set myPoint to makePoint(10,20)
get xCoordinate of myPoint --result: 10
get yCoordinate of myPoint --result: 20

AppleScript initializes the script object thePoint when it executes the makePoint command. After the
call to makePoint, the variable myPoint refers to this script object. The parameter variables in the
makePoint handler, in this case, x and y, become local variables of the script object. The initial value of
x is 10, and the initial value of y is 20, because those are the parameters passed to the makePoint handler
that initialized the script object.

If you added the following line to the end of the previous script and ran it, the variable myOtherPointwould
refer to a second instance of the script object thePoint, with different property values:

set myOtherPoint to makePoint(30,50)

The makePoint script is a kind of constructor function that creates script objects representing points.

Sending Commands to Script Objects

You can use tell statements to send commands to script objects. For example, the following tell
statement sends two sayHello commands to the script object John (defined below):

tell John
 sayHello to "Herb"
 sayHello to "Grace"
end tell

For a script object to respond to a command within a tell statement, either the script object or its
parent object must have a handler for the command. For more information about parent objects, see
“Inheritance in Script Objects” (page 60).

Initializing Script Objects 59
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Script Objects

A script object definition may include an implicit run handler, consisting of all executable statements that
are outside of any handler or nested script object, or it may include an explicit run handler that begins
with on run, but it may not contain both—such a script will not compile. If a script has no run handler (for
example, a script that serves as a library of handlers, as described in “Saving and Loading Libraries of
Handlers” (page 72)), executing the script does nothing. However, sending it an explicit run command causes
an error. For more information, see “run Handlers” (page 74).

The display dialog command in the following script object definition is the only executable statement
at the top level, so it constitutes the script object’s implicit run handler and is executed when the script
sends a run command to script object John, with the statement tell John to run.

script John
 property HowManyTimes : 0
 to sayHello to someone
 set HowManyTimes to HowManyTimes + 1
 return "Hello " & someone
 end sayHello
 display dialog "John received the run command"
end script

tell John to run

You can also use the possessive to send a command to a script object. For example, either of the following
two forms send the sayHello command to script John (the first version compiles into the second):

John's sayHello to "Jake" --result: "Hello Jake"
sayHello of John to "Jake" --result: "Hello Jake"

Inheritance in Script Objects

You can use the AppleScript inheritance mechanism to define related script objects in terms of one another.
This allows you to share property and handler definitions among many script objects without repeating
the shared definitions. Inheritance is described in the following sections:

 ■ “The AppleScript Inheritance Chain” (page 60)

 ■ “Defining Inheritance Through the parent Property” (page 61)

 ■ “Some Examples of Inheritance” (page 61)

 ■ “Using the continue Statement in Script Objects” (page 63)

The AppleScript Inheritance Chain

The top-level script object is the parent of all other script objects, although any script object can
specify a different parent object. The top-level script object also has a parent—AppleScript itself (the
AppleScript component). And even AppleScript has a parent—the current application. The name of that
application (which is typically Script Editor) can be obtained through the global constant current
application. This hierarchy defines the inheritance chain that AppleScript searches to find the target for
a command or the definition of a term.

60 Inheritance in Script Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Script Objects

Every script object has access to the properties, handlers, and script objects it defines, as well as to those
defined by its parent, and those of any other object in the inheritance chain, including AppleScript. That’s
why the constants and properties described in “Global Constants in AppleScript” (page 37) are available to
any script.

Note: There is an exception to the previous claim. An explicit local variable can shadow (or block access
to) a global variable or property with the same name, making the global version inaccessible in the scope
of the handler or script object. For related information, see “Scope of Variables and Properties” (page 51).

Defining Inheritance Through the parent Property

When working with script (page 97) objects, inheritance is the ability of a child script object to take on
the properties and handlers of a parent object. You specify inheritance with the parent property.

The object listed in a parent property definition is called the parent object, or parent. A script object
that includes a parent property is referred to as a child script object , or child. The parent property is not
required, though if one is not specified, every script is a child of the top-level script, as described in “The
AppleScript Inheritance Chain” (page 60). A script object can have many children, but a child script
object can have only one parent. The parent object may be any object, such as a list (page 89) or an
application (page 80) object, but it is typically another script object.

The syntax for defining a parent object is

(property | prop) parent : variable

variable
An identifier for a variable that refers to the parent object.

A script object must be initialized before it can be assigned as a parent of another script object. This
means that the definition of a parent script object (or a command that calls a function that creates a parent
script object) must come before the definition of the child in the same script.

Some Examples of Inheritance

The inheritance relationship between script objects should be familiar to those who are acquainted with
C++ or other object-oriented programming languages. A child script object that inherits the handlers and
properties defined in its parent is like a C++ class that inherits methods and instance variables from its parent
class. If the child does not have its own definition of a property or handler, it uses the inherited property or
handler. If the child has its own definition of a particular property or handler, then it ignores (or overrides)
the inherited property or handler.

Listing 4-1 (page 61) shows the definitions of a parent script object called Alex and a child script object
called AlexJunior.

Listing 4-1 A pair of script objects with a simple parent-child relationship

script Alex
 on sayHello()
 return "Hello, " & getName()
 end sayHello
 on getName()

Inheritance in Script Objects 61
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Script Objects

 return "Alex"
 end getName
end script

script AlexJunior
 property parent : Alex
 on getName()
 return "Alex Jr"
 end getName
end script

-- Sample calls to handlers in the script objects:
tell Alex to sayHello() --result: "Hello, Alex"
tell AlexJunior to sayHello() --result: "Hello, Alex Jr."

tell Alex to getName() --result: "Alex"
tell AlexJunior to getName() --result: "Alex Jr"

Each script object defines a getName() handler to return its name. The script object Alex also defines
the sayHello() handler. Because AlexJunior declares Alex to be its parent object, it inherits the
sayHello() handler.

Using a tell statement to invoke the sayHello() handler of script object Alex returns "Hello, Alex".
Invoking the same handler of script object AlexJunior returns "Hello, Alex Jr"—although the same
sayHello() handler in Alex is executed, when that handler calls getName(), it’s the getName() in
AlexJunior that is executed.

The relationship between a parent script object and its child script objects is dynamic. If the properties
of the parent change, so do the inherited properties of the children. For example, the script object JohnSon
in the following script inherits its vegetable property from script object John.

script John
 property vegetable : "Spinach"
end script
script JohnSon
 property parent : John
end script
set vegetable of John to "Swiss chard"
vegetable of JohnSon
--result: "Swiss chard"

When you change the vegetable property of script object Johnwith the set command, you also change
the vegetable property of the child script object Simple. The result of the last line of the script is "Swiss
chard".

Similarly, if a child changes one of its inherited properties, the value in the parent object also changes. For
example, the script object JohnSon in the following script inherits the vegetable property from script
object John.

script John
 property vegetable : "Spinach"
end script
script JohnSon
 property parent : John
 on changeVegetable()
 set my vegetable to "Zucchini"
 end changeVegetable

62 Inheritance in Script Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Script Objects

end script
tell JohnSon to changeVegetable()
vegetable of John
--result: "Zucchini"

When you change the vegetable property of script object JohnSon to "Zucchini" with the
changeVegetable command, the vegetable property of script object John also changes.

The previous example demonstrates an important point about inherited properties: to refer to an inherited
property from within a child script object, you must use the reserved word my or of me to indicate that
the value to which you’re referring is a property of the current script object. (You can also use the words
of parent to indicate that the value is a property of the parent script object.) If you don’t, AppleScript
assumes the value is a local variable.

For example, if you refer to vegetable instead of my vegetable in the changeVegetable handler in the
previous example, the result is "Spinach". For related information, see “The it and me Keywords” (page
40).

Using the continue Statement in Script Objects

In a child script object, you can define a handler with the same name as a handler defined in its parent
object. In implementing the child handler, you have several options:

 ■ The handler in the child script object can be independent of the one in its parent. This allows you to
call either handler, as you wish.

 ■ The handler in the child can simply invoke the handler in its parent. This allows the child object to take
advantage of the parent’s implementation (as shown in the script objects below that contain a on
identify handler).

 ■ The handler in the child can invoke the handler in its parent, changing the values passed to it or executing
additional statements before or after invoking the parent handler. This allows the child object to modify
or add to the behavior of its parent, but still take advantage of the parent’s implementation.

Normally, if a child script object and its parent both have handlers for the same command, the child uses
its own handler. However, the handler in a child script object can handle a command first, and then use
a continue statement to call the handler for the same command in the parent.

This handing off of control to another object is called delegation. By delegating commands to a parent
script object, a child can extend the behavior of a handler contained in the parent without having to repeat
the entire handler definition. After the parent handles the command, AppleScript continues at the place in
the child where the continue statement was executed.

The syntax for a continue statement is shown in “continue” (page 213).

The following script includes two script object definitions, Elizabeth and ChildOfElizabeth.

script Elizabeth
 property HowManyTimes : 0
 to sayHello to someone
 set HowManyTimes to HowManyTimes + 1
 return "Hello " & someone
 end sayHello
end script

Inheritance in Script Objects 63
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Script Objects

script ChildOfElizabeth
 property parent : Elizabeth
 on sayHello to someone
 if my HowManyTimes > 3 then
 return "No, I'm tired of saying hello."
 else
 continue sayHello to someone
 end if
 end sayHello
end script
tell Elizabeth to sayHello to "Matt"
--result: "Hello Matt", no matter how often the tell is executed
tell ChildOfElizabeth to sayHello to "Bob"
--result: "Hello Bob", the first four times the tell is executed;
-- after the fourth time: "No, I’m tired of saying hello."

In this example, the handler defined by ChildOfElizabeth for the sayHello command checks the value
of the HowManyTimes property each time the handler is run. If the value is greater than 3, ChildOfElizabeth
returns a message refusing to say hello. Otherwise, ChildOfElizabeth calls the sayHello handler in the
parent script object (Elizabeth), which returns the standard hello message. The word someone in the
continue statement is a parameter variable. It indicates that the parameter received with the original
sayHello command will be passed to the handler in the parent script.

Note: The reserved word my in the statement if my HowManyTimes > 10 in this example is required to
indicate that HowManyTimes is a property of the script object. Without the word my, AppleScript assumes
that HowManyTimes is an undefined local variable.

A continue statement can change the parameters of a command before delegating it. For example, suppose
the following script object is defined in the same script as the preceding example. The first continue
statement changes the direct parameter of the sayHello command from "Bill" to "William". It does
this by specifying the value "William" instead of the parameter variable someone.

script AnotherChildOfElizabeth
 property parent : Elizabeth
 on sayHello to someone
 if someone = "Bill" then
 continue sayHello to "William"
 else
 continue sayHello to someone
 end if
 end sayHello
end script

tell AnotherChildOfElizabeth to sayHello to "Matt"
--result: "Hello Matt"

tell AnotherChildOfElizabeth to sayHello to "Bill"
--result: "Hello William"

If you override a parent’s handler in this manner, the reserved words me and my in the parent’s handler no
longer refer to the parent, as demonstrated in the example that follows.

script Hugh
 on identify()
 me

64 Inheritance in Script Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Script Objects

 end identify
end script
script Andrea
 property parent : Hugh
 on identify()
 continue identify()
 end identify
end script

tell Hugh to identify()
--result: «script Hugh»

tell Andrea to identify()
--result: «script Andrea»

Inheritance in Script Objects 65
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Script Objects

66 Inheritance in Script Objects
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Script Objects

When script developers want to factor and re-use their code, they can turn to handlers. A handler is a collection
of statements that can be invoked by name. Handlers are also known as functions, subroutines, or methods.

This chapter describes how to work with handlers, in the following sections:

 ■ “Handler Basics” (page 67)

 ■ “Saving and Loading Libraries of Handlers” (page 72)

 ■ “Handlers in Script Applications” (page 73)

For detailed reference information, see “Handler Reference” (page 213).

Handler Basics

A handler is a collection of statements that can be invoked by name. Handlers are useful in scripts that
perform the same action in more than one place. You can package statements that perform a specific task
as a handler, give it a descriptive name, and call it from anywhere in the script. This makes the script shorter
and easier to maintain.

A script can contain one or more handlers. However, you can not nest a handler definition within another
handler (although a script object defined in a handler can contain other handlers).

The definition for a handler specifies the parameters it uses, if any. It does not specify the class for its
parameters. However, most handlers expect each parameter to be of a specific class, so it is useful to add a
comment that lists the expected class types.

When you call a handler, you must list its parameters according to how they are specified in its definition.
Handlers may have labeled parameters or positional parameters, described in subsequent sections.

A handler definition can contain variable declarations and statements. It may use a return statement
(described in detail in “return” (page 214)) to return a value and exit the handler.

A call to a handler must include all the parameters specified in the handler definition. There is no way to
specify optional parameters.

The sections that follow provide additional information on working with handlers:

 ■ “Defining a Simple Handler” (page 68)

 ■ “Handlers with Labeled Parameters” (page 68)

 ■ “Handlers with Positional Parameters” (page 69)

 ■ “Handlers with Patterned Positional Parameters” (page 70)

 ■ “Recursive Handlers” (page 71)

Handler Basics 67
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

 ■ “Errors in Handlers” (page 71)

 ■ “Passing by Reference Versus Passing by Value” (page 71)

 ■ “Calling Handlers in a tell Statement” (page 72)

Defining a Simple Handler

The following is a definition for a simple handler that takes any parameter value that can be displayed as
text (presumably one representing a date) and displays it in a dialog box. The handler name is rock; its
parameter is around the clock, where around is a parameter label and clock is the parameter name
(the is an AppleScript filler for readability):

on rock around the clock
 display dialog (clock as text)
end rock

This handler allows an English-like calling statement:

rock around the current date -- call handler to display current date

A handler can have no parameters. To indicate that a handler has no parameters, you include a pair of empty
parentheses after the handler name in both the handler definition and the handler call. For example, the
following helloWorld script has no parameters.

on helloWorld()
 display dialog "Hello World"
end

helloWorld() -- Call the handler

Handlers with Labeled Parameters

To define a handler with labeled parameters, you list the labels to use when calling the handler and the
statements to be executed when it is called. (The syntax is shown in “Handler Syntax (Labeled
Parameters)” (page 215).)

Handlers with labeled parameters can also have a direct parameter. With the exception of the direct parameter,
which must directly follow the handler name, labeled parameters can appear in any order, with the labels
from the handler definition identifying the parameter values. This includes parameters listed in given, with,
and without clauses (of which there can be any number).

The findNumbers handler in the following example uses the special label given to define a parameter with
the label given rounding.

to findNumbers of numberList above minLimit given rounding:roundBoolean
 set resultList to {}
 repeat with i from 1 to (count items of numberList)
 set x to item i of numberList
 if roundBoolean then -- round the number
 -- Use copy so original list isn’t modified.
 copy (round x) to x
 end if

68 Handler Basics
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

 if x > minLimit then
 set end of resultList to x
 end if
 end repeat
 return resultList
end findNumbers

The next statements show how to call findNumbers by passing a predefined list variable:

set myList to {2, 5, 19.75, 99, 1}
findNumbers of myList above 19 given rounding:true
 --result: {20, 99}
findNumbers of myList above 19 given rounding:false
 --result: {19.75, 99}

You can also specify the value of the rounding parameter by using a with or without clause to indicate
true or false. (In fact, when you compile the previous examples, AppleScript automatically converts given
rounding:true towith rounding andgiven rounding:false towithout rounding.) These examples
pass a list object directly, rather than using a list variable as in the previous case:

findNumbers of {5.1, 20.1, 20.5, 33} above 20 with rounding
 --result: {33}

findNumbers of {5.1, 20.1, 20.5, 33.7} above 20 without rounding
 --result: {20.1, 20.5, 33.7}

Here is another handler that uses parameter labels:

to check for yourNumber from startRange thru endRange
 if startRange ≤ yourNumber and yourNumber ≤ endRange then
 display dialog "Congratulations! Your number is included."
 end if
end check

The following statement calls the handler, causing it to display the "Congratulations!" message

check for 8 from 7 thru 10 -- call the handler

Handlers with Positional Parameters

The definition for a handler with positional parameters shows the order in which to list parameters when
calling the handler and the statements to be executed when the handler is called. The definition must include
parentheses, even if it doesn’t include any parameters. The syntax is shown in “Handler Syntax (Positional
Parameters)” (page 218).

In the following example, the minimumValue routine returns the smaller of two values:

on minimumValue(x, y)
 if x < y then
 return x
 else
 return y
 end if
end minimumValue

-- To call minimumValue:

Handler Basics 69
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

minimumValue(5, 105) --result: 5

The first line of the minimumValue handler specifies the parameters of the handler. To call a handler with
positional parameters you list the parameters in the same order as they are specified in the handler definition.

If a handler call is part of an expression, AppleScript uses the value returned by the handler to evaluate the
expression. For example, to evaluate the following expression, AppleScript first calls minimumValue, then
evaluates the rest of the expression.

minimumValue(5, 105) + 50 --result: 55

Handlers with Patterned Positional Parameters

You can create a handler whose positional parameters define a pattern to match when calling the handler.
For example, the following handler takes a single parameter whose pattern consists of two items in a list:

on displayPoint({x, y})
 display dialog ("x = " & x & ", y = " & y)
end displayPoint

-- Calling the handler:
set testPoint to {3, 8}
displayPoint(testPoint)

A parameter pattern can be much more complex than a single list. The handler in the next example takes
two numbers and a record whose properties include a list of bounds. The handler displays a dialog box
summarizing some of the passed information.

on hello(a, b, {length:l, bounds:{x, y, w, h}, name:n})
 set q to a + b

 set response to "Hello " & n & ", you are " & l & ¬
 " inches tall and occupy position (" & x & ", " & y & ")."

 display dialog response

end hello

set thing to {bounds:{1, 2, 4, 5}, name:"George", length:72}
hello (2, 3, thing)
--result: A dialog displaying "Hello George, you are 72 inches tall
-- and occupy position (1,2)."

The properties of a record passed to a handler with patterned parameters don’t have to be given in the same
order in which they are given in the handler’s definition, as long as all the properties required to fit the pattern
are present.

The following call to minimumValue uses the value from a handler call to maximumValue as its second
parameter. The maximumValue handler (not shown) returns the larger of two passed numeric values.

minimumValue(20, maximumValue(1, 313)) --result: 20

70 Handler Basics
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

Recursive Handlers

A recursive handler is a handler that calls itself. For example, this recursive handler generates a factorial.
(The factorial of a number is the product of all the positive integers from 1 to that number. For example, 4
factorial is equal to 1 * 2 * 3 * 4, or 24. The factorial of 0 is 1.)

on factorial(x)
 if x > 0 then
 return x * factorial(x - 1)
 else
 return 1
 end if
end factorial

-- To call factorial:
factorial(10) --result: 3628800

In the example above, the handler factorial is called once, passing the value 10. The handler then calls
itself recursively with a value of x - 1, or 9. Each time the handler calls itself, it makes another recursive call,
until the value of x is 0. When x is equal to 0, AppleScript skips to the else clause and finishes executing all
the partially executed handlers, including the original factorial call.

When you call a recursive handler, AppleScript keeps track of the variables and pending statements in the
original (partially executed) handler until the recursive handler has completed. Because each call uses some
memory, the maximum number of pending handlers is limited by the available memory. As a result, a recursive
handler may generate an error before the recursive calls complete.

In addition, a recursive handler may not be the most efficient solution to a problem. For example, the factorial
handler shown above can be rewritten to use a repeat statement instead of a recursive call, as shown in
the example in repeat with loopVariable (from startValue to stopValue) (page 202).

Errors in Handlers

As with any AppleScript statements that may encounter an error, you can use a try statement to deal with
possible errors in a handler. A try (page 207) statement includes two collections of statements: one to be
executed in the general case, and a second to be executed only if an error occurs.

By using one or more try statements with a handler, you can combine the advantages of reuse and error
handling in one package. For a detailed example that demonstrates this approach, see “Working with
Errors” (page 237).

Passing by Reference Versus Passing by Value

Within a handler, each parameter is like a variable, providing access to passed information. AppleScript passes
all parameters by reference, which means that a passed variable is shared between the handler and the caller,
as if the handler had created a variable using the set (page 154) command. However, it is important to
remember a point raised in “Using the copy and set Commands” (page 49): only mutable objects can actually
be changed.

As a result, a parameter’s class type determines whether information is effectively passed by value or by
reference:

Handler Basics 71
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

 ■ For mutable objects (those whose class is date (page 85), list (page 89), record (page 94), or
script (page 97)), information is passed by reference:

If a handler changes the value of a parameter of this type, the original object is changed.

 ■ For all other class types, information is effectively passed by value:

Although AppleScript passes a reference to the original object, that object cannot be changed. If the
handler assigns a new value to a parameter of this type, the original object is unchanged.

If you want to pass by reference with a class type other than date, list, record, or script, you can pass
a reference object that refers to the object in question. Although the handler will have access only to a
copy of the reference object, the specified object will be the same. Changes to the specified object in the
handler will change the original object, although changes to the reference object itself will not.

Calling Handlers in a tell Statement

To call a handler from within a tell statement, you must use the reserved words of me or my to indicate
that the handler is part of the script and not a command that should be sent to the target of the tell
statement.

For example, the following script calls the minimumValue handler defined in “Handlers with Positional
Parameters” (page 69) from within a tell statement. If this call did not include the words of me, it would
cause an error, because AppleScript would send the minimumValue command to TextEdit, which does not
understand that message.

tell front document of application "TextEdit"
 minimumValue(12, 400) of me
 set paragraph 1 to result as text
end tell
--result: The handler call is successful.

Instead of using the words of me, you could insert the word my before the handler call:

my minimumValue(12, 400)

Saving and Loading Libraries of Handlers

In addition to defining and calling handlers within a script, you can access handlers from other scripts. To
make a handler available to another script, save it as a compiled script, then use the load script (page
135) command to load it in any script that needs to call the handler. You can use this technique to create
libraries containing many handlers.

Note: The load script command loads the compiled script as a script object; for more information, see
“Script Objects” (page 57).

For example, the following script contains two handlers: areaOfCircle and factorial:

-- This handler computes the area of a circle from its radius.
-- (The area of a circle is equal to pi times its radius squared.)

72 Saving and Loading Libraries of Handlers
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

on areaOfCircle from radius
 -- Make sure the parameter is a real number or an integer.
 if class of radius is contained by {integer, real}
 return radius * radius * pi -- pi is predefined by AppleScript.
 else
 error "The parameter must be a real number or an integer"
 end if
end areaOfCircle

-- This handler returns the factorial of a number.
on factorial(x)
 set returnVal to 1
 if x > 1 then
 repeat with n from 2 to x
 set returnVal to returnVal * n
 end repeat
 end if
 return returnVal
end factorial

In Script Editor, save the script as a compiled Script (which has extension scpt) or Script Bundle (extension
scptd) and name it “NumberLib”.

After saving the script as a compiled script, other scripts can use the load script command to load it. For
example, the following script loads the compiled script NumberLib.scpt, storing the resulting script
object in the variable numberLib. It then makes handler calls within a tell statement that targets the
script object. The compiled script must exist in the specified location for this script to work.

set numberLibrary to (load script file "NumberLib.scpt")

tell numberLibrary
 factorial(10) --result: 3628800
 areaOfCircle from 12 --result: 452.38934211693
end tell

Handlers in Script Applications

A script application is an application whose only function is to run the script associated with it. Script
applications contain handlers that allow them to respond to commands. For example, many script applications
can respond to the run command and the open command. A script application receives a run command
whenever it is launched and an open command whenever another icon is dropped on its icon in the Finder.
It can also contain other handlers to respond to commands such as quit or print.

When saving a script in Script Editor, you can create a script application by choosing either Application or
Application Bundle from the File Format options. Saving as Application results in a simple format that is
compatible with Mac OS 9. Saving as Application Bundle results in an application that uses the modern
bundle format, with its specified directory structure, which is supported back to Mac OS X v10.3.

When creating a script application, you can also specify whether a startup screen should appear before the
application runs its script. Whatever you write in the Description pane of the script window in Script Editor
is displayed in the startup screen. You can also specify in Script Editor whether a script application should
stay open after running. The default is for the script to quit immediately after it is run.

Handlers in Script Applications 73
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

You can run a script application from the Finder much like any other application. If it has a startup screen,
the user must click the Run button or press the Return key before the script actually runs.

Consider the following simple script

tell application "Finder"
 close front window
end tell

What this script does as a script application depends on what you specify when you save it. If you don’t
specify a startup screen or tell it to stay open, it will automatically execute once, closing the front Finder
window, and then quit.

If a script application modifies the value of a property, the changed value persists across launches of the
application. For related information, see “Scope of Variables and Properties” (page 51).

For information about some common script application handlers, see the following sections:

 ■ “run Handlers” (page 74)

 ■ “open Handlers” (page 75)

 ■ “idle and quit Handlers for Stay-Open Applications” (page 76)

See “Handler Reference” (page 213) for syntax information.

run Handlers

When you run a script or launch a script application, its run handler is invoked. A script’s run handler is
defined in one of two ways:

 ■ As an implicit run handler, which consists of all statements declared outside any handler or nested
script object in a script.

Declarations for properties and global variables are not considered statements in this context—that
is, they are not considered to be part of an implicit run handler.

 ■ As an explicit run handler, which is enclosed within on run and end statements, similar to other handlers.

Having both an implicit and an explicit run handler is not allowed, and causes a syntax error during
compilation. If a script has no run handler (for example, a script that serves as a library of handlers, as described
in “Saving and Loading Libraries of Handlers” (page 72)), executing the script does nothing. However, sending
it an explicit run command causes an error.

The following script demonstrates an implicit run handler. The script consists of a statement that invokes
the sayHello handler, and the definition for the handler itself:

sayHello()

on sayHello()
 display dialog "Hello"
end sayHello

74 Handlers in Script Applications
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

The implicit run handler for this script consists of the statement sayHello(), which is the only statement
outside the handler. If you save this script as a script application and then run the application, the script
receives a run command, which causes it to execute the one statement in the implicit run handler.

You can rewrite the previous script to provide the exact same behavior with an explicit run handler:

on run
 sayHello()
end run

on sayHello()
 display dialog "Hello"
end sayHello

Whether a script is saved as a script application or as a compiled script, its run handler is invoked when the
script is run. You can also invoke a run handler in a script application from another script. For information
about how to do this, see “Calling a Script Application From a Script” (page 77).

open Handlers

Mac OS X applications, including script applications, receive an open command whenever the user drops
file, folder, or disk icons on the application’s Finder icon, even if the application is already running.

If the script in a script application includes an open handler, the handler is executed when the application
receives the open command. The open handler takes a single parameter which provides a list of all the items
to be opened. Each item in the list is analias (page 79) object.

For example, the following open handler makes a list of the pathnames of all items dropped on the script
application’s icon and saves them in the frontmost TextEdit document:

on open names
 set pathNamesString to "" -- Start with empty text string.
 repeat with i in names
 -- In this loop, you can perform operations on each dropped item.
 -- For now, just get the name and append a return character.
 set iPath to (i as text)
 set pathNamesString to pathNamesString & iPath & return
 end repeat
 -- Store list in open document, to verify what was dropped.
 tell application "TextEdit"
 set paragraph 1 of front document to pathNamesString
 end tell
 return
end open

Files, folders, or disks are not moved, copied, or affected in any way by merely dropping them on a script
application. However, the script application’s handler can tell Finder to move, copy, or otherwise manipulate
the items. For examples that work with Finder items, see “Folder Actions Reference” (page 221).

You can also run an open handler by sending a script application the open command. For details, see “Calling
a Script Application From a Script” (page 77).

Handlers in Script Applications 75
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

idle and quit Handlers for Stay-Open Applications

By default, a script application that receives a run or open command handles that single command and then
quits. In contrast, a stay-open script application (one saved as Stay Open in Script Editor) stays open after it
is launched.

A stay-open script application can be useful for several reasons:

 ■ Stay-open script applications can receive and handle other commands in addition to run and open. This
allows you to use a script application as a script server that, when it is running, provides a collection of
handlers that can be invoked by any other script.

 ■ Stay-open script applications can perform periodic actions, even in the background, as long as the script
application is running.

Two particular handlers that stay-open script applications often provide are an idle handler and a quit
handler.

idle Handlers

If a stay-open script application includes an idle handler, AppleScript sends the script application periodic
idle commands—by default, every 30 seconds—allowing it to perform background tasks when it is not
performing other actions.

If an idle handler returns a positive number, that number becomes the rate (in seconds) at which the handler
is called. If the handler returns a non-numeric value, the rate is not changed. You can return 0 to maintain
the default delay of 30 seconds.

For example, when saved as a stay-open application, the following script beeps every 5 seconds:

on idle
 beep
 return 5
end idle

The result returned from a handler is just the result of the last statement, even if it doesn’t include the word
return explicitly. (See “return” (page 214) for more information.) For example, this handler gets called
once a minute, because the value of the last statement is 60:

on idle
 set x to 10
 beep
 set x to x * 6 -- The handler returns the result (60).
end idle

quit Handlers

AppleScript sends a stay-open script application a quit command whenever the user chooses the Quit menu
command or presses Command-Q while the application is active. If the script includes a quit handler, the
statements in the handler are run before the application quits.

76 Handlers in Script Applications
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

A quit handler can be used to set script properties, tell another application to do something, display a dialog
box, or perform almost any other task. If the handler includes a continue quit statement, the script
application’s default quit behavior is invoked and it quits. If the quit handler returns before it encounters a
continue quit statement, the application doesn’t quit.

Note: The continue statement passes control back to the application’s default quit handler. For more
information, see “continue” (page 213).

For example, this handler checks with the user before allowing the application to quit:

on quit
 display dialog "Really quit?" ¬
 buttons {"No", "Quit"} default button "Quit"
 if the button returned of the result is "Quit" then
 continue quit
 end if
 -- Without the continue statement, the application doesn't quit.
end quit

Warning: If AppleScript doesn’t encounter a continue quit statement while executing an on quit
handler, it may seem to be impossible to quit the application. For example, if the handler shown above
gets an error before the continue quit statement, the application won’t quit. If necessary, you can
use Force Quit (Command-Option-Esc) to halt the application.

Calling a Script Application From a Script

A script can send commands to a script application just as it can to other applications. To launch a
non-stay-open application and run its script, use a launch (page 134) command followed by a run command,
like this:

launch application "NonStayOpen"
run application "NonStayOpen"

The launch command launches the script application without sending it an implicit run command. When
the run command is sent to the script application, it processes the command, sends back a reply if necessary,
and quits.

Similarly, to launch a non-stay-open application and run its stringTest handler (which takes a text object
as a parameter), use a launch command followed by a stringTest command, like this:

tell application "NonStayOpen"
 launch
 stringTest("Some example text.")
end tell

For information on how to create script applications, see “Handlers in Script Applications” (page 73).

Calling a Script Application From a Script 77
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

78 Calling a Script Application From a Script
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

About Handlers

A class is a category for objects that share characteristics. AppleScript defines classes for common objects
used in AppleScript scripts, such as aliases, Boolean values, integers, text, and so on.

Each object in a script is an instance of a specific class and has the same properties (including the class
property), can contain the same kinds of elements, and supports the same kinds of operations and coercions
as other objects of that type. Objects that are instances of AppleScript types can be used anywhere in a
script—they don’t need to be within a tell block that specifies an application.

Scriptable applications also define their own classes, such as windows and documents, which commonly
contain properties and elements based on many of the basic AppleScript classes described in this chapter.
Scripts obtain these objects in the context of the applications that define them. For more information on the
class types applications typically support, see “Standard Classes” in Technical Note TN2106, Scripting Interface
Guidelines.

alias

A persistent reference to an existing file, folder, or volume in the file system.

For related information, see file (page 88), POSIX file (page 93), and “Aliases and Files” (page 41).

Properties of alias objects

class

Access: read only
Class: class (page 83)
The class identifier for the object. The value is always alias.

POSIX path

Access: read only
Class: text (page 97)
The POSIX-style path to the object.

Coercions Supported

AppleScript supports coercion of an alias object to a text (page 97) object or single-item list (page 89).

Examples
set zApp to choose application as alias -- (then choose Finder.app)
--result: alias "Leopard:System:Library:CoreServices:Finder.app:"
class of zApp --result: alias
zApp as text --result: "Leopard:System:Library:CoreServices:Finder.app:"
zApp as list --result: {alias "Leopard:System:Library:CoreServices:Finder.app:"}

You can use the POSIX path property to obtain a POSIX-style path to the item referred to by an alias:

79
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

http://developer.apple.com/technotes/tn2002/tn2106.html
http://developer.apple.com/technotes/tn2002/tn2106.html

POSIX path of zApp --result: "/System/Library/CoreServices/Finder.app/"

Discussion
You can only create an alias to a file or folder that already exists.

Special Considerations

AppleScript 2.0 attempts to resolve aliases only when you run a script. However, in earlier versions, AppleScript
attempts to resolve aliases at compile time.

application

An application on a local machine or an available server.

An application object in a script has all of the properties described here, which are handled by AppleScript.
It may have additional properties, depending on the specific application it refers to.

Properties of application objects

class

Access: read only
Class: class (page 83)
The class identifier for the object. The value is always application.

frontmost

Access: read only
Class: boolean (page 82)
Is the application frontmost?

Starting in AppleScript 2.0, accessing an application’s frontmost property returns a Boolean value
without launching the application or sending it an event.

The value of frontmost for background-only applications, UI element applications such as System
Events, and applications that are not running is always false.

id

Access: read only
Class: text (page 97)
The application’s bundle identifier (the default) or its four-character signature code. (New in AppleScript
2.0.)

For example, the bundle identifier for the TextEdit application is "com.apple.TextEdit". Its
four-character signature code is 'ttxt'. If you ask for an application object’s id property, you will get
the bundle identifier version, unless the application does not have a bundle identifier and does have a
signature code.

name

Access: read only
Class: text (page 97)
The application’s name.

Starting in AppleScript 2.0, accessing an application’s name property returns the application name as
text without launching the application or sending it an event.

80
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

running

Access: read only
Class: boolean (page 82)
Is the application running? (New in AppleScript 2.0.)

Accessing an application’s running property returns a Boolean value without launching the application
or sending it an event.

You can also ask the System Events utility application whether an application is running. While it requires
more lines in your script to do so, that option is available in earlier versions of the Mac OS.

version

Access: read only
Class: text (page 97)
The application’s version.

Starting in AppleScript 2.0, accessing this property returns the application version as text without
launching the application or sending it an event.

Coercions Supported

AppleScript supports coercion of an application object to a single-item list (page 89).

Examples

You can determine whether an application on the current computer is running without launching it (this
won’t work if your target is on a remote computer):

tell application "iTunes" -- doesn't automatically launch app
 if it is running then
 pause
 end if
end tell

You can also use this format:

if application "iTunes" is running
 tell application "iTunes" to pause
end if

The following statements specify the TextEdit application by, respectively, its signature, its bundle id, and
by a POSIX path to a specific version of TextEdit:

application id "ttxt"
application id "com.apple.TextEdit"
application "/Applications/TextEdit.app"

You can target a remote application with a tell statement. For details, see “Remote Applications” (page
44).

Special Considerations

Starting in Mac OS X v10.5, there are several changes in application behavior:

 ■ Applications launch hidden.

81
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

AppleScript has always launched applications if it needed to in order to send them a command. However,
they would always launch visibly, which could be visually disruptive. AppleScript now launches applications
hidden by default. They will not be visible unless the script explicitly says otherwise using activate.

 ■ Applications are located lazily.

When running a script, AppleScript will not attempt to locate an application until it needs to in order to
send it a command. This means that a compiled script or script application may contain references to
applications that do not exist on the user’s system, but AppleScript will not ask where the missing
applications are until it encounters a relevant tell block. Previous versions of AppleScript would attempt
to locate every referenced application before running the script.

When opening a script for editing, AppleScript will attempt to locate all the referenced applications in
the entire script, which may mean asking where one is. Pressing the Cancel button only cancels the
search for that application; the script will continue opening normally, though custom terminology for
that application will display as raw codes. In older versions, pressing Cancel would cancel opening the
script.

 ■ Applications are located and re-located dynamically.

Object specifiers that refer to applications, including those in tell blocks, are evaluated every time a
script runs. This alleviates problems with scripts getting “stuck” to a particular copy of an application.

In prior versions of AppleScript, use of the new built-in application properties will fall back to sending an
event to the application, but the application may not handle these properties in the same way, or handle
them at all. (Most applications will handle name, version, and frontmost; id and running are uncommon.)
The other new features described above require AppleScript 2.0.

boolean

A logical truth value.

A boolean object evaluates to one of the AppleScript constants true or false. A Boolean expression
contains one or more boolean objects and evaluates to true or false.

Properties of boolean objects

class

Access: read only
Class: class (page 83)
The class identifier for the object. The value is always boolean.

Operators

The operators that take boolean objects as operands are and, or, not, &, =, and , as well as their text
equivalents: is equal to, is not equal to, equals, and so on.

The = operator returns true if both operands evaluate to the same value (either true or false); the
operator returns true if the operands evaluate to different values.

The binary operators and and or take boolean objects as operands and return Boolean values. An and
operation, such as (2 > 1) and (4 > 3), has the value true if both its operands are true, and false
otherwise. An or operation, such as (theString = "Yes") or (today = "Tuesday"), has the value
true if either of its operands is true.

82
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

The unary not operator changes a true value to false or a false value to true.

The concatenation operator (&) creates a list containing the two boolean values on either side of it; for
example:

true & false --result: {true, false}

For additional information on these operators, see “Operators Reference” (page 179).

Coercions Supported

AppleScript supports coercion of a boolean object to a single-item list (page 89), a text (page 97) object,
or an integer (page 89).

Examples

The following are simple Boolean expressions:

true
false
paragraphCount > 2

AppleScript supplies the Boolean constants true and false to serve as the result of evaluating a Boolean
operation. But scripts rarely need to use these literals explicitly because a Boolean expression itself evaluates
to a Boolean value. For example, consider the following two script snippets:

if companyName is equal to "Acme Baking" then
 return true
else
 return false
end if

return companyName is equal to "Acme Baking"

The second, simpler version, just returns the value of the Boolean comparison companyName is equal
to "Acme Baking", so it doesn’t need to use a Boolean constant.

Discussion
When you pass a Boolean value as a parameter to a command, the form may change when you compile the
command. For example, the following line

choose folder showing package contents true

is converted to this when compiled by AppleScript:

choose folder with showing package contents

It is standard for AppleScript to compile parameter expressions from the Boolean form (such as showing
package contents trueorinvisibles false) into thewith form (with showing package contents
or without invisibles, respectively).

class

Specifies the class of an object or value.

All classes have a class property that specifies the class type. The value of the class property is an identifier.

83
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

Properties of class objects

class

Access: read only
Class: class (page 83)
The class identifier for the object. The value of this property is always class.

Operators

The operators that take class identifier values as operands are &, =, , and as.

The coercion operator as takes an object of one class type and coerces it to an object of a type specified by
a class identifier. For example, the following statement coerces a text object into a corresponding real:

"1.5" as real --result: 1.5

Coercions Supported

AppleScript supports coercion of a class identifier to a single-item list (page 89) or a text (page 97) object.

Examples

Asking for the class of a type such as integer results in a value of class:

class of text --result: class
class of integer --result: class

Here is the class of a boolean literal:

class of true --result: boolean

And here are some additional examples:

class of "Some text" --result: text
class of {1, 2, "hello"} --result: list

constant

A word with a predefined value.

Constants are generally used for enumerated types. You cannot define constants in scripts; constants can
be defined only by applications and by AppleScript. See “Global Constants in AppleScript” (page 37) for
more information.

Properties of constant objects

class

Access: read-only
Class: class (page 83)
The class identifier for the object. The value of this property is always constant.

Operators

The operators that take constant objects as operands are &, =, , and as.

84
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

Coercions Supported

AppleScript supports coercion of a constant object to a single-item list (page 89) or a text (page 97)
object.

Examples

One place you use constants defined by AppleScript is in text comparisons performed with considering
or ignoring statements (described in considering / ignoring (text comparison) (page 193)). For
example, in the following script statements, punctuation, hyphens, and white space are constants:

considering punctuation but ignoring hyphens and white space
 "bet-the farm," = "BetTheFarm," --result: true
end considering
class of hyphens --result: constant

The final statement shows that the class of hyphens is constant.

Discussion
Constants are not text strings, and they must not be surrounded by quotation marks.

Literal constants are defined in “Literals and Constants” (page 20).

In addition to the constants defined by AppleScript, applications often define enumerated types to be used
for command parameters or property values. For example, the iTunes search command defines these
constants for specifying the search area:

albums
all
artists
composers
displayed
songs

date

Specifies the day of the week, the date (month, day of the month, and year), and the time (hours, minutes,
and seconds).

To get the current date, use the command current date (page 123):

set theDate to current date
--result: "Friday, November 9, 2007 11:35:50 AM"

You can get and set the different parts of a date object through the date and time properties described
below.

When you compile a script, AppleScript displays date and time values according to the format specified in
System Preferences.

Properties of date objects

class

Access: read only
Class: class (page 83)

85
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

The class identifier for the object. The value of this property is always date.

day

Access: read/write
Class: integer (page 89)
Specifies the day of the month of a date object.

weekday

Access: read only
Class: constant (page 84)
Specifies the day of the week of a date object, with one of these constants: Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, or Sunday.

month

Access: read/write
Class: constant (page 84)
Specifies the month of the year of a date object, with one of the constants January, February, March,
April, May, June, July, August, September, October, November, or December.

year

Access: read/write
Class: integer (page 89)
Specifies the year of a date object; for example, 2004.

time

Access: read/write
Class: integer (page 89)
Specifies the number of seconds since midnight of a date object; for example, 2700 is equivalent to
12:45 AM (2700 / 60 seconds = 45 minutes).

date string

Access: read only
Class: text (page 97)
A text object that specifies the date portion of a date object; for example, "Friday, November 9,
2007".

To obtain a compact version of the date, use short date string . For example, short date string
of (current date) --result: "1/27/08".

time string

Access: read only
Class: text (page 97)
A text object that specifies the time portion of a date object; for example, "3:20:24 PM".

Operators

The operators that take date object as operands are &, +, –, =, , >, ≥, <, ≤, comes before, comes after,
and as. In expressions containing >, ≥, <, ≤, comes before, or comes after, a later time is greater than
an earlier time.

86
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

AppleScript supports the following operations on date objects with the + and – operators:

date + timeDifference
--result: date
date - date
--result: timeDifference
date - timeDifference
--result: date

where timeDifference is an integer (page 89) value specifying a time difference in seconds. To simplify
the notation of time differences, you can also use one or more of these of these constants:

minutes
 60
hours
 60 * minutes
days
 24 * hours
weeks
 7 * days

Here’s an example:

date "Friday, November 9, 2007" + 4 * days + 3 * hours + 2 * minutes
--result: date "Tuesday, November 13, 2007 3:02:00 AM"

To express a time difference in more convenient form, divide the number of seconds by the appropriate
constant:

31449600 / weeks --result: 52.0

To get an integral number of hours, days, and so on, use the div operator:

151200 div days --result: 1

To get the difference, in seconds, between the current time and Greenwich mean time, use the time to
GMT (page 163) command.

Coercions Supported

AppleScript supports coercion of a date object to a single-item list (page 89) or a text (page 97) object.

Examples

The following expressions show some options for specifying a date, along with the results of compiling the
statements. If you construct a date using only partial information, AppleScript fills in the missing pieces with
default values. The actual format is based on the settings in System Preferences.

date "8/9/2007, 17:06"
 --result: date "Thursday, August 9, 2007 5:06:00 PM"
date "7/16/70"
 --result: date "Wednesday, July 16, 2070 12:00:00 AM"
date "12:06" -- specifies a time on the current date
 --result: date "Friday, November 9, 2007 12:06:00 PM"
date "Sunday, December 12, 1954 12:06 pm"
 --result: date "Sunday, December 12, 1954 12:06:00 PM"

87
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

The following statements access various date properties (results depend on the date the statements are
executed):

set theDate to current date --using current date command
--result: date "Friday, November 9, 2007 11:58:38 AM"
weekday of theDate --result: Friday
day of theDate --result: 9
month of theDate --result: November
year of theDate --result: 2007
time of theDate --result: 43118 (seconds since 12:00:00 AM)
time string of theDate --result: "11:58:38 AM"
date string of theDate --result: "Friday, November 9, 2007"

If you want to specify a time relative to a date, you can do so by using of, relative to, or in, as shown in
the following examples.

date "2:30 am" of date "Jan 1, 2008"
 --result: date "Tuesday, January 1, 2008 2:30:00 AM"
date "2:30 am" of date "Sun Jan 27, 2008"
 --result: date "Sunday, January 27, 2008 2:30:00 AM"
date "Nov 19, 2007" relative to date "3PM"
 --result: date "Monday, November 19, 2007 3:00:00 PM"
date "1:30 pm" in date "April 1, 2008"
 --result: date "Tuesday, April 1, 2008 1:30:00 PM"

Special Considerations

You can create a date object using a string that follows the date format specified in the Formats pane in
International preferences. For example, in US English:

set myDate to date "3/4/2008"

When you compile this statement, it is converted to the following:

set myDate to date "Tuesday, March 4, 2008 12:00:00 AM"

file

A reference to a file, folder, or volume in the file system. A file object has exactly the same attributes as an
alias object, with the addition that it can refer to an item that does not exist.

For related information, see alias (page 79) and POSIX file (page 93). For a description of the format
for a file path, see “Aliases and Files” (page 41).

Coercions Supported

AppleScript supports coercion of a file object to a text (page 97) object or single-item list (page 89).

Examples
set fp to open for access file "Leopard:Users:myUser:NewFile"
close access fp

Discussion
You can create a file object that refers to a file or folder that does not exist. For example, you can use the
choose file name (page 114) command to obtain a file object for a file that need not currently exist.

88
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

integer

A number without a fractional part.

Properties of integer objects

class

Access: read-only
Class: class (page 83)
The class identifier for the object. The value of this property is always integer.

Operators

The operators that can have integer values as operands are +, -, *, ÷ (or /), div, mod, ^, =, , >, ≥, <, and ≤.

The div operator always returns an integer value as its result. The +, –, *, mod, and ^ operators return
values of type integer or real.

Coercions Supported

AppleScript supports coercion of an integer value to a single-item list (page 89), a real (page 93)
number, or a text (page 97) object.

Coercion of an integer to a number does nothing:

set myCount to 7 as number
class of myCount --result: integer

Examples
1
set myResult to 3 - 2
-1
1000

Discussion
The biggest value (positive or negative) that can be expressed as an integer in AppleScript is ±536870911,
which is equal to ±(2^29 – 1). Larger integers are converted to real numbers, expressed in exponential
notation, when scripts are compiled.

Note: The smallest possible integer value is actually -536870912 (-2^29), but it can only be generated as
a result of an expression. If you enter it directly into a script, it will be converted to a real when you compile.

list

An ordered collection of values. The values contained in a list are known as items. Each item can belong to
any class.

A list appears in a script as a series of expressions contained within braces and separated by commas. An
empty list is a list containing no items. It is represented by a pair of empty braces: {}.

89
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

Properties of list objects

class

Access: read-only
Class: class (page 83)
The class identifier for the object. The value of this property is always list.

length

Access: read only
Class: integer (page 89)
Specifies he number of items in the list.

rest

Access: read only
Class: list (page 89)
A list containing all items in the list except the first item.

reverse

Access: read only
Class: list (page 89)
A list containing all items in the list, but in the opposite order.

Elements of list objects

item

A value contained in the list. Each value contained in a list is an item and an item may itself be another
list. You can refer to values by their item numbers. For example, item 2 of {"soup", 2, "nuts"}
is the integer 2.

You can also refer to indexed list items by class. For example, integer 1 of {"oatmeal", 42,
"new"} returns 42.

Operators

The operators that can have list values as operands are &, =, , starts with, ends with, contains, and
is contained by.

For detailed explanations and examples of how AppleScript operators treat lists, see “Operators
Reference” (page 179).

Commands Handled

You can count the items in a list or the elements of a specific class in a list with the count (page 122) command.
You can also use the length property of a list:

count {"a", "b", "c", 1, 2, 3} --result: 6
length of {"a", "b", "c", 1, 2, 3} --result: 6

Coercions Supported

AppleScript supports coercion of a single-item list to any class to which the item can be coerced if it is not
part of a list.

90
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

AppleScript also supports coercion of an entire list to a text (page 97) object if each of the items in the list
can be coerced to a text object, as in the following example:

{5, "George", 11.43, "Bill"} as text --result: "5George11.43Bill"

The resulting text object concatenates all the items, separated by the current value of the AppleScript
property text item delimiters. This property defaults to an empty string, so the items are simply
concatenated. For more information, see “text item delimiters” (page 38).

Individual items in a list can be of any class, and AppleScript supports coercion of any value to a list that
contains a single item.

Examples

The following statement defines a list that contains a text object, an integer, and a Boolean value:

{ "it's", 2, true }

Each list item can be any valid expression. The following list has the same value as the previous list:

{ "it" & "'s", 1 + 1, 4 > 3 }

The following statements work with lists; note that the concatenation operator (&) joins two lists into a single
list:

class of {"this", "is", "a", "list"} --result: list
item 3 of {"this", "is", "a", "list"} --result: "a"
items 2 thru 3 of {"soup", 2, "nuts"} --result: {2, "nuts"}
{"This"} & {"is", "a", "list"} --result: {"This", "is", "a", "list"}

For large lists, it is more efficient to use the a reference to operator when inserting a large number of
items into a list, rather than to access the list directly. For example, using direct access, the following script
takes about 10 seconds to create a list of 10,000 integers (results will vary depending on the computer and
other factors):

set bigList to {}
set numItems to 10000
set t to (time of (current date)) --Start timing operations
repeat with n from 1 to numItems
 copy n to the end of bigList
 -- DON'T DO THE FOLLOWING--it's even slower!
 -- set bigList to bigList & n
end
set total to (time of (current date)) - t --End timing

But the following script, which uses the a reference to operator, creates a list of 100,000 integers (ten
times the size) in just a couple of seconds (again, results may vary):

set bigList to {}
set bigListRef to a reference to bigList
set numItems to 100000
set t to (time of (current date)) --Start timing operations
repeat with n from 1 to numItems
 copy n to the end of bigListRef
end
set total to (time of (current date)) - t --End timing

91
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

Similarly, accessing the items in the previously created list is much faster using a reference to—the
following takes just a few seconds:

set t to (time of (current date)) --Start timing
repeat with n from 1 to numItems -- where numItems = 100,000
 item n of bigListRef
end repeat
set total to (time of (current date)) - t --End timing

However, accessing the list directly, even for only 4,000 items, can take over a minute:

set numItems to 4000
set t to (time of (current date)) --Start timing
repeat with n from 1 to numItems
 item n of bigList
end repeat
set total to (time of (current date)) - t --End timing

number

An abstract class that can represent an integer or a real.

There is never an object whose class is number; the actual class of a "number" object is always one of the
more specific types, integer (page 89) or real (page 93).

Properties of number objects

class

Access: read-only
Class: class (page 83)
The class identifier for the object. The value of this property is always either integer or real.

Operators

Because values identified as values of class number are really values of either class integer or class real,
the operators available are the operators described in the definitions of the integer (page 89) or real (page
93) classes.

Coercions Supported

Coercing an object to number results in an integer object if the result of the coercion is an integer, or a
real object if the result is a non-integer number.

Examples

Any valid literal expression for an integer or a real value is also a valid literal expression for a number
value:

1
2
-1
1000
10.2579432
1.0
1.

92
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

POSIX file

A pseudo-class equivalent to the file class.

There is never an object whose class is POSIX file; the result of evaluating a POSIX file specifier is a file
object. The difference between file and POSIX file objects is in how they interpret name specifiers: a
POSIX file object interprets "name" as a POSIX path, while a file object interprets it as an HFS path.

For related information, see alias (page 79) and file (page 88). For a description of the format for a POSIX
path, see “Aliases and Files” (page 41).

Properties of POSIX file objects

See file (page 88).

Coercions Supported

See file (page 88).

Examples

The following example asks the user to specify a file name, starting in the temporary directory /tmp, which
is difficult to specify using a file specifier:

set fileName to choose file name default location (POSIX file "/tmp")
 -result: dialog starts in /tmp folder

real

Numbers that can include a fractional part, such as 3.14159 and 1.0.

Properties of real objects

class

Access: read-only
Class: class (page 83)
The class identifier for the object. The value of this property is always real.

Operators

The operators that can have real values as operands are +, -, *, ÷ (or /), div, mod, ^, =, , >, ≥, <, and ≤.

The ÷ and / operators always return real values as their results. The +, -, *, mod, and ^ operators return
real values if either of their operands is a real value.

Coercions Supported

AppleScript supports coercion of a real value to an integer value, rounding any fractional part.

AppleScript also supports coercion of a real value to a single-item list (page 89) or a text (page 97)
object. Coercion to text uses the decimal separator specified in Numbers in the Formats pane in International
preferences.

93
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

Examples
10.2579432
1.0
1.

As shown in the third example, a decimal point indicates a real number, even if there is no fractional part.

Real numbers can also be written using exponential notation. A letter e is preceded by a real number (without
intervening spaces) and followed by an integer exponent (also without intervening spaces). The exponent
can be either positive or negative. To obtain the value, the real number is multiplied by 10 to the power
indicated by the exponent, as in these examples:

1.0e5 --equivalent to 1.0 * 10^5, or 100000
1.0e+5 --same as 1.0e5
1.0e-5 --equivalent to 1.0 * 10^-5, or .00001

Discussion
Real numbers that are greater than or equal to 10,000.0 or less than or equal to 0.0001 are converted to
exponential notation when scripts are compiled. The largest value that can be evaluated (positive or negative)
is 1.797693e+308.

record

An unordered collection of labeled properties. The only AppleScript classes that support user-defined
properties are record and script.

A record appears in a script as a series of property definitions contained within braces and separated by
commas. Each property definition consists of a label, a colon, and the value of the property. For example,
this is a record with two properties: {product:"pen", price:2.34}.

Each property in a record has a unique label which distinguishes it from other properties in the collection.
The values assigned to properties can belong to any class. You can change the class of a property simply by
assigning a value belonging to another class.

Properties of record objects

class

Access: read/write
Class: class (page 83)
The class identifier for the record. By default, the value is record.

If you define a class property explicitly in a record, the value you define replaces the implicit class
value. In the following example, the class is set to integer:

set myRecord to {class:integer, min:1, max:10}

class of myRecord --result: integer

length

Access: read only
Class: integer (page 89)
Specifies the number of properties in the record.

94
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

Operators

The operators that can have records as operands are &, =, , contains, and is contained by.

For detailed explanations and examples of how AppleScript operators treat records, see “Operators
Reference” (page 179).

Commands Handled

You can count the properties in a record with the count command:

count {name:"Robin", mileage:400} --result: 2

Coercions Supported

AppleScript supports coercion of records to lists; however, all labels are lost in the coercion and the resulting
list cannot be coerced back to a record.

Examples

The following example shows how to change the value of a property in a record:

set myRecord to {product:"pen", price:2.34}
product of myRecord -- result: "pen"

set product of myRecord to "pencil"
product of myRecord -- result: "pencil"

AppleScript evaluates expressions in a record before using the record in other expressions. For example, the
following two records are equivalent:

{ name:"Steve", height:76 - 1.5, weight:150 + 20 }
{ name:"Steve", height:74.5, weight:170 }

You cannot refer to properties in records by numeric index. For example, the following object specifier, which
uses the index reference form on a record, is not valid.

item 2 of { name:"Rollie", IQ:186, city:"Unknown" } --result: error

You can access the length property of a record to count the properties it contains:

length of {name:"Chris", mileage:1957, city:"Kalamazoo"} --result: 3

You can get the same value with the count (page 122) command:

count {name:"Chris", mileage:1957, city:"Kalamazoo"} --result: 3

Discussion
After you define a record, you cannot add additional properties to it. You can, however, concatenate records.
For more information, see & (concatenation) (page 187).

reference

An object that encapsulates an object specifier.

The result of the a reference to (page 188) operator is a reference object, and object specifiers returned
from application commands are implicitly turned into reference objects.

95
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

A reference object “wraps” an object specifier. If you target a reference object with the get (page 129)
command, the command returns the reference object itself. If you ask a reference object for its contents
property, it returns the enclosed object specifier. All other requests to a reference object are forwarded to
its enclosed object specifier. For example, if you ask for the class of a reference object, you get the class
of the object specified by its object specifier.

For related information, see “Object Specifiers” (page 29).

Properties of reference objects

Other than the contents property, all other property requests are forwarded to the enclosed object specifier,
so the reference object appears to have all the properties of the referenced object.

contents

Access: depends on the referenced object or objects
Class: depends on the referenced object or objects
The enclosed object specifier.

Operators

All operators are forwarded to the enclosed object specifier, so the reference object appears to support all
the operators of referenced object.

The a reference to operator returns a reference object as its result.

Coercions Supported

All coercions are forwarded to the enclosed object specifier, so the reference object appears to support all
the coercions of referenced object.

Examples

Reference objects are most often used to specify application objects. The following example creates a reference
to a window within the TextEdit application:

set myWindow to a ref to window "top.rtf" of application "TextEdit"
--result: window "top.rtf" of application "TextEdit"

In subsequent script statements, you can use the variable myWindow in place of the longer term window
"top.rtf" of application "TextEdit".

Because all property requests other than contents of are forwarded to its enclosed specifier, the reference
object appears to have all the properties of the referenced object. For example, both class of statements
in the following example return window:

set myRef to a reference to window 1
class of contents of myRef -- explicit dereference using "contents of"
class of myRef -- implicit dereference

For additional examples, see the a reference to (page 188) operator.

RGB color

A type definition for a three-item list of integer values, from 0 to 65535, that specify the red, green, and
blue components of a color.

96
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

Otherwise, behaves exactly like a list (page 89) object.

Examples
set whiteColor to {65535, 65535, 65535} -- white
set yellowColor to {65535, 65535, 0} -- yellow
yellowColor as string --result: "65535655350"
set redColor to {65535, 0, 0} -- red
set userColor to choose color default color redColor

script

A collection of AppleScript declarations and statements that can be executed as a group.

The syntax for a script object is described in “Defining Script Objects” (page 57).

Properties of script objects

class

Access: read-only
Class: class (page 83)
The class identifier for the object. The value of this property is always script.

Commands Handled

You can copy a script object with the copy (page 121) command or create a reference to it with the
set (page 154) command.

Coercions Supported

AppleScript supports coercion of a script object to a single-item list (page 89).

Examples

The following example shows a simple script object that displays a dialog. It is followed by a statement
that shows how to run the script:

script helloScript
 display dialog "Hello."
end script

run helloScript -- invoke the script

Discussion
A script object can contain other script objects, called child scripts, and can have a parent object. For
additional information, including more detailed examples, see “Script Objects” (page 57).

text

An ordered series of Unicode characters.

Starting in AppleScript 2.0, AppleScript is entirely Unicode-based. There is no longer a distinction between
Unicode and non-Unicode text. Comments and text constants in scripts may contain any Unicode characters,
and all text processing is done in Unicode, so all characters are preserved correctly regardless of the user’s
language preferences.

97
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

For example, the following script works correctly in AppleScript 2.0, where it would not have in previous
versions:

set jp to " "
set ru to " "
jp & " and " & ru -- returns " and "

For information on compatibility with previous AppleScript versions, including the use of string and Unicode
text as synonyms for text, see the Special Considerations section.

Properties of text objects

class

Access: read-only
Class: class (page 83)
The class identifier for the object. The value of this property is always text.

id

Access: read-only
Class: integer (page 89) or list (page 89) of integer
A value (or list of values) representing the Unicode code point (or code points) for the character (or
characters) in the text object. (A Unicode code point is a unique number that represents a character
and allows it to be represented in an abstract way, independent of how it is rendered. A character in a
text object may be composed of one or more code points.)

This property, added in AppleScript 2.0, can also be used as an address, which allows mapping between
Unicode code point values and the characters at those code points. For example, id of "A" returns
65, and character id 65 returns "A".

The id of text longer than one code point is a list of integers, and vice versa: for example, id of "hello"
returns {104, 101, 108, 108, 111}, and string id {104, 101, 108, 108, 111} returns
"hello". (Because of a bug, text id ... does not work; you must use one of string, Unicode
text, or character.)

These uses of theidproperty obsolete the olderASCII character (page 108) andASCII number (page
109) commands, since, unlike those, they cover the full Unicode character range and will return the same
results regardless of the user's language preferences.

length

Access: read only
Class: integer (page 89)
The number of characters in the text.

quoted form

Access: read only
Class: text (page 97)
A representation of the text that is safe from further interpretation by the shell, no matter what its
contents are. Mainly useful for passing a text string to the do shell script (page 128) command.

98
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

Elements of text objects

A text object can contain these elements (which may behave differently than similar elements used in
applications):

character
Specify by: “Arbitrary” (page 167), “Every” (page 168), “Index” (page 172), “Middle” (page 173),

“Range” (page 175)

One or more Unicode characters that make up the text.

Starting in AppleScript 2.0, elements of text object count a combining character cluster (also known
as a Unicode grapheme cluster) as a single character. (This relates to a feature of Unicode that is unlikely
to have an impact on most scripters: some “characters” may be represented as either a single entity or
as a base character plus a series of combining marks.

For example, “é” may be encoded as either U+00E9 (LATIN SMALL LETTER E WITH ACUTE) or as U+0065
(LATIN SMALL LETTER E), U+0301 (COMBINING ACUTE ACCENT). Nonetheless, AppleScript 2.0 will count
both as one character, where older versions counted the base character and combining mark separately.

paragraph
Specify by: “Arbitrary” (page 167), “Every” (page 168), “Index” (page 172), “Middle” (page 173),

“Range” (page 175)

A series of characters beginning immediately after either the first character after the end of the preceding
paragraph or the beginning of the text and ending with either a carriage return character (\r), a linefeed
character (\n), a return/linefeed pair (\r\n), or the end of the text. The Unicode "paragraph separator"
character (U+2029) is not supported.

Because paragraph elements are separated by a carriage return, linefeed, or carriage return/linefeed
pair, text ending with a paragraph break specifies a following (empty) paragraph. For example,
"this\nthat\n" has three paragraphs, not two: "this", "that", and "" (the empty paragraph after the
trailing linefeed).

Similarly, two paragraph breaks in a row specify an empty paragraph between them:

paragraphs of "this\n\nthat" --result: {"this", "", "that"}

text
Specify by: “Every” (page 168), “Name” (page 173)

All of the text contained in the text object, including spaces, tabs, and all other characters.

You can use text to access contiguous characters (but see also the Discussion section below):

text 1 thru 5 of "Bring me the mouse." --result: "Bring"

word
Specify by: “Arbitrary” (page 167), “Every” (page 168), “Index” (page 172), “Middle” (page 173),

“Range” (page 175)

A continuous series of characters, with word elements parsed according to the word-break rules set in
the International preference pane.

Because the rules for parsing words are thus under user control, your scripts should not count on a
deterministic text parsing of words.

99
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

Operators

The operators that can have text objects as operands are &, =, , >, ≥, <, ≤, starts with, ends with,
contains, is contained by, and as.

In text comparisons, you can specify whether white space should be considered or ignored. For more
information, see “considering and ignoring Statements” (page 193).

For detailed explanations and examples of how AppleScript operators treat text objects, see “Operators
Reference” (page 179).

Special String Characters

The backslash (\) and double-quote (") characters have special meaning in text. AppleScript encloses text
in double-quote characters and uses the backslash character to represent return (\r), tab (\t), and linefeed
(\n) characters (described below). So if you want to include an actual backslash or double-quote character
in a text object, you must use the equivalent two-character sequence. As a convenience, AppleScript also
provides the text constant quote, which has the value \".

Table 6-1 Special characters in text

To insert in textCharacter

\\Backslash character (\)

\"

quote (text constant)

Double quote (")

To declare a text object that looks like this when displayed:

He said "Use the '\' character."

you can use the following:

"He said \"Use the '\\' character.\""

White space refers to text characters that display as vertical or horizontal space. AppleScript defines the white
space constants return, linefeed, space, and tab to represent, respectively, a return character, a linefeed
character, a space character, and a tab character. (The linefeed constant became available in AppleScript
2.0.)

Although you effectively use these values as text constants, they are actually defined as properties of the
global constant AppleScript.

Table 6-2 White space constants

ValueConstant

" "space

"\t"tab

"\r"return

"\n”linefeed

100
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

To enter white space in a string, you can just type the character—that is, you can press the Space bar to
insert a space, the Tab key to insert a tab character, or the Return key to insert a return. In the latter case, the
string will appear on two lines in the script, like the following:

display dialog "Hello" & "
" & "Goodbye"

When you run this script, "Hello" appears above “Goodbye” in the dialog.

You can also enter a tab, return, or linefeed with the equivalent two-character sequences. When a text
object containing any of the two-character sequences is displayed to the user, the sequences are converted.
For example, if you use the following text object in a display dialog (page 125) command:

display dialog "item 1\t1\ritem 2\t2"

it is displayed like this (unless you enable “Escape tabs and line breaks in strings” in the Editing tab of the of
Script Editor preferences):

item 1 1
item 2 2

To use the white space constants, you use the concatenation operator to join multiple text objects together,
as in the following example:

"Year" & tab & tab & "Units sold" & return & "2006" & tab ¬
 & tab & "300" & return & "2007" & tab & tab & "453"

When passed to display dialog, this text is displayed as follows:

Year Units sold
2006 300
2007 453

Coercions Supported

AppleScript supports coercion of an text object to a single-item list (page 89). If a text object represents
an appropriate number, AppleScript supports coercion of the text object to an integer or a real number.

Examples

You can define a text object in a script by surrounding text characters with quotation marks, as in these
examples:

set theObject to "some text"
set clientName to "Mr. Smith"
display dialog "This is a text object."

Suppose you use the following statement to obtain a text object named docText that contains all the text
extracted from a particular document:

set docText to text of document "MyFavoriteFish.rtf" of application "TextEdit"

The following statements show various ways to work with the text object docText:

class of docText --result: text
first character of docText --result: a character
every paragraph of docText --result: a list containing all paragraphs
paragraphs 2 thru 3 of docText --result: a list containing two paragraphs

101
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

The next example prepares a text object to use with the display dialog command. It uses the quote
constant to insert \" into the text. When this text is displayed in the dialog (above a text entry field), it looks
like this: Enter the text in quotes ("text in quotes"):

set promptString to "Enter the text in quotes (" & quote ¬
 & "text in quotes" & quote & "): "
display dialog promptString default answer ""

The following example gets a POSIX path to a chosen folder and uses the quoted form property to ensure
correct quoting of the resulting string for use with shell commands:

set folderName to quoted form of POSIX path of (choose folder)

Suppose that you choose the folder named iWork '08 in your Applications folder. The previous statement
would return the following result, which properly handles the embedded single quote and space characters
in the folder name:

"'/Applications/iWork '\\''08/'"

Discussion
To get a contiguous range of characters within a text object, use the text element. For example, the value
of the following statement is the text object "y thi":

get text 3 thru 7 of "Try this at home"
--result: "y thi"

The result of a similar statement using the character element instead of the text element is a list:

get characters 3 thru 7 of "Try this at home"
--result: {"y", " ", "t", "h", "i"}

You cannot set the value of an element of a text object. For example, if you attempt to change the value
of the first character of the text object myName as shown next, you’ll get an error:

set myName to "Boris"
set character 1 of myName to "D"
--result: error: you cannot set the values of elements of text objects

However, you can achieve the same result by getting the last four characters and concatenating them with
"D":

set myName to "boris"
set myName to "D" & (get text 2 through 5 of myName)
--result: "Doris"

This example doesn’t actually modify the existing text object—it sets the variable myName to refer to a new
text object with a different value.

Special Considerations

For compatibility with versions prior to AppleScript 2.0, string and Unicode text are still defined, but
are considered synonyms for text. For example, all three of these statements have the same effect:

someObject as text
someObject as string
someObject as Unicode text

102
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

In addition, text, string, and Unicode text will all compare as equal. For example, class of "foo"
is string is true, even though class of "foo" returns text. However, it is still possible for applications
to distinguish between the three different types, even though AppleScript itself does not.

Starting with AppleScript 2.0, there is no style information stored with text objects.

Because all text is Unicode text, scripts now always get the Unicode text behavior. This may be different from
the former string behavior for some locale-dependent operations, in particular word elements. To get the
same behavior with 2.0 and pre-2.0, add an explicit as Unicode text coercion, for example, words of
(someText as Unicode text).

Because text item delimiters (described in “text item delimiters” (page 38)) respect considering
and ignoring attributes in AppleScript 2.0, delimiters are case-insensitive by default. Formerly, they were
always case-sensitive. To enforce the previous behavior, add an explicit considering case statement.

Because AppleScript 2.0 scripts store all text as Unicode, any text constants count as a use of the former
Unicode text class, which will work with any version of AppleScript back to version 1.3. A script that
contains Unicode-only characters such as Arabic or Thai will run, but will not be correctly editable using
versions prior to AppleScript 2.0: the Unicode-only characters will be lost.

unit types

Used for working with measurements of length, area, cubic and liquid volume, mass, and temperature.

The unit type classes support simple objects that do not contain other values and have only a single property,
the class property.

Properties of unit type objects

class

Access: read only
Class: (varies; listed below)
The class identifier for the object. These are the available classes:

Length: centimetres, centimeters, feet, inches, kilometres, kilometers, metres, meters,
miles, yards

Area:square feet,square kilometres,square kilometers,square metres,square meters,
square miles, square yards

Cubic volume: cubic centimetres, cubic centimeters, cubic feet, cubic inches, cubic
metres, cubic meters, cubic yards

Liquid volume: gallons, litres, liters, quarts

Weight: grams, kilograms, ounces, pounds

Temperature: degrees Celsius, degrees Fahrenheit, degrees Kelvin

Operators

None. You must explicitly coerce a unit type to a number type before you can perform operations with it.

103
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

Coercions Supported

You can coerce a unit type object to integer (page 89), single-item list (page 89), real (page 93), or
text (page 97). You can also coerce between unit types in the same category, such as inches to kilometers
(length) or gallons to liters (liquid volume). As you would expect, there is no coercion between categories,
such as from gallons to degrees Centigrade.

Examples

The following statements calculate the area of a circle with a radius of 7 yards, then coerce the area to square
feet:

set circleArea to (pi * 7 * 7) as square yards --result: square yards
153.9380400259
circleArea as square feet --result: square feet 1385.4423602331

The following statements set a variable to a value of 5.0 square kilometers, then coerce it to various other
units of area:

set theArea to 5.0 as square kilometers --result: square kilometers 5.0
theArea as square miles --result: square miles 1.930510792712
theArea as square meters --result: square meters 5.0E+6

However, you cannot coerce an area measurement to a unit type in a different category:

set theArea to 5.0 as square meters --result: square meters 5.0
theArea as cubic meters --result: error
theArea as degrees Celsius --result: error

The following statements demonstrate coercion of a unit type to a text object:

set myPounds to 2.2 as pounds --result: pounds 2.2
set textValue to myPounds as text --result: "2.2"

104
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Class Reference

This chapter describes the commands available to perform actions in AppleScript scripts. For information on
how commands work, see “Commands Overview” (page 34).

The commands described in this chapter are available to any script—they are either built into the AppleScript
language or added to it through the standard scripting additions (described in “Scripting Additions” (page
34)).

Note: In the command descriptions below, if the first item in the Parameters list does not include a parameter
name, it is the direct parameter of the command (described in “Direct Parameter” (page 36)).

Table 7-1 lists each command according to the suite (or related group) of commands to which it belongs
and provides a brief description. Detailed command descriptions follow the table, in alphabetical order.

Table 7-1 AppleScript commands

DescriptionCommand

AppleScript suite

Brings an application to the front, and opens it if it is on the
local computer and not already running.

activate (page 108)

In Script Editor, displays a value in the Event Log History
window or in the Event Log pane of a script window.

log (page 138)

Clipboard Commands suite

Returns information about the clipboard.clipboard info (page 120)

Places data on the clipboard.set the clipboard to (page 156)

Returns the contents of the clipboard.the clipboard (page 162)

File Commands suite

Returns information for a file or folder.info for (page 132)

Returns a list of the currently mounted volumes.

Deprecated Use tell application "System Events"
to get the name of every disk.

list disks (page 134)

Returns the contents of a specified folder.

Deprecated Use tell application "System Events"
to get the name of every disk item of

list folder (page 135)

105
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

DescriptionCommand

Mounts the specified AppleShare volume.mount volume (page 138)

Returns the full path to the specified application.path to (application) (page 142)

Returns the full path to the specified folder.path to (folder) (page 143)

Returns the full path to the specified resource.path to resource (page 145)

File Read/Write suite

Closes a file that was opened for access.close access (page 120)

Returns the length, in bytes, of a file.get eof (page 131)

Opens a disk file for the read (page 147) and write (page
163) commands.

open for access (page 140)

Reads data from a file that has been opened for access.read (page 147)

Sets the length, in bytes, of a file.set eof (page 155)

Writes data to a file that was opened for access with write
permission.

write (page 163)

Internet suite

Opens a URL with the appropriate program.open location (page 141)

Miscellaneous Commands suite

Returns the current date and time.current date (page 123)

Executes a shell script using the sh shell.do shell script (page 128)

Returns the sound output and input volume settings.get volume settings (page 131)

Generates a random number.random number (page 146)

Rounds a number to an integer.round (page 149)

Sets the sound output and/or input volume.set volume (page 157)

Gets environment variables or attributes of this computer.system attribute (page 160)

Returns information about the system.system info (page 161)

Returns the difference between local time and GMT (Universal
Time).

time to GMT (page 163)

Scripting suite

Returns a script object loaded from a file.load script (page 135)

Runs a script or script filerun script (page 151)

106
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

DescriptionCommand

Returns a list of all scripting components.scripting components (page 153)

Stores a script object into a file.store script (page 158)

Standard suite

Copies one or more values into variables.copy (page 121)

Counts the number of elements in an object.count (page 122)

Returns the value of a script expression or an application
object.

get (page 129)

Launches the specified application without sending it a run
command.

launch (page 134)

For an application, launches it. For a script application,
launches it and sends it the run command. For a script script
object, executes its run handler.

run (page 151)

Assigns one or more values to one or more script variables or
application objects.

set (page 154)

String Commands suite

Converts a number to a character.

Deprecated starting in AppleScript 2.0. Use the id property
of the text (page 97) class instead.

ASCII character (page 108)

Converts a character to its numeric value.

Deprecated starting in AppleScript 2.0. Use the id property
of the text (page 97) class instead.

ASCII number (page 109)

Returns the localized string for the specified key.localized string (page 136)

Finds one piece of text inside another.offset (page 139)

Summarizes the specified text or text file.summarize (page 159)

User Interaction suite

Beeps one or more times.beep (page 110)

Allows the user to choose an application.choose application (page 110)

Allows the user to choose a color.choose color (page 111)

Allows the user to choose a file.choose file (page 112)

Allows the user to specify a new file reference.choose file name (page 114)

Allows the user to choose a folder.choose folder (page 115)

107
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

DescriptionCommand

Allows the user to choose one or more items from a list.choose from list (page 116)

Allows the user to choose a running application on a remote
machine.

choose remote application (page 118)

Allows the user to specify a URL.choose URL (page 119)

Pauses for a fixed amount of time.delay (page 123)

Displays an alert.display alert (page 124)

Displays a dialog box, optionally requesting user input.display dialog (page 125)

Speaks the specified text.say (page 152)

activate

Brings an application to the front, launching it if necessary.

Syntax

requiredapplicationactivate

Parameters

application
The application to activate.

Result

None.

Examples
activate application "TextEdit"
tell application "TextEdit" to activate

Discussion
The activate command does not launch applications on remote machines. For examples of other ways to
specify an application, see the application (page 80) class and “Remote Applications” (page 44).

ASCII character

Returns the character for a specified number.

Important: This command is deprecated starting in AppleScript 2.0—use the id property of the text class
instead.

Syntax

108
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

requiredintegerASCII character

Parameters

integer (page 89)
The character code, an integer between 0 and 255.

Result

A text (page 97) object containing the character that corresponds to the specified number.

Signals an error if integer is out of range.

Examples
set theChar to ASCII character 65 --result: "A"
set theChar to ASCII character 194 --result: "¬"
set theChar to ASCII character 2040 --result: invalid range error

Discussion
The name “ASCII” is something of a misnomer. ASCII character uses the primary text encoding, as
determined by the user’s language preferences, to map between integers and characters. If the primary
language is English, the encoding is Mac OS Roman, if it is Japanese, the encoding is MacJapanese, and so
on. For integers below 128, this is generally the same as ASCII, but for integers from 128 to 255, the results
vary considerably.

Because of this unpredictability, ASCII character and ASCII number are deprecated starting in AppleScript
2.0. Use the id property of the text class instead, since it always uses the same encoding, namely Unicode.

ASCII number

Returns the number associated with a specified character.

Important: This command is deprecated starting in AppleScript 2.0—use the id property of the text class
instead.

Syntax

requiredtextASCII number

Parameters

text (page 97)
A text object containing at least one character. If there is more than one character, only the first one
is used.

Result

The character code of the specified character as an integer.

Examples
set codeValue to ASCII number "¬" --result: 194

109
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Discussion
The result of ASCII number depends on the user’s language preferences; see the Discussion section of
ASCII character (page 108) for details.

beep

Plays the system alert sound one or more times.

Syntax

requiredbeep

optionalinteger

Parameters

integer (page 89)
Number of times to beep.

Default Value:
1

Result

None.

Examples

Audible alerts can be useful when no one is expected to be looking at the screen:

beep 3 --result: three beeps, to get attention
display dialog "Something is amiss here!" -- to show message

choose application

Allows the user to choose an application.

Syntax

requiredchoose application

optionaltextwith title

optionaltextwith prompt

optionalbooleanmultiple selections allowed

optionalclassas

110
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Parameters

with title text (page 97)
Title text for the dialog.

Default Value:
"Choose Application"

with prompt text (page 97)
A prompt to be displayed in the dialog.

Default Value:
"Select an application:"

multiple selections allowed boolean (page 82)
Allow multiple items to be selected? If true, the results will be returned in a list, even if there is exactly
one item.

Default Value:
false

as class (application (page 80) | alias (page 79))
Specifies the desired class of the result. If specified, the value must be one of application or alias.

Default Value:
application

Result

The selected application, as either anapplicationoraliasobject; for example,application "TextEdit".
If multiple selections are allowed, returns a list containing one item for each selected application, if any.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such errors,
see “try Statements” (page 207).

Examples
choose application with prompt "Choose a web browser:"
choose application with multiple selections allowed
choose application as alias

Discussion
The choose application dialog initially presents a list of all applications registered with the system. To
choose an application not in that list, use the Browse button, which allows the user to choose an application
anywhere in the file system.

choose color

Allows the user to choose a color from a color picker dialog.

Syntax

requiredchoose color

optionalRGB colordefault color

111
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Parameters

default color RGB color (page 96)
The color to show when the color picker dialog is first opened.

Default Value:
{0, 0, 0}: black.

Result

The selected color, represented as a list of three integers from 0 to 65535 corresponding to the red, green,
and blue components of a color; for example, {0, 65535, 0} represents green.

Signals a “user canceled” error if the user cancels the choose color dialog. For an example of how to handle
such errors, see “try Statements” (page 207).

Examples

This example lets the user choose a color, then uses that color to set the background color in their home
folder (when it is in icon view):

tell application "Finder"
 tell icon view options of window of home
 choose color default color (get background color)
 set background color to the result
 end tell
end tell

choose file

Allows the user to choose a file.

Syntax

requiredchoose file

optionaltextwith prompt

optionallist of textof type

optionalaliasdefault location

optionalbooleaninvisibles

optionalbooleanmultiple selections allowed

optionalbooleanshowing package contents

Parameters

with prompt text (page 97)
The prompt to be displayed in the dialog.

Default Value:
None; no prompt is displayed.

112
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

of type list (page 89) of text (page 97)
A list of Uniform Type Identifiers (UTIs); for example, {"public.html", "public.rtf"}. Only files
of the specified types will be selectable. For a list of system-defined UTIs, see Uniform Type Identifiers
Overview. To get the UTI for a particular file, use info for (page 132).

Note: Four-character file type codes, such as "PICT" or "MooV", are also supported, but are deprecated. To
get the file type code for a particular file, use info for (page 132).

Default Value:
None; any file can be chosen.

default location alias (page 79)
The folder to begin browsing in.

Default Value:
Browsing begins in the last selected location, or, if this is the first invocation, in the user’s
Documents folder.

invisibles boolean (page 82)
Show invisible files and folders?

Default Value:
true: This is only for historical compatibility reasons. Unless you have a specific need to choose
invisible files, you should always use invisibles false.

multiple selections allowed boolean (page 82)
Allow multiple items to be selected? If true, the results will be returned in a list, even if there is exactly
one item.

Default Value:
false

showing package contents boolean (page 82)
Show the contents of packages? If true, packages are treated as folders, so that the user can choose
a file inside a package (such as an application).

Default Value:
false. Manipulating the contents of packages is discouraged unless you control the package
format or the package itself.

Result

The selected file, as an alias. If multiple selections are allowed, returns a list containing one alias for each
selected file, if any.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such errors,
see “try Statements” (page 207).

Examples

set aFile to choose file with prompt "HTML or RTF:" ¬
 of type {"public.html", "public.rtf"} invisibles false

A UTI can specify a general class of files, not just a specific format. The following script allows the user to
choose any image file, whether its format is JPEG, PNG, GIF, or whatever. It also uses the default location
parameter combined with path to (folder) (page 143) to begin browsing in the user’s Pictures folder:

set picturesFolder to path to pictures folder

113
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

choose file of type "public.image" with prompt "Choose an image:" ¬
 default location picturesFolder invisibles false

choose file name

Allows the user to specify a new filename and location. This does not create a file—rather, it returns a file
specifier that can be used to create a file.

Syntax

requiredchoose file name

optionaltextwith prompt

optionaltextdefault name

optionalaliasdefault location

Parameters

with prompt text (page 97)
The prompt to be displayed near the top of the dialog.

Default Value:
"Specify new file name and location"

default name text (page 97)
The default file name.

Default Value:
"untitled"

default location alias (page 79)
The default file location. See choose file (page 112) for examples.

Default Value:
Browsing starts in the last location in which a search was made or, if this is the first invocation,
in the user’s Documents folder.

Result

The selected location, as a file. For example:

file "HD:Users:currentUser:Documents:untitled"

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such errors,
see “try Statements” (page 207).

Examples

The following example supplies a non-default prompt and search location:

set fileName to choose file name with prompt "Save report as:" ¬
default name "Quarterly Report" ¬
default location (path to desktop folder)

114
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Discussion
If you choose the name of a file or folder that exists in the selected location, choose file name offers the
choice of replacing the chosen item. However, choosing to replace does not actually replace the item.

choose folder

Allows the user to choose a directory, such as a folder or a disk.

Syntax

requiredchoose folder

optionaltextwith prompt

optionalaliasdefault location

optionalbooleaninvisibles

optionalbooleanmultiple selections allowed

optionalbooleanshowing package contents

Parameters

with prompt text (page 97)
The prompt to be displayed in the dialog.

Default Value:
None; no prompt is displayed.

default location alias (page 79)
The folder to begin browsing in.

Default Value:
Browsing begins in the last selected location, or, if this is the first invocation, in the user’s
Documents folder.

invisibles boolean (page 82)
Show invisible folders?

Default Value:
false

multiple selections allowed boolean (page 82)
Allow multiple items to be selected? If true, the results will be returned in a list, even if there is exactly
one item.

Default Value:
false

showing package contents boolean (page 82)
Show the contents of packages? If true, packages are treated as folders, so that the user can choose
a package folder, such as an application, or a folder inside a package.

Default Value:
false. Manipulating the contents of packages is discouraged unless you control the package
format or the package itself.

115
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Result

The selected directory, as an alias. If multiple selections are allowed, returns a list containing one alias
for each selected directory, if any.

Signals a “user canceled” error if the user cancels the choose folder dialog. For an example of how to
handle such errors, see “try Statements” (page 207).

Examples

The following example specifies a prompt and allows multiple selections:

set foldersList to choose folder ¬
 with prompt "Select as many folders as you like:" ¬
 with multiple selections allowed

The following example gets a POSIX path to a chosen folder and uses the quoted form property (of the
text (page 97) class) to ensure correct quoting of the resulting string for use with shell commands:

set folderName to quoted form of POSIX path of (choose folder)

Suppose that you choose the folder named iWork '08 in your Applications folder. The previous statement
would return the following result, which properly handles the embedded single quote and space characters
in the folder name:

"'/Applications/iWork '\\''08/'"

choose from list

Allows the user to choose items from a list.

Syntax

requiredlistchoose from list

optionaltextwith title

optionaltextwith prompt

optionallistdefault items

optionaltextOK button name

optionaltextcancel button name

optionalbooleanmultiple selections allowed

optionalbooleanempty selection allowed

Parameters

list (page 89) (of number (page 92) or text (page 97))
A list of numbers and/or text objects for the user to choose from.

116
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

with title text (page 97)
Title text for the dialog.

Default Value:
None; no title is displayed.

with prompt text (page 97)
The prompt to be displayed in the dialog.

Default Value:
"Please make your selection:"

default items list (page 89) (of number (page 92) or text (page 97))
A list of numbers and/or text objects to be initially selected. The list cannot include multiple items
unless you also specify multiple selections allowed true. If an item in the default items list
is not in the list to choose from, it is ignored.

Default Value:
None; no items are selected.

OK button name text (page 97)
The name of the OK button.

Default Value:
"OK"

cancel button name text (page 97)
The name of the Cancel button.

Default Value:
"Cancel"

multiple selections allowed boolean (page 82)
Allow multiple items to be selected?

Default Value:
false

empty selection allowed boolean (page 82)
Allow the user to choose OK with no items selected? If false, the OK button will not be enabled
unless at least one item is selected.

Default Value:
false

Result

If the user clicks the OK button, returns a list (page 89) of the chosen number (page 92) and/or text (page
97) items; if empty selection is allowed and nothing is selected, returns an empty list ({}). If the user clicks
the Cancel button, returns false.

Examples

This script selects from a list of all the people in Address Book who have defined birthdays, and gets the
birthday of the selected one. Notice the if the result is not false test (choose from list returns
false if the user clicks Cancel) and the set aName to item 1 of the result (choose from list
returns a list, even if it contains only one item).

tell application "Address Book"
 set bDayList to name of every person whose birth date is not missing value
 choose from list bDayList with prompt "Whose birthday would you like?"
 if the result is not false then

117
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

 set aName to item 1 of the result
 set theBirthday to birth date of person named aName
 display dialog aName & "'s birthday is " & date string of theBirthday
 end if
end tell

Discussion
For historical reasons, choose from list is the only dialog command that returns a result (false) instead
of signaling an error when the user presses the “Cancel” button.

choose remote application

Allows the user to choose a running application on a remote machine.

Syntax

requiredchoose remote application

optionaltextwith title

optionaltextwith prompt

Parameters

with title text (page 97)
Title text for the choose remote application dialog.

Default Value:
None; no title is displayed.

with prompt text (page 97)
The prompt to be displayed in the dialog.

Default Value:
"Select an application:"

Result

The selected application, as an application (page 80) object.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such errors,
see “try Statements” (page 207).

Examples
set myApp to choose remote application with prompt "Choose a remote web browser:"

Discussion
The user may choose a remote machine using Bonjour or by entering a specific IP address. There is no way
to limit the precise kind of application returned, so either limit your script to generic operations or validate
the user’s choice. If you want your script to send application-specific commands to the resulting application,
you will need a using terms from statement.

For information on targeting other machines, see “Remote Applications” (page 44).

118
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

choose URL

Allows the user to specify a URL.

Syntax

requiredchoose URL

optionallistOfServiceTypesOrTextStringsshowing

optionalbooleaneditable URL

Parameters

showing list (page 89) (of service types or text (page 97))
A list that specifies the types of services to show, if available. The list can contain one or more of the
following service types, or one or more text objects representing Bonjour service types (described
below), or both:

 ■ Web servers: shows http and https services

 ■ FTP Servers: shows ftp services

 ■ Telnet hosts: shows telnet services

 ■ File servers: shows afp, nfs, and smb services

 ■ News servers: shows nntp services

 ■ Directory services: shows ldap services

 ■ Media servers: shows rtsp services

 ■ Remote applications: shows eppc services

A text object is interpreted as a Bonjour service type—for example, "_ftp._tcp" represents the
file transfer protocol. These types are listed in Technical Q&A 1312: Bonjour service types used in Mac
OS X.

Default Value:
File servers

editable URL boolean (page 82)
Allow user to type in a URL? If you specify editable URL false, the text field in the dialog is
inactive.

choose URL does not attempt to verify that the user-entered text is a valid URL. Your script should
be prepared to verify the returned value.

Default Value:
true: the user can enter a text string. If false, the user is restricted to choosing an item from
the Bonjour-supplied list of services.

Result

The URL for the service, as a text object. This result may be passed to open location (page 141) or to any
application that can handle the URL, such as a browser for http URLs.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such errors,
see “try Statements” (page 207).

119
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

http://developer.apple.com/qa/qa2001/qa1312.html
http://developer.apple.com/qa/qa2001/qa1312.html

Examples

The following script asks the user to choose an URL, either by typing in the text input field or choosing one
of the Bonjour-located servers:

set myURL to choose URL
tell application Finder to open location myURL

clipboard info

Returns information about the current clipboard contents.

Syntax

requiredclipboard info

optionalclassfor

Parameters

for class (page 83)
Restricts returned information to only this data type.

Default Value:
None; returns information for all types of data as a list of lists, where each list represents a
scrap flavor.

Result

A list (page 89) containing one entry {class, size} for each type of data on the clipboard. To retrieve
the actual data, use the the clipboard (page 162) command.

Examples
clipboard info
clipboard info for Unicode text

close access

Closes a file opened with the open for access command.

Syntax

requiredfileSpecifierclose access

Parameters

(alias (page 79) | file (page 88) | file descriptor)
The alias or file specifier or integer file descriptor of the file to close. A file descriptor must be obtained
as the result of an earlier open for access (page 140) call.

Result

None.

Signals an error if the specified file is not open.

120
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Examples

You should always close files that you open, being sure to account for possible errors while using the open
file:

set aFile to choose file
set fp to open for access aFile
try
 --file reading and writing here
on error e number n
 --deal with errors here and don't resignal
end
close access fp

Discussion
Any files left open will be automatically closed when the application exits.

copy

Copies one or more values, storing the result in one or more variables. This command only copies AppleScript
values, not application-defined objects.

Syntax

requiredexpressioncopy

requiredvariablePatternto

Parameters

expression
The expression whose value is to be copied.

to variablePattern
The name of the variable or pattern of variables in which to store the value or pattern of values.
Patterns may be lists or records.

Result

The new copy of the value.

Examples

As mentioned in the Discussion, copy creates an independent copy of the original value, and it creates a
deep copy. For example:

set alpha to {1, 2, {"a", "b"}}
copy alpha to beta
set item 2 of item 3 of alpha to "change" --change the original list
set item 1 of beta to 42 --change a different item in the copy
{alpha, beta}
--result: {{1, 2, {"a", "change"}}, {42, 2, {"a", "b"}}}

Each variable reflects only the changes that were made directly to that variable. Compare this with the similar
example in set (page 154).

121
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

See the set (page 154) command for examples of using variable patterns. The behavior is the same except
that the values are copied.

Discussion
The copy command may be used to assign new values to existing variables, or to define new variables. See
“Declaring Variables with the copy Command” (page 50) for additional details.

Using the copy command creates a new value that is independent of the original—a subsequent change to
that value does not change the original value. The copy is a “deep” copy, so sub-objects, such as lists within
lists, are also copied. Contrast this with the behavior of the set (page 154) command.

When using copy with an object specifier, the specifier itself is the value copied, not the object in the target
application that it refers to. copy therefore copies the object specifier, but does not affect the application
data at all. To copy the object in the target application, use the application’s duplicate command, if it has
one.

Special Considerations

The syntax put expression into variablePattern is also supported, but is deprecated. It will be transformed
into the copy form when you compile the script.

count

Counts the number of elements in another object.

Syntax

requiredexpression(count | number of)

Parameters

expression
An expression that evaluates to an object with elements, such as a list (page 89), record (page
94), or application-defined container object. count will count the contained elements.

Result

The number of elements, as an integer (page 89).

Examples

In its simplest form, count, or the equivalent pseudo-property number, counts the item elements of a value.
This may be an AppleScript value, such as a list:

set aList to {"Yes", "No", 4, 5, 6}
count aList --result: 5
number of aList --result: 5

…or an application-defined object that has item elements:

tell application "Finder" to count disk 1 --result: 4

If the value is an object specifier that evaluates to a list, count counts the items of that list. This may be an
“Every” (page 168) specifier:

count every integer of aList --result: 3
count words of "hello world" --result: 2

122
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

tell application "Finder" to count folders of disk 1 --result: 4

…or a “Filter” (page 169) specifier:

tell application "Finder"
 count folders of disk 1 whose name starts with "A" --result: 1
end tell

…or similar. For more on object specifiers, see “Object Specifiers” (page 29).

current date

Returns the current date and time.

Syntax

requiredcurrent date

Result

The current date and time, as a date (page 85) object.

Examples
current date --result: date "Tuesday, November 13, 2007 11:13:29 AM"

See the date (page 85) class for information on how to access the properties of a date, such as the day of
the week or month.

delay

Waits for a specified number of seconds.

Syntax

requireddelay

optionalnumber

Parameters

number (page 92)
The number of seconds to delay. The number may be fractional, such as 0.5 to delay half a second.

Default Value:
0

Result

None.

Examples
set startTime to current date
delay 3 --delay for three seconds
set elapsedTime to ((current date) - startTime)

123
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

display dialog ("Elapsed time: " & elapsedTime & " seconds")

Discussion
delay does not make any guarantees about the actual length of the delay, and it cannot be more precise
than 1/60th of a second. delay is not suitable for real-time tasks such as audio-video synchronization.

display alert

Displays a standardized alert containing a message, explanation, and from one to three buttons.

Syntax

requiredtextdisplay alert

optionaltextmessage

optionalalertTypeas

optionallistbuttons

optionalbuttonSpecifierdefault button

optionalbuttonSpecifiercancel button

optionalintegergiving up after

Parameters

text (page 97)
The alert text, which is displayed in emphasized system font.

message text (page 97)
An explanatory message, which is displayed in small system font, below the alert text.

as alertType
The type of alert to show. You can specify one of the following alert types:

informational: the standard alert dialog
warning: the alert dialog dialog is badged with a warning icon
critical: currently the same as the standard alert dialog

Default Value:
informational

buttons list (page 89) (of text (page 97))
A list of up to three button names.

If you supply one name, a button with that name serves as the default and is displayed on the right
side of the alert dialog. If you supply two names, two buttons are displayed on the right, with the
second serving as the default button. If you supply three names, the first is displayed on the left, and
the next two on the right, as in the case with two buttons.

Default Value:
{"OK"}: One button labeled “OK”, which is the default button.

124
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

default button (text (page 97) or integer (page 89))
The name or number of the default button. This may be the same as the cancel button.

Default Value:
The rightmost button.

cancel button (text (page 97) or integer (page 89))
The name or number of the cancel button. See “Result” below. This may be the same as the default
button.

Default Value:
None; there is no cancel button.

giving up after integer (page 89)
The number of seconds to wait before automatically dismissing the alert.

Default Value:
None; the dialog will wait until the user clicks a button.

Result

If the user clicks a button that was not specified as the cancel button, display alert returns a record that
identifies the button that was clicked—for example, {button returned: "OK"}. If the command specifies
a giving up after value, the record will also contain a gave up:false item.

If the display alert command specifies a giving up after value, and the dialog is dismissed due to
timing out before the user clicks a button, the command returns a record indicating that no button was
returned and the command gave up: {button returned:"", gave up:true}

If the user clicks the specified cancel button, the command signals a “user canceled” error. For an example
of how to handle such errors, see “try Statements” (page 207).

Examples
set alertResult to display alert "Insert generic warning here." ¬
 buttons {"Cancel", "OK"} as warning ¬
 default button "Cancel" cancel button "Cancel" giving up after 5

For an additional example, see the Examples section for the try (page 207) statement.

display dialog

Displays a dialog containing a message, one to three buttons, and optionally an icon and a field in which the
user can enter text.

Syntax

requiredtextdisplay dialog

optionaltextdefault answer

optionalbooleanhidden answer

optionallistbuttons

optionallabelSpecifierdefault button

125
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

optionallabelSpecifiercancel button

optionaltextwith title

optionalresourceSpecifierwith icon

optionaliconTypeSpecifierwith icon

optionalfileSpecifierwith icon

optionalintegergiving up after

Parameters

text
The dialog text, which is displayed in emphasized system font.

default answer text (page 97)
The initial contents of an editable text field. This edit field is not present unless this parameter is
present; to have the field present but blank, specify an empty string: default answer ""

Default Value:
None; there is no edit field.

hidden answer boolean (page 82)
If true, any text in the edit field is obscured as in a password dialog: each character is displayed as a
bullet.

Default Value:
false: text in the edit field is shown in cleartext.

buttons list (page 89) (of text (page 97))
A list of up to three button names.

Default Value:
If you don’t specify any buttons, by default, Cancel and OK buttons are shown, with the OK
button set as the default button.

If you specify any buttons, there is no default or cancel button unless you use the following
parameters to specify them.

default button (text (page 97) | integer (page 89))
The name or number of the default button. This button is highlighted, and will be pressed if the user
presses the Return or Enter key.

Default Value:
If there are no buttons specified using buttons, the OK button. Otherwise, there is no default
button.

cancel button (text (page 97) | integer (page 89))
The name or number of the cancel button. This button will be pressed if the user presses the Escape
key or Command-period.

Default Value:
If there are no buttons specified using buttons, the Cancel button. Otherwise, there is no
cancel button.

126
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

with title text (page 97)
The dialog window title.

Default Value:
None; no title is displayed.

with icon (text (page 97) | integer (page 89))
The resource name or ID of the icon to display.

with icon (stop | note | caution)
The type of icon to show. You may specify one of the following constants:

 ■ stop (or 0): Shows a stop icon

 ■ note (or 1): Shows the application icon

 ■ caution (or 2): Shows a warning icon, badged with the application icon

with icon (alias (page 79) | file (page 88))
An alias or file specifier that specifies a .icns file.

giving up after integer (page 89)
The number of seconds to wait before automatically dismissing the dialog.

Default Value:
None; the dialog will wait until the user presses a button.

Result

A record containing the button clicked and text entered, if any. For example:

{text returned:"Cupertino", button returned:"OK"}

If the dialog does not allow text input, there is no text returned item in the returned record.

If the user clicks the specified cancel button, the command signals a “user canceled” error. For an example
of how to handle such errors, see “try Statements” (page 207).

If the display dialog command specifies a giving up after value, and the dialog is dismissed due to
timing out before the user clicks a button, it returns a record indicating that no button was returned and the
command gave up: {button returned:"", gave up:true}

Examples

The following example shows how to use many of the parameters to a display dialog command, how
to process possible returned values, and one way to handle a user cancelled error. The dialog displays two
buttons and prompts a user to enter a name, giving up if they do not make a response within fifteen seconds.
It shows one way to handle the case where the user cancels the dialog, which results in AppleScript signaling
an “error” with the error number -128. The script uses additional display dialog commands to show the
flow of logic and indicate where you could add statements to handle particular outcomes.

set userCanceled to false
try
 set dialogResult to display dialog ¬
 "What is your name?" buttons {"Cancel", "OK"} ¬
 default button "OK" cancel button "Cancel" ¬
 giving up after 15 ¬
 default answer (long user name of (system info))
on error number -128
 set userCanceled to true

127
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

end try

if userCanceled then
 -- statements to execute when user cancels
 display dialog "User cancelled."
else if gave up of dialogResult then
 -- statements to execute if dialog timed out without an answer
 display dialog "User timed out."
else if button returned of dialogResult is "OK" then
 set userName to text returned of dialogResult
 -- statements to process user name
 display dialog "User name: " & userName
end if
end

The following example displays a dialog that asks for a password. It supplies a default answer of "wrong",
and specifies that the default answer, as well as any text entered by the user, is hidden (displayed as a series
of bullets). It gives the user up to three chances to enter a correct password.

set prompt to "Please enter password:"
repeat 3 times
 set dialogResult to display dialog prompt ¬
 buttons {"Cancel", "OK"} default button 2 ¬
 default answer "wrong" with icon 1 with hidden answer
 set thePassword to text returned of dialogResult
 if thePassword = "magic" then
 exit repeat
 end if
end repeat
if thePassword = "magic" or thePassword = "admin" then
 display dialog "User entered valid password."
end if

The password text is copied from the return value dialogResult. The script doesn’t check for a user cancelled
error, so if the user cancels AppleScript stops execution of the script.

do shell script

Executes a shell script using the sh shell.

Syntax

requiredtextdo shell script

optionalclassas

optionalbooleanadministrator privileges

optionaltextuser name

optionaltextpassword

optionalbooleanaltering line endings

128
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Parameters

text (page 97)
The shell script to execute.

as class (page 83)
Specifies the desired type of the result. The raw bytes returned by the command will be interpreted
as the specified class.

Default Value:
«class utf8»: UTF-8 text. If there is no as parameter and the output is not valid UTF-8, the
output will be interpreted as text in the primary encoding.

administrator privileges boolean (page 82)
Execute the command as the administrator? Once a script is correctly authenticated, it will not ask
for authentication again for five minutes. The elevated privileges and the grace period do not extend
to any other scripts or to the rest of the system. For security reasons, you may not tell another
application to do shell script with administrator privileges. Put the command outside
of any tell block, or put it inside a tell me block.

Default Value:
false

user name text (page 97)
The name of an administrator account. You can avoid a password dialog by specifying a name in this
parameter and a password in the password parameter. If you specify a user name, you must also
specify a password.

password text (page 97)
An administrator password, typically used in conjunction with the administrator specified by the user
name parameter. If user name is omitted, it is assumed to be the current user.

altering line endings boolean (page 82)
Should the do shell script command change all line endings in the command output to Mac-style
and trim a trailing one? For example, the result of do shell script "echo foo; echo bar" is
"foo\rbar", not the "foo\nbar\n" that the shell script actually returned.

Default Value:
true

Result

The output of the shell script.

Signals an error if the shell script exits with a non-zero status. The error number will be the status, the error
message will be the contents of stderr.

Examples
do shell script "uptime"

Discussion
For additional documentation and examples of the do shell script command, see Technical Note TN2065,
do shell script in AppleScript.

get

Evaluates an object specifier and returns the result.

129
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

http://developer.apple.com/technotes/tn2002/tn2065.html

The command name get is typically optional—expressions that appear as statements or operands are
automatically evaluated as if they were preceded by get. However, get can be used to force early evaluation
of part of an object specifier.

Syntax

requiredspecifierget

optionalclassas

Parameters

specifier
An object specifier to be evaluated. If the specifier refers to an application-defined object, the get
command is sent to that application. Technically, all values respond to get, but for all values other
than object specifiers, get is an identity operation: the result is the exact same value.

as class (page 83)
The desired class for the returned data. If the data is not of the desired type, AppleScript attempts to
coerce it to that type.

Default Value:
None; no coercion is performed.

Result

The value of the evaluated expression. See “Reference Forms” (page 167) for details on what the results of
evaluating various object specifiers are.

Examples

get can get properties or elements of AppleScript-defined objects, such as lists:

get item 1 of {"How", "are", "you?"} --result: "How"

…or of application-defined objects:

tell application "Finder" to get name of home --result: "myname"

As noted above, the get is generally optional. For example, these statements are equivalent to the above
two:

item 1 of {"How", "are", "you?"} --result: "How"
tell application "Finder" to name of home --result: "myname"

However, an explicit get can be useful for forcing early evaluation of part of an object specifier. Consider:

tell application "Finder" to get word 1 of name of home
--Finder got an error: Can’t get word 1 of name of folder "myname" of folder
"Users" of startup disk.

This fails because Finder does not know about elements of text, such as words. AppleScript does, however,
so the script has to make Finder get only the name of ... part:

tell application "Finder" to get word 1 of (get name of home)
--result: "myname"

130
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

The explicit get forces that part of the specifier to be evaluated; Finder returns a text result, from which
AppleScript can then get word 1.

For more information on specifiers, see “Object Specifiers” (page 29).

get eof

Returns the length of a file, in bytes.

Syntax

requiredfileSpecifierget eof

Parameters

(alias (page 79) | file (page 88) | file descriptor)
The file to obtain the length for, as an alias, a file specifier, or an integer (page 89) file descriptor.
A file descriptor must be obtained as the result of an earlier open for access (page 140) call.

Result

The logical size of the file, that is, the length of its contents in bytes.

Examples

This example obtains an alias to a desktop picture folder and uses get eof to obtain its length:

set desktopPicturesFolderPath to ¬
 (path to desktop pictures folder as text) & "Flow 1.jpg" as alias
--result: alias "Leopard:Library:Desktop Pictures:Flow 1.jpg"
get eof desktopPicturesFolderPath --result: 531486

get volume settings

Returns the sound output and input volume settings.

Syntax

requiredget volume settings

Result

A record containing the sound output and input volume settings. All the integer settings are between 0
(silent) and 100 (full volume):

output volume (an integer (page 89))
The base output volume.

input volume (an integer)
The input volume.

alert volume (an integer)
The alert volume. 100 for this setting means “as loud as the output volume.”

output muted (a boolean (page 82))
Is the output muted? If true, this overrides the output and alert volumes.

131
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Examples
set volSettings to get volume settings
--result: {output volume:43, input volume:35, alert volume:78, output muted:false}

info for

Return information for a file or folder.

Syntax

requiredfileSpecifierinfo for

optionalbooleansize

Parameters

(alias (page 79) | file (page 88))
An alias or file specifier for the file or folder.

size boolean (page 82)
Return the size of the file or folder? For a file, its “size” is its length in bytes; for a folder, it is the sum
of the sizes of all the files the folder contains.

Default Value:
true: Because getting the size of a folder requires getting the sizes of all the files inside it,
size true may take a long time for large folders such as /System. If you do not need the
size, ask to not get it using size false. Alternatively, target the Finder or System Events
applications to ask for the specific properties you want.

Result

A record containing information about the specified file or folder, with the following fields. Some fields are
only present for certain kinds of items:

name (a text (page 97) object)
The item’s full name, as it appears in the file system. This always includes the extension, if any. For
example, "OmniOutliner Professional.app".

displayed name (a text (page 97) object)
The item’s name as it appears in Finder. This may be different than the name if the extension is hidden
or if the item has a localized name. For example, "OmniOutliner Professional".

short name (a text (page 97) object, applications only)
The application’s CFBundleName, which is the name displayed in the menu bar when the application
is active. This is often, but not always, the same as the displayed name. For example, "OmniOutliner
Pro".

name extension (a text (page 97) object)
The extension part of the item name. For example, the name extension of the file “foo.txt” is "txt".

bundle identifier (a text (page 97) object)
The package’s bundle identifier. If the package is an application, this is the application’s id.

type identifier (a text (page 97) object)
The item’s type, as a Uniform Type Identifier (UTI). This is the preferred form for identifying item types,
and may be used with choose file.

132
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

kind (a text (page 97) object)
The item’s type, as displayed in Finder. This may be localized, and should only be used for display
purposes.

default application (an alias (page 79) object)
The application that will open this item.

creation date (a date (page 85) object)
The date the item was created.

modification date (a date (page 85) object)
The date the item was last modified. Folder modification dates do not change when an item inside
them changes, though they do change when an item is added or removed.

file type (a text (page 97) object)
The item’s type, as a four-character code. This is the classic equivalent of the type identifier, but less
accurate and harder to interpret; use type identifier if possible.

file creator (a text (page 97) object)
The item’s four-character creator code. For applications, this is the classic equivalent of the bundle
identifier, and will work for referencing an application by id. For files, this can be used to infer the
default application, but not reliably; use default application if possible.

short version (a text (page 97) object)
The item’s short version string, as it appears in a Finder “Get Info” window. Any item may have this
attribute, but typically only applications do.

long version (a text (page 97) object)
The item’s long version string, as it appears in a Finder “Get Info” window. Any item may have this
attribute, but typically only applications do.

size (an integer (page 89))
The item’s size, in bytes. For more details, see the size parameter.

alias (a boolean (page 82))
Is the item an alias file?

folder (a boolean (page 82))
Is the item a folder? This is true for packages, such as application packages, as well as normal folders.

package folder (a boolean (page 82))
Is the item a package folder, such as an application? A package folder appears in Finder as if it is a
file.

extension hidden (a boolean (page 82))
Is the item’s name extension hidden?

visible (a boolean (page 82))
Is the item visible? Typically, only special system files are invisible.

locked (a boolean (page 82))
Is the item locked?

busy status (a boolean (page 82))
Is the item currently in use?

If true, the item is reliably busy. If false, the item may still be busy, because this status may not be
supported by some applications or file systems.

folder window (rectangle, folders only)
The folder’s window’s bounding rectangle, as list of four integers: {top, left, bottom, right}.

133
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Examples
set downloadsFolder to path to downloads folder
 --result: alias "HD:Users:me:Downloads:"
info for downloadsFolder
 --result: {name:"Downloads", folder:true, alias:false, ...}

Special Considerations

Because info for returns so much information, it can be slow, and because it only works on one file at a
time, it can be difficult to use. The recommended technique is to use System Events or Finder to ask for the
particular properties you want.

launch

Launches an application, if it is not already running, but does not send it a run command.

If an application is already running, sending it a launch command has no effect. That allows you to open
an application without performing its usual startup procedures, such as opening a new window or, in the
case of a script application, running its script. For example, you can use the launch command when you
don’t want an application to open and close visibly. This is less useful in AppleScript 2.0, which launches
applications as hidden by default (even with the run (page 151) command).

See the application (page 80) class reference for information on how to use an application object’s
is running property to determine if it is running without having to launch it.

Syntax

requiredapplicationlaunch

Parameters

application
The application to launch.

Result

None.

Examples
launch application "TextEdit"
tell application "TextEdit" to launch

Discussion
The launch command does not launch applications on remote machines. For examples of other ways to
specify an application, see the application (page 80) class.

Many applications also support the reopen command, which reactivates a running application or launches
it if it isn’t running. If the application is already running, this command has the same effect as double-clicking
the application icon in the Finder. Each application determines how it will implement the reopen
command—some may perform their usual startup procedures, such as opening a new window, while others
perform no additional operations.

list disks

Returns the names of the currently mounted volumes.

134
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Important: This command is deprecated; use tell application "System Events" to get the name
of every disk.

Syntax

requiredlist disks

Result

A list (page 89) of text objects, one for each currently mounted volume.

list folder

Returns the names of the items in a specified folder.

Important: This command is deprecated; use tell application "System Events" to get the name
of every disk item of

Syntax

requiredfileSpecifierlist folder

optionalbooleaninvisibles

Parameters

(alias (page 79) | file (page 88))
Specifies the folder to list.

invisibles boolean (page 82)
Show invisible files and folders?

Default Value:
true

Result

A list (page 89) of text (page 97) objects, one for each item in the specified folder.

load script

Returns a script object loaded from a specified file.

Syntax

requiredfileSpecifierload script

Parameters

(alias (page 79) | file (page 88))
An alias or file specifier that specifies a script object. The file must be a compiled script (with
extension scpt) or script bundle (with extension scptd).

135
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Result

The script object. You can get this object’s properties or call its handlers as if it were a local script object.

Examples

For examples, see “Saving and Loading Libraries of Handlers” (page 72) in “About Handlers” (page 67).

localized string

Returns the localized text for the specified key.

Syntax

requiredtextlocalized string

optionaltextfrom table

optionalfileSpecifierin bundle

Parameters

text (page 97)
The key for which to obtain the localized text.

from table text (page 97)
The name of the strings file excluding the .strings suffix.

Default Value:
"Localizable"

in bundle (alias (page 79) | file (page 88))
An alias or file specifier that specifies the strings file.

Default Value:
The current script bundle for a document-based script (a scptd bundle); otherwise, the current
application.

Result

A text (page 97) object containing the localized text, or the original key if there is no localized text for that
key.

Examples

In order for localized string to be useful, you must create localized string data for it to use:

1. Save your script as an application bundle or script bundle.

136
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

2. Create lproj folders in the Resources directory of the bundle for each localization: for example,
English.lproj, French.lproj. Create files named Localized.strings in each one. When you are
done, the folder structure should look like this:

Figure 7-1 Bundle structure with localized string data

3. Add key/value pairs to each Localized.strings file. Each pair is a line of text "key" = "value";, for example:

Figure 7-2 Key/value pair for localized string data

Now localized string will return the appropriate values, as defined in your files. For example, when
running in French:

localized string "hello" --result: "bonjour"

137
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

log

In Script Editor, displays a value in the Event Log History window or in the Event Log pane of a script window.

Syntax

requiredlog

optionalvalue

Parameters

value
The value to display. Expressions are evaluated but object specifiers are not resolved.

The displayed value is enclosed in block comment characters—for example, (*window 1*).

If you do not specify a value, log will display just the comment characters: (**).

Result

None.

Examples

The following shows a simple use of logging:

set area to 7 * 43 as square feet
log area -- result (in Event Log pane): (*square feet 301.0*)

Log statements can be useful for tracking a script’s progress. For an example that shows how to log statements
in a repeat loop, see “Logging” (page 46).

mount volume

Mounts the specified network volume.

Syntax

requiredtextmount volume

(see parameter description)texton server

(see parameter description)textin AppleTalk zone

optionaltextas user name

optionaltextwith password

Parameters

text (page 97)
The name or URL (for example, afp://server/volume/) of the volume to mount.

on server text (page 97)
The server on which the volume resides; omit if URL path provided in direct parameter.

138
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

in AppleTalk zone text (page 97)
The AppleTalk zone in which the server resides; omit if URL path provided.

as user name text (page 97)
The user name with which to log in to the server; omit for guest access.

with password text (page 97)
The password for the user name; omit for guest access.

Result

None.

Examples
mount volume "afp://myserver.com/" -- guest access
mount volume "http://idisk.mac.com/myname/Public"
mount volume "http://idisk.mac.com/somebody" ¬
 as user name "myname" with password "mypassword"

Discussion
The mount volume command can connect to any file server that is supported by the Finder Connect To...
command, including Windows (smb), Samba, and FTP servers. On some kinds of servers, the as user name
and with password parameters may not bypass the login dialog, but encoding the name and password in
the URL (for example, smb://myname:passwd@server.domain.com/sharename) will mount it silently.

offset

Finds one piece of text inside another.

Syntax

requiredoffset

requiredtextof

requiredtextin

Parameters

of text (page 97)
The source text to find the position of.

in text (page 97)
The target text to search in.

Result

An integer (page 89) value indicating the position, in characters, of the source text in the target, or 0 if not
found.

Examples
set myString to "Yours, mine, and ours"
offset of "yours" in myString --result: 1, because case is ignored by default
offset of "mine" in myString --result: 8
offset of "theirs" in myString --result: 0, because "theirs" doesn't appear
considering case
 offset of "yours" in myString -- result: 0, because case is now considered

139
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

end considering

Discussion
offset compares text as the equals operator does, including considering and ignoring conditions.
The values returned are counted the same way character elements of text are counted—for example,
offset of "c" in "école" is always 2, regardless of whether "école" is in Normalization Form C or D.
The result of matching part of a character cluster is undefined.

open for access

Opens a file for reading and writing.

Syntax

requiredfileSpecifieropen for access

optionalbooleanwrite permission

Parameters

(alias (page 79) | file (page 88))
An alias or file specifier that specifies the file to open. You can only use an alias if the file exists.

write permission boolean (page 82)
Should writing to the file be allowed?

Default Value:
false: write and set eof commands on this file will fail with an error.

Result

A file descriptor, as an integer (page 89). This file descriptor may be used with any of the other file
commands: read (page 147), write (page 163), get eof (page 131), set eof (page 155), and close
access (page 120).

Examples

The following example opens a file named "NewFile" in the specified location path to desktop, but does
not ask for write access:

set theFile to (path to desktop as text) & "NewFile"
set referenceNumber to open for access theFile

To open the file with write access, you would substitute the following line:

set referenceNumber to open for access theFile with write permission

Discussion
Opening a file using open for access is not the same as opening a file using Finder. It is “open” only in
the sense that AppleScript has access to read (and optionally write) its contents; it does not appear in one
of the target application’s windows, and it does not even have to be one of the target application’s files.
open for access and the associated file commands (read, write, get eof, set eof) are typically used
with text files. They can also read and write arbitrary binary data, but this is not recommended unless you
create the file yourself or have detailed knowledge of the file format.

140
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Calling open for access on a file returns an integer, termed a file descriptor, which represents an open
communication channel to the file’s data. This file descriptor remains open until the script calls close
access on it (or on the same file). Each file descriptor maintains a file pointer, which marks the current position
within the file and is initially set to the beginning of the file. read and write commands begin reading or
writing at the file pointer, unless instructed otherwise using a from or starting at parameter, and advance
the file pointer by the number of bytes read or written, so the next operation will begin where the previous
one left off.

A single file may be opened more than once, and therefore have several different file descriptors. Each file
descriptor maintains its own file pointer, and each must be closed separately. If you open more than one
channel at once with write permission, behavior is unspecified.

It is not strictly necessary to use open for access—all the other file commands can accept an alias; if the
file is not open, they will open it, do the operation, and then close it. Explicitly opening and closing the file
does have two potential advantages, however.

One is performance: if you are performing a number of operations on the same file, opening and closing it
repeatedly could become expensive. It is cheaper to explicitly open the file, do the work, and then explicitly
close it.

Two is ease of sequential read and write operations: because the file pointer tracks the progress through the
file, reading or writing several pieces of data from the same file is a simple matter. Doing the same thing
without using the file pointer requires calculating the data size yourself, which is not even possible in some
cases.

open location

Opens a URL with the appropriate program.

Syntax

requiredtextopen location

optionalbooleanerror reporting

Parameters

text (page 97)
The URL to open.

error reporting boolean (page 82)
This parameter exists only for historical reasons; it is no longer supported.

Result

None.

Examples

This example opens an Apple web page:

open location "http://www.apple.com"

141
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

path to (application)

Returns the location of the specified application.

Syntax

requiredpath to

optionalapplication

optionalclassas

Parameters

application
The application to locate. See the application (page 80) class reference for possible ways to specify
an application. You may also use one of the following identifiers:

current application

The application executing the script, such as Script Editor.

frontmost application

The frontmost application.

me

The script itself. For script applications, this is the same as current application, but for
script documents, it is the location of the document.

Note: Some older applications may treat me identically to current application.

it

The application of the current target.

Default Value:
it

as class (page 83) (alias (page 79) | text (page 97))
The class of the returned location. If specified, must be one of alias or text.

Default Value:
alias (page 79)

Result

The location of the specified application, as either an alias or a text object containing the path.

Examples
path to application "TextEdit"
 --result: alias "Leopard:Applications:TextEdit.app:"
path to --result: alias "Leopard:Applications:AppleScript:Script Editor.app:"
path to me --result: same as above
path to it --result: same as above
path to frontmost application --result: same as above
path to current application
 --result: same, but could be different for a script application

142
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

path to (folder)

Returns the location of the specified special folder.

Syntax

requiredfolder constantpath to

optionaldomain constantfrom

optionalclassas

optionalbooleanfolder creation

143
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Parameters

folder constant
The special folder for which to return the path. You may specify one of the following folders:

application support
applications folder
desktop
desktop pictures folder
documents folder
downloads folder
favorites folder
Folder Action scripts
fonts
help
home folder
internet plugins
keychain folder
library folder
modem scripts
movies folder
music folder
pictures folder
preferences
printer descriptions
public folder
scripting additions
scripts folder
shared documents
shared libraries
sites folder
startup disk
startup items
system folder
system preferences
temporary items
trash
users folder
utilities folder
workflows folder

The following folders are also defined, but are only meaningful when used with from Classic
domain:

apple menu
control panels
control strip modules
extensions
launcher items folder
printer drivers
printmonitor
shutdown folder
speakable items
stationery
voices

144
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

from domain constant
The domain in which to look for the specified folder. You may specify one of the following domains:

system domain

A folder in /System.

local domain

A folder in /Library.

network domain

A folder in /Network.

user domain

A folder in ~, the user’s home folder.

Classic domain

A folder in the Classic Mac OS system folder. Only meaningful on systems that support Classic.

Default Value:
The default domain for the specified folder. This varies depending on the folder.

as class (page 83) (alias (page 79) | text (page 97))
The class of the returned location.

Default Value:
alias (page 79)

folder creation boolean
Create the folder if it doesn’t exist? Your script may not have permission to create the folder (for
example, asking to create something in the system domain), so your script should be prepared for
that error.

Default Value:
true

Result

The location of the specified folder, as either an alias or a text object containing the path.

Examples
path to desktop --result: alias "Leopard:Users:johndoe:Desktop:"
path to desktop as string --result: "Leopard:Users:johndoe:Desktop:"

path to resource

Returns the location of the specified resource.

Syntax

requiredtextpath to resource

optionalfileSpecifierin bundle

optionaltextin directory

145
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Parameters

text
The name of the requested resource.

in bundle (alias (page 79) | file (page 88))
An alias or file specifier that specifies the bundle containing the resource.

Default Value:
The current script bundle for a document-based script (a scptd bundle); otherwise, the current
application.

in directory text (page 97)
The name of a subdirectory in the bundle’s Resources directory.

Result

The location of the specified resource, as an alias (page 79).

Examples

The following example shows how you can get the path to a .icns file—in this case, in the Finder application.

tell application "Finder"
set gearIconPath to path to resource "Gear.icns"
end
--result: alias
"HD:System:Library:CoreServices:Finder.app:Contents:Resources:Gear.icns"

random number

Returns a random number.

Syntax

requiredrandom number

optionalnumberfrom

optionalnumberto

optionalnumberwith seed

Parameters

from number (page 92)
The lowest number to return. Can be negative.

Default Value:
0.0

to number (page 92)
The highest number to return. Can be negative.

Default Value:
1.0

146
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

with seed integer (page 89)
An initial seed for the random number generator. Once called with any particular seed value, random
number will always generate the same sequence of numbers. This can be useful when testing
randomized algorithms: you can force it to behave the same way every time.

Result

A number between the from and to limits, including the limit values. Depending on the limit values, the
result may be an integer or a real. If at least one limit is specified, and all specified limits are integers, the
result is an integer. Otherwise, the result is a real, and may have a fractional part.

Examples
random number --result: 0.639215561057
random number from 1 to 10 --result: 8

Discussion
Random numbers are, by definition, random, which means that you may get the same number twice (or
even more) in a row, especially if the range of possible numbers is small.

The numbers generated are only pseudo-random, and are not considered cryptographically secure.

If you need to select one of a set of objects in a relationship, use some object rather than object (random
number from 1 to count objects). See the “Arbitrary” (page 167) reference form for more details.

read

Reads data from a file.

Syntax

requiredfileSpecifierread

optionalintegerfrom

optionalintegerfor

optionalintegerto

optionaltextbefore

optionaltextuntil

optionaltextusing delimiters

optionalclassas

Parameters

(alias (page 79) | file (page 88) | file descriptor)
The file to read from, as an alias, a file specifier, or an integer (page 89) file descriptor. A file descriptor
must be obtained as the result of an earlier open for access (page 140) call.

147
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

from integer (page 89)
The byte position in the file to start reading from. The position is 1-based, so 1 is the first byte of the
file, 2 the second, and so on. Negative integers count from the end of the file, so -1 is the last byte,
-2 the second-to-last, and so on.

Default Value:
The current file pointer (see open for access (page 140)) if the file is open, or the beginning
of the file if not.

for integer (page 89)
The number of bytes to read.

Default Value:
Read until the end of the file.

to (integer (page 89) | eof)
Stop reading at this byte position in the file; use eof to indicate the last byte. The position is 1-based,
like the from parameter.

before text (page 97)
A single character; read up to the next occurrence of that character. The before character is also read,
but is not part of the result, so the next read will start just after it.

until text (page 97)
A single character; read up to and including the next occurrence of that character.

using delimiter text (page 97)
A delimiter, such as a tab or return character, used to separate the data read into a list of text objects.
The resulting items consist of the text between occurrences of the delimiter text. The delimiter is
considered a separator, so a leading or trailing delimiter will produce an empty string on the other
side. For example, the result of reading "axbxcx" using a delimiter of "x" would be {"a", "b",
"c", ""}.

Default Value:
None; read returns a single item.

using delimiters list (page 89) of text (page 97)
As using delimiter above, but all of the strings in the list count as delimiters.

as class (page 83)
Interpret the raw bytes read as this class. The most common ones control the use of three different
text encodings:

text or string

The primary text encoding, as determined by the user’s language preferences set in the
International preference panel. (For example, Mac OS Roman for English, MacJapanese for
Japanese, and so on.)

Unicode text

UTF-16.

«class utf8»

UTF-8. (See “Double Angle Brackets” (page 241) for information on chevron or “raw” syntax.)

Any other class is possible, for example date or list, but is typically only useful if the data was
written using a write statement specifying the same value for the as parameter.

Default Value:
text

148
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Result

The data read from the file. If the file is open, the file pointer is advanced by the number of bytes read, so
the next read command will start where the previous one left off.

Examples

The following example opens a file for read access, reads up to (and including) the first occurrence of ".",
closes the file, and displays the text it read. (See the Examples section for the write (page 163) command
for how to create a similar file for reading.)

set fp to open for access file "Leopard:Users:myUser:NewFile"
set myText to read fp until "."
close access fp
display dialog myText

To read all the text in the file, replace set myText to read fp until "." with set myText to read
fp.

Discussion
At most one of to, for, before, and until is allowed. Use of before, until, or using delimiter(s)
will interpret the file first as text and then coerce the text to whatever is specified in the as parameter.
Otherwise, it is treated as binary data (which may be interpreted as text if so specified.)

read cannot automatically detect the encoding used for a text file. If a file is not in the primary encoding,
you must supply an appropriate as parameter.

When reading binary data, read always uses big-endian byte order. This is only a concern if you are reading
binary files produced by other applications.

round

Rounds a number to an integer.

Syntax

requiredrealround

optionalroundingDirectionrounding

Parameters

real (page 93)
The number to round.

149
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

rounding roundingDirection
The direction to round. You may specify one of the following rounding directions:

up

Rounds to the next largest integer. This is the same as the math “ceiling” function.

down

Rounds down to the next smallest integer. This is the same as the math “floor” function.

toward zero

Rounds toward zero, discarding any fractional part. Also known as truncation.

to nearest

Rounds to the nearest integer; .5 cases are rounded to the nearest even integer. For example,
1.5 rounds to 2, 0.5 rounds to 0. Also known as “unbiased rounding” or “bankers’ rounding.”
See Discussion for details.

as taught in school

Rounds to the nearest integer; .5 cases are rounded away from zero. This matches the rules
commonly taught in elementary mathematics classes.

Default Value:
to nearest

Result

The rounded value, as an integer (page 89) if it is within the allowable range (±229), or as a real (page
93) if not.

Examples

Rounding up or down is not the same as rounding away from or toward zero, though it may appear so for
positive numbers. For example:

round 1.1 rounding down --result: 1
round -1.1 rounding down --result: -2

To round to the nearest multiple of something other than 1, divide by that number first, round, and then
multiply. For example, to round a number to the nearest 0.01:

set x to 5.1234
set quantum to 0.01
(round x/quantum) * quantum --result: 5.12

Discussion
The definition of to nearest is more accurate than as taught in school, but may be surprising if you
have not seen it before. For example:

round 1.5 --result: 2
round 0.5 --result: 0

Rounding 1.5 to 2 should come as no surprise, but as taught in school would have rounded 0.5 up to
1. The problem is that when dealing with large data sets or with many subsequent rounding operations,
always rounding up introduces a slight upward skew in the results. The round-to-even rule used by to
nearest tends to reduce the total rounding error, because on average an equal portion of numbers will
round down as will round up.

150
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

run

Executes the run handler of the specified target.

To run an application, it must be on a local or mounted volume. If the application is already running, the
effect of the run command depends on the application. Some applications are not affected; others repeat
their startup procedures each time they receive a run command.

The run command launches an application as hidden; use activate (page 108) to bring the application to
the front.

For a script object, the run command causes either the explicit or the implicit run handler, if any, to be
executed. For related information, see “run Handlers” (page 74).

Syntax

optionalrunTargetrun

Parameters

runTarget script
A script (page 97) or application (page 80) object.

Default Value:
it (the current target)

Result

The result, if any, returned by the specified object’s run handler.

Examples
run application "TextEdit"
tell application "TextEdit" to run
run myScript --where myScript is a script object

For information about using the run command with script objects, see “Sending Commands to Script
Objects” (page 59).

Discussion
To specify an application to run, you can supply a string with only the application name, as shown in the
Examples section. Or you can specify a location more precisely, using one of the forms described in “Aliases
and Files” (page 41). For examples of other ways to specify an application, see the application (page 80)
class.

It is not necessary to explicitly tell an application to run before sending it other commands; AppleScript will
do that automatically. To launch an application without invoking its usual startup behavior, use the
launch (page 134) command. For further details, see “Calling a Script Application From a Script” (page 77).

run script

Runs a specified script or script file.

See also store script (page 158).

Syntax

151
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

requiredscriptTextOrFileSpecifierrun script

optionallistOfParameterswith parameters

optionaltextin

Parameters

(text (page 97) | alias (page 79) | file (page 88))
The script text, or an alias or file specifier that specifies the script file to run.

with parameters list (page 89) of anything
A list of parameter values to be passed to the script.

in text (page 97)
The scripting component to use.

Default Value:
"AppleScript"

Result

The result of the script’s run handler.

Examples

The following script targets the application Finder, escaping the double quotes around the application name
with the backslash character (for more information on using the backslash, see the Special String Characters
section in the text (page 97) class description):

run script "get name of front window of app \"Finder\"" --result: a window name

This example executes a script stored on disk:

set scriptAlias to "Leopard:Users:myUser:Documents:savedScript.scptd:" as alias
run script scriptAlias --result: script is executed

say

Speaks the specified text.

Syntax

requiredtextsay

optionaltextdisplaying

optionaltextusing

optionalbooleanwaiting until completion

optionalfileSpecifiersaving to

152
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Parameters

text (page 97)
The text to speak.

displaying text (page 97)
The text to display in the feedback window, if different from the spoken text. This parameter is ignored
unless Speech Recognition is turned on (in System Preferences).

using text (page 97)
The voice to speak with—for example: "Zarvox".

You can use any of the voices from the System Voice pop-up on the Text to Speech tab in the Speech
preferences pane.

Default Value:
The current System Voice (set in the Speech panel in System Preferences.

waiting until completion boolean (page 82)
Should the command wait for speech to complete before returning? This parameter is ignored unless
Speech Recognition is turned on (in System Preferences).

Default Value:
true

saving to (alias (page 79) | file (page 88))
An alias or file specifier to an AIFF file (existing or not) to contain the sound output. You can
only use an alias specifier if the file exists. If this parameter is specified, the sound is not played
audibly, only saved to the file.

Default Value:
None; the text is spoken out loud, and no file is saved.

Result

None.

Examples
say "You are not listening to me!" using "Bubbles" -- result: spoken in Bubbles

The following example saves the spoken text into a sound file:

set soundFile to choose file name -- specify name ending in ".aiff"
 --result: a file URL
say "I love oatmeal." using "Victoria" saving to soundFile
 --result: saved to specified sound file

scripting components

Returns a list of the names of all currently available scripting components, such as the AppleScript component.

Syntax

requiredscripting components

Result

A list (page 89) of text (page 97) items, one for each installed scripting component.

153
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Examples
scripting components --result: {"AppleScript"}

Discussion
A scripting component is a software component, such as AppleScript, that conforms to the Open Scripting
Architecture (OSA) interface. The OSA provides an abstract interface for applications to compile, execute,
and manipulate scripts without needing to know the details of the particular scripting language. Each scripting
language corresponds to a single scripting component.

set

Assigns one or more values to one or more variables.

Syntax

requiredvariablePatternset

optionalexpressionto

Parameters

variablePattern
The name of the variable or pattern of variables in which to store the value or pattern of values.
Patterns can be lists or records.

to expression
The expression whose value is to be set. It can evaluate to any type of object or value.

Result

The value assigned.

Examples

set may be used to create new variables:

set myWeight to 125

...assign new values to existing variables:

set myWeight to myWeight + 23

...change properties or elements of objects, such as lists:

set intList to {1, 2, 3}
set item 3 of intList to 42

...or application-defined objects:

tell application "Finder" to set name of startup disk to "Happy Fun Ball"

As mentioned in the Discussion, setting one variable to another makes both variables refer to the exact same
object. If the object is mutable, that is, it has writable properties or elements, changes to the object will
appear in both variables:

set alpha to {1, 2, {"a", "b"}}
set beta to alpha

154
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

set item 2 of item 3 of alpha to "change" --change the original variable
set item 1 of beta to 42 --change a different item in the new variable
{alpha, beta}
--result: {{42, 2, {"a", "change"}}, {42, 2, {"a", "change"}}}

Both variables show the same changes, because they both refer to the same object. Compare this with the
similar example in copy (page 121). Assigning a new object to a variable is not the same thing as changing
the object itself, and does not affect any other variables that refer to the same object. For example:

set alpha to {1, 2, 3}
set beta to alpha --result: beta refers to the same object as alpha
set alpha to {4, 5, 6}
 --result: assigns a new object to alpha; this does not affect beta.
{alpha, beta}
--result: {{4, 5, 6}, {1, 2, 3}}

set can assign several variables at once using a pattern, which may be a list or a record. For example:

tell application "Finder" to set {x, y} to position of front window

Since position of front window evaluates to a list of two integers, this sets x to the first item in the list
and y to the second item.

You can think of pattern assignment as shorthand for a series of simple assignments, but that is not quite
accurate, because the assignments are effectively simultaneous. That means that you can use pattern
assignment to exchange two variables:

set {x, y} to {1, 2} --now x is 1, and y is 2.
set {x, y} to {y, x} --now x is 2, and y is 1.

To accomplish the second statement using only simple assignments, you would need a temporary third
variable.

For more information on using the set command, including a more complex pattern example, see “Declaring
Variables with the set Command” (page 49).

Discussion
Using the set command to assign a value to a variable causes the variable to refer to the original value. In
a sense, it creates a new name for the same object. If multiple variables refer to a mutable object (that is, one
with writable properties or elements, such as a list or script object), changes to the object are observable
through any of the variables. If you want a separate copy, use the copy (page 121) command. This sharing
only applies to values in AppleScript itself; it does not apply to values in other applications. Changing the
object a variable refers to is not the same as altering the object itself, and does not affect other variables that
refer to the same object.

set eof

Sets the length of a file, in bytes.

Syntax

requiredfileSpecifierset eof

requiredintegerto

155
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Parameters

(alias (page 79) | file (page 88) | file descriptor)
The file to set the length of, as an alias, a file specifier, or as an integer file descriptor, which must be
obtained as the result of an earlier open for access (page 140) call.

to integer (page 89)
The new length of the file, in bytes. If the new length is shorter than the existing length of the file,
any data beyond that position is lost. If the new length is longer, the contents of the new bytes are
unspecified.

Result

None.

Signals a “write permission” error if the file was opened using open for access without write permission.

Examples

If you want to completely replace the contents of an existing file, the first step must be to change its length
to zero:

set theFile to choose file with prompt "Choose a file to clobber:"
set eof theFile to 0

set the clipboard to

Places data on the clipboard.

Syntax

requiredanythingset the clipboard to

Parameters

anything
The data (of any type) to place on the clipboard.

Result

None.

Examples

The following script places text on the clipboard, then retrieves the text in TextEdit with a the
clipboard (page 162) command:

set the clipboard to "Important new text."
tell application "TextEdit"
 activate --make sure TextEdit is running
 set clipText to the clipboard --result: "Important new text."
 --perform operations with retrieved text
end tell

Discussion
It is not necessary to use the clipboard to move data between scriptable applications. You can simply get
the data from the first application into a variable and set the appropriate data in the second application.

156
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

set volume

Sets the sound output, input, and alert volumes.

Syntax

requiredset volume

optionalnumber

optionalintegeroutput volume

optionalintegerinput volume

optionalintegeralert volume

optionalbooleanoutput muted

Parameters

number (page 92)
The sound output volume, a real number from 0 to 7.

Important: This parameter is deprecated; if specified, all other parameters will be ignored.

output volume integer (page 89)
The sound output volume, an integer from 0 to 100.

Default Value:
None; the output volume is not changed.

input volume integer (page 89)
The sound input volume, an integer from 0 to 100.

Default Value:
None; the input volume is not changed.

alert volume integer (page 89)
The alert input volume, an integer from 0 to 100.

Default Value:
None; the alert volume is not changed.

output muted boolean (page 82)
Should the sound output be muted?

Default Value:
None; the output muting is not changed.

Result

None.

Examples

The following example saves the current volume settings, before increasing the output volume, saying some
text, and restoring the original value:

157
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

set savedSettings to get volume settings
-- {output volume:32, input volume:70, alert volume:78, output muted:false}
set volume output volume 90
say "This is pretty loud."
set volume output volume (output volume of savedSettings)
delay 1
say "That's better."

store script

Stores a script object into a file.

See also run script (page 151).

Syntax

requiredscriptstore script

optionalfileSpecifierin

optionalreplacingConstantreplacing

Parameters

script
The script object to store.

in (alias (page 79) | file (page 88))
An alias or file specifier that specifies the file to store the script object in.

Default Value:
None; a standard Save As dialog will be presented to allow the user to choose where to save
the script object.

replacing replacingConstant
Allow overwriting an existing file? You may specify one of the following constants:

yes

Overwrite without asking.

no

Never overwrite; signal an error if the file exists.

ask

Present a dialog asking the user what to do; the options are Replace (overwrite the file), Cancel
(signal a “user canceled” error), or Save As (save to a different location).

Default Value:
ask

Result

None.

158
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Examples

This example stores a script on disk, using the Save As dialog to specify a location on the desktop and the
name storedScript. It then creates an alias to the stored script and runs it with run script:

script test
 display dialog "Test"
end script

store script test --specify "Leopard:Users:myUser:Desktop:storedScript"

set localScript to alias "Leopard:Users:myUser:Desktop:storedScript" run script
 localScript --result: displays dialog "Test"

The store script command stores only the contents of the script—in this case, the one statement, display
dialog "Test". It does not store the beginning and ending statements of the script definition.

summarize

Summarizes the specified text or text file.

Syntax

requiredtextSpecifiersummarize

optionalintegerin

Parameters

textSpecifier
The text (page 97), or an alias (page 79) to a text file, to summarize.

in integer (page 89)
The number of sentences desired in the summary.

Default Value:
1

Result

A text (page 97) object containing a summarized version of the text or file.

Examples

This example summarizes Lincoln’s famous Gettysburg Address down to one sentence—a tough job even
for AppleScript:

set niceSpeech to "Four score and seven years ago our fathers brought forth on
 this continent a new nation, conceived in Liberty, and dedicated to the
proposition that all men are created equal.
Now we are engaged in a great civil war, testing whether that nation, or any
nation, so conceived and so dedicated, can long endure. We are met on a great
battle-field of that war. We have come to dedicate a portion of that field, as
 a final resting place for those who here gave their lives that that nation
might live. It is altogether fitting and proper that we should do this.
But, in a larger sense, we can not dedicate—we can not consecrate—we can not
hallow—this ground. The brave men, living and dead, who struggled here, have
consecrated it, far above our poor power to add or detract. The world will little

159
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

 note, nor long remember what we say here, but it can never forget what they
did here. It is for us the living, rather, to be dedicated here to the unfinished
 work which they who fought here have thus far so nobly advanced. It is rather
 for us to be here dedicated to the great task remaining before us—that from
these honored dead we take increased devotion to that cause for which they gave
 the last full measure of devotion—that we here highly resolve that these dead
 shall not have died in vain—that this nation, under God, shall have a new birth
 of freedom—and that government of the people, by the people, for the people,
shall not perish from the earth."
set greatSummary to summarize niceSpeech in 1
display dialog greatSummary --result: displays one inspiring sentence

system attribute

Get environment variables or attributes of this computer.

Syntax

optionalattributesystem attribute

Parameters

attribute
The attribute to test: either a Gestalt value or a shell environment variable name. Gestalt values are
described in Gestalt Manager Reference.

Default Value:
If the attribute is omitted, system attribute will return a list of the names of all currently
defined environment variables.

has integer (page 89)
For Gestalt values, an integer mask that is bitwise-ANDed with the Gestalt response. If the result is
non-zero, system attribute returns true, otherwise false.

For environment variables, this parameter is ignored.

Default Value:
None; system attribute returns the original Gestalt response code.

Result

If the attribute specified is a Gestalt selector, either the Gestalt response code or true or false depending
on the has parameter.

If the attribute specified is an environment variable, the value of that variable, or an empty string ("") if it is
not defined.

If no attribute is supplied, a list of all defined environment variables.

Examples

To get the current shell:

system attribute "SHELL" --result: "/bin/bash" (for example)

To get a list of all defined environment variables:

system attribute

160
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

(* result: (for example)
{"PATH", "TMPDIR", "SHELL", "HOME", "USER", "LOGNAME", "DISPLAY", "SSH_AUTH_SOCK",
 "Apple_PubSub_Socket_Render", "__CF_USER_TEXT_ENCODING", "SECURITYSESSIONID",
 "COMMAND_MODE"}
*)

system info

Gets information about the system.

Syntax

requiredsystem info

Result

A record containing various information about the system and the current user. This record contains the
following fields:

AppleScript version (a text (page 97) object)
The version number of AppleScript, for example, "2.0". This can be useful for testing for the existence
of AppleScript features. When comparing version numbers, use considering numeric strings
to make them compare in numeric order, since standard lexicographic ordering would consider "1.9"
to come after "1.10".

AppleScript Studio version (a text (page 97) object)
The version number of AppleScript Studio, for example, "1.5".

Note: AppleScript Studio is deprecated in Mac OS X v10.6.

system version (a text (page 97) object)
The version number of Mac OS X, for example, "10.5.1".

short user name (a text (page 97) object)
The current user’s short name, for example, "hoser". This is set in the Advanced Options panel in
the Accounts preference pane, or in the “Short Name” field when creating the account. This is also
available from System Events using name of current user.

long user name (a text (page 97) object)
The current user’s long name, for example, "Random J. Hoser". This is the “User Name” field in the
Accounts preference pane, or in the “Name” field when creating the account. This is also available
from System Events using full name of current user.

user ID (an integer (page 89))
The current user’s user ID. This is set in the Advanced Options panel in the Accounts preference pane.

user locale (a text (page 97) object)
The current user’s locale code, for example "en_US".

home directory (an alias (page 79) object)
The location of the current user’s home folder. This is also available from Finder’s home property, or
System Events’ home folder property.

boot volume (a text (page 97) object)
The name of the boot volume, for example, "Macintosh HD". This is also available from Finder or
System Events using name of startup disk.

161
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

computer name (a text (page 97) object)
The computer’s name, for example "mymac". This is the “Computer Name” field in the Sharing
preference pane.

host name (a text (page 97) object)
The computer’s DNS name, for example "mymac.local".

IPv4 address (a text (page 97) object)
The computer’s IPv4 address, for example "192.201.168.13".

primary Ethernet address (a text (page 97) object)
The MAC address of the primary Ethernet interface, for example "00:1c:63:91:4e:db".

CPU type (a text (page 97) object)
The CPU type, for example "Intel 80486".

CPU speed (an integer (page 89))
The clock speed of the CPU in MHz, for example 2400.

physical memory (an integer (page 89))
The amount of physical RAM installed in the computer, in megabytes (MB), for example 2048.

Examples
system info --result: long record of information

the clipboard

Returns the contents of the clipboard.

Syntax

requiredthe clipboard

optionalclassas

Parameters

as class (page 83)
The type of data desired. the clipboard will attempt to find that “flavor” of data on the clipboard;
if it is not found, it will attempt to coerce whatever flavor is there.

Result

The data from the clipboard, which can be of any type.

Examples

The following script places text on the clipboard, and then appends the clipboard contents to the frontmost
TextEdit document:

set the clipboard to "Add this sentence at the end."
tell application "TextEdit"
 activate --make sure TextEdit is running
 make new paragraph at end of document 1 with data (return & the clipboard)
end tell

162
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Discussion
It is not necessary to use the clipboard to move data between scriptable applications. You can simply get
the data from the first application into a variable and set the appropriate data in the second application.

time to GMT

Returns the difference between local time and GMT (Greenwich Mean Time) or Universal Time, in seconds.

Syntax

requiredtime to GMT

Result

The integer (page 89) number of seconds difference between the current time zone and Universal Time.

Examples

The following example computes the time difference between the current location and Cupertino:

set localOffset to time to GMT --local difference, in seconds
set cupertinoOffset to -8.0 * hours
 --doesn't account for Daylight Savings; may actually be -7.0.
set difference to (localOffset - cupertinoOffset) / hours
display dialog ("Hours to Cupertino: " & difference)

write

Writes data to a specified file.

Syntax

requiredanythingwrite

requiredfileSpecifierto

optionalintegerstarting at

optionalintegerfor

optionalclassas

Parameters

anything
The data to write to the file. This is typically text, but may be of any type. When reading the data
back, the read command must specify the same type, or the results are undefined.

to (alias (page 79) | file (page 88) | file descriptor)
The file to write to, as an alias, a file specifier, or an integer (page 89) file descriptor. A file descriptor
must be obtained as the result of an earlier open for access (page 140) call.

163
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

starting at (integer (page 89) | eof)
The byte position in the file to start reading from. The position is 1-based, so 1 is the first byte of the
file, 2 the second, and so on. Negative integers count from the end of the file, so -1 is the last byte,
-2 the second-to-last, and so on. The constant eof is the position just after the last byte; use this to
append data to the file.

Default Value:
The current file pointer (see open for access (page 140)) if the file is open, or the beginning
of the file if not.

for integer (page 89)
The number of bytes to write.

Default Value:
Write all the data provided.

as class (page 83)
Write the data as this class. The most common ones control the use of three different text encodings:

text or string

The primary text encoding, as determined by the user’s language preferences set in the
International preference panel. (For example, Mac OS Roman for English, MacJapanese for
Japanese, and so on.)

Unicode text

UTF-16.

«class utf8»

UTF-8.

Any other class is possible, for example date or list, but is typically only useful if the data will be
read using a read statement specifying the same value for the as parameter.

Default Value:
The class of the supplied data. See Special Considerations.

Result

None. If the file is open, write will advance the file pointer by the number of bytes written, so the next
write command will start writing where the last one ended.

Signals an error if the file is open without write permission, or if there is any other problem that prevents
writing to the file, such as a lack of disk space.

Examples

The following example opens a file with write permission, creating it if it doesn’t already exist, writes text to
it, and closes it.

set fp to open for access file "HD:Users:myUser:NewFile" with write permission
write "Some text. And some more text." to fp
close access fp

164
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

Special Considerations

As specified above, write with no as parameter writes as the class of the supplied data, which means that
in AppleScript 2.0 write always writes text data using the primary encoding. Prior to 2.0, string and
Unicode textwere distinct types, which meant that it would use primary encoding for string and UTF-16
for Unicode text. For reliable results when creating scripts that will run on both 2.0 and pre-2.0, always
specify the encoding explicitly using as text or as Unicode text, as appropriate.

165
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

166
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Commands Reference

This chapter describes AppleScript reference forms. A reference form specifies the syntax for identifying an
object or group of objects in an application or other container—that is, the syntax for constructing an object
specifier (described in “Object Specifiers” (page 29)).

For example, the following object specifier (from a script targeting the Finder) uses several index reference
forms, which identify an object by its number within a container:

item 1 of second folder of disk 1

Important: When you use a reference form, you specify the container in which the referenced object or
objects reside. This takes the form referenceForm of containerObject. You can also enclose a reference form
in a tell statement, which then serves to specify the outer container. For more information, see “Absolute
and Relative Object Specifiers” (page 30).

Some of the examples of reference forms shown in this chapter will not compile as shown. To compile them,
you may need to add an enclosing tell statement, targeting the Finder or the word processing application
TextEdit.

Arbitrary
Specifies an arbitrary object in a container. This form is useful whenever randomness is desired.

Because an arbitrary item is, by its nature, random, this form is not useful for operations such as processing
each item in a group of files, words, or other objects.

Syntax

some class

Placeholders

class
The class for an arbitrary object.

Examples

The following creates a new Mail message with a random signature (and depends on the user having at least
one signature):

tell application "Mail"
 activate
 set randomSignature to some signature
 set newMessage to make new outgoing message ¬
 at end of outgoing messages with properties ¬
 {subject:"Guess who?", content:"Welcome aboard.", visible:true}
 set message signature of newMessage to randomSignature
end tell

167
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

The following simply gets a random word from a TextEdit document:

tell application "TextEdit"
 some word of document 1 -- any word from the first document
end tell

Every
Specifies every object of a particular class in a container.

Syntax

every class

pluralClass

Placeholders

class
A singular class (such as word or paragraph).

pluralClass
The plural form for a class (such as words or paragraphs).

Value

The value of an every object specifier is a list of the objects from the container. If the container does not
contain any objects of the specified class, the list is an empty list: {}. For example, the value of the expression
every word of {1, 2, 3} is the empty list {}.

Examples

The following example uses an every object specifier to specify every word contained in a text string:

set myText to "That's all, folks"
every word of myText --result: {"That's", "all", "folks"} (a list of three words)

The following object specifier specifies the same list:

words of myText

The following example specifies a list of all the items in the Users folder of the startup disk (boot partition):

tell application "Finder"
 every item of folder "Users" of startup disk
end tell

The following specifies the same list as the previous example:

tell application "Finder"
 items of folder "Users" of startup disk
end tell

Discussion
Use of the every reference form implies the existence of an index property for the specified objects.

168
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

If you specify an every object specifier as the container from which to obtain a property or object, the result
is a list containing the specified property or object for each object of the container. The number of items in
the list is the same as the number of objects in the container.

Filter
Specifies all objects in a container that match a condition, or test, specified by a Boolean expression.

The filter form specifies application objects only. It cannot be used to filter the AppleScript objects list (page
89), record (page 94), or text (page 97). A term that uses the filter form is also known as a whose clause.

Note: You can use the words where or that as synonyms for whose.

A filter reference form can often be replaced by a repeat statement, or vice versa. For example, the following
script closes every TextEdit window that isn’t named "Old Report.rtf":

tell application "TextEdit"
 close every window whose name is not "Old Report.rtf"
end tell

You could instead obtain a list of open windows and set up a repeat statement that checks the name of
each window and closes the window if it isn’t named "Old Report.rtf". However, a whose clause is often
the fastest way to obtain the desired information.

The following is an abbreviated form of the previous script:

windows of application "TextEdit" whose name is not "Old Report.rtf"

For related information, see “repeat Statements” (page 199).

Syntax

objectSpecifier (whose | where) booleanTest

Placeholders

objectSpecifier
Specifies the container in which to look for objects that match the Boolean test.

whose | where
These words have the same meaning, and refer to all of the objects in the specified container that
match the conditions in the specified Boolean expression.

booleanTest
Any Boolean expression (see the boolean (page 82) class definition).

Value

The value of a filter reference form is a list of the objects that pass the test. If no objects pass the test, the list
is an empty list: {}.

Examples

The following example shows an object specifier for all open Finder windows that do not have the name
"AppleScript Language Guide".

169
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

tell application "Finder"
 every window whose name is not "AppleScript Language Guide"
end tell

Discussion
In effect, a filter reduces the number of objects in a container. Instead of specifying every Finder window,
the following object specifier specifies just the windows that are currently zoomed:

every window whose zoomed is true

To specify a container after a filter, you must enclose the filter and the object specifier it applies to in
parentheses, as in this example:

tell application "Finder"
 (files whose file type is not "APPL") in folder "HD:SomeFolder:"
end tell

Within a test in a filter reference, the direct object is the object being tested. Though it isn’t generally needed,
this implicit target can be specified explicitly using the keyword it, which is described in “The it and me
Keywords” (page 40).

The following example shows several equivalent ways of constructing a filter reference to find all the files in
a folder that whose name contains the word “AppleScript”. While the term it refers to the Finder application
outside of the filter statements, within them of it refers to the current file being tested. The result of each
filter test is the same and is not changed by including or omitting the term of it:

tell application "Finder"
 it --result: application "Finder" (target of tell statement)
 set myFolder to path to home folder
 --result: alias "Leopard:Users:myUser:"
 files in myFolder --result: a list of Finder document files
 files in myFolder where name of it contains "AppleScript"
 (* result: document file "AppleScriptLG.pdf" of folder "myUser"
 of folder "Users" of startup disk of application "Finder"}*)
 files in myFolder where name contains "AppleScript" -- same result
 every file in myFolder whose name contains "AppleScript" -- same result
 every file in myFolder where name of it contains "AppleScript"
 -- same result
end tell

A filter reference form includes one or more tests. Each test is a Boolean expression that compares a property
or element of each object being tested, or the objects themselves, with another object or value. Table
8-1 (page 170) shows some filter references, the Boolean expressions they contain, and what is being tested
in each reference.

Table 8-1 Boolean expressions and tests in filter references

What is being testedBoolean expressionFilter reference form

The zoomed property of each
window

zoomed is truewindows whose zoomed is true

The name property of each windowname isn’t "Hard Disk"windows whose name isn’t
"Hard Disk"

170
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

What is being testedBoolean expressionFilter reference form

The creator type property of
each file

creator type is "OMGR"files whose creator type is
"OMGR"

A test can be any Boolean expression. You can link multiple tests, as in the following statement:

windows whose zoomed is true and floating is false

ID
Specifies an object by the value of its id property.

You can use the ID reference form only with application objects that have an ID property.

Syntax

class id expression

Placeholders

expression
The id value.

Examples

The following examples use the ID reference form to specify an application by ID and a disk object by
ID.

tell application id "com.apple.finder"
-- specifies an application (Finder) by its ID
disk id -100 -- specifies a Finder disk object by ID
name of disk id -100 --result: "Leopard_GM" (gets name from ID specifier)
end tell

Discussion
Use of the id reference form implies the existence of a id property for the specified objects.

Although id properties are most often integers, an id property can belong to any class. An application that
supports id properties for its scriptable objects must guarantee that the IDs are unique within a container.
Some applications may also provide additional guarantees, such as ensuring the uniqueness of an ID among
all objects.

The value of an id property is not typically modifiable. It does not change even if the object is moved within
the container. This allows you to save an object’s ID and use it to refer to the object for as long as the object
exists. In some scripts you may wish to refer to an object by its ID, rather than by a property such as its name,
which may change. Similarly, you could keep track of an item by its index, but indexes can change when
items in a container are added, deleted, or even renamed.

Note: A good way to keep track of files and folders is to use an alias (page 79).

Starting in AppleScript 2.0, objects of class application (page 80) have an id property, which represents
the application’s bundle identifier (the default) or its four-character signature code.

171
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

Also starting in AppleScript 2.0, objects of class text (page 97) have an id property, representing the Unicode
code point or points for the character or characters in the object. Because a text object’s ID is based on the
characters it contains, these IDs are not guaranteed to be unique, and in fact will be identical for two text
objects that store the same characters. And in fact, there is no way to tell two such objects apart by inspection.

Index
Specifies an object by describing its position with respect to the beginning or end of a container.

For related information, see “Relative” (page 176).

Syntax

class [index] integer

integer (st | nd | rd | th) class

(first | second | third | fourth | fifth | sixth | seventh | eighth | ninth | tenth) class

(last | front | back) class

Placeholders

class
The class of the indexed object to obtain.

integer
An integer that describes the position of the object in relation to the beginning of the container (if
integer is a positive integer) or the end of the container (if integer is a negative integer).

st | nd | rd | th
Appended to the appropriate integer to form an index. For example, 1st, 2nd, 3rd.

first | second | third | fourth | fifth | sixth | seventh | eighth | ninth | tenth
Specify one of the ordinal indexes.

The forms first, second, and so on are equivalent to the corresponding integer forms (for example,
second word is equivalent to 2nd word). For objects whose index is greater than 10, you can use
the forms 12th, 23rd, 101st, and so on. (Note that any integer followed by any of the suffixes listed
is valid; for example, you can use 11rd to refer to the eleventh object.)

last | front | back
The front form (for example, front window) is equivalent to class 1 (window 1) or first class (first
window). The last and back forms (for example, last word and back window) refer to the last
object in a container. They are equivalent to class -1 (for example, window -1).

Examples

Each of the following object specifiers specifies the first item on the startup disk:

item 1 of the startup disk
item index 1 of the startup disk -- "index" is usually omitted
the first item of the startup disk

The following object specifiers specify the second word from the beginning of the third paragraph:

172
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

word 2 of paragraph 3
2nd word of paragraph 3
second word of paragraph 3

The following object specifiers specify the last word in the third paragraph:

word –1 of paragraph 3
last word of paragraph 3

The following object specifiers specify the next-to-last word in the third paragraph.

word –2 of paragraph 3
-2th word of paragraph 3

Discussion
Indexes are volatile. Changing some other property of the object may change its index, as well as the index
of other like objects. For example, after deleting word 4 from a paragraph, the word no longer exists. But
there may still be a word 4—the word that was formerly word 5. After word 4 is deleted, any words with
an index higher than 4 will also have a new index. So the object an index specifies can change.

For a unique, persistent object specifier, you can use the id reference form (see “ID” (page 171)), if the
application supports it for the class of object you are working with. And for keeping track of a file, you can
use an alias (page 79) object.

Middle
Specifies the middle object of a particular class in a container. This form is rarely used.

Syntax

middle class

Placeholders

class
The class of the middle object to obtain.

Examples
tell application "TextEdit"
 middle paragraph of front document
end tell
middle item of {1, "doughnut", 33} --result: "doughnut"
middle item of {1, "doughnut", 22, 33} --result: "doughnut"
middle item of {1, "doughnut", 11, 22, 33} --result: 11

Discussion
The middle reference form generally works only when the index form also works.

AppleScript calculates the middle object by taking half the count, then rounding up. For example, the middle
word of a paragraph containing ten words is the fifth word; the middle of eleven words is the sixth.

Name
Specifies an object by name.

173
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

Syntax

class [named] nameText

Placeholders

class
The class for the specified object.

nameText
The value of the object’s name property.

Examples

The following statements identify objects by name:

document "Report.rtf"
window named "logs"

Discussion
Use of the name reference form implies the existence of a name property for the specified objects.

In some applications, it is possible to have multiple objects of the same class in the same container with the
same name. For example, if there are two drives named “Hard Disk”, the following statement is ambiguous
(at least to the reader):

tell application "Finder"
 item 1 of disk "Hard Disk"
end tell

In such cases, it is up to the application to determine which object is specified by a name reference.

Property
Specifies a property of an object.

Syntax

propertyLabel

Placeholders

propertyLabel
The label for the property.

Examples

The following example is an object specifier to a property of a Finder window. It lists the label for the window’s
property (zoomed) and its container (front window). zoomed is a Boolean property.

zoomed of front window -- e.g., false, if the window isn't zoomed

For many objects, you can obtain a list of properties:

tell app "Finder"
 properties of window 1 --result: a list of properties and their values

174
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

end tell

The following example is an object specifier to the UnitPrice property of a record (page 94) object. The
label of the property is UnitPrice and the container is the record object.

UnitPrice of {Product:"Super Snack", UnitPrice:0.85, Quantity:10} --result: 0.85

Discussion
Property labels are listed in class definitions in application dictionaries. Because a property’s label is unique
among the properties of an object, the label is all you need to specify the property—there is no need to
specify the class of the property.

Range
Specifies a series of objects of the same class in the same container. You can specify the objects with a pair
of indexes (such as words 12 thru 24) or with a pair of boundary objects (integers from integer 1
to integer 3).

Syntax

every class from boundarySpecifier1 to boundarySpecifier2

pluralClass from boundarySpecifier1 to boundarySpecifier2

class startIndex (thru | through) stopIndex

pluralClass startIndex (thru | through) stopIndex

Placeholders

class
A singular class (such as window or word).

pluralClass
A plural class (such as windows or words).

boundarySpecifier1 and boundarySpecifier2
Specifiers to objects that bound the range. The range includes the boundary objects. You can use the
reserved word beginning in place of boundarySpecifier1 to indicate the position before the first
object of the container. Similarly, you can use the reserved word end in place of boundarySpecifier2
to indicate the position after the last object in the container.

startIndex and stopIndex
The indexes of the first and last object of the range (such as 1 and 10 in words 1 thru 10).

Though integer indexes are the most common class, the start and stop indexes can be of any class.
An application determines which index classes are meaningful to it.

Value

The value of a range reference form is a list of the objects in the range. If the specified container does not
contain objects of the specified class, or if the range is out of bounds, an error is returned. For example, the
following range specifier results in an error because there are no words in the list:

words 1 thru 3 of {1, 2, 3} --result: an error

175
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

Examples

The following example shows the boundary object form of a range specifier. When you compile this statement,
Script Editor converts from integer 1 to integer 2 to the form integers 1 thru 2.

set intList to integers from integer 1 to integer 2 of {17, 33, 24}
 --result: {17, 33}

In the next example, the phrase folders 3 thru 4 is a range specifier that specifies a list of two folders
in the container startup disk:

tell application "Finder"
 folders 3 thru 4 of startup disk
end tell
--result: a list of folders (depends on contents of startup disk)

Discussion
If you specify a range specifier as the container for a property or object, as in

name of folders 2 thru 3 of startup disk

the result is a list containing the specified property or object for each object of the container. The number
of items in the list is the same as the number of objects in the container.

To obtain a contiguous series of characters—instead of a list—from a text object, use the text class:

text from word 1 to word 4 of "We're all in this together"
--result: "We're all in this"
words 1 thru 4 of "We're all in this together"
--result: {"We're", "all", "in", "this"}

Relative
Specifies an object or an insertion point in a container by describing a position in relation to another object,
known as the base, in the same container.

Syntax

[class] (before | [in] front of) baseSpecifier

[class] (after | [in] back of | behind) baseSpecifier

Placeholders

class
The class identifier of the specified object. If you omit this parameter, the specifier refers to an insertion
point.

baseSpecifier
A specifier for the object.

before | [in] front of
These forms are equivalent, and refer to the object immediately preceding the base object.

after | [in] back of | behind
These forms are equivalent, and refer to the object immediately after the base.

176
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

beginning | front
These forms are equivalent, and refer to the first insertion point of the container (insertion point
1).

end | back
These forms are equivalent, and refer to the last insertion point of the container (insertion point
-1).

Although terms such as beginning and end sound like absolute positions, they are relative to the
existing contents of a container (that is, before or after the existing contents).

Examples

The two relative specifiers in the following tell block specify the same file by identifying its position relative
to another file on a disk:

tell application "Finder"
 item before item 3 of startup disk --result: e.g., a specifier
 item after item 1 of startup disk --result: e.g., a specifier
end tell

The following example shows how to use various relative specifiers in a word processing document:

tell first document of application "TextEdit"
 copy word 1 to before paragraph 3
 copy word 3 to in back of paragraph 4
 copy word 1 of the last paragraph to behind the third paragraph
end tell

Discussion
The relative reference form generally works only when the index form also works.

You can specify only a single object with a relative specifier—an object that is either before or after the base
object.

177
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

178
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Reference Forms

This chapter describes AppleScript operators. An operator is a symbol, word, or phrase that derives a value
from another value or pair of values. An operation is the evaluation of an expression that contains an operator.
An operand is an expression from which an operator derives a value.

AppleScript provides logical and mathematical operators, as well as operators for containment, concatenation,
and obtaining a reference to an object. Operators that operate on two values are called binary operators,
while operators that operate on a single value are known as unary operators.

The first part of this chapter contains two tables: Table 9-1 summarizes all of the operators that AppleScript
uses, and Table 9-2 (page 186) shows the order in which AppleScript evaluates operators within expressions.
The rest of the chapter shows how AppleScript evaluates representative operators in script expressions.

Table 9-1 AppleScript operators

DescriptionAppleScript operator

Logical conjunction.

A binary logical operator that combines two Boolean values. The
result is true only if both operands evaluate to true.

AppleScript checks the left-hand operand first and, if its is false,
ignores the right-hand operand. (This behavior is called
short-circuiting.)

Class of operands: boolean (page 82)

Class of result: boolean

and

Logical disjunction.

A binary logical operator that combines two Boolean values. The
result is true if either operand evaluates to true.

AppleScript checks the left-hand operand first and, if its is true,
ignores the right-hand operand. (This behavior is called
short-circuiting.)

Class of operands: boolean (page 82)

Class of result: boolean

or

179
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

DescriptionAppleScript operator

Concatenation.

A binary operator that joins two values. If the left-hand operand
is a text object, the result is a text object (and only in this case
does AppleScript try to coerce the value of the right-hand
operand to match that of the left).

If the operand to the left is a record, the result is a record. If the
operand to the left belongs to any other class, the result is a list.

For more information, see & (concatenation) (page 187).

Class of operands: any

Class of result: list (page 89), record (page 94), text (page
97)

&

Equality.

A binary comparison operator that results in true if both
operands have the same value. The operands can be of any class.

For more information, see equal, is not equal to (page
190).

Class of operands: boolean (page 82)

Class of result: boolean

=

is equal

equals

[is] equal to

Inequality.

A binary comparison operator that results in true if its two
operands have different values. The operands can be of any class.

For more information, see equal, is not equal to (page
190).

Class of operands: boolean (page 82)

Class of result: boolean

 (Option-equal sign on U.S. keyboard)

is not

isn't

isn't equal [to]

is not equal [to]

doesn't equal

does not equal

Greater than.

A binary comparison operator that results in true if the value of
the left-hand operand is greater than the value of the right-hand
operand.

Both operands must evaluate to values of the same class. If they
don’t, AppleScript attempts to coerce the right-hand operand to
the class of the left-hand operand.

For more information, see greater than, less than (page
191).

Class of operands: date (page 85), integer (page 89),
real (page 93), text (page 97)

Class of result: boolean (page 82)

>

[is] greater than

comes after

is not less than or equal [to]

isn't less than or equal [to]

180
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

DescriptionAppleScript operator

Less than.

A binary comparison operator that results in true if the value of
the left-hand operand is less than the value of the right-hand
operand.

Both operands must evaluate to values of the same class. If they
don’t, AppleScript attempts to coerce the right-hand operand to
the class of the operand to the left.

For more information, see greater than, less than (page
191).

Class of operands: date (page 85), integer (page 89),
real (page 93), text (page 97)

Class of result: boolean (page 82)

<

[is] less than

comes before

is not greater than or equal
[to]

isn't greater than or equal
[to]

Greater than or equal to.

A binary comparison operator that results in true if the value of
the left-hand operand is greater than or equal to the value of the
right-hand operand.

Both operands must evaluate to values of the same class. If they
don’t, AppleScript attempts to coerce the right-hand operand to
the class of the operand to the left.

The method AppleScript uses to determine which value is greater
depends on the class of the operands.

Class of operands: date (page 85), integer (page 89),
real (page 93), text (page 97)

Class of result: boolean (page 82)

≥ (Option-period on U.S. keyboard)

>=

[is] greater than or equal [to]

is not less than

isn't less than

does not come before

doesn't come before

Less than or equal to.

A binary comparison operator that results in true if the value of
the left-hand operand is less than or equal to the value of the
right-hand operand.

Both operands must evaluate to values of the same class. If they
don’t, AppleScript attempts to coerce the right-hand operand to
the class of the operand to the left.

The method AppleScript uses to determine which value is greater
depends on the class of the operands.

Class of operands: date (page 85), integer (page 89),
real (page 93), text (page 97)

Class of result: boolean (page 82)

≤ (Option-comma on U.S. keyboard)

<=

[is] less than or equal [to]

is not greater than

isn't greater than

does not come after

doesn't come after

181
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

DescriptionAppleScript operator

Starts with.

A binary containment operator that results in true if the list or
text object to its right matches the beginning of the list or text
object to its left.

Both operands must evaluate to values of the same class. If they
don’t, AppleScript attempts to coerce the right-hand operand to
the class of the operand to the left.

For more information, see starts with, ends with (page
192).

Class of operands: list (page 89), text (page 97)

Class of result: boolean (page 82)

start[s] with

begin[s] with

Ends with.

A binary containment operator that results in true if the list or
text object to its right matches the end of the list or text object
to its left.

Both operands must evaluate to values of the same class. If they
don’t, AppleScript attempts to coerce the right-hand operand to
the class of the operand to the left.

For more information, see starts with, ends with (page
192).

Class of operands: list (page 89), text (page 97)

Class of result: boolean (page 82)

end[s] with

Containment.

A binary containment operator that results in true if the list,
record, or text object to its right matches any part of the list,
record, or text object to its left.

Both operands must evaluate to values of the same class. If they
don’t, AppleScript attempts to coerce the right-hand operand to
the class of the operand to the left.

For more information, see contains, is contained by (page
189).

Class of operands: list (page 89), record (page 94),
text (page 97)

Class of result: boolean (page 82)

contain[s]

182
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

DescriptionAppleScript operator

Non-containment.

A binary containment operator that results in true if the list,
record, or text object to its right does not match any part of the
list, record, or text object to its left.

Both operands must evaluate to values of the same class. If they
don’t, AppleScript attempts to coerce the right-hand operand to
the class of the left-hand operand.

For more information, see contains, is contained by (page
189).

Class of operands: list (page 89), record (page 94),
text (page 97)

Class of result: boolean (page 82)

does not contain

doesn't contain

Containment.

A binary containment operator that results in true if the list,
record, or text object to its left matches any part of the list,
record, or text object to its right.

Both operands must evaluate to values of the same class. If they
don’t, AppleScript attempts to coerce the left-hand operand to
the class of the right-hand operand.

For more information, see contains, is contained by (page
189).

Class of operands: list (page 89), record (page 94),
text (page 97)

Class of result: boolean (page 82)

is in

is contained by

Non-containment.

A binary containment operator that results in true if the list,
record, or text object to its left does not match any part of the
list, record, or text object to its right.

Both operands must evaluate to values of the same class. If they
don’t, AppleScript attempts to coerce the left-hand operand to
the class of the right-hand operand.

For more information, see contains, is contained by (page
189).

Class of operands: list (page 89), record (page 94),
text (page 97)

Class of result: boolean (page 82)

is not in

is not contained by

isn't contained by

Multiplication.

A binary arithmetic operator that multiplies the number to its
left and the number to its right.

Class of operands: integer (page 89), real (page 93)

Class of result: integer, real

*

183
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

DescriptionAppleScript operator

Addition.

A binary arithmetic operator that adds the number or date to its
left and the number or date to its right. Only integers can be
added to dates. AppleScript interprets such an integer as a
number of seconds.

As a unary operator, + has no effect and is removed on compile.

Class of operands: date (page 85), integer (page 89),
real (page 93)

Class of result: date, integer, real

+

Subtraction.

A binary or unary arithmetic operator.

The binary operator subtracts the number to its right from the
number or date to its left.

The unary operator makes the number to its right negative.

Only integers can be subtracted from dates. AppleScript interprets
such an integer as a number of seconds.

Class of operands: date (page 85), integer (page 89),
real (page 93)

Class of result: date, integer, real

–

Division.

A binary arithmetic operator that divides the number to its left
by the number to its right.

Class of operands: integer (page 89), real (page 93)

Class of result: real

/

÷ (Option-slash on U.S. keyboard)

Integral division.

A binary arithmetic operator that divides the number to its left
by the number to its right and returns the integral part of the
answer as its result.

Class of operands: integer (page 89), real (page 93)

Class of result: integer

div

Remainder.

A binary arithmetic operator that divides the number to its left
by the number to its right and returns the remainder as its result.

Class of operands: integer (page 89), real (page 93)

Class of result: integer, real

mod

184
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

DescriptionAppleScript operator

Exponentiation.

A binary arithmetic operator that raises the number to its left to
the power of the number to its right.

Class of operands: integer (page 89), real (page 93)

Class of result: real

^

Coercion (or object conversion).

A binary operator that converts the left-hand operand to the class
listed to its right.

Not all values can be coerced to all classes. The coercions that
AppleScript can perform are listed in “Coercion (Object
Conversion)” (page 32). The additional coercions, if any, that an
application can perform is listed in its dictionary.

Class of operands: The right-hand operand must be a class
identifier; the left-hand operand must be a value that can be
converted to that class.

Class of result: The class specified by the class identifier to the
right of the operator

as

Negation.

A unary logical operator that results in true if the operand to its
right is false, and false if the operand is true.

Class of operand: boolean (page 82)

Class of result: boolean

not

A reference to.

A unary operator that causes AppleScript to return a
reference (page 95) object that specifies the location of the
operand to its right. A reference is evaluated at run time, not at
compile time.

See a reference to (page 188) for more information.

Class of operand: any class type

Class of result: reference

[a] (ref [to] | reference to)

When evaluating expressions, AppleScript uses operator precedence to determine which operations are
evaluated first. In the following expression, for example, AppleScript does not simply perform operations
from left to right—it performs the multiplication operation 2 * 5 first, because multiplication has higher
precedence than addition.

12 + 2 * 5 --result: 22

Table 9-2 (page 186) shows the order in which AppleScript performs operations. The column labeled
“Associativity” indicates the order in the case where there are two or more operands of the same precedence
in an expression. The word “None” in the Associativity column indicates that you cannot have multiple
consecutive occurrences of the operation in an expression. For example, the expression 3 = 3 = 3 is not
legal because the associativity for the equal operator is “none.”

185
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

To evaluate expressions with multiple unary operators of the same order, AppleScript applies the operator
closest to the operand first, then applies the next closest operator, and so on. For example, the expression
not not not true is evaluated as not (not (not true)).

You can enforce the order in which AppleScript performs operations by grouping expressions in parentheses,
which are evaluated first, starting with the innermost pair of parentheses.

Table 9-2 Operator precedence

Type of operatorAssociativityOperatorsOrder

GroupingInnermost to outermost()1

Plus or minus sign for numbersUnary+

–

2

Exponentiation

(note that this is different from standard math, in which
exponentiation takes precedence over unary plus or minus)

Right to left^3

Multiplication and divisionLeft to right*

/

div

mod

4

Addition and subtractionLeft to right+

–

5

ConcatenationLeft to right&6

CoercionLeft to rightas7

ComparisonNone<

≤

>

≥

8

Equality and inequalityNone=

9

Logical negationUnarynot10

Logical andLeft to rightand11

Logical orLeft to rightor12

The following sections provide additional detail about how AppleScript evaluates operators in expressions:

 ■ & (concatenation) (page 187)

 ■ a reference to (page 188)

186
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

 ■ contains, is contained by (page 189)

 ■ equal, is not equal to (page 190)

 ■ greater than, less than (page 191)

 ■ starts with, ends with (page 192)

& (concatenation)

The concatenation operator (&) concatenates text objects, joins record objects into a record, and joins
other objects into a list.

Table 9-1 (page 179) summarizes the use of use of this operator.

text

The concatenation of two text objects joins the characters from the left-hand text object to the characters
from the right-hand text object, without intervening spaces. For example, "dump" & "truck" evaluates
to the text object "dumptruck".

If the left-hand operand is a text object, but the right-hand operand is not, AppleScript attempts to coerce
the right-hand operand to a text object. For example, when AppleScript evaluates the expression "Route
" & 66 it coerces the integer 66 to the text object "66", and the result is the text object "Route 66".

However, you get a different result if you reverse the order of the operands:

66 & "Route " --result: {66, "Route "} (a list)

In the following example, the left-hand operand is a text object and the right-hand operand is a list, so
concatenation results in a text object:

item 1 of {"This"} & {"and", "that"} -- "Thisandthat"

record

The concatenation of two records joins the properties of the left-hand record to the properties of the right-hand
record. If both records contain properties with the same name, the value of the property from the left-hand
record appears in the result. For example, the result of the expression

{ name:"Matt", mileage:"8000" } & { name:"Steve", framesize:58 }

is

{ name:"Matt", mileage:"8000", frameSize:58 }

All Other Classes

Except for the cases described above for text objects and record objects, the concatenation operator (&)
joins lists. A non-list operand is considered to be a list containing that operand. The following example shows
concatenation of two integers, a list and a text string, and a list and a record, respectively:

1 & 2 --result: {1, 2}
{"this"} & "hello" --result: {"this", "hello"}
{"this"} & {a:1, b:2} --result: {"this", 1, 2}

187
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

If both the operands to be concatenated are lists, then the result is a list containing all the items in the
left-hand list, followed by all the items in the right-hand list. For example:

{"This"} & {"and", "that"} --result: {"This", "and", "that"}
{"This"} & item 1 of {"and", "that"} --result: {"This", "and"}

To join two lists and create a list of lists, rather than a single list, you can enclose each list in two sets of
brackets:

{{1, 2}} & {{3, 4}} --result: {{1, 2}, {3, 4}}

For information on working efficiently with large lists, see list (page 89).

a reference to

The a reference to operator is a unary operator that returns a reference object. You can abbreviate
this operator to a ref to, or ref to, or even just ref.

For related information, see the reference (page 95) class and “Object Specifiers” (page 29).

Examples

The following statement creates a reference object that contains an object specifier to the Finder startup
disk:

tell app "Finder" to set diskRef to a ref to startup disk
--result: startup disk of application "Finder"

The following shows how to obtain a reference object that refers to an item in a list:

set itemRef to a reference to item 3 of {1, "hello", 755, 99}
 --result: item 3 of {1, "hello", 755, 99}
set newTotal to itemRef + 45 --result: 800

In the final line, AppleScript automatically resolves the object specifier contained in the reference itemRef
and obtains its value to use in the addition operation. To cause AppleScript to explicitly resolve a reference
object, you can use its contents property:

contents of itemRef --result: 755

The next examples demonstrate how using a reference object can result in a different outcome than accessing
an object directly. The first example obtains a current track object from iTunes, gets the name, changes the
track, then gets the name again:

tell application "iTunes"
 set curTrack to current track
 --result: file track id 2703 of user playlist id 2425
 -- of source id 46 of application "iTunes"
 display dialog (name of curTrack as string) -- "Shattered"
 next track -- play next song
 display dialog (name of curTrack as string) -- "Shattered"
end tell

Because curTrack is a specific track object, its name doesn’t change when the current track changes. But
observe the result when using a reference to the current track:

188
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

tell application "iTunes"
 set trackRef to a reference to current track
 --result: current track of application "iTunes"
 display dialog (name of trackRef as string) -- "Shattered"
 next track -- play next song
 display dialog (name of trackRef as string) -- "Strange Days"
end tell

Because trackRef is a reference object containing an object specifier, the specifier identifies the new
track when the current track changes.

contains, is contained by

The contains and is contained by operators work with lists, records, and text objects.

Table 9-1 (page 179) summarizes the use of these operators and their synonyms.

list

A list contains another list if the right-hand list is a sublist of the left-hand list. A sublist is a list whose items
appear in the same order and have the same values as any series of items in the other list. For example, the
following statement is true because 1 + 1 evaluates to 2, so that all the items in the right-hand list appear,
in the same order, in the left-hand list:

{ "this", "is", 1 + 1, "cool" } contains { "is", 2 }

The following statement is false because the items in the right-hand list are not in the same order as the
matching items in the left-hand list:

{ "this", "is", 2, "cool" } contains { 2, "is" }

A list is contained by another list if the left-hand list is a sublist of the right-hand list. For example, the
following expression is true:

{ "is", 2} is contained by { "this", "is", 2, "cool" }

Both contains and is contained by work if the sublist is a single value—as with the concatenation
operator (&), single values are coerced to one-item lists. For example, both of the following expressions
evaluate to true:

{ "this", "is", 2, "cool" } contains 2
2 is contained by { "this", "is", 2, "cool" }

However, the following expressions, containing nested lists, both evaluate to false:

{"this", "is", {2}, "cool"} contains 2 -- false
{"this", "is", {2}, "cool"} contains {2} -- false

record

A record contains another record if all the properties in the right-hand record are included in the left-hand
record, and the values of properties in the right-hand record are equal to the values of the corresponding
properties in the left-hand record. A record is contained by another record if all the properties in the left-hand

189
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

record are included in the right-hand record, and the values of the properties in the left-hand record are
equal to the values of the corresponding properties in the right-hand record. The order in which the properties
appear does not matter. For example, the following is true:

{ name:"Matt", mileage:"8000", description:"fast"} ¬
 contains { description:"fast", name:"Matt" }

text

A text object contains another text object if the characters in the right-hand text object are equal to any
contiguous series of characters in the left-hand text object. For example,

"operand" contains "era"

is true, but

"operand" contains "dna"

is false.

A text object is contained by another text object if the characters in the left-hand text object are equal
to any series of characters in the right-hand text object. For example, this statement is true:

"era" is contained by "operand"

Text comparisons can be affected by considering and ignoring statements, as described in the Text
section of equal, is not equal to (page 190).

equal, is not equal to

The equal and is not equal to operators can handle operands of any class. Two expressions of different
classes are generally not equal, although for scalar operands, such as booleans, integers, and reals, two
operands are the same if they have the same value.

Table 9-1 (page 179) summarizes the use of these operators and their synonyms.

list

Two lists are equal if they both contain the same number of items and if the value of an item in one list is
identical to the value of the item at the corresponding position in the other list:

{ 7, 23, "Hello" } = {7, 23, "Goodbye"} --result: false

record

Two records are equal if they both contain the same collection of properties and if the values of properties
with the same label are equal. They are not equal if the records contain different collections of properties,
or if the values of properties with the same label are not equal. The order in which properties are listed does
not affect equality. For example, the following expression is true:

{ name:"Matt", mileage:"8000" } = { mileage:"8000", name:"Matt"}

190
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

text

Two text objects are equal if they are both the same series of characters. They are not equal if they are
different series of characters. For related information, see the text (page 97) class.

Text comparisons can be affected by considering and ignoring statements, which instruct AppleScript
to selectively consider or ignore attributes of characters or types of characters. For example, unless you use
an ignoring statement, AppleScript compares text objects by considering all characters and punctuation.

AppleScript does not distinguish uppercase from lowercase letters unless you use a considering statement
to consider the case attribute. For example:

"DUMPtruck" is equal to "dumptruck" --result: true
considering case
 "DUMPtruck" is equal to "dumptruck" --result: false
end considering

When comparing two text objects, if the test is not enclosed in a considering or ignoring statement,
then the comparison uses default values for considering and ignoring attributes (described in considering
/ ignoring (text comparison) (page 193)).

greater than, less than

The greater than and less than operators work with dates, integers, real numbers, and text objects.

Table 9-1 (page 179) summarizes the use of these operators and their synonyms.

date

A date is greater than another date if it represents a later time. A date is less than another date if it represents
an earlier time.

integer, real

An integer or a real number is greater than another integer or real number if it represents a larger number.
It is less than another integer or real number if it represents a smaller number.

text

To determine the ordering of two text objects, AppleScript uses the collation order set in the Language
pane of International preferences. A text object is greater than (comes after) another text object based
on the lexicographic ordering of the user’s language preference. With the preference set to English, the
following two statements both evaluate to true:

"zebra" comes after "aardvark"
"zebra" > "aardvark"

The following two statements also evaluate to true:

"aardvark" comes before "zebra"
"aardvark" < "zebra"

Text comparisons can be affected by considering and ignoring statements, as described in the Text
section of equal, is not equal to (page 190).

191
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

starts with, ends with

The starts with and ends with operators work with lists and text objects.

Table 9-1 (page 179) summarizes the use of these operators and their synonyms.

list

A list starts with the items in a second list if all the items in the second list are found at the beginning of
the first list. A list ends with the items in a second list if all the items in the second list are found at the end
of the first list. For example, the following three expressions are all true:

{ "this", "is", 2, "cool" } ends with "cool"
{ "this", "is", 2, "cool" } starts with "this"
{ "this", "is", 2, "cool" } starts with { "this", "is" }

text

A text object starts with the text in a second text object if all the characters in the second object are
found at the beginning of the first object. A text object ends with the text in a second text object if all
the characters in the second object are found at the end of the first object. For example, the following
expression is true:

"operand" starts with "opera"

A text object ends with another text object if the characters in the right-hand text object are the same
as the characters at the end of the left-hand text object. For example, the following expression is true:

"operand" ends with "and"

Text comparisons can be affected by considering and ignoring statements, as described in the Text
section of equal, is not equal to (page 190).

192
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Operators Reference

This chapter describes AppleScript control statements. A control statement is a statement that determines
when and how other statements are executed or how expressions are evaluated. For example, a control
statement may cause AppleScript to skip or repeat certain statements.

Simple statements can be written on one line, while compound statements can contain other statements,
including multiple clauses with nested and multi-line statements. A compound statement is known as a
statement block.

Compound statements begin with one or more reserved words, such as tell, that identify the type of control
statement. The last line of a compound statement always starts with end, and can optionally include the
word that begins the control statement (such as end tell).

considering and ignoring Statements

The considering and ignoring statements cause AppleScript to consider or ignore specific characteristics
as it executes groups of statements. There are two kinds of considering and ignoring statements:

 ■ Those that specify attributes to be considered or ignored in performing text comparisons.

 ■ Those that specify whether AppleScript should consider or ignore responses from an application.

considering / ignoring (text comparison)

Specify how AppleScript should treats attributes, such as case, in performing text comparisons.

Syntax

considering attribute [, attribute ... and attribute] ¬

 [but ignoring attribute [, attribute ... and attribute]]

 [statement]...

end considering

ignoring attribute [, attribute ... and attribute] ¬

 [but considering attribute [, attribute ... and attribute]]

 [statement]...

193
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

end ignoring

Placeholders

attribute
A characteristic of the text:

case

If this attribute is ignored, uppercase letters are not distinguished from lowercase letters. See
Special Considerations below for related information. See also greater than, less
than (page 191) for a description of how AppleScript sorts letters, punctuation, and other
symbols.

diacriticals

If this attribute is ignored, text objects are compared as if no diacritical marks (such as ´, `, ˆ,
¨, and ˜) are present; for example, "résumé" is equal to "resume".

hyphens

If this attribute is ignored, text objects are compared as if no hyphens are present; for example
"anti-war" is equal to "antiwar".

numeric strings

By default, this attribute is ignored, and text strings are compared according to their character
values. For example, if this attribute is considered, "1.10.1" > "1.9.4" evaluates as true;
otherwise it evaluates as false. This can be useful in comparing version strings.

punctuation

If this attribute is ignored,text objects are compared as if no punctuation marks (such as .
, ? : ; ! ' " `) are present; for example "What? he inquired." is equal to "what
he inquired".

white space

If this attribute is ignored, the text objects are compared as if spaces, tab characters, and
return characters were not present; for example "Brick house" would be considered equal
to "Brickhouse".

Default Value:
Case and numeric strings are ignored; all others are considered.

statement
Any AppleScript statement.

Examples

The following examples show how considering and ignoring statements for various attributes can change
the value of text comparisons.

"Hello Bob" = "HelloBob" --result: false
ignoring white space
 "Hello Bob" = "HelloBob" --result: true
end ignoring

"BOB" = "bob" --result: true
considering case
 "BOB" = "bob" --result: false
end considering

194
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

"a" = "á" --result: false
ignoring diacriticals
 "a" = "á" --result: true
end considering

"Babs" = "bábs" --result: false

ignoring case
 "Babs" = "bábs" --result: false
end ignoring

ignoring case and diacriticals
 "Babs" = "bábs" --result: true
end ignoring

Discussion
You can nest considering and ignoring statements. If the same attribute appears in both an outer and
inner statement, the attribute specified in the inner statement takes precedence. When attributes in an inner
considering or ignoring statement are different from those in outer statements, they are added to the
attributes to be considered and ignored.

Special Considerations

Because text item delimiters (described in “version” (page 39)) respect considering and ignoring
attributes in AppleScript 2.0, delimiters are case-insensitive by default. Formerly, they were always
case-sensitive. To enforce the previous behavior, add an explicit considering case statement.

considering / ignoring (application responses)

Permits a script to continue without waiting for an application to respond to commands that target it.

Syntax

considering | ignoring application responses

 [statement]...

end [considering | ignoring]

Placeholders

statement
Any AppleScript statement.

Examples

The following example shows how to use an ignoring statement so that a script needn’t wait while Finder
is performing a potentially lengthy task:

tell application "Finder"
 ignoring application responses
 empty the trash
 end ignoring
end tell

Your script may want to ignore most responses from an application, but wait for a response to a particular
statement. You can do so by nesting considering and ignoring statements:

tell application "Finder"
 ignoring application responses

195
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

 empty the trash
 -- other statements that ignore application responses
 considering application responses
 set itemName to name of first item of startup disk
 end considering
 -- other statements that ignore application responses
 end ignoring
end tell

Discussion
A response to an application command indicates whether the command completed successfully, and also
returns results and error messages, if there are any. When you use an ignoring application responses
block, you forego this information.

Results and error messages from AppleScript commands, scripting additions, and expressions are not affected
by the application responses attribute.

error Statements

During script execution, errors can occur in the operating system (for example, when a specified file isn’t
found), in an application (for example, when the script specifies an object that doesn’t exist), and in the script
itself. An error message is a message that is supplied by an application, AppleScript, or Mac OS X when an
error occurs during the handling of a command. An error message can include an error number, which is
an integer that identifies the error; an error expression, which is an expression, usually a text object, that
describes the error; and other information.

A script can signal an error—which can then be handled by an error handler—with the error statement.
This allows scripts to supply their own messages for errors that occur within the script. For example, a script
can prepare to handle anticipated errors by using a try (page 207) statement. In the on error branch of a
try statement, a script may be able to recover gracefully from the error. If not, it can use an error statement
to resignal the error message it receives, modifying the message as needed to supply information specific
to the script.

error

Signals an error in a script.

Syntax

error [errorMessage] [number errorNumber] ¬

 [partial resultresultList] ¬

 [from offendingObject] [to expectedType]

Placeholders

errorMessage
A text object describing the error. Although this parameter is optional, you should provide descriptions
for errors wherever possible. If you do not include an error description, an empty text object ("") is
passed to the error handler.

196
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

errorNumber
The error number for the error. This is an optional parameter. If you do not include a number parameter,
the value -2700 (unknown error) is passed to the error handler.

If the error you are signaling is a close match for one that already has an AppleScript error constant,
you can use that constant. If you need to create a new number for the error, avoid using one that
conflicts with error numbers defined by AppleScript, Mac OS X, and the Apple Event Manager. In
general, you should use positive numbers from 500 to 10,000. For more information, see “Error
Numbers and Error Messages” (page 233).

resultList
A list of objects. Applies only to commands that return results for multiple objects. If results for some,
but not all, of the objects specified in the command are available, you can include them in the partial
result parameter. This is rarely supported by applications.

offendingObject
A reference to the object, if any, that caused the error.

expectedType
A class. If a parameter specified in the command was not of the expected class, and AppleScript was
unable to coerce it to the expected class, then you can include the expected class in the to parameter.

Examples

The following example uses a try (page 207) statement to handle a simple error, and demonstrates how you
can use an error statement to catch an error, then resignal the error exactly as it was received, causing
AppleScript to display an error dialog (and halt execution):

try
 word 5 of "one two three"
on error eStr number eNum partial result rList from badObj to expectedType
 -- statements that take action based on the error
 display dialog "Doing some preliminary handling..."
 -- then resignal the error
 error eStr number eNum partial result rList from badObj to expectedType
end try

In the next example, an error statement resignals an error, but omits any original error information and
supplies its own message to appear in the error dialog:

try
 word 5 of "one two three"
on error
 -- statements to execute in case of error
 error "There are not enough words."
end try

For more comprehensive examples, see “Working with Errors” (page 237).

if Statements

An if statement allows you to define statements or groups of statements that are executed only in specific
circumstances, based on the evaluation of one or more Boolean expressions.

An if statement is also called a conditional statement. Boolean expressions in if statements are also called
tests.

197
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

if (simple)

Executes a statement if a Boolean expression evaluates to true.

Syntax

if boolean then statement

Placeholders

boolean
A Boolean expression.

statement
Any AppleScript statement.

Examples

This script displays a dialog if the value of the Boolean expression ageOfCat > 1 is true. (The variable
ageOfCat is set previously.)

if ageOfCat > 1 then display dialog "This is not a kitten."

if (compound)

Executes a group (or groups) of statements if a Boolean expression (or expressions) evaluates to true.

Syntax

if boolean [then]

[statement]...

[else if boolean [then]

[statement]...]...

[else

[statement]...]

end [if]

Placeholders

boolean
A Boolean expression.

statement
Any AppleScript statement.

Examples

The following example uses a compound if statement, with a final else clause, to display a statement based
on the current temperature (obtained separately):

198
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

if currentTemp < 60 then
 set response to "It's a little chilly today."
else if currentTemp > 80 then
 set response to "It's getting hotter today."
else
 set response to "It's a nice day today."
end if
display dialog response

Discussion
An if statement can contain any number of else if clauses; AppleScript looks for the first Boolean expression
contained in an if or else if clause that is true, executes the statements contained in its block (the
statements between one else if and the following else if or else clause), and then exits the if
statement.

An if statement can also include a final else clause. The statements in its block are executed if no other
test in the if statement passes.

repeat Statements

You use a repeat statement to create loops or execute groups of repeated statements in scripts.

There are a number of types of repeat statement, each differing in the way it terminates the loop. Each of
the options, from repeating a loop a specific number of times, to looping over the items in a list, to looping
until a condition is met, and so on, lends itself to particular kinds of tasks.

For information on testing and debugging repeat statements, see “Debugging AppleScript Scripts” (page
45).

exit

Terminates a repeat loop and resumes execution with the statement that follows the repeat statement.

You can only use an exit statement inside a repeat statement. Though most commonly used with the
repeat (forever) form, you can also use an exit statement with other types of repeat statement.

Syntax

exit [repeat]

Examples

See the example in repeat (forever) (page 199).

repeat (forever)

Repeats a statement (or statements) until an exit statement is encountered.

Important: A repeat (forever) statement will never complete unless you cause it to do so.

To terminate a repeat (forever) statement, you can:

199
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

 ■ Use an exit (page 199) statement and design the logic so that it eventually encounters the exit
statement.

 ■ Use a “return” (page 214) statement, which exits the handler or script that contains the loop, and
therefore the loop as well.

 ■ Use a try (page 207) statement and rely on an error condition to exit the loop.

Syntax

repeat

 [statement]...

end [repeat]

Placeholders

statement
Any AppleScript statement.

Examples

This form of the repeat statement is similar to the repeat until (page 201) form, except that instead of
putting a test in the repeat statement itself, you determine within the loop when it is time to exit. You
might use this form, for example, to wait for a lengthy or indeterminate operation to complete:

repeat
 -- perform operations
 if someBooleanTest then
 exit repeat
 end if
end repeat

In a script application that stays open, you can use an idle handler to perform periodic tasks, such as checking
for an operation to complete. See “idle Handlers” (page 76) for more information.

repeat (number) times

Repeats a statement (or statements) a specified number of times.

Syntax

repeat integer [times]

 [statement]...

200
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

end [repeat]

Placeholders

integer
Specifies the number of times to repeat the statements in the body of the loop.

Instead of an integer, you can specify any value that can be coerced to an integer.

If the value is less than one, the body of the repeat statement is not executed.

statement
Any AppleScript statement.

Examples

The following handler uses the repeat (number) times form of the repeat statement to raise a passed
number to the passed power:

on raiseToTheNth(x, power)
 set returnVal to x
 repeat power - 1 times
 set returnVal to returnVal * x
 end repeat
 return returnVal
end raiseToTheNth

repeat until

Repeats a statement (or statements) until a condition is met. Tests the condition before executing any
statements.

Syntax

repeat until boolean

 [statement]...

end [repeat]

Placeholders

boolean
A Boolean expression. If it has the value true when entering the loop, the statements in the loop are
not executed.

statement
Any AppleScript statement.

Examples

The following example uses the repeat until form of the repeat statement to allow a user to enter
database records. The handler enterDataRecord(), which is not shown, returns true if the user is done
entering records:

set userDone to false
repeat until userDone
 set userDone to enterDataRecord()

201
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

end repeat

repeat while

Repeats a statement (or statements) as long as a condition is met. Tests the condition before executing any
statements. Similar to the repeat until form, except that it continues while a condition is true, instead
of until it is true.

Syntax

repeat while boolean

 [statement]...

end [repeat]

Placeholders

boolean
A Boolean expression. If it has the value false when entering the loop, the statements in the loop
are not executed.

statement
Any AppleScript statement.

Examples

The following example uses the repeat while form of the repeat statement to allow a user to enter
database records. In this case, we’ve just reversed the logic shown in the repeat until (page 201) example.
Here, the handler enterDataRecord(), which is not shown, returns true if the user is not done entering
records:

set userNotDone to true
repeat while userNotDone
 set userNotDone to enterDataRecord()
end repeat

repeat with loopVariable (from startValue to stopValue)

Repeats a statement (or statements) until the value of the controlling loop variable exceeds the value of the
predefined stop value.

Syntax

repeat with loopVariable from startValue to stopValue [by stepValue]

 [statement]...

202
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

end [repeat]

Placeholders

loopVariable
Controls the number of iterations. It can be a previously defined variable or a new variable you define
in the repeat statement.

startValue
Specifies a value that is assigned to loopVariable when the loop is entered.

You can specify an integer or any value that can be coerced to an integer.

stopValue
Specifies an value. When that value is exceeded by the value of loopVariable, iteration ends. If stopValue
is less than startValue, the body is not executed.

You can specify an integer or any value that can be coerced to an integer.

stepValue
Specifies a value that is added to loopVariable after each iteration of the loop. You can assign an
integer or a real value; a real value is rounded to an integer.

Default Value:
1

statement
Any AppleScript statement.

Examples

The following handler uses the repeat with loopVariable (from startValue to stopValue) form
of the repeat statement to compute a factorial value (the factorial of a number is the product of all the
positive integers from 1 to that number):

on factorial(x)
 set returnVal to 1
 repeat with n from 2 to x
 set returnVal to returnVal * n
 end repeat
 return returnVal
end factorial

Discussion
You can use an existing variable as the loop variable in a repeat with loopVariable (from startValue
to stopValue) statement or define a new one in the statement. In either case, the loop variable is defined
outside the loop. You can change the value of the loop variable inside the loop body but it will get reset to
the next loop value the next time through the loop. After the loop completes, the loop variable retains its
last value.

AppleScript evaluates startValue, stopValue, and stepValue when it begins executing the loop and stores the
values internally. As a result, if you change the values in the body of the loop, it doesn’t change the execution
of the loop.

repeat with loopVariable (in list)

Loops through the items in a specified list.

203
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

The number of iterations is equal to the number of items in the list. In the first iteration, the value of the
variable is a reference to the first item in list, in the second iteration, it is a reference to the second item in
list, and so on.

Syntax

repeat with loopVariable in list

 [statement]...

end [repeat]

Placeholders

loopVariable
Any previously defined variable or a new variable you define in the repeat statement (see Discussion).

list
A list or a object specifier (such as words 1 thru 5) whose value is a list.

list can also be a record; AppleScript coerces the record to a list (see Discussion).

statement
Any AppleScript statement.

Examples

The following script examines a list of words with the repeat with loopVariable (in list) form of
the repeat statement, displaying a dialog if it finds the word “hammer” in the list. Note that within the loop,
the loop variable (currentWord) is a reference to an item in a list, so in the test statement (if contents
of currentWord is equal to "hammer" then) it must be cast to text (as text).

set wordList to words in "Where is the hammer?"
repeat with currentWord in wordList
 log currentWord
 if contents of currentWord is equal to "hammer" then
 display dialog "I found the hammer!"
 end if
end repeat

The statement log currentWord logs the current list item to Script Editor’s log window. For more information,
see “Debugging AppleScript Scripts” (page 45).

Discussion
You can use an existing variable as the loop variable in a repeat with loopVariable (in list)
statement or define a new one in the repeat with… statement. In either case, the loop variable is defined
outside the loop. You can change the value of the loop variable inside the loop body but it will get reset to
the next loop value the next time through the loop. After the loop completes, the loop variable retains its
last value.

AppleScript evaluates loopVariable in list as an object specifier that takes on the value of item 1 of list,
item 2 of list, item 3 of list, and so on until it reaches the last item in the list, as shown in the
following example:

repeat with i in {1, 2, 3, 4}
 set listItem to i
end repeat

204
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

--result: item 4 of {1, 2, 3, 4} --result: an object specifier

To set a variable to the value of an item in the list, rather than a reference to the item, use the contents
of property:

repeat with i in {1, 2, 3, 4}
 set listItem to contents of i
end repeat
--result: 4

You can also use the list items directly in expressions:

set total to 0
repeat with i in {1, 2, 3, 4}
 set total to total + i
end repeat
--result: 10

If the value of list is a record, AppleScript coerces the record to a list by stripping the property labels. For
example, {a:1, b:2, c:3} becomes {1, 2, 3}.

tell Statements

A tell statement specifies the default target—that is, the object to which commands are sent if they do
not include a direct parameter. Statements within a tell statement that use terminology from the targeted
object are compiled against that object’s dictionary.

The object of a tell statement is typically a reference to an application object or a script object. For
example, the following tell statement targets the Finder application:

tell application "Finder"
 set frontWindowName to name of front window
 -- any number of additional statements can appear here
end tell

You can nest tell statements inside other tell statements, as long as you follow the syntax and rules
described in tell (compound) (page 206).

When you need to call a handler from within a tell statement, there are special terms you use to indicate
that the handler is part of the script and not a command that should be sent to the object of the tell
statement. These terms are described in “The it and me Keywords” (page 40) and in “Calling Handlers in a
tell Statement” (page 72).

A tell statement that targets a local application doesn’t cause it to launch, if it is not already running. For
example, a script can examine the is running property of the targeted application (page 80) object to
determine if the application is running before attempting to send it any commands. If it is not running it
won’t be launched.

If a tell statement targets a local application and executes any statements that require a response from
the application, then AppleScript will launch the application if it is not already running. The application is
launched as hidden, but the script can send it an activate (page 108) command to bring it to the front, if
needed.

A tell statement that targets a remote application will not cause it to launch—in fact, it will not compile
or run unless the application is already running. Nor is it possible to access the is running property of an
application on a remote computer.

205
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

tell (simple)

Specifies a target object and a command to send to it.

Syntax

tell referenceToObject to statement

Placeholders

referenceToObject
Any object. Typically an object specifier or a reference object (which contains an object specifier).

statement
Any AppleScript statement.

Examples

This simple tell statement closes the front Finder window:

tell front window of application "Finder" to close

For more information on how to specify an application object, see the application (page 80) class.

tell (compound)

Specifies a target object and one or more commands to send to it. A compound tell statement is different
from a simple tell statement in that it always includes an end statement.

Syntax

tell referenceToObject

 [statement]...

end [tell]

Placeholders

referenceToObject
Any object. Typically an object specifier or a reference object (which contains an object specifier).

statement
Any AppleScript statement, including another tell statement.

Examples

The following statements show how to close a window using first a compound tell statement, then with
two variations of a simple tell statement:

tell application "Finder"
 close front window
end tell

tell front window of application "Finder" to close
tell application "Finder" to close front window

The following example shows a nested tell statement:

206
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

tell application "Finder"
 tell document 1 of application "TextEdit"
 set newName to word 1 -- handled by TextEdit
 end tell
 set len to count characters in newName -- handled by AppleScript
 if (len > 2) and (len < 15) then -- comparisons handled by AppleScript
 set name of first item of disk "HD" to newName -- handled by Finder
 end if
end tell

This example works because in each case the terminology understood by a particular application is used
within a tell block targeting that application. However, it would not compile if you asked the Finder for
word 1 of a document, or told TextEdit to set name of the first item on a disk, because those applications
do not support those terms.

try Statements

A try statement provides the means for scripts to handle potential errors. It attempts to execute one or
more statements and, if an error occurs, executes a separate set of statements to deal with the error condition.
If an error occurs and there is no try statement in the calling chain to handle it, AppleScript displays an error
and script execution stops.

For related information, see “error Statements” (page 196) and “AppleScript Error Handling” (page 36).

try

Attempts to execute a list of AppleScript statements, calling an error handler if any of the statements results
in an error.

A try statement is a two-part compound statement that contains a series of AppleScript statements, followed
by an error handler to be invoked if any of those statements causes an error. If the statement that caused
the error is included in a try statement, then AppleScript passes control to the error handler. After the error
handler completes, control passes to the statement immediately following the end of the try statement.

Syntax

try

 [statement]...

[on error [errorMessage] [number errorNumber] [from offendingObject] ¬

 [partial result resultList] [to expectedType]

 [statement]...]

end [error | try]

Placeholders

statement
Any AppleScript statement.

207
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

errorMessage
A text object, that describes the error.

errorNumber
The error number, an integer. For possible values, see “Error Numbers and Error Messages” (page 233).

offendingObject
A reference to the object, if any, that caused the error.

resultList
A list that provides partial results for objects that were handled before the error occurred. The list can
contain values of any class. This parameter applies only to commands that return results for multiple
objects. This is rarely supported by applications.

expectedType
The expected class. If the error was caused by a coercion failure, the value of this variable is the class
of the coercion that failed. (The second example below shows how this works in a case where
AppleScript is unable to coerce a text object into an integer.)

variable
Either a global variable or a local variable that can be used in the handler. A variable can contain any
class of value. The scope of a local variable is the handler. The scope of a global variable extends to
any other part of the script, including other handlers and script objects. For related information
about local and global variables, see “version” (page 39).

Examples

The following example shows how you can use a try statement to handle the “Cancel” button for a display
alert (page 124) command. Canceling returns an error number of -128, but is not really an error. This test
handler just displays a dialog to indicate when the user cancels or when some other error occurs.

try
 display alert "Hello" buttons {"Cancel", "Yes", "No"} cancel button 1
on error errText number errNum
 if (errNum is equal to -128) then
 -- User cancelled.
 display dialog "User cancelled."
 else
 display dialog "Some other error: " & errNum & return & errText
 end if
end try

You can also use a simplified version of the try statement that checks for just a single error number. In the
following example, only error -128 is handled. Any other error number is ignored by this try statement, but
is automatically passed up the calling chain, where it may be handled by other try statements.

try
 display alert "Hello" buttons {"Cancel", "Yes", "No"} cancel button 1
on error number -128
 -- Either do something special to handle Cancel, or just ignore it.
end try

The following example demonstrates the use of the to keyword to capture additional information about an
error that occurs during a coercion failure:

try
 repeat with i from 1 to "Toronto"
 -- do something that depends on variable "i"

208
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

 end repeat
on error from obj to newClass
 log {obj, newClass} -- Display from and to info in log window.
end try

This repeat statement fails because the text object "Toronto" cannot be coerced to an integer (page
89). The error handler simply writes the values of obj (the offending value, "Toronto") and newClass (the
class of the coercion that failed, integer) to Script Editor’s Event Log History window (and to the script
window’s Event Log pane). The result is “(*Toronto, integer*)”, indicating the error occurred while trying to
coerce “Toronto” to an integer.

For additional examples, see “Working with Errors” (page 237).

using terms from Statements

A using terms from statement lets you specify which terminology AppleScript should use in compiling
the statements in a script. Whereas a tell statement specifies the default target (often an application) to
which commands are sent and the terminology to use, a using terms from statement specifies only the
terminology.

A using terms from statement can be useful in writing application event handler scripts, such as Mail
rules.

Another use for this type of statement is with a script that targets an application on a remote computer that
may not be available when you compile the script (or the application may not be running). Or, you might
be developing locally and only want to test with the remote application at a later time. In either case, you
can use a using terms from statement to specify a local application (presumably with a terminology that
matches the one on the remote computer) to compile against.

Even if a statement contained within a using terms from statement compiles, the script may fail when
run because the target application’s terminology may differ from that used in compiling.

You can nest using terms from statements. When you do so, each script statement is compiled against
the terminology of the application named in the innermost enclosing using terms from statement.

using terms from

Instructs AppleScript to use the terminology from the specified application in compiling the enclosed
statements.

Syntax

using terms from application

 [statement]...

end [using terms from]

Placeholders

application
A specifier for an application object.

statement
Any AppleScript statement.

209
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

Examples

The following example shows how to use a using terms from statement in writing a Mail rule action
script. These scripts take the following form:

using terms from application "Mail"
 on perform mail action with messages theMessages for rule theRule
 tell application "Mail"
 -- statements to process each message in theMessages
 end tell
 end perform mail action with messages
end using terms from

To use the script, you open Preferences for the Mail application, create or edit a rule, and assign the script
as the action for the rule.

For an example that works with an application on a remote machine, see “Targeting Remote
Applications” (page 44).

with timeout Statements

You can use a with timeout statement to control how long AppleScript waits for a command to execute
before timing out. By default, when an application fails to respond to a command, AppleScript waits for two
minutes before reporting an error and halting execution.

with timeout

Specifies how long AppleScript waits for a response to a command that is sent to another application.

Syntax

with timeout [of] integerExpression second[s]

 [statement]...

end [timeout]

Placeholders

integerExpression
The amount of time, in seconds, AppleScript should wait before timing out (and interrupting the
command).

statement
Any AppleScript statement.

Examples

The following script tells TextEdit to close its first document; if the document has been modified, it asks the
user if the document should be saved. It includes the statement with timeout of 20 seconds, so that
if the user doesn’t complete the close operation within 20 seconds, the operation times out.

tell application "TextEdit"
 with timeout of 20 seconds
 close document 1 saving ask
 end timeout
end tell

210
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

Discussion
When a command fails to complete in the allotted time (whether the default of two minutes, or a time set
by a with timeout statement), AppleScript stops running the script and returns the error "event timed
out". AppleScript does not cancel the operation—it merely stops execution of the script. If you want the
script to continue, you can wrap the statements in a try (page 207) statement. However, whether your script
can send a command to cancel an offending lengthy operation after a timeout is dependent on the application
that is performing the command.

A with timeout statement applies only to commands sent to application objects, not to commands sent
to the application that is running the script.

In some situations, you may want to use an ignoring application responses statement (instead of a
with timeout statement) so that your script needn’t wait for application commands to complete. For more
information, see “considering and ignoring Statements” (page 193).

with transaction Statements

When you execute a script, AppleScript may send one or more Apple events to targeted applications. A
transaction is a set of operations that are applied as a single unit—either all of the changes are applied or
none are. This mechanism works only with applications that support it.

with transaction

Associates a single transaction ID with any events sent to a target application as a result of executing
commands in the body of the statement.

Syntax

with transaction [session]

 [statement]...

end [transaction]

Placeholders

session
An object that identifies a specific session.

statement
Any AppleScript statement.

Examples

This example uses a with transaction statement to ensure that a record can be modified by one user
without being modified by another user at the same time. (In the following examples, “Small DB” and “Super
DB” are representative database applications.)

tell application "Small DB"
 with transaction
 set oldName to Field "Name"
 set oldAddress to Field "Address"
 set newName to display dialog ¬
 "Please type a new name" ¬

211
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

 default answer oldName
 set newAddress to display dialog ¬
 "Please type the new address" ¬
 default answer oldAddress
 set Field "Name" to newName
 set Field "Address" to newAddress
 end transaction
end tell

The set statements obtain the current values of the Name and Address fields and invite the user to change
them. Enclosing these set statements in a single with transaction statement informs the application
that other users should not be allowed to access the same record at the same time.

A with transaction statement works only with applications that explicitly support it. Some applications
only support with transaction statements (like the one in the previous example) that do not take a
session object as a parameter. Other applications support both with transaction statements that have
no parameter and with transaction statements that take a session parameter.

The following example demonstrates how to specify a session for a with transaction statement:

tell application "Super DB"
 set mySession to make session with data {user: "Bob", password: "Secret"}
 with transaction mySession
 ...
 end transaction
end tell

212
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Control Statements Reference

This chapter provides reference for handlers, which are defined and introduced in “About Handlers” (page
67). It describes the types of parameters you can use with handlers and how you invoke them. It also describes
the continue and return statements, which you use to control the flow of execution in handlers.

continue

A continue statement causes AppleScript to invoke the handler with the same name in the parent of the
current handler. If there is no such handler in the parent, AppleScript looks up the parent chain, ending with
the current application.

A continue statement is like a handler call, in that after execution completes in the new location, it resumes
with the statement after the continue statement.

Syntax

continue handlerName [parameterList]

Placeholders

handlerName
A required identifier that specifies the name of the current handler (which is also the name of the
handler in which to continue execution).

parameterList
The list of parameters to be passed to handlerName.

The list must follow the same format as the parameter definitions in the handler definition for the
command. For handlers with labeled parameters, this means that the parameter labels must match
those in the handler definition. For handlers with positional parameters, the parameters must appear
in the correct order.

You can list the parameter variables that were specified in the original command (and thus the original
values) or you can list values that may differ from those of the original variables.

Examples

You can write a handler that overrides an AppleScript command but uses a continue statement to pass
control on to the AppleScript command if desired:

on beep numTimes
 set x to display dialog "Start beeping?" buttons {"Yes", "No"}
 if button returned of x is "Yes" then ¬
 continue beep numTimes -- Let AppleScript handle the beep.
 -- In this example, nothing to do after returning from the continue.
end beep

beep 3 --result: local beep handler invoked; shows dialog before beeping
tell my parent to beep 3 -- result: AppleScript beep command invoked

213
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Handler Reference

When AppleScript encounters the statement beep 3, it invokes the local beep handler, which displays a
dialog. If the user clicks Yes, the handler uses a continue statement to pass the beep command to the
script’s parent (AppleScript), which handles the command by beeping. If the user clicks No, it does not
continue the beep command, and no sound is heard.

The final statement, tell my parent to beep 3, shows how to directly invoke the AppleScript beep
command, rather than the local handler.

For an example that uses a continue statement to exit a script handler and return control to the application’s
default quit handler, see “quit Handlers” (page 76).

For additional examples, see “Using the continue Statement in Script Objects” (page 63).

return

A return statement exits a handler and optionally returns a specified value. Execution continues at the place
in the script where the handler was called.

Syntax

return [expression]

Placeholders

expression
Represents the value to return.

Examples

The following statement, inserted in the body of a handler, returns the integer 2:

return 2 -- returns integer value 2

If you include a return statement without an expression, AppleScript exits the handler immediately and no
value is returned:

return -- no value returned

See other sections throughout “Handler Reference” (page 213) for more examples of scripts that use the
return statement.

Discussion
If a handler does not include a return statement, AppleScript returns the value returned by the last statement.
If the last statement doesn’t return a value, AppleScript returns nothing.

When AppleScript has finished executing a handler (that is, when it executes a return statement or the last
statement in the handler), it passes control to the place in the script immediately after the place where the
handler was called. If a handler call is part of an expression, AppleScript uses the value returned by the handler
to evaluate the expression.

It is often considered good programming practice to have just one return statement and locate it at the
end of a handler. Doing so can provide the following benefits:

 ■ The script is easier to understand.

 ■ The script is easier to debug.

214
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Handler Reference

 ■ You can place cleanup code in one place and make sure it is executed.

In some cases, however, it may make more sense to use multiple return statements. For example, the
minimumValue handler in “Handler Syntax (Positional Parameters)” (page 218) is a simple script that uses
two return statements.

For related information, see “AppleScript Error Handling” (page 36).

Handler Syntax (Labeled Parameters)

A handler is a collection of statements that can be invoked by name. This section describes the syntax for
handlers that use labeled parameters.

Labeled parameters are identified by their labels and can be listed in any order.

Syntax

(on | to) handlerName ¬

[[of | in] directParamName] ¬

[ASLabel userParamName]... ¬

[given userLabel:userParamName [, userLabel:userParamName]...]

[statement]...

end [handlerName]

Placeholders

handlerName
An identifier that names the handler.

directParamName
An identifier for the direct parameter variable. If it is included, directParamName must be listed
immediately after the command name. The word of or in before directParamName is required in
user-defined handlers, but is optional in terminology-defined handlers (for example, those defined
by applications).

If a user-defined handler includes a direct parameter, the handler must also include at least one
variable parameter.

ASLabel
An AppleScript-defined label. The available labels are: about, above, against, apart from, around,
aside from, at, below, beneath, beside, between, by, for, from, instead of, into, on, onto,
out of, over, since, thru (or through), under. These are the only labels that can be used without
the special label given. Each label must be unique among the labels for the handler (that is, you
cannot use the same label for more than one parameter).

userLabel
An identifier for a user-defined label, associated with a user-defined parameter. Each label must be
unique.

The first userLabel-userParamName pair must follow the word given; any additional pairs are separated
by commas.

userParamName
An identifier for a parameter variable.

215
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Handler Reference

statement
Any AppleScript statement. These statements can include definitions of script objects, each of
which, like any script object, can contain handlers and other script objects. However, you cannot
declare another handler within a handler, except within a script object.

Handlers often contain a “return” (page 214) statement.

Examples

For examples and related conceptual information, see “Handlers with Labeled Parameters” (page 68).

Discussion
A handler written to respond to an application command (like those in “Handlers in Script Applications” (page
73)) need not include all of the possible parameters defined for that command. For example, an application
might define a command with up to five possible parameters, but you could define a handler for that command
with only two of the parameters.

If a script calls a handler with more parameters than are specified in the handler definition, the extra parameters
are ignored.

Calling a Handler with Labeled Parameters

This section describes the syntax for calling a handler with labeled parameters.

Syntax

handlerName ¬

[[of | in] directParam] ¬

[[ASLabel paramValue ...] ¬

| [with labelForTrueParam [, labelForTrueParam]... ¬

[(and | ,) labelForTrueParam]] ¬

| [without labelForFalseParam [, labelForFalseParam]...] ¬

[(and | ,) labelForFalseParam]] ¬

| [given userLabel:paramValue [, userLabel:paramValue]...]...

Placeholders

handlerName
An identifier that names the handler.

directParam
Any valid expression. The expression for the direct parameter must be listed first if it is included at
all.

216
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Handler Reference

ASLabel
One of the following AppleScript-defined labels used in the definition of the handler: about, above,
against, apart from, around, aside from, at, below, beneath, beside, between, by, for,
from, instead of, into, on, onto, out of, over, since, thru (or through), under.

paramValue
The value of a parameter, which can be any valid expression.

labelForTrueParam
The label for a Boolean parameter whose value is true. You use this form in with clauses. Because
the value true is implied by the word with, you provide only the label, not the value. For an example,
see the findNumbers handler in “Handlers with Labeled Parameters” (page 68).

labelForFalseParam
The label for a Boolean parameter whose value is false. You use this form in without clauses.
Because the value false is implied by the word without, you provide only the label, not the value.

paramLabel
Any parameter label used in the definition of the handler that is not among the labels for ASLabel.
You must use the special label given to specify these parameters. For an example, see the
findNumbers handler below.

Examples

For examples, see “Handlers with Labeled Parameters” (page 68).

Discussion
When you call a handler with labeled parameters, you supply the following:

1. The handler name.

2. A value for the direct parameter, if the handler has one. It must directly follow the handler name.

3. One label-value pair for each AppleScript-defined label and parameter defined for the handler.

4. One label-value pair for each user-defined label and parameter defined for the handler that is not a
boolean value.

The first pair is preceded by the word given; a comma precedes each additional pair. The order of the
pairs does not have to match the order in the handler definition.

5. For each user-defined label and parameter defined for the handler that is a boolean value, you can either:

a. Supply the label, followed by a boolean expression (as with non-boolean parameters); for example:

given rounding:true

b. Use a combination of with and without clauses, as shown in the following examples:

with rounding, smoothing and curling
with rounding without smoothing, curling

Note: AppleScript automatically converts between some forms when you compile. For example,
given rounding:true is converted to with rounding, and with rounding, smoothing is
converted to with rounding and smoothing.

217
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Handler Reference

Handler Syntax (Positional Parameters)

A handler is a collection of statements that can be invoked by name. This section describes the syntax for
handlers that use positional parameters.

Important: The parentheses that surround the parameter list in the following definition are part of the
syntax.

Syntax

on | to handlerName ([userParamName [, userParamName]...])

 [statement]...

end [handlerName]

Placeholders

handlerName
An identifier that names the handler.

userParamName
An identifier for a user-defined parameter variable.

statement
Any AppleScript statement, including global or local variable declarations. For information about the
scope of local and global variables, see “Scope of Variables and Properties” (page 51).

Examples

For examples and related conceptual information, see “Handlers with Positional Parameters” (page 69).

Calling a Handler with Positional Parameters

A call for a handler with positional parameters must list the parameters in the same order as they are specified
in the handler definition.

Syntax

handlerName([paramValue [, paramValue]...])

Placeholders

handlerName
An identifier that names the handler.

paramValue
The value of a parameter, which can be any valid expression. If there are two or more parameters,
they must be listed in the same order in which they were specified in the handler definition.

Examples

For examples, see “Handlers with Positional Parameters” (page 69)

Discussion
When you call a handler with positional parameters, you supply the following:

218
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Handler Reference

1. The handler name.

2. An opening and closing parenthesis.

3. If the handler has any parameters, then you also list, within the parentheses, the following:

One value for each parameter defined for the handler. The value can be any valid expression.

219
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Handler Reference

220
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

Handler Reference

Folder Actions is a feature of Mac OS X that lets you associate AppleScript scripts with folders. A Folder Action
script is executed when the folder to which it is attached is opened or closed, moved or resized, or has items
added or removed. The script provides a handler that matches the appropriate format for the action, as
described in this chapter.

Folder Actions make it easy to create hot folders that respond to external actions to trigger a workflow. For
example, you can use a Folder Action script to initiate automated processing of any photo dropped in a
targeted folder. A well written Folder Action script leaves the hot folder empty. This avoids repeated application
of the action to the same files, and allows Folder Actions to perform more efficiently.

You can Control-click a folder to access some Folder Action features with the contextual menu in the Finder.
Or you can use the Folder Actions Setup application, located in /Applications/AppleScript. This
application lets you perform tasks such as the following:

 ■ Enable or disable Folder Actions.

 ■ View the folders that currently have associated scripts

 ■ View and edit the script associated with a folder.

 ■ Add folders to or remove folders from the list of folders.

 ■ Associate one or more scripts with a folder.

 ■ Enable or disable all scripts associated with a folder.

 ■ Enable or disable individual scripts associated with a folder.

 ■ Remove scripts associated with a folder.

Folder Actions Setup looks for scripts located in /Library/Scripts/Folder Action Scripts and
~/Library/Scripts/Folder Action Scripts. You can use the sample scripts located in
/Library/Scripts/Folder Action Scripts or any scripts you have added to these locations, or you
can navigate to other scripts.

A Folder Action script provides a handler (see “Handler Reference” (page 213)) that is invoked when the
specified action takes place. When working with Folder Action handlers, keep in mind that:

 ■ You do not invoke Folder Actions directly. Instead, when a triggering action takes place on a folder, the
associated handler is invoked automatically.

 ■ When a Folder Action handler is invoked, none of the parameters is optional.

 ■ A Folder Action handler does not return a value.

Here’s how you can use a Folder Action script to perform a specific action whenever an image file is dropped
on a specific image folder:

1. Create a script with Script Editor or another script application.

221
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Folder Actions Reference

2. In that script, write a handler that conforms to the syntax documented here for the “adding folder
items to” (page 222) folder action. Your handler can use the aliases that are passed to it to access the
image files dropped on the folder.

3. Save the script as a compiled script or script bundle.

4. Put a copy of the script in /Library/Scripts/Folder Action Scripts or
~/Library/Scripts/Folder Action Scripts.

5. Use the Folder Actions Setup application, located in /Applications/AppleScript, to:

a. Enable folder actions for your image folder.

b. Add a script to that folder, choosing the script you created.

adding folder items to

A script handler that is invoked after items are added to its associated folder.

Syntax

on adding folder items to alias after receiving listOfAlias

[statement]...

end [adding folder items to]

Placeholders

alias
An alias (page 79) that identifies the folder that received the items.

listOfAlias
List of aliases that identify the items added to the folder.

statement
Any AppleScript statement.

Examples

The following Folder Action handler is triggered when items are added to the folder to which it is attached.
It makes an archived copy, in ZIP format, of the individual items added to the attached folder. Archived files
are placed in a folder named Done within the attached folder.

on adding folder items to this_folder after receiving these_items
 tell application "Finder"
 if not (exists folder "Done" of this_folder) then
 make new folder at this_folder with properties {name:"Done"}
 end if
 set the destination_folder to folder "Done" of this_folder as alias
 set the destination_directory to POSIX path of the destination_folder
 end tell
 repeat with i from 1 to number of items in these_items
 set this_item to item i of these_items
 set the item_info to info for this_item
 if this_item is not the destination_folder and ¬
 the name extension of the item_info is not in {"zip", "sit"} then

222
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Folder Actions Reference

 set the item_path to the quoted form of the POSIX path of this_item
 set the destination_path to the quoted form of ¬
 (destination_directory & (name of the item_info) & ".zip")
 do shell script ("/usr/bin/ditto -c -k -rsrc --keepParent " ¬
 & item_path & " " & destination_path)
 end if
 end repeat
end adding folder items to

closing folder window for

A script handler that is invoked after a folder’s associated window is closed.

Syntax

on closing folder window for alias

[statement]...

end [closing folder window for]

Placeholders

alias
An alias (page 79) that identifies the folder that was closed.

statement
Any AppleScript statement.

Examples

The following Folder Action handler is triggered when the folder to which it is attached is closed. It closes
any open windows of folders within the targeted folder.

-- This script is designed for use with Mac OS X v10.2 and later.
on closing folder window for this_folder
 tell application "Finder"
 repeat with EachFolder in (get every folder of folder this_folder)
 try
 close window of EachFolder
 end try
 end repeat
 end tell
end closing folder window for

moving folder window for

A script handler that is invoked after a folder’s associated window is moved or resized. Not currently available.

Syntax

on moving folder window for alias from bounding rectangle

[statement]...

end [moving folder window for]

Placeholders

alias
An alias (page 79) that identifies the folder that was moved or resized.

You can use this alias to obtain the folder window’s new coordinates from the Finder.

223
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Folder Actions Reference

bounding rectangle
The previous coordinates of the window of the folder that was moved or resized. The coordinates are
provided as a list of four numbers, {left, top, right, bottom}; for example, {10, 50, 500, 300} for a window
whose origin is near the top left of the screen (but below the menu bar, if present).

statement
Any AppleScript statement.

Examples
on moving folder window for this_folder from original_coordinates
 tell application "Finder"
 set this_name to the name of this_folder
 set the bounds of the container window of this_folder ¬
 to the original_coordinates
 end tell
 display dialog "Window \"" & this_name & "\" has been returned to it's
original size and position." buttons {"OK"} default button 1
end moving folder window for

Special Considerations

Warning: In Mac OS X v10.5, and possibly in previous OS versions, Folder Actions does not activate
attached moving folder window for scripts when the folder is moved.

opening folder

A script handler that is invoked when its associated folder is opened in a window.

Syntax

on opening folderalias

[statement]...

end [opening folder]

Placeholders

alias
An alias (page 79) that identifies the folder that was opened.

statement
Any AppleScript statement.

Examples

The following Folder Action handler is triggered when the folder it is attached to is opened. It displays any
text from the Spotlight Comments field of the targeted folder. (Prior to Mac OS X v10.4, this script displays
text from the Comments field of the specified folder.)

-- This script is designed for use with Mac OS X v10.2 and later.
property dialog_timeout : 30 -- set the amount of time before dialogs auto-answer.

on opening folder this_folder
 tell application "Finder"
 activate
 set the alert_message to the comment of this_folder
 if the alert_message is not "" then

224
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Folder Actions Reference

 display dialog alert_message buttons {"Open Comments", "Clear
Comments", "OK"} default button 3 giving up after dialog_timeout
 set the user_choice to the button returned of the result
 if the user_choice is "Clear Comments" then
 set comment of this_folder to ""
 else if the user_choice is "Open Comments" then
 open information window of this_folder
 end if
 end if
 end tell
end opening folder

Special Considerations

Spotlight was introduced in Mac OS X v10.4. In prior versions of the Mac OS, the example script shown above
works with the Comments field of the specified folder, rather than the Spotlight Comments field.

removing folder items from

A script handler that is invoked after items have been removed from its associated folder.

Syntax

on removing folder items from alias after losinglistOfAliasOrText

[statement]...

end [removing folder items from]

Placeholders

alias
An alias (page 79) that identifies the folder from which the items were removed.

listOfAliasOrText
List of aliases that identify the items lost (removed) from the folder. For permanently deleted items,
only the names are provided (as text strings).

statement
Any AppleScript statement.

Examples

The following Folder Action handler is triggered when items are removed from the folder to which it is
attached. It displays an alert containing the number of items removed.

on removing folder items from this_folder after losing these_items
 tell application "Finder"
 set this_name to the name of this_folder
 end tell
 set the item_count to the count of these_items
 display dialog (item_count as text) & " items have been removed " & "from
folder \"" & this_name & "\"." buttons {"OK"} default button 1
end removing folder items from

225
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Folder Actions Reference

226
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

Folder Actions Reference

This appendix lists AppleScript keywords (or reservedwords), provides a brief description for each, and points
to related information, where available. (See also “Keywords” (page 18) in “AppleScript Lexical
Conventions” (page 17).)

The keywords in Table A-1 (page 227) are part of the AppleScript language. You should not attempt to reuse
them in your scripts for variable names or other purposes. Developers should not re-define keywords in the
terminology for their scriptable applications. You can view many additional scripting terms defined by Apple,
but not part of the AppleScript language, in AppleScript Terminology and Apple Event Codes.

Table A-1 AppleScript reserved words, with descriptions

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)about

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)above

used to describe position in the “Relative” (page 176) reference form; used as part
of operator (comes after, does not come after) with classes such as
date (page 85), integer (page 89), and text (page 97)

after

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)against

logical and operator—see Table 9-1 (page 179)and

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)apart from

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)around

coercion operator—see Table 9-1 (page 179)as

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)aside from

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)at

used with “Index” (page 172) and “Relative” (page 176) reference forms; in back
of is synonymous with after and behind

back

used to describe position in the “Relative” (page 176) reference form; used as an
operator (comes before, does not come before) with classes such as
date (page 85), integer (page 89), and text (page 97); synonymous with in
front of

before

specifies an insertion location at the beginning of a container—see the boundary
specifier descriptions for the “Range” (page 175) reference form

beginning

synonymous with after and in back ofbehind

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)below

227
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

AppleScript Keywords

http://developer.apple.com/releasenotes/AppleScript/ASTerminology_AppleEventCodes/TermsAndCodes.html

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)beneath

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)beside

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)between

used in “considering and ignoring Statements” (page 193)but

used with binary containment operator contains, is contained by (page 189);
also used as handler parameter label—see “Handler Syntax (Labeled
Parameters)” (page 215)

by

a control statement—see “considering and ignoring Statements” (page 193)considering

binary containment operator—see contains, is contained by (page 189)contain,
contains

changes the flow of execution—see “continue” (page 213)continue

an AppleScript command—see copy (page 121)copy

division operator—see Table 9-1 (page 179)div

used with operators such as does not equal, does not come before, and
does not contain—see Table 9-1 (page 179)

does

specifies a position in a container—see “Index” (page 172) reference formeighth

used with if control statement—see “if Statements ” (page 197)else

marks the end of a script or handler definition, or of a compound statement, such
as a tell or repeat statement; also specifies an insertion location at the end of a
container—see the boundary specifier descriptions for the “Range” (page 175)
reference form

end

binary comparison operator—see equal, is not equal to (page 190)equal, equals

error (page 196) control statement; also used withtry (page 207) statementerror

specifies every object in a container—see “Every” (page 168) reference formevery

terminates a repeat loop—see exit (page 199)exit

a Boolean literal—see “Boolean” (page 20)false

specifies a position in a container—see “Index” (page 172) reference formfifth

specifies a position in a container—see “Index” (page 172) reference formfirst

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)for

specifies a position in a container—see “Index” (page 172) reference formfourth

228
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

AppleScript Keywords

used in specifying a range of objects in a container—see “Range” (page 175) reference
form; also used as handler parameter label—see “Handler Syntax (Labeled
Parameters)” (page 215)

from

in front of is used to describe position in the “Relative” (page 176) reference
form; synonymous with before

front

an AppleScript command—see get (page 129)get

a special handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
215)

given

specifies the scope for a variable (see also local)—see “Global Variables” (page
49)

global

a control statement—see “if Statements ” (page 197)if

a control statement—see “considering and ignoring Statements” (page 193)ignoring

used in construction object specifiers—see “Containers” (page 30); also used with
the “Relative” (page 176) reference form—for example in front of and in back
of

in

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)instead of

put into is a deprecated synonym for the copy (page 121) command; also used
as handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)

into

used with various comparison operators—see Table 9-1 (page 179)is

refers to the current target (of it)—see “The it and me Keywords” (page 40)it

synonym for of it—see “The it and me Keywords” (page 40)its

specifies a position in a container—see “Index” (page 172) reference formlast

specifies the scope for a variable (see also global)—see “Local Variables” (page
48)

local

refers to the current script (of me)—see “The it and me Keywords” (page 40)me

specifies a position in a container—see “Index” (page 172) reference formmiddle

remainder operator—see Table 9-1 (page 179)mod

synonym for of me—see “The it and me Keywords” (page 40)my

specifies a position in a container—see “Middle” (page 173) reference formninth

logical negation operator—see Table 9-1 (page 179)not

used in construction object specifiers—see “Containers” (page 30); used with or as
part of many other terms, including of me , in front of , and so on

of

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)on

229
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

AppleScript Keywords

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)onto

logical or operator—see Table 9-1 (page 179)or

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)out of

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)over

prop is an abbreviation for property—see “The it and me Keywords” (page 40)prop, property

put into is a deprecated synonym for the copy (page 121) commandput

ref is an abbreviation for reference—see reference (page 95)ref/reference

a control statement—see “repeat Statements” (page 199)repeat

exits from a handler—see “return” (page 214)return

deprecatedreturning

used to declare a script object; also the class of a script object—see the script (page
97) class and “Script Objects” (page 57)

script

specifies a position in a container—see “Index” (page 172) reference formsecond

an AppleScript command—see set (page 154)set

specifies a position in a container—see “Index” (page 172) reference formseventh

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 215)since

specifies an index position in a container—see “Index” (page 172) reference formsixth

specifies an object in a container—see “Arbitrary” (page 167) reference formsome

a control statement—see “tell Statements” (page 205)tell

specifies a position in a container—see “Index” (page 172) reference formtenth

synonym for whosethat

syntactic no-op, used to make script statements look more like natural languagethe

used with if control statement—see “if Statements ” (page 197)then

specifies a position in a container—see “Index” (page 172) reference formthird

used in specifying a range of objects in a container—see “Range” (page 175) reference
form

through, thru

used with with timeout control statement—see with timeout (page 210)timeout

used with repeat control statement—see repeat (number) times (page 200)times

230
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

AppleScript Keywords

used in many places, including copy (page 121) and set (page 154) commands; in
the “Range” (page 175) reference form; by operators such as is equal to and a
reference to; with the control statement repeat with loopVariable (from
startValue to stopValue) (page 202); with the partial result parameter in “try
Statements” (page 207)

to

used with with transaction control statement—see with transaction (page
211)

transaction

a Boolean literal—see “Boolean” (page 20)true

an error-handling statement—see “try Statements” (page 207)try

used with repeat control statement—see repeat until (page 201)until

used with the “Filter” (page 169) reference form to specify a Boolean test expression
(synonymous with whose)

where

used with repeat control statement—see repeat while (page 202)while

used with the “Filter” (page 169) reference form to specify a Boolean test expression
(synonymous with where)

whose

used in commands to specify various kinds of parameters, including true for some
Boolean for parameters—see, for example, the with prompt and multiple
selections allowedparameters to thechoose from list (page 116) command;
also used with application make commands to specify properties (with
properties)

with

used in commands to specify false for a Boolean for a parameter—see, for example,
the multiple selections allowedparameter to the choose from list (page
116) command

without

231
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

AppleScript Keywords

232
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

AppleScript Keywords

This appendix describes error numbers and error messages provided by AppleScript, as well as certain Mac
OS error numbers that may be of interest to scripters.

AppleScript Errors

An AppleScript error is an error that occurs when AppleScript processes script statements. Nearly all of these
are of interest to users. For errors returned by an application, see the documentation for that application.

Table B-1 AppleScript errors

Error messageError number

Unknown error.-2700

Can’t divide <number> by zero.-2701

The result of a numeric operation was too large.-2702

<reference> can't be launched because it is not an application.-2703

<reference> isn't scriptable.-2704

The application has a corrupted dictionary.-2705

Stack overflow.-2706

Internal table overflow.-2707

Attempt to create a value larger than the allowable size.-2708

Can't get the event dictionary.-2709

Can't both consider and ignore <attribute>.-2720

Can't perform operation on text longer than 32K bytes.-2721

Message size too large for the 7.0 Finder.-2729

A <language element> can't go after this <language element>.-2740

Expected <language element> but found <language element>.-2741

The <name> parameter is specified more than once.-2750

The <name> property is specified more than once.-2751

AppleScript Errors 233
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Error Numbers and Error Messages

Error messageError number

The <name> handler is specified more than once.-2752

The variable <name> is not defined.-2753

Can't declare <name> as both a local and global variable.-2754

Exit statement was not in a repeat loop.-2755

Tell statements are nested too deeply.-2760

<name> is illegal as a formal parameter.-2761

<name> is not a parameter name for the event <event>.-2762

No result was returned for some argument of this expression.-2763

Operating System Errors

An operating system error is an error that occurs when AppleScript or an application requests services from
the Mac OS. They are rare, and often there is nothing you can do about them in a script, other than report
them. A few, such as "User canceled", make sense for scripts to handle—as shown, for an example, in
the Examples section for the display dialog (page 125) command.

Table B-2 Mac OS errors

Error messageError number

No error.0

Disk <name> full.-34

Disk <name> wasn’t found.-35

Bad name for file-37

File <name> wasn’t open.-38

End of file error.-39

Too many files open.-42

File <name> wasn’t found.-43

Disk <name> is write protected.-44

File <name> is locked.-45

Disk <name> is locked.-46

File <name> is busy.-47

234 Operating System Errors
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Error Numbers and Error Messages

Error messageError number

Duplicate file name.-48

File <name> is already open.-49

Parameter error.-50

File reference number error.-51

File not open with write permission.-61

Out of memory.-108

Folder <name> wasn’t found.-120

Disk <name> is disconnected.-124

User cancelled.-128

A resource wasn’t found.-192

Application isn’t running-600

Not enough room to launch application with special requirements.-601

Application is not 32-bit clean.-602

More memory needed than is specified in the size resource.-605

Application is background-only.-606

Buffer is too small.-607

No outstanding high-level event.-608

Connection is invalid.-609

Not enough system memory to connect to remote application.-904

Remote access is not allowed.-905

<name> isn’t running or program linking isn’t enabled.-906

Can’t find remote machine.-915

Invalid date and time <date string>.-30720

Operating System Errors 235
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Error Numbers and Error Messages

236 Operating System Errors
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX B

Error Numbers and Error Messages

This appendix provides a detailed example of handling errors with “try Statements” (page 207) and “error
Statements” (page 196). It shows how to use a try statement to check for bad data and other errors, and an
error statement to pass on any error that can’t be handled. It also shows how to check for just a particular
error number that you are interested in.

Catching Errors in a Handler

The SumIntegerList handler expects a list of integers. If any item in the passed list is not an integer,
SumIntegerList signals error number 750 and returns 0. The handler includes an error handler that
displays a dialog if the error number is equal to 750; if the error number is not equal to 750, the handler
resignals the error with an error statement so that other statements in the call chain can handle the unknown
error. If no statement handles the error, AppleScript displays an error dialog and execution stops.

on SumIntegerList from itemList
 try
 -- Initialize return value.
 set integerSum to 0
 -- Before doing sum, check that all items in list are integers.
 if ((count items in itemList) is not equal to ¬
 (count integers in itemList)) then
 -- If all items aren’t integers, signal an error.
 error number 750
 end if
 -- Use a repeat statement to sum the integers in the list.
 repeat with currentItem in itemList
 set integerSum to integerSum + currentItem
 end repeat
 return integerSum -- Successful completion of handler.
 on error errStr number errorNumber
 -- If our own error number, warn about bad data.
 if the errorNumber is equal to 750 then
 display dialog "All items in the list must be integers."
 return integerSum -- Return the default value (0).
 else
 -- An unknown error occurred. Resignal, so the caller
 -- can handle it, or AppleScript can display the number.
 error errStr number errorNumber
 end if
 end try
end SumIntegerList

The SumIntegerList handler handles various error conditions. For example, the following call completes
without error:

set sumList to {1, 3, 5}
set listTotal to SumIntegerList from sumList --result: 9

Catching Errors in a Handler 237
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Working with Errors

The following call passes bad data—the list contains an item that isn’t an integer:

set sumList to {1, 3, 5, "A"}
set listTotal to SumIntegerList from sumList
if listTotal is equal to 0 then
 -- the handler didn’t total the list;
 -- do something to handle the error (not shown)
end if

The SumIntegerList routine checks the list and signals an error 750 because the list contains at least one
non-integer item. The routine’s error handler recognizes error number 750 and puts up a dialog to describe
the problem. The SumIntegerList routine returns 0. The script checks the return value and, if it is equal to
0, does something to handle the error (not shown).

Suppose some unknown error occurs while SumIntegerList is processing the integer list in the previous
call. When the unknown error occurs, the SumIntegerList error handler calls the error command to
resignal the error. Since the caller doesn’t handle it, AppleScript displays an error dialog and execution halts.
The SumIntegerList routine does not return a value.

Finally, suppose the caller has its own error handler, so that if the handler passes on an error, the caller can
handle it. Assume again that an unknown error occurs while SumIntegerList is processing the integer list.

try
 set sumList to {1, 3, 5}
 set listTotal to SumIntegerList from sumList
on error errMsg number errorNumber
 display dialog "An unknown error occurred: " & errorNumber as text
end try

In this case, when the unknown error occurs, the SumIntegerList error handler calls the error command
to resignal the error. Because the caller has an error handler, it is able to handle the error by displaying a
dialog that includes the error number. Execution can continue if it is meaningful to do so.

Simplified Error Checking

AppleScript provides a mechanism to streamline the way you can catch and handle individual errors. It is
often necessary for a script to handle a particular error, but not others. It is possible to catch an error, check
for the error number you are interested in, and use an error statement to resignal for other errors. For example:

try
 open for access file "MyFolder:AddressData" with write permission
on error msg number n from f to t partial result p
 if n = -49 then -- File already open error
 display dialog "I'm sorry but the file is already open."
 else
 error msg number n from f to t partial result p
 end if
end try

This script tries to open a file with write permission, but if the file is already opened, it just displays a dialog.
However, you can instead implement this more concisely as:

try
 open for access file "MyFolder:AddressData" with write permission

238 Simplified Error Checking
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Working with Errors

on error number -49
 display dialog "I'm sorry but the file is already open."
end try

In this version, there is no need to list the message, from, to, or partial result parameters, in order to
pass them along. If the error is not -49 (file <name> is already open), this error handler will not catch the
error, and AppleScript will pass the error to the next handler in an outer scope.

One drawback to this approach is that you must use a literal constant for the error number in the on error
parameter list. You can't use global variable or property names because the number must be known when
the script is compiled.

Simplified Error Checking 239
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Working with Errors

240 Simplified Error Checking
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX C

Working with Errors

When you type English language script statements in a Script Editor script window, AppleScript is able to
compile the script because the English terms are described either in the terminology built into the AppleScript
language or in the dictionary of an available scriptable application or scripting addition. When AppleScript
compiles your script, it converts it into an internal executable format, then reformats the text to conform to
settings in Script Editor’s Formatting preferences.

When you open, compile, edit, or run scripts with Script Editor, you may occasionally see terms enclosed in
double angle brackets, or chevrons («»). For example, you might see the term «event sysodlog» as part
of a script—this is the event code representation for a display dialog (page 125) command. The event
code representation is also known as raw format.

For compatibility with Asian national encodings, “ ”and “ ”are allowed as synonyms for “«” and “»” ((Option-
\ and Option-Shift- \, respectively, on a U.S. keyboard), since the latter do not exist in some Asian encodings.

The following sections provide more information about when chevrons appear in scripts.

When a Dictionary Is Not Available

AppleScript uses double angle brackets in a Script Editor script window when it can’t identify a term. That
happens when it encounters a term that isn’t part of the AppleScript language and isn’t defined in an
application or scripting addition dictionary that is available when the script is opened or compiled.

For example, if a script is compiled on one machine and later opened on another, the dictionary may not be
available, or may be from an older version of the application or scripting addition that does not support the
term.

This can also happen if the fileStandardAdditions.osax is not present in/System/ScriptingAdditions.
Then, scripting addition commands such as display dialog will not be present and will be replaced with
chevron notation («event sysodlog») when you compile or run the script.

When AppleScript Displays Data in Raw Format

Double angle brackets can also occur in results. For example, if the value of a variable is a script object
named Joe, AppleScript represents the script object as shown in this script:

script Joe
 property theCount : 0
end script

set scriptObjectJoe to Joe
scriptObjectJoe
--result: «script Joe»

When a Dictionary Is Not Available 241
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Double Angle Brackets

Similarly, if Script Editor can’t display a variable’s data directly in its native format, it uses double angle brackets
to enclose both the word data and a sequence of numerical values that represent the data. Although this
may not visually resemble the original data, the data’s original format is preserved.

This may occur because an application command returns a value that does not belong to any of the normal
AppleScript classes. You can store such data in variables and send them as parameters to other commands,
but Script Editor cannot display the data in its native format.

Entering Script Information in Raw Format

You can enter double angle brackets, or chevrons («»), directly into a script by typing Option-Backslash and
Shift-Option-Backslash. You might want to do this if you’re working on a script that needs to use terminology
that isn’t available on your current machine—for example, if you’re working at home and don’t have the
latest dictionary for a scriptable application you are developing, but you know the codes for a supported
term.

You can also use AppleScript to display the underlying codes for a script, using the following steps:

1. Create a script using standard terms compiled against an available application or scripting addition.

2. Save the script as text and quit Script Editor.

3. Remove the application or scripting addition from the computer.

4. Open the script again and compile it.

5. When AppleScript asks you to locate the application or scripting addition, cancel the dialog.

Script Editor can compile the script, but displays chevron format for any terms that rely on a missing dictionary.

Sending Raw Apple Events From a Script

The term «event sysodlog» is actually the raw form for an Apple event with event class 'syso' and event
ID 'dlog' (the display dialog command). For a list of many of the four-character codes and their related
terminology used by Apple, see AppleScript Terminology and Apple Event Codes Reference.

You can use raw syntax to enter and execute events (even complex events with numerous parameters) when
there is no dictionary to support them. However, providing detailed documentation for how to do so is
beyond the scope of this guide.

242 Entering Script Information in Raw Format
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX D

Double Angle Brackets

This appendix lists scripting terms that are not supported by AppleScript. Though you may see these terms
in a dictionary, script, or scripting addition, you should not count on their behavior.

List of Unsupported Terms

handle CGI request
This command is not supported.

internet address
An Internet or intranet address for the TCP/IP protocol. Only used for compatibility with WebSTAR
AppleScript CGI scripts, this term is not supported by AppleScript itself.

web page
An HTML page. This class is not supported.

List of Unsupported Terms 243
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX E

Unsupported Terms

244 List of Unsupported Terms
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX E

Unsupported Terms

absolute object specifier An object specifier that
has enough information to identify an object or
objects uniquely. For an object specifier to an
application object to be complete, its outermost
container must be the application itself. See relative
object specifier.

Apple event An interprocess message that
encapsulates a high-level task in a single package that
can be passed across process boundaries, performed,
and responded to with a reply event.When an
AppleScript script is executed, a statement that targets
a scriptable application may result in an Apple event
being sent to that application.

AppleScript A scripting language that makes
possible direct control of scriptable applications and
scriptable parts of Mac OS X.

AppleScript command A script command provided
by AppleScript. AppleScript commands do not have
to be included in tell statements.

application command A command that is defined
by scriptable application to provide access to a
scriptable feature. An application command must
either be included in a tell statement or include the
name of the application in its direct parameter.

application object An object stored in an application
or its documents and managed by the application.

arbitrary reference form A reference form that
specifies an arbitrary object in a container.

assignment statement A statement that assigns a
value to a variable. Assignment statements use the
copy or set commands.

attribute A characteristic that can be considered or
ignored in a considering or ignoring statement.

binary operator An operator that derives a new
value from a pair of values.

boolean A logical truth value; see the boolean class.

Boolean expression An expression whose value can
be either true or false.

chevrons See double angle brackets.

child script object A script object that inherits
properties and handlers from another object, called
the parent.

class (1) A category for objects that share
characteristics such as properties and elements and
respond to the same commands. (2) The label for the
AppleScript class property—a reserved word that
specifies the class to which an object belongs.

coercion The process of converting an object from
one class to another. For example, an integer value
can be coerced into a real value. Also, the software
that performs such a conversion. Also known as object
conversion.

command A word or series of words that requests
an action. See also handler.

comment Text that remains in a script after
compilation but is ignored by AppleScript when the
script is executed.

compile In AppleScript, to convert a script from the
form typed into a script editor to a form that can be
used by AppleScript. The process of compiling a script
includes syntax and vocabulary checks. A script is
compiled when you first run it and again when you
modify it and then run it again, save it, or check its
syntax.

245
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Glossary

compiled script The form to which a script is
converted when you compile it.

composite value A value that contains other values.
Lists, records, and strings are examples of composite
values.

compound statement A statement that occupies
more than one line and contains other statements. A
compound statement begins with a reserved word
indicating its function and ends with the word end.
See also simple statement.

conditional statement See if statement.

considering statement A control statement that
lists a specific set of attributes to be considered when
AppleScript performs operations on strings or sends
commands to applications.

constant A reserved word with a predefined value;
see the constant class.

container An object that contains one or more other
objects, known as elements. You specify containers
with the reserved words of or in.

continuation character A character used in Script
Editor to extend a statement to the next line. With a
U.S. keyboard, you can enter this character by typing
Option-l (lower-case L).

continue statement A statement that controls when
and how other statements are executed. AppleScript
defines standard control statements such as if,
repeat, and while.

control statement A statement that causes
AppleScript to exit the current handler and transfer
execution to the handler with the same name in the
parent. A continue statement can also be used to
invoke an inherited handler in the local context.

current application The application that is using
the AppleScript component to compile and execute
scripts (typically, Script Editor).

current script The script currently being executed.

current target The object that is the current default
target for commands.

data A class used for data that do not belong to any
of the other AppleScript classes; see the data class.

date A class that specifies a time, day of the month,
month, and year; see the date class.

declaration The first occurrence of a variable or
property identifier in a script. The form and location
of the declaration determine how AppleScript treats
the identifier in that script—for example, as a
property, global variable, or local variable.

default target The object that receives a command
if no object is specified or if the object is incompletely
specified in the command. Default (or implicit) targets
are specified in tell statements.

delegation The handing off of control to another
object. In AppleScript, the use of a continue
statement to call a handler in a parent object or the
current application.

dialect A version of the AppleScript language that
resembles a specific human language or programming
language. As of AppleScript 1.3, English is the only
dialect supported.

dictionary The set of commands, objects, and other
terminology that is understood by an application or
other scriptable entity. You can display an
application’s dictionary with Script Editor.

direct parameter The parameter immediately
following a command, which typically specifies the
object to which the command is sent.

double angle brackets Characters («») typically used
by AppleScript to enclose raw data. With a U.S.
keyboard, you can enter double angle brackets (also
known as chevrons) by typing Option-Backslash and
Shift-Option-Backslash.

element An object contained within another object.
An object can typically contain zero or more of each
of its elements.

empty list A list containing no items. See the list
class.

error expression An expression, usually a text
object, that describes an error.

246
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

GLOSSARY

error handler A collection of statements that are
executed in response to an error message. See the
try statement.

error message A message that is supplied by an
application, by AppleScript, or by Mac OS X when an
error occurs during the handling of a command.

error number An integer that identifies an error.

evaluation The conversion of an expression to a
value.

every reference form A reference form that specifies
every object of a particular type in a container.

exit statement A statement used in the body of a
repeat statement to exit the Repeat statement.

explicit run handler A handler at the top level of a
script object that begins with on run and ends
with end. A single script object can include an
explicit run handler or an implicit run handler, but
not both.

expression In AppleScript, any series of words that
has a value.

filter A phrase, added to a reference to a system or
application object, that specifies elements in a
container that match one or more conditions.

filter reference form A reference form that specifies
all objects in a container that match a condition
specified by a Boolean expression.

formal parameter See parameter variable.

global variable A variable that is available anywhere
in the script in which it is defined.

handler A collection of statements that can be
invoked by name. See also command.

identifier A series of characters that identifies a value
or handler in AppleScript. Identifiers are used to name
variables, handlers, parameters, properties, and
commands.

ID reference form A reference form that specifies
an object by the value of its ID property.

if statement A control statement that contains one
or more Boolean expressions whose results determine
whether to execute other statements within the if
statement.

ignoring statement A control statement that lists
a specific set of attributes to be ignored when
AppleScript performs operations on text strings or
sends commands to applications.

implicit run handler All the statements at the top
level of a script except for property definitions,
script object definitions, and other handlers. A
single script object can include an explicit run
handler or an implicit run handler, but not both.

index reference form A reference form that specifies
an object by describing its position with respect to
the beginning or end of a container.

inheritance The ability of a child script object to
take on the properties and handlers of a parent object.

inheritance chain The hierarchy of objects that
AppleScript searches to find the target for a command
or the definition of a term.

initializing a script object The process of creating a
script object from the properties and handlers listed
in a script object definition. AppleScript creates a
script object when it runs a script or handler that
contains a script object definition.

insertion point A location where another object or
objects can be added.

integer A positive or negative number without a
fractional part; see the integer class.

item A value in a list or record. An item can be
specified by its offset from the beginning or end of
the list or record.

keyword A word that is part of the AppleScript
language. Synonymous with reserved word.

labeled parameter A parameter that is identified
by a label. See also positional parameter.

lifetime The period of time over which a variable or
property is in existence.

247
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

GLOSSARY

list An ordered collection of values; see the list
class.

literal A value that evaluates to itself.

local variable A variable that is available only in the
handler in which it is defined. Variables that are
defined within handlers are local unless they are
explicitly declared as global variables.

log statement A script statement that reports the
value of one or more variables to the Event Log pane
of a script window, and to the Event Log History
window, if it is open.

loop A series of statements that is repeated.

loop variable A variable whose value controls the
number of times the statements in a repeat
statement are executed.

middle reference form A reference form that
specifies the middle object of a particular class in a
container. (This form is rarely used.)

name reference form A reference form that specifies
an object by name—that is, by the value of its name
property.

nested control statement A control statement that
is contained within another control statement.

number A synonym for the AppleScript classes
integer and real.

object An instantiation of a class definition, which
can include properties and actions.

object conversion See coercion.

object specifier A phrase specifies the information
needed to find another object in terms of the objects
in which it is contained. See also absolute object
specifier, relative object specifier, and reference form.

operand An expression from which an operator
derives a value.

operation The evaluation of an expression that
contains an operator.

operator A symbol, word, or phrase that derives a
value from another value or pair of values.

optional parameter A parameter that need not be
included for a command to be successful.

outside property, variable, or statement A
property, variable, or statement in a script object
but occurs outside of any handlers or nested script
objects.

parameter variable An identifier in a handler
definition that represents the actual value of a
parameter when the handler is called. Also called a
formal parameter.

parent object An object from which another script
object, called the child, inherits properties and
handlers. A parent object may be any object, such as
a list or an application object, but it is typically
another script object.

positional parameter A handler parameter that is
identified by the order in which it is listed. In a handler
call, positional parameters are enclosed in parentheses
and separated by commas. They must be listed in the
order in which they appear in the corresponding
handler definition.

property A labeled container in which to store a
value. Properties can specify characteristics of objects.

property reference form A reference form that
specifies a property of an application object,
record or script object.

range reference form A reference form that specifies
a series of objects of the same class in the same
container.

raw format AppleScript terms enclosed in double
angle brackets, or chevrons («»). AppleScript uses raw
format because it cannot find a script term in any
available dictionary, or cannot display data in its
native format.

real A number that can include a decimal fraction;
see the real class.

record An unordered collection of properties,
identified by unique labels; see the record class.

248
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

GLOSSARY

recordable application An application that uses
Apple events to report user actions for recording
purposes. When recording is turned on, Script Editor
creates statements corresponding to any significant
actions you perform in a recordable application.

recursive handler A handler that calls itself.

reference An object that encapsulates an object
specifier.

reference form The syntax for identifying an object
or group of objects in an application or other
container—that is, the syntax for constructing an
object specifier.AppleScript defines reference forms
for arbitrary, every, filter, ID, index, middle, name,
property, range, and relative.

relative object specifier An object specifier that
does not include enough information to identify an
object or objects uniquely. When AppleScript
encounters a partial object specifier, it uses the default
object specified in the enclosing tell statement to
complete the reference. See absolute object specifier.

relative reference form A reference form that
specifies an object or location by describing its
position in relation to another object, known as the
base, in the same container.

repeat statement A control statement that contains
a series of statements to be repeated and, in most
cases, instructions that specify when the repetition
stops.

required parameter A parameter that must be
included for a command to be successful.

reserved word A word that is part of the AppleScript
language. Synonymous with keyword.

result A value generated when a command is
executed or an expression evaluated.

return statement A statement that exits a handler
and optionally returns a specified value.

scope The range over which AppleScript recognizes
a variable or property, which determines where else
in a script you may refer to that variable or property.

script A series of written instructions that, when
executed, cause actions in applications or Mac OS X.

scriptable application An application that can be
controlled by a script. For AppleScript, that means
being responsive to interapplication messages, called
Apple events, sent when a script command targets
the application.

script application An application whose only
function is to run the script associated with it.

script editor An application used to create and
modify scripts.

Script Editor The script-editing application
distributed with AppleScript.

scripting addition A file that provides additional
commands or coercions you can use in scripts. If a
scripting addition is located in the Scripting Additions
folder, its terminology is available for use by any
script.

scripting addition command A command that is
implemented as a scripting addition.

script object A user-defined object that can combine
data (in the form of properties) and actions (in the
form of handlers and additional script objects).

script object definition A compound statement that
contains a collection of properties, handlers, and other
AppleScript statements.

simple statement One that can be written on a single
line. See also compound statement.

simple value A value, such as an integer or a
constant, that does not contain other values.

Standard suite A set of standard AppleScript
terminology that a scriptable application should
support if possible. The Standard suite contains
commands such as count, delete, duplicate, and
make, and classes such as application, document,
and window.

statement A series of lexical elements that follows
a particular AppleScript syntax. Statements can
include keywords, variables, operators, constants,
expressions, and so on. See also compound statement,
simple statement.

249
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

GLOSSARY

statement block One or more statements enclosed
in a compound statement and having an end
statement.

string A synonym for the text class.

styled text Text that may include style and font
information. Not supported in AppleScript 2.0.

suite Within an application's scriptability information,
a grouping of terms associated with related
operations.

synonym An AppleScript word, phrase, or language
element that has the same meaning as another
AppleScript word, phrase, or language element. For
example, the operator does not equal is a synonym
for .

syntax The arrangement of words in an AppleScript
statement.

syntax description The rules for constructing a valid
AppleScript statement of a particular type.

system object An object that is part of a scriptable
element of Mac OS X.

target The recipient of a command. Potential targets
include application objects, script objects
(including the current script), and the current
application.

tell statement A control statement that specifies
the default target for the statements it contains.

test A Boolean expression that specifies the
conditions of a filter or an if statement.

text An ordered series of characters (a text string);
see the text class.

try statement A two-part compound statement that
contains a series of AppleScript statements, followed
by an error handler to be invoked if any of those
statements cause an error.

unary operator An operator that derives a new value
from a single value.

Unicode An international standard that uses a 16-bit
encoding to uniquely specify the characters and
symbols for all commonly used languages.

Unicode code point A unique number that
represents a character and allows it to be represented
in an abstract way, independent of how it is rendered.

Unicode text A class that represents an ordered
series of two-byte Unicode characters.

user-defined command A command that is
implemented by a handler defined in a scriptobject.

using terms from statement A control statement
that instructs AppleScript to use the terminology from
the specified application in compiling the enclosed
statements.

variable A named container in which to store a
value.

with timeout statement A control statement that
specifies the amount of time AppleScript waits for
application commands to complete before stopping
execution of the script.

with transaction statement A control statement
that allows you to take advantage of applications that
support the notion of a transaction—a sequence of
related events that should be performed as if they
were a single operation, such that either all of the
changes are applied or none are.

250
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to AppleScript Language Guide.

NotesDate

Updated to describe AppleScript features through Mac OS X v10.5 and
AppleScript 2.0.

2008-03-11

The previous release of AppleScript Language Guide was on May 5, 1999.

251
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

252
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Symbols

* operator 183
+ operator 184
/ operator 184
= operator 180
> operator 180
>= operator 181
& (concatenation) operator 187
& operator 180
& operator 187
< operator 181
<= operator 181
" character 100
\ character 100
^ operator 185
{} characters 89
| in identifiers 18
| in syntax definitions 15
«» characters 241–242
¬ character 20
÷ operator 184
– operator 184
 operator 180
≤ operator 181
≥ operator 181

A

a reference to operator 31, 95, 185, 188
about handler parameter label 215
above handler parameter label 215
absolute object specifiers 30
activate command 108
adding folder items to Folder Actions handler 222
addition operator 184
addition

of date values 86
administrator privileges parameter

of command do shell script 129

after reserved word 176
against handler parameter label 215
alert volume parameter

of command set volume 157
alias class 79
alias

specifying a file by 41
aliases and files 41–43
aliases

working with 42
altering line endings parameter

of command do shell script 129
and operator 179
angle brackets in scripts 241–242
apart from handler parameter label 215
Apple event code 24
Apple events 13
AppleScript character set (Unicode) 17
AppleScript constant 37
AppleScript 37
current application 39

AppleScript global constants 37
AppleScript property
missing value 40
pi constant 37
result 38
text constants 38
text item delimiters 38
version 39

AppleScript suite 105
AppleScript

commands 35
constants 37
defined 13
error numbers 233, 234
fundamentals 25–46
keywords 18, 227–231
lexical conventions 17–24
script objects 57–65
unsupported terms 243
variables and properties 47–56

application class 80

253
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Index

application commands 35
application object 34
applications

remote 44
arbitrary reference form 167
arithmetic, date-time 86
around handler parameter label 215
as operator 32, 185
as parameter

of command choose application 111
of command display alert 124
of command do shell script 129
of command get 130
of command path to (application) 142
of command path to (folder) 145
of command read 148
of command the clipboard 162
of command write 164

as user name parameter
of command mount volume 139

ASCII character command 108
ASCII number command 109
aside from handler parameter label 215
assignment statement 22
associativity, of operators 185
at handler parameter label 215

B

back of reserved words 176
back reserved word 172, 177
backslash character in text 100
beep command 110
before parameter

of command read 148
before reserved word 176
beginning reserved word 177
begins with operator 182
behind reserved word 176
below handler parameter label 215
beneath handler parameter label 215
beside handler parameter label 215
between handler parameter label 215
binary operator 179
Bonjour

and remote applications 44, 118
service types 119

boolean class 82
Boolean constants 20, 40, 83
boolean expressions 197
brackets 15
but keyword 193

buttons parameter
of command display alert 124
of command display dialog 126

by handler parameter label 215

C

cancel button name parameter
of command choose from list 117

cancel button parameter
of command display alert 125
of command display dialog 126

case attribute 194
character element 99
character

elements of a text object 99
chevrons 24, 241
child script objects 61
choose application command 110
choose color command 111
choose file command 112
choose file name command 114
choose folder command 115
choose from list command 116
choose remote application command 118
choose URL command 119
class class 83
class property 79, 80, 82, 84, 85, 89, 90, 92, 93, 94, 97,

98, 103
class

defined 79
reference 79–104

classes
mutable 49

Clipboard Commands suite 105
clipboard info command 120
close access command 120
closing folder window for Folder Actions handler

223
coercion operator (as) 185
coercion

see object conversion 32
comes after operator 180
comes before operator 181
commands

AppleScript 35
application 35
defined 105
direct parameter of 36
reference 105–165
scripting addition 35
target of 35

254
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INDEX

user-defined 35
waiting for completion of 211

comments 19
block 19
end-of-line 19

completion
of commands 211

compound statements 23
concatenation operator (&) 180, 187
considering / ignoring (application

responses) control statement 195
considering / ignoring (text comparison)

control statement 193
considering and ignoring statements 193
considering statements (application responses) 195
considering statements (string comparison) 193
constant class 84
constant

defined 20
constants

AppleScript 37
Boolean 20, 40, 83
days of the week 86
months of the year 86
text 100
white space 100

constructor functions 59
containers 30
contains operator 182, 189
contains, is contained by operator 189
contents property 31, 96
continue statement

defined 213
in script objects 63

control statements reference 193–212
conventions in this book 15
copy command 121
count command 122
current application and parent property 39
current application constant 39
current date command 123
current script 40
current target 40

D

date class 85
date string property 86
date, relative 88
date-time arithmetic 86
day property 86
days of the week constants 86

debugging tips 45
flow of control 45
log statements 46
third party debuggers 46

default answer parameter
of command display dialog 126

default button parameter
of command display alert 125
of command display dialog 126

default color parameter
of command choose color 112

default items parameter
of command choose from list 117

default location parameter
of command choose file 113
of command choose file name 114
of command choose folder 115

default name parameter
of command choose file name 114

delay command 123
delegation 63
diacriticals attribute 194
dictionary

defined 25
displaying 25
when not available 241

direct parameter of commands 36
display alert command 124
display dialog command 125
displaying parameter

of command say 153
div operator 184
division operator (÷) 184
do shell script command 128
does not come after operator 181
does not come before operator 181
does not contain operator 183
does not equal operator 180
double angle brackets 241–242
double-quote character 100

E

editable URL parameter
of command choose URL 119

eighth reserved word 172
elements of objects 28
ellipsis in syntax definitions 15
else clause 199
else if clause 199
empty list 89
empty selection allowed parameter

255
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INDEX

of command choose from list 117
enabling remote applications 44
end reserved word 177
ends with operator 182, 192
eppc-style specifier 44
equal operator 190
equal, is not equal to operator 190
equals operator 180
error control statement 196
error numbers

AppleScript 233, 234
defined 196

error reporting parameter
of command open location 141

error
expression 196
handlers 207
handling 36
message 196
user cancelled 37

errors
resignaling in scripts 237
signaling in scripts 196
types of 37
working with 237–239

evaluation
defined 22
of expressions 22

Event Log History window 209
event timed out error message 211
every reference form 168
every reserved word 168
exit control statement 199
exit from repeat loop 199
explicit run handlers 74
exponent operator (^) 185
expressions 22
boolean 197
evaluation of 22

F

false constant 40, 83
fifth reserved word 172
file class 88
File Commands suite 105
File Read/Write suite 106
files and aliases 41–43
files, specifying

by alias 41
by name 43
by pathname 43

filter reference form 169
first reserved word 172
Folder Actions reference 221–225
folder creation parameter

of command path to (folder) 145
for handler parameter label 215
for parameter

of command clipboard info 120
of command read 148
of command write 164

fourth reserved word 172
from handler parameter label 215
from parameter

of command path to (folder) 145
of command random number 146
of command read 148

from reserved word 175
from table parameter

of command localized string 136
front of reserved words 176
front reserved word 172, 177
frontmost property 80

G

get command 129
get eof command 131
get volume settings command 131
given handler parameter label 215
giving up after parameter

of command display alert 125
of command display dialog 127

global constants
of AppleScript 37

global variables 49, 52
persistence of 53
scope of 51

greater than operator 180, 191
greater than or equal to operator 181
greater than, less than operator 191

H

handle CGI request (unsupported) 243
handlers

call syntax
labeled parameters 216
positional parameters 218

calling from a tell statement 72
defined 67

256
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INDEX

defining simple 68
defining syntax

labeled parameters 215
no parameters 68
positional parameters 218

errors in 71
for errors 207
for stay-open script applications 76–77
idle 76
in script applications 73
libraries of 72
open 75
overview 67–77
quit 76
recursive 71
reference 213–219
run 74
scope of identifiers declared within 55

has parameter
of command system attribute 160

hidden answer parameter
of command display dialog 126

hyphens attribute 194

I

id property 80, 98
ID reference form 171
id reserved word 171
identifiers 18
idle handlers 76
if (compound) control statement 198
if (simple) control statement 198
ignoring statements (application responses) 195
ignoring statements (string comparison) 193
implicit run handlers 74
implicitly specified subcontainers 29
in AppleTalk zone parameter

of command mount volume 139
in back of reserved words 176
in bundle parameter

of command localized string 136
of command path to resource 146

in directory parameter
of command path to resource 146

in front of reserved words 176
in parameter

of command offset 139
of command run script 152
of command store script 158
of command summarize 159

in

for specifying a container 30
with date objects 88

index reference form 172
index reserved word 172
info for command 132
inheritance 60–65

examples of 61
initializing script objects 59
input volume parameter

of command set volume 157
insertion point 36
insertion point object

and index reference form 177
and relative reference form 176

instead of handler parameter label 215
integer class 89
integral division operator 184
internet address (unsupported) 243
Internet suite 106
into handler parameter label 215
invisibles parameter

of command choose file 113
of command choose folder 115
of command list folder 135

is contained by operator 183, 189
is equal to operator 180
is not contained by operator 183
is not equal to operator 190
is not greater than operator 181
is not less than operator 181
is not operator 180
is operator 180
it keyword 40
item element 90
items 89, 96
its reserved word 40

K

keywords, AppleScript 18, 227

L

labeled parameters, of handlers 68
language elements in syntax definitions 15
large lists

inserting in 91
last reserved word 172
launch command 134
length property 90, 94, 98

257
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INDEX

less than operator 181, 191
less than or equal to operator 181
libraries of handlers 72
lifetime of variables and properties 51
linefeed constant 100
list class 89
list disks command 134
list folder command 135
lists

inserting in large 91
merging 91

literal expressions 20
load script command 72, 135
local variables 48, 52, 59

scope of 51
localized string command 136
location parameters 36
log command 138
log statements 46
loop variable 202, 203
lowercase letters 194

M

me keyword 40
merging lists 91
message parameter

of command display alert 124
middle reference form 173
middle reserved word 173
minus symbol (–) 184
Miscellaneous Commands suite 106
missing value constant 40
mod operator 184
month property 86
months of the year constants 86
mount volume command 138
moving folder window for Folder Actions handler

223
multiple selections allowed parameter

of command choose application 111
of command choose file 113
of command choose folder 115
of command choose from list 117

multiplication operator (*) 183
mutable classes 49
my reserved word 64
my

in tell statements 72

N

name property 80
name reference form 173
name

specifying a file by 43
named reserved word 174
nested tell statements 205

examples 206
ninth reserved word 172
not operator 185
number class 92
numeric literal 21

O

object conversion (coercion) 32
object conversion

table of supported conversions 32
object specifiers 22, 29

absolute 30
contents of 29
evaluating with contents property 31
implicitly specified subcontainers 29
in reference objects 31
relative 30

objects
elements of 28
properties of 28
script

initializing 59
parent 61–65
sending commands to 59

using in AppleScript 26
of me

in tell statements 72
of my keyword 40
of parameter

of command offset 139
of type parameter

of command choose file 113
of

for specifying a container 30
with date objects 88

offset command 139
OK button name parameter

of command choose from list 117
on handler parameter label 215
on server parameter

of command mount volume 138
onto handler parameter label 215
open for access command 140

258
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INDEX

open handlers 75
open location command 141
opening folder Folder Actions handler 224
operators

binary 179
defined 179
listed, with descriptions 179–185
precedence 185
reference 179–192
unary 179

or operator 179
out of handler parameter label 215
output muted parameter

of command set volume 157
output volume parameter

of command set volume 157
over handler parameter label 215

P

paragraph element 99
parameter variables 59, 213
parameters

direct 36
in continue statements 213
labeled 68
location 36
passing by reference versus value 71
patterned 70
positional 69

parent property 61
parent script objects 61–65
password parameter

of command do shell script 129
path to (application) command 142
path to (folder) command 143
path to resource command 145
pathname

specifying a file by 43
paths, specifying a file with 42
patterned parameters 70
persistence

of global variables 53
of script properties 53

pi constant 37
placeholders in syntax definitions 15
plural object names 168
plus symbol (+) 184
positional parameters, of handlers 69
POSIX file class 93
POSIX files

using with files and aliases 36–43

POSIX path property 79
possessive notation ('s) 30
possessive object names 30
precedence

of attributes 195
of operations 185

properties
declaring 47
lifetime of 51
of objects 28
of script objects 58
scope of 51

property reference form 174
punctuation attribute 194
put, (Deprecated--use copy) 230

Q

quit handlers 76
quoted form property 98

R

random number command 146
range reference form 175
raw apple events 242
raw data

displayed by AppleScript 241
entering in a script 242

raw format 241
read command 147
real class 93
record class 94
recursion 71
recursive handlers 71
reference class 95
reference forms 167–177

arbitrary 167
defined 167
every 168
filter 169
ID 171
index 172
middle 173
name 173
property 174
range 175
relative 176

relative object specifiers 30
relative reference form 176

259
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INDEX

relative to
with date objects 88

remainder operator 184
remote applications 44

choosing 118
enabling 44
targeting 44

removing folder items from Folder Actions handler
225

reopen command 134
repeat (forever) control statement 199
repeat (number) times control statement 200
repeat control statements 199
repeat until control statement 201
repeat while control statement 202
repeat with loopVariable (from startValue to

stopValue) control statement 202
repeat with loopVariable (in list) control

statement 203
replacing parameter

of command store script 158
reserved words (see keywords) 227
rest of property 90
rest property 90
Result pane 24, 38
result property 38
result variable 24
result, of statement 24
return character

in text objects 101
return constant 100
return statement 214

in handler definition 67
returning, Deprecated reserved word 230
reverse property 90
RGB color class 96
round command 149
rounding parameter

of command round 150
run command 151
run handlers 74

explicit 74
implicit 74
in script objects 58, 60

run script command 151
running property 81
runTarget parameter

of command run 151

S

saving to parameter

of command say 153
say command 152
scope

of variables and properties 51
shadowing 52, 61

script applications 73
calling 77
handlers for 73
Mac OS 9 compatible 73
modern bundle format 73
startup screen in 73
stay-open 73

script class 97
Script Editor

Event Log History window 46, 209
location in system 25
overview 25

script objects 57–65
child 61
contents of 27
defined 57
initializing 59
parent 61–65
scope of identifiers declared at top level of 52
sending commands to 59
syntax of 57

script properties
persistence of 53
scope of 51

script, current 40
scripting addition

command 35
overview 34

scripting components command 153
Scripting suite 106
second reserved word 172
set command 154
set eof command 155
set the clipboard to command 156
set volume command 157
seventh reserved word 172
short-circuiting, during evaluation 179
showing package contents parameter

of command choose file 113
of command choose folder 115

showing parameter
of command choose URL 119

simple statements 23
since handler parameter label 215
sixth reserved word 172
size parameter

of command info for 132
slash symbol (/) 184

260
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INDEX

some reserved word 167
space constant 100
special characters

in identifiers 18
in text 100

Standard suite 107
starting at parameter

of command write 164
starts with operator 182, 192
starts with, ends with operator 192
startup screen in script applications 73
statements 23

compound 23
simple 23

stay-open script applications 73
store script command 158
storing values in variables 22
string class 102
String Commands suite 107
subtraction of date values 86
subtraction operator (–) 184
suites

AppleScript 105
Clipboard Commands 105
File Commands 105
File Read/Write 106
Internet 106
Miscellaneous Commands 106
Scripting 106
Standard 107
String Commands 107
User Interaction 107

summarize command 159
synonyms for whose 169
system attribute command 160
system info command 161

T

tab character
in text objects 101

tab constant 100
target, current 40
target

of commands 35
targeting remote applications 44
tell (compound) control statement 206
tell (simple) control statement 206
tell statements 36, 205

nested 205
nested, examples of 206

tenth reserved word 172

terminating
handler execution 214
repeat statement execution 199

test
Boolean 197
in filter reference form 169

text class 97
text element 99
text item delimiters

AppleScript property 38
text literal 21
text

as replacement for string 97
constants 38, 100
special characters in 100

that reserved word 169
the clipboard command 162
the reserved word (syntactic no-op) 230
then reserved word 198
third reserved word 172
through handler parameter label 215
through reserved word 175
thru handler parameter label 215
thru reserved word 175
time property 86
time string property 86
time to GMT command 163
timeout, default value 210
times reserved word 201
to parameter

of command copy 121
of command random number 146
of command read 148
of command set 154
of command set eof 156
of command write 163

transaction reserved word 211
true constant 40, 83
try control statement 207
try statements 207

U

unary operators 179
under handler parameter label 215
Unicode text class 102
unit types class 103
Unix executable

making script into 19
unsupported terms 243
until parameter

of command read 148

261
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INDEX

uppercase letters 194
user cancelled error 37
User Interaction suite 107
user name parameter

of command do shell script 129
user-defined commands 35
using delimiter parameter

of command read 148
using delimiters parameter

of command read 148
using parameter

of command say 153
using terms from control statement 209

V

variables 22
declaring 48
declaring with copy command 50
declaring with set command 49
defined 22
global 49, 51, 52
lifetime of 51
local 48, 51, 52, 59
scope of 51

version property 39, 81
vertical bar character (|) in identifiers 18
vertical bars (|)

in syntax definitions 15

W

waiting until completion parameter
of command say 153

web page (unsupported) 243
weekday property 86
where reserved word 169
while reserved word 202
white space attribute 194
white space constants 100
whose reserved word 169
whose

synonyms for 169
with clause 217
with icon parameter

of command display dialog 127
with parameters parameter

of command run script 152
with password parameter

of command mount volume 139

with prompt parameter
of command choose application 111
of command choose file 112
of command choose file name 114
of command choose folder 115
of command choose from list 117
of command choose remote application 118

with seed parameter
of command random number 147

with timeout control statement 210
with timeout statements 210, 211
with title parameter

of command choose application 111
of command choose from list 117
of command choose remote application 118
of command display dialog 127

with transaction control statement 211
without clause 217
word element 99
working with errors 237
write command 163
write permission parameter

of command open for access 140

Y

year property 86

262
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

INDEX

	AppleScript Language Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	AppleScript Lexical Conventions
	Character Set
	Identifiers
	Keywords
	Comments
	The Continuation Character
	Literals and Constants
	Boolean
	Constant
	List
	Number
	Record
	Text

	Operators
	Variables
	Expressions
	Statements
	Commands
	Results
	Raw Codes

	AppleScript Fundamentals
	Script Editor Application
	AppleScript and Objects
	What Is in a Script Object
	Properties
	Elements

	Object Specifiers
	What Is in an Object Specifier
	Containers
	Absolute and Relative Object Specifiers
	Object Specifiers in Reference Objects

	Coercion (Object Conversion)
	Scripting Additions
	Commands Overview
	Types of Commands
	Target
	Direct Parameter
	Parameters That Specify Locations

	AppleScript Error Handling
	Global Constants in AppleScript
	AppleScript Constant
	pi
	result
	Text Constants
	text item delimiters
	version

	current application Constant
	missing value Constant
	true, false Constants

	The it and me Keywords
	Aliases and Files
	Specifying Paths
	Working With Aliases
	Working With Files

	Remote Applications
	Enabling Remote Applications
	eppc-Style Specifiers
	Targeting Remote Applications

	Debugging AppleScript Scripts
	Feedback From Your Script
	Logging
	Third Party Debuggers

	Variables and Properties
	Defining Properties
	Declaring Variables
	Local Variables
	Global Variables
	Using the copy and set Commands
	Declaring Variables with the set Command
	Declaring Variables with the copy Command

	Scope of Variables and Properties
	Scope of Properties and Variables Declared in a Script Object
	Scope of Variables Declared in a Handler

	Script Objects
	Defining Script Objects
	Initializing Script Objects
	Sending Commands to Script Objects
	Inheritance in Script Objects
	The AppleScript Inheritance Chain
	Defining Inheritance Through the parent Property
	Some Examples of Inheritance
	Using the continue Statement in Script Objects

	About Handlers
	Handler Basics
	Defining a Simple Handler
	Handlers with Labeled Parameters
	Handlers with Positional Parameters
	Handlers with Patterned Positional Parameters
	Recursive Handlers
	Errors in Handlers
	Passing by Reference Versus Passing by Value
	Calling Handlers in a tell Statement

	Saving and Loading Libraries of Handlers
	Handlers in Script Applications
	run Handlers
	open Handlers
	idle and quit Handlers for Stay-Open Applications
	idle Handlers
	quit Handlers

	Calling a Script Application From a Script

	Class Reference
	alias
	application
	boolean
	class
	constant
	date
	file
	integer
	list
	number
	POSIX file
	real
	record
	reference
	RGB color
	script
	text
	unit types

	Commands Reference
	activate
	ASCII character
	ASCII number
	beep
	choose application
	choose color
	choose file
	choose file name
	choose folder
	choose from list
	choose remote application
	choose URL
	clipboard info
	close access
	copy
	count
	current date
	delay
	display alert
	display dialog
	do shell script
	get
	get eof
	get volume settings
	info for
	launch
	list disks
	list folder
	load script
	localized string
	log
	mount volume
	offset
	open for access
	open location
	path to (application)
	path to (folder)
	path to resource
	random number
	read
	round
	run
	run script
	say
	scripting components
	set
	set eof
	set the clipboard to
	set volume
	store script
	summarize
	system attribute
	system info
	the clipboard
	time to GMT
	write

	Reference Forms
	Arbitrary
	Every
	Filter
	ID
	Index
	Middle
	Name
	Property
	Range
	Relative

	Operators Reference
	& (concatenation)
	text
	record
	All Other Classes

	a reference to
	Examples

	contains, is contained by
	list
	record
	text

	equal, is not equal to
	list
	record
	text

	greater than, less than
	date
	integer, real
	text

	starts with, ends with
	list
	text

	Control Statements Reference
	considering and ignoring Statements
	considering / ignoring (text comparison)
	considering / ignoring (application responses)

	error Statements
	error

	if Statements
	if (simple)
	if (compound)

	repeat Statements
	exit
	repeat (forever)
	repeat (number) times
	repeat until
	repeat while
	repeat with loopVariable (from startValue to stopValue)
	repeat with loopVariable (in list)

	tell Statements
	tell (simple)
	tell (compound)

	try Statements
	try

	using terms from Statements
	using terms from

	with timeout Statements
	with timeout

	with transaction Statements
	with transaction

	Handler Reference
	continue
	return
	Handler Syntax (Labeled Parameters)
	Calling a Handler with Labeled Parameters
	Handler Syntax (Positional Parameters)
	Calling a Handler with Positional Parameters

	Folder Actions Reference
	adding folder items to
	closing folder window for
	moving folder window for
	opening folder
	removing folder items from

	Appendix A: AppleScript Keywords
	Appendix B: Error Numbers and Error Messages
	AppleScript Errors
	Operating System Errors

	Appendix C: Working with Errors
	Catching Errors in a Handler
	Simplified Error Checking

	Appendix D: Double Angle Brackets
	When a Dictionary Is Not Available
	When AppleScript Displays Data in Raw Format
	Entering Script Information in Raw Format
	Sending Raw Apple Events From a Script

	Appendix E: Unsupported Terms
	List of Unsupported Terms

	Glossary
	Revision History
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

