
Automator Programming Guide
Interapplication Communication

2007-12-11

Apple Inc.
© 2004, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, AppleScript
Studio, Aqua, Carbon, Cocoa, Finder, iCal, iChat,
iDVD, iPhoto, iPod, iTunes, Leopard, Mac, Mac
OS, Macintosh, Objective-C, QuickTime, Safari,
Spotlight, Tiger, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Automator Programming Guide 11

Who Should Read This Document 11
Organization of This Document 11
See Also 12

Automator and the Developer 13

Constructing Workflows With Automator 13
Workflow Scenarios 14
Developing for Automator 15
Automator Actions as Universal Binaries 16

How Automator Works 19

The Development Components of Automator 19
Loadable Bundle Architecture 19

A New Workflow 21
An Unarchived Workflow 22
Programming Implications of Loadable Bundles 22

Threading Architecture 23
The Automator Classes 24

Design Guidelines for Actions 27

What Makes a Good Action? 27
Action Input and Output 27
Naming an Action 28
The User Interface of an Action 28

Developing an Action 31

Creating an Automator Action Project 31
Constructing the User Interface 33

Using the Cocoa-Automator Palette 35
Establishing Bindings 38

Specifying Action Properties 41
Using the Automator Property Inspector 42

Writing the Action Description 44
Writing the Action Code 46
Internationalizing the Action 47

Localized Strings 47

3
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Localizing the Automator Properties 48
Internationalizing Resource Files 49

Testing, Debugging, and Installing the Action 49
Testing and Debugging Strategies 50
Installing Actions 52
Frequently Asked Questions About Debugging Automator Actions 52

Show When Run 55

The “Show Action When Run” Option 55
Refining Show When Run 58

Specifying Properties for Show When Run 58
Grouping User-Interface Objects 58

Implementing an AppleScript Action 63

The Structure of the on run Command Handler 63
Other AppleScript Scripts 64
Hybrid Actions 65
Updating Non-bound Parameters 66

Implementing an Objective-C Action 69

Specifying Cocoa Type Identifiers 69
Implementing runWithInput:fromAction:error: 69
Updating Action Parameters 72
Loading and Executing Scripts 74

Creating Shell Script Actions 77

The Run Shell Script Action 77
Custom Shell Script Actions 79
Creating the Shell Script Action Project 79
Composing the Action View 81
Automator Properties for Shell Script Actions 82
Writing the Script 83
Debugging and Testing Shell Script Actions 85

Creating a Conversion Action 89

Defining Your Own Data Types 91

When to Define a Data Type 91
Creating the Definition Bundle 91
Specifying Defined Types 97
Adding a Localization 98

4
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator Action Property Reference 101

Property Keys and Values 101
Type Identifiers 108

Document Revision History 111

5
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

6
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Automator and the Developer 13

Figure 1 A typical Automator workflow 13

How Automator Works 19

Figure 1 When launched, Automator gets information about available actions 20
Figure 2 When user drags AppleScript-based action into workflow, Automator loads bundle

21
Figure 3 The Automator public classes 24
Figure 4 A typical action script 26

Design Guidelines for Actions 27

Figure 1 An action that includes an example of its effect 29

Developing an Action 31

Figure 1 Choosing a Cocoa Automator Action project type in Xcode 32
Figure 2 Template files for a Cocoa Automator Action project 33
Figure 3 FIle’s Owner set to an instance of AMBundleAction 34
Figure 4 Cocoa-Automator palette 35
Figure 5 The Directories pop-up menu in an action 36
Figure 6 Attributes inspector for Cocoa-Automator palette objects 37
Figure 7 The path binding for the pop-up menu 38
Figure 8 Adding the keys of the Parameters instance (NSObjectController) 39
Figure 9 Establishing a binding for a pop-up menu 40
Figure 10 Part of the template for the Automator properties in Info.plist 42
Figure 11 Automator property inspector—General properties 43
Figure 12 Automator property inspector—Input properties 44
Figure 13 An sample action description 45
Figure 14 Template for an Objective-C action implementation 46
Figure 15 Setting the launch argument for Automator 50
Figure 16 The AppleScript debugger 51
Listing 1 AMDescription properties for Send Birthday Greetings description 45
Listing 2 Using NSLocalizedString in Objective-C code 48
Listing 3 Script handler for localizing strings 48

Show When Run 55

Figure 1 The Show Action When Run option in two actions 56
Figure 2 Action displaying entire user interface in a window 57

7
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Figure 3 Action displaying part of its user interface in a window 57
Figure 4 An action with assigned groups in the selected-items table 59
Figure 5 Selecting objects for an action group 60
Figure 6 Assigning a title to the action group 61

Implementing an AppleScript Action 63

Figure 1 Selecting the parameters-related handlers for action views 67
Listing 1 An event handler for displaying a Save panel 65
Listing 2 Implementing a custom Objective-C method to be called by a script 66
Listing 3 A script calling the Objective-C method 66
Listing 4 An “update parameters” command handler 67

Implementing an Objective-C Action 69

Listing 1 An Objective-C action that does not handle its input object 70
Listing 2 Implementing runWithInput:fromAction:error: 70
Listing 3 Reporting a fatal error to Automator 71
Listing 4 Updating an Objective-C action’s parameters manually 73
Listing 5 Saving an NSURL object to parameters as a string object 73
Listing 6 Restoring an NSURL object from an action’s parameters 74
Listing 7 Executing an AppleScript script in an Objective-C action 74

Creating Shell Script Actions 77

Figure 1 The Run Shell Script action in a workflow 78
Figure 2 Selecting the Shell Script Automator Action template 80
Figure 3 The project window of a shell script action 81
Figure 4 The parameter keys in the NSObjectController inspector 82
Listing 1 A sample shell script for an action 83
Listing 2 A Perl script for an action 84
Listing 3 The sorting shell script for an action, with debugging statements 86

Creating a Conversion Action 89

Figure 1 A typical conversion script 90
Listing 1 Typical Automator properties for conversion actions 89

Defining Your Own Data Types 91

Figure 1 The names of action input and output 92
Figure 2 The contents of iCal.definition 93
Figure 3 Select the generic Cocoa bundle project type 94
Figure 4 Changing the bundle extension 95
Figure 5 The definition.plist file in the Groups and Files list 96

8
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Figure 6 Initial layout for a bundle package 96
Figure 7 Editing the defined types in Property List Editor 98
Listing 1 The contents of definition.plist — Automator definition bundle (partial)

97
Listing 2 Contents of a Localizable.strings file 99

Automator Action Property Reference 101

Table 1 AMCategory code names available in Mac OS X version 10.5 103
Table 2 Type identifiers internally defined by Apple 108
Table 3 Objective-C type identifiers 110
Table 4 Externally defined type identifiers 110

9
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

10
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator is an application from Apple that automates repetitive procedures performed on a computer.
With Automator users can construct arbitrarily complex workflows from modular units called actions. An
action performs a discrete task, such as opening a file, cropping an image, or sending a message. A workflow
is a number of actions in a particular sequence; when the workflow executes, data is piped from one action
to the next until the desired result is achieved.

Apple includes a suite of ready-made actions with Automator, but developers are encouraged to contribute
their own actions. You can create actions—which are implemented as loadable bundles—using either
AppleScript, Objective-C, or a combination of the two languages. You can also create actions using shell
scripts or other scripting languages such as Perl and Python.

Automator was introduced in Mac OS X version 10.4. It does not run on earlier systems. The development
features of Automator were introduced with Xcode 2.0. Additional development features have been added
in Xcode 2.1. This document notes these newer features when it mentions them.

Who Should Read This Document

Any developer can create actions for Automator, as indeed can system administrators or “power users” who
are familiar with AppleScript. But application developers have a particular motivation for developing actions.
They can create actions that access the features of their applications, and then install these actions along
with their applications. Users of Automator can then become aware of the applications and what they have
to offer.

Developers can also contribute to Automator by making their applications scriptable or by providing a
programmatic interface (via a framework) that developers use to create their actions.

Organization of This Document

Automator Programming Guide consists of the following articles:

 ■ “Automator and the Developer” (page 13) describes what Automator can do and discusses the
characteristics and types of actions,

 ■ “How Automator Works” (page 19) gives an overview of the loadable-bundle architecture of Automator
and the Objective-C classes of the Automator framework.

 ■ “Design Guidelines for Actions” (page 27) lists guidelines for action development, including
recommendations regarding I/O, naming, and the user interface.

 ■ “Developing an Action” (page 31) guides you through the major steps required to develop an action.

 ■ “Show When Run” (page 55) describes the Show When Run feature of actions and explains how you
can customize it.

Who Should Read This Document 11
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Introduction to Automator Programming
Guide

 ■ “Implementing an AppleScript Action” (page 63) states the requirements for developing an action using
AppleScript, suggests approaches you might take, and discusses hybrid actions—that is, actions based
on both AppleScript and Objective-C code.

 ■ “Implementing an Objective-C Action” (page 69) explains how to create an action implemented with
Objective-C code.

 ■ “Creating Shell Script Actions” (page 77) describes the steps required to create an action using a shell
script or a scripting language such as Perl or Python.

 ■ “Creating a Conversion Action” (page 89) describes what is required to create actions whose only purpose
is to convert between types of input and output data.

 ■ “Defining Your Own Data Types” (page 91) discusses custom data types and explains when and how
you should define them.

 ■ “Automator Action Property Reference” (page 101) defines the types and expected values for the Automator
properties specified in an action’s information property list (Info.plist).

See Also

 ■ Automator Framework Reference provides an overview of the reference material available for developing
with Automator, with links to specific class reference and constants documents.

 ■ Automator Constants Reference describes Automator programming constants.

 ■ MacOS X TechnologyOverview presents an overview of the Xcode integrated development environment.

 ■ AppleScript Overview introduces the technology for creating and controlling scriptable applications.

 ■ The Objective-C Programming Language describes the Objective-C programming language and how you
use it to create object-oriented programs.

 ■ CocoaBindingsProgrammingTopicsdiscusses the Cocoa bindings mechanism and how you can incorporate
it in your programs.

12 See Also
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Introduction to Automator Programming Guide

http://developer.apple.com/documentation/AppleApplications/Reference/AutomatorReference/index.html?http://developer.apple.com/documentation/AppleApplications/Reference/AutomatorReference/AutomatorReference.html
http://developer.apple.com/documentation/AppleApplications/Reference/Automator_constants/index.html#//apple_ref/doc/uid/TP40004647

Automator is an Apple application that lets users automate repetitive procedures performed on a computer.
With Automator, users can quickly construct arbitrarily complex sequences of configurable tasks that they
can set in motion with a click of a button. And they do not need to write a single line of code to do so.

All kinds of Mac OS X users, including system administrators and developers, can derive huge benefits from
Automator. It enables them to accomplish in a few seconds a complex or tedious procedure that manually
might take many minutes. Developers can contribute to what Automator offers users in two ways: by making
their applications scriptable and by creating loadable bundles specifically designed for Automator.

Constructing Workflows With Automator

As a developer, you can best appreciate how to integrate your software products with Automator by
understanding how users might use the application, which is located in /Applications. Figure 1 shows a
typical Automator workflow.

Figure 1 A typical Automator workflow

Workflow

Category and application filters Action, with configurable parameters Run workflow

Constructing Workflows With Automator 13
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator and the Developer

A workflow in Automator consists of a sequence of discrete tasks called actions. An Automator action is a
kind of functional building block. An Automator workflow hooks the actions together so that—in most
cases—the output of one action is the input of the subsequent action. Clicking the run button in the
upper-right corner of the window causes Automator to invoke each action of the workflow in turn, passing
it (usually) the output of the previous action.

To create a workflow, users choose each action they want from the browser on the left side of the application
window and drag it into the layout view in the right side of the window. They can search for specific actions
by application, category, or keyword. Once dropped, an action presents a view which, in almost all cases,
contains text fields, buttons, and other user-interface elements for configuring the action. In addition to
configuring each action, users can move actions around in the workflow to put them in the desired sequence.
They can then save the workflow as a document that can be run again and again in Automator.

Actions can be virtually anything that you can do on a Mac OS X system (version 10.4 and later). You can
have an action that copies files, an action that crops an image, an action that burns a DVD, or an action that
builds a project in Xcode. Actions can either interact with applications or draw on system resources to get
their work done. By stringing actions together in a meaningful sequence—that is, in a workflow—a user can
accomplish complex and highly customized procedures with a click of a button. Apple provides dozens of
actions for use in Automator (Mac OS X version 10.4 and later).

Workflow Scenarios

A general description of Automator and its actions and workflows goes only so far to convey the power and
flexibility of the application. To better appreciate what users can do with Automator—and how your actions
can play a part in it—consider the following workflow scenarios:

 ■ Workflow 1—Copies the content of all messages flagged in the currently displayed mailbox to a TextEdit
document. This workflow consists of the following actions:

1. Find Messages in Mail (Mail), configured to find messages whose flagged status is true

2. Display Messages (Mail)

3. Combine Messages (Mail)

4. New TextEdit Document (TextEdit)

 ■ Workflow 2—Imports images on a webpage (such as .Mac photo album) into iPhoto:

This workflow requires users to go to the webpage in Safari before running the workflow.

1. Get Current Webpage from Safari

2. Get Image URLs from Webpage, configured to get the URLs linked from this webpage

3. Download URLs, configured to a specified location on the local computer

4. Import Images into iPhoto, configured to put them in a new or existing album

 ■ Workflow 3—Finds people with birthdays in the current month and creates an iCal event for each person:

1. Find People with Birthdays (Address Book), configured to this month.

14 Workflow Scenarios
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator and the Developer

2. New iCal Event, configured to create one event for each person received. It is also configured with
any relevant event information, such as calendar and alarm.

Developing for Automator

Given an automation tool as powerful and flexible as Automator, it’s clear that any action you develop for it
benefits both you and the user, especially if that action accesses what your application has to offer. Users
have an additional path to the features and services that make your products unique, and this in turn enhances
the visibility and reputation of your products.

You don’t even have to be a programmer (in the traditional sense) to develop actions for Automator. You
can write an action in AppleScript as well as in Objective-C (and AppleScript actions have full access to such
things as Standard Additions). You can also mix AppleScript scripts and Objective-C code when you develop
an action; the script can invoke Objective-C methods implemented for the action. AppleScript has the
advantage of being easier to learn, but it requires that applications that are the targets of commands be
scriptable. As an object-oriented superset of ANSI C, Objective-C is a full-fledged programming language,
which makes it harder to master than AppleScript but allows you to take full advantage of the Cocoa
Objective-C frameworks—as well as all C-based frameworks.

If have experience in UNIX environments, you can also write shell scripts, Perl scripts, or Python scripts to
drive the behavior of actions. These kinds of actions are known as shell script actions. The scripts in these
actions can also work together with AppleScript scripts and Objective-C classes in an action project.

In light of these language alternatives, there are three general types of Automator actions:

 ■ An action that controls an application to get something done. AppleScript-based actions can do this if
the application is scriptable. Objective-C actions can do this if the application has a public programmatic
interface (as do, for example, Address Book and iChat).

 ■ An action that uses system frameworks and other system resources to get something done. Actions that
are strictly based on AppleScript cannot do this, but Objective-C actions—and actions that are a mixture
of AppleScript and Objective-C—can. An Objective-C action, for example, could use the network-services
classes NSNetService and NSNetServiceBrowser to implement an action that offers dynamic printer
discovery. Shell script actions also fall into this category, because they have hundreds of BSD command-line
tools at their disposal.

 ■ An action that performs some small but necessary “bridge” function such as prompting the user for
input, writing output to disk, or informing the user of progress. You can create these types of actions
using AppleScript, Objective-C, and shell scripts (including Perl or Python).

Developing for Automator 15
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator and the Developer

Important: Consider making your applications accessible to actions even if you do not provide any Automator
actions of your own. For AppleScript-based actions, that means making your applications scriptable—that
is, responsive to AppleScript commands. For Objective-C based actions, that means publishing a programmatic
interface. Other developers may decide to create actions that access your application’s services. See AppleScript
Overview for information on making applications scriptable.

From a developer’s perspective, actions have a common programmatic interface and a common set of
properties. The programmatic interface is defined by four classes: AMAction, AMBundleAction,
AMAppleScriptAction, and AMShellScriptAction (discussed in “How Automator Works” (page 19)). Action
properties, which are specified in an action bundle’s information property list (Info.plist), define
characteristics such as:

 ■ The types of data the action accepts and provides

 ■ The application the action is associated with and the category of task it performs

 ■ Other keywords to identify the action in searches

 ■ The default parameters of the action

 ■ Warnings given to users if the action, as configured, might result in loss of data

See “Automator Action Property Reference” (page 101) for further information on Automator action properties.

The Apple integrated development environment, Xcode, provides support for Automator action developers.
There are Xcode project types for AppleScript, Objective-C, and shell script actions. Included in these project
types are all required files and templates. For example, the default nib file (main.nib) contains an initial user
interface, an instance of NSObjectController for establishing bindings, and File’s Owner already set up to be
your action object. For more on the Automator action project types see “Developing an Action” (page 31).

If you install actions as part of your product, be sure to install them in /Library/Automator (if they are to
be available to all users of a system) or in ~/Library/Automator (if they are to be available only to the
current user). /System/Library/Automator is reserved for Apple-developed actions. You can also install
actions in the bundle of the application that uses them. Automator also looks for actions in application
bundles. If you provide actions, you may want to advertise them to your users so they can look forward to
using them in new workflows.

Automator Actions as Universal Binaries

A universal binary is executable code that can run on either PowerPC-based or Intel-based Macintosh
computers. To move a PowerPC-only project to a universal-binary project may require work involving such
programming details as endianness, alignment, and calling conventions. The amount of work generally
depends on the level of the source code; lower-level source code (for example, the kernel) requires more
work than higher-level code (for example, an application based on Carbon).

The need to make an Automator action a universal binary depends on the language used:

 ■ AppleScript actions are platform-independent and do not require any changes to run on Intel processors.

 ■ An action that contains Objective-C code, whether a Cocoa-only action or an action that contains a mix
of Objective-C and AppleScript, must be built as a universal binary to run correctly on both Intel and
PowerPC processors.

16 Automator Actions as Universal Binaries
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator and the Developer

For information on making universal binaries, see Universal Binary Programming Guidelines, Second Edition.

Automator Actions as Universal Binaries 17
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator and the Developer

18 Automator Actions as Universal Binaries
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator and the Developer

The following sections describe the development environment, runtime architecture, and class hierarchy for
Automator actions.

The Development Components of Automator

The Xcode development environment integrates a number of technologies to make action programming as
efficient as possible:

 ■ Xcode project templates—Apple defines a project type for each of the languages used to implement
actions: AppleScript, Objective-C, and shell script. Each project type contains all required files and
resources, and supplies placeholder code and default configurations for the action-bundle project.

 ■ AppleScript Studio—A powerful tool that helps you to create Mac OS X applications that support the
Aqua user interface guidelines and that can execute AppleScript scripts.

 ■ Interface Builder—A tool for creating graphical user interfaces from palettes of standard objects.
Automator supplies its own palette (Cocoa-Automator) containing pop-up menus for files and folders.
The action project template includes a preconfigured nib file.

 ■ Cocoa bindings—Actions by default are designed to use the Cocoa bindings mechanism to communicate
data automatically between an action’s view and its internal parameters; an action’s nib file is configured
to support bindings.

 ■ Objective-C frameworks—Support for Automator actions is implemented in Objective-C. Consequently,
the Foundation, Application Kit, and Automator frameworks—all Objective-C frameworks—are
automatically imported into and linked with action projects.

The final product of all these components, when an action is built, is a loadable bundle.

Loadable Bundle Architecture

The Automator application is based on a loadable bundle architecture. It loads loadable bundles called actions
and executes the code they contain in the sequence determined by the current workflow, piping the flow
of data from one action to the next.

Each action is packaged as a loadable bundle—or in the case of AppleScript-based actions, a potentially
loadable bundle. A loadable bundle contains resources of various kinds and usually binary code, but it is not
capable of executing that code on its own. The internal structure of a Cocoa bundle is in a form that an
NSBundle object “understands.” Using an NSBundle object, an application or framework can load the resources
and code of a loadable bundle at runtime and integrate them with what it already contains. Loadable bundles
are essentially a plug-in architecture.

The Development Components of Automator 19
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

How Automator Works

When it launches, Automator immediately scans the currently installed action bundles and extracts from
each bundle’s information property list (Info.plist) the information necessary to display it and prepare it
for use (see Figure 1). Automator actions (in the form of loadable bundles) are stored in standard file-system
locations:

/System/Library/Automator — Apple-provided actions
/Library/Automator — third-party actions, general use
~/Library/Automator — third-party actions, private use

Automator also looks for actions that are stored inside the bundles of any registered applications. See “Testing,
Debugging, and Installing the Action” (page 49) for information on installing actions in the bundles of their
related applications.

Figure 1 When launched, Automator gets information about available actions

/System/Library/Automator/
...

Reads
Get Specified Finder Items.action

info.plist

When it launches, Automator also loads any Mach-O code it finds in action bundles—which in this case are
Objective-C actions only— resolving external references in the process. If the action is based on Objective-C,
an instance of AMBundleAction (or a subclass of that class) is unarchived from the nib. However, if an action
is entirely driven by AppleScript or a shell script, Automator instead retains a reference to the bundle since
there is no Mach-O code to load. When a user drags such an action into Automator’s workflow area for the
first time, the application loads the action, unarchiving its nib file, and displays the action's view (see Figure
2).

20 Loadable Bundle Architecture
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

How Automator Works

Figure 2 When user drags AppleScript-based action into workflow, Automator loads bundle

/System/Library/Automator/
...

Loads
Get Specified Finder Items.action

Specified Finder Items

Note: An action bundle is loaded when the action is first used when Automator launches. Thereafter, the
action remains loaded until the user quits Automator.

The architectural details hereafter differ slightly based on whether the workflow is created for the first time
or is unarchived.

A New Workflow

When the user creates a new workflow by dragging one or more actions into the workflow layout view,
Automator does a couple of things:

 ■ If the action is AppleScript-based it creates an instance of AMAppleScriptAction as the owner of the
bundle; it also loads the script so AppleScript Studio can perform some initialization. If the action is based
on a shell script, Automator creates an instance of AMShellScriptAction instead.

 ■ It gets the content view contained in the action’s bundle and displays it within an action view in the
workflow area, setting the default values of text fields and controls as defined by the action’s
AMDefaultParameters property.

Users modify the parameters of an action by choosing pop-up items, clicking buttons, entering text into text
fields, and so on. When the workflow is ready, they click the run button to execute the workflow. With
Automator acting as a coordinator, the application and each action perform the following steps in the
workflow sequence:

 ■ Automator invokes the runWithInput:fromAction:error: method of the action, passing it the
output of the previous action as input.

Loadable Bundle Architecture 21
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

How Automator Works

The AMAppleScriptAction and AMShellScriptAction classes provide default implementation of this
method for script-based actions. The AMAppleScriptAction implementation calls the on runAppleScript
handler.

 ■ The settings made in the user interface of the action are propagated as parameters to the action object
via Cocoa bindings.

 ■ The action object (in most cases) takes the input and, based on the parameters, transforms it or does
whatever its stated role is (such as importing it into an application or displaying output).

 ■ As its last step, the action returns the result of its work (its output). If it does not affect the data passed
it as input, it simply returns it unchanged.

While each action is busy, Automator displays a spinning progress indicator in the action view. If an error
occurs in an action, the action view displays a red “X” and may display an error message. If the action
successfully completes, its view displays a green check mark. When the last action has finished its task, the
workflow execution is over.

An Unarchived Workflow

When users save a workflow or copy one via the pasteboard (clipboard), the workflow and all of its actions
are archived. Automator invokes the writeToDictionary: method of each of the actions in the workflow,
passing in a mutable dictionary of the action’s parameters and other information. The action may choose to
modify the contents of the dictionary before returning from writeToDictionary:. Then the combined
dictionaries of each action of the workflow are encoded and archived.

When Automator reads a workflow archive from disk or the pasteboard, it sends a
initWithDefinition:fromArchive: message to each action in the workflow. In the first parameter of
the message is a dictionary from which the action can re-create its state, particularly the last-selected
parameters. The second parameter tells the newly created action object whether its definition is coming
from an archive.

Once all actions in the workflows have been reinitialized from the archive, the workflow is ready to use. Users
can select parameters in actions and run the workflow. Things continue on at this point as described in “A
New Workflow” (page 21).

Programming Implications of Loadable Bundles

The loadable bundle architecture of Automator has some implications for action programming, especially
when the development language is Objective-C. These implications concern bundles, nib file unarchiving,
and namespaces.

Bundle Access

One issue with bundles arises from a distinction between the main bundle of an application such as Automator
and the bundles that are loaded by the application. If you ask for the main bundle in your action’s code—for
example:

NSBundle *theBundle = [NSBundle mainBundle];

22 Loadable Bundle Architecture
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

How Automator Works

you get the main bundle of the Automator application, not the bundle of the action calling mainBundle.
For the action bundle, you must send a bundle message to the action object (which is usually self in the
code implementing the action):

NSBundle *theBundle = [self bundle];

The bundle method is declared by the AMBundleAction class, which all action objects inherit from, directly
or indirectly (see “The Automator Classes” (page 24)).

Nib File Unarchiving

Cocoa programs frequently implement the awakeFromNib method (whose counterpart for AppleScript
Studio programs is the awake from nib command handler). The awakeFromNib method is invoked when
all objects in a program’s nib file have been unarchived. It gives the program an opportunity to perform any
initialization that requires the presence of all unarchived objects.

However, the awakeFromNib method is invoked in an action when Automator is launched. At this time
Automator reads in any binary code of the actions in standard Automator locations and it directly unarchives
objects in the nib files that it directly owns. However, these objects don’t include the objects in the nib files
of actions. The nib file of an action is not loaded and its objects are not unarchived until users drag the action
into a workflow. If you want to perform initializations that require the presence of all objects and connections
in an action’s nib file, implement the opened method instead of awakeFromNib.

Namespaces

An Objective-C class defines a namespace for the methods and instance variables it declares. Because of this,
identically named methods and instance variables in other classes do not cause conflicts within a process.
However the name of a class itself exists in a namespace occupied by all classes loaded by a process. In
addition, all global symbols (such as functions and data types) share the same namespace within a process.

For Automator, with its loadable bundle (or plug-in) architecture, the potential for namespace collisions—and
hence runtime exceptions—is significant. Automator can potentially load hundreds of actions from different
sources and, for example, if two action classes have the same name or declare a string constant with the
same name, there is the potential for namespace conflict when those actions are loaded by Automator.

To avoid namespace collisions, it is recommended that you assign prefixes to all classes and global types
that are distinctive as possible. For example, if your company’s name is Acme, you might name a class
AC_FilterImages.

Threading Architecture

To improve runtime stability and give AppleScript-based actions access to resources such as Standard
Additions, Automator has a threading architecture that puts different types of program activity on separate
threads. Automator starts a workflow on a secondary thread (that is, a thread other than the main thread).
But as it cycles through the actions of the workflow, it runs each action on a different thread depending on
whether the action is based on AppleScript or Objective-C:

 ■ If the action is based on AppleScript, it is executed on the main thread. The implementation permits
users to cancel the execution of the action on this thread by clicking the stop button or pressing
Command-. (period).

Threading Architecture 23
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

How Automator Works

 ■ If the action is based on Objective-C or a shell script, it is executed on the secondary thread.

This threading architecture imposes restrictions on both writers of AppleScript-based and Objective-C actions.
If an AppleScript-based action uses the do shell script command, the user interface is rendered
unresponsive until the script completes; the only way users can cancel execution is to press Command-period.
If Objective-C actions are to display windows, they must do so on the main thread using a method such as
performSelectorOnMainThread:withObject:waitUntilDone:.

The Automator Classes

Automator as a technology includes not only the application and its actions but the Automator framework
(Automator.framework). The framework implements much of the common behavior of actions and also
provides a public interface defined by four classes: AMAction, AMBundleAction, AMAppleScriptAction, and
AMShellScriptAction. These classes are hierarchically related (in terms of inheritance) as shown in Figure 3.

Figure 3 The Automator public classes

NSObject

AMAction

AMBundleAction

AMAppleScriptAction AMShellScriptAction

AMAction is an abstract class that specifies the interface and attributes essential to all actions. A major
attribute of an action (as defined by AMAction) is its definition, a dictionary derived from the action properties
specified in the bundle’s information property list. The designated initializer of AMAction includes the action’s
definition in its signature: initWithDefinition:fromArchive: . The major method in an action’s
programmatic interface (as defined by AMAction) is runWithInput:fromAction:error:, which is briefly
described in “Loadable Bundle Architecture” (page 19).

The AMBundleAction class directly inherits from AMAction and provides a concrete implementation of it.
AMBundleAction defines the interface and common behavior of actions that are loadable bundles.
AMBundleAction objects have three essential properties:

 ■ An outlet connection to their associated view

 ■ A reference to their bundle

 ■ The parameters of the action—that is, the configuration choices users make in the action’s user interface
(stored in an NSDictionary object).

24 The Automator Classes
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

How Automator Works

Bundled actions are designed to present a view, access the resources of the bundle, and access the parameters
for the action. The implementation of the AMBundleAction class makes it possible for actions to be copied,
pasted, and encoded for archiving. Objective-C action objects are always instantiated from custom subclasses
of AMBundleAction.

AMAppleScriptAction and AMShellScriptAction are subclasses of AMBundleAction. They extend loadable
action bundles so that AppleScript scripts or shell scripts can drive the action’s logic instead of Objective-C
code (although AppleScript, Objective-C, and even shell script code can be mixed in the implementation of
an action). The sole outlet of AMAppleScriptAction is an OSAScript object representing the script; by default,
this outlet is set to an object representing main.applescript.

You can create your own subclasses at the last two levels of the Automator class hierarchy—that is,
AMBundleAction on down—to get objects with the characteristics and capabilities that you need. If you
want to create loadable action bundles whose behavior is determined by scripting languages other than
AppleScript, shell scripts, Perl, or Python, you would subclass AMBundleAction.

Conceptually, the two fundamental external factors for an action are the input object passed it by the previous
action (if any) and the parameters specified by users through the controls and text fields of the action’s view.
An instance of AMBundleAction accesses the input object in its implementation of
runWithInput:fromAction:error: and obtains parameters directly from the user interface through the
Cocoa bindings mechanism. For an AppleScript-based action (represented by an AMAppleScriptAction
instance), the input object and parameters are even more explicit. They occur as the passed-in values in the
on run handler, as shown in Figure 4.

The Automator Classes 25
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

How Automator Works

Figure 4 A typical action script

For information that clarifies aspects of this scripting code, see “Implementing an AppleScript Action” (page
63).

26 The Automator Classes
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

How Automator Works

As with other parts of the human interface in Mac OS X, actions should have a consistent look and feel so
that users can easily use them. The following guidelines will help you achieve that consistent look and feel.

For concrete examples of well designed actions, look at the action project examples installed in
/Developer/Examples/Automator .

What Makes a Good Action?

Perhaps the most important guideline is to keep your action as simple and focused as possible. An action
should not attempt to do too much; by doing so it runs the risk of being too specialized to be useful in
different contexts. An action should perform a narrowly defined task well. If an action you’re working on
seems like it’s unwieldy, as if it’s trying to do too much, consider breaking it into two or more actions. Small,
discrete actions are better than large and complex actions that combine several different elements.

An action should inform the user what is going on, and if it encounters errors, it should tell users about any
corrective steps that they might take. If an action takes a particularly long period to complete, consider
displaying a determinate progress indicator. (Automator displays a circular indeterminate progress indicator
when an action runs.)

You should provide an action in as many localizations as possible. See “Developing an Action” (page 31) for
further information on internationalizing actions.

Action Input and Output

Interoperability is critical in the implementations of actions. An action’s usefulness is limited by the types of
data it can accept from other actions and give to other actions in a workflow. You specify these data types
in the AMAccepts and AMProvides properties of actions using Uniform Type Identifiers (UTIs). The following
guidelines apply to action input and output.

 ■ Make the types of data the action provides and accepts as specific as possible. For example, if an image
is coming from iPhoto, use com.apple.iphoto.photo-object as the UTI identifier instead of
public.image.

 ■ Specify multiple accepted and provided types, unless that is not appropriate for the action.

 ■ Ideally, an action should accept and provide a list (or array) of the specified types.

 ■ If your action doesn’t require input and doesn’t provide output (such as the Pause action), it should not
list any input or output types. The framework will then route the flow of data around the action.

 ■ Even if your action requires input it should still be prepared to handle gracefully the case where it doesn’t
get input.

What Makes a Good Action? 27
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Design Guidelines for Actions

For more on the AMAccepts and AMProvides properties and the supported UTIs, see “Automator Action
Property Reference” (page 101).

Naming an Action

The following guidelines apply to the names of actions:

 ■ Use long, fully descriptive names (for example, Add Attachments to Front Mail Message).

 ■ Start the name with a verb that specifies what the action does.

 ■ Use plural objects in the name—actions should be able to handle multiple items, whether that be URLs
or NSImage objects.

 ❏ However, you may use the singular form if the action accepts only a single object (for example Add
Date to File Names, where there can be only one date).

 ■ Don’t use “(s)” to indicate one or more objects (for example, Add Attachment(s). Use the plural form.

The User Interface of an Action

The user interface of an action should adhere to the following guidelines:

 ■ Keep it simple:

 ❏ Refrain from using boxes.

 ❏ Minimize the use of vertical space; in particular, use pop-up menus instead of radio buttons even if
there are only two choices.

 ❏ Avoid tab views; instead, use hidden tab views to swap alternate sets of controls when users select
a top-level choice.

 ❏ Don’t have labels repeat what’s in the action title or description.

 ■ Keep it small and consistent:

 ❏ Use 10-pixel margins.

 ❏ Use small controls and labels.

 ❏ Give buttons the standard Aqua “Push Button” style.

 ❏ Follow the Aqua guidelines (as suggested in Interface Builder).

 ❏ Implement behavior expected in a user interface—for example, tabbing between multiple text fields.

If you do not know how to accomplish behavior like this using Interface Builder, see Developing
CocoaObjective-CApplications: A Tutorial or consult the Interface Builder ReleaseNotes documentation.

 ■ Provide feedback and information to users:

28 Naming an Action
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Design Guidelines for Actions

 ❏ Use determinate progress indicators when a user-interface element needs time to load its content;
for example, an action that presents a list of current iCal calendars might need many seconds to
load them.

 ❏ Present examples of what the action will do where possible. For instance, the Make Sequential File
Names action has an area of the view labeled “Example” that shows the effect of action options; the
examples have the same font size and color as the rest of the action’s user interface. Figure 1 shows
an action that uses images for its example.

Figure 1 An action that includes an example of its effect

 ■ Streamline file and folder selection and display:

 ❏ Insert a pop-up menu that includes standard file-system locations, such as Home, Startup Disk,
Documents, Desktop, and so on.

 ❏ The Cocoa-Automator palette includes pre-configured pop-up menus for selecting applications,
directories, and files; use these objects where appropriate. See “Using the Cocoa-Automator
Palette” (page 35) for details.

The User Interface of an Action 29
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Design Guidelines for Actions

30 The User Interface of an Action
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Design Guidelines for Actions

It’s easy to develop an Automator action. Because an action is a loadable bundle, its scope is limited and
hence the amount of code you need to write is limited. Apple also eases the path to developing an action
because of all the resources it places at your disposal. When you create an action project, the Xcode
development environment provides you with all the necessary files and settings to build an action. You just
need to follow certain steps—described in this document—to arrive at the final product.

The steps for developing an action don’t necessarily have to happen in the order given below. For example,
you can write an action description at any time and you can specify the Automator properties at any time.

Creating an Automator Action Project

To create an Automator action project, launch the Xcode application and choose New Project from the File
Menu. From the first window of the New Project assistant, select one of the two Automator action projects,
depending on your language choice:

AppleScript Automator Action
Cocoa Automator Action
Shell Script Automator Action

Figure 1 shows the selection of the Cocoa Automator action.

Creating an Automator Action Project 31
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

Figure 1 Choosing a Cocoa Automator Action project type in Xcode

Complete the remaining window of the New Project assistant as usual—specify a file-system location for the
project and enter a project name. When you finish, an Xcode window similar to the one in Figure 2 is displayed.

32 Creating an Automator Action Project
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

Figure 2 Template files for a Cocoa Automator Action project

You’ll become more familiar with many of the files and file wrappers displayed here in the sections that
follow. But here is a summary of the more significant items:

 ■ Automator.framework—The project automatically adds the Automator framework to the project.

 ■ Info.plist—The information property list for the bundle includes the Automator properties; comments
inserted in the value elements provide helpful hints. See “Specifying Action Properties” (page 41) for
further information.

 ■ projectName.h and projectName.m—A Cocoa action project includes header and implementation
template files prepared for an AMBundleAction subclass (including a null implementation of
runWithInput:fromAction:error:).

An AppleScript action project includes a template main.applescript file instead of Objective-C
template files. A shell script action project includes a main.command file instead.

 ■ main.nib—The bundle’s nib file, partially prepared for the action. See “Constructing the User
Interface” (page 33) for details.

Constructing the User Interface

In the Xcode project browser, double-click main.nib to open the nib file of the action in Interface Builder.
The nib file contains the usual File’s Owner and First Responder instances, but it also contains two other
items specific to actions:

Constructing the User Interface 33
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

 ■ A blank NSView object (known as the content view of the action, or simply, action view) on which you
set the controls, text fields, and other user-interface elements for setting the parameters of the action.

 ■ An instance of the NSObjectController class named Parameters. The Parameters instance is used for
establishing bindings between objects on the user interface and the action instance.

 ■ For AppleScript-based actions, an AppleScript Info instance that AppleScript Studio uses to contain the
names and event handlers for objects in the nib file.

Note: Some actions, such as the Connect to Server action, do not have a user interface because there is no
possible setting the user can make. Yet these actions still appear in a workflow showing their titles and
accepted and provided data types. If your action is not supposed to have a user interface, remove the
action-view instance from the nib file window or remove main.nib from the project.

Several objects and relationships in main.nib are already initialized for you. For example, File’s Owner is set
in the Custom Class pane of the Info window to be an instance of the AMBundleAction class (as shown in
Figure 3). (If your project is for an AppleScript Automator action, File’s Owner is set instead to
AMAppleScriptAction.) With File’s Owner still selected, if you choose the Connections pane of the Info window,
you will see that the view outlet of the AMAction object has been connected to the action’s view.

Figure 3 FIle’s Owner set to an instance of AMBundleAction

Construct the user interface of the action as you would for any view in Interface Builder. However, keep in
mind that actions, because they share space in an Automator workflow with other actions, should be compact,
even minimal. Place only those controls, text fields, and other user-interface objects that are absolutely
necessary. And try to be conservative in your use of vertical space; for example, prefer pop-up menus over
radio buttons for presenting users with a choice among multiple options. For more on user-interface guidelines
for actions, see “The User Interface of an Action” (page 28) in “Design Guidelines for Actions” (page 27).

34 Constructing the User Interface
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

Note: To learn how to use Interface Builder, read Automator AppleScript Actions Tutorial and consult the
Interface Builder documentation.

An important feature of Automator actions is Show When Run. This feature enables the users of workflows
(as distinct from the writers of workflows) to set the parameters of actions when they run the workflow as
an application. By default, actions have an Options disclosure button in their lower-left corner that, when
enabled, exposes additional controls; these controls allow a workflow writer to select the parts of an action’s
view that are presented to users when the workflow is executed. Developers can customize the Show When
Run feature; see “Show When Run” (page 55) for details.

Important: If you are deploying the action in multiple localizations, make sure you create a separate nib file
and user interface for each localization. See “Internationalizing the Action” (page 47) for further information.

Using the Cocoa-Automator Palette

The Automator development environment includes an Interface Builder palette with user-interface objects
designed for actions. This palette is named Cocoa-Automator. To load this palette, select the Palettes pane
in the Interface Builder preferences, click Add, and select AMPalette.palette in
/Developer/Extras/Palettes.

The Cocoa-Automator palette (see Figure 4) contains three specially implemented pop-up menus for presenting
easily configurable lists of applications, directories, and files to users.

Figure 4 Cocoa-Automator palette

These lists provide access to standard or frequently accessed applications, folders, and files in the file system.
For example, the Directories pop-up menu in an action looks something like the example in Figure 5.

Constructing the User Interface 35
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

Figure 5 The Directories pop-up menu in an action

You can also configure the pop-up menus so that users can locate items other than the standard ones on
the list or (in the case of the Directories pop-up menu) create new items.

To place one of these pop-up menus, simply drag it from the palette to the action view. Then to configure
the pop-up menu, choose Show Inspector from the Tools menu and select the Attributes pane (Figure 6).
The Attributes pane of Interface Builder allows you to configure a user-interface object in various ways.

36 Constructing the User Interface
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

Figure 6 Attributes inspector for Cocoa-Automator palette objects

For Automator pop-up menus (AMPathPopUpButton objects), the special path options are the following:

Types
Allows users to choose either applications, directories, or files, or any combination of the three types.
For example, if you check Directories and Files, users are able to select both directories and files from
the pop-up menu.

Choose
Selecting New Paths adds a New item at the bottom of the pop-up menu. In the Directories pop-up
menu, this allows users to create a new directory using a file-system browser; the New item does not
appear in the other kinds of pop-up menus.

Selecting Existing Paths adds an Other item at the bottom of the pop-up menu. In all pop-up menu
types, this item allows users to select anything in a file-system browser.

Display
When either the New or Open item is chosen and the Choose Panel as Sheet option is selected, the
action displays the file-system browser as a worksheet-window-modal sheet rather than as an
application-modal dialog.

Show
When the Standard Paths option is selected, the pop-up menu has the following items, depending
on its type:

Constructing the User Interface 37
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

 ■ If it is a Directories pop-up menu, standard locations such as Home, Desktop, Movies, and Pictures
are included.

 ■ If it is an Applications pop-up menu, the list of items includes all applications in /Applications.

 ■ If it is a Files pop-up menu, nothing happens.

When the Path Components option is selected, the full path of the current chosen item is displayed.

When the Placeholder option is selected, whatever you enter in the Placeholder text field directly
under the option is displayed as the first pop-up item. This placeholder is typically a string such as
“Choose an application” or “No selection”.

Before an AMPathPopUpButton pop-up menu can properly function in an action view, you must establish a
binding between the pop-up menu and a property of the action parameters. To do this, specify a key for the
property as an attribute of the Parameters instance (see “Establishing Bindings” (page 38) for the procedure).
Finally, select the pop-up menu in the user interface and then specify the key in the Bindings pane of the
inspector, using the path binding; see Figure 7 for an example.

Figure 7 The path binding for the pop-up menu

Establishing Bindings

After constructing the action’s view, establish the bindings between the objects on the user interface and
the action object. Bindings are a Cocoa technology conceptually based in the Model-View-Controller paradigm.
In Model-View-Controller, objects in a well-designed program assume one of three roles: view objects that
present data and receive user input; model objects that contain data and operate on that data; and controller
objects that mediate the transfer of data between view and model objects. The bindings mechanism

38 Constructing the User Interface
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

automatically synchronizes the exchange of data between view and model objects, reducing the need for
custom controller objects and all the “glue” code they usually entail. Automator actions use bindings to
communicate data between objects in an action’s view and the parameters dictionary (or record) that all
actions have to record the settings users specify for an action.

The project templates for Automator actions are pre-configured to use bindings instead of the target-action
and outlet mechanisms (for Cocoa-based actions) or event handlers specified in the AppleScript pane of
Interface Builder for AppleScript-based actions. If you prefer, you may use these mechanisms along with the
Automator framework’s “update parameters” API to update an action’s parameters manually. For information
on this approach, see “Updating Non-bound Parameters” (page 66) (for AppleScript-based actions) or
“Updating Action Parameters” (page 72) (for Objective-C actions).

The following steps summarize what you must do to establish the bindings of an action in Interface Builder.
For a thorough description of the Cocoa bindings technology, see Cocoa Bindings Programming Topics.

1. Select the Parameters instance in the nib file window and choose the Attributes pane of the Info window.
In the table labeled “Keys” add the keys for each user-interface object whose setting or value you need
to access. See Figure 8 for an example.

Figure 8 Adding the keys of the Parameters instance (NSObjectController)

The keys that you specify here are used elsewhere in the action to identify the controls of the action.
You must therefore use the same strings you used for the binding keys in the following places in the
action project:

 ■ As the keys for the AMDefaultParameters property of Automator. (The AMDefaultParameters
property specifies the initial settings of an action; see “Specifying Action Properties” (page 41) and
“Automator Action Property Reference” (page 101) for details.) A matching AMDefaultParameters
entry must be added for each key used with a binding.

 ■ As the names of outlet instance variables and accessor methods in Objective-C actions

Constructing the User Interface 39
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

 ■ As the keys to the parameters record passed into an AppleScript-based action in its on run handler;
see “The Structure of the on run Command Handler” (page 63) for further information.

 ■ As the environment variables set for a shell script action; see “Creating Shell Script Actions” (page
77) for details.

2. With the Parameters instance still selected, choose the Bindings pane of the Info window and expand
the “contentObject” subpane. Set the “Bind to” pop-up item to File’s Owner and enter parameters in
the “Model Key Path” field.

The parameters key path refers to the parameters property defined by the AMBundleAction class—that
is, the dictionary or record used to capture the settings users make in an action’s view.

3. For each user-interface object of the action, establish a binding to the appropriate parameters key. For
example, Figure 9 shows the binding for a pop-up menu.

Figure 9 Establishing a binding for a pop-up menu

40 Constructing the User Interface
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

The binding varies by type of user-interface object. For example, pop-up menus usually work off the
index of the item (selectedIndex), check boxes have a Boolean value, and text fields have a string
value.

Important: When establishing a binding between a text field and a parameter key, make sure that the
"Continuously Updates Value" checkbox in the inspector pane for the valuebinding is enabled. Otherwise,
the parameter is not updated if the insertion point does not exit the text field (as happens, for example,
when the user presses Tab).

When you are finished with the action’s user interface, save the nib file and return to the Xcode project.

Specifying Action Properties

The Automator application uses special properties in an action’s information property list (Info.plist) to
get various pieces of information it needs for presenting and handling the action. This information includes:

 ■ The name of the action

 ■ The icon for the action

 ■ The application, category, and keywords for the action

 ■ The types of data the action accepts and the types of data it provides

 ■ The description of the action

Automator properties have the prefix “AM”. The project template for actions includes almost all of the
properties you need (or may need) to specify. As shown in Figure 10, the template provides helpful comments
as placeholders for key values. In creating an action, you need to supply real values for these keys. “Automator
Action Property Reference” (page 101) describes the Automator properties, including their purpose, value
types, and representative values.

Because the values of some Automator properties appear in the user interface, you should include translations
of them in an Infoplist.strings file for each action localization you provide. See “Internationalizing the
Action” (page 47) for further information.

In addition to properties that are specific to Automator, an action’s Info.plist file contains properties that
are common to all bundles, including applications as well as action bundles. The values of most of these
generic bundle properties are supplied automatically when you create a project. However, you must specify
the value of the CFBundleIdentifier property. Automator uses this property to find an action and its
resources. The identifier needs to be unique, and should use the standard format:

com.CompanyName.Automator.ActionIdentifier

For example, if your company’s name is Acme and your action is named Find Foo Items, a suitable
CFBundleIdentifier would be com.Acme.Automator.FindFooItems.

The Automator project templates preset two properties, AMName and the action-identifier portion of
CFBundleIdentifier, with placeholder text. When you create a project, the name of the project is substituted
for the placeholders. (If the project name contains spaces, Xcode substitutes underscore character for the
spaces in the bundle identifier.)

Specifying Action Properties 41
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

Figure 10 Part of the template for the Automator properties in Info.plist

To edit Info.plist manually in an Xcode window, just double-click the filename in the project window. If
you would like always to open up the Info.plist file in a different editor for property lists, such as the
Property List Editor application or BBEdit, use the Finder’s Get Info window to set the default application for
files with extension .plist. Then in Xcode, use the contextual menu command Open with Finder. However,
the preferred tool for editing Automator properties is to use the built-in Automator property Inspector, which
was introduced in Xcode 2.1.

Using the Automator Property Inspector

You can edit the information property list as a text file in Xcode. Just double-click the Info.plist file in
the project window and the file will open in a separate window or pane. However, syntax errors can frequently
happen when you edit a property list by hand. Instead you can use the Automator property inspector, which
makes the entering of property values easier and less susceptible to error.

This inspector is built into Xcode for all Automator project types. To access the inspector, do the following:

1. Choose Edit Active Target ‘Target’ from the Project menu.

2. Click the Properties tab.

The lower part of the inspector, which is usually reserved for specifying document types, is here used for
Automator-specific properties. The inspector breaks the properties into logical collections; the first collection
shows the General properties (Figure 11).

42 Specifying Action Properties
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

Figure 11 Automator property inspector—General properties

In an inspector view such as the one in Figure 11, double-click a cell under Value to open the cell for entering
a value. If, for example, you want to enable the Show When Run feature for the action, click the appropriate
check boxes.

If you expose the Collection pop-up menu, you’ll see other logical collections of Automator properties. Figure
12 shows the collection for the AMAccepts property (Input).

Specifying Action Properties 43
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

Figure 12 Automator property inspector—Input properties

When the property is an array, as with AMAccepts, click the plus sign in the lower left corner of the inspector
to open a new field for editing. Enter the value (in this case a type identifier). To delete an item from the
array, select it and click the minus sign.

Writing the Action Description

A small but important part of action development is writing the action description. Automator displays the
description it its lower-left view whenever the user selects the action. The description briefly describes what
the action does and tells users anything else they should know about the action. Figure 13 shows what a
typical description looks like.

44 Writing the Action Description
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

Figure 13 An sample action description

Because the description fits into a relatively small area of the Automator window, you should make it as
concise and brief as possible. Ideally the user should not have to scroll the description view to see all of the
text.

A description has several parts, each of which you specify through an Automator property in the bundle’s
information property list (Info.plist):

 ■ Icon. A 32 x 32 pixel TIFF image displayed in the upper-left corner of the description. It is the application
icon that the AMIconName property specifies (see “Property Keys and Values” (page 101)).

 ■ Title. The string that you specify for the AMName property (see “Property Keys and Values” (page 101)).

 ■ Summary. A sentence or two directly under the title that succinctly states what the action does.

 ■ Input and Result. States the types of data that the action accepts and provides. Automator enters default
values for these sections if you do not specify anything.

 ■ Options. Summarizes the configuration options on the action’s user interface.

 ■ Requires. Describes any requirement for the action to work properly—for example, Safari must be
displaying a web page.

 ■ Alert. Warns the user of any likely consequence of the action—for example, if it will delete a calendar.

 ■ Note. Presents additional information that is not as critical as an alert.

 ■ Related actions. Indicates actions that are related to this one—for example, an Import Image action
might mention an Export Image action.

A description’s icon, title, summary, input, and result sections are required or strongly recommended. All of
the properties listed above, except for icon and title, are subproperties of the description-specific
AMDescription property. The AMDescription example in Listing 1 shows the subproperties specified for
the Send Birthday Greeting description depicted in Figure 13 (page 45).

Listing 1 AMDescription properties for Send Birthday Greetings description

 <key>AMDescription</key>
 <dict>
 <key>AMDInput</key>
 <string>Address Book entries from previous action.</string>
 <key>AMDOptions</key>
 <string>Birthday message. Choice of picture.
 Randomly chosen picture. </string>
 <key>AMDSummary</key>

Writing the Action Description 45
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

 <string>This action sends an email birthday greeting, with a
 picture, to each of the Address Book entries.</string>
 </dict>

See “Property Keys and Values” (page 101) for further information on the AMDescription keys and values.

Important: If you are deploying the action in multiple localizations, make sure you create a separate
description for each localization. See “Internationalizing the Action” (page 47) for further information.

Writing the Action Code

The most important step in creating an action is writing the Objective-C or AppleScript code (or Objective-C
and AppleScript code) that implements the logic for your action. The project template for Automator actions
gives you template files for action implementation:

 ■ projectName.h and projectName.m files for Objective-C actions

 ■ main.applescript for AppleScript actions

 ■ main.command for shell script actions

The template files fill out as much of the required structure as possible. The Objective-C header file, for
example, has the necessary framework imports and an @interface declaration showing inheritance from
AMBundleAction. The Objective-C implementation includes a null implementation of the method that all
actions must implement, runWithInput:fromAction:error: (see Figure 14). The main.applescript
file, on the other hand, has a skeletal structure for the on run command handler that all AppleScript-based
actions must implement.

Figure 14 Template for an Objective-C action implementation

46 Writing the Action Code
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

See “Implementing an AppleScript Action” (page 63) and “Implementing an Objective-C Action” (page 69)
for requirements, suggestions, and examples related to implementing an Automator action. For guidelines
on implementing shell script actions, see “Writing the Script” (page 83).

Internationalizing the Action

Most polished applications that are brought to market feature multiple localizations. These applications not
only include the localizations—that is, translations and other locale-specific modifications of text, images,
and other resources—but have been internationalized to make those localizations immediately accessible.
Internationalizing involves a number of techniques that depend on a “preferred languages” user preference
and a system architecture for accessing resources in bundles. Loadable bundles (which, of course, are bundles
just as applications are) depend upon the same mechanisms for internationalization.

The following sections summarize what you must do to internationalize your actions. For the complete
picture, see Internationalization Programming Topics for a general description of internationalization and
Internationalization Programming Topics, for a discussion that is specific to Cocoa.

Localized Strings

If your action programmatically generates strings and you want localized versions displayed, you need to
internationalize your software using access techniques that are different for Objective-C actions and
script-based actions.

Note: Programmatically generated strings have their basis in code, such as a message that appears in an
error dialog. They do not include text that appears in a user interface unarchived from a nib file. Nib files are
localized just as are other resource files; see “Internationalizing Resource Files” (page 49) for a summary of
the procedure.

Both Objective-C and AppleScript actions require you to create for each localization a strings file, which is a
file with an extension of .strings. (The conventional, or default, name for a strings file is
Localizable.strings.) Each entry in a strings file contains a key and a value; the key is the string in the
development language and the value is the translated string. An entry can also have a comment to aid
translators. Use a semicolon to terminate an entry. Here are a few examples:

/* Title of alert panel which brings up a warning about
saving over the same document */
"Are you sure you want to overwrite the document?" =
"Souhaitez-vous vraiment écraser le document ?";

/* Encoding pop-up entry indicating automatic choice of encoding */
"Automatic" = "Automatique";

/* Button choice allowing user to cancel. */
"Cancel" = "Annuler";

When you have completed a Localizable.strings file for a localization, you must internationalize it just
as you would any other language- or locale-specific resource file of the bundle. See “Internationalizing
Resource Files” (page 49) for a summary.

Internationalizing the Action 47
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

For Objective-C code, use the NSLocalizedStringmacro or one of the other NSLocalizedString...
macros to request a localization appropriate for the current user preference. Listing 2 gives an example that
shows the use of NSLocalizedString in conjunction with the NSString stringWithFormat: method.

Listing 2 Using NSLocalizedString in Objective-C code

- (NSString *)displayName
{
 int cnt = [pdfView pageCount];
 NSString *name;

 if (cnt == 1) {
 NSString *format = NSLocalizedString(@"%@ (1 page)",
 @"Window title for a document with a single page");
 name = [NSString stringWithFormat:format, fileName];
 } else {
 NSString *format = NSLocalizedString(@"%@ (%d pages)",
 @"Window title for a document with multiple pages");
 name = [NSString stringWithFormat:format, fileName, cnt];
 }

 return name;
}

For AppleScript scripts the command equivalent to NSLocalizedString is localized string. One good
approach is to have a local subroutine that takes the string to localize as a parameter and uses the localized
string command on it, as in Listing 3.

Listing 3 Script handler for localizing strings

on localized_string(key_string)
return localized string key_string in bundle with identifier
"com.apple.Automator.myAction"
end localized_string

Elsewhere in main.applescript and in other scripts for the action, call this subroutine when you need to
get a string in the current localization:

 if the calendar_name is my localized_string("No Calendars") then
error my localized_string("The copy of iCal on this computer contains no calendars
 to clear.")

Localizing the Automator Properties

A standard variant of a strings file for projects is Infoplist.strings. In this file you assign localized strings
(that is, translations) to the keys that appear in the Info.plist file. For Automator, this includes not only
the top-level properties such as AMName but subproperties of Automator properties. For example, the following
excerpt is from the Infoplist.strings file for the Crop Images action:

AMName = "Crop Images";
ApplyButton = "Add";
IgnoreButton = "Don't Add";
Message = "This action will change the image files passed into it. Would you
like to add a Copy Files action so that the copies are changed and your originals
 are preserved?";

48 Internationalizing the Action
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

The key-value pairs in this example include not only an English-localized value for the AMName property but
localized strings for the subproperties of the AMWarning property.

Internationalizing Resource Files

You should internationalize any file in your action project that contains data that is specific to a language or
locale. These files include:

 ■ Nib files

 ■ Image files

 ■ Strings files (Localizable.strings)

 ■ Infoplist.strings

Internationalization of a resource file simply entails the assignment of a language or locale to the file. When
you build the action project, Xcode automatically puts the resource in a localization subdirectory of the
bundle’s Resources directory. Localization subdirectories have an extension of .lproj (for example,
French.lproj).

To internationalize a resource file, do the following:

1. Select the Resources folder in Xcode.

2. Add the file to the project (Project > Add Files).

3. Select the file and choose Get Info from the Project menu.

4. Click Make File Localizable.

5. Click Add Localization and enter or select a language or locale.

Testing, Debugging, and Installing the Action

An action project is automatically set up in Xcode so that when you choose the Run or Debug commands,
Xcode launches the Automator action and adds your action to the set of actions loaded by Automator. To
see how this is done, select Automator in the Executables smart group and choose Edit Active Executable
from the Project menu. As you can see, in the General pane of the inspector the “Executable path” value is
set to /Applications/Automator.app. Select the Arguments pane of the inspector and note that the
-action launch-time argument has been set to your action (Figure 15).

Testing, Debugging, and Installing the Action 49
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

Figure 15 Setting the launch argument for Automator

Testing and Debugging Strategies

To test your action, build and run the action project (Build > Build and Run). As Automator builds the project
it runs the amlint utility in a build phase. The amlint tool performs integrity checks to make sure the action
is properly constructed; for example, it verifies that all required Automator properties have been set. It
integrates its warning messages with the other messages in the Xcode Build Results window. Although amlint
does not generate error messages (thereby halting the build), you should investigate and fix all reported
problems before you build a deployment version of the action. To find out more about amlint, see the man
page for it (which you can access from Xcode’s Help menu).

When Automator launches, you should create a workflow which contains your action. Run the workflow and
observe how your action performs. To get better data from testing, consider the following steps:

 ■ Use the View Results action to see the output of prior actions.

 ■ Use the Confirmation Dialog action to pause or cancel execution of the workflow.

 ■ Add one each of the above two actions between each action.

If the action is based on AppleScript, you can use the Run AppleScript action to test your on run command
handler as you write it.

50 Testing, Debugging, and Installing the Action
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

If your action is based on an Objective-C implementation, you can debug an action just as you would any
other Objective-C binary. Simply set a breakpoint in Xcode. When your action is run in Automator, the
breakpoint will trigger in gdb. You can also debug AppleScript actions using a special graphical debugger,
which is preset for AppleScript action projects. This debugger looks and behaves very much like the graphical
debugger for gdb does. It stops at breakpoints, displays variables, and lets you step through the script. The
variables include globals, locals, and properties. Figure 16 shows the AppleScript debugger in action.

Note: To learn about strategies for debugging shell script actions, see “Debugging and Testing Shell Script
Actions” (page 85). For related information on AppleScript actions, see “Building and Testing the Action” in
Automator AppleScript Actions Tutorial.

Figure 16 The AppleScript debugger

Testing, Debugging, and Installing the Action 51
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

To debug AppleScript actions, you can also insert log or display dialog statements in the code. If the
log statement is inside an application tell block, use the tell me to log expression instead of the simple
log.

Note: If you install an action in one of the standard locations and then make certain changes to it—for
example, changing its AMAccepts and AMProvides types—then you must clear the action cache before
you can see your changes. To clear the cache, hold the Option key when Automator launches. (You do not
need to clear the cache when the action is run during the normal development processes—that is, with the
action specified in the -action parameter when Automator is launched by Xcode.)

Installing Actions

When your action has been thoroughly debugged and tested, build a deployment version of the bundle
(using the proper optimizations). Then create an installation package for the action (or add the action to your
application’s installation package). The installer should copy the action to /Library/Automator or
~/Library/Automator, depending on whether access to the action should be system wide or restricted
to the installing user.

Instead of installing your action separately, you can put it inside the bundle of your application, especially if
the action uses the features of that application. When Automator searches for actions to display, it looks
inside registered applications as well in the standard Automator directories. The advantage of packaging
your actions inside an application is that you don’t need to create a separate installation package to install
the actions. To install the actions, users need only drag the application to a standard location.

Action bundles should be stored inside the application wrapper at Contents/Library/Automator. Thus,
if your action is MyAction.action and your application is MyApp.app, the path inside the application would
be:

MyApp.app/Contents/Library/Automator/MyAction.action

You can either manually copy an action into this location (after creating the necessary subdirectories) or you
have Xcode copy it using a Copy Files build phase. If you copy an action into an application bundle but the
application is already installed on a system, you must get Launch Services to recognize that the application
has new content to register (that is, the new action) by changing the application’s modification date. You
can do this by entering the touch command in the Terminal application.

$> sudo touch /Applications/MyApp.app

Or you can rename the application in Finder to something else, change it back to the original name, and
then launch the application once.

Frequently Asked Questions About Debugging Automator Actions

Question: How can I determine which version of an action Automator is using if multiple versions of my
application (possibly containing multiple versions of the action) are installed (locally or on my network)?

Answer: There is no way to specify which version of your application Automator should get actions from if
multiple versions of the application are installed. However, there are several ways to determine the version
of an action that is actually being used:

52 Testing, Debugging, and Installing the Action
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

 ■ In Mac OS X v10.5, when you select an action in the Action list, you can see its version in the description
view. You can also Control-click an action in the workflow view and choose Show in Finder to see where
the action is located, so that you can examine it directly.

 ■ In Mac OS X v10.4, Automator does not show the action version in the description view or allow you to
show the action in the Finder. A possible work around is to delete any unwanted actions, if that option
is available to you, so that only the desired version of the action is available.

Question: How can I view log or error messages?

Answer: If you are developing a shell script action, and the action exits with a non-zero status code, anything
your action wrote to stderr will show up in the Automator log, as described in “Debugging and Testing
Shell Script Actions” (page 85).

If you are developing an AppleScript action, output of AppleScript statements such as log or tell me to
log appear in the Console log (not in the Automator log).

If you are developing a Cocoa action, output from NSLog statements will also appear in the Console log.

Testing, Debugging, and Installing the Action 53
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

54 Testing, Debugging, and Installing the Action
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Developing an Action

Automator has two categories of users. The first is a user who creates a workflow by putting actions in a
sequence that accomplishes a certain goal. This type of user can then save the workflow as an application
which another user—a user of the second kind—can then double-click to run. If the workflow creator is the
only user who can set the parameters of workflow actions (by choosing items and entering values in action
views), users in the second category are at a disadvantage. They are compelled to accept the choices of the
workflow creator.

To get around this problem, Automator has the Show When Run feature. If this feature is turned on for an
action in a workflow, when Automator executes the workflow it displays the user interface (in whole or part)
for the action when execution reaches that point. The workflow user—as opposed to the workflow
creator—can then make the required settings before the action proceeds.

The following sections describe Show When Run in more detail, show what it looks like, and explain how
developers can modify the default behavior.

The “Show Action When Run” Option

The views of most actions in a workflow include a triangular disclosure button in their lower-left corner
labeled “Options”. When a workflow creator clicks this control, the bottom of the view expands to expose a
new set of controls. The number of controls in this disclosed view vary according to how the action view is
configured. Figure 1 illustrates the two kinds of control sets.

The “Show Action When Run” Option 55
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Show When Run

Figure 1 The Show Action When Run option in two actions

In both exposed Option subviews, the first control is a check box labeled “Show Action When Run.” However,
in the first action that check box is also the only control. If the check box is clicked in the first Option subview
and the workflow is run, the action displays its entire user interface in a separate window, as shown in Figure
2.

56 The “Show Action When Run” Option
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Show When Run

Figure 2 Action displaying entire user interface in a window

The user makes selections and fills in information in this window and clicks Continue to have the action
proceed.

In the second Option subview (as shown in Figure 1 (page 56)), when the user selected “Show Action When
Run”, the two radio buttons under it were enabled. He or she then clicked the “Show Selected Items” button
and selected the “Mail Message” check box in the table. As shown in Figure 3, when Automator reaches this
action in the workflow, it displays this portion of the action view in a separate window.

Figure 3 Action displaying part of its user interface in a window

In summary, an action may present one of three styles of the Show When Run feature:

 ■ No Options disclosure button is presented. This Show When Run style is for actions where only the
workflow creator can decide what the action parameters should be.

 ■ The action displays the Options disclosure button and, when that is clicked, only the Show Action When
Run check box. This style is used when Automator should present all controls of the action to users when
the workflow executes.

The “Show Action When Run” Option 57
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Show When Run

 ■ The action displays the Options disclosure and, when that is clicked, the “Show Entire Action” and “Show
Selected Items” radio button along with the selected-items table view. This style of Show When Run is
appropriate for actions where workflow users should be able to make only some action settings. This
style is the default configuration,

Refining Show When Run

In the default Show When Run configuration, Automator displays the Options disclosure button and allows
workflow creators to select one or more parts of the action view for Automator to display when the action
is run in a workflow. Developers can refine the default appearance and behavior of the Show When Run
feature in two ways: by specifying new values for certain Automator properties and by grouping controls in
special boxes in Interface Builder.

Specifying Properties for Show When Run

These three general styles of the Show When Run feature discussed in “The “Show Action When Run”
Option” (page 55) are controlled by two Automator properties:

 ■ AMCanShowWhenRun with a value of <true/> tells Automator to display at least the Options disclosure
button and the “Show Action When Run” check box for the action. If the value is <false/>, the button
does not appear in the action view.

 ■ AMCanShowSelectedItemsWhenRun with a value of <true/> tells Automator to include the radio
buttons “Show Entire Action” and “Show Selected Items” radio buttons along with the table view of
control subsets. If the value is <false/> only the “Show Action When Run” check box is shown.

This property has no effect if AMCanShowWhenRun is <false/>.

The default Show When Run configuration for actions is to have both properties turned on (that is, Automator
assumes a value of <true/>.) In this style, the Option button is displayed, and when that button is clicked
all “Show Action When Run” options are presented, including the table allowing workflow writers to select
groups of controls to display to end users.

If you want only the “Show Action When Run” check box to appear in the exposed view under Options,
specify <false/> for AMCanShowSelectedItemsWhenRun. If you don’t want the Options disclosure button
to appear at all, specify <false/> for AMCanShowWhenRun.

Grouping User-Interface Objects

By default, Automator populates the selected-items table with check box items using the following algorithm:

1. It goes through the items in the top level of the action view looking for eligible objects (such as pop-up
menus, text fields, and buttons).

2. When it finds an eligible object, it determines if there is a label to the left of the object; it there is, it uses
the label in the selected-items table view.

58 Refining Show When Run
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Show When Run

3. If it cannot find an associated label it uses an appropriate name such as “Text field 1” or “Item 3”. (The
bottom action displayed in Figure 1 (page 56) includes an “Item 1” check box in its table.)

These semi-arbitrary names that Automator assigns to some items in the table are often confusing to users.
What does “Text field 1” refer to, especially if there is more than one text field? Moreover, it sometimes makes
more sense to group related controls under one item. For example, if selection of an item in a pop-up menu
results in a text field being enabled, the text field and the menu item belong together.

Interface Builder has been enhanced to give developers of Automator actions the ability to group individual
objects on action views under a given name. When you have completed the procedure in Interface Builder,
the Options subview presented to workflow creators will look more like the example in Figure 4, which
contains no items with names such as “Item 1”.

Figure 4 An action with assigned groups in the selected-items table

To make named groups of action-view objects, complete the following procedure with the main.nib file
open in Interface Builder:

1. Make sure that the Automator palette is loaded. If the palette window does not have a palette named
Cocoa-Automator, choose Tools > Palettes > Palette Preferences and load AMPalette.palette.

Refining Show When Run 59
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Show When Run

2. Select the objects you want in the group by Shift-clicking each object in turn (Figure 5).

Figure 5 Selecting objects for an action group

3. Choose Layout > Make subview of > Automator Box. The grouped objects are enclosed by a colored
rectangle.

The Automator Box menu item is not available until the Cocoa-Automator palette has been loaded. To
load this palette, select the Palettes pane in the Interface Builder preferences, click Add, and select
AMPalette.palette in /Developer/Extras/Palettes.

60 Refining Show When Run
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Show When Run

4. In the Attributes inspector (Command-1) enter a title for the group (Figure 6). This title is what appears
in the selected-items table to identify the group.

Figure 6 Assigning a title to the action group

The box that groups a set of controls in an action view is an instance of AMGroupBox, a subclass of NSBox
created specifically for actions. Developers whose actions are based on AppleScript should keep in mind that
the AMGroupBox instance changes the view hierarchy of the objects in an action view. However, because
AMGroupBox is a subclass of NSBox, the “box” terminology still works in scripts.

Refining Show When Run 61
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Show When Run

62 Refining Show When Run
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Show When Run

The Xcode template for an AppleScript Action project includes an uncompiled script file named
main.applescript. An AppleScript-based action must, at the minimum, add to main.applescript the
scripting code that accesses the services of one or more applications and completes the stated purpose of
the action. An AppleScript-based action can also rely on other components for its implementation, such as:

 ■ Other AppleScript script files, particularly for handling user-interface events

 ■ Objective-C classes, particularly for accessing system resources

 ■ Command-line tools or shell scripts

Regardless of the possible implementation components, an AppleScript-based action always has a
main.applescript file and an invisible instance of AMAppleScriptAction. This instance owns the action
bundle’s nib file, has access to main.applescript, and provides a default implementation of the method
used to run the action behind the scenes, runWithInput:fromAction:error:. (AMBundleAction, the
superclass of AMAppleScriptAction, declares this method.)

The Structure of the on run Command Handler

The template main.applscript contains only the following skeletal structure of the on run command
handler:

on run {input, parameters}
 -- your code goes here
 return input
end run

This on run command handler has two positional parameters, input, and parameters, The inputparameter
contains (in most instances) the output of the previous action in the workflow; it is almost always in the form
of a list. The parameters parameter contains the settings made in the action’s user interface; the values in
parameters (a record object) are typically set via the Cocoa bindings mechanism but can also be manually
updated. The template code finally returns input as its output; your action should always return something
as output, even if it what is given it as input.

You can use any valid AppleScript command, object, reference, expression, and statement in
main.applescript. However, the following steps are suggested for an action’s run handler (not all steps
are applicable to every kind of action).

 ■ Set local variables to the values of the current parameters. To extract the values from the parameters
parameter, use the keys specified for bindings. For example:

set multiple_selection to |multipleSelection| of parameters
set prompt_message to |promptMessage| of parameters
set default_location to |defaultLocation| of parameters

The Structure of the on run Command Handler 63
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an AppleScript Action

You use these parameters to control the logic of the script.

 ■ Set a local variable for output to an empty list. For example:

set output to {}

 ■ In a repeat loop, perform whatever transformations are necessary on the items in the input list and
add each transformed item to the output list. For example:

repeat with i in input
 copy (POSIX path of i) to end of filesToCopy
end repeat

 ■ As the last step, return the output list.

Some actions specify in their AMAccepts property that their input is optional (that is, the Optional
subproperty is set to <true/>). This setting allows users to select a “Ignore Result From Previous Action”
pop-up item in the action’s view. If your action has made input optional in its AMAccepts property, you need
to determine if the user has made this choice by testing the ignoresInput field of parameters; if it is set
to true. then you do not need to do anything with the input object.

You can include subroutines in main.applescript . For example, you might want to write a subroutine
for returning localized strings (described in “Localized Strings” (page 47)).

You can execute command-line tools or shell scripts for your script. The following script fragment runs the
screencapture tool:

set screencapture to "/usr/sbin/screencapture "
-- here set up arguments of screencapture
do shell script screencapture

A caveat about using the do shell script command is that, because of the threading architecture, it
makes the user interface unresponsive until the shell script completes or the user presses Command-. (period).

An action’s scripts can also invoke Objective-C methods that you have implemented in a custom class; for
example, the following statement calls a class method named isDVDPlayerRunning:

set dvdRunning to call method "isDVDPlayerRunning" of class "TakeScreenshot"

Note: The call method command is documented in AppleScript Studio Terminology Reference.

“Hybrid Actions” (page 65) discusses actions that contain a mix of AppleScript and Objective-C code.

Other AppleScript Scripts

An AppleScript action can contain scripts other than main.applescript. These additional scripts typically
contain two types of handlers:

 ■ AppleScript Studio-specified event handlers for managing the user interface of the action. For example,
in an event handler you can modify the presentation of the user interface based on the user’s choices.

64 Other AppleScript Scripts
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an AppleScript Action

 ■ Handlers for the Automator-defined commands update parameters and parameters updated,
which are attached to an action’s view. These handlers are an alternative to Cocoa bindings: you can use
them to store user settings made in the action parameters and to refresh those settings from existing
parameters. For more on these handlers, see “Updating Non-bound Parameters” (page 66).

 ■ Handlers for the Automator-defined commands activated and opened, which are attached to an
action’s view. The on activated handler is called when the action’s workflow is activated, and the on
opened is called when the user adds the action to the workflow. You should use the on opened handler
when you need to populate your action with data that takes some time to get and consequently need
to display a progress indicator.

AppleScript Studio allows you to request handlers for the update parameters, parameters updated,
activated, and opened commands in the Automator Action View group in the AppleScript pane of the
Interface Builder inspector.

As an example of AppleScript Studio event handlers, consider a pop-up menu for various date formats. When
the user chooses a item from this pop-up menu, the action changes an example showing the effect of this
format change. Listing 1 shows an event handler that is invoked when the user chooses a pop-up item for
saving a screen capture to a “Specific File”.

Listing 1 An event handler for displaying a Save panel

on clicked theObject
 if name of theObject is "choose output" then
 -- Setup the properties in the 'save panel'
 tell save panel
 set title to "Choose an output file to save the screenshot to"
 set prompt to "Save"
 set required file type to "pdf"
 set treat packages as directories to false
 end tell

 if (display save panel in directory "" with file name "") is equal to 1 then
 set contents of text field "output file" of super view of theObject to path
 name of save panel
 set contents of popup button "output choice" of super view of theObject to
 1
 set enabled of button "choose output" of super view of theObject to true
 set enabled of text field "output file" of super view of theObject to true
 end if
 end if
end clicked

Hybrid Actions

An action implementation can contain a mix of AppleScript and Objective-C code. Usually such hybrid actions
are AppleScript-based—in other words, they have a main.applescript file containing the run command
handler. However, it is possible to have Objective-C actions that use the Cocoa scripting classes to load (or
create) and execute scripts. See “Implementing an Objective-C Action” (page 69) for a discussion of the latter
type of hybrid action.

Hybrid Actions 65
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an AppleScript Action

Why would you want to create a hybrid action? One reason is to have greater control of the user interface.
An Objective-C class that links with the Application Kit has access to the full range of programmatic resources
for managing the appearance and behavior of user-interface objects.

But perhaps the most common reason for hybrid actions is to get access to system resources that a script
could not get on its own. Scripts can call Objective-C instance methods with the call method command,
but only if the target object is something that the script can address (for example, call method "title"
of window 1). Sometimes, an AppleScript Studio script does not have access to a valid object for a call
method command. To get around this limitation, you can create a simple custom class that implements one
or more class methods. The first argument of these methods is the target (receiver) of an instance method
that the class method wraps. Listing 2 illustrates this approach.

Listing 2 Implementing a custom Objective-C method to be called by a script

#import "CreatePackageAction.h"

@implementation CreatePackageAction

+ (BOOL)writeDictionary:(NSDictionary *)dictionary withName:(NSString *)name
{
 return [dictionary writeToFile:name atomically:YES];
}

@end

In a script you can then use a call method "m" of class "c" with parameters{ y,z} statement to
call this method (Listing 3).

Listing 3 A script calling the Objective-C method

set descriptionRecord to
 {|IFPkgDescriptionTitle|:packageTitle,|IFPkgDescriptionVersion|:packageVersion,
 |IFPkgDescriptionDescription|:description,
 |IFPkgDescriptionDeleteWarning|:deleteWarning}
set rootName to call method "lastPathComponent" of rootFilePath
set descriptionFilePath to temporaryItemsPath & rootName & "description.plist"
call method "writeDictionary:withName:" of class "CreatePackageAction" with parameters
 {descriptionRecord, descriptionFilePath}

Updating Non-bound Parameters

A property of all actions, including AppleScript-based ones, is a record (equivalent in Objective-C to a
dictionary) containing values reflecting the settings users have made in the action’s user interface. When
Automator runs an AppleScript action by calling its run command handler, it passes in these values in the
parameters parameter. Most actions use the Cocoa bindings mechanism to set the parameters property.
However, you may choose to forgo bindings in favor of more direct approach.

The Automator application defines several commands for AppleScript Studio. Among these are update
parameters and parameters updated, which can be attached to an action’s view. The update
parameters command is sent when the an action’s parameters record need to be refreshed from the values
on the user interface. The parameters updated command is sent when the parameters record changes
any of its values.

66 Updating Non-bound Parameters
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an AppleScript Action

To specify handlers for these commands in Interface Builder, follow the usual AppleScript Studio procedure:

1. Select the action’s view.

2. In the AppleScript pane of the Info window, expose the commands under Automator Action View (see
Figure 1).

3. Click the check boxes for update parameters and parameters updated.

4. Specify a script file for the command handlers.

Figure 1 Selecting the parameters-related handlers for action views

Automator calls the handler for update parameters just before it runs the action. In this handler, the action
should get the settings from the user interface and update the parameters record with them. Listing 4 provides
an example of an update parameters handler.

Listing 4 An “update parameters” command handler

on update parameters theObject parameters theParameters
 set |destinationPath| of theParameters to (the content of text field "folder path"
 of the destination_folder_box) as string

Updating Non-bound Parameters 67
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an AppleScript Action

 set |textInput| of theParameters to (the content of text field "text input" of the
 text_source_box) as string
 set |fileName| of theParameters to (the content of text field "file name" of the
file_name_box) as string
 set |chosenVoice| of theParameters to the title of popup button "voice popup" of
voice_box
 set |textSource| of theParameters to ((the current row of matrix "source matrix" of
 the text_source_box) as integer) - 1
 return theParameters
end update parameters

Always return the updated parameters object as the final step in this handler (theParameters in the above
example).

68 Updating Non-bound Parameters
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an AppleScript Action

The particular advantage of actions written in Objective-C (compared to AppleScript actions) is that they
have greater access to the range of system resources of Mac OS X. Actions that use Objective-C code can
incorporate the features not only of Objective-C frameworks such as Foundation and Application Kit but of
virtually any other framework (Because Objective-C is a superset of ANSI C, an Objective-C class can call
functions published in a C interface). Purely Objective-C actions have an offsetting disadvantage: they cannot
easily control applications or access their features except for those applications that offer a public API.

In general, data that Automator pipes through the actions of a workflow is assumed to be
AppleScript-compatible. If it detects that an action is based on Objective-C, however, Automator converts it
into an Objective-C object that the action can deal with. It also takes the objects that Objective-C actions
provide and converts them into a form suitable for AppleScript-based actions.

Specifying Cocoa Type Identifiers

An action that is purely based on Objective-C must have Cocoa-specific type identifiers for its AMAccepts
and AMProvides properties. Currently there are three Cocoa public type identifiers:

 ■ com.apple.cocoa.string —An NSString for text

 ■ com.apple.cocoa.path — An NSString for full file-system paths

 ■ com.apple.cocoa.url —An NSURL for URLs

For example, if you were to specify com.apple.cocoa.path as the sole type identifier of the AMAccepts
property, the input object in the runWithInput:fromAction:error: method would an NSString object
representing a path (or an array of such string objects). If you were to specify com.apple.cocoa.url as
the type identifier of the AMProvides property, you would have to return an NSURL object (or an array of
NSURL objects) in your implementation of runWithInput:fromAction:error:.

For further discussion of the Cocoa type identifiers, see “Type Identifiers” (page 108).

Note: UTI type identifiers designating other types of input and output data for Objective-C actions are
planned for future versions of Mac OS X.

Implementing runWithInput:fromAction:error:

In your custom subclass of AMBundleAction you must override the method
runWithInput:fromAction:error: (inherited from the AMAction class). Aside from specifying the Cocoa
type identifiers in your AMAccepts and AMProvides properties, this method implementation is the only
requirement for a purely Objective-C action.

Specifying Cocoa Type Identifiers 69
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an Objective-C Action

If an action does not have to deal with the input data handed it—for example, its role is to select some items
in the file system—the implementation of runWithInput:fromAction:error: can return whatever it is
designed to provide without touching the input data. In the example in Listing 1, the action returns a list of
paths to movies selected in its user interface (and stored in its parameters):

Listing 1 An Objective-C action that does not handle its input object

- (id)runWithInput:(id)input fromAction:(AMAction *)anAction
 error:(NSDictionary **)errorInfo {
 return [[self parameters] objectForKey:@"movieFiles"];
}

However, most actions operate on the input data given them from the previous action. The input object and
the output object for an action are almost always NSArray objects because the Container subproperties of
AMAccepts and AMProvides are by default lists (equivalent to NSArray objects in Objective-C). Many
Objective-C actions implement runWithInput:fromAction:error: using a general approach that is
similar to a typical on run handler in an AppleScript-based action:

1. If the container type of the action’s AMProvides property is List, prepare an output array for later use
(usually by creating an NSMutableArray object).

2. Iterate through the elements of the input array and for each perform whatever operation is required
and write the resulting data item to the output array.

3. Return the output array.

Listing 2 Implementing runWithInput:fromAction:error:

- (id)runWithInput:(id)input fromAction:(AMAction *)anAction error:(NSDictionary
 **)errorInfo
{
 NSMutableArray *returnArray = [NSMutableArray arrayWithCapacity:[input
count]];
 NSEnumerator *enumerate = [input objectEnumerator];
 NSString *xmlFile;

 while (xmlFile = [enumerate nextObject]) {
 NSError *anError=nil;
 NSString *returnStr;

 NSXMLDocument *xmlDoc = [[NSXMLDocument alloc]
initWithContentsOfURL:[NSURL fileURLWithPath:xmlFile] options:nil error:&anError];
 NSLog(@"XML document = %@", [xmlDoc description]);
 if (!xmlDoc) {
 [returnArray addObject:[NSString stringWithFormat: @"ERROR: Could
not make document from file: %@\n", xmlFile]];
 continue;
 }
 if (anError) {
 [returnArray addObject:[NSString stringWithFormat: @"ERROR: Error
in processing file %@, because = %@\n", xmlFile, [anError localizedDescription]]];
 continue;
 }

 NSString *queryStr;

70 Implementing runWithInput:fromAction:error:
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an Objective-C Action

 if ([[[self parameters] objectForKey:@"elementAttributeChoice"] intValue])
 { // attribute
 queryStr = [NSString stringWithFormat:@".//@%@/text()", [[self
parameters] objectForKey:@"elementAttributeName"]];
 } else {
 queryStr = [NSString stringWithFormat:@".//%@/text()", [[self
parameters] objectForKey:@"elementAttributeName"]];
 }
 anError = nil;
 NSArray *results = [xmlDoc nodesForXPath:queryStr error:&anError];
 if (anError) {
 [returnArray addObject:[NSString stringWithFormat: @"ERROR: Error
in XQuery because = %@\n", [anError localizedDescription]]];
 continue;
 }
 [returnArray addObject:[NSString stringWithFormat:@"\n--------- Found
in file %@ ----------\n", xmlFile]];
 int i, count = [results count];
 for (i = 0; i < count; i++) {
 [returnArray addObject:[results objectAtIndex:i]];
 }
 [xmlDoc release];
 }

 return returnArray;
}

Some actions in their AMAccepts property specify that their input is optional (that is, the Optional
subproperty is set to <true/>). This setting allow users to select a “Ignore Result...” item from an input type
pop-up button in the action’s view. If your action has made input optional in its AMAccepts property, you
need to determine if the user has made this choice by sending the action an ignoresInput message; if the
response is YES. you do not need to do anything with the input object.

If your action encounters an error that prevents it from proceeding, it should give information describing
the error to Automator, which then stops executing the workflow and displays an error alert. The last parameter
of the runWithInput:fromAction:error:method is a pointer to an NSDictionary object. To report errors,
you must create a dictionary containing two key-value pairs and return this object to Automator indirectly.
The two dictionary properties are:

 ■ OSAScriptErrorNumber—Takes an error number encapsulated as an NSNumber object.

For suitable error codes, see the MacErrors.h header file of the Carbon Core framework, especially the
error codes specific to the OSA framework.

 ■ OSAScriptErrorMessage—Takes an NSString object containing a description of the error.

Because the code example in Listing 2 (page 70) output is text, it reports errors such as the lack of a valid
document as part of the output. But what if this were a fatal error that required the action to stop executing?
Listing 3 illustrates how you might handle such an error.

Listing 3 Reporting a fatal error to Automator

if (!xmlDoc) {
 NSArray *objsArray = [NSArray arrayWithObjects:
 [NSNumber numberWithInt:errOSASystemError],
 [NSString stringWithFormat:@”ERROR:
 Could not make document from file: %@\n", xmlFile], nil];

Implementing runWithInput:fromAction:error: 71
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an Objective-C Action

 NSArray *keysArray = [NSArray arrayWithObjects:OSAScriptErrorNumber,
 OSAScriptErrorMessage, nil];
 *errorInfo = [NSDictionary dictionaryWithObjects:objsArray
 forKeys:keysArray];
 return nil;
}

Your action has the entire gamut of possibility available to Cocoa applications. It can message Cocoa-framework
objects and custom objects from its AMBundleAction subclass, and it can define and implement as many
other supporting classes, protocols, and categories as is needed to accomplish the task of the action. An
Objective-C action could choose to do any of the following things:

 ■ Execute a command-line tool using an NSTask object.

 ■ Perform animation using NSAnimation or NSViewAnimation.

 ■ Spin off multiple secondary threads using Foundation’s threading support.

 ■ Communicate with other applications using distributed objects or distributed notifications.

 ■ Use a C-language framework; for example, you could use Core Graphics to draw an image directly to the
screen.

An Objective-C has only two restrictions related to its implementation of
runWithInput:fromAction:error:. It cannot return until it has completely finished whatever processing
it has initiated. For instance, if an action instructs a camera to take a picture (an asynchronous process) it
cannot return from runWithInput:fromAction:error: method until the picture is taken. So the action
has to implement whatever blocking algorithm, timeout logic, or threading strategy is necessary until the
picture is taken. The second restriction has to do with Automator’s threading architecture. Because Objective-C
actions run on a secondary thread, if they want to display a window it must be done on the main thread.
The performSelectorOnMainThread:withObject:waitUntilDone: method is adequate for this
purpose; for example:

self performSelectorOnMainThread:@selector(showPreviewWithData:) withObject:data
 waitUntilDone:YES]

Updating Action Parameters

A typical action uses the bindings technology of Cocoa to synchronize the settings on an action’s user interface
with the action’s parameters attribute. (See “Constructing the User Interface” (page 33) in “Developing an
Action” (page 31).) But an action is not required to use bindings to do this synchronization. It can choose to
do it manually by implementing theupdateParameters andparametersUpdatedmethods. These methods
are invoked went it is time to run or save the action.

The updateParameters method is invoked when the parameters attribute of the action (an NSDictionary
object) needs to be refreshed from the settings and values the user has specified in the user interface. The
parametersUpdated method is invoked for the opposite reason: to make the pop-up items, buttons, text
fields, and other objects in the action’s view reflect the current contents of the action’s parameters, especially
when those contents change programmatically.

Listing 4 shows a typical implementation of the updateParameters method.

72 Updating Action Parameters
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an Objective-C Action

Listing 4 Updating an Objective-C action’s parameters manually

- (void)updateParameters
{
 // text
 NSString *outputFile = [_outputFilePath stringValue];
 if (outputFile)
 {
 [[self parameters] setObject:outputFile forKey:@"outputFilePath"];
 }

 NSString *waitSeconds = [_waitSeconds stringValue];
 if (waitSeconds)
 {
 [[self parameters] setObject:[NSNumber numberWithInt:
 [_waitSeconds intValue]] forKey:@"waitSeconds"];
 }

 // radios
 [[self parameters] setObject:[NSNumber numberWithInt:
 [_interactiveType selectedRow]] forKey:@"interactiveType"];
 [[self parameters] setObject:[NSNumber numberWithInt:
 [_screenShotType indexOfSelectedItem]] forKey:@"screenshotType"];

 // popup
 [[self parameters] setObject:[NSNumber numberWithInt:
 [_outputType indexOfSelectedItem]] forKey:@"outputType"];

 // checks
 [[self parameters] setObject:[NSNumber numberWithBool:
 [_captureMainMonitorOnly state]] forKey:@"captureMainMonitorOnly"];
 [[self parameters] setObject:[NSNumber numberWithBool:
 [_disableSounds state]] forKey:@"disableSounds"];
 [[self parameters] setObject:[NSNumber numberWithBool:
 [_timedScreenshot state]] forKey:@"timedScreenshot"];
}

You can also update an action’s parameters to include miscellaneous data that can stay with the action as it
is, for example, copied to the pasteboard or written to disk in a workflow. When Automator archives an action
it includes the action’s parameters with the archive, and thus objects stored in the parameters can be
unarchived and retrieved. The only restriction is that the Foundation object saved to an action’s parameters
must be a property-list object—that is, an NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary
object. Any object that is not one of these must be converted to a property-list object before it can be
archived.

Objects that represent URLs—in other words, instances of NSURL—are an important case in point. URLs are
a type of data (identified with UTI public.url) that actions occasionally deal with. Fortunately, there are
methods for converting NSURL objects to and from a property-list object. The code in Listing 5 converts an
NSURL object to an NSString object and stores that in the action parameters.

Listing 5 Saving an NSURL object to parameters as a string object

NSMutableDictionary* params;

if (mFilterURL) // NSURL object
{
 NSString* path = [mFilterURL path];

Updating Action Parameters 73
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an Objective-C Action

 params = [NSMutableDictionary dictionaryWithObject:path forKey:@"URL"];

 [self setParameters:params];
}

Now when the action is archived the URL is stored with it, and when it is unarchived the URL is retrievable.
The code fragment in Listing 6 restores the NSURL object from the NSString object stored in the action
parameters.

Listing 6 Restoring an NSURL object from an action’s parameters

NSURL* filterURL = nil;

NSMutableDictionary* params = [self parameters];

NSString* path = [params objectForKey: @"URL"];

if (path) filterURL = [NSURL fileURLWithPath:path];

if (filterURL)
{
 // do something with filterURL here
}

This example uses fileURLWithPath: to create an NSURL object representing a file-scheme URL. If you
want a URL object with a different scheme, you would use something such as URLWithString:, an NSURL
class method. However, the string for this method must contain any necessary percent-escape codes. The
easiest way to obtain such a string is to send absoluteString to the NSURL object before storing the URL
string in the action parameters. If your action for some reason does not deal with absolute URLs, then it must
devise a way to save and restore the various parts of the URL.

Loading and Executing Scripts

Objective-C actions can also include AppleScript code that they load and execute, making them in effect
hybrid actions. The OSA framework and the Foundation framework contain a number of classes (OSAScript,
NSAppleScript, NSAppleEventDescriptor, and more) that enable creation, preparation, and execution of
objects representing AppleScript scripts.

Listing 7 illustrates how an action gets an AppleScript script either from its user interface or its parameters,
creates an OSAScript object with it, and then compiles and executes the script.

Listing 7 Executing an AppleScript script in an Objective-C action

- (OSAScript *)script
{
 OSAScript *script = nil;
 NSString *source = nil;

 if ([self controller])
 {
 [[self controller] compileScript:self];
 source = [[[self controller] scriptView] string];
 }

74 Loading and Executing Scripts
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an Objective-C Action

 else
 {
 source = [self source];
 }

 if (source)
 {
 script = [[OSAScript alloc] initWithSource:source language:[OSALanguage
 defaultLanguage]];
 if (script)
 {
 NSDictionary *errorInfo;
 [script compileAndReturnError:&errorInfo];
 }
 }
 return [script autorelease];
}

- (NSString *)source
{
 return [[self parameters] objectForKey:@"RunScriptSource"];
}

- (void)setSource:(NSString *)source
{
 [[self parameters] setObject:source forKey:@"RunScriptSource"];
}

Loading and Executing Scripts 75
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an Objective-C Action

76 Loading and Executing Scripts
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Implementing an Objective-C Action

You can create actions for the Automator action that are based on scripting languages with a UNIX pedigree,
including shell scripts, Perl, and Python. This article explains how to create such actions.

Note: Several of the steps in developing shell script actions, such as constructing the user interface, are the
same as for other kinds of actions. This article describes only those aspects of shell script action programming
that are different.

Shell script actions were first introduced in Xcode 2.1.

The Run Shell Script Action

You can incorporate a shell script into an Automator workflow even without having to build an action bundle.
The Run Shell Script action, as with the Run AppleScript action, is an action that lets you type and execute a
script; in this case, however, it’s a shell script or a Python or Perl script. “The Run Shell Script action in a
workflow” shows the action in a workflow that searches recursively in a Fonts folder for fonts with a specific
extension.

The Run Shell Script Action 77
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

Note: The Run Shell Script action shown in Figure 1 (page 78) is included in the Mac OS X 10.4.2 update. It
is not available in earlier versions of Mac OS X 10.4 or in Xcode 2.1.

Figure 1 The Run Shell Script action in a workflow

The Run Shell Script action in this simple example runs the find command in the bash shell. In the Shell
pop-up menu you can select other shells (such as csh or zsh) or Python or Perl as your scripting environment.
The “Pass input” pop-up menu lets you choose input in the form of standard input (stdin) or as shell
arguments.

The Run Shell Script action is a useful tool, especially for rapid prototyping of scripts. But it has its limitations,
especially when the workflow it’s in is made available to users. Users of the workflow (unless they are power
users) may introduce errors into the script if they try to change options. And if you save the workflow as an
application to eliminate the possibility of user error, the action becomes even more inflexible and hence less
usable.

To make shell script–based actions for which users of a workflow can select options, you need to create a
custom shell script action.

78 The Run Shell Script Action
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

Custom Shell Script Actions

Shell script actions are conceptually different from AppleScript and Objective-C actions in important ways.
The primary difference concerns the way input and user choices are conveyed to the action.

Instead of an input parameter, input is piped into the action via standard input (or passed as command-line
arguments) and piped out of it via standard output. In addition, an action’s input and output, instead of
being a list or array object, is a single string; individual items in the string (such as paths) are separated from
each other by newline characters. (The newline character is the default; you can change the separating
character programmatically.) The type identifier for a shell script action’s AMAccepts and AMProvides
properties is always com.apple.cocoa.string.

Because shell script actions are limited to single type of data, they might not seem to work well with other
actions that accept and provide incompatible data types. For example, how can a shell script action handle
input from an action that deals in Address Book records? This is where conversion actions play an important
role. Conversion actions convert between one type of data and another. Automator invisibly inserts the
appropriate conversion action between actions with dissimilar types in a workflow—but only if the conversion
action is available. Apple provides many conversion actions in /System/Library/Automator (the actions
with extension caction), but these might not be suitable for your shell script action. You many want to
consider creating your own conversion actions; see “Creating a Conversion Action” (page 89) for the procedure.

The choices users make in the user interface of a shell script action are conveyed to the script as environment
variables. These variables correspond to the keys specified for the Parameters object-controller instance in
the nib file. When you are creating the user interface, you use these keys to establish bindings between
controls on the user interface and the action’s parameters property.

A shell script in an action cannot directly display localized strings in, for example, error messages. However,
a shell script action, which is a loadable bundle, can contain localized nib files and can localize its visible
properties, such as the action name, application, and description. See “Internationalizing the Action” (page
47) for details.

Shell script actions have no direct access to the methods of the Automator framework or, for that matter,
any other framework. There is no way within the script to manually synchronize the user interface and the
parameters property (updateParameters and parametersUpdatedmethods). Neither can you implement
the opened and activated methods (or corresponding AppleScript routines) to perform initialization and
synchronization tasks. However, your shell script action project can include an Objective-C helper class or an
AppleScript utility script that implements these methods or routines. Shell scripts can also run the osascript
tool to execute individual AppleScript scripts.

Creating the Shell Script Action Project

To create an Xcode project for a shell script action, start by choosing New Project from the File menu. In the
New Project assistant, select Shell Script Automator Action, as shown in Figure 2, and click Next.

Custom Shell Script Actions 79
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

Figure 2 Selecting the Shell Script Automator Action template

In the next assistant window, enter a project name and location and click Finish. For convenience, make the
name of the project the same name you want the action to have; by default, the project name is assigned
to the action name and the bundle identifier.

The project window of a shell script action displays most of the items that appear in the project windows of
other action types (see Figure 3). These items include the required frameworks, main.nib, Info.plist,
and InfoPlist.strings. The sole difference from other projects is the main.command file, which holds
the script (shell, Perl, or Python) that you will write.

80 Creating the Shell Script Action Project
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

Figure 3 The project window of a shell script action

The main.command file in the template is initialized with a simple cat command to pipe the input from
stdin to stdout.

Before you start working on the shell script action, become familiar with the guidelines for actions, which
are documented in “Design Guidelines for Actions” (page 27).

Composing the Action View

Constructing the user interface of a shell script action is a procedure that is the same as for other kinds of
actions. Read “Constructing the User Interface” (page 33) to learn about the procedure.

Remember that the keys you supply for bindings in the Attributes pane of the NSObjectController inspector
(the Parameters instance in Interface Builder) become the environment variables that you refer to in the
script (Figure 4). Through bindings, the settings of the various fields, buttons, and pop-up menus are converted
into the values of these environment variables.

Composing the Action View 81
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

Figure 4 The parameter keys in the NSObjectController inspector

If you are going to make the action available in multiple localizations, you must internationalize and localize
the nib file; see “Internationalizing the Action” (page 47).

Automator Properties for Shell Script Actions

The properties of shell script actions (in the Info.plist file) are little different than the properties of
AppleScript and Objective-C actions. The differences are the following:

 ■ The AMAccepts and AMProvides properties take UTI identifiers of com.apple.cocoa.string only.

 ■ The AMApplication, AMCategory, and AMIconName properties are preset with the value “Terminal”
in the project template. You can either keep this value or change it to something else, such as “TextEdit”.

You set all other Automator and regular bundle properties the same as in other kinds of actions. See “Specifying
Action Properties” (page 41) for more information.

82 Automator Properties for Shell Script Actions
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

Writing the Script

When you write a shell script or a Perl or Python script for an action, you do nothing different from what you
normally would, except for two things:

 ■ You learn about the choices users have made in the action’s user interface through environment variables.

 ■ Input to the script is implicitly standard input; you handle it (usually) as lines—that is, a list of
newline-terminated strings.

The parameters of an action are the settings users have made in the controls and text fields of the action’s
user interface. Actions are implemented to hold them as values in a dictionary. You access these values
through keys that you specify when you establish the bindings of the action. In AppleScript and Objective-C
actions the parameters dictionary is passed into the action, and the code in each case directly obtains a
setting value using one of the bindings keys. Because the only thing passed into a shell script action is
standard input, you must obtain the settings in another way. When a shell script action is run in a workflow,
the AMShellScriptAction class converts the items in the parameters dictionary into environment variables;
the name of each environment variable is a bindings key. Listing 1 shows how you access the
environment-variable values in a script.

Listing 1 A sample shell script for an action

PATH=/bin:/usr/bin:/sbin:/usr/sbin export PATH

case "$sortDirection" in
0) dir= ;;
1) dir="-r ";;
esac

case "$sortStyle" in
0) s= ;;
1) s="-n ";;
esac

note when you use "-k", the first column is 1, not 0

sort $dir $s -k $sortColumn

exit 0

This shell script makes sure the PATH environment variable is properly set. It then interprets two environment
variables in case statements and sets arguments of the sort command accordingly. It then executes the
sort command, using the value of a third environment variable as the final command-line argument.

Some commands in shell scripts, such as sort in the above example, are designed to handle multiple lines
of input at once. Other commands can only handle one line of input at a time. For these commands, input
must be handled in a loop, such as the following:

while read line; do
 cp "$line" /tmp
 echo $line
done

Writing the Script 83
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

Perl scripts and Python scripts have to follow the same general guidelines as shell scripts. Listing 2 shows an
example of such a Perl script, which filters text based on parameters such as range of lines and range of fields.

Listing 2 A Perl script for an action

#!/usr/bin/env perl
Filter Text by Position
Pick out particular lines and fields of the input text.

Grab values we care about from the UI and make sure they're integers
$line1 = $ENV{'firstLine'} + 0;
$line2 = $ENV{'lastLine'} + 0;
$f1 = $ENV{'firstField'} + 0;
$f2 = $ENV{'lastField'} + 0;
$sepnum = $ENV{'fieldSeparator'} + 0;
$outputSepNum = $ENV{'outputSeparator'} + 0;

Figure out the right regex for our separator. (whitespace, blank, tab, colon,
characters)
Later we will split the input lines on this pattern. Splitting on "" conveniently
breaks
the line apart on character positions.

@regexes = ("\\s+", " ", "\t", ":", "");
$regex = $regexes[$sepnum];

And what output separator to use (blank, tab, colon, nothing)
@oseps = (" ", "\t", ":", "");
$osep = $oseps[$outputSepNum];

Grab all our input

@lines = <>;
$linecount = $#lines + 1;

Adjust line numbers. 0 = last line, -1 = 2nd last, etc.

if ($line1 <= 0) {
 $line1 = $linecount - $line1;
}
if ($line2 <= 0) {
 $line2 = $linecount - $line2;
}

And get them in the right order.
if ($line1 > $line2) {
 $x = $line1; $line1 = $line2; $line2 = $x;
}

Output the desired lines

for ($l = $line1 ; $l <= $line2; $l++) {
 # note we are counting the first line as 1

 $line = $lines[$l - 1];

84 Writing the Script
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

 if ($f1 == 1 && $f2 == 0) {
 print $line;
 } else {
 @fields = split($regex, $line);
 $fieldcount = $#fields + 1;
 # Adjust field numbers. 0 = last field, -1 = 2nd last, etc
 if ($f1 <= 0) {
 $f1 = $fieldcount - $f1;
 }
 if ($f2 <= 0) {
 $f2 = $fieldcount - $f2;
 }

 # Get fields in right order too
 if ($f1 > $f2) {
 $x = $f1; $f1 = $f2; $f2 = $x;
 }

 undef @out;
 for ($i = $f1; $i <= $f2; $i++) {
 push(@out, $fields[$i - 1]);
 }

 # Output the desired fields joined by the desired output separator.
 print join($osep, @out) . "\n";
 }

}
exit(0);

Debugging and Testing Shell Script Actions

For general advice for debugging actions, see “Testing and Debugging Strategies” (page 50).

You cannot use gdb or any other debugger to debug shell script actions. However, you have a couple of
alternatives to consider:

 ■ If your shell action exits with a non-zero status code, the workflow will stop and anything your action
wrote to stderr will show up in the Automator log view. For example, a simple, always-fail shell action
might include these lines:

echo This action always fails 1>&2
exit 1

 ■ Test your script by itself in the Terminal application. You can set environment variables to duplicate the
variables that Automator would set. For example,

$ sortDirection=1 sortStyle=0 ./main.command

 ■ Individual scripting languages might have their own debugging facilities. For instance, bash scripts can
echo each line as it is about to be executed and can print the values of expanded variables in a script.
If you add the following code to a script:

Debugging and Testing Shell Script Actions 85
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

set -xv

you can request sh and bash scripts to display a log of the commands that are actually executed. The
log is written to the shell’s standard error stream (which is normally discarded by Automator).

 ■ Because only standard output is passed to the next action, so you might want to capture the log
information in a separate file (for example, /tmp/myAction.log) or, preferably in the console log,
which is displayed by the Console application. If you add a line like the following to the script:

exec 2>>/dev/console

the log information appears in the console log. As your action runs, you can view in Console every
command your script is trying to execute.

 ■ You can also use the printenv command to show the value of all environment variables, which includes
the values of action bindings.

Listing 3 shows the same sorting shell script in Listing 1 (page 83) with debugging statements added.

Listing 3 The sorting shell script for an action, with debugging statements

PATH=/bin:/usr/bin:/sbin:/usr/sbin export PATH

Turn on shell debugging, and arrange for our standard error stream
to be redirected to the console device, where it will appear in Console.app's
 console log window

set -xv
exec 2>/dev/console

We can have our own debug messages too; by adding 1>&2 we are arranging for
the
output of this command to go to standard error (the console log) rather than
 standard out
(which becomes the input to the next stage.)

echo starting stage 1>&2

Check the value of all our environment variables - which will show us all our
 bindings

printenv 1>&2

case "$sortDirection" in
0) dir= ;;
1) dir="-r ";;
esac

case "$sortStyle" in
1) s="-n ";;
esac

Note when you use "-k", the first column is 1, not 0
Note that these debug statements go to standard error and thus to /tmp/log

echo About to sort input 1>&2
echo The command is: sort $dir $s -k $sortColumn 1>&2

86 Debugging and Testing Shell Script Actions
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

sort $dir $s -k $sortColumn

echo All finished sorting 1>&2

exit 0

Check the man page or other documentation for a scripting language to see what debugging facilities are
available.

Debugging and Testing Shell Script Actions 87
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

88 Debugging and Testing Shell Script Actions
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating Shell Script Actions

A conversion action acts as a kind of bridge between two actions whose types of provided data (AMProvides
property) and accepted data (AMAccepts) do not match. The conversion action converts between one type
and another, usually from an internally defined data type (such as an iTunes track object, specified by the
UTI identifier com.apple.itunes.track-object) to an externally defined public type (such as a file,
specified by public.item).

Automator does not display conversion actions and users do not have to bother placing them between
actions. The application determines if there is a data-type mismatch between two actions and, if a suitable
conversion action is available, it inserts it invisibly between them. Conversion actions have a bundle extension
of .caction and are installed in the usual system directories for actions.

You create a conversion action just as you would a “normal” action (as described in “Developing an
Action” (page 31)) but with just a few differences:

 ■ Set the extension of the produced bundle to .caction. To do this, select the action target and choose
Get Info from the Project menu. In the Build pane of the Info window (Customized Settings collection),
set the Wrapper Extension to “caction”.

 ■ In the information property list (Info.plist) for the bundle be sure to do the following:

 ❏ The AMAccepts type identifier should specify the type of data converted from.

 ❏ The AMProvides type identifier should specify the type of data converted to.

 ❏ The AMCategory property should have a value of “Converter/Filter”.

 ❏ The AMApplication property value should be “Automator”.

See Listing 1 for an example.

 ■ Of course, there is no need for an action description, nib file, or similar resource.

Listing 1 Typical Automator properties for conversion actions

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>AMAccepts</key>
 <dict>
 <key>Container</key>
 <string>List</string>
 <key>Types</key>
 <array>
 <string>com.apple.iphoto.photo-object</string>
 </array>
 </dict>
 <key>AMApplication</key>
 <string>Automator</string>

89
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating a Conversion Action

 <key>AMCategory</key>
 <string>Converter/Filter</string>
 <key>AMDefaultParameters</key>
 <dict/>
 <key>AMIconName</key>
 <string>(* The name of the icon *)</string>
 <key>AMName</key>
 <string>Convert Photo object to Alias object</string>
 <key>AMProvides</key>
 <dict>
 <key>Container</key>
 <string>List</string>
 <key>Types</key>
 <array>
 <string>public.item</string>
 </array>
 </dict>
 <!- other properties here -->
</dict>
</plist>

As the final step, write the script or Objective-C source code to do the conversion. The script example in
Figure 1 converts iPhoto objects representing photo images to paths to those images in the file system.

Figure 1 A typical conversion script

90
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Creating a Conversion Action

The following sections offer guidelines for when to define a custom data type, describe the procedure for
creating a definition bundle, explain how to specify the defined_types property, and summarize the
procedure for providing localizations.

Important: As of Mac OS X 10.4.2, the definition of a data type involves nothing more than specifying a type
identifier and a human-readable name. The structure of a data-type definition, however, is evolving and will
become more detailed in the near future.

When to Define a Data Type

Apple defines dozens of special data types for Automator actions, each with its own unique Uniform Type
Identifier (UTI). You use these UTIs in an action's information property list to specify the kinds of data an
action accepts and provides. The special data types defined by Apple designate such things as generic
AppleScript objects, iTunes track objects, and Cocoa strings. They are described in "“Type Identifiers” (page
108)," along with the supported public UTIs.

There might be times, however, when none of these default Automator data types can adequately describe
the data that your action must deal with. The common case would be a scriptable application that your action
messages with AppleScript commands. If, for example, this is a spreadsheet application and it has data objects
representing such entities as worksheets and graphs, none of the Apple-defined data types could accurately
represent these items of data. In cases such as this you can define your own data types for Automator.

However, you are not required to define a custom data type in these situations. You can always use one of
the more generic types—for example, using a generic AppleScript object type to represent a spreadsheet
object. This is especially true if only one action is involved. When you are creating a set of actions that uses
application-specific data, then you might consider defining a custom type for that data. Automator can then
provide more guidance to users about which actions work well with each other.

If you define custom data types, you might have to create conversion actions to convert data between your
custom type and one or more public or common types. See “Creating a Conversion Action” (page 89) for
the procedure for making a conversion action.

Creating the Definition Bundle

You specify custom data types in a definition bundle, which is a codeless loadable bundle with an extension
of .definition. So if, for example, you are defining types of data native to the (fictional) Excellent application,
you might name the definition bundle Excellent.definition.

When to Define a Data Type 91
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Defining Your Own Data Types

A data type is essentially defined in an XML property list. But if this is the case, why not have a simple file for
the property list instead of a bundle? The reason for putting data-type definitions in a bundle is that bundles
support internationalization. The definition includes the strings that identify the data accepted and provided
in an action's user interface (see circled area in Figure 1 (page 92)). These strings should be localized for all
supported languages and locales.

Figure 1 The names of action input and output

You can get an idea of the internal structure of a definition bundle by looking at any such bundle installed
in /System/Library/Automator. Figure 2 (page 93) shows what the iCal.definition bundle looks
like inside its opaque package. (To look inside a bundle, Control-click it in Finder and choose Show Package
Contents from the contextual menu.)

92 Creating the Definition Bundle
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Defining Your Own Data Types

Figure 2 The contents of iCal.definition

This definition bundle supports localizations in five languages. The example shows that the
definition.plist file, which contains the property list defining the data types, is stored just under the
bundle's Resources folder. “Adding a Localization” (page 98)" discusses localizations in definition bundles
in more detail.

To create a definition bundle in Xcode, start by choosing New Project from the File menu. In the New Project
assistant window, select the Cocoa Bundle project type under Bundle (see Figure 3 (page 94)). Click Next
and in the subsequent assistant window provide a name and location for your project; click Next again to
have Xcode display the project window.

Creating the Definition Bundle 93
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Defining Your Own Data Types

Figure 3 Select the generic Cocoa bundle project type

From this point, it takes four steps to create a definition bundle:

1. Specify the extension of the bundle.

2. Add the property-list file to the project.

3. Specify the properties of data types in the property-list file.

4. Add localizations to the definition bundle.

To change the extension of the bundle, double-click the target icon in the Groups and Files list in Xcode. This
action opens the Info window for the target. Select the Build pane of this window and scroll down the table
of settings until you find the Wrapper Extension build setting. Double-click the cell under Value for this setting
and change the value to "definition" (see Figure 4 (page 95) for an example).

94 Creating the Definition Bundle
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Defining Your Own Data Types

Figure 4 Changing the bundle extension

Next add the property-list file to the definition bundle:

1. Select the project's Resources folder in the Groups and Files list.

2. Choose New File from the File menu.

3. In the New File assistant, select Empty File in Project from the list of file types.

4. In the next window of the assistant (New Empty File in Project), type "definition.plist" in the File Name
field.

5. Make sure that the correct project location, project name, and target are selected and click Finish.

Disclose the contents of the Resources folder in the Groups and Files list to find the definition.plist file
you have just added. Figure 5 (page 96) shows what it should look like. (If definition.plist is not under
Resources, move it there.)

Creating the Definition Bundle 95
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Defining Your Own Data Types

Figure 5 The definition.plist file in the Groups and Files list

You might also notice that definition.plist (once it's added to Resources) also appears under the Copy
Bundle Resources build phase under the target in the Groups and Files list. If you build the definition bundle
at this point and then look inside the bundle package, you can see the initial layout of your bundle.

Figure 6 Initial layout for a bundle package

You are ready now to specify the properties of your custom data types and localize the human-readable
parts of those properties; see "“Specifying Defined Types” (page 97)" and "“Adding a Localization” (page
98)," respectively, for the relevant information.

96 Creating the Definition Bundle
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Defining Your Own Data Types

Once you finish creating your definition bundle, it is ready for installation. You install definition files in the
same locations you install actions: /Library/Automator, /Network/Library/Automator,
Library/Automator in users' home directories, or inside the application bundle. See "“Installing
Actions” (page 52)" for more information.

Specifying Defined Types

Giving a file an extension of .plist doesn't make it a property-list file, let alone one for defining Automator
data types. A property list on Mac OS X must have the proper XML header. In addition, a property list in a
definition bundle must have the defined_typesproperty.

The quickest way to start writing the property list for your definition bundle is to copy the contents of an
existing definition.plist file and then modify it appropriately. The definition.plist file in
/System/Library/Automator/Automator.definition is good source for this. Copy the contents of
the file and paste it into your own definition.plist. The property list should look like the example in
Listing 1 (page 97).

Listing 1 The contents of definition.plist — Automator definition bundle (partial)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>defined_types</key>
 <dict>
 <key>*</key>
 <dict>
 <key>name</key>
 <string></string>
 </dict>
 <key>com.adobe.pdf</key>
 <dict>
 <key>name</key>
 <string>PDF files</string>
 </dict>
 <key>com.apple.applescript.alias-object</key>
 <dict>
 <key>name</key>
 <string>Files/Folders</string>
 </dict>
 <key>com.apple.applescript.alias-object.image</key>
 <dict>
 <key>name</key>
 <string>Image files</string>
 </dict>
 // more defined types here
 </dict>
 </dict>
 </plist>

Specifying Defined Types 97
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Defining Your Own Data Types

Replace the key-value pairs in the defined_types dictionary with your own key-value pairs, deleting the
unused ones. The key of each data-type definition is a Uniform Type Identifier in a specific notational form:
com.companyName.applicationName.dataTypeName. The value of the UTI key is another dictionary containing
a key-value pair defining the human-readable name of the data type.

Because Automator displays the strings provided as values to the name key in a small area of the action user
interface, they should be as short as possible. In addition, the initial letter of the string should be uppercase
and every other letter should be lowercase (except for proper names and acronyms).

So if, for example, you have a data type of the Excellent application that you want to define—let's say a
spreadsheet worksheet—you might define the following defined_types property (assuming the company's
name is Acme):

<key>com.acme.excellent.worksheet</key>
<dict>
 <key>name</key>
 <string>Excellent worksheets</string>
</dict>

An easier and less error-prone alternative to editing the property list in Xcode is to edit it in the Property List
Editor application—but only after you have added the XML header information. To open the
definition.plist file in Property List Editor, Control-click the file in Xcode and select Open In Finder from
the contextual menu. (Property List Editor is the default application for XML files.)

Figure 7 Editing the defined types in Property List Editor

Adding a Localization

This section summarizes the procedure for adding localized strings for a defined data type. For more about
internationalization and localization of actions, see “Internationalizing the Action” (page 47). To learn more
about internationalization in Cocoa generally, read Internationalization Programming Topics.

In Xcode choose New File from the File menu, select the Empty File in Project type, and give the file the name
"Localizable.strings". Move the file under the Resources project folder in the Groups and Files list.

Next open the Localizable.strings file in Xcode and, for each data type's name property, add four items
in the format shown in Listing 2 (page 99):

 ■ A comment or identifier of the localized word or phrase

 ■ Under the comment, the value of a name key in the definition.plist file, quoted; this is the data-type
name, used here as a key.

98 Adding a Localization
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Defining Your Own Data Types

 ■ An equal sign to the right of the data-type name

 ■ The localized equivalent of the data-type name, quoted

Listing 2 Contents of a Localizable.strings file

/* worksheet */
"worksheet" = "tableau";
/* graph */
"graph" = "graphique";

Next internationalize the Localizable.stringsfile by assigning it to a certain language folder (that is,
one with an extension of .lproj To do this, select the file in Xcode and choose Get Info from the FIle menu.
Open the General pane of the Info window. If the language of the localization is not listed in the table of
current localizations, click Add Localization and type or select a localization (French in the case of the above
example). Then select a localization listed in the table.

Adding a Localization 99
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Defining Your Own Data Types

100 Adding a Localization
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Defining Your Own Data Types

When you develop an action for Automator, one of the steps is specifying the properties of the action in its
information property list (see “Specifying Action Properties” (page 41)). Automator uses these properties for
various purposes, among them determining the types of data the action can accept and produce, setting
the initial parameters on the action’s user interface, and getting the action’s name, icon, associated application,
and category. The following sections document the Automator properties and describe the UTI-based type
identifiers that you use to specify the types of data an action provides and accepts.

Property Keys and Values

You must specify some of the Automator properties described below in an action project’s information
property list (Info.plist), and optionally may specify the others. The Info.plist file in the project
template includes, with the exception of AMRequiredResources, the Automator properties (with comments
for values).

AMAccepts
A dictionary that describes the data that the action will accept. This required property has three
subproperties:

 ■ Container—A string that specifies how multiple inputs are passed. Currently this should have
the default value (List).

 ■ Optional—A Boolean that indicates whether input is optional for this action. If your action can
function properly without input, specify <true/>; if it requires input, specify <false/>. If this
property is not specified, Automator assumes a default of </false>.

 ■ Types—An array of type identifiers indicating the types of data that your action can accept as
valid input.

Example:

<key>AMAccepts</key>
 <dict>
 <key>Container</key>
 <string>List</string>
 <key>Optional</key>
 <true/>
 <key>Types</key>
 <array>
 <string>com.apple.textedit.document-object</string>
 <string>public.text</string>
 <string>public.item</string>
 </array>
 </dict>

For information on valid type identifiers, including the use of '*' to signify that an action can accept
any data type, refer to “Type Identifiers” (page 108). See also the corresponding property AMProvides.

Property Keys and Values 101
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator Action Property Reference

AMApplication
A string that identifies the primary application that the action uses to do its work. For example, if your
action controls the Finder application with AppleScript commands, you would specify “Finder” for
this property. Automator uses this property as a filter and as a search criterion. Examples of possible
values are Address Book, iCal, and Xcode.

Example:

<key>AMApplication</key>
<string>Finder</string>

AMCanShowSelectedItemsWhenRun
A Boolean that controls whether the action allows the presentation of selected parts of its user interface
for the Show When Run feature. If this property is set to <true/> (the default), the parts of the action’s
view (either automatically or manually generated) appear as items in the table view exposed under
the Options button. If it is set to <false/>, only the “Show Action When Run” check box is presented
(assuming that the AMCanShowWhenRun property is set to <true/>).

AMCanShowWhenRun
A Boolean that controls whether the Show When Run feature is enabled for the action. By default, it
is set to <true/>, causing the Options button to be displayed in the lower-left corner of the action
view. When the button is clicked, the view is extended to expose a “Show Action When Run” check
box and, optionally, controls for selecting parts of the action view to present to work flow users (see
the description ofAMCanShowSelectedItemsWhenRun). Setting theAMCanShowWhenRun to<false/>
removes the Options button from the action view.

AMCategory
A string (or array of strings) that Automator uses to group the action with similar actions in terms of
their effects or the objects they operate on. Automator presents categories in its user interface and
also uses an action’s category as a search criterion.

Note: Automator does not show categories in its user interface in Mac OS X version 10.4, though it does use
them in searches.

In Mac OS X v10.4, category names were simply strings (or arrays of strings), with values such as Find,
Music, Pictures, System, Terminal, Text, and Utility. You could also specify names for new categories.

Example (Mac OS X v10.4):

<key>AMCategory</key>
<string>Pictures</string>

Starting in Mac OS X v10.5, category names represent codes (or arrays of codes), and you should use
the code names shown in Table 1 (page 103).

Example (Mac OS X v10.5):

<key>AMCategory</key>
<string>AMCategoryPhotos</string>

For actions brought forward from Mac OS X v10.4, Automator will attempt to categorize the action
appropriately. For example, an action with the category name of “Power Point” will be placed in the
Presentations category (AMCategoryPresentations). An action with an unrecognized category
name will be placed in the generic Other category.

If you rebuild an older action in Mac OS X v10.5 without changing the category name value, it will
still build and work, but you will get a warning from amlint that you are not using one of the
predefined values.

An action compiled in Mac OS X v10.5 will not work in v10.4 due to binary incompatibility.

102 Property Keys and Values
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator Action Property Reference

Table 1 AMCategory code names available in Mac OS X version 10.5

CategoryCode name

CalendarAMCategoryCalendar

ChatAMCategoryChat

ContactsAMCategoryContacts

DeveloperAMCategoryDeveloper

DocumentsAMCategoryDocuments

Files and foldersAMCategoryFilesAndFolders

FontsAMCategoryFonts

InternetAMCategoryInternet

MailAMCategoryMail

MoviesAMCategoryMovies

MusicAMCategoryMusic

PDF filesAMCategoryPDFs

PhotosAMCategoryPhotos

PresentationsAMCategoryPresentations

SystemAMCategorySystem

TextAMCategoryText

UtilitiesAMCategoryUtilities

AMDefaultParameters
A dictionary containing default values for the user-interface elements managed by Cocoa bindings.
The keys are the names of the user-interface elements entered as attributes of the Parameters instance
(NSObjectController) in Interface Builder. The values should be contained in elements identifying the
type of data; boolean is used for check boxes, integer for pop-up item index, and string for text fields.
This property is required for actions that have parameters.

Example:

<key>AMDefaultParameters</key>
<dict>
 <key>fromChoice</key>
 <integer>1</integer>
 <key>replaceExisting</key>
 <boolean>No</boolean>
 <key>toChoice</key>
 <integer>0</integer>
 <key>toDirectory</key>
 <string></string>

Property Keys and Values 103
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator Action Property Reference

</dict>

AMDescription
A dictionary that specifies the content of an action description, which appears in the lower-left view
of Automator when the action is selected. The description’s icon and title are derived from the
AMIconName and AMName properties, respectively. The AMDescription dictionary has the following
keys (the values for which are all strings):

 ■ AMDSummary—A succinct description of what the action does. It appears directly under the action
title. This text is required.

 ■ AMDInput—The types of data the action accepts. If this subproperty is not specified, Automator
uses default text corresponding to the type identifiers specified for AMAccepts. he subheading
“Input:” precedes this text in the displayed description.

 ■ AMDResult—The types of data the action provides. If this subproperty is not specified, Automator
uses default text corresponding to the type identifiers specified for AMProvides. The subheading
“Result:” precedes this text in the displayed description.

 ■ AMDOptions—Describes what can be set in the action’s user interface. The subheading “Options:”
precedes this text in the displayed description. Use this subproperty only for explaining aspects
of the action’s user interface that aren’t readily apparent.

 ■ AMDAlert—Points out a important possible consequence of the action, such as overwriting a
file. The subheading “Alert:” precedes this text in the displayed description.

 ■ AMDNote—Additional information that the user should know (but not as critical as an alert). The
subheading “Note:” precedes this text in the displayed description.

 ■ AMDRequires—Anything this action requires in order to work properly, such a web page displayed
or a local printer connected. The subheading “Requires:” precedes this text in the displayed
description.

 ■ AMDRelatedActions—Specify the bundle IDs of actions that are especially related to this action.
(You can look at the Info.plist file inside an action bundle to find out its bundle ID.) There
can be at least three kinds of relationships among actions based on what function they perform:

 ❏ Connected function: the actions are likely to be used in the same workflow, such as New
Message and Send Outgoing Messages.

 ❏ Parallel function: the actions perform the same general task, but in slightly different manners
or using different applications, such as Send Mail Message and Send iChat Message.

 ❏ Opposing function: one of the actions undoes an effect of the other one, such as Connect
to Servers and Eject Disk.

Example:

<key>AMDescription</key>
 <dict>
 <key>AMDInput</key>
 <string>Project file from the previous action.</string>
 <key>AMDOptions</key>
 <string>Set, retrieve, increment, tag, submit, get
 marketing version, set marketing version. </string>
 <key>AMDResult</key>
 <string>Pass information to next action or to a log
 file.</string>
 <key>AMDSummary</key>
 <string>This action changes the version information of

104 Property Keys and Values
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator Action Property Reference

 an Xcode project. It uses the agvtool shell tool, and
 allows you to set most all of the options of that
 tool.</string>
 </dict>

AMIconName
In Mac OS X version 10.4, this is a string that specifies a file that contains the 16-by-16 pixel icon that
Automator displays to the left of the action name in its user interface. The icon name string should
not include the extension, but the file itself must have an extension of .tiff. It can refer to an icon
file in Automator or to a custom icon file in the action bundle.

Example:

<key>AMIconName</key>
<string>MyApp</string>

Also in Mac OS X v10.4, you can store in the action bundle a large (32-by-32 pixel) version of the same
icon for Automator to display in the action description. This icon file should have a name of the form
NameLarge.tiff. In the property example above, this file would have a name such as
MyAppLarge.tiff.

Starting in Mac OS X v10.5, the icon name string can refer to an image file in any of the basic formats
that Cocoa supports, such as Icon File, TIFF, JPEG, and PNG, with all the standard variations of filename
extensions (.icns, .tiff, .tif, .jpg, .jpeg, and so on). As in the earlier version, you don't include
the extension as part of the icon name. You can supply both a 16-by-16 and a 32-by-32 pixel icon in
the same image file. For backward compatibility, the use of .tiff files is still supported, and you
must supply icons in the previously described format for an action that needs to work in earlier versions
of the OS.

AMKeywords
An array of strings that give Automator keywords for identifying the action in searches. Keywords are
not shown in the Automator user interface but are used in searches. Note that Automator automatically
uses words in the names of actions as keywords, so there is no reason to repeat them in this property.
Examples keywords are Change, Folder, and Label.

Example:

<key>AMKeywords</key>
 <array>
 <string>Add</string>
 <string>Spotlight</string>
 <string>File</string>
 </array>

AMName
A string giving the name of the action to be displayed in the Automator user interface. This property
is required. Example names are “Add Attachments to Front Message”, “Copy Files”, and “Profile
Executable”.

Example:

<key>AMName</key>
<string>Copy Files</string>

See the guidelines for naming actions in “Design Guidelines for Actions” (page 27).

AMProvides
A dictionary that describes the data that the action will generate as output. This required property
has two subproperties:

Property Keys and Values 105
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator Action Property Reference

 ■ Container—A string that specifies how multiple outputs are passed. Currently this should have
the default value (List).

 ■ Types—An array of type identifiers indicating the types of data that your action can provide as
valid input.

Example:

key>AMProvides</key>
 <dict>
 <key>Container</key>
 <string>List</string>
 <key>Types</key>
 <array>
 <string>public.item</string>
 </array>
 </dict>

For information on valid type identifiers, refer to “Type Identifiers” (page 108). See also the
corresponding property AMAccepts.

AMRequiredResources
An array of dictionaries that describes the applications, files, or other resources that the action requires
to work properly. If the specified resource is not available when the bundle is loaded, Automator
warns the user. If the resource is not available when the action’s workflow executes, Automator asks
the user locate the missing resource. If the user does not find the resource, the workflow stops
executing. This property has four subproperties for each dictionary:

 ■ Display Name—A string that identifies the name of the resource as displayed in Finder, for
example “iPhoto”. Leave this value blank if the Type key is set to “file”.

 ■ Resource—A string identifying the required resource. The format of the resource is indicated
by the Type subproperty (see note below).

 ■ Type—A string indicating the type of the resource identifier given as the value of Resource:
“application”, “creator code”, or “file”.

 ■ Version—A string specifying the minimum version of the resource required by the stage in
n.n.n format (for example, “4.0.1”).

Note: The value for the Resource dictionary key depends on the value for Type. If the type is “application”,
the resource is specified by the application’s bundle identifier; if the type is “creator code”, the resource is
specified by a four-character creator code; if the type is “file”, the resource is specified by full file-system path.

Examples:

<key>AMRequiredResources</key>
 <array>
 <dict>
 <key>Display Name</key>
 <string>iTunes</string>
 <key>Resource</key>
 <string>com.apple.iTunes</string>
 <key>Type</key>
 <string>application</string>
 <key>Version</key>
 <string>4.6</string>
 </dict>

106 Property Keys and Values
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator Action Property Reference

 <dict>
 <key>Display Name</key>
 <string></string>
 <key>Resource</key>
 <string>/usr/bin/otool</string>
 <key>Type</key>
 <string>file</string>
 <key>Version</key>
 <string>10.3.5</string>
 </dict>
 </array>

AMWarning
If the action can potentially lose data, specify in this dictionary a set of subproperties that cause
Automator to display a warning when the action is added to a workflow. The information in the
warning comes from the AMWarning subproperties. Optionally, this property can allow the user to
insert another action before this one to protect against data loss. A common warning in Automator
adds the Copy Files action before the current action. As a result, the action alters copies of files rather
than the originals. This property is required but only the value for the Level key needs to be specified
(and is set to a default of 0 in the project templates).

 ■ Action—A string that specifies the bundle identifier of an action to be inserted (if the user
agrees) in the workflow before this action. Leave this value blank if you just want to warn the
user. If you do not specify a value for this key, the ApplyButton string is used for the button
title but the IgnoreButton value is ignored.

 ■ ApplyButton—A string that is the title for the button that adds the proposed action or, if no
action is specified, that continues the workflow. Examples are “Add” and “Continue”.

 ■ IgnoreButton—A string that is the title for the button for rejecting the proposed action or, if
no action is specified, for canceling the workflow. Examples are “Don’t Add” and “Cancel”.

 ■ Level—An integer that specifies the level of the warning:

0: Safe operation (default)
1: Makes reversible changes, for example Flip Images
2: Makes irreversible changes, for example Crop Images

This is the only required value of the AMWarning dictionary. If you specify level 1 or 2 you must
also specify a Message string.

 ■ Message—A string that is the warning presented to users in the sheet.

The following example shows an AMWarning property that simply warns the user without offering a
prior action:

<key>AMWarning</key>
 <dict>
 <key>Action</key>
 <string></string>
 <key>ApplyButton</key>
 <string>Continue</string>
 <key>IgnoreButton</key>
 <string>Cancel</string>
 <key>Level</key>
 <integer>2</integer>
 <key>Message</key>

Property Keys and Values 107
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator Action Property Reference

 <string>This action will update the connected iPod. It cannot be
undone.</string>

In this example, the property proposes a prior action:

<key>AMWarning</key>
 <dict>
 <key>Action</key>
 <string>com.apple.Automator.CopyFiles</string>
 <key>ApplyButton</key>
 <string>Add</string>
 <key>IgnoreButton</key>
 <string>Don’t Add</string>
 <key>Level</key>
 <integer>2</integer>
 <key>Message</key>
 <string>This action will change the image files passed into it. Would
you like to add a Copy Files action so that the originals are preserved?</string>

Type Identifiers

The Automator AMAccepts and AMProvides properties use type identifiers to specify the types of data for
action inputs and outputs. Automator uses the text in the Description column in Table 2 and Table 4 in its
user interface to designate the types of input data and output data for the actions in a workflow.

Note: Although the type identifiers described below are based on Uniform Type Identifiers (or UTIs), you
can use any string as an identifier. However, such private identifiers have severely limited usefulness in a
workflow because actions from Apple and other sources cannot have any knowledge of them. You can,
however, create conversion actions for converting the data indicated by the private identifier to and from
data indicated by public type identifiers.

You can also use '*' as a type identifier. It has the meaning that any data type is acceptable, including Cocoa
objects and AppleScript objects, and no conversions will be performed. By comparison, if you use the type
'com.apple.applescript.object', Automator will show the user-readable label of “anything,” but it
actually represents only objects in the AppleScript domain, such as Mail messages and iPhoto photos.

Automator actions can use public type identifiers in three categories. The first is specific to the technologies
or applications of Apple. Table 2 lists the current identifiers in this category.

Table 2 Type identifiers internally defined by Apple

DescriptionType Identifier

Object (in the AppleScript domain)com.apple.applescript.object

Datacom.apple.applescript.data-object

URLcom.apple.applescript.url-object

Textcom.apple.applescript.text-object

PDF filescom.apple.applescript.alias-object.pdf

108 Type Identifiers
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator Action Property Reference

DescriptionType Identifier

QuickTime movie filescom.apple.applescript.alias-object.movie

Image filescom.apple.applescript.alias-object.image

Files/Folderscom.apple.applescript.alias-object

Finder file or foldercom.apple.finder.file-or-folder-object

iDVD menucom.apple.idvd.menu-object

iDVD slideshowcom.apple.idvd.slideshow-object

iPhoto itemcom.apple.iphoto.item-object

iPhoto albumcom.apple.iphoto.album-object

iPhoto photocom.apple.iphoto.photo-object

iTunes itemcom.apple.itunes.item-object

iTunes sourcecom.apple.itunes.source-object

iTunes playlistcom.apple.itunes.playlist-object

iTunes track (song)com.apple.itunes.track-object

Safari documentcom.apple.safari.document-object

TextEdit documentcom.apple.textedit.document-object

Mail itemcom.apple.mail.item-object

Mail messagecom.apple.mail.message-object

Mail mailboxcom.apple.mail.mailbox-object

Mail accountcom.apple.mail.account-object

Address Book itemcom.apple.addressbook.item-object

Address Book groupcom.apple.addressbook.group-object

Address Book personcom.apple.addressbook.person-object

iCal itemcom.apple.ical.item-object

iCal eventcom.apple.ical.event-object

iCal calendarcom.apple.ical.calendar-object

iCal to docom.apple.ical.todo-object

A special subset of the type identifiers defined by Apple are those reserved for Objective-C actions, which
are described in Table 3.

Type Identifiers 109
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator Action Property Reference

Table 3 Objective-C type identifiers

CommentsDescriptionType identifier

An NSString object representing a POSIX-style path.Filecom.apple.cocoa.path

An NSURL object representing a URLURLcom.apple.cocoa.url

An NSString object.Textcom.apple.cocoa.string

The final category of type identifier includes externally defined UTIs. Table 4 lists these public identifiers.

Table 4 Externally defined type identifiers

CommentsType identifier

Datapublic.data

URLpublic.url

Textpublic.text

Image filepublic.image

File/Folderpublic.item

QuickTime moviecom.apple.quicktime-movie

You can convert between type identifiers—and most importantly between externally and internally defined
identifiers—using a special kind of action called a conversion action. See “Creating a Conversion Action” (page
89) for details.

110 Type Identifiers
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Automator Action Property Reference

This table describes the changes to Automator Programming Guide.

NotesDate

Added information about specifying action input and output, and about bringing
Tiger actions forward to Leopard.

2007-12-11

In the section “Action Input and Output” (page 27), updated information about
actions that don’t require input and don’t supply output.

In the section “Property Keys and Values” (page 101), in the description for the
key AMCategory, removed the incorrect statement that Automator generates
a log warning for actions brought forward to Leopard (Mac OS X version 10.5)
from Tiger (v 10.4).

For HTML version, added TOC links to additional class and constant reference
documents. For all versions, added document links to See Also section in
“Introduction to Automator Programming Guide” (page 11).

Added several debugging tips.2007-07-22

See “Frequently Asked Questions About Debugging Automator Actions” (page
52).

Documented the revised category values for AMCategory in “Property Keys
and Values” (page 101).

Clarified the usage for AMIconName in “Property Keys and Values” (page 101),
including new behavior supported in Mac OS X version 10.5.

Clarified usage of AMWarning, AMAccepts, and amlint, and corrected a typo in
listing "Reporting a fatal error to Automator."

2006-09-05

The section “Debugging and Testing Shell Script Actions” (page 85) now
describes where to view error information on an error exit from a shell action.

Added information on actions as Universal Binaries to "Automator and the
Developer."

2006-02-07

Various bug fixes.2005-09-08

Added "Defining Your Own Data Types" and fixed several bugs.2005-08-11

Added section on programming implications of loadable bundles; fixed bugs.2005-07-07

Updated with information about new development features introduced in Xcode
2.1, including the shell script action.

2005-06-06

111
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Document Revision History

NotesDate

New document that explains how to create actions--loadable bundles that
perform discrete tasks--for the Automator application.

2005-04-29

112
2007-12-11 | © 2004, 2007 Apple Inc. All Rights Reserved.

Document Revision History

	Automator Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Automator and the Developer
	Constructing Workflows With Automator
	Workflow Scenarios
	Developing for Automator
	Automator Actions as Universal Binaries

	How Automator Works
	The Development Components of Automator
	Loadable Bundle Architecture
	A New Workflow
	An Unarchived Workflow
	Programming Implications of Loadable Bundles
	Bundle Access
	Nib File Unarchiving
	Namespaces

	Threading Architecture
	The Automator Classes

	Design Guidelines for Actions
	What Makes a Good Action?
	Action Input and Output
	Naming an Action
	The User Interface of an Action

	Developing an Action
	Creating an Automator Action Project
	Constructing the User Interface
	Using the Cocoa-Automator Palette
	Establishing Bindings

	Specifying Action Properties
	Using the Automator Property Inspector

	Writing the Action Description
	Writing the Action Code
	Internationalizing the Action
	Localized Strings
	Localizing the Automator Properties
	Internationalizing Resource Files

	Testing, Debugging, and Installing the Action
	Testing and Debugging Strategies
	Installing Actions
	Frequently Asked Questions About Debugging Automator Actions

	Show When Run
	The “Show Action When Run” Option
	Refining Show When Run
	Specifying Properties for Show When Run
	Grouping User-Interface Objects

	Implementing an AppleScript Action
	The Structure of the on run Command Handler
	Other AppleScript Scripts
	Hybrid Actions
	Updating Non-bound Parameters

	Implementing an Objective-C Action
	Specifying Cocoa Type Identifiers
	Implementing runWithInput:fromAction:error:
	Updating Action Parameters
	Loading and Executing Scripts

	Creating Shell Script Actions
	The Run Shell Script Action
	Custom Shell Script Actions
	Creating the Shell Script Action Project
	Composing the Action View
	Automator Properties for Shell Script Actions
	Writing the Script
	Debugging and Testing Shell Script Actions

	Creating a Conversion Action
	Defining Your Own Data Types
	When to Define a Data Type
	Creating the Definition Bundle
	Specifying Defined Types
	Adding a Localization

	Automator Action Property Reference
	Property Keys and Values
	Type Identifiers

	Revision History

