
External Accessory Programming Topics
Data Management: Device Information

2010-05-26

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

App Store is a service mark of Apple Inc.

Apple, the Apple logo, Cocoa, iPhone, iPod,
iPod touch, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

iPad is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

About External Accessories 7

Steps for Communicating with Accessories 7
Including the External Accessory Framework in Your Project 7
Declaring the Protocols Your Application Supports 8
Organization of This Document 8

Connecting to an Accessory 9

Monitoring Accessory-Related Events 11

Document Revision History 13

3
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

4
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Listings

Connecting to an Accessory 9

Listing 1 Creating a communications session for an accessory 9
Listing 2 Processing stream events 10

5
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

6
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

The External Accessory framework (ExternalAccessory.framework) provides a conduit for communicating
with accessories attached to any iOS-based device. Application developers can use this conduit to integrate
accessory-level features into their applications.

Communicating with an external accessory requires you to work closely with the accessory manufacturer to
understand the services provided by that accessory. Manufacturers must build explicit support into their
accessory hardware for communicating with iOS. As part of this support, an accessory must support at least
one command protocol, which is a custom scheme for sending data back and forth between the accessory
and an attached application. Apple does not maintain a registry of protocols; it is up to the manufacturer to
decide which protocols to support and whether to use custom protocols or standard protocols supported
by other manufacturers.

As part of your communication with the accessory manufacturer, you must find out what protocols a given
accessory supports. To prevent namespace conflicts, protocol names are specified as reverse-DNS strings of
the form com.apple.myProtocol. This allows each manufacturer to define as many protocols as needed
to support their line of accessories.

Note: If you are interested in becoming a developer of accessories for iPad, iPhone, or iPod touch, you can
find information about how to do so on http://developer.apple.com.

Steps for Communicating with Accessories

An application communicates with an accessory by creating an EASession object for managing the accessory
interactions. Session objects work with the underlying system to transfer data packets to and from the
accessory. Data transfer in your application occurs through NSInputStream and NSOutputStream objects,
which are vended by the session object once the connection is made. To receive data from the accessory,
monitor the input stream using a custom delegate object. To send data to the accessory, write data packets
to the output stream. The format of the incoming and outgoing data packets is determined by the protocol
you use to communicate with the accessory.

For details on how to get a list of connected accessories and start a session with one of them, see “Connecting
to an Accessory” (page 9).

Including the External Accessory Framework in Your Project

To use the features of the External Accessory framework, you must add ExternalAccessory.framework
to your Xcode project and link against it in any relevant targets. To access the classes and headers of the
framework, include an #import <ExternalAccessory/ExternalAccessory.h> statement at the top

Steps for Communicating with Accessories 7
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

About External Accessories

http://developer.apple.com

of any relevant source files. For more information on how to add frameworks to your project, see “Files in
Projects” in Xcode Project Management Guide. For general information about the classes of the External
Accessory framework, see External Accessory Framework Reference.

Declaring the Protocols Your Application Supports

Applications that are able to communicate with an external accessory should declare the protocols they
support in their Info.plist file. Declaring support for specific protocols lets the system know that your
application can be launched when that accessory is connected. If no application supports the connected
accessory, the system may choose to launch the App Store and point out applications that do.

To declare the protocols your application supports, you must include the
UISupportedExternalAccessoryProtocols key in your application’s Info.plist file. This key contains
an array of strings that identify the communications protocols that your application supports. Your application
can include any number of protocols in this list and the protocols can be in any order. The system does not
use this list to determine which protocol your application should choose; it uses it only to determine if your
application is capable of communicating with the accessory. It is up to your code to choose an appropriate
communications protocol when it begins talking to the accessory.

For more information about the keys you put into your application’s Info.plist file, see Information Property
List Key Reference.

Organization of This Document

This document includes the following articles:

 ■ “Connecting to an Accessory” (page 9) describes the steps you use to connect to an accessory at
runtime.

 ■ “Monitoring Accessory-Related Events” (page 11) explains how to detect when accessories are connected
or disconnected.

8 Declaring the Protocols Your Application Supports
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

About External Accessories

Accessories are not visible through the External Accessory framework until they have been connected by
the system and made ready for use. When an accessory does become visible, your application can get the
appropriate accessory object and open a session using one or more of the protocols supported by the
accessory.

The shared EAAccessoryManager object provides the main entry point for applications looking to
communicate with accessories. This class contains an array of already connected accessory objects that you
can enumerate to see if there is one your application supports. Most of the information in an EAAccessory
object (such as the name, manufacturer, and model information) is intended for display purposes only. To
determine whether your application can connect to an accessory, you must look at the accessory’s protocols
and see if there is one your application supports.

Note: It is possible for more than one accessory object to support the same protocol. If that happens, your
code is responsible for choosing which accessory object to use.

For a given accessory object, only one session at a time is allowed for a specific protocol. The
protocolStringsproperty of each EAAccessory object contains a dictionary whose keys are the supported
protocols. If you attempt to create a session using a protocol that is already in use, the External Accessory
framework generates an error.

Listing 1 shows a method that checks the list of connected accessories and grabs the first one that the
application supports. It creates a session for the designated protocol and configures the input and output
streams of the session. By the time this method returns the session object, it is connected to the accessory
and ready to begin sending and receiving data.

Listing 1 Creating a communications session for an accessory

- (EASession *)openSessionForProtocol:(NSString *)protocolString
{
 NSArray *accessories = [[EAAccessoryManager sharedAccessoryManager]
 connectedAccessories];
 EAAccessory *accessory = nil;
 EASession *session = nil;

 for (EAAccessory *obj in accessories)
 {
 if ([[obj protocolStrings] containsObject:protocolString])
 {
 accessory = obj;
 break;
 }
 }

 if (accessory)
 {
 session = [[EASession alloc] initWithAccessory:accessory
 forProtocol:protocolString];

9
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Connecting to an Accessory

 if (session)
 {
 [[session inputStream] setDelegate:self];
 [[session inputStream] scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [[session inputStream] open];
 [[session outputStream] setDelegate:self];
 [[session outputStream] scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [[session outputStream] open];
 [session autorelease];
 }
 }

 return session;
}

After the input and output streams are configured, the final step is to process the stream-related data. Listing
2 shows the fundamental structure of a delegate’s stream processing code. This method responds to events
from both input and output streams of the accessory. As the accessory sends data to your application an
event arrives indicating there are bytes available to be read. Similarly, when the accessory is ready to receive
data from your application, events arrive indicating that fact. (Of course, your application does not always
have to wait for an event to arrive before it can write bytes to the stream. It can also call the stream’s
hasBytesAvailable method to see if the accessory is still able to receive data.) For more information on
streams and handling stream-related events, see Stream Programming Guide for Cocoa.

Listing 2 Processing stream events

// Handle communications from the streams.
- (void)stream:(NSStream*)theStream handleEvent:(NSStreamEvent)streamEvent
{
 switch (streamEvent)
 {
 case NSStreamHasBytesAvailable:
 // Process the incoming stream data.
 break;

 case NSStreamEventHasSpaceAvailable:
 // Send the next queued command.
 break;

 default:
 break;
 }

}

10
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Connecting to an Accessory

The External Accessory framework is capable of sending notifications whenever a hardware accessory is
connected or disconnected. Although it is capable, it does not do so automatically. Your application must
specifically request that notifications be generated by calling the registerForLocalNotifications
method of the EAAccessoryManager class. When an accessory is connected, authenticated, and ready to
interact with your application, the framework sends anEAAccessoryDidConnectNotificationnotification.
When an accessory is disconnected, it sends an EAAccessoryDidDisconnectNotification notification.
You can register to receive these notifications using the default NSNotificationCenter, and both
notifications include information about which accessory was affected.

In addition to receiving notifications through the default notification center, an application that is currently
interacting with an accessory can assign a delegate to the corresponding EAAccessory object and be notified
of changes. Delegate objects must conform to the EAAccessoryDelegateprotocol, which currently contains
the optional accessoryDidDisconnect:method. You can use this method to receive disconnection notices
without first setting up a notification observer.

If your application is suspended in the background when an accessory notification arrives, that notification
is put in a queue. When your application begins running again (either in the foreground or background),
notifications in the queue are delivered to your application. Notifications are also coalesced and filtered
wherever possible to eliminate any irrelevant events. For example, if an accessory was connected and
subsequently disconnected while your application was suspended, your application would ultimately not
receive any indication that such events took place.

For more information about how to register to receive notifications, see Notification Programming Topics.

11
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Monitoring Accessory-Related Events

12
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Monitoring Accessory-Related Events

This table describes the changes to External Accessory Programming Topics.

NotesDate

New document describing how to attach to external hardware devices.2010-05-26

13
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Document Revision History

14
2010-05-26 | © 2010 Apple Inc. All Rights Reserved.

Document Revision History

	External Accessory Programming Topics
	Contents
	Listings
	Introduction
	Connecting to an Accessory
	Monitoring Accessory-Related Events
	Revision History

