
iOS Application Programming Guide
General

2010-06-30

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

App Store is a service mark of Apple Inc.

Apple, the Apple logo, Bonjour, Cocoa, Finder,
Instruments, iPhone, iPod, iPod touch, iTunes,
Keychain, Mac, Mac OS, Objective-C, Quartz,
Safari, Sand, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

iPad is a trademark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction About iOS Application Design 9

Starting the Design Process for Your Application 9
Supporting Common Application Behaviors 10
Meeting the App Store and System Requirements 10
Tuning Performance for the Underlying Device 11
See Also 11

Chapter 1 The Application Runtime Environment 13

Fast Launch, Short Use 13
Specialized System Behaviors 13

The Virtual Memory System 14
The Automatic Sleep Timer 14
Multitasking Support 14

Security 15
The Application Sandbox 15
File Protection 15
Keychain Data 16

The File System 16
A Few Important Application Directories 16
A Case-Sensitive File System 18
Sharing Files with the User’s Desktop Computer 18

Backup and Restore 18
What Is Backed Up? 18
Files Saved During Application Updates 19

The Simulator 19
Determining the Available Hardware Support 19

Chapter 2 The Core Application Design 23

Fundamental Design Patterns 23
The Core Application Objects 24
The Application Life Cycle 27

The Main Function 28
The Application Delegate 29
Understanding an Application’s States and Transitions 29

Multitasking 36
Checklist for Supporting Multitasking 37
Responding to System Changes While in the Background 37
Opting Out of Background Execution 39

Windows, Views, and View Controllers 40

3
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

The Event-Handling System 41
The Graphics and Drawing System 42
The Text System 43
Audio and Video Support 44
Integration with the Hardware and System Applications 44

Chapter 3 Implementing Standard Application Behaviors 47

Observing Low-Memory Warnings 47
Preserving the Application’s Current State 48
Launching in Landscape Mode 48
Files and the File System 49

Getting Paths to Application Directories 49
Sharing Files with the User 51
Working with Protected Files 51
Opening Files Whose Type is Unknown 52
Implementing Support for Custom File Formats 54

Communicating with Other Applications 56
Implementing Custom URL Schemes 57

Registering Custom URL Schemes 57
Handling URL Requests 58

Displaying Application Preferences 60
Turning Off Screen Locking 61

Chapter 4 Executing Code in the Background 63

Preparing Your Application to Execute in the Background 63
Determining Whether Multitasking Support is Available 63
Declaring the Background Tasks You Support 64
Supporting Background State Transitions 64
Being a Responsible, Multitasking-Aware Application 65

Initiating Background Tasks 66
Completing a Long-Running Task in the Background 66
Scheduling the Delivery of Local Notifications 68
Receiving Location Events in the Background 69
Playing Background Audio 70
Implementing a VoIP Application 71

Chapter 5 Supporting High-Resolution Screens 73

Checklist for Supporting High-Resolution Screens 73
Points Versus Pixels 73
Drawing Improvements That You Get for Free 74
Updating Your Image Resource Files 75

Loading Images into Your Application 75
Using an Image View to Display Images 76

4
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Updating Your Application’s Icons and Launch Images 76
Updating Your Custom Drawing Code 76

Creating High-Resolution Bitmap Images Programmatically 76
Tweaking Native Content for High-Resolution Screens 77
Accounting for Scale Factors in Core Animation Layers 77
Drawing High-Resolution Content Using OpenGL ES 78

Chapter 6 Implementing Application Preferences 81

Guidelines for Preferences 81
The Preferences Interface 82
The Settings Bundle 83

The Settings Page File Format 84
Hierarchical Preferences 85
Localized Resources 86

Adding and Modifying the Settings Bundle 86
Adding the Settings Bundle 86
Preparing the Settings Page for Editing 87
Configuring a Settings Page: A Tutorial 87
Creating Additional Settings Page Files 91

Accessing Your Preferences 91
Debugging Preferences for Simulated Applications 92

Chapter 7 Build-Time Configuration Details 93

The Application Bundle 93
The Information Property List 95
iTunes Requirements 97

Declaring the Required Device Capabilities 98
Application Icons 100

Application Launch Images 101
Providing Launch Images for Different Orientations 102
Providing Device-Specific Launch Images 103
Providing Launch Images for Custom URL Schemes 104

Internationalizing Your Application 104

Chapter 8 Tuning for Performance and Responsiveness 107

Do Not Block the Main Thread 107
Use Memory Efficiently 107

Reduce Your Application’s Memory Footprint 108
Allocate Memory Wisely 108

Floating-Point Math Considerations 109
Reduce Power Consumption 110
Tune Your Code 111
Improve File Access Times 111

5
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Tune Your Networking Code 112
Tips for Efficient Networking 112
Using Wi-Fi 113
The Airplane Mode Alert 113

Document Revision History 115

6
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 The Application Runtime Environment 13

Table 1-1 Directories of an iOS application 17
Table 1-2 Identifying available hardware features 20

Chapter 2 The Core Application Design 23

Figure 2-1 Key objects in an iOS application 25
Figure 2-2 Application life cycle 27
Figure 2-3 Launching into the active state 31
Figure 2-4 Moving from the foreground to the background 32
Figure 2-5 Handling application interruptions 34
Figure 2-6 Transitioning from the background to the foreground 35
Figure 2-7 Processing events in the main run loop 41
Figure 2-8 Several different keyboards and input methods 43
Table 2-1 Design patterns used by iOS applications 23
Table 2-2 The role of objects in an iOS application 25
Table 2-3 Application states 29
Table 2-4 Notifications delivered to waking applications 38
Table 2-5 System integration technologies 44
Listing 2-1 The main function of an iOS application 28

Chapter 3 Implementing Standard Application Behaviors 47

Figure 3-1 Defining a custom URL scheme in the Info.plist file 58
Table 3-1 Commonly used search path constants 50
Table 3-2 Keys and values of the CFBundleURLTypes property 57
Listing 3-1 Getting the path to the application’s Documents directory 50
Listing 3-2 Document type information for a custom file format 55
Listing 3-3 Handling a URL request based on a custom scheme 59

Chapter 4 Executing Code in the Background 63

Table 4-1 Configuring stream interfaces for VoIP usage 71
Listing 4-1 Checking for background support on earlier versions of iOS 63
Listing 4-2 Starting a background task at quit time 67
Listing 4-3 Scheduling an alarm notification 68

Chapter 5 Supporting High-Resolution Screens 73

Listing 5-1 Initializing a renderbuffer’s storage and retrieving its actual dimensions 78

7
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

Chapter 6 Implementing Application Preferences 81

Figure 6-1 Organizing preferences using child panes 85
Figure 6-2 Formatted contents of the Root.plist file 87
Figure 6-3 A root Settings page 88
Table 6-1 Preference element types 82
Table 6-2 Contents of the Settings.bundle directory 83
Table 6-3 Root-level keys of a preferences Settings Page file 84
Listing 6-1 Accessing preference values in an application 92

Chapter 7 Build-Time Configuration Details 93

Figure 7-1 The Properties pane of a target’s Info window 96
Figure 7-2 The information property list editor 97
Figure 7-3 The Language preference view 105
Table 7-1 A typical application bundle 93
Table 7-2 Dictionary keys for the UIRequiredDeviceCapabilities key 98
Table 7-3 Sizes for images in the CFBundleIconFiles key 100
Table 7-4 Typical launch image dimensions 102
Table 7-5 Launch image orientation modifiers 102
Listing 7-1 The contents of a language-localized subdirectory 106

Chapter 8 Tuning for Performance and Responsiveness 107

Table 8-1 Tips for reducing your application’s memory footprint 108
Table 8-2 Tips for allocating memory 109

8
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

This document provides fundamental information about how to design and implement iOS applications.
You should use this document as a starting point for learning about iOS and the steps involved in creating
applications for it. Specifically, this document describes the infrastructure present in all applications and
offers guidance on how to structure your application to run well on the platform.

Almost all of the information in this document applies to applications running on any type of iOS device.
Where differences do exist, this document calls out the differences and explains what options exist for each
type of device. For additional information about creating iPad applications, see iPad Programming Guide.

Note: This document was previously titled iPhone Application Programming Guide.

Starting the Design Process for Your Application

Designing an iOS application requires at least a basic understanding of a few key principles:

 ■ The UIKit framework provides the core infrastructure for managing and running your application.
Application customization comes primarily through interactions with the classes of this framework.

 ■ The system frameworks use well-defined design patterns. Understanding those design patterns (which
are documented in Cocoa Fundamentals Guide) is essential for interacting with the system frameworks
and is often useful for implementing your own code, too.

Starting the Design Process for Your Application 9
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About iOS Application Design

 ■ Most other frameworks provide services or additional features that you can incorporate as needed. Some
frameworks (such as Foundation and Core Graphics) are included in all Xcode projects, but most others
must be added to your project explicitly. For a list of available technologies and the documents that
show you how to use them, see iOS Technology Overview.

The focus of this document is on the core infrastructure provided by UIKit and how it runs your application.
Understanding this infrastructure is crucial to creating applications that work well within the system. This
document also addresses the things you must do outside of UIKit, such as in your Xcode project, to make
your application run smoothly. For example, this document discusses the configuration metadata that needs
to accompany every application.

A good starting point for learning about application development is to learn a little about the environment
in which applications must run. You can find this information in “The Application Runtime Environment” (page
13). After that, you should proceed to “The Core Application Design” (page 23) to learn about the core
objects and behaviors found in an iOS application.

Supporting Common Application Behaviors

There are a handful of common behaviors that iOS applications can implement. These features are independent
of the type of the application you are creating and are more closely related to the design goals you have for
that application. For example, both games and productivity applications can be launched into a landscape
orientation. And all applications need to be responsive to low-memory warnings coming from the system.

Deciding which behaviors you want to support is important to consider when designing your application.
The amount of work required to implement each behavior is usually not large but such a feature might inspire
you to rework part of your design to take better advantage of it.

 ■ You can find steps for how to implement many common application behaviors in “Implementing Standard
Application Behaviors” (page 47).

 ■ If your application has specific needs that require it to run in the background, you should read “Executing
Code in the Background” (page 63) for guidance on examples of how to implement your application.

 ■ For information on how to write iOS applications to support devices with high resolution screens, see
“Supporting High-Resolution Screens” (page 73).

 ■ For information on how to support user-configurable preferences, read “Implementing Application
Preferences” (page 81).

Meeting the App Store and System Requirements

Configuration of your application’s information property list file (Info.plist) and bundle are essential steps
of the development process. The Info.plist file contains crucial information about your application’s
configuration and supported features. The system relies heavily on this file to obtain information about your
application and the location of key resource files needed to launch it. Also, bundles provide the fundamental
structure for organizing your application’s resources and localized content. Knowing where to put things is
important to building a running application.

10 Supporting Common Application Behaviors
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About iOS Application Design

To learn about the structure of iOS applications, and the steps you must take to configure them, read
“Build-Time Configuration Details” (page 93).

Tuning Performance for the Underlying Device

In iOS, good application performance is particularly important and can mean the difference between success
and failure. If your application is slow or consumes resources that prevent other applications from running
smoothly, users are unlikely to want to buy it. And because resources such as memory are more constrained
on iOS-based devices, it is imperative that you factor in system constraints to your design.

Power usage is a particularly important area of performance tuning when it comes to iOS applications. Many
features require the system to enable specific bits of hardware. Disabling features that you are not using at
the moment gives the system the opportunity to power down the associated hardware and extend battery
life.

For information about techniques for improving performance and managing power usage, see “Tuning for
Performance and Responsiveness” (page 107).

See Also

After reading this document, you should also consult the following documents for information about how
to implement different parts of your application.

 ■ For information about user interface design and how to create effective applications using iOS, see
iPhone Human Interface Guidelines and iPad Human Interface Guidelines.

 ■ For information about handling touch and motion-related events, see Event Handling Guide for iOS.

 ■ For information about how to manage your application’s user interface, see ViewController Programming
Guide for iOS.

 ■ For information about windows, views, and drawing custom custom content, see View Programming
Guide for iOS.

 ■ For information about the text management facilities, see Text and Web Programming Guide for iOS.

 ■ For information about how to incorporate audio and video into your applications, see Multimedia
Programming Guide.

 ■ For general information about all iOS technologies, see iOS Technology Overview.

Tuning Performance for the Underlying Device 11
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About iOS Application Design

12 See Also
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About iOS Application Design

The runtime environment of iOS is designed for the fast and secure execution of programs. The following
sections describe the key aspects of this runtime environment and provide guidance on how applications
can best operate within it.

Fast Launch, Short Use

The strength of iOS-based devices is their immediacy. A typical user pulls a device out of a pocket or bag
and uses it for a few seconds, or maybe a few minutes, before putting it away again. The user might be taking
a phone call, looking up a contact, changing the current song, or getting some piece of information during
that time. Your own applications need to reflect that sense of immediacy by launching and getting up and
running quickly. If your application takes a long time to launch, the user may be less inclined to use it.

In iOS, the user interacts with only one application at a time. Thus, as each new application is launched, the
previous application’s user interface goes away. Prior to iOS 4, this meant that the application itself was quit
and removed from memory. However, in iOS 4 and later, quitting an application causes it to move into the
background. Applications remain in the background until they are launched again or until the system needs
to reclaim the memory they are using.

The ability to run in the background means that relaunching an application is much faster. When it moves
to the background, an application’s objects remain in memory and in most cases the application itself enters
a suspended state of execution. When the user relaunches the application, it simply resumes from the exact
point where it was without having to reload its user interface and restore itself to its previous state.

Even though applications can run in the background, they are not guaranteed to do so forever. As memory
becomes constrained, the system purges applications that have not been launched recently. Because this
can happen at any time, and in some cases with no notice, your application should still save information
about your application’s current state in addition to any unsaved data when it moves to the background. If
it ever needs to be relaunched, it can use this information to restore itself to the previous state and make it
look like it was always running. Doing so provides a more consistent user experience by putting the user
right back where they were when they last used your application.

Specialized System Behaviors

For the most part, iOS has the same features and behaves in the same way as Mac OS X. However, there are
places where the behavior of iOS differs from Mac OS X.

Fast Launch, Short Use 13
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The Application Runtime Environment

The Virtual Memory System

To manage program memory, iOS uses essentially the same virtual memory system found in Mac OS X. In
iOS, each program still has its own virtual address space, but (unlike Mac OS X) its usable virtual memory is
constrained by the amount of physical memory available. This is because iOS does not write volatile pages
to disk when memory gets full. Instead, the virtual memory system frees up volatile memory, as needed, to
make sure the running application has the space it needs. It does this by removing memory pages that are
not being used and that contain read-only contents, such as code pages. Such pages can always be loaded
back into memory later if they are needed again.

If memory continues to be constrained, the system may also send notifications to the running applications,
asking them to free up additional memory. All applications should respond to this notification and do their
part to help relieve the memory pressure. For information on how to handle such notifications in your
application, see “Observing Low-Memory Warnings” (page 47).

The Automatic Sleep Timer

One way iOS attempts to save power is through the automatic sleep timer. If the system does not detect
touch events for an extended period of time, it dims the screen initially and eventually turns it off altogether.
Although most developers should leave this timer on, game developers and developers whose applications
do not use touch inputs can disable this timer to prevent the screen from dimming while their application
is running. To disable the timer, set the idleTimerDisabled property of the shared UIApplication object
to YES.

Because it results in greater power consumption, disabling the sleep timer should be avoided at all costs.
The only applications that should consider using it are mapping applications, games, or applications that do
not rely on touch inputs but do need to display visual content on the device’s screen. Audio applications do
not need to disable the timer because audio content continues to play even after the screen dims. If you do
disable the timer, be sure to reenable it as soon as possible to give the system the option to conserve more
power. For additional tips on how to save power in your application, see “Reduce Power Consumption” (page
110).

Multitasking Support

In iOS 4 and later, applications can perform tasks while running in the background. When the user quits an
application, instead of its process being terminated, the application is moved to the background. Shortly
after moving to the background, most applications are suspended so that they do not run and consume
additional power. However, applications that need to continue running can ask the system for the execution
time to do so.

Regardless of whether an application is running in the background or suspended, the fact that the application
is still in memory means that relaunching the application takes much less time. An application’s objects
(including its windows and views) normally remain in memory and therefore do not need to be recreated
when the application is subsequently relaunched by the user. However, if memory becomes constrained,
the system may purge background applications to make more room for the foreground application. To appear
consistent with the application remaining in the background at all times, an application should store
information about its current state when it moves to the background and be able to restore itself to that
state upon a subsequent relaunch.

For an overview of multitasking and what you need to do to support it, see “Multitasking” (page 36).

14 Specialized System Behaviors
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The Application Runtime Environment

Security

An important job of iOS is to ensure the security of the user’s device and the applications running on it. To
this end, iOS implements several features to ensure the integrity of the user’s data and to ensure that
applications do not interfere with one another or the system.

The Application Sandbox

For security reasons, iOS restricts an application (including its preferences and data) to a unique location in
the file system. This restriction is part of the security feature known as the application’s “sandbox.” The
sandbox is a set of fine-grained controls limiting an application’s access to files, preferences, network resources,
hardware, and so on. In iOS, an application and its data reside in a secure location that no other application
can access. When an application is installed, the system computes a unique opaque identifier for the
application. Using a root application directory and this identifier, the system constructs a path to the
application’s home directory. Thus an application’s home directory could be depicted as having the following
structure:

/ApplicationRoot/ApplicationID/

During the installation process, the system creates the application’s home directory and several key
subdirectories, configures the application sandbox, and copies the application bundle to the home directory.
The use of a unique location for each application and its data simplifies backup-and-restore operations,
application updates, and uninstallation. For more information about the application-specific directories
created for each application, see “A Few Important Application Directories” (page 16). For information about
application updates and backup-and-restore operations, see “Backup and Restore” (page 18).

Important: The sandbox limits the damage an attacker can cause to other applications and to the system,
but it cannot prevent attacks from happening. In other words, the sandbox does not protect your application
from direct attacks by malicious entities. For example, if there is an exploitable buffer overflow in your
input-handling code and you fail to validate user input, an attacker might still be able to crash your program
or use it to execute the attacker’s code.

File Protection

In iOS 4 and later, applications can use file protection to encrypt files and make them inaccessible when the
user’s device is locked. File protection takes advantage of built-in encryption hardware on specific devices
(such as the iPhone 3GS) to add a level of security for applications that work with sensitive data. Protected
files are stored on disk in an encrypted format at all times. While the user’s device is locked, not even the
owning application can access the data in the encrypted files. The user must explicitly unlock the device (by
entering the appropriate passcode) before the application can retrieve the decrypted data from the files.

Protecting files on a device requires several steps:

 ■ The file system on the user’s device must be formatted to support file protection. For existing devices,
this requires the user to reformat the device and restore any content from a backup.

 ■ The user’s device must have the passcode lock setting enabled and a valid passcode set.

Security 15
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The Application Runtime Environment

 ■ Applications must designate which data files need to be protected and assign the appropriate metadata
attributes to them; see “Marking a File as Protected” (page 51).

 ■ Applications must respond appropriately to situations where a file may become locked; see “Determining
the Availability of Protected Files” (page 52).

It is up to you to decide which files your application should mark as protected. Applications must enable file
protection on a file-by-file basis, and once enabled those protections cannot be removed. Also, applications
should be prepared to deal with situations where data files should be protected but are not currently. This
could happen if the user restored a device from an earlier backup where file protections were not yet added.

For more information about implementing support for file protection in your application, see “Working with
Protected Files” (page 51).

Keychain Data

A keychain is a secure, encrypted container for passwords and other secrets. The keychain data for an
application is stored outside of the application sandbox. If an application is uninstalled, that data is
automatically removed. When the user backs up application data using iTunes, the keychain data is also
backed up. However, it can only be restored to the device from which the backup was made. An upgrade of
an application does not affect its keychain data.

For more on the iOS keychain, see “Keychain Services Concepts” in Keychain Services Programming Guide.

The File System

Your application and any files it creates share space with the user’s media and personal files on the flash-based
memory. An application can access its using the local file system, which behaves like any other file system
and is accessed using standard system routines. The following sections describe several things you should
be aware of when accessing the local file system.

A Few Important Application Directories

For security purposes, an application has only a few locations in which it can write its data and preferences.
When an application is installed on a device, a home directory is created for the application. Table 1-1 lists
some of the important subdirectories inside the home directory that you might need to access. This table
describes the intended usage and access restrictions for each directory and points out whether the directory’s
contents are backed up by iTunes. For more information about the application home directory itself, see
“The Application Sandbox” (page 15).

16 The File System
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The Application Runtime Environment

Table 1-1 Directories of an iOS application

DescriptionDirectory

This is the bundle directory containing the application
itself. Because an application must be signed, you must
not make changes to the contents of this directory at
runtime. Doing so may prevent your application from
launching later.

In iOS 2.1 and later, the contents of this directory are not
backed up by iTunes. However, iTunes does perform an
initial sync of any applications purchased from the App
Store.

<Application_Home>/AppName.app

Use this directory to store user documents and application
data files. The contents of this directory can be made
available to the user through file sharing, which is
described in “Sharing Files with the User’s Desktop
Computer” (page 18).

The contents of this directory are backed up by iTunes.

<Application_Home>/Documents/

This directory contains application-specific preference
files. You should not create preferences files directly but
should instead use the NSUserDefaults class or
CFPreferences API to get and set application preferences;
see also “Adding the Settings Bundle” (page 86).

The contents of this directory are backed up by iTunes.

<Application_Home>/Library/Preferences

Use this directory to write any application-specific support
files that you want to persist between launches of the
application. Your application is generally responsible for
adding and removing these files. However, iTunes
removes these files during a full restore of the device so
you should be able to recreate them as needed.

In iOS 2.2 and later, the contents of this directory are not
backed up by iTunes.

<Application_Home>/Library/Caches

Use this directory to write temporary files that you do
not need to persist between launches of your application.
Your application should remove files from this directory
when it determines they are no longer needed. (The
system may also purge lingering files from this directory
when your application is not running.)

In iOS 2.1 and later, the contents of this directory are not
backed up by iTunes.

<Application_Home>/tmp/

For information about how to get the path of specific directories, see “Getting Paths to Application
Directories” (page 49). For detailed information about which application directories are backed up, see “What
Is Backed Up?” (page 18).

The File System 17
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The Application Runtime Environment

A Case-Sensitive File System

The file system for iOS-based devices is case sensitive. Whenever you work with filenames, you should be
sure that the case matches exactly or your code may be unable to open or access the file.

Sharing Files with the User’s Desktop Computer

Applications that want to make user data files accessible can do so using application file sharing. File sharing
enables the sharing of files between your application and the user’s desktop computer only. It does not allow
your application to share files with other applications on the same device. To share data and files between
applications, use the pasteboard or a document interaction controller object.

For information on how to support file sharing in your application, see “Sharing Files with the User” (page
51).

Backup and Restore

The iTunes application automatically handles the backup and restoration of user data in appropriate situations.
However, applications need to know where to put files in order to ensure that they are backed up and restored
(or not) as the case may be.

What Is Backed Up?

You do not have to prepare your application in any way for backup and restore operations. In iOS 2.2 and
later, when a device is plugged into a computer and synced, iTunes performs an incremental backup of all
files, except for those in the following directories:

 ■ <Application_Home>/AppName.app

 ■ <Application_Home>/Library/Caches

 ■ <Application_Home>/tmp

Although iTunes does back up the application bundle itself, it does not do this during every sync operation.
Applications purchased from the App Store on the device are backed up when that device is next synced
with iTunes. Applications are not backed up during subsequent sync operations though unless the application
bundle itself has changed (because the application was updated, for example).

To prevent the syncing process from taking a long time, you should be selective about where you place files
inside your application’s home directory. The <Application_Home>/Documents directory should be used to
store user documents and application data files. Files used to store temporary data should be placed inside
the Application Home/tmp directory and deleted by your application when they are no longer needed. If
your application creates data files that can be used during subsequent launches, but which do not need to
be backed up, it should place those files in the Application Home/Library/Caches directory.

18 Backup and Restore
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The Application Runtime Environment

Note: If your application creates large data files, or files that change frequently, you should consider storing
them in the ApplicationHome/Library/Caches directory and not in the <Application_Home>/Documents
directory. Backing up large data files can slow down the backup process significantly. The same is true for
files that change regularly (and therefore must be backed up frequently). Placing these files in the Caches
directory prevents them from being backed up (in iOS 2.2 and later) during every sync operation.

For additional guidance about how you should use the directories in your application, see Table 1-1 (page
17).

Files Saved During Application Updates

When a user downloads your application update, iTunes installs the update in a new application directory.
It then moves the user’s data files from the old installation over to the new application directory before
deleting the old installation. Files in the following directories are guaranteed to be preserved during the
update process:

 ■ <Application_Home>/Documents

 ■ <Application_Home>/Library/Preferences

Although files in other user directories may also be moved over, you should not rely on their being present
after an update.

The Simulator

The iPhone Simulator is a tool you can use to test your applications before deploying them to the App Store.
The simulator provides a runtime environment that is close to, but not identical to, the one found on an
actual device. Many of the restrictions that occur on devices, such as the lack of support for paging to disk,
do not exist in the simulator. Also, some technologies such as OpenGL ES may not behave the same way in
the simulator as they would on a device.

For more information about the simulator and its capabilities, see “Using iPhone Simulator” in iOSDevelopment
Guide.

Determining the Available Hardware Support

Applications designed for iOS must be able to run on devices with different hardware features. Although
features such as the accelerometers and Wi-Fi networking are available on all devices, some devices may not
include a camera or GPS hardware. If your application requires such features, you should always notify the
user of that fact before they purchase the application. For features that are not required, but which you might
want to support when present, you must check to see if the feature is available before trying to use it.

The Simulator 19
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The Application Runtime Environment

Important: If a feature absolutely must be present in order for your application to run, configure the
UIRequiredDeviceCapabilities key in your application’s Info.plist file accordingly. This key prevents
users from installing applications that require features that are not present on a device. You should not
include a key, however, if your application can function with or without the given feature. For more information
about configuring this key, see “Declaring the Required Device Capabilities” (page 98).

Table 1-2 lists the techniques for determining if certain types of hardware are available. You should use these
techniques in cases where your application can function without the feature but still uses it when present.

Table 1-2 Identifying available hardware features

OptionsFeature

Get the value of the multitaskingSupportedproperty in the UIDevice
class. For more information about determining the availability of
multitasking, see “Determining Whether Multitasking Support is
Available” (page 63).

To determine if multitasking is
available…

Use the userInterfaceIdiom property of the UIDevice class. This
property is applicable only to universal applications that support different
layouts based on whether the content is intended for iPad versus iPhone
and iPod touch. For more information on implementing a universal
application, see “Starting Your Project” in iPad Programming Guide.

To determine if you should
configure your interface for an
iPad-sized screen or an
iPhone-sized screen…

Get the value of the screens property in the UIScreen class. If the array
contains more than one screen object, one of the objects corresponds to
the main screen and the other corresponds to an external screen. For
more information about using additional screens, see UIScreen Class
Reference.

To determine if an external
screen is attached…

Get the value of the protectedDataAvailable property in the shared
UIApplication object. For more information on encrypting on-disk
content, see “Working with Protected Files” (page 51).

To determine if hardware-level
disk encryption is available…

Use the reachability interfaces of the System Configuration framework to
determine the current network connectivity. For an example of how to
use the System Configuration framework, see Reachability.

To determine if the network is
available…

Use the isSourceTypeAvailable: method of the UIImagePicker-
Controller class to determine if a camera is available. For more
information, see Device Features Programming Guide.

To determine if the still camera
is available…

Use the isSourceTypeAvailable: method of the UIImagePicker-
Controller class to determine if a camera is available and then use the
availableMediaTypesForSourceType:method to request the types
for the UIImagePickerControllerSourceTypeCamera source. If the
returned array contains the kUTTypeMovie key, video capture is available.
For more information, see Device Features Programming Guide.

To determine if the device can
capture video…

20 Determining the Available Hardware Support
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The Application Runtime Environment

OptionsFeature

In iOS 3 and later, use the AVAudioSession class to determine if audio
input is available. This class accounts for many different sources of audio
input on iOS-based devices, including built-in microphones, headset jacks,
and connected accessories. For more information, see AVAudioSession
Class Reference.

To determine if audio input (a
microphone) is available…

Specify a high accuracy level when configuring the CLLocationManager
object to deliver location updates to your application. The Core Location
framework does not provide direct information about the availability of
specific hardware but instead uses accuracy values to provide you with
the data you need. If the accuracy reported in subsequent location events
is insufficient, you can let the user know. For more information, see
Location Awareness Programming Guide.

To determine if GPS hardware
is present…

Use the classes of the External Accessory framework to find the appropriate
accessory object and connect to it. For more information, see External
Accessory Programming Topics.

To determine if a specific
hardware accessory is
available…

Use the batteryLevel property of the UIDevice class. For more
information about this class, see UIDevice Class Reference.

To get the current battery level
of the device…

Use the proximityState property of the UIDevice class. Not all devices
have proximity sensors, so you should also check the
proximityMonitoringEnabled property to determine if this sensor is
available. For more information about this class, see UIDevice Class
Reference.

To get the state of the proximity
sensor…

To obtain general information about device- or application-level features, use the methods and properties
of the UIDevice and UIApplication classes. For more information about these classes, see UIDevice Class
Reference and UIApplication Class Reference.

Determining the Available Hardware Support 21
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The Application Runtime Environment

22 Determining the Available Hardware Support
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The Application Runtime Environment

Every iOS application is built using the UIKit framework and therefore has essentially the same core architecture.
UIKit provides the key objects needed to run the application, to coordinate the handling of user input, and
to display content on the screen. Where applications deviate from one another is in how they configure these
default objects and also where they incorporate custom objects to augment their application’s user interface
and behavior.

There are many interactions that occur between the system and a running application, and many of these
interactions are handled automatically by the UIKit infrastructure. However, there are times when your
application needs to be aware of the events coming from the system. For example, when the user quits your
application, you need to save any relevant data before it goes away. For these situations, UIKit provides hooks
that your custom code can use to provide the needed behavior.

Fundamental Design Patterns

The design of the UIKit framework incorporates many of the design patterns found in Cocoa applications in
Mac OS X. Understanding these design patterns is crucial to creating iOS applications, so it is worth taking
a few moments to learn about them. Table 2-1 provides a brief overview of these design patterns.

Table 2-1 Design patterns used by iOS applications

DescriptionDesign pattern

The Model-View-Controller (MVC) design pattern is a way of dividing your code
into independent functional areas. The model portion defines your application’s
underlying data engine and is responsible for maintaining the integrity of that
data. The view portion defines the user interface for your application and has no
explicit knowledge of the origin of data displayed in that interface. The controller
portion acts as a bridge between the model and view and facilitates updates
between them.

Model-View-Controller

Block objects are a convenient way to encapsulate code and local stack variables
in a form that can be executed later. Support for block objects is available in iOS
4 and later, where they are often used in place of delegates to act as callbacks for
asynchronous tasks.

Block objects

The delegation design pattern is a way of modifying complex objects without
subclassing them. Instead of subclassing, you use the complex object as is and
put any custom code for modifying the behavior of that object inside a separate
object, which is referred to as the delegate object. At predefined times, the complex
object then calls the methods of the delegate object to give it a chance to run its
custom code.

Delegation

Fundamental Design Patterns 23
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

DescriptionDesign pattern

Controls use the target-action design pattern to notify your application of user
interactions. When the user interacts with a control in a predefined way (such as
by tapping a button), the control sends a message (the action) to an object you
specify (the target). Upon receiving the action message, the target object can then
respond in an appropriate manner (such as by updating application state in
response to the button push).

Target-action

The Objective-C language uses a reference-counted scheme for determining when
to release objects from memory. When an object is first created, it is given a
reference count of 1. Other objects can then use the retain, release, or
autorelease methods of the object to increase and decrease that reference
count appropriately. When an object’s reference count reaches 0, the Objective-C
runtime calls the object’s cleanup routines and then deallocates it.

Managed memory
model

All versions of iOS support the creation of operation objects and secondary threads.
In iOS 4 and later, applications can also use Grand Central Dispatch (GCD) as the
underlying mechanism for executing tasks concurrently. For more information
about concurrency and the technologies available for implementing it, see
Concurrency Programming Guide.

Threads and
concurrent
programming

For a more thorough discussion of these design patterns, see Cocoa Fundamentals Guide.

The Core Application Objects

From the time your application is launched by the user, to the time it exits, the UIKit framework manages
most of the application’s key infrastructure. An iOS application receives events continuously from the system
and must respond to those events. Receiving the events is the job of the UIApplication object, but
responding to the events is the responsibility of your custom code. To understand where you need to respond
to events, though, it helps to understand a little about the overall life cycle and event cycles of an iOS
application. The following sections describe these cycles and also provide a summary of some of the key
design patterns used throughout the development of iOS applications.

In addition to showing the UIApplication object, Figure 2-1 shows the objects that are most commonly
found in an iOS application, and Table 2-2 describes the roles of each of these types of objects.

24 The Core Application Objects
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

Figure 2-1 Key objects in an iOS application

Data Model ObjectsData Model ObjectsData Model Objects

Data Model ObjectsData Model ObjectsViews and UI Objects
Data Model ObjectsData Model ObjectsAdditional Controller

Objects (custom)

Model

Controller

Event
Loop

View

UIWindowUIApplication

Root View Controller

Custom Objects

System Objects

Either system or custom objects

Application Delegate
(custom object)

Table 2-2 The role of objects in an iOS application

DescriptionObject

The UIApplication object manages the application event loop and coordinates
other high-level behaviors for your application. You use this object as is, mostly
to configure various aspects of your application’s appearance. Your custom
application-level code resides in your application delegate object, which works
in tandem with this object.

UIApplicationobject

The application delegate is a custom object that you provide at application launch
time, usually by embedding it in your application’s main nib file. The primary job
of this object is to initialize the application and present its window onscreen. The
UIApplication object also notifies this object when specific application-level
events occur, such as when the application needs to be interrupted (because of
an incoming message) or suspended (because the user tapped the Home button).

For more information about this object, see “The Application Delegate” (page
29).

Application delegate
object

The Core Application Objects 25
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

DescriptionObject

Data model objects store your application’s content and are therefore custom to
your application. For example, a banking application might store information
about financial transactions, while a painting application might store an image
object or even the sequence of drawing commands that led to the creation of
that image. In the latter case, an image object is still a data object because it is
just a container for the image data. The actual rendering of that image still takes
place elsewhere in your application.

Data model objects

View controller objects manage the presentation of a screen’s worth of content
for your application. Typically, this involves loading the views responsible for
presenting your content, creating any additional generic controllers to manage
portions of the content, and coordinating the interactions with your application’s
data model objects.

The UIViewController class is the base class for all view controller objects. It
provides default functionality for standard system behaviors such as animating
the appearance of views and handling rotations. More specific view controller
subclasses provide additional behaviors, such as displaying system-specific screens
or interface types.

For detailed information about how to use view controllers, see View Controller
Programming Guide for iOS.

View controller objects

A UIWindow object manages the drawing surface for your application. Most
applications have only one window. An application changes the content of that
window by presenting a new set of views using a view controller object.

In addition to hosting views, windows are also responsible for delivering events
to those views and to their managing view controllers.

UIWindowobject

Views and controls provide the visual representation of your application’s content.
A view is an object that draws some content in a designated rectangular area
and responds to events within that area. Controls are a specialized type of view
responsible for implementing familiar interface objects such as buttons, text
fields, and toggle switches.

The UIKit framework provides standard views for presenting many different types
of content. You can also define your own custom views by subclassingUIView
(or its descendants) directly.

In addition to incorporating views and controls, applications can also incorporate
Core Animation layers into their view and control hierarchies. Layer objects are
actually data objects that represent visual content. Views use layer objects
intensively behind the scenes to render their content. You can also add custom
layer objects to your interface to implement complex animations and other types
of sophisticated visual effects.

Views, controls, and
layers

The objects in your application form a complex ecosystem, the specifics of which are what define your
application. As you can see from Figure 2-1 (page 25), most of the objects in an application are either partially
or wholly customizable. Fortunately, an application that builds on top of existing UIKit classes receives a
significant amount of infrastructure for free. All you have to do is understand the specific points where you
can override or augment the default behavior to implement the customizations you need. The remainder of

26 The Core Application Objects
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

this chapter focuses on the override points that encompass your application’s overall behavior and interactions
with the system. It also points you to additional documents where you can find out more about specific types
of interactions.

The Application Life Cycle

The application life cycle constitutes the sequence of events that occurs between the launch and termination
of your application. In iOS, the user launches your application by tapping its icon on the Home screen. Shortly
after the tap occurs, the system displays some transitional graphics and proceeds to launch your application
by calling its main function. From this point on, the bulk of the initialization work is handed over to UIKit,
which loads the application’s user interface and readies its event loop.

Figure 2-2 depicts the simplified life cycle of an iOS application. This diagram shows the sequence of events
that occur from the time the application starts up to the time it quits. At key points in the application’s life,
UIKit sends messages to the application delegate object to let it know what is happening. During the event
loop, UIKit dispatches events to your application’s custom event handlers.

Figure 2-2 Application life cycle

Your code

User taps application icon

main()

UIApplicationMain()
application:

didFinishLaunchingWithOptions:

System ask application to quit foreground

Application moves to background

Event
Loop

UIKit

Handle event

applicationWillResignActive:

applicationDidEnterBackground:

Prior to iOS 4, only one application at a time was ever allowed to run. As a result, before a new application
could be launched, the previous application had to be terminated. This resulted in an application life cycle
in which the application was always launched from scratch and then removed from memory at quit time. In
iOS 4 and later, applications now remain resident in memory by default after they are quit. This means that
subsequent launches of the application may not always involve starting the application from scratch. It also
means that you need to design your application code to handle several different state transitions.

The Application Life Cycle 27
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

The Main Function

Like any C-based application, the main entry point for an iOS application at launch time is the main function.
In an iOS application, the main function is used only minimally. Its main job is to hand control off to the UIKit
framework. Therefore, any new project you create in Xcode comes with a default main function like the one
shown in Listing 2-1. With few exceptions, you should never change the implementation of this function.

Listing 2-1 The main function of an iOS application

#import <UIKit/UIKit.h>

int main(int argc, char *argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

Note: An autorelease pool is used in memory management. It is a Cocoa mechanism used to defer the
release of objects created during a functional block of code. For more information about autorelease pools,
see Memory Management Programming Guide. For specific memory-management guidelines related to
autorelease pools in iOS applications, see “Allocate Memory Wisely” (page 108).

The UIApplicationMain function at the heart of your application’s main function takes four parameters
and uses them to initialize the application. Although you should never have to change the default values
passed into this function, it is worth explaining their purpose in terms of starting the application.

 ■ The argc and argv parameters contain any launch-time arguments passed to the application from the
system. These arguments are parsed by the UIKit infrastructure and can otherwise be ignored.

 ■ The third parameter identifies the name of the application’s principal class. This is the class responsible
for running the application. Specifying nil causes UIKit to use the UIApplication class, which is
recommended.

 ■ The fourth parameter identifies the class of the application delegate. The application delegate is
responsible for managing the high-level interactions between the system and your custom code.
Specifying nil tells UIKit that the application delegate object is located in the application’s main nib
file (which is the case for applications built using the Xcode templates).

In addition to creating the application object and creating or loading the application delegate, the
UIApplicationMain function also loads the application’s main nib file. All Xcode projects have a main nib
file by default, and this file typically contains the application’s window and the application delegate object.
UIKit obtains the name of the main nib file by looking at the value in the NSMainNibFile key in your
application’s Info.plist file. Although you should rarely need to do so, you can designate a new main nib
file for your application by changing the value of this key before building your project. For more information
about the Info.plist file and how you use it to configure your application, see “The Information Property
List” (page 95).

28 The Application Life Cycle
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

The Application Delegate

Monitoring the high-level behavior of your application is the responsibility of the application delegate object,
which is a custom object that you provide. Delegation is a mechanism used to avoid subclassing complex
UIKit objects, such as the default UIApplication object. Instead of subclassing and overriding methods,
you use the complex object unmodified and put your custom code inside the delegate object. As interesting
events occur, the complex object sends messages to your delegate object. You can use these “hooks” to
execute your custom code and implement the behavior you need.

Important: The delegate design pattern is intended to save you time and effort when creating applications
and is therefore a very important pattern to understand. For an overview of the key design patterns used by
iOS applications, see “Fundamental Design Patterns” (page 23). For a more detailed description of delegation
and other UIKit design patterns, see Cocoa Fundamentals Guide.

The application delegate object is responsible for handling several critical system messages and must be
present in every iOS application. The object can be an instance of any class you like, as long as it adopts the
UIApplicationDelegate protocol. The methods of this protocol define the hooks into the application life
cycle and are your way of implementing custom behavior. Although you are not required to implement all
of the methods, every application delegate should implement the methods described in Figure 7-2 (page
97).

For additional information about the methods of the UIApplicationDelegate protocol, see
UIApplicationDelegate Protocol Reference.

Understanding an Application’s States and Transitions

Applications running in iOS 4 and later can be in one of several different states at any given time. Table 2-3
lists the potential runtime states of an application in iOS 4 and later.

Table 2-3 Application states

DescriptionState

The application has not been launched or was running but was terminated by the system.Not running

The application is running in the foreground but is currently not receiving events. (It may
be executing other code though.) An application never stays in this state for very long. It
almost always enters this state on its way to somewhere else. The only time it stays inactive
for any period of time is when the system must prompt the user to respond to some event,
such as an incoming phone call or SMS message.

Inactive

The application is running in the foreground and is receiving events.Active

The Application Life Cycle 29
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

DescriptionState

The application is in the background and executing code. Most applications enter this state
briefly on their way to being suspended. However, an application that requests extra execution
time may remain in this state for a period of time. In addition, an application being launched
directly into the background enters this state instead of the inactive state. For information
about how to execute code while in the background, see “Executing Code in the
Background” (page 63).

The background state is only available in iOS 4 and later and on devices that support
multitasking. If this state is not available, applications are terminated and moved to the not
running state instead.

Background

The application is in the background but is not executing code. The system moves application
to this state automatically and at appropriate times. While suspended, an application is
essentially freeze-dried in its current state and does not execute any code. During low-memory
conditions, the system purges suspended applications without notice to make more space
for the foreground application.

The suspended state is only available in iOS 4 and later and on devices that support
multitasking. If this state is not available, applications are terminated and moved to the not
running state instead.

Suspended

The following sections describe the key state transitions in more detail and call out the typical behaviors
your application should observe during the transition.

Launching the Application

At launch time, an application moves from the not running state to either the active or the background state.
A launching application has to prepare itself to run and then check to see if the system has launched it in
order to perform a specific task. During the initial startup sequence, the application calls its delegate’s
application:didFinishLaunchingWithOptions: method followed by either the
applicationDidBecomeActive:orapplicationDidEnterBackground:method (depending on whether
it is transitioning to the foreground or background).

Note: Launching into the background state does not occur in iOS 3.x and earlier or on devices that do not
support multitasking. Applications in those circumstances launch only into the active state.

Figure 2-3 shows the sequence of steps that occur when launching into the foreground. The sequence for
launching into the background is the same except that the applicationDidBecomeActive: method is
replaced by the applicationDidEnterBackground: method.

30 The Application Life Cycle
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

Figure 2-3 Launching into the active state

Application DelegateApplication Delegate

application:
didFinishLaunchingWithOptions:

applicationDidBecomeActive:

Load main nib and
 create application delegate

Launch the application

Application enters the
foreground

Initialize the application

The application delegate’s application:didFinishLaunchingWithOptions:method is responsible for
doing most of the work at launch time and has the following responsibilities:

 ■ Initialize the application’s data structures.

 ■ Load or create the application’s initial window and views in a portrait orientation.

If the device is in a non-portrait orientation at launch time, you should still create your interface in a
portrait orientation initially. After the application:didFinishLaunchingWithOptions: method
returns, the application tells the window to rotate its contents to the correct orientation. The window
then uses the normal orientation-change mechanism of its view controllers to make the rotation happen
prior to becoming visible. Information about how interface orientation changes work is described in
“Custom View Controllers” in View Controller Programming Guide for iOS.

 ■ Check the contents of the launch options dictionary for information about why the application was
launched and respond appropriately.

 ■ Use any saved preferences or state information to restore the application to its previous runtime state.

You should strive to make your application:didFinishLaunchingWithOptions:method as lightweight
as possible. Although there are any number of custom initialization tasks you could perform in this method,
if this method takes too long to complete those tasks, the system might terminate the application for being
unresponsive. One way to make the method lightweight is to initiate tasks asynchronously or move any
long-running tasks to secondary threads. This is especially important for network-based operations that could
take an indeterminate amount of time to complete.

When your application:didFinishLaunchingWithOptions:method is called, the applicationState
property of the UIApplication object is already set to the appropriate state for your application. If the
property is set to UIApplicationStateInactive, your application is in the inactive state and is about to
be moved to the foreground. If it is set to UIApplicationStateBackground, the application is about to
be moved to the background. In either case, you can use this information to prepare your application
appropriate for running.

Applications are launched into the background only as needed to handle an incoming background event.
When launched into the background, an application generally has a limited amount of execution time and
should therefore avoid doing work that is not immediately relevant to processing the background event. For

The Application Life Cycle 31
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

example, you should avoid setting up your application’s user interface. Instead, you should make a note that
the interface needs to be configured and do that work when moving to the foreground later. For additional
guidance about how to configure your application for background execution, see “Being a Responsible,
Multitasking-Aware Application” (page 65).

Moving to the Background

When the user presses the Home button or the system launches another application, the foreground
application transitions first to the inactive state and then to the background state. This results in calls to the
application delegate’s applicationWillResignActive: and applicationDidEnterBackground:
methods, as shown in Figure 2-4. Most background applications move to the suspended state shortly after
returning from theapplicationDidEnterBackground:method. If your application requests more execution
time or declares itself to support background execution, it is allowed to continue running after this method
returns.

Figure 2-4 Moving from the foreground to the background

Application Delegate

applicationWillResignActive:

applicationDidEnterBackground:

Application running

Application moves to
the background

User presses the
Home button

When your delegate’s applicationDidEnterBackground: is called, your application has approximately
five seconds to finish any lingering tasks and return. If the method does not return before time runs out (or
request more execution time from the system), your application is terminated and purged from memory.

The UIApplicationDidEnterBackgroundNotification notification is also sent to notify interested
parts of your application that it is entering the background. Objects in your application can use the default
notification center to register for this notification.

You should use theapplicationDidEnterBackground:method to save user data and any state information
needed to restore your application in the event that it is subsequently purged from memory. When an
application enters the background state, there is no guarantee that it will remain there indefinitely. If the
device’s memory continues to be constrained, the system purges background applications to make more
room. If your application is suspended when that happens, it receives no notice that it is removed from
memory. Thus, you need to save any data beforehand.

32 The Application Life Cycle
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

Important: All multitasking-aware applications should behave responsibly when moving to the background.
This is true regardless of whether your application is suspended shortly after entering the background or
continues running. Saving the user’s data is one step that should always be taken, but there other guidelines
that you should follow. For a list of these guidelines, see “Being a Responsible, Multitasking-Aware
Application” (page 65).

When an application moves to the background, all of your core application objects remain in memory and
are available for use while in the background. These objects include your custom objects and data structures
plus your application’s controller objects, windows, and views. However, the system does release many of
the objects used behind-the-scenes to support your application. Specifically, the system does the following
for background applications:

 ■ It releases the backing store for all Core Animation layers, which prevents the contents of those layers
from appearing onscreen but does not change the current layer properties.

 ■ It releases any references to cached images. (If your application does not retain the images, they are
subsequently removed from memory.)

 ■ It releases some other system-managed data caches.

If the application is running in iOS 3.x and earlier or on a device that does not support multitasking, the
application is terminated instead of being moved to the background. For more information about how to
respond to the termination of your application, see “Responding to Application Termination” (page 36).

Responding to Interruptions

When the application is interrupted by an incoming phone call, SMS, or calendar notification, the application
moves to the inactive state temporarily. It remains in this state until the user decides whether to accept or
ignore the interruption. If the user ignores the interruption, the application is reactivated, at which time it
can resume any services it stopped when it moved into the inactive state. If the user accepts the interruption,
the application moves into the suspended state. Figure 2-5 shows the set of steps this process follows. The
steps that follow describe this process in more detail.

The Application Life Cycle 33
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

Figure 2-5 Handling application interruptions

Your code

Application moves to the foreground

applicationDidEnterBackground:

A phone, SMS or Calendar
notification arrives

Application moves to the background

Event
Loop

UIKit

applicationWillResignActive:

Ignore?
Yes

No

applicationDidBecomeActive:

1. The system detects an incoming phone call or SMS message, or a calendar event occurs.

2. The system calls your application delegate’sapplicationWillResignActive: method. The system
also disables the delivery of touch events to your application.

Interruptions amount to a temporary loss of control by your application. If such a loss of control might
affect your application’s behavior or cause a negative user experience, you should take appropriate steps
in your delegate method to prevent that from happening. For example, if your application is a game,
you should pause the game. You should also disable timers, throttle back your OpenGL frame rates (if
using OpenGL), and generally put your application into a sleep state. While your application is in the
inactive state, it continues to run but should not do any significant work.

3. The system displays an alert panel with information about the event. The user can choose to ignore the
event or respond to it.

4. If the user ignores the event, the system calls your application delegate’s
applicationDidBecomeActive:method and resumes the delivery of touch events to your application.

You can use this delegate method to reenable timers, throttle up your OpenGL frame rates, and generally
wake up your application from its sleep state. For games that are in a paused state, you should consider
leaving the game in that state until the user is ready to resume play. For example, you might display an
alert panel with controls to resume play.

5. If the user responds to the event instead of ignoring it, the system calls your application delegate’s
applicationDidEnterBackground: method. Your application should move to the background as
usual, saving any user data or contextual information needed to restore your application to its current
state later.

34 The Application Life Cycle
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

If the application is running in iOS 3.x or earlier or on a device that does not support multitasking, the
application delegate’s applicationWillTerminate: method is called instead of the
applicationDidEnterBackground: method.

Depending on what the user does while responding to an interruption, the system may return to your
application when that interruption ends. For example, if the user takes a phone call and then hangs up, the
system relaunches your application. If, while on the call, the user goes back to the Home screen or launches
another application, the system does not return to your application.

Important: When the user takes a call and then returns to your application while on the call, the height of
the status bar grows to reflect the fact that the user is on a call. Similarly, when the user ends the call, the
status bar height shrinks back to its regular size. Your application should be prepared for these changes in
the status bar height and adjust its content area accordingly. View controllers handle this behavior for you
automatically. If you lay out your user interface programmatically, however, you need to take the status bar
height into account when laying out your views and implement the layoutSubviews method to handle
dynamic layout changes.

If the user presses the Sleep/Wake button on a device while running your application, the system calls your
application delegate’s applicationWillResignActive: method, stops the delivery of touch events, and
then puts the device to sleep. When the user wakes the device later, the system calls your application
delegate’s applicationDidBecomeActive:method and begins delivering events to the application again.
While the device is asleep, foreground and background applications continue to run, but those applications
should do as little work as possible in order to preserve battery life.

Resuming Foreground Execution

When the user launches an application that currently resides in the background, the system moves it to the
inactive state and then to the active state. This results in calls to the applicationWillEnterForeground:
and applicationDidBecomeActive: methods of the application delegate, as shown in Figure 2-6.

Figure 2-6 Transitioning from the background to the foreground

Application Delegate

applicationWillEnterForeground:

applicationDidBecomeActive:

Application in the
background

Application enters the
foreground

Application is relaunched

When moving to the foreground, your application should restart any services it stopped and generally prepare
itself for handling events again.

The Application Life Cycle 35
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

Note: The UIApplicationWillEnterForegroundNotification notification is also available for tracking
when your application reenters the foreground. Objects in your application can use the default notification
center to register for this notification.

While an application is suspended, the system tracks and coalesces events that might have an impact on
that application when it relaunches. As soon as your application is up and running again, the system delivers
those events to it. For most of these events, your application’s existing infrastructure should just respond
appropriately. For example, if the device orientation changed, your application’s view controllers would
automatically update the interface orientation in an appropriate way. For more information about the types
of events that are tracked by the system while your application is in the background, and the appropriate
way to handle those events, see “Responding to System Changes While in the Background” (page 37).

Responding to Application Termination

Although applications are generally moved to the background and suspended, if any of the following
conditions are true, your application is terminated and purged from memory instead of being moved to the
background:

 ■ The application is linked against iPhone SDK 3.x or earlier.

 ■ The application is deployed on a device running iOS 3.x or earlier.

 ■ The current device does not support multitasking; see “Determining Whether Multitasking Support is
Available” (page 63).

 ■ The application includes the UIApplicationExitsOnSuspend key in its Info.plist file; see “Opting
Out of Background Execution” (page 39).

If your application is running (either in the foreground or background) at termination time, the system calls
your application delegate’s applicationWillTerminate: method so that you can perform any required
cleanup. You can use this method to save user data or application state information that you would use to
restore your application to its current state on a subsequent launch. Your method implementation has
approximately five seconds to perform any tasks and return. If it does not return in time, the application is
forcibly terminated and removed from memory. The applicationWillTerminate: method is not called
if your application is currently suspended.

Even if you develop your application using iPhone SDK 4 and later, you must still be prepared for your
application to be terminated. The user can terminate applications explicitly using the multitasking UI. In
addition, if memory becomes constrained, the system might remove applications from memory in order to
make more room. If your application is currently suspended, the system removes your application from
memory without any notice. However, if your application is currently running in the background state (in
other words, not suspended), the system calls the applicationWillTerminate:method of your application
delegate. Your application cannot request additional background execution time from this method.

Multitasking

In iOS 4 and later, multiple applications may reside in memory and run simultaneously. Only one application
runs in the foreground while all other applications reside in the background. Applications running in this
environment must be designed to handle transitions between the foreground and background.

36 Multitasking
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

Checklist for Supporting Multitasking

Applications that support multitasking in iOS 4 and later should do the following:

 ■ (Required) Respond appropriately to the state transitions that occur while running under multitasking.
Applications need to observe these transitions in order to save state and tailor their behavior for
foreground or background execution. Not handling these transitions properly could lead to data loss or
improper behavior. For more information about the states and transitions, see “Understanding an
Application’s States and Transitions” (page 29).

 ■ (Required) Follow the guidelines for behavior when moving to the background. These guidelines are
there to help your application behave correctly while in the background and in situations where your
application might need to be terminated. For information about these guidelines, see “Being a Responsible,
Multitasking-Aware Application” (page 65).

 ■ (Recommended) Register for any notifications that report system changes your application needs. The
system queues notifications while an application is suspended and delivers them once the application
resumes execution so that it can make a smooth transition back to execution. For more information, see
“Responding to System Changes While in the Background” (page 37).

 ■ (Optional) If you want to do actual work while in the background, you need to request permission to
continue running. For more information about the types of work you can perform, and how to request
permission to do that work, see “Executing Code in the Background” (page 63).

If you do not want to support multitasking at all, you can opt out and elect to always have your application
terminated and purged from memory at quit time. For information on how to do this, see “Opting Out of
Background Execution” (page 39).

Responding to System Changes While in the Background

While an application is in the suspended state, it does not receive system-related events that might be of
interest. However, the most relevant events are captured by the system and queued for later delivery to your
application. To prevent your application from becoming overloaded with notifications when it resumes, the
system coalesces events and delivers a single event (of each relevant type) corresponding to the net change
since your application was suspended.

To understand how this might work in your application, consider an example. Suppose that at the time when
your application is suspended, the device is in a portrait orientation. While the application is suspended, the
user rotates the device to landscape left, upside down, and finally landscape right orientations before launching
your application again. Upon resumption, your application would receive a single device orientation event
indicating that the device changed to a landscape-right orientation. Of course, if your application uses view
controllers, the orientation of those view controllers would be updated automatically by UIKit. Your application
would need to respond only if it tracked device orientation changes explicitly.

Table 2-4 lists the events that are coalesced and delivered to your application. In most cases, the events are
delivered in the form of a notification object. However, some events may be intercepted by a system framework
and delivered to your application by another means. Unless otherwise noted, all events are delivered regardless
of whether your application resumes in the foreground or background.

Multitasking 37
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

Table 2-4 Notifications delivered to waking applications

Notification mechanismEvent

Any calls tosetNeedsDisplayorsetNeedsDisplayInRect:
on one of your views are coalesced and stored until your
application resumes in the foreground. These events are not
delivered to applications running in the background.

Your code marks a view as dirty

EAAccessoryDidConnectNotification

EAAccessoryDidDisconnectNotification

An accessory is connected or disconnected

UIDeviceOrientationDidChangeNotification

In addition to this notification, view controllers update their
interface orientations automatically.

The device orientation changes

UIApplicationSignificantTimeChangeNotificationThere is a significant time change

UIDeviceBatteryLevelDidChangeNotification

UIDeviceBatteryStateDidChangeNotification

The battery level or battery state changes

UIDeviceProximityStateDidChangeNotificationThe proximity state changes

UIApplicationProtectedDataWillBecomeUnavailable

UIApplicationProtectedDataDidBecomeAvailable

The status of protected files changes

UIScreenDidConnectNotification

UIScreenDidDisconnectNotification

An external display is connected or
disconnected

UIScreenModeDidChangeNotificationThe screen mode of a display changes

NSUserDefaultsDidChangeNotificationPreferences that your application exposes
through the Settings application are
changed

NSCurrentLocaleDidChangeNotificationThe current language or locale settings
changes

When your application resumes, any queued events are delivered via your application’s main run loop.
Because these events are queued right away, they are typically delivered before any touch events or other
user input. Most applications should be able to handle these events quickly enough that they would not
cause any noticeable lag when resumed. However, if your application appears sluggish in responding to user
input when it is woken up, you might want to analyze your application using Instruments and see if your
handler code is causing the delay.

Handling Locale Changes Gracefully

If the user changes the language or locale of the device while your application is suspended, the system
notifies you of that change using the NSCurrentLocaleDidChangeNotification notification. You can
use this notification to force updates to any views containing locale-sensitive information, such as dates,
times, and numbers. Of course, you should also be careful to write your code in ways that might make it easy
to update things easily:

38 Multitasking
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

 ■ Use the autoupdatingCurrentLocale class method when retrieving NSLocale objects. This method
returns a locale object that updates itself automatically in response to changes, so you never need to
recreate it.

 ■ Avoid caching NSFormatter objects. Date and number formatters must be recreated whenever the
current locale information changes.

Responding to Changes in Your Application’s Settings

If your application has settings that are managed by the Settings application, it should observe the
NSUserDefaultsDidChangeNotification notification. Because the user can modify settings while your
application is in the background, you can use this notification to respond to any important changes in those
settings. For example, an email program would need to respond to changes in the user’s mail account
information. Failure to do so could have serious privacy and security implications. Specifically, the user might
still be able to send email using the old account information, even if the account did not belong to that
person.

Upon receiving the NSUserDefaultsDidChangeNotification notification, your application should reload
any relevant settings and, if necessary, reset its user interface appropriately. In cases where passwords or
other security-related information has changed, you should also hide any previously displayed information
and force the user to enter the new password.

Opting Out of Background Execution

If you do not want your application to remain in the background when it is quit, you can explicitly opt out
of the background execution model by adding theUIApplicationExitsOnSuspend key to your application’s
Info.plist file and setting its value to YES. When an application opts out, it cycles between the not running,
inactive, and active states and never enters the background or suspended states. When the user taps the
Home button to quit the application, the applicationWillTerminate:method of the application delegate
is called and the application has approximately five seconds to clean up and exit before it is terminated and
moved back to the not running state.

Opting out of background execution is strongly discouraged but may be preferable under certain conditions.
Specifically, if coding for the background requires adding significant complexity to your application, terminating
the application may be a simpler solution. Also, if your application consumes a large amount of memory and
cannot easily release any of it, the system might need to terminate your application quickly anyway to make
room for other applications. Thus, opting to terminate, instead of switching to the background, might yield
the same results and save you development time and effort.

Note: Explicitly opting out of background execution is necessary only if your application is linked against
iPhone SDK 4 and later. Applications linked against earlier versions of the SDK do not support background
execution as a rule and therefore do not need to opt out explicitly.

For more information about the keys you can include in your application’s Info.plist file, see Information
Property List Key Reference.

Multitasking 39
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

Windows, Views, and View Controllers

You use windows and views to present your application’s visual content on the screen and to manage the
immediate interactions with that content. A window is an instance of the UIWindow class. All iOS applications
have at least one window, and some applications may have additional windows to manage specific types of
content. An application’s main window fills the entire main screen and has no visual adornments such as a
title bar or close box. A window is simply a blank canvas that you use to host one or more views. Therefore,
all manipulations to windows must occur through the programmatic interfaces of the UIWindow class.

A view, an instance of the UIView class, defines a rectangular region inside a window. Views are the primary
mechanism for interacting with the user in your application. Views have several responsibilities in your
application, including:

 ■ Drawing and animation support

 ❏ Views draw content in their rectangular area.

 ❏ Some view properties can be animated to new values.

 ■ Layout and subview management

 ❏ Views manage a list of subviews, allowing you to create arbitrary hierarchies.

 ❏ Views define their own resizing behaviors in relation to their parent view.

 ❏ Views can change the size and position of their subviews automatically or using custom algorithms
you define.

 ■ Event handling

 ❏ Views receive touch events.

 ❏ Views forward events to other objects when appropriate.

View controllers play an important part of your application’s overall design and structure. Applications
running on iOS-based devices have a limited amount of screen space in which to display content. To better
manage that screen space, an application uses view controller objects to coordinate the presentation of
self-contained view hierarchies. When you want to make significant changes to your application’s content,
rather than change the underlying view objects manually, which is tedious and error prone, you simply
present the contents of a new view controller. View controller objects are descendants of the
UIViewController class, which is defined in the UIKit framework.

Each view controller object can be thought of as an island unto itself. It manages the presentation of its
views, handles their creation and destruction, and facilitates the interactions between those views and other
objects in your application. The view controller manages a single top-level view directly and may manage
all or some of that view’s subviews. For simple user interfaces, a view controller typically manages all of the
views in its view hierarchy. However, for more complex interfaces comprised of several distinct pieces, a view
controller may manage a subset of views and rely on one or more custom controller objects to manage other
groups of views in the view hierarchy.

Understanding view controllers, and the infrastructure they provide, is important to developing iOS
applications. For more information about this infrastructure and how you use view controllers to manage
your application’s user interface, see View Controller Programming Guide for iOS. For more information about
implementing windows and views, see View Programming Guide for iOS.

40 Windows, Views, and View Controllers
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

The Event-Handling System

The iOS event-handling system is responsible for tracking touch and motion events and delivering them to
your application. All events are delivered to the application through the UIApplication object, which
manages the queue of incoming events and distributes them to other parts of the application. For most
applications, touches are the most significant type of event you can receive. Other types of events may also
be generated and delivered, but touches reflect direct interactions with your application’s views.

When it launches an application, the system creates both a process and a single thread for the application.
This initial thread becomes the application’s main thread. This is where the UIApplication object sets up
the main run loop and configures its event-handling code, as shown in Figure 2-7. As touch events come
into the application, they are queued until the application is ready to process them. The application processes
events in the main run loop to ensure that they are handled sequentially as they arrive. The actual handling
of a given event usually occurs in other objects, such as your application’s views and view controllers.

Figure 2-7 Processing events in the main run loop

Operating
system

Event
queue

Event source

Application object

Core objects

Main run loop

Port

Note: A run loop monitors sources of input for a given thread of execution. The application’s event queue
represents one of these input sources. When an event arrives, the run loop wakes up the thread and dispatches
control to the handler for the event queue, which in this case is the UIApplication object. When the handler
finishes, control passes back to the run loop, which then processes another event, processes other input
sources, or puts the thread to sleep if there is nothing more to do. For more information about how run loops
and input sources work, see Threading Programming Guide.

Every event sent to an application is encapsulated in a single event object (UIEvent). In the case of
touch-related events, the event object contains one or more touch objects (UITouch) representing the fingers
that are touching the screen. As the user places fingers on the screen, moves them around, and finally removes
them from the screen, the system reports the changes for each finger in the corresponding touch object.

The Event-Handling System 41
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

Distributing and handling events is the job of responder objects, which are instances of the UIResponder
class. The UIApplication, UIViewController, UIWindow, and UIView classes are all descendants of
UIResponder. After pulling an event off the event queue, the application dispatches that event to the
UIWindow object where it occurred. The window object, in turn, forwards the event to its first responder.
In the case of touch events, the first responder is typically the view object (UIView) in which the touch took
place. For example, a touch event occurring in a button is delivered to the corresponding button object.

If the first responder is unable to handle an event, it forwards the event to its next responder, which is
typically a parent view or view controller. If that object is unable to handle the event, it forwards it to its next
responder, and so on until the event is handled. This series of linked responder objects is known as the
responder chain. Messages continue traveling up the responder chain—toward higher-level responder
objects such as the window, the application, and the application’s delegate—until the event is handled. If
the event isn't handled, it is discarded.

The responder object that handles an event tends to set in motion a series of programmatic actions by the
application. For example, a control object (that is, a subclass of UIControl) handles an event by sending an
action message to another object, typically the controller that manages the current set of active views. While
processing the action message, the controller might change the user interface or adjust the position of views
in ways that require some of those views to redraw themselves. When this happens, the view and graphics
infrastructure takes over and processes the required redraw events in the most efficient manner possible.

For more information about events, responders, and how you handle events in your own custom objects,
see Event Handling Guide for iOS.

The Graphics and Drawing System

There are two basic drawing paths an application can follow in iOS:

 ■ Use native drawing technologies (such as Core Graphics and UIKit).

 ■ Use OpenGL ES.

The native drawing technologies rely on the infrastructure provided by views and windows to render and
present custom content. When a view is first shown, the system asks it to draw its content. System views
draw their contents automatically, but for custom views, the system calls the drawRect: method of the
view. Inside this method, you use the native drawing technologies to draw shapes, text, images, gradients,
or any other visual content you want. When you want to change the contents of the view, you do not call
the drawRect: method yourself. Instead, you ask the system to redraw all or part of the view by calling the
setNeedsDisplayorsetNeedsDisplayInRect:method. This cycle then repeats and continues throughout
the lifetime of your application.

If you are using OpenGL ES to draw your application’s content, you still create a window and view to manage
your content but you use them in a different way. Instead of the view drawing your application’s content,
the view simply provides the rendering surface that you then use to create an OpenGL drawing context. You
then use that context and your own timing information to coordinate updates to your application’s content.

For information about how to use views and the native rendering technologies to draw your application’s
content, see View Programming Guide for iOS. For detailed information about how to use OpenGL ES to draw
your application’s content, see OpenGL ES Programming Guide for iOS.

42 The Graphics and Drawing System
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

The Text System

The text system in iOS provides everything you need to receive input from the user and display the resulting
text in your application. On the input side, the system handles text input occurs through the system keyboard,
which is tied to the first responder object. Although it is referred to as the keyboard, its appearance does not
always look like a traditional keyboard. Different languages have different text input requirements, and so
the keyboard adapts as needed to support different input methods. Figure 2-8 shows several different variants
of the system keyboard that are presented automatically based on the user’s current language settings.

Figure 2-8 Several different keyboards and input methods

English

Japanese - Romanji Chinese - Handwriting

Korean

Japanese - Kana

Russian

The Text System 43
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

For displaying text, applications have a variety of options. For simple text display and editing, you can use
UIKit classes such as UILabel, UITextField, and UITextView. You can also do simple text display using
special additions to the NSString class provided by UIKit. For more sophisticated layout, you can use the
Core Graphics text facilities or Core Text. Both frameworks provide drawing primitives to render strings of
text. In addition, the Core Text framework provides a sophisticated layout engine for computing line positions,
text runs, and page layout information that you can then use when drawing the text.

For information about how to support text input and rendering in your application, see Text and Web
Programming Guide for iOS.

Audio and Video Support

Whether multimedia features are central or incidental to your application, iOS users expect high quality.
When presenting video content, take advantage of the device’s high-resolution screen and high frame rates.
When designing the audio portion of your application, keep in mind that compelling sound adds immeasurably
to a user’s overall experience.

You can use the iOS multimedia frameworks to add features like:

 ■ High-quality audio recording, playback, and streaming

 ■ Immersive game sounds

 ■ Live voice chat

 ■ Playback of content from a user’s iPod library

 ■ Full-screen video playback

 ■ Video recording on devices that support it

For more information about the audio and video technologies available in iOS, see iOS Technology Overview.
For information about how to use the audio and video technologies in iOS, see Multimedia Programming
Guide.

Integration with the Hardware and System Applications

An iOS application does not need to be isolated from the rest of the system. In fact, the best applications
take advantage of both hardware and software features on the device to provide a more intimate experience
for the user. Devices contain a lot of user-specific information, much of which is accessible through the system
frameworks and technologies. Table 2-5 lists a few of the features you can incorporate into your applications.

Table 2-5 System integration technologies

DescriptionIntegration with…

Applications that need access to the user’s contacts can use the Address Book
framework to access that information. You can also use the Address Book UI
framework to present standard system interfaces for picking and creating
contacts. For more information, see Address Book Programming Guide for iOS.

The user’s contacts

44 Audio and Video Support
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

DescriptionIntegration with…

Applications that need to schedule time-based events can use the Event Kit
and Event Kit UI frameworks to do so. Events scheduled using this framework
show up in the Calendar application and other applications that support this
framework.

Systemwide calendar and
time-based events

If your application sends email or SMS messages, you can use the view controllers
in the Message UI framework to present the standard system interfaces for
composing and sending those messages.

The Mail and Messages
applications

Applications that need information about the telephony features of a device
can access that information using the Core Telephony framework. For example,
a VoIP application might use this capability to detect an in-progress cellular call
and handle VoIP calls differently.

Telephony information

Applications that need access to the camera or the user’s photo library can
access them both using the UIImagePickerController class. This class
presents a standard system interface for retrieving images from the user.

The camera hardware and
the user’s photo library

If your application interacts with unknown file types, you can use the
UIDocumentInteractionController class to preview the contents of the
files or find an application cable of opening them. Email applications and other
network-based applications are typical candidates for interacting with unknown
file types.

Unknown file types

The pasteboard is a way of moving information around inside an application
but is also a way to share information with other applications. Data on the
pasteboard can be copied into other applications and incorporated.

Pasteboard data

Applications can take advantage of location-based data to tailor the content
presented to the user. For example, searches for local restaurants or services
can be limited to nearby places only. Location services are also used frequently
to create social connections by showing the location of nearby users.

For information about using Core Location, see LocationAwareness Programming
Guide.

The location of the device

Applications can incorporate maps into their applications and layer information
on top of those maps using the Map Kit framework. For information about using
Map Kit, see Location Awareness Programming Guide.

Map information

Developers can create software that interacts with connected external hardware
using the External Accessory framework. For information about communicating
with external accessories, see External Accessory Programming Topics.

External hardware
accessories

For a complete list of technologies you can incorporate into your applications, see iOS Technology Overview.

Integration with the Hardware and System Applications 45
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

46 Integration with the Hardware and System Applications
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

The Core Application Design

There are two standard behaviors that you should always implement for an iOS application and there are
others that you may want to implement depending on your needs. The two you should always implement
are:

 ■ Observe low-memory warnings and release as much memory as possible.

 ■ Save your application’s state information before moving to the background.

This chapter provides examples of these and other common application behaviors and offers guidance on
how best to implement those behaviors. This chapter also demonstrates the proper way to implement
common tasks that all applications typically need to perform.

Observing Low-Memory Warnings

When the system dispatches a low-memory warning to your application, heed it. iOS notifies the frontmost
application whenever the amount of free memory dips below a safe threshold. If your application receives
this warning, it must free up as much memory as it can by releasing objects it does not need or clearing out
memory caches that it can easily recreate later.

UIKit provides several ways to receive low-memory warnings, including the following:

 ■ Implement the applicationDidReceiveMemoryWarning: method of your application delegate.

 ■ Override the didReceiveMemoryWarning method in your custom UIViewController subclass.

 ■ Register to receive the UIApplicationDidReceiveMemoryWarningNotificationnotification.

Upon receiving any of these warnings, your handler method should respond by immediately freeing up any
unneeded memory. For example, the UIViewController class responds by automatically purging its view
if that view is not currently visible; subclasses can supplement the default behavior by purging additional
data structures. An application that maintains a cache of images might respond by releasing any images that
are not currently onscreen.

If your custom objects have known purgeable resources, you can have those objects register for the
UIApplicationDidReceiveMemoryWarningNotification notification and release their purgeable
resources directly. Have these objects register if you have a few objects that manage most of your purgeable
resources and if it is appropriate to purge all of those resources. But if you have many purgeable objects or
want to coordinate the release of only a subset of those objects, you might want to use your application
delegate to release the desired objects.

Observing Low-Memory Warnings 47
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

Important: Like the system applications, your applications should always handle low-memory warnings.
System applications consume small amounts of memory while processing requests. When a low-memory
condition is detected, the system delivers low-memory warnings to all running programs (including your
application) and may terminate some background applications (if necessary) to ease memory pressure. If not
enough memory is released—perhaps because your application is leaking or still consuming too much
memory—the system may still terminate your application.

You can test your application’s behavior under low-memory conditions using the Simulate Memory Warning
command in the simulator.

Preserving the Application’s Current State

Whenever your application moves to the background, you need to save to disk any data that might be lost
if something were to happen to your application. Background applications can be purged by the system at
any time if memory pressure becomes strong enough. Suspended applications are usually purged first but
other applications can be purged too, especially if they consume large amounts of memory themselves.
Writing out any unsaved user data or application state information ensures that your application has enough
data to restore itself to current state upon a subsequent relaunch.

In addition to writing out data when moving to the background, your application should also save changes
to user data at key points in your workflow. Unlike most desktop applications, there is no save command in
an iOS application. Therefore changes made by the user need to be written out to disk at the point where
the user makes or confirms the change. Under no circumstances should you let the user navigate to a new
page of content without saving data on the current page first.

Saving the state of your application’s user interface and data structures is also something you should do to
improve the user experience. Because iOS applications are meant to be launched and used quickly, restoring
your application to the state it was in when it was last run provides a continuity between launches. You do
not necessarily have to return the user to the exact same screen as before, but you should return the user
to the most logical starting point. For example, if a user edits a contact and then leaves the Phone application,
upon returning, the Phone application displays the top-level list of contacts, rather than the editing screen
for the contact.

Launching in Landscape Mode

Applications in iOS normally launch in portrait mode to match the orientation of the Home screen. If you
have an application that runs in both portrait and landscape mode, your application should always launch
in portrait mode initially and then let its view controllers rotate the interface as needed based on the device’s
orientation. If your application runs in landscape mode only, however, you must perform the following steps
to make it launch in a landscape orientation initially:

 ■ In your application’s Info.plist file, add the UIInterfaceOrientation key and set its value to the
landscape mode. For landscape orientations, you can set the value of this key to
UIInterfaceOrientationLandscapeLeft or UIInterfaceOrientationLandscapeRight.

 ■ Lay out your views in landscape mode and make sure that their autoresizing options are set correctly.

 ■ Override your view controller’s shouldAutorotateToInterfaceOrientation: method and return
YES only for the desired landscape orientation and NO for portrait orientations.

48 Preserving the Application’s Current State
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

Important: The preceding steps assume your application uses view controllers to manage its view hierarchy.
View controllers provide a significant amount of infrastructure for handling orientation changes as well as
other complex view-related events. If your application is not using view controllers—as may be the case with
games and other OpenGL ES–based applications—you are responsible for rotating the drawing surface (or
adjusting your drawing commands) as needed to present your content in landscape mode.

The UIInterfaceOrientation property hints to iOS that it should configure the orientation of the
application status bar (if one is displayed) as well as the orientation of views managed by any view controllers
at launch time. In iOS 2.1 and later, view controllers respect this property and set their view’s initial orientation
to match. Using this property is also equivalent to calling the setStatusBarOrientation:animated:
method of UIApplication early in the execution of your applicationDidFinishLaunching: method.

Note: To launch a view controller–based application in landscape mode in versions of iOS prior to v2.1, you
need to apply a 90-degree rotation to the transform of the application’s root view in addition to all the
preceding steps. Prior to iOS 2.1, view controllers did not automatically rotate their views based on the value
of the UIInterfaceOrientation key.

Files and the File System

Every application has a protected area in which it can create and modify files. In addition, the system allows
applications to share files with each other (and with the user) through well-defined and secure means.
However, supporting those means requires work on your part. The following sections describe the types of
file-related operations you can perform in your applications.

Getting Paths to Application Directories

At various levels of the system, there are programmatic ways to obtain file-system paths to the directory
locations of an application’s sandbox. However, the preferred way to retrieve these paths is with the Cocoa
programming interfaces.

You can use the NSSearchPathForDirectoriesInDomains function to get exact paths to your Documents
and Caches directories. To get a path to the tmp directory, us the NSTemporaryDirectory function. When
you have one of these “base” paths, you can use the path-related methods of NSString to modify the path
information or create new path strings. For example, upon retrieving the temporary directory path, you could
append a file name and use the resulting string to create a file with the given name in the temporary directory.

Note: If you are using frameworks with ANSI C programmatic interfaces—including those that take
paths—recall that NSString objects are “toll-free bridged” with their Core Foundation counterparts. This
means that you can cast a NSString object (such as the return by one of the above functions) to a
CFStringRef type, as shown in the following example:

CFStringRef tmpDirectory = (CFStringRef)NSTemporaryDirectory();

Files and the File System 49
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

The NSSearchPathForDirectoriesInDomains function of the Foundation framework lets you obtain the
full path to several application-related directories. To use this function in iOS, specify an appropriate search
path constant for the first parameter and NSUserDomainMask for the second parameter. Table 3-1 lists
several of the most commonly used constants and the directories they return.

Table 3-1 Commonly used search path constants

DirectoryConstant

<Application_Home>/DocumentsNSDocumentDirectory

<Application_Home>/Library/CachesNSCachesDirectory

<Application_Home>/Library/Application SupportNSApplicationSupportDirectory

Because the NSSearchPathForDirectoriesInDomains function was designed originally for Mac OS X,
where multiple such directories could exist, it returns an array of paths rather than a single path. In iOS, the
resulting array should contain the single path to the desired directory. Listing 3-1 shows a typical use of this
function.

Listing 3-1 Getting the path to the application’s Documents directory

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];

You can call NSSearchPathForDirectoriesInDomains using a domain-mask parameter other than
NSUserDomainMask or a directory constant other than those in Table 3-1 (page 50), but the application will
be unable to write to any of the returned directory locations. For example, if you specify
NSApplicationDirectory as the directory parameter and NSSystemDomainMask as the domain-mask
parameter, you get the path /Applications returned (on the device), but your application cannot write
any files to this location.

Another consideration to keep in mind is the difference in directory locations between platforms. The paths
returned by the NSSearchPathForDirectoriesInDomains function differ depending on whether you’re
running your application on the device or on the simulator. For example, take the function call shown in
Listing 3-1 (page 50). On the device, the returned path (documentsDirectory) is similar to the following:

/var/mobile/Applications/30B51836-D2DD-43AA-BCB4-9D4DADFED6A2/Documents

However, on the Simulator, the returned path takes the following form:

/Volumes/Stuff/Users/johnDoe/Library/Application Support/iPhone
Simulator/User/Applications/118086A0-FAAF-4CD4-9A0F-CD5E8D287270/Documents

To read and write user preferences, use the NSUserDefaults class or the CFPreferences API. These
interfaces eliminate the need for you to construct a path to the Library/Preferences/ directory and read
and write preference files directly. For more information on using these interfaces, see “Adding the Settings
Bundle” (page 86).

If your application contains sound, image, or other resources in the application bundle, you should use the
NSBundle class or CFBundleRef opaque type to load those resources. Bundles have an inherent knowledge
of where resources live inside the application. In addition, bundles are aware of the user’s language preferences
and are able to choose localized resources over default resources automatically. For more information on
bundles, see “The Application Bundle” (page 93).

50 Files and the File System
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

Sharing Files with the User

Applications that want to make user data files accessible can do so using application file sharing. File sharing
enables the application to expose the contents of its /Documents directory to the user through iTunes. The
user can then move files back and forth between the device and a desktop computer. This feature does not
allow your application to share files with other applications on the same device, though. To share data and
files between applications, you must the pasteboard or a document interaction controller object.

To enable file sharing for your application, do the following:

1. Add the UIFileSharingEnabled key to your application’s Info.plist file and set the value of the
key to YES.

2. Put whatever files you want to share in your application’s Documents directory.

3. When the device is plugged into the user’s computer, iTunes 9.1 displays a File Sharing section in the
Apps tab of the selected device.

4. The user can add files to this directory or move files to the desktop.

Applications that support file sharing should be able to recognize when files have been added to the
Documents directory and respond appropriately. For example, your application might make the contents of
any new files available from its interface. You should never present the user with the list of files in this directory
and ask them to decide what to do with those files.

Important: In iTunes, users can manipulate only the top-level items in the Documents directory. Users
cannot see the contents of subdirectories but can delete those directories or copy their contents to the
desktop. You should take this into consideration when deciding where to put files in this directory.

Working with Protected Files

When file protection is enabled on a device, applications can mark files as protected for greater security. If
you plan to support this feature in your applications, though, you must also be prepare your application to
handle situations where the protected file is unavailable. The following sections show you how to add
protection to files and how to modify your application to work with protected files.

Marking a File as Protected

To mark a file as protected, you must add an extended attribute to it. The Foundation framework includes
two ways to add this attribute:

 ■ When writing the contents of an NSData object to disk using the writeToFile:options:error:
method, include the NSDataWritingFileProtectionComplete option.

 ■ Use the setAttributes:ofItemAtPath:error: method of NSFileManager to add the
NSFileProtectionKey attribute (with the NSFileProtectionComplete value) to an existing file.

Files and the File System 51
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

Note: If you are working with NSData objects already, using the writeToFile:options:error: method
to save and protect that data in one step is recommended. This guarantees that the data is always stored on
disk in an encrypted format.

Adding protection to a file is a one-way operation—once added, you cannot remove the attribute. When
adding this attribute to new files, it is recommended that you add this attribute after you create the file but
before you write any data to it. (If you are writing out the contents of an NSData object, this happens
automatically.) When adding this attribute to existing (unprotected) files, adding this key replaces the
unprotected file with a protected version.

Determining the Availability of Protected Files

A protected file can be accessed only when a device is unlocked. Because applications may continue running
while a device is locked, your code should be prepared to handle the possibility of protected files becoming
unavailable at any time. The UIKit framework provides ways to track whether data protection is currently
enabled.

 ■ The application delegate can implement the applicationProtectedDataWillBecomeUnavailable:
and applicationProtectedDataDidBecomeAvailable: methods and use them to track changes
to the availability of protected data.

 ■ An application can register for the UIApplicationProtectedDataWillBecomeUnavailable and
UIApplicationProtectedDataDidBecomeAvailable notifications.

 ■ The protectedDataAvailable property of the shared UIApplication object indicates whether
protected files are currently accessible.

Any application that works with protected files should implement the application delegate methods. When
the applicationProtectedDataWillBecomeUnavailable: method is called, your application should
immediately close any protected files and refrain from using them again until the
applicationProtectedDataDidBecomeAvailable: method is called. Any attempts to access the
protected files while they are unavailable will fail.

Opening Files Whose Type is Unknown

When your application needs to interact with files of unknown types, you can use a
UIDocumentInteractionController object to manage those interactions. A document interaction
controller works with the system to determine whether files can be previewed in place or opened by another
application. Your application works with the document interaction controller to present the available options
to the user at appropriate times.

To use a document interaction controller in your application, do the following:

1. Create an instance of the UIDocumentInteractionController class for each file you want to manage.

2. Present the file in your application’s user interface. (Typically, you would do this by displaying the file
name or icon somewhere in your interface.)

3. When the user interacts with the file, ask the document interaction controller to present one of the
following interfaces:

52 Files and the File System
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

 ■ A file preview view that displays the contents of the file

 ■ A menu containing options to preview the file, copy its contents, or open it using another application

 ■ A menu prompting the user to open it with another application

Any application that interacts with files can use a document interaction controller. Programs that download
files from the network are the most likely candidates to need these capabilities. For example, an email program
might use document interaction controllers to preview or open files attached to an email. Of course, you do
not need to download files from the network to use this feature.

Creating and Configuring a Document Interaction Controller

To create a new document interaction controller, initialize a new instance of the
UIDocumentInteractionController class with the file you want it to manage and assign an appropriate
delegate object. Your delegate object is responsible for providing the document interaction controller with
information it needs to present its views. You can also use the delegate to perform additional actions when
those views are displayed. The following code creates a new document interaction controller and sets the
delegate to the current object. Note that the caller of this method needs to retain the returned object.

- (UIDocumentInteractionController*)docControllerForFile:(NSURL*)fileURL
{
 UIDocumentInteractionController* docController =
 [UIDocumentInteractionController interactionControllerWithURL:fileURL];
 docController.delegate = self;

 return docController;
}

Once you have a document interaction controller object, you can use its properties to get information about
the file, including its name, type information, and path information. The controller also has an icons property
that contains UIImage objects representing the document’s icon in various sizes. You can use all of this
information when presenting the document in your user interface.

If you plan to let the user open the file in another application, you can use the annotation property of the
document interaction controller to pass custom information to the opening application. It is up to you to
provide information in a format that the other application will recognize. For example, this property is typically
used by application suites that want to communicate additional information about a file to other applications
in the suite. The opening application sees the annotation data in the
UIApplicationLaunchOptionsAnnotationKey key of the options dictionary that is passed to it at launch
time.

Presenting a Document Interaction Controller

When the user interacts with a file, you use the document interaction controller to display the appropriate
user interface. You have the choice of displaying a document preview or of prompting the user to choose
an appropriate action for the file using one of the following methods:

 ■ Use the presentOptionsMenuFromRect:inView:animated: or
presentOptionsMenuFromBarButtonItem:animated: method to present the user with a variety
of options.

 ■ Use the presentPreviewAnimated: method to display a document preview.

Files and the File System 53
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

 ■ Use the presentOpenInMenuFromRect:inView:animated: or
presentOpenInMenuFromBarButtonItem:animated: method to present the user with a list of
applications with which to open the file.

Each of the preceding methods attempts to display a custom view with the appropriate content. When calling
these methods, you should always check the return value to see if the attempt was actually successful. These
methods may return NO if the resulting interface would have contained no content. For example, the
presentOpenInMenuFromRect:inView:animated:method returns NO if there are no applications capable
of opening the file.

If you choose a method that might display a preview of the file, your delegate object must implement the
documentInteractionControllerViewControllerForPreview: method. Most document previews
are displayed using a modal view, so the view controller you return becomes the parent of the modal
document preview. (If you return a navigation controller, the document interaction controller is pushed onto
its navigation stack instead.) If you do not implement this method, if your implementation returns nil, or if
the specified view controller is unable to present the document interaction controller, a document preview
is not displayed.

Normally, the document interaction controller automatically handles the dismissal of the view it presents.
However, you can dismiss the view programmatically as needed by calling the dismissMenuAnimated: or
dismissPreviewAnimated: methods.

Implementing Support for Custom File Formats

Applications that are able to open specific document or file formats may register those formats with the
system. When the system or another application needs to open a file, it can hand that file off to your application
to do so. In order to support custom file formats, your application must:

1. Register the file types your application supports with the system.

2. Implement the proper methods to open files (when asked to do so by the system).

Registering the File Types Your Application Supports

If your application is capable of opening specific types of files, you should register those types with the
system. To declare support for file types, your application must include the CFBundleDocumentTypes key
in its Info.plist file. The system gathers this information from your application and maintains a registry
that other applications can access through a document interaction controller.

The CFBundleDocumentTypes key contains an array of dictionaries, each of which identifies information
about a specific document type. A document type usually has a one-to-one correspondence with a particular
document type. However, if your application treats more than one file type the same way, you can group
those types together as a single document type. For example, if you have two different file formats for your
application’s native document type, you could group both the old type and new type together in a single
document type entry. By doing so, both the new and old files would appear to be the same type of file and
would be treated in the same way.

Each dictionary in the CFBundleDocumentTypes array can include the following keys:

 ■ CFBundleTypeName specifies the name of the document type.

54 Files and the File System
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

 ■ CFBundleTypeIconFiles is an array of filenames for the image resources to use as the document’s
icon. For information on how to create document icons for your application, see iPhone Human Interface
Guidelines and iPad Human Interface Guidelines.

 ■ LSItemContentTypes contains an array of strings with the UTI types that represent the supported file
types in this group.

 ■ LSHandlerRank describes whether this application owns the document type or is merely able to open
it.

From the perspective of your application, a document is a file type (or file types) that the application supports
and treats as a single entity. For example, an image processing application might treat different image file
formats as different document types so that it can fine tune the behavior associated with each one. Conversely,
a word processing application might not care about the underlying image formats and just manage all image
formats using a single document type.

Table 6-2 shows a sample XML snippet from the Info.plist of an application that is capable of opening
a custom file type. The LSItemContentTypes key identifies the UTI associated with the file format and the
CFBundleTypeIconFiles key points to the icon resources to use when displaying it.

Listing 3-2 Document type information for a custom file format

<dict>
 <key>CFBundleTypeName</key>
 <string>My File Format</string>
 <key>CFBundleTypeIconFiles</key>
 <array>
 <string>MySmallIcon.png</string>
 <string>MyLargeIcon.png</string>
 </array>
 <key>LSItemContentTypes</key>
 <array>
 <string>com.example.myformat</string>
 </array>
 <key>LSHandlerRank</key>
 <string>Owner</string>
</dict>

For more information about the contents of the CFBundleDocumentTypes key, see the description of that
key in Information Property List Key Reference.

Opening Supported File Types

The system may ask your application to open a specific file and present it to the user at any time. Requests
to open another document might cause your application to be launched or, if your application is already
running in the background, cause it to move to the foreground. In both cases, the system provides information
about the file to be opened to your application delegate.

There are two application delegate methods to implement for handling the opening of a file:

 ■ Use the application:didFinishLaunchingWithOptions: method to retrieve information about
the file and decide whether you want to open it.

 ■ Use the application:handleOpenURL: method to open the file.

Files and the File System 55
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

The application:didFinishLaunchingWithOptions: method is called only when your application
needs to be launched to open a file. Your implementation of this method should retrieve any relevant keys
from the options dictionary and use them to decide if it should open the file. You typically do not open the
file in this method, though. Instead, you return YES to indicate that your application is able to open the file.
If you return YES, the system calls your application:handleOpenURL: method to open the file. However,
if you return NO, the application:handleOpenURL: method is not called.

The options dictionary for the application:didFinishLaunchingWithOptions: method may contain
several keys with information about the file and the application that asked for it to be opened. Specifically,
this dictionary may contain the following keys:

 ■ The value for the UIApplicationLaunchOptionsURLKey key is an NSURL object that specifies the file
to open.

 ■ The value for the UIApplicationLaunchOptionsSourceApplicationKey key is an NSString with
the bundle identifier of the application that initiated the open request.

 ■ The value for the UIApplicationLaunchOptionsAnnotationKey is a property list object that the
source application associated with the file. This object contains relevant information the application
wanted to communicate to other applications.

Modifying Documents Passed to Your Application by the System

When you use a UIDocumentInteractionController to open a file, the system transfers the file to the
~/Documents/Inbox directory of the application asked to open it. Because the Inbox directory is managed
by the system, only the system is allowed to write to it. The application opening the file has read-only access
to the file and cannot write to it.

If your application allows the user to edit documents passed to it by a document interaction controller, you
must copy those documents to a writable directory before attempting to save any changes. Do not copy a
file out of the Inbox directory until the user actually makes a change to it. And the process of copying files
out of the Inbox directory (and to a writable directory) should be transparent to the user. You should not
prompt the user about whether to save the file to a different location.

Communicating with Other Applications

If an application handles URLs of a known type, you can use that URL scheme to communicate with the
application. In most cases, however, URLs are used simply to launch another application and have it display
some information that is relevant to your own application. For example, if your application manages address
information, you could send a URL containing a given address to the Maps application to show that location.
This level of communication creates a much more integrated environment for the user and alleviates the
need for your application to implement features that exist elsewhere on the device.

Apple provides built-in support for the http, mailto, tel, and smsURL schemes. It also supports http–based
URLs targeted at the Maps, YouTube, and iPod applications. Applications can register their own custom URL
schemes as well. To communicate with an application, create an NSURL object with some properly formatted
content and pass it to the openURL: method of the shared UIApplication object. The openURL: method
launches the application that has registered to receive URLs of that type and passes it the URL. When the
user subsequently quits that application, the system often relaunches your application but may not always
do so. The decision to relaunch an application is made based on the user’s actions in the handler application
and whether returning to your application would make sense from the user’s perspective.

56 Communicating with Other Applications
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

The following code fragment illustrates how one application can request the services of another application
(“todolist” in this example is a hypothetical custom scheme registered by an application):

NSURL *myURL = [NSURL
URLWithString:@"todolist://www.acme.com?Quarterly%20Report#200806231300"];
[[UIApplication sharedApplication] openURL:myURL];

Important: If your URL type includes a scheme that is identical to one defined by Apple, the Apple-provided
application is launched instead of your application. If multiple third-party applications register to handle the
same URL scheme, it is undefined as to which of the applications is picked to handle URLs of that type.

If your application defines its own custom URL scheme, it should implement a handler for that scheme as
described in “Implementing Custom URL Schemes” (page 57). For more information about the
system-supported URL schemes, including information about how to format the URLs, see Apple URL Scheme
Reference.

Implementing Custom URL Schemes

You can register URL types for your application that include custom URL schemes. A custom URL scheme is
a mechanism through which third-party applications can interact with each other and with the system.
Through a custom URL scheme, an application can make its services available to other applications.

Registering Custom URL Schemes

To register a URL type for your application, you must specify the subproperties of the CFBundleURLTypes
property, which was introduced in “The Information Property List” (page 95). The CFBundleURLTypes
property is an array of dictionaries in the application’s Info.plist file, with each dictionary defining a URL
type the application supports. Table 3-2 describes the keys and values of a CFBundleURLTypes dictionary.

Table 3-2 Keys and values of the CFBundleURLTypes property

ValueKey

A string that is the abstract name for the URL type. To ensure uniqueness, it is
recommended that you specify a reverse-DNS style of identifier, for example,
com.acme.myscheme.

The URL-type name provided here is used as a key to a localized string in the
InfoPlist.strings file in a language-localized bundle subdirectory. The
localized string is the human-readable name of the URL type in a given language.

CFBundleURLName

An array of URL schemes for URLs belonging to this URL type. Each scheme is a
string. URLs belonging to a given URL type are characterized by their scheme
components.

CFBundleURLSchemes

Figure 3-1 shows the Info.plist file of an application being edited using the built-in Xcode editor. In this
figure, the URL types entry in the left column is equivalent to the CFBundleURLTypes key you would add
directly to an Info.plist file. Similarly, the “URL identifier” and “URL Schemes” entries are equivalent to
the CFBundleURLName and CFBundleURLSchemes keys.

Implementing Custom URL Schemes 57
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

Figure 3-1 Defining a custom URL scheme in the Info.plist file

After you have registered a URL type with a custom scheme by defining the CFBundleURLTypes property,
you can test the scheme in the following way:

1. Build, install, and run your application.

2. Go to the Home screen and launch Safari. (In the simulator, you can go to the Home screen by selecting
Hardware > Home from the menu.)

3. In the address bar of Safari, type a URL that uses your custom scheme.

4. Verify that your application launches and that the application delegate is sent a
application:handleOpenURL: message.

Handling URL Requests

An application that has its own custom URL scheme must be able to handle URLs passed to it. All URLs are
passed to your application delegate for handling and the URL can be passed in when your application is
launched or while it is running in the background. How your application is notified of a URL to open depends
on its current state:

 ■ If your application is not running, it is launched and the URL is specified in the options dictionary of your
application delegate’s application:didFinishLaunchingWithOptions:method. (If the application
does not implement this method, the applicationDidFinishLaunching: is called instead followed
by a call to the application:handleOpenURL: method.)

 ■ If your application is running, but is in the background or suspended, it is moved to the foreground and
its application:handleOpenURL: method is called.

58 Implementing Custom URL Schemes
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

Note: When your application launches because of a request to open a URL, you can display a custom launch
image for each scheme you define. For more information about how to specify these launch images, see
“Providing Launch Images for Custom URL Schemes” (page 104).

All URLs are passed to your application in an NSURL object. It is up to you to define the format of the URL
contents, but the NSURL class conforms to the RFC 1808 specification and therefore supports most URL
formatting conventions. Specifically, it includes methods that return the various parts of a URL as defined by
RFC 1808, including the user, password, query, fragment, and parameter strings. The “protocol” for your
custom scheme can use these URL parts for conveying various kinds of information.

In the implementation of application:handleOpenURL: shown in Listing 3-3, the passed-in URL object
conveys application-specific information in its query and fragment parts. The delegate extracts this
information—in this case, the name of a to-do task and the date the task is due—and with it creates a model
object of the application.

Listing 3-3 Handling a URL request based on a custom scheme

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {
 if ([[url scheme] isEqualToString:@"todolist"]) {
 ToDoItem *item = [[ToDoItem alloc] init];
 NSString *taskName = [url query];
 if (!taskName || ![self isValidTaskString:taskName]) { // must have a
task name
 [item release];
 return NO;
 }
 taskName = [taskName
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

 item.toDoTask = taskName;
 NSString *dateString = [url fragment];
 if (!dateString || [dateString isEqualToString:@"today"]) {
 item.dateDue = [NSDate date];
 } else {
 if (![self isValidDateString:dateString]) {
 [item release];
 return NO;
 }
 // format: yyyymmddhhmm (24-hour clock)
 NSString *curStr = [dateString substringWithRange:NSMakeRange(0,
4)];
 NSInteger yeardigit = [curStr integerValue];
 curStr = [dateString substringWithRange:NSMakeRange(4, 2)];
 NSInteger monthdigit = [curStr integerValue];
 curStr = [dateString substringWithRange:NSMakeRange(6, 2)];
 NSInteger daydigit = [curStr integerValue];
 curStr = [dateString substringWithRange:NSMakeRange(8, 2)];
 NSInteger hourdigit = [curStr integerValue];
 curStr = [dateString substringWithRange:NSMakeRange(10, 2)];
 NSInteger minutedigit = [curStr integerValue];

 NSDateComponents *dateComps = [[NSDateComponents alloc] init];
 [dateComps setYear:yeardigit];
 [dateComps setMonth:monthdigit];
 [dateComps setDay:daydigit];

Implementing Custom URL Schemes 59
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

 [dateComps setHour:hourdigit];
 [dateComps setMinute:minutedigit];
 NSCalendar *calendar = [NSCalendar currentCalendar];
 NSDate *itemDate = [calendar dateFromComponents:dateComps];
 if (!itemDate) {
 [dateComps release];
 [item release];
 return NO;
 }
 item.dateDue = itemDate;
 [dateComps release];
 }

 [(NSMutableArray *)self.list addObject:item];
 [item release];
 return YES;
 }
 return NO;
}

Be sure to validate the input you get from URLs passed to your application; see “Validating Input” in Secure
CodingGuide to find out how to avoid problems related to URL handling. To learn about URL schemes defined
by Apple, see Apple URL Scheme Reference.

Displaying Application Preferences

If your application uses preferences to control various aspects of its behavior, how you expose those
preferences to the user depends on how integral they are to your program.

 ■ Preferences that are integral to using the application (and simple enough to implement directly) should
be presented directly by your application using a custom interface.

 ■ Preferences that are not integral, or that require a relatively complex interface, should be presented
using the system’s Settings application.

When determining whether a set of preferences is integral, think about the intended usage pattern. If you
expect the user to make changes to preferences somewhat frequently, or if those preferences play a relatively
important role in how the application behaves, they are probably integral. For example, the settings in a
game are usually integral to playing the game and something the user might want to change quickly. Because
the Settings application is a separate application, however, you would use it only for preferences that you
do not expect the user to access frequently.

If you choose to implement preferences inside your application, it is up to you to define the interface and
write the code to manage those preferences. If you choose to use the Settings application, however, your
application must provide a Settings bundle to manage them.

A settings bundle is a custom resource that you include in the top level of your application’s bundle directory.
An opaque directory with the name Settings.bundle, the settings bundle contains specially formatted
data files (and supporting resources) that tell the Settings application how to display your preferences. These
files also tell the Settings application where to store the resulting values in the preferences database, which
your application then accesses using the NSUserDefaults or CFPreferences APIs.

60 Displaying Application Preferences
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

If you implement your preferences using a settings bundle, you should also provide a custom icon for your
preferences. The Settings application displays the image you provide next to your application name. For
information about application icons and how you specify them, see “Application Icons” (page 100).

For more information about creating a Settings bundle for your application, see “Implementing Application
Preferences” (page 81).

Turning Off Screen Locking

If an iOS-based device does not receive touch events for a specified period of time, it turns off the screen
and disables the touch sensor. Locking the screen in this way is an important way to save power. As a result,
you should leave this feature enabled except when absolutely necessary to prevent unintended behavior in
your application. For example, you might disable screen locking if your application does not receive screen
events regularly but instead uses other features (such as the accelerometers) for input.

To disable screen locking, set the idleTimerDisabled property of the shared UIApplication object to
YES. Be sure to reset this property to NO at times when your application does not need to prevent screen
locking. For example, you might disable screen locking while the user is playing a game, but you should
reenable it when the user is in setup screens or is otherwise not actively playing the game.

Turning Off Screen Locking 61
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

62 Turning Off Screen Locking
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing Standard Application Behaviors

Most applications that enter the background state are immediately suspended and do not execute any code.
If your application does need to execute code, it must notify the system of that fact. There are several options
available for running background tasks and each option allows your application to support specific types of
behavior.

Important: If you need only minimal support for running under multitasking, and do not actually need to
perform tasks while in the background, you do not need to read this chapter. Information about how to
design your application to support the multitasking environment is available in “Multitasking” (page 36).

Preparing Your Application to Execute in the Background

Applications linked against iOS 4 and later are automatically assumed to support multitasking and to implement
the appropriate methods to handle transitions to the background state. However, work is still required to
ensure that your application transitions smoothly between the foreground and background.

Determining Whether Multitasking Support is Available

The ability to run background tasks is not supported on all iOS-based devices. If a device is not running iOS
4 and later, or if the hardware is not capable of running applications in the background, the system reverts
to the previously defined behavior for handling applications. Specifically, when an application is quit, its
application delegate receives an applicationWillTerminate: message, after which the application is
terminated and purged from memory.

Applications should be prepared to handle situations where multitasking is not available. If your code supports
background tasks but is able to run without them, you can use the multitaskingSupported property of
the UIDevice class to determine whether multitasking is available. Of course, if your application supports
versions of the system earlier than iOS 4, you should always check the availability of this property before
accessing it, as shown in Listing 4-1.

Listing 4-1 Checking for background support on earlier versions of iOS

UIDevice* device = [UIDevice currentDevice];
BOOL backgroundSupported = NO;
if ([device respondsToSelector:@selector(isMultitaskingSupported)])
 backgroundSupported = device.multitaskingSupported;

Preparing Your Application to Execute in the Background 63
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Executing Code in the Background

Declaring the Background Tasks You Support

Support for some types of background execution must be declared in advance by the application that uses
them. An application does this by including the UIBackgroundModes key in its Info.plist file. This key
identifies which background tasks your application supports. Its value is an array that contains one or more
strings with the following values:

 ■ audio - The application plays audible content to the user while in the background.

 ■ location - The application keeps users informed of their location, even while running in the background.

 ■ voip - The application provides the ability for the user to make phone calls using an Internet connection.

Each of the preceding values lets the system know that your application should be woken up at appropriate
times to respond to relevant events. For example, an application that begins playing music and then moves
to the background still needs execution time to fill the audio output buffers. Including the audio key tells
the system frameworks that they should continue playing and make the necessary callbacks to the application
at appropriate intervals. If the application did not include this key, any audio being played by the application
would stop when the application moved to the background.

In addition to the preceding keys, iOS provides two other ways to do work in the background:

 ■ Applications can ask the system for extra time to complete a given task.

 ■ Applications can schedule local notifications to be delivered at a predetermined time.

For more information about how to initiate background tasks from your code, see “Initiating Background
Tasks” (page 66).

Supporting Background State Transitions

Supporting the background state transition is part of the fundamental architecture for applications in iOS 4
and later. Although technically the only thing you have to do to support this capability is link against iOS 4
and later, properly supporting it requires some additional work. Specifically, your application delegate should
implement the following methods and implement appropriate behaviors in each of them:

 ■ application:didFinishLaunchingWithOptions:

 ■ applicationDidBecomeActive:

 ■ applicationWillResignActive:

 ■ applicationDidEnterBackground:

 ■ applicationWillEnterForeground:

 ■ applicationWillTerminate:

These methods are called at key times during your application’s execution to let you know when your
application is changing states. Although many of these methods have been present in iOS applications for
some time, their purpose was more narrowly defined previously. Applications implementing these methods
now must use them to address some additional behaviors that are needed to operate safely in the background.
For example, an application that went into the background and purged from memory might be relaunched
and expected to continue operating from where it last was. Thus, your application’s

64 Preparing Your Application to Execute in the Background
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Executing Code in the Background

application:didFinishLaunchingWithOptions: method may now need to check and see what
additional launch information is available and use that information plus any saved state to restore the
application’s user interface.

For information and guidance on how to implement the methods in your application, see “Understanding
an Application’s States and Transitions” (page 29).

Being a Responsible, Multitasking-Aware Application

Applications that run in the background are more limited in what they can do than a foreground application.
And even if your application does not run in the background, there are are certain guidelines you should
follow when implementing your application.

 ■ Do not make any OpenGL ES calls from your code. You must not create an EAGLContext object or
issue any OpenGL ES drawing commands of any kind. Using these calls will cause your application to be
terminated immediately.

 ■ Cancel any Bonjour-related services before being suspended. When your application moves to the
background, and before it is suspended, it should unregister from Bonjour and close listening sockets
associated with any network services. A suspended application cannot respond to incoming service
requests anyway. Closing out those services prevents them from appearing to be available when they
actually are not. If you do not close out Bonjour services yourself, the system closes out those services
automatically when your application is suspended.

 ■ Be prepared to handle connection failures in your network-based sockets. The system may tear down
socket connections while your application is suspended for any number of reasons. As long as your
socket-based code is prepared for other types of network failures, such as a lost signal or network
transition, this should not lead to any unusual problems. When your application resumes, if it encounters
a failure upon using a socket, simply reestablish the connection.

 ■ Save your application state before moving to the background. During low-memory conditions,
background applications are purged from memory to free up space. Suspended applications are purged
first, and no notice is given to the application before it is purged. As a result, before moving to the
background, an application should always save enough state information to reconstitute itself later if
necessary. Restoring your application to its previous state also provides consistency for the user, who
will see a snapshot of your application’s main window briefly when it is relaunched.

 ■ Release any unneeded memory when moving to the background. Background applications must
maintain enough state information to be able to resume operation quickly when they move back to the
foreground. But if there are objects or relatively large memory blocks that you no longer need (such as
unused images), you should consider releasing that memory when moving to the background.

 ■ Stop using shared system resources before being suspended. Applications that interact with shared
system resources such as Address Book need to stop using those resources before being suspended.
Priority over such resources always goes to the foreground application. At suspend time, if an application
is found to be using a shared resource, it will be terminated instead.

 ■ Avoid updating your windows and views. While in the background, your application’s windows and
views are not visible, so you should not try to update them. Although creating and manipulating window
and view objects in the background will not cause your application to be terminated, this work should
be postponed until your application moves to the foreground.

 ■ Respond to connect and disconnect notifications for external accessories. For applications that
communicate with external accessories, the system automatically sends a disconnection notification
when the application moves to the background. The application must register for this notification and

Preparing Your Application to Execute in the Background 65
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Executing Code in the Background

use it to close out the current accessory session. When the application moves back to the foreground,
a matching connection notification is sent giving the application a chance to reconnect. For more
information on handling accessory connection and disconnection notifications, see External Accessory
Programming Topics.

 ■ Clean up resources for active alerts when moving to the background. In order to preserve context
when switching between applications, the system does not automatically dismiss action sheets
(UIActionSheet) or alert views (UIAlertView) when your application moves to the background. (For
applications linked against iOS 3.x and earlier, action sheets and alerts are still dismissed at quit time so
that your application’s cancellation handler has a chance to run.) It is up to you to provide the appropriate
cleanup behavior prior to moving to the background. For example, you might want to cancel the action
sheet or alert view programmatically or save enough contextual information to restore the view later
(in cases where your application is terminated).

 ■ Remove sensitive information from views before moving to the background. When an application
transitions to the background, the system takes a snapshot of the application’s main window, which it
then presents briefly when transitioning your application back to the foreground. Before returning from
your applicationDidEnterBackground: method, you should hide or obscure passwords and other
sensitive personal information that might be captured as part of the snapshot.

 ■ Do minimal work while running in the background. The execution time given to background applications
is more constrained than the amount of time given to the foreground application. If your application
plays background audio or monitors location changes, you should focus on that task only and defer any
nonessential tasks until later. Applications that spend too much time executing in the background can
be throttled back further by the system or terminated altogether.

If you are implementing a background audio application, or any other type of application that is not suspended
while in the background, your application responds to incoming messages in the usual way. In other words,
the system may notify your application of low-memory warnings when they occur. And in situations where
the system needs to terminate applications to free up even more memory, the application calls its delegate’s
applicationWillTerminate: method to perform any final tasks before exiting.

Initiating Background Tasks

The steps for initiating a background task depend entirely on the task at hand. Some tasks must be initiated
explicitly, while others happen in a more automatic way for your application. The following sections provide
guidance and examples on how to initiate each type of background task.

Completing a Long-Running Task in the Background

Any time before it is suspended, an application can call the
beginBackgroundTaskWithExpirationHandler: method to ask the system for extra time to complete
some long-running task in the background. If the request is granted, and if the application goes into the
background while the task is in progress, the system lets the application run for an additional amount of
time instead of suspending it. (The amount of time left for the application to run is available in the
backgroundTimeRemaining property of the UIApplication object.)

66 Initiating Background Tasks
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Executing Code in the Background

You can use background tasks to ensure that important but potentially long-running operations do not end
abruptly when the user quits the application. For example, you might use this technique to finish downloading
an important file from a network server. There are a couple of design patterns you can use to initiate such
tasks:

 ■ Wrap any long-running critical tasks with beginBackgroundTaskWithExpirationHandler: and
endBackgroundTask: calls. This protects those tasks in situations where your application is suddenly
moved to the background.

 ■ Wait for your application delegate’s applicationDidEnterBackground: method to be called and
start one or more tasks then.

All calls to the beginBackgroundTaskWithExpirationHandler: method must be balanced with a
corresponding call to the endBackgroundTask: method. The endBackgroundTask: method lets the
system know that the desired task is complete and that the application can now be suspended. Because
applications running in the background have a limited amount of execution time, calling this method is also
critical to avoid the termination of your application. (You can always check the value in the
backgroundTimeRemaining property to see how much time is left.) An application with outstanding
background tasks is terminated rather than suspended when its time limit expires. You can also provide an
expiration handler for each task and call the endBackgroundTask: from there.

An application may have any number of background tasks running at the same time. Each time you start a
task, the beginBackgroundTaskWithExpirationHandler: method returns a unique identifier for the
task. You must pass this same identifier to the endBackgroundTask: method when it comes time to end
the task.

Listing 4-2 shows how to start a long-running task when your application transitions to the background. In
this example, the request to start a background task includes an expiration handler just in case the task takes
too long. The task itself is then submitted to a dispatch queue for asynchronous execution so that the
applicationDidEnterBackground: method can return normally. The use of blocks simplifies the code
needed to maintain references to any important variables, such as the background task identifier. The bgTask
variable is a member variable of the class that stores a pointer to the current background task identifier.

Listing 4-2 Starting a background task at quit time

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 UIApplication* app = [UIApplication sharedApplication];

 // Request permission to run in the background. Provide an
 // expiration handler in case the task runs long.
 NSAssert(bgTask == UIBackgroundTaskInvalid, nil);

 bgTask = [app beginBackgroundTaskWithExpirationHandler:^{
 // Synchronize the cleanup call on the main thread in case
 // the task actually finishes at around the same time.
 dispatch_async(dispatch_get_main_queue(), ^{
 if (bgTask != UIBackgroundTaskInvalid)
 {
 [app endBackgroundTask:bgTask];
 bgTask = UIBackgroundTaskInvalid;
 }
 });
 }];

 // Start the long-running task and return immediately.

Initiating Background Tasks 67
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Executing Code in the Background

 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT,
0), ^{

 // Do the work associated with the task.

 // Synchronize the cleanup call on the main thread in case
 // the expiration handler is fired at the same time.
 dispatch_async(dispatch_get_main_queue(), ^{
 if (bgTask != UIBackgroundTaskInvalid)
 {
 [app endBackgroundTask:bgTask];
 bgTask = UIBackgroundTaskInvalid;
 }
 });
 });
}

In your own expiration handlers, you can include additional code needed to close out your task. However,
any code you include should not take long to execute. By the time your expiration handler is called, your
application is already very close to its time limit. Doing anything other than clean up your state information
and exiting could cause your application to be terminated.

Scheduling the Delivery of Local Notifications

The UILocalNotification class in UIKit provides a way to schedule the delivery of push notifications
locally. Unlike push notifications, which require setting up a remote server, local notifications are scheduled
by your application and executed on the current device. You can use this capability to achieve the following
behaviors:

 ■ A time-based application can ask the system to post an alert at a specific time in the future. For example,
an alarm clock application would use this to implement alarms.

 ■ An application running in the background can post a local notification to get the user’s attention.

To schedule the delivery of a local notification, create an instance of the UILocalNotification class,
configure it, and schedule it using the methods of the UIApplication class. The local notification object
contains information about the type of notification to deliver (sound, alert, or badge) and the time (when
applicable) at which to deliver it. The methods of the UIApplication class provide options for delivering
notifications immediately or at the scheduled time.

Listing 4-3 shows an example that schedules a single alarm using a date and time that is set by the user. This
example supports only one alarm at a time and therefore cancels the previous alarm before scheduling a
new one. Your own applications can schedule up to 128 simultaneous notifications, any of which can be
configured to repeat at a specified interval. The alarm itself consists of a sound file and an alert box that is
played if the application is not running or is in the background when the alarm fires. If the application is
active and therefore running in the foreground, the application delegate’s
application:didReceiveLocalNotification: method is called instead.

Listing 4-3 Scheduling an alarm notification

- (void)scheduleAlarmForDate:(NSDate*)theDate
{
 UIApplication* app = [UIApplication sharedApplication];
 NSArray* oldNotifications = [app scheduledLocalNotifications];

68 Initiating Background Tasks
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Executing Code in the Background

 // Clear out the old notification before scheduling a new one.
 if ([oldNotifications count] > 0)
 [app cancelAllLocalNotifications];

 // Create a new notification
 UILocalNotification* alarm = [[[UILocalNotification alloc] init] autorelease];
 if (alarm)
 {
 alarm.fireDate = theDate;
 alarm.timeZone = [NSTimeZone defaultTimeZone];
 alarm.repeatInterval = 0;
 alarm.soundName = @"alarmsound.caf";
 alarm.alertBody = @"Time to wake up!";

 [app scheduleLocalNotification:alarm];
 }
}

Sound files used with local notifications have the same requirements as those used for push notifications.
Custom sound files must be located inside your application’s main bundle and support one of the following
formats: linear PCM, MA4, uLaw, or aLaw. You can also specify a sound name of default to play the default
alert sound for the device. When the notification is sent and the sound is played, the system also triggers a
vibration on devices that support it.

You can cancel scheduled notifications or get a list of notifications using the methods of the UIApplication
class. For more information about these methods, seeUIApplicationClass Reference. For additional information
about configuring local notifications, see Local and Push Notification Programming Guide.

Receiving Location Events in the Background

Applications that use location data to track the user’s position now have the option to do so while running
in the background. In fact, applications now have more options for receiving location events:

 ■ Applications can register for significant location changes only. (Recommended) The significant-change
location service is available in iOS 4 and later for devices with a cellular radio. It offers a low-power way
to receive location data and is highly recommended. New location updates are provided only when the
user’s position changes significantly. If the application is suspended while running this service, new
location updates will cause the application to be woken up in the background to handle them. Similarly,
if the application is terminated while running this service, the system relaunches the application
automatically when new location data becomes available.

 ■ Applications can continue to use the standard location services. These services are available in all
versions of iOS and provide continuous updates while the application is running in the foreground or
background. However, if the application is suspended or terminated, new location events do not cause
the application to be woken up or relaunched.

 ■ An application can declare itself as a continuous background location application. An application
that needs the regular location updates offered by the standard location services may declare itself as
a continuous background application. It does this by including the UIBackgroundModes key in its
Info.plist file and setting the value of this key to an array containing the location string. If an
application with this key is running location services when it enters the background, it is not suspended
by the system. Instead, it is allowed to continue running so that it may perform location-related tasks in
the background.

Initiating Background Tasks 69
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Executing Code in the Background

Regardless of which option you pick, running location services continuously in the background requires
enabling the appropriate radio hardware and keeping it active, which can require a significant amount of
battery power. If your application does not require precise location information, the best solution is to use
the significant location service. You start this service by calling the
startMonitoringSignificantLocationChanges method of CLLocationManager. This service gives
the system more freedom to power down the radio hardware and send notifications only when significant
location changes are detected. For example, the location manager typically waits until the cell radio detects
and starts using a new cell tower for communication.

Another advantage of the significant location service is its ability to wake up and relaunch your application.
If a location event arrives while the application is suspended, the application is woken up and given a small
amount of time to handle the event. If the application is terminated and a new event arrives, the application
is relaunched. Upon relaunch, the options dictionary passed to the
application:didFinishLaunchingWithOptions: method contains the
UIApplicationLaunchOptionsLocationKey key to let the application know that a new location event
is available. The application can then restart location services and receive the new event.

For applications that need more precise location data at regular intervals, such as navigation applications,
you may need to declare the application as a continuous background application. This option is the least
desirable option because it increases power usage considerably. Not only does the application consume
power by running in the background, it must also keep location services active, which also consumes power.
As a result, you should avoid this option whenever possible.

Regardless of whether you use the significant-change location service or the standard location services, the
process for actually receiving location updates is unchanged. After starting location services, the
locationManager:didUpdateToLocation:fromLocation:method of your location manager delegate
is called whenever an event arrives. Of course, applications that run continuously in the background may
also want to adjust the implementation of this method to do less work while in the background. For example,
you might want to update the application’s views only while the application is in the foreground.

For more information about how to use location services in your application, see Location Awareness
Programming Guide.

Playing Background Audio

Applications that play audio can continue playing that audio while in the background. To indicate that your
application plays background audio, include the UIBackgroundModes key to its Info.plist file. The value
for this key is an array containing the audio string. When this key is present, the system’s audio frameworks
automatically prevent your application from being suspended when it moves to the background. Your
application continues to run in the background as long as it is playing audio. However, if this key is not
present when the application moves to the background, or if your application stops playing audio while in
the background, your application is suspended.

You can use any of the system audio frameworks to initiate the playback of background audio and the process
for using those frameworks is unchanged. Because your application is not suspended while playing audio,
the audio callbacks operate normally while your application is in the background. While running in the
background, your application should limit itself to doing only the work necessary to provide audio data for
playback. Thus, a streaming audio application would download any new data from its server and push the
current audio samples out for playback.

70 Initiating Background Tasks
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Executing Code in the Background

Implementing a VoIP Application

A Voice over Internet Protocol (VoIP) application allows the user to make phone calls using an Internet
connection instead of the device’s cellular service. Such an application needs to maintain a persistent network
connection to its associated service. Among other things, this persistent connection allows the application
to receive and respond to incoming calls. Rather than keep a VoIP application awake so that it can maintain
its network connection, the system provides facilities for managing the sockets associated with that connection
while the application is suspended.

To configure a VoIP application, you must do the following:

1. Add the UIBackgroundModes key to your application’s Info.plist file. Set the value of this key to
an array that includes the voip string.

2. Configure your socket for VoIP usage.

3. Before moving to the background, call the setKeepAliveTimeout:handler: method to specify the
frequency at which your application must be woken to maintain your service.

Including the voip value in the UIBackgroundModes key lets the system know that it should allow the
application to run in the background as needed to manage its network sockets. An application with this key
is also relaunched in the background immediately after system boot to ensure that the VoIP services are
always available.

Most VoIP applications also need to be configured as background audio applications in order to process
audio while in the background. To do so, you must add both the audio and voip values to the
UIBackgroundModes key. Otherwise, there are no changes to how you use the audio frameworks to play
and record audio. For more information about the UIBackgroundModes key, see Information Property List Key
Reference.

Configuring Sockets for VoIP Usage

In order for your application to maintain a persistent connection while it is in the background, you must
configure the sockets used to communicate with your VoIP service. In iOS, most sockets are managed using
higher-level constructs such as streams. As a result, configuration of a socket to support VoIP occurs through
the higher-level interfaces. The only thing you have to do beyond the normal configuration is add a special
key that tags the interface as being used for a VoIP service. Table 4-1 lists the interfaces that you can configure
for VoIP usage and the keys you assign.

Table 4-1 Configuring stream interfaces for VoIP usage

ConfigurationInterface

For Cocoa streams, use the setProperty:forKey: method to add the
NSStreamNetworkServiceType property to the stream. The value of this
property should be set to NSStreamNetworkServiceTypeVoIP.

NSInputStream and
NSOutputStream

When using the URL loading system, use the setNetworkServiceType:
method of your NSMutableURLRequest object to set the network service
type of the request. The service type should be set to
NSURLNetworkServiceTypeVoIP.

NSURLRequest

Initiating Background Tasks 71
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Executing Code in the Background

ConfigurationInterface

For Core Foundation streams, use the CFReadStreamSetProperty or
CFWriteStreamSetProperty function to add the kCFStreamNetwork-
ServiceType property to the stream. The value for this property should be
set to kCFStreamNetworkServiceTypeVoIP.

CFReadStreamRef and
CFWriteStreamRef

Note: When configuring your sockets, you need to configure only your main signaling channel with the
appropriate service type key. You do not need to include this key when configuring your voice channels.

When you configure a stream for VoIP usage, the system takes over management of the underlying socket
while your application is suspended. This handoff to the system is transparent to your application. If new
data arrives while your application is suspended, the system wakes up your application so that it can process
the data. In the case of an incoming phone call, your application would typically alert the user immediately
using a local notification. For other noncritical data, or if the user ignores the call, the system returns your
application to the suspended state when it finishes processing the data.

Because VoIP applications need to stay running in order to receive incoming calls, the system automatically
relaunches the application if it exits with a nonzero exit code. (This could happen in cases where there is
memory pressure and your application is terminated as a result.) However, the system does not maintain
your socket connections between different launches of your application. Therefore, at launch time, your
application always needs to recreate those connections from scratch.

For more information about configuring Cocoa stream objects, see Stream Programming Guide for Cocoa. For
information about using URL requests, see URL Loading System Programming Guide. And for information
about configuring streams using the CFNetwork interfaces, see CFNetwork Programming Guide.

Installing a Keep-Alive Handler

To prevent the loss of its connection, a VoIP application typically needs to wake up periodically and check
in with its server. To facilitate this behavior, iOS lets you install a special handler using the
setKeepAliveTimeout:handler: method of UIApplication. You typically install this handler when
moving to the background. Once installed, the system calls your handler at least once before the timeout
interval expires, waking up your application as needed to do so. You can use this handler to check in with
your VoIP service and perform any other relevant housekeeping chores.

Your keep-alive handler executes in the background and must return as quickly as possible. Handlers are
given a maximum of 30 seconds to perform any needed tasks and return. If a handler has not returned after
30 seconds, the system terminates the application.

When installing your handler, you should specify the largest timeout value that is practical for your needs.
The minimum allowable interval for running your handler is 600 seconds and attempting to install a handler
with a smaller timeout value will fail. Although the system promises to call your handler block before the
timeout value expires, it does not guarantee the exact call time. To improve battery life, the system typically
groups the execution of your handler with other periodic system tasks, thereby processing all tasks in one
quick burst. As a result, your handler code must be prepared to run earlier than the actual timeout period
you specified.

72 Initiating Background Tasks
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Executing Code in the Background

Applications built against iPhone SDK 4 and later need to be prepared to run on devices with different screen
resolutions. Fortunately, iOS makes supporting multiple screen resolutions easy. Most of the work of handling
the different types of screens is done for you by the system frameworks. However, your application still needs
to do some work to update raster-based images, and depending on your application you may want to do
additional work to take advantage of the extra pixels available to you.

Checklist for Supporting High-Resolution Screens

To update your applications for devices with high-resolution screens, you need to do the following:

 ■ Provide a high-resolution image for each image resource in your application bundle, as described in
“Loading Images into Your Application” (page 75).

 ■ Provide high-resolution application and document icons, as described in “Updating Your Application’s
Icons and Launch Images” (page 76).

 ■ For vector-based shapes and content, continue using your custom Core Graphics and UIKit drawing code
as before. If you want to add extra detail to your drawn content, see “Updating Your Custom Drawing
Code” (page 76) for information on how to do so.

 ■ If you use Core Animation layers directly, you may need to adjust the scale factor of your layers prior to
drawing, as described in “Accounting for Scale Factors in Core Animation Layers” (page 77).

 ■ If you use OpenGL ES for drawing, decide whether you want to opt in to high-resolution drawing and
set the scale factor of your layer accordingly, as described in “Drawing High-Resolution Content Using
OpenGL ES” (page 78).

 ■ For custom images that you create, modify your image-creation code to take the current scale factor
into account, as described in “Creating High-Resolution Bitmap Images Programmatically” (page 76).

 ■ If your application provides the content for Core Animation layers directly, adjust your code as needed
to compensate for scale factors, as described in “Accounting for Scale Factors in Core Animation
Layers” (page 77).

Points Versus Pixels

In iOS there is a distinction between the coordinates you specify in your drawing code and the pixels of the
underlying device. When using native drawing technologies such as Quartz, UIKit, and Core Animation, you
specify coordinate values using a logical coordinate space, which measures distances in points. This logical
coordinate system is decoupled from the device coordinate space used by the system frameworks to manage
the pixels on the screen. The system automatically maps points in the logical coordinate space to pixels in
the device coordinate space, but this mapping is not always one-to-one. This behavior leads to an important
fact that you should always remember:

Checklist for Supporting High-Resolution Screens 73
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Supporting High-Resolution Screens

One point does not necessarily correspond to one pixel on the screen.

The purpose of using points (and the logical coordinate system) is to provide a fixed frame of reference for
drawing. The actual size of a point is irrelevant. The goal of points is to provide a relatively consistent scale
that you can use in your code to specify the size and position of views and rendered content. How points
are actually mapped to pixels is a detail that is handled by the system frameworks. For example, on a device
with a high-resolution screen, a line that is one point wide may actually result in a line that is two pixels wide
on the screen. The result is that if you draw the same content on two similar devices, with only one of them
having a high-resolution screen, the content appears to be about the same size on both devices.

In your own drawing code, you use points most of the time, but there are times when you might need to
know how points are mapped to pixels. For example, on a high-resolution screen, you might want to use
the extra pixels to provide extra detail in your content, or you might simply want to adjust the position or
size of content in subtle ways. In iOS 4 and later, the UIScreen, UIView, UIImage, and CALayer classes
expose a scale factor that tells you the relationship between points and pixels for that particular object.
Before iOS 4, this scale factor was assumed to be 1.0, but in iOS 4 and later it may be either 1.0 or 2.0,
depending on the resolution of the underlying device. In the future, other scale factors may also be possible.

Drawing Improvements That You Get for Free

The drawing technologies in iOS provide a lot of support to help you make your rendered content look good
regardless of the resolution of the underlying screen:

 ■ Standard UIKit views (text views, buttons, table views, and so on) automatically render correctly at any
resolution.

 ■ Vector-based content (UIBezierPath, CGPathRef, PDF) automatically takes advantage of any additional
pixels to render sharper lines for shapes.

 ■ Text is automatically rendered sharper at higher resolutions.

 ■ UIKit supports the automatic loading of high-resolution variants (@2x) of your images.

The reason most of your existing drawing code just works is that native drawing technologies such as Core
Graphics take the current scale factor into account for you. For example, if one of your views implements a
drawRect: method, UIKit automatically sets the scale factor for that view to the screen’s scale factor. In
addition, UIKit automatically modifies the current transformation matrix (CTM) of any graphics contexts
used during drawing to take into account the view’s scale factor. Thus, any content you draw in your
drawRect: method is scaled appropriately for the underlying device’s screen.

If your application uses only native drawing technologies for its rendering, the only thing you need to do is
provide high-resolution versions of your images. Applications that use nothing but system views or that rely
solely on vector-based content do not need to be modified. But applications that use images need to provide
new versions of those images at the higher resolution. Specifically, you must scale your images by a factor
of two, resulting in twice as many pixels horizontally and vertically as before and four times as many pixels
overall. For more information on updating your image resources, see “Updating Your Image Resource
Files” (page 75).

74 Drawing Improvements That You Get for Free
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Supporting High-Resolution Screens

Updating Your Image Resource Files

Applications running in iOS 4 should now include two separate files for each image resource. One file provides
a standard-resolution version of a given image, and the second provides a high-resolution version of the
same image. The naming conventions for each pair of image files is as follows:

 ■ Standard: <ImageName><device_modifier>.<filename_extension>

 ■ High resolution: <ImageName>@2x<device_modifier>.<filename_extension>

The <ImageName> and <filename_extension> portions of each name specify the usual name and extension
for the file. The <device_modifier> portion is optional and contains either the string ~ipad or ~iphone. You
include one of these modifiers when you want to specify different versions of an image for iPad and iPhone.
The inclusion of the @2x modifier for the high-resolution image is new and lets the system know that the
image is the high-resolution variant of the standard image.

Important: When creating high-resolution versions of your images, place the new versions in the same
location in your application bundle as the original.

Loading Images into Your Application

The UIImage class handles all of the work needed to load high-resolution images into your application.
When creating new image objects, you use the same name to request both the standard and the
high-resolution versions of your image. For example, if you have two image files, named Button.png and
Button@2x.png, you would use the following code to request your button image:

UIImage* anImage = [UIImage imageNamed:@"Button"];

Note: In iOS 4 and later, you may omit the filename extension when specifying image names.

On devices with high-resolution screens, the imageNamed:, imageWithContentsOfFile:, and
initWithContentsOfFile: methods automatically looks for a version of the requested image with the
@2x modifier in its name. It if finds one, it loads that image instead. If you do not provide a high-resolution
version of a given image, the image object still loads a standard-resolution image (if one exists) and scales
it during drawing.

When it loads an image, a UIImage object automatically sets the size and scale properties to appropriate
values based on the suffix of the image file. For standard resolution images, it sets the scale property to 1.0
and sets the size of the image to the image’s pixel dimensions. For images with the @2x suffix in the filename,
it sets the scale property to 2.0 and halves the width and height values to compensate for the scale factor.
These halved values correlate correctly to the point-based dimensions you need to use in the logical coordinate
space to render the image.

Updating Your Image Resource Files 75
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Supporting High-Resolution Screens

Note: If you use Core Graphics to create an image, remember that Quartz images do not have an explicit
scale factor, so their scale factor is assumed to be 1.0. If you want to create a UIImage object from a
CGImageRef data type, use the initWithCGImage:scale:orientation: to do so. That method allows
you to associate a specific scale factor with your Quartz image data.

A UIImage object automatically takes its scale factor into account during drawing. Thus, any code you have
for rendering images should work the same as long as you provide the correct image resources in your
application bundle.

Using an Image View to Display Images

If your application uses a UIImageView object to present images, all of the images you assign to that view
must use the same scale factor. You can use an image view to display a single image or to animate several
images, and you can also provide a highlight image. Therefore, if you provide high-resolution versions for
one of these images, then all must have high-resolution versions as well.

Updating Your Application’s Icons and Launch Images

In addition to updating your application’s custom image resources, you should also provide new
high-resolution icons for your application’s icon and launch images. The process for updating these image
resources is the same as for all other image resources. Create a new version of the image, add the @2xmodifier
string to the corresponding image filename, and treat the image as you do the original. For example, for
application icons, add the high-resolution image filename to the CFBundleIconFiles key of your application’s
Info.plist file.

For information about specifying the icons for your application, see “Application Icons” (page 100). For
information about specifying launch images, see “Application Launch Images” (page 101).

Updating Your Custom Drawing Code

When you do any custom drawing in your application, most of the time you should not need to care about
the resolution of the underlying screen. The native drawing technologies automatically ensure that the
coordinates you specify in the logical coordinate space map correctly to pixels on the underlying screen.
Sometimes, however, you might need to know what the current scale factor is in order to render your content
correctly. For those situations, UIKit, Core Animation, and other system frameworks provide the help you
need to do your drawing correctly.

Creating High-Resolution Bitmap Images Programmatically

If you currently use the UIGraphicsBeginImageContext function to create bitmaps, you may want to
adjust your code to take scale factors into account. The UIGraphicsBeginImageContext function always
creates images with a scale factor of 1.0. If the underlying device has a high-resolution screen, an image
created with this function might not appear as smooth when rendered. To create an image with a scale factor
other than 1.0, use the UIGraphicsBeginImageContextWithOptions instead. The process for using this
function is the same as for the UIGraphicsBeginImageContext function:

76 Updating Your Custom Drawing Code
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Supporting High-Resolution Screens

1. Call UIGraphicsBeginImageContextWithOptions to create a bitmap context (with the appropriate
scale factor) and push it on the graphics stack.

2. Use UIKit or Core Graphics routines to draw the content of the image.

3. Call UIGraphicsGetImageFromCurrentImageContext to get the bitmap’s contents.

4. Call UIGraphicsEndImageContext to pop the context from the stack.

For example, the following code snippet creates a bitmap that is 200 x 200 pixels. (The number of pixels is
determined by multiplying the size of the image by the scale factor.)

UIGraphicsBeginImageContextWithOptions(CGSizeMake(100.0,100.0), NO, 2.0);

Note: If you always want the bitmap to be scaled appropriately for the main screen of the device, set the
scale factor to 0.0 when calling the UIGraphicsBeginImageContextWithOptions function.

Tweaking Native Content for High-Resolution Screens

If you want to draw your content differently on high-resolution screens, you can use the current scale factor
to modify your drawing code. For example, suppose you have a view that draws a 1-pixel-wide border around
its edge. On devices where the scale factor is 2.0, using a UIBezierPath object to draw a line with a width
of 1.0 would result in a line that was 2 pixels wide. In this case, you could divide your line width by the scale
factor to obtain a proper 1-pixel-wide line.

Of course, changing drawing characteristics based on scale factor may have unexpected consequences. A
1-pixel-wide line might look nice on some devices but on a high-resolution device might be so thin that it
is difficult to see clearly. It is up to you to determine whether to make such a change.

Accounting for Scale Factors in Core Animation Layers

Applications that use Core Animation layers directly to provide content may need to adjust their drawing
code to account for scale factors. Normally, when you draw in your view’s drawRect: method, or in the
drawLayer:inContext: method of the layer’s delegate, the system automatically adjusts the graphics
context to account for scale factors. However, knowing or changing that scale factor might still be necessary
when your view does one of the following:

 ■ Creates additional Core Animation layers with different scale factors and composites them into its own
content

 ■ Sets the contents property of a Core Animation layer directly

Core Animation’s compositing engine looks at the contentsScale property of each layer to determine
whether the contents of that layer need to be scaled during compositing. If your application creates layers
without an associated view, each new layer object’s scale factor is set to 1.0 initially. If you do not change
that scale factor, and if you subsequently draw the layer on a high-resolution screen, the layer’s contents are
scaled automatically to compensate for the difference in scale factors. If you do not want the contents to be
scaled, you can change the layer’s scale factor to 2.0, but if you do so without providing high-resolution
content, your existing content may appear smaller than you were expecting. To fix that problem, you need
to provide higher-resolution content for your layer.

Updating Your Custom Drawing Code 77
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Supporting High-Resolution Screens

Important: The contentsGravity property of the layer plays a role in determining whether
standard-resolution layer content is scaled on a high-resolution screen. This property is set to the value
kCAGravityResize by default, which causes the layer content to be scaled to fit the layer’s bounds. Changing
the gravity to a nonresizing option eliminates the automatic scaling that would otherwise occur. In such a
situation, you may need to adjust your content or the scale factor accordingly.

Adjusting the content of your layer to accommodate different scale factors is most appropriate when you
set the contents property of a layer directly. Quartz images have no notion of scale factors and therefore
work directly with pixels. Therefore, before creating the CGImageRef object you plan to use for the layer’s
contents, check the scale factor and adjust the size of your image accordingly. Specifically, load an appropriately
sized image from your application bundle or use the UIGraphicsBeginImageContextWithOptions
function to create an image whose scale factor matches the scale factor of your layer. If you do not create a
high-resolution bitmap, the existing bitmap may be scaled as discussed previously.

For information on how to specify and load high-resolution images, see “Updating Your Image Resource
Files” (page 75). For information about how to create high-resolution images, see “Creating High-Resolution
Bitmap Images Programmatically” (page 76).

Drawing High-Resolution Content Using OpenGL ES

If your application uses OpenGL ES for rendering, your existing drawing code should continue to work without
any changes. When drawn on a high-resolution screen, though, your content is scaled accordingly and will
appear more blocky. The reason for the blocky appearance is that the default behavior of the CAEAGLLayer
class, which you use to back your OpenGL ES renderbuffers , is the same as other Core Animation layer objects.
In other words, its scale factor is set to 1.0 initially, which causes the Core Animation compositor to scale the
contents of the layer on high-resolution screens. To avoid this blocky appearance, you need to increase the
size of your OpenGL ES renderbuffers to match the size of the screen. (With more pixels, you can then increase
the amount of detail you provide for your content.) Because adding more pixels to your renderbuffers has
performance implications, though, you must explicitly opt in to support high-resolution screens.

To enable high-resolution drawing, you must change the scale factor of the view you use to present your
OpenGL ES content. Changing the contentScaleFactor property of your view from 1.0 to 2.0 triggers a
matching change to the scale factor of the underlying CAEAGLLayer object. The
renderbufferStorage:fromDrawable: method, which you use to bind the layer object to your
renderbuffers, calculates the size of the renderbuffer by multiplying the layer’s bounds by its scale factor.
Thus, doubling the scale factor doubles the width and height of the resulting renderbuffer, giving you more
pixels for your content. After that, it is up to you to provide the content for those additional pixels.

Listing 5-1 shows the proper way to bind your layer object to your renderbuffers and retrieve the resulting
size information. If you used the OpenGL ES application template to create your code, then this step is already
done for you, and the only thing you need to do is set the scale factor of your view appropriately. If you did
not use the OpenGL ES application template, you should use code similar to this to retrieve the renderbuffer
size. You should never assume that the renderbuffer size is fixed for a given type of device.

Listing 5-1 Initializing a renderbuffer’s storage and retrieving its actual dimensions

GLuint colorRenderbuffer;
glGenRenderbuffersOES(1, &colorRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, colorRenderbuffer);
[myContext renderbufferStorage:GL_RENDERBUFFER_OES fromDrawable:myEAGLLayer];

78 Updating Your Custom Drawing Code
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Supporting High-Resolution Screens

// Get the renderbuffer size.
GLint width;
GLint height;
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES, GL_RENDERBUFFER_WIDTH_OES,
 &width);
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES, GL_RENDERBUFFER_HEIGHT_OES,
 &height);

Important: A view that is backed by a CAEAGLLayer object should not implement a custom drawRect:
method. Implementing a drawRect: method causes the system to change the default scale factor of the
view so that it matches the scale factor of the screen. If your drawing code is not expecting this behavior,
your application content will not be rendered correctly.

If you do opt in to high-resolution drawing, you also need to adjust the model and texture assets of your
application accordingly. For example, when running on an iPad or a high-resolution device, you might want
to choose larger models and more detailed textures to take advantage of the increased number of pixels.
Conversely, on a standard-resolution iPhone, you can continue to use smaller models and textures.

An important factor when determining whether to support high-resolution content is performance. The
quadrupling of pixels that occurs when you change the scale factor of your layer from 1.0 to 2.0 puts additional
pressure on the fragment processor. If your application performs many per-fragment calculations, the increase
in pixels may reduce your application’s frame rate. If you find your application runs significantly slower at
the higher scale factor, consider one of the following options:

 ■ Optimize your fragment shader’s performance using the performance-tuning guidelines found inOpenGL
ES Programming Guide for iOS.

 ■ Choose a simpler algorithm to implement in your fragment shader. By doing so, you are reducing the
quality of each individual pixel to render the overall image at a higher resolution.

 ■ Use a fractional scale factor between 1.0 and 2.0. A scale factor of 1.5 provides better quality than a scale
factor of 1.0 but needs to fill fewer pixels than an image scaled to 2.0.

 ■ OpenGL ES in iOS 4 and later offers multisampling as an option. Even though your application can use
a smaller scale factor (even 1.0), implement multisampling anyway. An added advantage is that this
technique also provides higher quality on devices that do not support high-resolution displays.

The best solution depends on the needs of your OpenGL ES application; you should test more than one of
these options and choose the approach that provides the best balance between performance and image
quality.

Updating Your Custom Drawing Code 79
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Supporting High-Resolution Screens

80 Updating Your Custom Drawing Code
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

Supporting High-Resolution Screens

In traditional desktop applications, preferences are application-specific settings used to configure the behavior
or appearance of an application. iOS also supports application preferences, although not as an integral part
of your application. Instead of each application displaying a custom user interface for its preferences, all
application-level preferences are displayed using the system-supplied Settings application.

In order to integrate your custom application preferences into the Settings application, you must include a
specially formatted settings bundle in the top-level directory of your application bundle. This settings bundle
provides information about your application preferences to the Settings application, which is then responsible
for displaying those preferences and updating the preferences database with any user-supplied values. At
runtime, your application retrieves these preferences using the standard retrieval APIs. The sections that
follow describe both the format of the settings bundle and the APIs you use to retrieve your preferences
values.

Guidelines for Preferences

Adding your application preferences to the Settings application is most appropriate for productivity-style
applications and in situations where you have preference values that are typically configured once and then
rarely changed. For example, the Mail application uses these preferences to store the user’s account information
and message-checking settings. Because the Settings application has support for displaying preferences
hierarchically, manipulating your preferences from the Settings application is also more appropriate when
you have a large number of preferences. Providing the same set of preferences in your application might
require too many screens and might cause confusion for the user.

When your application has only a few options or has options that the user might want to change regularly,
you should think carefully about whether the Settings application is the right place for them. For instance,
utility applications provide custom configuration options on the back of their main view. A special control
on the view flips it over to display the options, and another control flips the view back. For simple applications,
this type of behavior provides immediate access to the application’s options and is much more convenient
for the user than going to Settings.

For games and other full-screen applications, you can use the Settings application or implement your own
custom screens for preferences. Custom screens are often appropriate in games because those screens are
treated as part of the game’s setup. You can also use the Settings application for your preferences if you
think it is more appropriate for your game flow.

Guidelines for Preferences 81
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

Note: You should never spread your preferences across the Settings application and custom application
screens. For example, a utility application with preferences on the back side of its main view should not also
have configurable preferences in the Settings application. If you have preferences, pick one solution and use
it exclusively.

If you do incorporate settings into the Settings application, be sure you respond to the
NSUserDefaultsDidChangeNotification notification as described in “Responding to Changes in Your
Application’s Settings” (page 39).

The Preferences Interface

The Settings application implements a hierarchical set of pages for navigating application preferences. The
main page of the Settings application displays the system and third-party applications whose preferences
can be customized. Selecting a third-party application takes the user to the preferences for that application.

Each application has at least one page of preferences, referred to as the main page. If your application has
only a few preferences, the main page may be the only one you need. If the number of preferences gets too
large to fit on the main page, however, you can add more pages. These additional pages become child pages
of the main page. The user accesses them by tapping on a special type of preference, which links to the new
page.

Each preference you display must be of a specific type. The type of the preference defines how the Settings
application displays that preference. Most preference types identify a particular type of control that is used
to set the preference value. Some types provide a way to organize preferences, however. Table 6-1 lists the
different element types supported by the Settings application and points out how you might use each type
to implement your own preference pages.

Table 6-1 Preference element types

DescriptionElement Type

The text field type displays an optional title and an editable text field. You can use this
type for preferences that require the user to specify a custom string value.

The key for this type is PSTextFieldSpecifier.

Text Field

The title type displays a read-only string value. You can use this type to display read-only
preference values. (If the preference contains cryptic or nonintuitive values, this type lets
you map the possible values to custom strings.)

The key for this type is PSTitleValueSpecifier.

Title

The toggle switch type displays an ON/OFF toggle button. You can use this type to configure
a preference that can have only one of two values. Although you typically use this type to
represent preferences containing Boolean values, you can also use it with preferences
containing non-Boolean values.

The key for this type is PSToggleSwitchSpecifier.

Toggle Switch

82 The Preferences Interface
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

DescriptionElement Type

The slider type displays a slider control. You can use this type for a preference that
represents a range of values. The value for this type is a real number whose minimum and
maximum value you specify.

The key for this type is PSSliderSpecifier.

Slider

The multi value type lets the user select one value from a list of values. You can use this
type for a preference that supports a set of mutually exclusive values. The values can be
of any type.

The key for this type is PSMultiValueSpecifier.

Multi Value

The group type is a way for you to organize groups of preferences on a single page. The
group type does not represent a configurable preference. It simply contains a title string
that is displayed immediately before one or more configurable preferences.

The key for this type is PSGroupSpecifier.

Group

The child pane type lets the user navigate to a new page of preferences. You use this type
to implement hierarchical preferences. For more information on how you configure and
use this preference type, see “Hierarchical Preferences” (page 85). The key for this type is
PSChildPaneSpecifier.

Child Pane

For detailed information about the format of each preference type, see Settings Application SchemaReference.
To learn how to create and edit Setting page files, see “Adding and Modifying the Settings Bundle” (page
86).

The Settings Bundle

In iOS, you specify your application’s preferences through a special settings bundle. This bundle has the
name Settings.bundle and resides in the top-level directory of your application’s bundle. This bundle
contains one or more Settings Page files that provide detailed information about your application’s preferences.
It may also include other support files needed to display your preferences, such as images or localized strings.
Table 6-2 lists the contents of a typical settings bundle.

Table 6-2 Contents of the Settings.bundle directory

DescriptionItem name

The Settings Page file containing the preferences for the root page. The
contents of this file are described in more detail in “The Settings Page File
Format” (page 84).

Root.plist

If you build a set of hierarchical preferences using child panes, the contents
for each child pane are stored in a separate Settings Page file. You are
responsible for naming these files and associating them with the correct child
pane.

Additional .plist files.

The Settings Bundle 83
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

DescriptionItem name

These directories store localized string resources for your Settings Page files.
Each directory contains a single strings file, whose title is specified in your
Settings Page. The strings files provide the localized content to display to the
user for each of your preferences.

One or more .lproj
directories

If you use the slider control, you can store the images for your slider in the
top-level directory of the bundle.

Additional images

In addition to the settings bundle, your application bundle can contain a custom icon for your application
settings. The Settings application displays the icon you provide next to the entry for your application
preferences. For information about application icons and how you specify them, see “Application Icons” (page
100).

When the Settings application launches, it checks each custom application for the presence of a settings
bundle. For each custom bundle it finds, it loads that bundle and displays the corresponding application’s
name and icon in the Settings main page. When the user taps the row belonging to your application, Settings
loads the Root.plist Settings Page file for your settings bundle and uses that file to display your application’s
main page of preferences.

In addition to loading your bundle’s Root.plist Settings Page file, the Settings application also loads any
language-specific resources for that file, as needed. Each Settings Page file can have an associated .strings
file containing localized values for any user-visible strings. As it prepares your preferences for display, the
Settings application looks for string resources in the user’s preferred language and substitutes them into
your preferences page prior to display.

The Settings Page File Format

Each Settings Page file in your settings bundle is stored in the iPhone Settings property-list file format, which
is a structured file format. The simplest way to edit Settings Page files is to use the built-in editor facilities of
Xcode; see “Preparing the Settings Page for Editing” (page 87). You can also edit property-list files using the
Property List Editor application that comes with the Xcode tools.

Note: Xcode automatically converts any XML-based property files in your project to binary format when
building your application. This conversion saves space and is done for you automatically at build time.

The root element of each Settings Page file contains the keys listed in Table 6-3. Only one key is actually
required, but it is recommended that you include both of them.

Table 6-3 Root-level keys of a preferences Settings Page file

ValueTypeKey

The value for this key is an array of dictionaries, with each dictionary
containing the information for a single preference element. For a list
of element types, see Table 6-1 (page 82). For a description of the
keys associated with each element type, see SettingsApplicationSchema
Reference.

ArrayPreferenceSpecifiers
(required)

84 The Settings Bundle
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

ValueTypeKey

The name of the strings file associated with this file. A copy of this file
(with appropriate localized strings) should be located in each of your
bundle’s language-specific project directories. If you do not include
this key, the strings in this file are not localized. For information on
how these strings are used, see “Localized Resources” (page 86).

StringStringsTable

Hierarchical Preferences

If you plan to organize your preferences hierarchically, each page you define must have its own separate
.plist file. Each .plist file contains the set of preferences displayed only on that page. Your application’s
main preferences page is always stored in the Root.plist file. Additional pages can be given any name
you like.

To specify a link between a parent page and a child page, you include a child pane element in the parent
page. A child pane element creates a row that, when tapped, displays a new page of settings. The File key
of the child pane element identifies the name of the .plist file that defines the contents of the child page.
The Title key identifies the title of the child page; this title is also used as the text of the row that the user
taps to display the child page. The Settings application automatically provides navigation controls on the
child page to allow the user to navigate back to the parent page.

Figure 6-1 shows how this hierarchical set of pages works. The left side of the figure shows the .plist files,
and the right side shows the relationships between the corresponding pages.

Figure 6-1 Organizing preferences using child panes

Sounds

New Voicemail
Group 1

Group 2

New Email
Sent Mail

Ringtones

Sounds page

Settings

Group 1
Usage

Sounds
Group 2

Group 3

Brightness
Wallpaper

General

Root page

Sounds.plist

Root.plist

General.plist

General page

General

Date & Time
Group 1

Network
Keyboard

The Settings Bundle 85
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

For more information about child pane elements and their associated keys, see Settings Application Schema
Reference.

Localized Resources

Because preferences contain user-visible strings, you should provide localized versions of those strings with
your settings bundle. Each page of preferences can have an associated .strings file for each localization
supported by your bundle. When the Settings application encounters a key that supports localization, it
checks the appropriately localized .strings file for a matching key. If it finds one, it displays the value
associated with that key.

When looking for localized resources such as .strings files, the Settings application follows the same rules
that Mac OS X applications do. It first tries to find a localized version of the resource that matches the user’s
preferred language setting. If a resource does not exist for the user’s preferred language, an appropriate
fallback language is selected.

For information about the format of strings files, language-specific project directories, and how
language-specific resources are retrieved from bundles, see Internationalization Programming Topics.

Adding and Modifying the Settings Bundle

Xcode provides a template for adding a Settings bundle to your current project. The default settings bundle
contains a Root.plist file and a default language directory for storing any localized resources. You can
then expand this bundle to include additional property list files and resources needed by your settings bundle.

Adding the Settings Bundle

To add a settings bundle to your Xcode project:

1. Choose File > New File.

2. Choose the iPhone OS > Settings > Settings Bundle template.

3. Name the file Settings.bundle.

In addition to adding a new settings bundle to your project, Xcode automatically adds that bundle to the
Copy Bundle Resources build phase of your application target. Thus, all you have to do is modify the property
list files of your settings bundle and add any needed resources.

The newly added Settings.bundle bundle has the following structure:

Settings.bundle/
 Root.plist
 en.lproj/
 Root.strings

86 Adding and Modifying the Settings Bundle
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

Preparing the Settings Page for Editing

After creating your settings bundle using the Settings Bundle template, you can format the contents of your
schema files to make them easier to edit. The following steps show you how to do this for the Root.plist
file of your settings bundle but the steps are the same for any other schema files you create.

1. Display the contents of the Root.plist file of your settings bundle.

a. In the Groups & Files list, disclose Settings.bundle to view its contents.

b. Select the Root.plist file. Its contents appear in the Detail view.

2. In the Detail view, select the Root key of the Root.plist file.

3. Choose View > Property List Type > iPhone Settings plist.

This command formats the contents of the property list inside the Detail view. Instead of showing the
property list key names and values, Xcode substitutes human-readable strings (as shown in Figure 6-2)
to make it easier for you to understand and edit the file’s contents.

Figure 6-2 Formatted contents of the Root.plist file

Configuring a Settings Page: A Tutorial

This section contains a tutorial that shows you how to configure a Settings page to display the controls you
want. The goal of the tutorial is to create a page like the one in Figure 6-3. If you have not yet created a
settings bundle for your project, you should do so as described in “Preparing the Settings Page for
Editing” (page 87) before proceeding with these steps.

Adding and Modifying the Settings Bundle 87
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

Figure 6-3 A root Settings page

1. Change the value of the Settings Page Title key to the name of your application.

Double-click the YOUR_PROJECT_NAME text and change the text to MyApp.

2. Disclose the Preference Items key to display the default items that come with the template.

3. Change the title of Item 1 to Sound.

 ■ Disclose Item 1 of Preference Items.

 ■ Change the value of the Title key from Group to Sound.

 ■ Leave the Type key set to Group.

4. Create the first toggle switch for the newly renamed Sound group.

 ■ Select Item 3 of Preference Items and choose Edit > Cut.

 ■ Select Item 1 and choose Edit > Paste. (This moves the toggle switch item in front of the text field
item.)

 ■ Disclose the toggle switch item to reveal its configuration keys.

 ■ Change the value of the Title key to Play Sounds.

 ■ Change the value of the Identifier key to play_sounds_preference. The item should now be
configured as shown in the following figure.

88 Adding and Modifying the Settings Bundle
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

5. Create a second toggle switch for the Sound group.

 ■ Select Item 2 (the Play Sounds toggle switch).

 ■ Select Edit > Copy.

 ■ Select Edit >Paste. This places a copy of the toggle switch right after the first one.

 ■ Disclose the new toggle switch item to reveal its configuration keys.

 ■ Change the value of its Title key to 3D Sound.

 ■ Change the value of its Identifier key to 3D_sound_preference.

At this point, you have finished the first group of settings and are ready to create the User Info group.

6. Change Item 4 into a Group element and name it User Info.

 ■ Click Item 4 in the Preferences Items. This displays a drop-down menu with a list of item types.

 ■ From the drop-down menu, select Group to change the type of the element.

Adding and Modifying the Settings Bundle 89
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

 ■ Disclose the contents of Item 4.

 ■ Set the value of the Title key to User Info.

7. Create the Name field.

 ■ Select Item 5 in the Preferences Item.

 ■ Using the drop-down menu, change its type to Text Field.

 ■ Set the value of the Title key to User Info.

 ■ Set value of the Identifier key to user_name.

 ■ Toggle the disclosure button of the item to hide its contents.

8. Create the Experience Level settings.

 ■ Select Item 5 and click the plus (+) button (or press Return) to create a new item.

 ■ Click the new item and set its type to Multi Value.

 ■ Disclose the items contents and set its title to Experience Level, its identifier to
experience_preference, and its default value to 0.

 ■ With the Default Value key selected, click the plus button to add a Titles array.

 ■ Open the disclosure button for the Titles array and click the items button along the right edge
of the table. Clicking this button adds a new subitem to Titles.

90 Adding and Modifying the Settings Bundle
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

 ■ Select the new subitem and click the plus button 2 more times to create 3 total subitems.

 ■ Set the values of the subitems to Beginner, Expert, and Master.

 ■ Select the Titles key again and click its disclosure button to hide its subitems.

 ■ Click the plus button to create the Values array.

 ■ Add 3 subitems to the Values array and set their values to 0, 1, and 2.

 ■ Click the disclosure button of Item 6 to hide its contents.

9. Add the final group to your settings page.

 ■ Create a new item and set its type to Group and its title to Gravity.

 ■ Create another new item and set its type to Slider, its identifier to gravity_preference, its
default value to 1, and its maximum value to 2.

Creating Additional Settings Page Files

The Settings Bundle template includes the Root.plist file, which defines your application’s top Settings
page. To define additional Settings pages, you must add additional property list files to your settings bundle.
You can do this either from the Finder or from Xcode.

To add a property list file to your settings bundle in Xcode, do the following:

1. In the Groups and Files pane, open your settings bundle and select the Root.plist file.

2. Choose File > New.

3. Choose Other > Property List.

4. Select the new file and choose View > Property List Type > iPhone Settings plist to configure it as a
settings file.

After adding a new Settings page to your settings bundle, you can edit the page’s contents as described in
“Configuring a Settings Page: A Tutorial” (page 87). To display the settings for your page, you must reference
it from a Child Pane element as described in “Hierarchical Preferences” (page 85).

Accessing Your Preferences

iOS applications get and set preferences values using either the Foundation or Core Foundation frameworks.
In the Foundation framework, you use the NSUserDefaults class to get and set preference values. In the
Core Foundation framework, you use several preferences-related functions to get and set values.

Listing 6-1 shows a simple example of how to read a preference value from your application. This example
uses the NSUserDefaults class to read a value from the preferences created in “Configuring a Settings
Page: A Tutorial” (page 87) and assign it to an application-specific instance variable.

Accessing Your Preferences 91
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

Listing 6-1 Accessing preference values in an application

- (void)applicationDidFinishLaunching:(UIApplication *)application
{
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [self setShouldPlaySounds:[defaults boolForKey:@"play_sounds_preference"]];

 // Finish app initialization...
}

For information about the NSUserDefaultsmethods used to read and write preferences, seeNSUserDefaults
Class Reference. For information about the Core Foundation functions used to read and write preferences,
see Preferences Utilities Reference.

Debugging Preferences for Simulated Applications

When running your application, the iPhone Simulator stores any preferences values for your application in
~/Library/Application Support/iPhone
Simulator/User/Applications/<APP_ID>/Library/Preferences, where <APP_ID> is a
programmatically generated directory name that iOS uses to identify your application.

Each time you reinstall your application, iOS performs a clean install, which deletes any previous preferences.
In other words, building or running your application from Xcode always installs a new version, replacing any
old contents. To test preference changes between successive executions, you must run your application
directly from the simulator interface and not from Xcode.

92 Debugging Preferences for Simulated Applications
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Implementing Application Preferences

The configuration of your application is an important part of the development process. An iOS application
uses a structured directory to manage its code and resource files. And although most of the files in this
directory are custom files to support your application, some are resource files required by the system to run
your application. Configuring these files correctly is therefore crucial to creating your application.

The Application Bundle

When you build your iOS application, Xcode packages it as a bundle. A bundle is a directory in the file system
that groups related resources together in one place. An iOS application bundle contains the application
executable and any resources used by the application (for instance, the application icon, other images, and
localized content). Table 7-1 lists the contents of a typical iOS application bundle, which for demonstration
purposes here is called MyApp. This example is for illustrative purposes only. Some of the files listed in this
table may not appear in your own application bundles.

Table 7-1 A typical application bundle

DescriptionFiles

The executable file containing your application’s code. The name of this file is the
same as your application name minus the .app extension.

This file is required.

MyApp

Also known as the information property list file, a file defining key values for the
application, such as bundle ID, version number, and display name.

This file is required. For more information about this file, see “The Information
Property List” (page 95).

Info.plist

The application’s main nib file, containing the default interface objects to load at
application launch time. Typically, this nib file contains the application’s main
window object and an instance of the application delegate object. Other interface
objects are then either loaded from additional nib files or created programmatically
by the application. (The name of the main nib file can be changed by assigning a
different value to the NSMainNibFile key in the Info.plist file. See “The
Information Property List” (page 95) for further information.)

MainWindow.nib

One or more image files containing the icons used to represent your application.
Differently sized variants of the application icon may also be provided.

An application icon is required. For information about these image files, see
“Application Icons” (page 100).

Application icons

The Application Bundle 93
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

DescriptionFiles

A screen-sized image to display when your application is launched. The system uses
this file as a temporary background until your application loads its window and user
interface.

At least one launch image is required. For information about specifying launch
images, see “Application Launch Images” (page 101).

One or more launch
images

The 512 x 512 pixel icon for an application that is distributed using ad hoc
distribution. This icon would normally be provided by the App Store; because
applications distributed in an ad hoc manner do not go through the App Store,
however, it must be present in the application bundle instead. iTunes uses this icon
to represent your application. (The file you specify should be the same one you
would have submitted to the App Store (typically a JPEG or PNG file), were you to
distribute your application that way. The filename must be the one shown at left
and must not include a filename extension.)

iTunesArtwork

A file package that you use to add application preferences to the Settings application.
This bundle contains property lists and other resource files to configure and display
your preferences. For more information about specifying settings, see “Displaying
Application Preferences” (page 60).

Settings.bundle

Nonlocalized resources are placed at the top level of the bundle directory (sun.png
represents a nonlocalized image file in the example). The application uses
nonlocalized resources regardless of the language setting chosen by the user.

sun.png (or other
resource files)

Localized resources are placed in subdirectories with an ISO 639-1 language
abbreviation for a name plus an .lproj suffix. (For example, the en.lproj,
fr.lproj, and es.lproj directories contain resources localized for English, French,
and Spanish.) For more information, see “Internationalizing Your Application” (page
104).

en.lproj

fr.lproj

es.lproj

other
language-specific
project directories

An iOS application should be internationalized and have a language.lproj directory for each language it
supports. In addition to providing localized versions of your application’s custom resources, you can also
localize your application icon, launch images, and Settings icon by placing files with the same name in your
language-specific project directories. Even if you provide localized versions, however, you should always
include a default version of these files at the top level of your application bundle. The default version is used
in situations where a specific localization is not available.

At runtime, you can access your application’s resource files from your code using the following steps:

1. Obtain a reference to an appropriate bundle object (typically an NSBundle object).

2. Use the methods of that object to obtain a file-system path to the desired resource file.

3. Open or access the file using the standard system techniques.

94 The Application Bundle
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

You can obtain a reference to your application’s main bundle using the mainBundle class method of
NSBundle. The pathForResource:ofType:method is one of several methods that you can use to retrieve
the location of resources in a bundle. The following example shows you how to locate a file called sun.png
and create an image object using it. The first line gets the bundle object and the path to the file. The second
line creates the UIImage object you would need in order to use the image in your application.

NSString* imagePath = [[NSBundle mainBundle] pathForResource:@"sun"
ofType:@"png"];
UIImage* sunImage = [[UIImage alloc] initWithContentsOfFile:imagePath];

Note: If you prefer to use Core Foundation to access bundles, you can obtain a CFBundleRef opaque type
using the CFBundleGetMainBundle function. You can then use that opaque type plus the Core Foundation
functions to locate any bundle resources.

For information on how to access and use resources in your application, see Resource Programming Guide.
For more information about the structure of an iOS application bundle, see Bundle Programming Guide.

The Information Property List

The information property list is a file named Info.plist that is included with every iOS application project
created by Xcode. It is a property list whose key-value pairs specify essential runtime-configuration information
for the application. The elements of the information property list are organized in a hierarchy in which each
node is an entity such as an array, dictionary, string, or other scalar type.

In Xcode, you can access the information property list by choosing Edit Active Target TargetName from the
Project menu. Then, in the target’s Info window, click the Properties control. Xcode displays a pane of
information similar to the example in Figure 7-1.

The Information Property List 95
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

Figure 7-1 The Properties pane of a target’s Info window

The Properties pane shows you some, but not all, of the properties of the application bundle. When you click
the “Open Info.plist as File” button, or when you select the Info.plist file in your Xcode project, Xcode
displays a property list editor window similar to the one in Figure 7-2. You can use this window to edit the
property values and add new key-value pairs. To see the actual key names added to the Info.plist file,
Control-click the Information Property List item in the editor and select Show Raw Keys/Values from the
contextual menu that appears.

96 The Information Property List
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

Figure 7-2 The information property list editor

Xcode automatically adds some important keys to the Info.plist file of all new projects and sets the initial
value. However, there are several keys that iOS applications use commonly to configure their launch
environment and runtime behavior. Here are some of the important keys that you might want to add to your
application’s Info.plist file specifically for iOS:

 ■ CFBundleIconFiles

 ■ UIStatusBarStyle

 ■ UIInterfaceOrientation

 ■ UIRequiredDeviceCapabilities

 ■ UIRequiresPersistentWiFi

For detailed information about these and other properties that you can include in your application’s
Info.plist file, see Information Property List Key Reference.

iTunes Requirements

The App Store requires that you provide metadata about your application before submitting it. Most of this
metadata is specified using the program portal web page, but some of it must be embedded directly in your
application bundle.

iTunes Requirements 97
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

Declaring the Required Device Capabilities

If your application requires device-related features in order to run, you must add a list of required capabilities
to your application. At runtime, iOS will not launch your application unless those capabilities are present on
the device. Further, the App Store requires this information so that it can generate a list of requirements for
user devices and prevent users from downloading applications that they cannot run.

You add the list of required capabilities by adding the UIRequiredDeviceCapabilities key to your
application’s Info.plist file. This key is supported in iOS 3.0 and later. The value of this key is either an
array or a dictionary. If you use an array, the presence of a given key indicates that the corresponding feature
is required. If you use a dictionary, you must specify a Boolean value for each key. If the value of this key is
true, the feature is required. If the value of the key is false, the feature must not be present on the device. In
both cases, omitting a key indicates that the feature is not required but that the application is able to run if
the feature is present.

Table 7-2 lists the keys that you can include in the array or dictionary associated with the
UIRequiredDeviceCapabilities key. You should include keys only for the features that your application
absolutely requires. If your application can accommodate missing features by not executing the appropriate
code paths, you do not need to include the corresponding key.

Table 7-2 Dictionary keys for the UIRequiredDeviceCapabilities key

DescriptionKey

Include this key if your application requires (or specifically prohibits) the presence
of the Phone application. You might require this feature if your application
opens URLs with the tel scheme.

telephony

Include this key if your application requires (or specifically prohibits) access to
the networking features of the device.

wifi

Include this key if your application requires (or specifically prohibits) the presence
of the Messages application. You might require this feature if your application
opens URLs with the sms scheme.

sms

Include this key if your application requires (or specifically prohibits) the presence
of a camera on the device. Applications use the UIImagePickerController
interface to capture images from the device’s still camera.

still-camera

Include this key if your application requires (or specifically prohibits) auto-focus
capabilities in the device’s still camera. Although most developers should not
need to include this key, you might include it if your application supports macro
photography or requires sharper images in order to do some sort of image
processing.

auto-focus-camera

Include this key if your application requires (or specifically prohibits) the presence
of a forward-facing camera. Applications use the UIImagePickerController
interface to capture video from the device’s camera.

front-facing-camera

Include this key if your application requires (or specifically prohibits) the presence
of a camera flash for taking pictures or shooting video. Applications use the
UIImagePickerController interface to control the enabling of this feature.

camera-flash

98 iTunes Requirements
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

DescriptionKey

Include this key if your application requires (or specifically prohibits) the presence
of a camera with video capabilities on the device. Applications use the
UIImagePickerController interface to capture video from the device’s
camera.

video-camera

Include this key if your application requires (or specifically prohibits) the presence
of accelerometers on the device. Applications use the classes of the Core Motion
framework to receive accelerometer events. You do not need to include this
key if your application detects only device orientation changes.

accelerometer

Include this key if your application requires (or specifically prohibits) the presence
of a gyroscope on the device. Applications use the Core Motion framework to
retrieve information from gyroscope hardware.

gyroscope

Include this key if your application requires (or specifically prohibits) the ability
to retrieve the device’s current location using the Core Location framework.
(This key refers to the general location services feature. If you specifically need
GPS-level accuracy, you should also include the gps key.)

location-services

Include this key if your application requires (or specifically prohibits) the presence
of GPS (or AGPS) hardware when tracking locations. (You should include this
key only if you need the higher accuracy offered by GPS hardware.) If you include
this key, you should also include the location-services key. You should
require GPS only if your application needs more accurate location data than the
cell or Wi-fi radios might otherwise allow.

gps

Include this key if your application requires (or specifically prohibits) the presence
of magnetometer hardware. Applications use this hardware to receive
heading-related events through the Core Location framework.

magnetometer

Include this key if your application uses the built-in microphone or supports
accessories that provide a microphone.

microphone

Include this key if your application requires (or specifically prohibits) the presence
of the OpenGL ES 1.1 interfaces.

opengles-1

Include this key if your application requires (or specifically prohibits) the presence
of the OpenGL ES 2.0 interfaces.

opengles-2

Include this key if your application is compiled only for the armv6 instruction
set. (iOS 3.1 and later.)

armv6

Include this key if your application is compiled only for the armv7 instruction
set. (iOS 3.1 and later.)

armv7

Include this key if your application requires (or specifically prohibits) peer-to-peer
connectivity over Bluetooth. (iOS 3.1 and later.)

peer-peer

For detailed information on how to create and edit property lists, see Information Property List Key Reference.

iTunes Requirements 99
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

Application Icons

Every application must specify an icon to be displayed on the device’s Home screen and in the App Store.
And an application may specify several different icons for use in different situations. For example, applications
can provide a small version of the application icon to use when displaying search results.

To specify the icons for your application, add the CFBundleIconFiles key to your application’s Info.plist
file and list the icon image filenames in the associated array. The filenames can be anything you want but
all image files must be in the PNG format and reside in the top-level of your application bundle. When the
system needs an appropriately sized icon, it looks at the files in the CFBundleIconFiles array and picks
the one whose size most closely matches the intended usage. (If your application also runs in iOS 3.1.3 or
earlier, you must use specific names for your icon image files; these filenames are described later in this
section.)

Table 7-3 lists the dimensions of the image files you can associate with the CFBundleIconFiles key, along
with basic information about the intended usage for each icon. For devices that support high-resolution
versions of an icon, two icons should be provided with the second one being a high-resolution version of
the original. The names of the two icons should be the same except for the inclusion of the string @2x in the
filename of the high-resolution image as described in “Updating Your Image Resource Files” (page 75). For
detailed information about the usage and preparation of your icons, see iPhone Human Interface Guidelines
or iPad Human Interface Guidelines.

Table 7-3 Sizes for images in the CFBundleIconFiles key

UsageSizeIdiomIcon

This is the main icon for applications running
on iPhone and iPod touch. The @2x variant of
the icon is for use on iPhone 4 devices only.

57 x 57 pixels

114 x 114 pixels
(@2x)

iPhoneApplication icon
(required)

This is the main icon for applications running
on iPad.

72 x 72 pixelsiPadApplication icon
(required)

Displayed in conjunction with search results on
iPhone and iPod touch. Also used by the
Settings application on all device types.

(The @2x variant of the icon is for use on iPhone
4 devices only and is not supported on iPad.)

29 x 29 pixels

58 x 58 pixels (@2x)

iPhone/iPadSettings/Search
results icon

Displayed in conjunction with search results on
iPad.

50 x 50 pixelsiPadSearch results icon

When specifying icon files using the CFBundleIconFiles key, it is best to omit the filename extensions of
your image files. If you include a filename extension, you must explicitly add all of your image files (including
any high-resolution variants) to the array. When you omit the filename extension, the system automatically
detects high-resolution variants of your file using the base filename you provide.

100 iTunes Requirements
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

Note: Do not confuse the CFBundleIconFiles key with the CFBundleIconFile key. The keys provide
similar behaviors but the plural version is preferred because it allows you to specify an array of image filenames
instead of a single filename. The plural version of the key is available only in iOS 3.2 and later.

If your iPhone application supports running in iOS 3.1.3 or earlier, you must use specific naming conventions
when creating your icon image files. Because the CFBundleIconFiles key was introduced in iOS 3.2, it is
not recognized by earlier versions of the system. Instead, earlier versions of the system look for application
icons by name. The sizes of the icons are the same as those listed in Table 7-3 (page 100), but each icon must
be named as follows:

 ■ Icon.png - The name for the application icon on iPhone or iPod touch.

 ■ Icon-72.png - The name for the application icon on iPad.

 ■ Icon-Small.png - The name for the search results icon on iPhone and iPod touch. This file is also used
for the Settings icon on all devices.

 ■ Icon-Small-50.png - The name of the search results icon on iPad.

Important: The use of fixed filenames for your application icons is for compatibility with earlier versions of
iOS only. Even if you use these fixed icon filenames, your application should continue to include the
CFBundleIconFiles key in its Info.plist if it is able to run in iOS 3.2 and later. In iOS 3.2 and earlier, the
system looks for icons with the fixed filenames first. In iOS 4 and later, the system looks for icons in the
CFBundleIconFiles key first.

In addition to the other icon files, developers who distribute their applications using ad hoc distribution must
include a 512 x 512 version of their icon and give it the name iTunesArtwork (no filename extension). This
icon is displayed by iTunes when presenting your application for distribution. Like all other icon files, the
iTunesArtwork image file must reside at the top-level of your application bundle. The file should be the
same one you would have submitted to the App Store (typically a JPEG or PNG file), were you to distribute
your application that way.

For more information about the CFBundleIconFiles key, see Information Property List Key Reference. For
information about creating your application icons, see iPhone Human Interface Guidelines and iPad Human
Interface Guidelines.

Application Launch Images

When it launches an application, the system temporarily displays a static launch image on the screen. The
launch image is an image file that you provide and is usually a prerendered version of your application’s
default user interface. Presenting this image gives the user immediate feedback that the application launched
and also gives your application time to initialize itself and prepare its initial set of views for display. Once
your application is ready to run, the image is removed and the corresponding windows and views are shown.

Every application must provide at least one launch image. This is typically a file named Default.png that
displays your application’s initial screen in a portrait orientation. However, you can also provide other launch
images to be used under different launch conditions. Launch images must be PNG files and must reside in
the top level of your application’s bundle directory. The name of each launch image indicates when it is to
be used, and the basic format for launch image filenames is as follows:

Application Launch Images 101
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

<basename><usage_specific_modifiers><scale_modifier><device_modifier>.png

The <basename> portion of the filename is either the string Default or the custom string associated with
the UILaunchImageFile key in your application’s Info.plist file. The <scale_modifier> portion is the
optional string @2x and should be included only on images intended for use on high-resolution screens.
Other optional modifiers may also be included in the name, and several standard modifiers are discussed in
the sections that follow.

Table 7-4 lists the typical dimensions for launch images in iOS applications. For all dimensions, the image
width is listed first, followed by the image height. For precise information about which size launch image to
use, and how to prepare your launch images, see iPhone Human Interface Guidelines or iPad Human Interface
Guidelines.

Table 7-4 Typical launch image dimensions

LandscapePortraitDevice

Not supported320 x 480 pixels

640 x 960 pixels (high resolution)

iPhone and iPod touch

1024 x 748 pixels768 x 1004 pixelsiPad

To demonstrate the naming conventions, suppose your iOS application’s Info.plist file included the
UILaunchImageFile key with the value MyLaunchImage. The standard resolution version of the launch
image would be named MyLaunchImage.png and would be in a portrait orientation (480 x 320). The
high-resolution version of the same launch image would be named MyLaunchImage@2x.png. If you did not
specify a custom launch image name these files would need to be namedDefault.png andDefault@2x.png
respectively.

Providing Launch Images for Different Orientations

In iOS 3.2 and later, an iPad application can provide different launch images depending on whether the
device is in a portrait or landscape configuration. To specify a launch image for a different orientation, you
must add a special modifier string to the base file name of your standard launch image. Thus, the format of
each file name becomes the following:

<basename><orientation_modifier><scale_modifier><device_modifier>.png

Table 7-5 lists the possible modifiers you can specify for the <orientation_modifier> value in your image
filenames. As with any launch image, the file must be in the PNG format. These modifiers are supported for
launch images used in iPad applications only; they are not supported for applications running on iPhone or
iPod touch devices.

Table 7-5 Launch image orientation modifiers

DescriptionModifier

Specifies an upside-down portrait version of the launch image. A file with this
modifier takes precedence over a file with the -Portrait modifier for this
specific orientation.

-PortraitUpsideDown

102 Application Launch Images
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

DescriptionModifier

Specifies a left-oriented landscape version of the launch image. A file with this
modifier takes precedence over a file with the -Landscape modifier for this
specific orientation.

-LandscapeLeft

Specifies a right-oriented landscape version of the launch image. A file with this
modifier takes precedence over a file with the -Landscape modifier for this
specific orientation.

-LandscapeRight

Specifies the generic portrait version of the launch image. This image is used
for right side-up portrait orientations and takes precedence over the
Default.png image file (or your custom-named replacement for that file). If
a file with the -PortraitUpsideDown modifier is not specified, this file is also
used for upside-down portrait orientations as well.

-Portrait

Specifies the generic landscape version of the launch image. If a file with the
-LandscapeLeft or -LandscapeRight modifier is not specified, this image
is used instead. This image takes precedence over the Default.png image file
(or your custom-named replacement for that file).

-Landscape

If you provide a launch image file with no orientation modifier, that file is used
when no other orientation-specific launch image is available. In iOS 3.1.x and
earlier, this is the only supported launch image file type and must be named
Default.png.

None

For example, if you specify the value MyLaunchImage in the UILaunchImageFile key, the custom landscape
and portrait launch images for your application would be named MyLaunchImage-Landscape.png and
MyLaunchImage-Portrait.png. (The high-resolution variants of your images would be
MyLaunchImage-Landscape@2x.png and MyLaunchImage-Portrait@2x.png.) If you did not specify a
custom launch image filename, you would use the names Default-Landscape.png and
Default-Portrait.png.

No matter which launch image is selected by the system, your application always launches in a portrait
orientation initially and then rotates as needed to the correct orientation. Therefore, your
application:didFinishLaunchingWithOptions:method should always assume a portrait orientation
when setting up your window and views. Shortly after your
application:didFinishLaunchingWithOptions: method returns, the system sends any necessary
orientation-change notifications to your application’s window, giving it and your application’s view controllers
a chance to reorient any views using the standard process. For more information about how your view
controllers manage the rotation process, see “Custom View Controllers” in ViewController ProgrammingGuide
for iOS.

Providing Device-Specific Launch Images

It is possible to mark specific image files as usable only on a specific type of device. This capability simplifies
the code you have to write for Universal applications. Rather than creating separate code paths to load one
version of a resource file for iPhone and a different version of the file for iPad, you can let the bundle-loading
routines choose the correct file at load time. All you have to do is specify one of the following values for the
<device_modifier> portion of your image’s filename:

Application Launch Images 103
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

 ■ ~ipad - The resource should be loaded on iPad devices only.

 ■ ~iphone - The resource should be loaded on iPhone or iPod touch devices only.

For example, if the name of your application’s launch image on iPhone and iPod touch is MyLaunchImage.png,
the iPad specific version would be MyLaunchImage~ipad.png. Although you could include a
MyLaunchImage~iphone.png image for the iPhone specific version (and aMyLaunchImage@2x~iphone.png
for the high-resolution variant), it is better to use device modifiers only when necessary to distinguish the
image from the default version. If no device-specific version of an image is present, the system loads the
default version automatically.

Note: Another way to specify device-specific launch images is using device-specific keys in your Info.plist
file. Adding a device-specific modifier to the UILaunchImageFile key lets you specify a custom basename
for launch images used on different devices. For more information on how to apply device modifiers to keys
in the Info.plist file, see Information Property List Key Reference.

Providing Launch Images for Custom URL Schemes

If your application supports a custom URL scheme, the system can display a custom launch image whenever
it launches your application in response to a URL request. Prior to opening your application, the system looks
for a launch image whose filename matches the following format:

<basename>-<url_scheme><scale_modifier><device_modifier>.png

The <url_scheme>modifier is a string representing the name of your URL scheme name. For example, if your
application supports a URL scheme with the name myscheme, then the system would look for an image with
the name Default-myscheme.png (or Default-myscheme@2x.png in the high-resolution case) in the
application’s bundle. If the application’s Info.plist file includes the UILaunchImageFile key, then the
base name portion changes from Default to the custom string you provide in that key.

Note: You can combine a URL scheme modifier with orientation modifiers. If you do this, the format for the
file name is <basename>-<scheme>-<orientation_modifier><scale_modifier><device_modifier>.png. For
more information about the launch orientation modifiers, see “Providing Launch Images for Different
Orientations” (page 102).

In addition to including the launch images at the top level of your bundle, you can also include localized
versions of that images in your application’s language-specific project subdirectories. For more information
on localizing resources in your application, see “Internationalizing Your Application” (page 104).

Internationalizing Your Application

Ideally, the text, images, and other content that iOS applications display to users should be localized for
multiple languages. The text that an alert dialog displays, for example, should be in the preferred language
of the user. The process of preparing a project for content localized for particular languages is called
internationalization. Project components that are candidates for localization include:

 ■ Code-generated text, including locale-specific aspects of date, time, and number formatting

104 Internationalizing Your Application
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

 ■ Static text—for example, an HTML file loaded into a web view for displaying application help

 ■ Icons (including your application icon) and other images when those images either contain text or have
some culture-specific meaning

 ■ Sound files containing spoken language

 ■ Nib files

Using the Settings application, users select the language they want to see in their applications’ user interfaces
from the Language preferences view (see Figure 7-3). They get to this view from the International group of
settings, accessed from General settings.

Figure 7-3 The Language preference view

The chosen language is associated with a subdirectory of the bundle. The subdirectory name has two
components: an ISO 639-1 language code and a .lproj suffix. For example, to designate resources localized
to English, the bundle would be named en.lproj. By convention, these language-localized subdirectories
are called lproj directories.

Note: You may use ISO 639-2 language codes instead of those defined by ISO 639-1. However, you should
should not include region codes (as defined by the ISO 3166-1 conventions) when naming your lproj
directories. Although region information is used for formatting dates, numbers, and other types of information,
it is not taken into consideration when choosing which language directory to use. For more information
about language and region codes, see “Language and Locale Designations” in InternationalizationProgramming
Topics.

An lproj directory contains all the localized content for a given language. You use the facilities of the
NSBundle class or the CFBundleRef opaque type to locate (in one of the application’s lproj directories)
resources localized for the currently selected language. Listing 7-1 gives an example of such a directory
containing content localized for English (en).

Internationalizing Your Application 105
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

Listing 7-1 The contents of a language-localized subdirectory

en.lproj/
 InfoPlist.strings
 Localizable.strings
 sign.png

This subdirectory example has the following items:

 ■ The InfoPlist.strings file contains strings assigned as localized values of certain properties in the
project’s Info.plist file (such as CFBundleDisplayName). For example, the CFBundleDisplayName
key for an application named Battleship in the English version would have this entry in
InfoPlist.strings in the fr.lproj subdirectory:

CFBundleDisplayName = "Cuirassé";

 ■ The Localizable.strings file contains localized versions of strings generated by application code.

 ■ The sign.png file in this example is a file containing a localized image.

To internationalize strings in your code for localization, use the NSLocalizedString macro in place of the
string. This macro has the following declaration:

NSString *NSLocalizedString(NSString *key, NSString *comment);

The first parameter is a unique key to a localized string in a Localizable.strings file in a given lproj
directory. The second parameter is a comment that indicates how the string is used and therefore provides
additional context to the translator. For example, suppose you are setting the content of a label (UILabel
object) in your user interface. The following code would internationalize the label’s text:

label.text = NSLocalizedString(@"City", @"Label for City text field");

You can then create a Localizable.strings file for a given language and add it to the proper lproj
directory. For the above key, this file would have an entry similar to the following:

"City" = "Ville";

Note: Alternatively, you can insert NSLocalizedString calls in your code where appropriate and then run
the genstrings command-line tool. This tool generates a Localizable.strings template that includes
the key and comment for each string requiring translation. For further information about genstrings, see
the genstrings(1) man page.

For more information about internationalization and how you support it in your iOS applications, see
Internationalization Programming Topics.

106 Internationalizing Your Application
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Build-Time Configuration Details

At each step in the development of your application, you should consider the implications of your design
choices on the overall performance of your application. The operating environment for iOS applications is
more constrained because of the mobile nature of iPhone and iPod touch devices. The following sections
describe the factors you should consider throughout the development process.

Do Not Block the Main Thread

You should be careful what work you perform from the main thread of your application. The main thread is
where your application handles touch events and other user input. To ensure that your application is always
responsive to the user, you should never use the main thread to perform long-running tasks or to perform
tasks with a potentially unbounded end, such as tasks that access the network. Instead, you should always
move those tasks onto background threads. The preferred way to do so is to wrap each task in an operation
object and add it to an operation queue, but you can also create explicit threads yourself.

Moving tasks into the background leaves your main thread free to continue processing user input, which is
especially important when your application is starting up or quitting. During these times, your application
is expected to respond to events in a timely manner. If your application’s main thread is blocked at launch
time, the system could kill the application before it even finishes launching. If the main thread is blocked at
quitting time, the system could kill the application before it has a chance to write out crucial user data.

For more information about using operation objects and threads, see Concurrency Programming Guide.

Use Memory Efficiently

Because the iOS virtual memory model does not include disk swap space, applications are somewhat more
limited in the amount of memory they have available for use. Using large amounts of memory can seriously
degrade system performance and potentially cause the system to terminate your application. When you
design, therefore, make it a high priority to reduce the amount of memory used by your application.

There is a direct correlation between the amount of free memory available and the relative performance of
your application. Less free memory means that the system is more likely to have trouble fulfilling future
memory requests. If that happens, the system can always remove code pages and other nonvolatile resources
from memory. However, removing those resources may be only a temporary fix, especially when those
resources are needed again a short time later. Instead, minimize your memory use in the first place, and clean
up the memory you do use in a timely manner.

The following sections provide more guidance on how to use memory efficiently and how to respond when
there is only a small amount of available memory.

Do Not Block the Main Thread 107
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Tuning for Performance and Responsiveness

Reduce Your Application’s Memory Footprint

Table 8-1 lists some tips on how to reduce your application’s overall memory footprint. Starting off with a
low footprint gives you more room for the data you need to manipulate.

Table 8-1 Tips for reducing your application’s memory footprint

Actions to takeTip

Because memory is a critical resource in iOS, your application should not have
any memory leaks. Allowing leaks to exist means your application may not have
the memory it needs later. You can use the Instruments application to track down
leaks in your code, both in the simulator and on actual devices. For more
information on using Instruments, see Instruments User Guide.

Eliminate memory
leaks.

Files reside on the disk but must be loaded into memory before they can be used.
Property list files and images are two resource types where you can save space
with some very simple actions. To reduce the space used by property list files,
write those files out in a binary format using theNSPropertyListSerialization
class. For images, compress all image files to make them as small as possible. (To
compress PNG images—the preferred image format for iOS applications—use
the pngcrush tool.)

Make resource files as
small as possible.

If your application manipulates large amounts of structured data, store it in a Core
Data persistent store or in a SQLite database instead of in a flat file. Both Core
Data and SQLite provides efficient ways to manage large data sets without
requiring the entire set to be in memory all at once.

The Core Data feature was introduced in iOS 3.0.

Use Core Data or
SQLite for large data
sets.

You should never load a resource file until it is actually needed. Prefetching
resource files may seem like a way to save time, but this practice actually slows
down your application right away. In addition, if you end up not using the resource,
loading it simply wastes memory.

Load resources lazily.

Adding the -mthumb compiler flag can reduce the size of your code by up to 35%.
However, if your application contains floating-point-intensive code modules and
you are building your application for arm6, you should disable Thumb. If you are
building your code for arm7, you should leave Thumb enabled.

Build your program
using Thumb.

Allocate Memory Wisely

iOS applications use a managed memory model, whereby you must explicitly retain and release objects.
Table 8-2 lists tips for allocating memory inside your program.

108 Use Memory Efficiently
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Tuning for Performance and Responsiveness

Table 8-2 Tips for allocating memory

Actions to takeTip

Objects released using the autoreleasemethod stay in memory until you explicitly
drain the autorelease pool or until the next time around your event loop. Whenever
possible, avoid using the autorelease method when you can instead use the
release method to reclaim the memory occupied by the object immediately. If
you must create moderate numbers of autoreleased objects, create a local
autorelease pool and drain it periodically to reclaim the memory for those objects
before the next event loop.

Reduce your use of
autoreleased objects.

Avoid loading large resource files when a smaller one will do. Instead of using a
high-resolution image, use one that is appropriately sized for iOS-based devices. If
you must use large resource files, find ways to load only the portion of the file that
you need at any given time. For example, rather than load the entire file into
memory, use the mmap and munmap functions to map portions of the file into and
out of memory. For more information about mapping files into memory, see
File-System Performance Guidelines.

Impose size limits on
resources.

Unbounded problem sets might require an arbitrarily large amount of data to
compute. If the set requires more memory than is available, your application may
be unable to complete the calculations. Your applications should avoid such sets
whenever possible and work on problems with known memory limits.

Avoid unbounded
problem sets.

For detailed information on how to allocate memory in iOS applications, and for more information on
autorelease pools, see “Cocoa Objects” in Cocoa Fundamentals Guide.

Floating-Point Math Considerations

The processors found in iOS-based devices are capable of performing floating-point calculations in hardware.
If you have an existing program that performs calculations using a software-based fixed-point math library,
you should consider modifying your code to use floating-point math instead. Hardware-based floating-point
computations are typically much faster than their software-based fixed-point equivalents.

Important: Of course, if you build your application for arm6 and your code does use floating-point math
extensively, remember to compile that code without the -mthumb compiler option. The Thumb option can
reduce the size of code modules, but it can also degrade the performance of floating-point code. If you build
your application for arm7, you should always enable the Thumb option.

In iOS 4 and later, you can also use the functions of the Accelerate framework to perform complex mathematical
calculations. This framework contains high-performance vector-accelerated libraries for digital signal processing
and linear algebra mathematics. You can apply these libraries to problems involving audio and video
processing, physics, statistics, cryptography, and complex algebraic equations.

Floating-Point Math Considerations 109
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Tuning for Performance and Responsiveness

Reduce Power Consumption

Power consumption on mobile devices is always an issue. The power management system in iOS conserves
power by shutting down any hardware features that are not currently being used. In addition to avoiding
CPU-intensive operations or operations that involve high graphics frame rates, you can help improve battery
life by optimizing your use of the following features:

 ■ The CPU

 ■ Wi-Fi, Bluetooth, and baseband (EDGE, 3G) radios

 ■ The Core Location framework

 ■ The accelerometers

 ■ The disk

The goal of your optimizations should be to do the most work you can in the most efficient way possible.
You should always optimize your application’s algorithms using Instruments. But it is important to remember
that even the most optimized algorithm can still have a negative impact on a device’s battery life. You should
therefore consider the following guidelines when writing your code:

 ■ Avoid doing work that requires polling. Polling prevents the CPU from going to sleep. Instead of polling,
use the NSRunLoop or NSTimer classes to schedule work as needed.

 ■ Leave the idleTimerDisabled property of the shared UIApplication object set to NO whenever
possible. The idle timer turns off the device’s screen after a specified period of inactivity. If your application
does not need the screen to stay on, let the system turn it off. If your application experiences side effects
as a result of the screen turning off, you should modify your code to eliminate the side effects rather
than disable the idle timer unnecessarily.

 ■ Coalesce work whenever possible, to maximize idle time. It takes more power to do work periodically
over an extended period of time than it does to perform the same amount of work all at once. Performing
work periodically prevents the system from powering down hardware over a longer period of time.

 ■ Avoid over-accessing the disk. For example, if your application saves state information to the disk, do
so only when that state information changes and coalesce changes whenever possible to avoid writing
small changes at frequent intervals.

 ■ Do not draw to the screen faster than needed. Drawing is an expensive operation when it comes to
power. Do not rely on the hardware to throttle your frame rates. Draw only as many frames as your
application actually needs.

 ■ If you use the UIAccelerometer class to receive regular accelerometer events, disable the delivery of
those events when you do not need them. Similarly, set the frequency of event delivery to the smallest
value that is suitable for your needs. For more information, see Event Handling Guide for iOS.

The more data you transmit to the network, the more power must be used to run the radios. In fact, accessing
the network is the most power-hungry operation you can perform and should be minimized by following
these guidelines:

 ■ Connect to external network servers only when needed, and do not poll those servers.

 ■ When you must connect to the network, transmit the smallest amount of data needed to do the job.
Use compact data formats and do not include excess content that will simply be ignored.

110 Reduce Power Consumption
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Tuning for Performance and Responsiveness

 ■ Transmit data in bursts rather than spreading out transmission packets over time. The system turns off
the Wi-Fi and cell radios when it detects a lack of activity. When it transmits data over a longer period
of time, your application uses much more power than when it transmits the same amount of data in a
shorter amount of time.

 ■ Connect to the network using the Wi-Fi radios whenever possible. Wi-Fi uses less power and is preferred
over the baseband radios.

 ■ If you use the Core Location framework to gather location data, disable location updates as soon as you
can and set the distance filter and accuracy levels to appropriate values. Core Location uses the available
GPS, cell, and Wi-Fi networks to determine the user’s location. Although Core Location works hard to
minimize the use of these radios, setting the accuracy and filter values gives Core Location the option
to turn off hardware altogether in situations where it is not needed. For more information, see Location
Awareness Programming Guide.

The Instruments application includes several instruments for gathering power-related information. You can
use these instruments to gather general information about power consumption and to gather specific
measurements for hardware such as the Wi-Fi and Bluetooth radios, GPS receiver, display, and CPU. For more
information about using these instruments, see Instruments User Guide.

Tune Your Code

iOS comes with several applications for tuning the performance of your application. Most of these tools run
on Mac OS X and are suitable for tuning some aspects of your code while it runs in the simulator. For example,
you can use the simulator to eliminate memory leaks and make sure your overall memory usage is as low as
possible. You can also remove any computational hotspots in your code that might be caused by an inefficient
algorithm or a previously unknown bottleneck.

After you have tuned your code in the simulator, you should then use the Instruments application to further
tune your code on a device. Running your code on an actual device is the only way to tune your code fully.
Because the simulator runs in Mac OS X, it has the advantage of a faster CPU and more usable memory, so
its performance is generally much better than the performance on an actual device. And using Instruments
to trace your code on an actual device may point out additional performance bottlenecks that need tuning.

For more information on using Instruments, see Instruments User Guide.

Improve File Access Times

When creating files or writing out file data, keep the following guidelines in mind:

 ■ Minimize the amount of data you write to the disk. File operations are relatively slow and involve writing
to the Flash disk, which has a limited lifespan. Some specific tips to help you minimize file-related
operations include:

 ❏ Write only the portions of the file that changed, but aggregate changes when you can. Avoid writing
out the entire file just to change a few bytes.

 ❏ When defining your file format, group frequently modified content together so as to minimize the
overall number of blocks that need to be written to disk each time.

Tune Your Code 111
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Tuning for Performance and Responsiveness

 ❏ If your data consists of structured content that is randomly accessed, store it in a Core Data persistent
store or a SQLite database. This is especially important if the amount of data you are manipulating
could grow to be more than a few megabytes in size.

 ■ Avoid writing cache files to disk. The only exception to this rule is when your application quits and you
need to write state information that can be used to put your application back into the same state when
it is next launched.

Tune Your Networking Code

The networking stack in iOS includes several interfaces over the radio hardware of iPhone and iPod touch
devices. The main programming interface is the CFNetwork framework, which builds on top of BSD sockets
and opaque types in the Core Foundation framework to communicate with network entities. You can also
use the NSStream classes in the Foundation framework and the low-level BSD sockets found in the Core OS
layer of the system.

The following sections provide iOS-specific tips for developers who need to incorporate networking features
into their applications. For information about how to use the CFNetwork framework for network
communication, see CFNetwork Programming Guide and CFNetwork Framework Reference. For information
about using the NSStream class, see Foundation Framework Reference.

Tips for Efficient Networking

When implementing code to receive or transmit across the network, remember that doing so is one of the
most power-intensive operations on a device. Minimizing the amount of time spent transmitting or receiving
helps improve battery life. To that end, you should consider the following tips when writing your
network-related code:

 ■ For protocols you control, define your data formats to be as compact as possible.

 ■ Avoid communicating using chatty protocols.

 ■ Transmit data packets in bursts whenever you can.

The cellular and Wi-Fi radios are designed to power down when there is no activity. Doing so can take several
seconds though, depending on the radio. If your application transmits small bursts of data every few seconds,
the radios may stay powered up and continue to consume power, even when they are not actually doing
anything. Rather than transmit small amounts of data more often, it is better to transmit a larger amount of
data once or at relatively large intervals.

When communicating over the network, it is also important to remember that packets can be lost at any
time. When writing your networking code, you should be sure to make it as robust as possible when it comes
to failure handling. It is perfectly reasonable to implement handlers that respond to changes in network
conditions, but do not be surprised if those handlers are not called consistently. For example, the Bonjour
networking callbacks may not always be called immediately in response to the disappearance of a network
service. The Bonjour system service does immediately invoke browsing callbacks when it receives a notification
that a service is going away, but network services can disappear without notification. This might occur if the
device providing the network service unexpectedly loses network connectivity or the notification is lost in
transit.

112 Tune Your Networking Code
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Tuning for Performance and Responsiveness

Using Wi-Fi

If your application accesses the network using the Wi-Fi radios, you must notify the system of that fact by
including the UIRequiresPersistentWiFi key in the application’s Info.plist file. The inclusion of this
key lets the system know that it should display the network selection panel if it detects any active Wi-Fi hot
spots. It also lets the system know that it should not attempt to shut down the Wi-Fi hardware while your
application is running.

To prevent the Wi-Fi hardware from using too much power, iOS has a built-in timer that turns off the hardware
completely after 30 minutes if no application has requested its use through the UIRequiresPersistentWiFi
key. If the user launches an application that includes the key, iOS effectively disables the timer for the duration
of the application’s life cycle. As soon as that application quits, however, the system reenables the timer.

Note: Note that even when UIRequiresPersistentWiFi has a value of true, it has no effect when the
device is idle (that is, screen-locked). The application is considered inactive, and although it may function on
some levels, it has no Wi-Fi connection.

For more information on the UIRequiresPersistentWiFi key and the keys of the Info.plist file, see
“The Information Property List” (page 95).

The Airplane Mode Alert

If the device is in airplane mode when your application launches, the system may display a panel to notify
the user of that fact. The system displays this panel only when all of the following conditions are met:

 ■ Your application’s information property list (Info.plist) file contains the UIRequiresPersistentWiFi
key and the value of that key is set to true.

 ■ Your application launches while the device is currently in airplane mode.

 ■ Wi-Fi on the device has not been manually reenabled after the switch to airplane mode.

Tune Your Networking Code 113
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Tuning for Performance and Responsiveness

114 Tune Your Networking Code
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Tuning for Performance and Responsiveness

This table describes the changes to iOS Application Programming Guide.

NotesDate

Updated the guidance related to specifying application icons and launch images.2010-06-30

Changed the title from iPhone Application Programming Guide.

Reorganized the book so that it focuses on the design of the core parts of your
application.

2010-06-14

Added information about how to support multitasking in iOS 4 and later. For
more information, see “Multitasking” (page 36).

Updated the section describing how to determine what hardware is available.

Added information about how to support devices with high-resolution screens.

Incorporated iPad-related information.

Made minor corrections.2010-02-24

Updated the “Multimedia Support” chapter with improved descriptions of audio
formats and codecs.

2010-01-20

Moved the iPhone specific Info.plist keys to Information Property List Key
Reference.

2009-10-19

Updated the “Multimedia Support” chapter for iOS 3.1.

Added information about using the compass interfaces.2009-06-17

Moved information about OpenGL support to OpenGL ES Programming Guide
for iOS.

Updated the list of supported Info.plist keys.

Updated for iPhone OS 3.0.2009-05-14

Added code examples to "Copy and Paste Operations" in the Event Handling
chapter.

Added a section on keychain data to the Files and Networking chapter.

Added information about how to display map and email interfaces.

Made various small corrections.

115
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Fixed several typos and clarified the creation process for child pages in the
Settings application.

2009-01-06

Added guidance about floating-point math considerations2008-11-12

Updated information related to what is backed up by iTunes.

Reorganized the contents of the book.2008-10-15

Moved the high-level iOS information to iOS Technology Overview.

Moved information about the standard system URL schemes toAppleURLScheme
Reference.

Moved information about the development tools and how to configure devices
to iOS Development Guide.

Created the Core Application chapter, which now introduces the application
architecture and covers much of the guidance for creating iPhone applications.

Added a Text and Web chapter to cover the use of text and web classes and the
manipulation of the onscreen keyboard.

Created a separate chapter for Files and Networking and moved existing
information into it.

Changed the title from iPhone OS Programming Guide.

New document that describes iPhone OS and the development process for
iPhone applications.

2008-07-08

116
2010-06-30 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	iOS Application Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	The Application Runtime Environment
	Fast Launch, Short Use
	Specialized System Behaviors
	The Virtual Memory System
	The Automatic Sleep Timer
	Multitasking Support

	Security
	The Application Sandbox
	File Protection
	Keychain Data

	The File System
	A Few Important Application Directories
	A Case-Sensitive File System
	Sharing Files with the User’s Desktop Computer

	Backup and Restore
	What Is Backed Up?
	Files Saved During Application Updates

	The Simulator
	Determining the Available Hardware Support

	The Core Application Design
	Fundamental Design Patterns
	The Core Application Objects
	The Application Life Cycle
	The Main Function
	The Application Delegate
	Understanding an Application’s States and Transitions
	Launching the Application
	Moving to the Background
	Responding to Interruptions
	Resuming Foreground Execution
	Responding to Application Termination

	Multitasking
	Checklist for Supporting Multitasking
	Responding to System Changes While in the Background
	Handling Locale Changes Gracefully
	Responding to Changes in Your Application’s Settings

	Opting Out of Background Execution

	Windows, Views, and View Controllers
	The Event-Handling System
	The Graphics and Drawing System
	The Text System
	Audio and Video Support
	Integration with the Hardware and System Applications

	Implementing Standard Application Behaviors
	Observing Low-Memory Warnings
	Preserving the Application’s Current State
	Launching in Landscape Mode
	Files and the File System
	Getting Paths to Application Directories
	Sharing Files with the User
	Working with Protected Files
	Marking a File as Protected
	Determining the Availability of Protected Files

	Opening Files Whose Type is Unknown
	Creating and Configuring a Document Interaction Controller
	Presenting a Document Interaction Controller

	Implementing Support for Custom File Formats
	Registering the File Types Your Application Supports
	Opening Supported File Types
	Modifying Documents Passed to Your Application by the System

	Communicating with Other Applications
	Implementing Custom URL Schemes
	Registering Custom URL Schemes
	Handling URL Requests

	Displaying Application Preferences
	Turning Off Screen Locking

	Executing Code in the Background
	Preparing Your Application to Execute in the Background
	Determining Whether Multitasking Support is Available
	Declaring the Background Tasks You Support
	Supporting Background State Transitions
	Being a Responsible, Multitasking-Aware Application

	Initiating Background Tasks
	Completing a Long-Running Task in the Background
	Scheduling the Delivery of Local Notifications
	Receiving Location Events in the Background
	Playing Background Audio
	Implementing a VoIP Application
	Configuring Sockets for VoIP Usage
	Installing a Keep-Alive Handler

	Supporting High-Resolution Screens
	Checklist for Supporting High-Resolution Screens
	Points Versus Pixels
	Drawing Improvements That You Get for Free
	Updating Your Image Resource Files
	Loading Images into Your Application
	Using an Image View to Display Images
	Updating Your Application’s Icons and Launch Images

	Updating Your Custom Drawing Code
	Creating High-Resolution Bitmap Images Programmatically
	Tweaking Native Content for High-Resolution Screens
	Accounting for Scale Factors in Core Animation Layers
	Drawing High-Resolution Content Using OpenGL ES

	Implementing Application Preferences
	Guidelines for Preferences
	The Preferences Interface
	The Settings Bundle
	The Settings Page File Format
	Hierarchical Preferences
	Localized Resources

	Adding and Modifying the Settings Bundle
	Adding the Settings Bundle
	Preparing the Settings Page for Editing
	Configuring a Settings Page: A Tutorial
	Creating Additional Settings Page Files

	Accessing Your Preferences
	Debugging Preferences for Simulated Applications

	Build-Time Configuration Details
	The Application Bundle
	The Information Property List
	iTunes Requirements
	Declaring the Required Device Capabilities
	Application Icons

	Application Launch Images
	Providing Launch Images for Different Orientations
	Providing Device-Specific Launch Images
	Providing Launch Images for Custom URL Schemes

	Internationalizing Your Application

	Tuning for Performance and Responsiveness
	Do Not Block the Main Thread
	Use Memory Efficiently
	Reduce Your Application’s Memory Footprint
	Allocate Memory Wisely

	Floating-Point Math Considerations
	Reduce Power Consumption
	Tune Your Code
	Improve File Access Times
	Tune Your Networking Code
	Tips for Efficient Networking
	Using Wi-Fi
	The Airplane Mode Alert

	Revision History

