
View Programming Guide for iOS
User Experience: Windows & Views

2010-07-07

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPhone, iPod,
Mac, Mac OS, Objective-C, Quartz, Safari, and
Spaces are trademarks of Apple Inc., registered
in the United States and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction About Windows, Views, and Controls 7

The Role of UIWindow 7
The Role of UIView 8
UIKit View Classes 9
The Role of View Controllers 12
Organization of This Document 12

Chapter 1 Windows and Views 13

View Architecture and Geometry 13
The View Interaction Model 13
The View Rendering Architecture 15
View Coordinate Systems 18
The Relationship of the Frame, Bounds, and Center 19
Coordinate System Transformations 20
Content Modes and Scaling 21
Autoresizing Behaviors 23

Creating and Managing the View Hierarchy 24
Creating a View Object 26
Adding and Removing Subviews 26
Converting Coordinates in the View Hierarchy 28
Tagging Views 29

Modifying Views at Runtime 29
Animating Views 30
Responding to Layout Changes 32
Redrawing Your View’s Content 32
Hiding Views 33

Creating a Custom View 33
Initializing Your Custom View 33
Drawing Your View’s Content 34
Responding to Events 35
Cleaning Up After Your View 36

Chapter 2 Graphics and Drawing 37

The UIKit Graphics System 37
The View Drawing Cycle 38
Coordinates and Coordinate Transforms 38
Graphics Contexts 39
Points Versus Pixels 39
Color and Color Spaces 40

3
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

Supported Image Formats 40
Drawing Tips 41

Deciding When to Use Custom Drawing Code 41
Improving Drawing Performance 41
Maintaining Image Quality 42

Drawing with Quartz and UIKit 42
Configuring the Graphics Context 43
Creating and Drawing Images 44
Creating and Drawing Paths 46
Creating Patterns, Gradients, and Shadings 46

Drawing with OpenGL ES 46
Applying Core Animation Effects 47

About Layers 47
About Animations 48

Document Revision History 49

4
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Introduction About Windows, Views, and Controls 7

Figure I-1 View class hierarchy 10

Chapter 1 Windows and Views 13

Figure 1-1 UIKit interactions with your view objects 14
Figure 1-2 View coordinate system 18
Figure 1-3 Relationship between a view's frame and bounds 19
Figure 1-4 Altering a view's bounds 20
Figure 1-5 View scaled using the scale-to-fill content mode 21
Figure 1-6 Content mode comparisons 22
Figure 1-7 View autoresizing mask constants 24
Figure 1-8 Layered views in the Clock application 25
Figure 1-9 View hierarchy for the Clock application 25
Figure 1-10 Converting values in a rotated view 29
Table 1-1 Autoresizing mask constants 23
Table 1-2 Animatable properties 30
Listing 1-1 Creating a window with views 27
Listing 1-2 Initializing a view subclass 34
Listing 1-3 A drawing method 35
Listing 1-4 Implementing the dealloc method 36

Chapter 2 Graphics and Drawing 37

Table 2-1 Supported image formats 40
Table 2-2 Tips for improving drawing performance 41
Table 2-3 Core graphics functions for modifying graphics state 43
Table 2-4 Usage scenarios for images 45

5
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

6
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Like Mac OS X, iOS uses windows and views to present graphical content on the screen. Although there are
many similarities between the window and view objects on both platforms, the roles played by both windows
and views differ slightly on each platform.

Important: This document contains information that used to be in iOS Application Programming Guide. The
information in this document has not been updated specifically for iOS 4.0.

The Role of UIWindow

In contrast with Mac OS X applications, iPhone applications typically have only one window, represented by
an instance of the UIWindow class. Your application creates this window at launch time (or loads it from a
nib file), adds one or more views to it, and displays it. After that, you rarely need to refer to the window object
again.

In iOS, a window object has no visual adornments such as a close box or title bar and cannot be closed or
manipulated directly by the user. All manipulations to a window occur through its programmatic interfaces.
The application also uses the window to facilitate the delivery of events to your application. For example,
the window object keeps track of its current first responder object and dispatches events to it when asked
to do so by the UIApplication object.

One thing that experienced Mac OS X developers may find unusual about the UIWindow class is its inheritance.
In Mac OS X, the parent class of NSWindow is NSResponder. In iOS, the parent class of UIWindow is UIView.
Thus, in iOS, a window is also a view object. Despite its parentage, you typically treat windows in iOS the
same as you would in Mac OS X. That is, you typically do not manipulate the view-related properties of a
UIWindow object directly.

When creating your application window, you should always set its initial frame size to fill the entire screen.
If you load your window from a nib file, Interface Builder does not permit you to create a window smaller
than the screen size. If you create your window programmatically, however, you must specifically pass in the
desired frame rectangle at creation time. There is no reason to pass in any rectangle other than the screen
rectangle, which you can get from the UIScreen object as shown here:

UIWindow* aWindow = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]] autorelease];

Although iOS supports layering windows on top of each other, your application should never create more
than one window. The system itself uses additional windows to display the system status bar, important
alerts, and other types of messages on top of your application’s windows. If you want to display alerts on
top of your content, use the alert views provided by UIKit rather than creating additional windows.

The Role of UIWindow 7
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Windows, Views, and Controls

The Role of UIView

A view, an instance of the UIView class, defines a rectangular area on the screen. In iPhone applications,
views play a key role in both presenting your interface and responding to interactions with that interface.
Each view object has the responsibility of rendering content within its rectangular area and for responding
to touch events in that area. This dual behavior means that views are the primary mechanism for interacting
with the user in your application. In a Model-View-Controller application, view objects are the View portion
of the application.

In addition to displaying its own contents and handling events, a view may also manage one or more subviews.
A subview is simply a view object embedded inside the frame of the original view object, which is referred
to as the parent view or superview. Views arranged in this manner form what is known as a view hierarchy
and may contain any number of views. Views can also be nested at arbitrarily deep levels by adding subviews
to subviews. The organization of views inside the view hierarchy controls what appears on screen, as each
subview is displayed on top of its parent view. The organization also controls how the views react to events
and changes. Each parent view is responsible for managing its direct subviews, by adjusting their position
and size as needed and even responding to events that its subviews do not handle.

Because view objects are the main way your application interacts with the user, they have a number of
responsibilities. Here are just a few:

 ■ Drawing and animation

 ❏ Views draw content in their rectangular area.

 ❏ Some view properties can be animated to new values.

 ■ Layout and subview management

 ❏ Views manage a list of subviews.

 ❏ Views define their own resizing behaviors in relation to their parent view.

 ❏ Views can manually change the size and position of their subviews as needed.

 ❏ Views can convert points in their coordinate system to the coordinate systems of other views or the
window.

 ■ Event handling

 ❏ Views receive touch events.

 ❏ Views participate in the responder chain.

In iPhone applications, views work closely with view controllers to manage several aspects of the views’
behavior. View controllers handle the loading and unloading of views, interface rotations caused by the user
physically rotating the device, and interactions with the high-level navigation objects used to construct
complex user interfaces. For more information, see “The Role of View Controllers” (page 12).

8 The Role of UIView
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Windows, Views, and Controls

UIKit View Classes

The UIView class defines the basic properties of a view but not its visual representation. Instead, UIKit uses
subclasses to define the specific appearance and behavior for standard system elements such as text fields,
buttons, and toolbars. Figure I-1 shows the class hierarchy diagram for all of the views in UIKit. With the
exception of the UIView and UIControl classes, most of the views in this hierarchy are designed to be used
as-is or in conjunction with a delegate object.

UIKit View Classes 9
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Windows, Views, and Controls

Figure I-1 View class hierarchy

UIControl

UITableViewCell

UINavigationBar

UIToolbar

UIImageView

UIActivityIndicatorView

UIProgressView

UIPickerView

UILabel

UIWindowUIView

UIResponder

UIAlertView

UIActionSheet

UIWebView

UITabBar

UISearchBar

UIScrollView

UITextView

UITableView

UIDatePicker

UIPageControl

UIButton

UITextField

UISlider

UISegmentedControl

UISwitch

NSObject

This view hierarchy can be broken down into the following broad categories:

 ■ Containers

10 UIKit View Classes
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Windows, Views, and Controls

Container views enhance the function of other views or provide additional visual separation of the
content. For example, the UIScrollView class is used to display views whose contents are too large
to fit onscreen all at once. The UITableView class is a subclass of UIScrollView that manages lists of
data. Because table rows are selectable, tables are commonly used for hierarchical navigation too—for
example, to drill down into a hierarchy of objects.

A UIToolbar object is a special type of container that visually groups one or more button-like items. A
toolbar typically appears along the bottom of the screen. The Safari, Mail, and Photos applications all
use toolbars to display buttons representing frequently used commands. Toolbars can be shown all the
time or only as needed by the application.

 ■ Controls

Controls are used to create most of a typical application’s user interface. A control is a special type of
view that inherits from the UIControl superclass. Controls typically display a specific value and handle
all of the user interactions required to modify that value. Controls also use standard system paradigms,
such as target-action and delegation, to notify your application when user interactions occur. Controls
include buttons, text fields, sliders, and switches.

 ■ Display views

Although controls and many other types of views provide interactive behavior, some views simply display
information. The UIKit classes that exhibit this behavior include UIImageView, UILabel,
UIProgressView, and UIActivityIndicatorView.

 ■ Text and web views

Text and web views provide a more sophisticated way to display multiline text content in your application.
The UITextView class supports the display and editing of multiple lines of text in a scrollable area. The
UIWebView class provides a way to display HTML content, which lets you incorporate graphics and
advanced text-formatting options and lay out your content in custom ways.

 ■ Alert views and action sheets

Alert views and action sheets are used to get the user’s attention immediately. They present a message
to the user, along with one or more optional buttons that the user can use to respond to the message.
Alert views and action sheets are similar in function but look and behave differently. For example, the
UIAlertView class displays a blue alert box that pops up on the screen and the UIActionSheet class
displays a box that slides in from the bottom of the screen.

 ■ Navigation views

Tab bars and navigation bars work in conjunction with view controllers to provide tools for navigating
from one screen of your user interface to another. You typically do not create UITabBar and
UINavigationBar items directly but configure them through the appropriate controller interface or
using Interface Builder instead.

 ■ The window

A window provides a surface for drawing content and is the root container for all other views. There is
typically only one window per application. For more information, see “The Role of UIWindow” (page 7).

UIKit View Classes 11
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Windows, Views, and Controls

The Role of View Controllers

Applications running in iOS have many options for organizing their content and presenting it to the user.
An application that contains a lot of content might divide that content up into multiple screens’ worth of
information. At runtime, each screen would then be backed by a set of view objects responsible for displaying
the data for that particular screen. The views for a single screen would themselves be backed by a view
controller object, whose job is to manage the data displayed by those views and coordinate updates with
the rest of the application.

The UIViewController class is responsible for creating the set of views it manages and for flushing them
from memory during low-memory situations. View controllers also provide automatic responses for some
standard system behaviors. For example, in response to a change in the device's orientation, the view controller
can resize its managed views to fit the new orientation, if that orientation is supported. You can also use
view controllers to display new views modally on top of the current view.

In addition to the base UIViewController class, UIKit includes more advanced subclasses for handling
some of the sophisticated interface behaviors common to the platform. In particular, navigation controllers
manage the display of multiple hierarchical screens worth of content. Tab bar controllers let the user switch
between different sets of screens, each of which represents a different operating mode for the application.

For information on how to use view controllers to manage the views in your user interface, see ViewController
Programming Guide for iOS.

Organization of This Document

This document contains the following chapters:

 ■ “Windows and Views” (page 13) provides an overview of the window and view architecture used in iOS.

 ■ “Graphics and Drawing” (page 37) describes the drawing model used by views to render content to the
screen.

12 The Role of View Controllers
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

About Windows, Views, and Controls

Important: This document contains information that used to be in iOS Application Programming Guide. The
information in this document has not been updated specifically for iOS 4.0.

This chapter provides a basic overview of windows and views and how they work together to present your
application’s content.

View Architecture and Geometry

Because views are focal objects in iPhone applications, it is important to understand a little about how views
interact with other parts of the system. The standard view classes in UIKit provide a considerable amount of
behavior to your application for free. They also provide well-defined integration points where you can
customize that behavior and do what you need to do for your application.

The following sections explain the standard behavior of views and call out the places where you can integrate
your custom code. For information about the integration points of specific classes, see the reference document
for that class. You can get a list of all the class reference documents in UIKit Framework Reference.

The View Interaction Model

Any time a user interacts with your user interface, or your own code programmatically changes something,
a complex sequence of events takes place inside of UIKit to handle that interaction. At specific points during
that sequence, UIKit calls out to your view classes and gives them a chance to respond on behalf of your
application. Understanding these callout points is important to understanding where your views fit into the
system. Figure 1-1 shows the basic sequence of events that starts with the user touching the screen and ends
with the graphics system updating the screen content in response. Programmatic events follow the same
basic steps without the initial user interaction.

View Architecture and Geometry 13
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Figure 1-1 UIKit interactions with your view objects

Your Application
iPhone OS

Touches

• Buffers
• Images
• Attributes
• Geometry
• Animations

touches

layoutSubviews

drawRect

Draw images, text, etc.Compositor

Touch Framework

Graphics hardware

UIKit

setNeedsDisplay
frame, alpha, etc.

setNeedsLayout
setNeedsDisplay
frame, alpha, etc.

The following steps break the event sequence in Figure 1-1 (page 14) down even further and explain what
happens at each stage and how your application might want to react in response.

1. The user touches the screen.

2. The hardware reports the touch event to the UIKit framework.

3. The UIKit framework packages the touch into a UIEvent object and dispatches it to the appropriate
view. (For a detailed explanation of how UIKit delivers events to your views, see Event Handling Guide
for iOS.)

4. The event-handling methods of your view might respond to the event by doing any of the following:

 ■ Adjust the properties (frame, bounds, alpha, and so on) of the view or its subviews.

 ■ Mark the view (or its subviews) as needing a change in its layout.

 ■ Mark the view (or its subviews) as needing to be redrawn.

 ■ Notify a controller about changes to some piece of data.

Of course, it is up to the view to decide which of these things must be done and call the appropriate
methods to do it.

5. If a view is marked as requiring layout, UIKit calls the view’s layoutSubviews method.

You can override this method in your custom views and use it to adjust the position and size of any
subviews. For example, a view that provides a large scrollable area would need to use several subviews
as “tiles” rather than create one large view, which is not likely to fit in memory anyway. In its
implementation of this method, the view would hide any subviews that are now offscreen or reposition
them and use them to draw newly exposed content. As part of this process, the view can also mark the
new tiles as needing to be redrawn.

6. If any part of the view is marked as needing to be redrawn, UIKit calls the view’s drawRect: method.

14 View Architecture and Geometry
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

UIKit calls this method for only those views that need it. Each view’s implementation of this method
should redraw the specified area as quickly as possible. Each view should draw only its own contents
and not the contents of any subviews. Views should not attempt to make any further changes to their
properties or layout at this point.

7. Any updated views are composited with the rest of visible content and sent to the graphics hardware
for display.

8. The graphics hardware transfers the rendered content to the screen.

Note: The preceding update model applies primarily to applications that use native views and drawing
techniques. If your application draws its content using OpenGL ES, you would typically configure a single
full-screen view and then draw directly to your OpenGL graphics context. Your view would still handle touch
events, but it would not need to lay out subviews or implement a drawRect: method. For more information
about using OpenGL ES, see “Drawing with OpenGL ES” (page 46).

Given the preceding set of steps, the primary integration points for your own custom views are as follows:

1. These event-handling methods:

 ■ touchesBegan:withEvent:

 ■ touchesMoved:withEvent:

 ■ touchesEnded:withEvent:

 ■ touchesCancelled:withEvent:

2. The layoutSubviews method

3. The drawRect: method

These are the methods that most custom views implement to get the behavior they want; you may not need
to override all of them. For example, if you are implementing a view whose size never changes, you might
not need to override the layoutSubviews method. Similarly, if you are implementing a view that displays
simple content, such as text and images, you can often avoid drawing altogether by simply embedding
UIImageView and UILabel objects as subviews.

It is also important to remember that these are the primary integration points but not the only ones. Several
methods of the UIView class are designed to be override points for subclassers. You should look at the
method descriptions inUIViewClass Reference to see which methods might be appropriate for you to override
in your custom implementations.

The View Rendering Architecture

Although you use views to represent content onscreen, the UIView class itself actually relies heavily on
another object for much of its basic behavior. Each view object in UIKit is backed by a Core Animation layer
object, which is an instance of the CALayer class. This layer class provides the fundamental support for the
layout and rendering of a view’s contents and for compositing and animating that content.

View Architecture and Geometry 15
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

In contrast with Mac OS X (in which Core Animation support is optional) iOS integrates Core Animation into
the heart of the view rendering implementation. Although Core Animation has a central role, UIKit streamlines
the programming experience by providing a transparent layer on top of Core Animation. This transparent
layer eliminates the need to access Core Animation layers directly most of the time, instead letting you access
similar behaviors using the methods and properties of the UIView class. Where Core Animation becomes
important, however, is when the UIView class does not provide everything you need. At that point, you can
dive down into the Core Animation layers and do some pretty sophisticated rendering for your application.

The following sections provide an introduction to Core Animation and describe some of the features it
provides to you for free through the UIView class. For more detailed information about how to use Core
Animation for advanced rendering, see Core Animation Programming Guide.

Core Animation Basics

Core Animation takes advantage of hardware acceleration and an optimized architecture to implement fast
rendering and real-time animations. The first time a view’s drawRect: method is called, the layer captures
the results into a bitmap. Subsequent redraw calls use this cached bitmap whenever possible to avoid calling
the drawRect: method, which can be expensive. This process allows Core Animation to optimize its
compositing operations and deliver the desired performance.

Core Animation stores the layers associated with your view objects in a hierarchy referred to as the layer
tree. Like views, each layer in the layer tree has a single parent and can have any number of embedded
sublayers. By default, objects in the layer tree are organized exactly like the views in your view hierarchy. You
can add layers, however, without adding a corresponding view. You might do this to implement special
visual effects for which a view is not required.

Layer objects are actually the driving force behind the rendering and layout system in iOS, and most view
properties are actually thin wrappers for properties on the underlying layer object. When you change the
property of a layer in the layer tree (directly using the CALayer object), the changed value is reflected
immediately in the layer object. If the change triggers a corresponding animation, however, that change
may not be reflected onscreen immediately; instead, it must be animated onto the screen over time. To
manage these sorts of animations, Core Animation maintains two additional sets of layer objects in what are
referred to as the presentation tree and the render tree.

The presentation tree reflects the state of the layers as they are currently presented to the user. When you
animate the changing of a layer value, the presentation layer reflects the old value until the animation
commences. As the animation progresses, Core Animation updates the value in the presentation-tree layer
based on the current frame of the animation. The render tree then works together with the presentation tree
to render the changes on the screen. Because the render tree runs in a separate process or thread, the work
it does does not impact your application’s main run loop. While both the layer tree and the presentation tree
are public, the render tree is a private API.

The placement of layer objects behind your views has many important implications for the performance of
your drawing code. The upside to using layers is that most geometry changes to your views do not require
redrawing. For example, changing the position and size of a view does not require the system to redraw the
contents of a view; it can simply reuse the cached bitmap created by the layer. Animating this cached content
is significantly more efficient than trying to redraw that content every time.

The downside to using layers is that the additional cached data can add memory pressure to your application.
If your application creates too many views or creates very large views, you could run out of memory quickly.
You should not be afraid to use views in your application, but do not create new view objects if you have
existing views that can be reused. In other words, pursue approaches that minimize the number of views
you keep in memory at the same time.

16 View Architecture and Geometry
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

For a more detailed overview of Core Animation, the object trees, and how you create animations, see Core
Animation Programming Guide.

Changing the Layer of a View

Because views are required to have an associated layer object in iOS, the UIView class creates this layer
automatically at initialization time. You can access the layer that is created through the layer property of
the view, but you cannot change the layer object after the view is created.

If you want a view to use a different type of layer, you must override the view’s layerClassclass method
and return the class object for the layer you want it to use. The most common reason to return a different
layer class is to implement an OpenGL-based application. To use OpenGL drawing commands, the layer for
the underlying view must be an instance of the CAEAGLLayer class. This type of layer interacts with the
OpenGL rendering calls to present the desired content on the screen.

Important: You should never modify the delegate property of a view’s layer; that property stores a pointer
to the view and should be considered private. Similarly, because a view can operate as the delegate for only
one layer, you must not assign it as the delegate for any other layer objects. Doing so will cause your
application to crash.

Animation Support

One of the benefits of having a layer object behind every view in iOS is that you can animate content more
easily. Remember that animation is not necessarily about creating visual eye candy. Animations provide the
user with a context for any changes that occur in your application’s user interface. For example, when you
use a transition to move from one screen to another, you are indicating to users that the screens are related.
The system provides automatic support for many of the most commonly used animations, but you can also
create animations for other parts of your interface.

Many properties of the UIView class are considered to be animatable. An animatable property is one for
which there is semiautomatic support for animating from one value to another. You must still tell UIKit that
you want to perform the animation, but Core Animation assumes full responsibility for running the animation
once it has begun. Among the properties you can animate on a UIView object are the following:

frame

bounds

center

transform

alpha

Even though other view properties are not directly animatable, you can create explicit animations for some
of them. Explicit animations require you to do more of the work in managing the animation and the rendered
contents, but they still use the underlying Core Animation infrastructure to obtain good performance.

For more information about creating animations using the UIView class, see “Animating Views” (page 30).
For more information about creating explicit animations, see Core Animation Programming Guide.

View Architecture and Geometry 17
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

View Coordinate Systems

Coordinates in UIKit are based on a coordinate system whose origin is in the top-left corner and whose
coordinate axes extend down and to the right from that point. Coordinate values are represented using
floating-point numbers, which allow for precise layout and positioning of content and allow for resolution
independence. Figure 1-2 shows this coordinate system relative to the screen, but this coordinate system is
also used by the UIWindow and UIView classes. This particular orientation was chosen to make it easier to
lay out controls and content in user interfaces, even though it differs from the default coordinate systems in
use by Quartz and Mac OS X.

Figure 1-2 View coordinate system

Standard coordinates

y

x
(0,0)

As you write your interface code, be aware of the coordinate system currently in effect. Every window and
view object maintains its own local coordinate system. All drawing in a view occurs relative to the view’s
local coordinate system. The frame rectangle for each view, however, is specified using the coordinate system
of its parent view, and coordinates delivered as part of an event object are specified relative to the coordinate
system of the enclosing window. For convenience, the UIWindow and UIView classes each provide methods
to convert back and forth between the coordinate systems of different objects.

Although the coordinate system used by Quartz does not use the top-left corner as the origin point, for many
Quartz calls this is not a problem. Before invoking your view’s drawRect: method, UIKit automatically
configures the drawing environment to use a top-left origin. Quartz calls made within this environment draw
correctly in your view. The only time you need to consider these different coordinate systems is when you
set up the drawing environment yourself using Quartz.

For more information about coordinate systems, Quartz, and drawing in general, see “Graphics and
Drawing” (page 37).

18 View Architecture and Geometry
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

The Relationship of the Frame, Bounds, and Center

A view object tracks its size and location using its frame, bounds, and centerproperties. The frame property
contains a rectangle, the frame rectangle, that specifies the view’s location and size relative to its parent
view’s coordinate system. The bounds property contains a rectangle, the bounds rectangle, that defines
the view’s position and size relative to its own local coordinate system. And although the origin of the bounds
rectangle is typically set to (0, 0), it need not be. The center property contains the center point of the frame
rectangle.

You use the frame, bounds, and center properties for different purposes in your code. Because the bounds
rectangle represents the view’s local coordinate system, you use it most often during drawing or event-handling
code when you need to know where in your view something happened. The center point represents the
known center point of your view and is always the best way to manipulate the position of your view. The
frame rectangle is a convenience value that is computed using the bounds and center point and is valid
only when the view’s transform is set to the identity transform.

Figure 1-3 shows the relationship between the frame and bounds rectangles. The complete image on the
right is drawn in the view starting at (0, 0). Because the size of the bounds does not match the full size of the
image, however, only part of the image outside the bounds rectangle is clipped automatically. When the
view is composited with its parent view, the position of the view inside its parent is determined by the origin
of the view’s frame rectangle, which in this case is (5, 5). As a result, the view’s contents appear shifted down
and to the right from the parent view’s origin.

Figure 1-3 Relationship between a view's frame and bounds

Frame rectangle at (5.0, 5.0), size (73.0, 98.0)

Superview

Bounds rectangle at (0.0, 0.0), size (73.0, 98.0)

When there is no transform applied to the view, the location and size of the view are determined by these
three interrelated properties. The frame property of a view is set when a view object is created
programmatically using the initWithFrame: method. That method also initializes the bounds rectangle
to originate at (0.0, 0.0) and have the same size as the view's frame. The center property is then set to the
center point of the frame.

Although you can set the values of these properties independently, setting the value for one changes the
others in the following ways:

 ■ When you set the frame property, the size of the bounds property is set to match the size of the frame
property. The center property is also adjusted to match the center point of the new frame.

 ■ When you set the center property, the origin of the frame changes accordingly.

 ■ When you set the size of the bounds rectangle, the size of the frame rectangle changes to match.

View Architecture and Geometry 19
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

You can change the bounds origin without changing the other two properties. When you do, the view
displays the portion of the underlying image that you have identified. In Figure 1-3 (page 19), the original
bounds origin is set to (0.0, 0.0). In Figure 1-4, that origin is moved to (8.0, 24.0). As a result, a different portion
of the underlying image is displayed by the view. Because the frame rectangle did not change, however, the
new content is displayed in the same location inside the parent view as before.

Figure 1-4 Altering a view's bounds

Note: By default, a view’s frame is not clipped to its parent view’s frame. If you want to force a view to clip
its subviews, set the view’s clipsToBounds property to YES.

Coordinate System Transformations

Although coordinate system transformations are commonly used in a view’s drawRect:method to facilitate
drawing, in iOS, you can also use them to implement visual effects for your view. For example, the UIView
class includes a transformproperty that lets you apply different types of translation, scaling, and zooming
effects to the entire view. By default, the value of this property is the identity transform, which causes no
changes to the view. To add transformations, get the CGAffineTransform structure stored in this property,
use the corresponding Core Graphics functions to apply the transformations, and then assign the modified
transform structure back to the view’s transform property.

Note: When applying transforms to a view, all transformations are performed relative to the center point of
the view.

Translating a view shifts all subviews along with the drawing of the view's content. Because coordinate
systems of subviews inherit and build on these alterations, scaling also affects the drawing of the subviews.
For more information about how to control the scaling of view content, see “Content Modes and Scaling” (page
21).

20 View Architecture and Geometry
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Important: If the transform property is not the identity transform, the value of the frame property is
undefined and must be ignored. After setting the transform, use the bounds and center properties to get
the position and size of the view.

For information about using transforms in conjunction with your drawRect: method, see “Coordinates and
Coordinate Transforms” (page 38). For information about the functions you use to modify the
CGAffineTransform structure, see CGAffineTransform Reference.

Content Modes and Scaling

When you change the bounds of a view or apply a scaling factor to the transformproperty of a view, the
frame rectangle is changed by a commensurate amount. Depending on the content mode associated with
the view, the view’s content may also be scaled or repositioned to account for the changes. The view’s
contentMode property determines the effect that bounds changes and scaling operations have on the view.
By default, the value of this property is set to UIViewContentModeScaleToFill, which always causes the
view’s contents to be scaled to fit the new frame size. For example, Figure 1-5 shows what happens when
the horizontal scaling factor of the view is doubled.

Figure 1-5 View scaled using the scale-to-fill content mode

View with transform set Bounds rectangle at (0.0, 0.0), size (73.0, 98.0)

Superview

Scaling of your view’s content occurs because the first time a view is shown, its rendered contents are cached
in the underlying layer. Rather than force the view to redraw itself every time its bounds change or a scaling
factor is applied, UIKit uses the view’s content mode to determine how to display the cached content. Figure
1-6 compares the results of changing the bounds of a view or applying a scaling factor to it using several
different content modes.

View Architecture and Geometry 21
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Figure 1-6 Content mode comparisons

UIViewContentModeScaleToFill

Distorting

Nondistorting

UIViewContentModeScaleAspectFit

UIViewContentModeScaleAspectFill

Nondistorting

Although applying a scaling factor always scales the view’s contents, there are content modes that do not
scale the view’s contents when the bounds of the view change. Several UIViewContentMode constants
(such as UIViewContentModeTop and UIViewContentModeBottomRight) display the current content in
different corners or along different edges of the view. There is also a mode for displaying the content centered
inside the view. Changing the bounds rectangle with one of these content modes in place simply moves the
existing contents to the appropriate location inside the new bounds rectangle.

Do consider using content modes when you want to implement resizable controls in your application; by
doing so you can avoid both control distortion and the writing of custom drawing code. Buttons and
segmented controls are particularly suitable for content mode–based drawing. They typically use several
images to create the appearance of the control. In addition to having two fixed-size end cap images, a button
that can grow horizontally uses a stretchable center image that is only 1 pixel wide. By displaying each image
in its own image view and setting the content mode of the stretchable middle image to
UIViewContentModeScaleToFill, the button can grow in size without distorting the appearance of the
end caps. More importantly, the images associated with each image view can be cached by Core Animation
and animated without any custom drawing code, which results in much better performance.

Although content modes are good to avoid redrawing the contents of your view, you can also use the
UIViewContentModeRedraw content mode when you specifically want control over the appearance of your
view during scaling and resizing operations. Setting your view’s content mode to this value forces Core
Animation to invalidate your view’s contents and call your view’s drawRect: method rather than scale or
resize them automatically.

22 View Architecture and Geometry
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Autoresizing Behaviors

When you change the frame rectangle of a view, the position and size of embedded subviews often needs
to change to match the new size of the original view. If the autoresizesSubviewsproperty of a view is set
to YES, its subviews are automatically resized according to the values in the autoresizingMask property.
Often, simply configuring the autoresizing mask for a view provides the appropriate behavior for an application.
Otherwise, it is the application's responsibility to reposition and resize the subviews by overriding the
layoutSubviews method.

To set a view’s autoresizing behaviors, combine the desired autoresizing constants using a bitwise OR operator
and assign the resulting value to the view’s autoresizingMask property. Table 1-1 lists the autoresizing
constants and describes how each one affects the size and placement of a given view. For example, to keep
a view pinned to the lower-left corner of its superview, add theUIViewAutoresizingFlexibleRightMargin
and UIViewAutoresizingFlexibleTopMargin constants and assign them to the autoresizingMask
property. When more than one aspect along an axis is made flexible, the resize amount is distributed evenly
among them.

Table 1-1 Autoresizing mask constants

DescriptionAutoresizing mask

If set, the view doesn’t autoresize.UIViewAutoresizingNone

If set, the view’s height changes proportionally to the change in the
superview’s height. Otherwise, the view’s height does not change
relative to the superview’s height.

UIViewAutoresizing-
FlexibleHeight

If set, the view’s width changes proportionally to the change in the
superview's width. Otherwise, the view’s width does not change
relative to the superview’s width.

UIViewAutoresizing-
FlexibleWidth

If set, the view’s left edge is repositioned proportionally to the change
in the superview’s width. Otherwise, the view’s left edge remains in
the same position relative to the superview’s left edge.

UIViewAutoresizing-
FlexibleLeftMargin

If set, the view’s right edge is repositioned proportionally to the change
in the superview’s width. Otherwise, the view’s right edge remains in
the same position relative to the superview.

UIViewAutoresizing-
FlexibleRightMargin

If set, the view’s bottom edge is repositioned proportionally to the
change in the superview’s height. Otherwise, the view’s bottom edge
remains in the same position relative to the superview.

UIViewAutoresizing-
FlexibleBottomMargin

If set, the view’s top edge is repositioned proportionally to the change
in the superview’s height. Otherwise, the view’s top edge remains in
the same position relative to the superview.

UIViewAutoresizing-
FlexibleTopMargin

Figure 1-7 provides a graphical representation of the position of the constant values. When one of these
constants is omitted, the view's layout is fixed in that aspect; when a constant is included in the mask, the
view's layout is flexible in that aspect.

View Architecture and Geometry 23
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Figure 1-7 View autoresizing mask constants

UIViewAutoresizingFlexibleWidth

UIViewAutoresizingFlexibleRightMargin

UIViewAutoresizingFlexibleBottomMargin

UIViewAutoresizingFlexibleHeight

Superview

View

UIViewAutoresizingFlexibleTopMargin

UIViewAutoresizingFlexibleLeftMargin

(0.0, 0.0)

If you are using Interface Builder to configure your views, you can set the autoresizing behavior for each view
by using the Autosizing controls in the Size inspector. Although the flexible width and height constants from
the preceding figure have the same behavior as the Interface Builder springs located in the same position
have, the behavior of the margin constants is effectively reversed. In other words, to apply the flexible right
margin autoresizing behavior to a view in Interface Builder, you must leave the space on that side of the
Autosizing control empty, not place a strut there. Fortunately, Interface Builder provides an animation to
show you how changes to the autoresizing behaviors affect your view.

If the autoresizesSubviews property of a view is set to NO, any autoresizing behaviors set on the immediate
subviews of that view are ignored. Similarly, if a subview’s autoresizing mask is set to
UIViewAutoresizingNone, the subview does not change size and so its immediate subviews are never
resized either.

Note: For autoresizing to work correctly, the view’s transform property must be set to the identity transform.
The behavior is undefined if it is not.

Although autoresizing behaviors may be suitable for some layout needs, if you want more control over the
layout of your views, you should override the layoutSubviews method in the appropriate view classes. For
more information about managing the layout of your views, see “Responding to Layout Changes” (page 32).

Creating and Managing the View Hierarchy

Managing the view hierarchy of your user interface is a crucial part of developing your application’s user
interface. How you organize your views defines not only the way your application appears visually but also
how your application responds to changes. The parent-child relationships in the view hierarchy help define
the chain of objects that is responsible for handling touch events in your application. When the user rotates
the device, parent-child relationships also help define how each view’s size and position are altered by
changes to the user interface orientation.

Figure 1-8 shows a simple example of how the layering of views creates a desired visual effect. In the case
of the Clock application, tab-bar and navigation-bar views are mixed together with a custom view to implement
the overall interface.

24 Creating and Managing the View Hierarchy
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Figure 1-8 Layered views in the Clock application

Navigation bar

Status bar

Window

Tab bar

Custom view

If you look at the object relationships for the views in the Clock application, you see that they look something
like the relationships shown in Figure 1-9. The window object acts as the root view for the application’s tab
bar, navigation bar, and custom view.

Figure 1-9 View hierarchy for the Clock application

UIViewUITabBar UINavigationBar

UIWindow

There are several ways to build view hierarchies in iPhone applications, including graphically in Interface
Builder and programmatically in your code. The following sections show you how to assemble your view
hierarchies and, having done that, how to find views in the hierarchy and convert between different view
coordinate systems.

Creating and Managing the View Hierarchy 25
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Creating a View Object

The simplest way to create views is to use Interface Builder and load them from the resulting nib file. From
Interface Builder’s graphical environment, you can drag new views out of the library and drop them onto a
window or another view and build your view hierarchies quickly. Because Interface Builder uses live view
objects, when you build your interface graphically you see exactly how it will appear when you load it at
runtime. And there is no need to write tedious code to allocate and initialize each view in your view hierarchy.

If you prefer not to use Interface Builder and nib files to create your views, you can create them
programmatically. To create a new view object, allocate memory for the view object and send that object
an initWithFrame: message to initialize it. For example, to create a new instance of the UIView class,
which you could use as a container for other views, you would use the following code:

CGRect viewRect = CGRectMake(0, 0, 100, 100);
UIView* myView = [[UIView alloc] initWithFrame:viewRect];

Note: Although all system objects support the initWithFrame: message, some may have a preferred
initialization method that you should use instead. For information about any custom initialization methods,
see the reference documentation for the class.

The frame rectangle that you specify when you initialize the view represents the position and size of the
view relative to its intended parent view. You must add views to a window or to another view to make them
appear on the screen. When you do, UIKit uses the frame rectangle you specify to place the view inside its
parent. For information on how to add views to your view hierarchy, see “Adding and Removing
Subviews” (page 26).

Adding and Removing Subviews

Interface Builder is the most convenient way to build view hierarchies because it lets you see exactly how
those views will appear at runtime. It then saves the view objects and their hierarchical relationships in a nib
file, which the system uses at runtime to recreate the objects and relationships in your application. When a
nib file is loaded, the system automatically calls the UIView methods needed to recreate the view hierarchy.

If you prefer not to use Interface Builder and nib files to create your view hierarchies, you can create them
programmatically instead. A view that has required subviews should create them in its own initWithFrame:
method to ensure that they are present and initialized with the view. Subviews that are part of your application
design (and not required for the operation of your view) should be created outside of your view’s initialization
code. In iPhone applications, the two most common places to create views and subviews programmatically
are the applicationDidFinishLaunching: method of your application delegate and the loadView
method of your view controllers.

To manipulate views in the view hierarchy, you use the following methods:

 ■ To add a subview to a parent, call the addSubview: method of the parent view. This method adds the
subview to the end of the parent’s list of subviews.

 ■ To insert a subview in the middle of the parent’s list of subviews, call any of the insertSubview:...
methods of the parent view.

 ■ To reorder existing subviews inside their parent, call the bringSubviewToFront:,
sendSubviewToBack:, orexchangeSubviewAtIndex:withSubviewAtIndex:methods of the parent
view. Using these methods is faster than removing the subviews and reinserting them.

26 Creating and Managing the View Hierarchy
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

 ■ To remove a subview from its parent, call the removeFromSuperview method of the subview (not the
parent view).

When adding subviews, the current frame rectangle of the subview is used as the initial position of that view
inside its parent. You can change that position at any time by changing the frameproperty of the subview.
Subviews whose frame lies outside of their parent’s visible bounds are not clipped by default. To enable
clipping, you must set the clipsToBounds property of the parent view to YES.

Listing 1-1 shows a sample applicationDidFinishLaunching:method of an application delegate object.
In this example, the application delegate creates its entire user interface programmatically at launch time.
The interface consists of two generic UIView objects, which display primary colors. Each view is then
embedded inside a window, which is also a subclass of UIView and can therefore act as a parent view.
Because parents retain their subviews, this method releases the newly created views to prevent them from
being over retained.

Listing 1-1 Creating a window with views

- (void)applicationDidFinishLaunching:(UIApplication *)application {
 // Create the window object and assign it to the
 // window instance variable of the application delegate.
 window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 window.backgroundColor = [UIColor whiteColor];

 // Create a simple red square
 CGRect redFrame = CGRectMake(10, 10, 100, 100);
 UIView *redView = [[UIView alloc] initWithFrame:redFrame];
 redView.backgroundColor = [UIColor redColor];

 // Create a simple blue square
 CGRect blueFrame = CGRectMake(10, 150, 100, 100);
 UIView *blueView = [[UIView alloc] initWithFrame:blueFrame];
 blueView.backgroundColor = [UIColor blueColor];

 // Add the square views to the window
 [window addSubview:redView];
 [window addSubview:blueView];

 // Once added to the window, release the views to avoid the
 // extra retain count on each of them.
 [redView release];
 [blueView release];

 // Show the window.
 [window makeKeyAndVisible];
}

Creating and Managing the View Hierarchy 27
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Important: When you’re considering memory management, think of the subviews as any other collection
object. Specifically, when you insert a view as a subview using addSubview:, that subview is retained by its
superview. Inversely, when you remove the subview from its superview using the removeFromSuperview
method, the subview is autoreleased. Releasing views after adding them to your view hierarchy prevents
them being over retained, which could cause memory leaks.

For more information about Cocoa memory management conventions, seeMemoryManagementProgramming
Guide.

When you add a subview to a parent view, UIKit sends several messages to both the parent and child to let
them know what is happening. You can override methods such as willMoveToSuperview:,
willMoveToWindow:, willRemoveSubview:, didAddSubview:, didMoveToSuperview, and
didMoveToWindow in your custom views to process changes before and after they occur and to update the
state information in your view accordingly.

After you create a view hierarchy, you can use the superview property of a view to get its parent or the
subviews property to get its children. You can also use the isDescendantOfView: method to determine
whether a view is in the view hierarchy of a parent view. Because the root view in a view hierarchy has no
parent, its superview property is set to nil. For views currently onscreen, the window object is typically
the root view of the hierarchy.

You can use the window property of a view to get a pointer to the window that currently contains the view
(if any). This property is set to nil if the view is not currently attached to a window.

Converting Coordinates in the View Hierarchy

At various times, particularly when handling events, an application may need to convert coordinate values
from one frame of reference to another. For example, touch events usually report the touch location using
the coordinate system of the window, but view objects need that information in the local coordinate system
of the view, which may be different. The UIView class defines the following methods for converting
coordinates to and from the view’s local coordinate system:

convertPoint:fromView:

convertRect:fromView:

convertPoint:toView:

convertRect:toView:

The convert...:fromView: methods convert coordinates to the view’s local coordinate system, while the
convert...:toView:methods convert coordinates from the view’s local coordinate system to the coordinate
system of the specified view. If you specify nil as the reference view for any of the methods, the conversions
are made to and from the coordinate system of the window that contains the view.

In addition to the UIView conversion methods, the UIWindow class also defines several conversion methods.
These methods are similar to the UIView versions except that instead of converting to and from a view’s
local coordinate system, these methods convert to and from the window’s coordinate system.

convertPoint:fromWindow:

convertRect:fromWindow:

convertPoint:toWindow:

convertRect:toWindow:

28 Creating and Managing the View Hierarchy
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Coordinate conversions are straightforward when neither view is rotated or when dealing only with points.
When converting rectangles or sizes between views with different rotations, the geometric structure must
be altered in a reasonable way so that the resulting coordinates are correct. When converting a rectangle,
the UIView class assumes that you want to guarantee coverage of the original screen area. To this end, the
converted rectangle is enlarged so that when located in the appropriate view, it completely covers the original
rectangle. Figure 1-10 shows the conversion of a rectangle in the rotatedView object's coordinate system
to that of its superview, outerView.

Figure 1-10 Converting values in a rotated view

Rectangle in
rotatedView
coordinate system

Rectangle converted to
outerView
coordinate system

outerView

superview
subviews
frame

rotatedView

superview
subviews
frame

When converting size information, UIView simply treats it as a delta offset from (0.0, 0.0) that you need to
convert from one view to another. Though the offset distance remains the same, the balance along the two
axes shifts according to the rotation. When converting sizes, UIKit always returns sizes that consist of positive
numbers.

Tagging Views

The UIView class contains a tag property that you can use to tag individual view objects with an integer
value. You can use tags to uniquely identify views inside your view hierarchy and to perform searches for
those views at runtime. (Tag-based searches are faster than iterating the view hierarchy yourself.) The default
value for the tag property is 0.

To search for a tagged view, use the viewWithTag: method of UIView. This method searches the receiver’s
subviews using a depth-first search, starting with the receiver itself.

Modifying Views at Runtime

As applications receive input from the user, they adjust their user interface in response to that input. An
application might rearrange the views in its interface, refresh existing views that contain changed data, or
load an entirely new set of views. When deciding which techniques to use, consider your interface and what
you are trying to achieve. How you initiate these techniques, however, is the same for all applications. The
following sections describe these techniques and how you use them to update your user interface at runtime.

Modifying Views at Runtime 29
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Note: For background information about how UIKit moves events and messages between itself and your
custom code, see “The View Interaction Model” (page 13) before proceeding.

Animating Views

Animations provide fluid visual transitions between different states of your user interface. In iOS, animations
are used extensively to reposition views, change their size, and even change their alpha value to make them
fade in or out. Because this support is crucial for making easy-to-use applications, UIKit simplifies the process
of creating animations by integrating support for them directly into the UIView class.

The UIView class defines several properties that are inherently animatable—that is, the view provides built-in
support for animating changes in the property from their current value to a new value. Although the work
needed to perform the animation is handled for you automatically by the UIView class, you must still let the
view know that you want the animation to happen. You do this by wrapping changes to the given property
in an animation block.

An animation block starts with a call to the beginAnimations:context: class method of UIView and
ends with a call to the commitAnimations class method. Between these calls, you configure the animation
parameters and change the properties you want to animate. As soon as you call the commitAnimations
method, UIKit performs the animations, animating changes from their current values to the new values you
just set. Animation blocks can be nested, but nested animations do not start until the outermost animation
block is committed.

Table 1-2 lists the animatable properties of the UIView class.

Table 1-2 Animatable properties

DescriptionProperty

The view’s frame rectangle, in superview coordinates.frame

The view’s bounding rectangle, in view coordinates.bounds

The center of the frame, in superview coordinates.center

The transform applied to the view, relative to the center of its bounds.transform

The view’s alpha value, which determines the view’s level of transparency.alpha

Configuring Animation Parameters

In addition to changing property values inside an animation block, you can configure additional parameters
that determine how you want the animation to proceed. You do this by calling the following class methods
of UIView:

 ■ Use the setAnimationStartDate: method to set the start date of the animations after the
commitAnimations method returns. The default behavior is to schedule the animation for immediate
execution on the animation thread.

 ■ Use the setAnimationDelay: method to set a delay between the time the commitAnimations
method returns and the animations actually begin.

30 Modifying Views at Runtime
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

 ■ Use the setAnimationDuration: method to set the number of seconds over which the animations
occur.

 ■ Use the setAnimationCurve: method to set the relative speed of the animations over their course.
For example, the animations can gradually speed up at the beginning, gradually slow down near the
end, or remain the same speed throughout.

 ■ Use the setAnimationRepeatCount: method to set the number of times the animations repeat.

 ■ Use the setAnimationRepeatAutoreverses: method to specify whether the animations reverse
automatically when they reach their target value. Combined with the setAnimationRepeatCount:
method, you can use this method to toggle each property between its initial and final values smoothly
over a period of time.

The commitAnimations class method returns immediately and before the animations begin. UIKit performs
animations in a separate thread and away from your application’s main event loop. The commitAnimations
method posts its animations to this separate thread where they are queued up until they are ready to execute.
By default, Core Animation finishes the currently running animation block before starting animations currently
on the queue. You can override this behavior and start your animation immediately, however, by passing
YES to the setAnimationBeginsFromCurrentState: class method within your animation block. This
causes the current in-flight animation to stop and the new animation to begin from the current state.

By default, all animatable property changes within an animation block are animated. If you want to prevent
some changes made within the block from being animated, use the setAnimationsEnabled: method to
disable animations temporarily, make your changes, and then reenable them. Any changes made after a
setAnimationsEnabled: call with the value NO are not animated until a matching call with the value YES
occurs or you commit the animation block. Use the areAnimationsEnabledmethod to determine whether
animations are currently enabled.

Configuring an Animation Delegate

You can assign a delegate to an animation block and use that delegate to receive messages when the
animations begin and end. You might do this to perform additional tasks immediately before and after the
animation. You set the delegate using the setAnimationDelegate: class method of UIView, and use the
setAnimationWillStartSelector: and setAnimationDidStopSelector: methods to specify the
selectors that will receive the messages. The signatures of the corresponding methods are as follows:

- (void)animationWillStart:(NSString *)animationID context:(void *)context;
- (void)animationDidStop:(NSString *)animationID finished:(NSNumber *)finished
 context:(void *)context;

The animationID and context parameters for both methods are the same parameters that were passed
to the beginAnimations:context: method at the beginning of the animation block:

 ■ animationID - an application-supplied string used to identify animations in an animation block.

 ■ context - another application-supplied object you can use to pass additional information to the delegate.

The setAnimationDidStopSelector: selector method has an additional argument—a Boolean value
that is YES if the animation ran to completion and was not canceled or stopped prematurely by another
animation.

Modifying Views at Runtime 31
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Responding to Layout Changes

Whenever the layout of your views changes, UIKit applies each view’s autoresizing behaviors and then calls
its layoutSubviews method to give it a chance to adjust the geometry of its contained subviews further.
Layout changes can occur when any of the following happens:

 ■ The size of a view’s bounds rectangle changes.

 ■ The content offset value—that is, the origin of the visible content region—of a scroll view changes.

 ■ The transform associated with the view changes.

 ■ The set of Core Animation sublayers associated with the view’s layer changes.

 ■ Your application forces layout to occur by calling the setNeedsLayout or layoutIfNeeded methods
of the view.

 ■ Your application forces layout by calling the setNeedsLayout method of the view’s underlying layer
object.

A view’s autoresizing behaviors handle the initial job of positioning any subviews. Applying these behaviors
guarantees that your views are close to their intended size. For information about how autoresizing behaviors
affect the size and position of your views, see “Autoresizing Behaviors” (page 23).

Sometimes, you might want to adjust the layout of subviews manually using layoutSubviews, rather than
rely exclusively on autoresizing behaviors. For example, if you are implementing a custom control that is
built from several subview elements, by adjusting the subviews manually you can precisely configure the
appearance for your control over a range of sizes. Alternatively, a view representing a large scrollable content
area could display that content by tiling a set of subviews. During scrolling, views going off one edge of the
screen would be recycled and repositioned at the incoming screen edge along with any new content.

Note: You can also use the layoutSubviews method to adjust the size and position of custom CALayer
objects attached as sublayers to your view’s layer. Managing custom layer hierarchies behind your view lets
you perform advanced animations directly using Core Animation. For more information about using Core
Animation to manage layer hierarchies, see Core Animation Programming Guide.

When writing your layout code, be sure to test your code in each of your application’s supported interface
orientations. Applications that support both landscape and portrait orientations should verify that layout is
handled properly in each orientation. Similarly, your application should be prepared to deal with other system
changes, such as the height of the status bar changing. This occurs when a user uses your application while
on an active phone call and then hangs up. At hang-up time, the managing view controller may resize its
view to account for the shrinking status bar size. Such a change would then filter down to the rest of the
views in your application.

Redrawing Your View’s Content

Occasionally, changes to your application’s data model require that you also change the corresponding user
interface. To make those changes, you mark the corresponding views as dirty and in need of an update (using
either the setNeedsDisplay or setNeedsDisplayInRect:methods). Marking views as dirty, as opposed
to simply creating a graphics context and drawing, gives the system a chance to process drawing operations
more efficiently. For example, if you mark several regions of the same view as dirty during a given cycle, the

32 Modifying Views at Runtime
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

system coalesces the dirty regions into a single call to the view’s drawRect: method. As a result, only one
graphics context is created to draw all of the affected regions. This practice is much more efficient than
creating several graphics contexts in quick succession.

Views that implement a drawRect: method should always check the rectangle passed to the method and
use it to limit the scope of their drawing operations. Because drawing is a relatively expensive operation,
limiting drawing in this way is a good way to improve performance.

By default, geometry changes to a view do not automatically cause the view to be redrawn. Instead, most
geometry changes are handled automatically by Core Animation. Specifically, when you change the frame,
bounds, center, or transform properties of the view, Core Animation applies the geometry changes to
the cached bitmap associated with the view’s layer. In many cases, this approach is perfectly acceptable, but
if you find the results undesirable, you can force UIKit to redraw your view instead. To prevent Core Animation
from applying geometry changes implicitly, set your view’s contentModeproperty to
UIViewContentModeRedraw. For more information about content modes, see “Content Modes and
Scaling” (page 21).

Hiding Views

You can hide or show a view by changing the value in the view’s hiddenproperty. Setting this property to
YES hides the view; setting it to NO shows it. Hiding a view also hides any embedded subviews as if their
own hidden property were set.

When you hide a view, it remains in the view hierarchy, but its contents are not drawn and it does not receive
touch events. Because it remains in the view hierarchy, a hidden view continues to participate in autoresizing
and other layout operations. If you hide a view that is currently the first responder, the view does not
automatically resign its first responder status. Events targeted at the first responder are still delivered to the
hidden view. For more information about the responder chain, see Event Handling Guide for iOS.

Creating a Custom View

The UIView class provides the underlying support for displaying content on the screen and for handling
touch events, but its instances draw nothing but a background color using an alpha value and its subviews.
If your application needs to display custom content or handle touch events in a specific manner, you must
create a custom subclass of UIView.

The following sections describe some of the key methods and behaviors you might implement in your custom
view objects. For additional subclassing information, see UIView Class Reference.

Initializing Your Custom View

Every new view object you define should include a custom initWithFrame:initializer method. This method
is responsible for initializing the class at creation time and putting your view object into a known state. You
use this method when creating instances of your view programmatically in your code.

Creating a Custom View 33
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Listing 1-2 shows a skeletal implementation of a standard initWithFrame: method. This method calls the
inherited implementation of the method first and then initializes the instance variables and state information
of the class before returning the initialized object. Calling the inherited implementation is traditionally
performed first so that if there is a problem, you can simply abort your own initialization code and return
nil.

Listing 1-2 Initializing a view subclass

- (id)initWithFrame:(CGRect)aRect {
 self = [super initWithFrame:aRect];
 if (self) {
 // setup the initial properties of the view
 ...
 }
 return self;
}

If you plan to load instances of your custom view class from a nib file, you should be aware that in iOS, the
nib-loading code does not use the initWithFrame: method to instantiate new view objects. Instead, it
uses the initWithCoder: method that is defined as part of the NSCodingprotocol.

Even if your view adopts the NSCoding protocol, Interface Builder does not know about your view’s custom
properties and therefore does not encode those properties into the nib file. As a result, your own
initWithCoder: method does not have the information it needs to properly initialize the class when it is
loaded from a nib file. To solve this problem, you can implement the awakeFromNib method in your class
and use it to initialize your class specifically when it is loaded from a nib file.

Drawing Your View’s Content

As you make changes to your view’s content, you notify the system that parts of that view need to be redrawn
using the setNeedsDisplay or setNeedsDisplayInRect: methods. When the application returns to its
run loop, it coalesces any drawing requests and computes the specific parts of your interface that need to
be updated. It then begins traversing your view hierarchy and sending drawRect: messages to the views
that require updates. The traversal starts with the root view of your hierarchy and proceeds down through
the subviews, processing them from back to front. Views that display custom content inside their visible
bounds must implement the drawRect: method to render that content.

Before calling your view’s drawRect: method, UIKit configures the drawing environment for your view. It
creates a graphics context and adjusts its coordinate system and clipping region to match the coordinate
system and bounds of your view. Thus, by the time your drawRect: method is called, you can simply begin
drawing using UIKit classes and functions, Quartz functions, or a combination of them all. If you need to
access the current graphics context, you can get a pointer to it using the UIGraphicsGetCurrentContext
function.

Important: The current graphics context is valid only for the duration of one call to your view’s drawRect:
method. UIKit may create a different graphics context for each subsequent call to this method, so you should
not try to cache the object and use it later.

Listing 1-3 shows a simple implementation of a drawRect: method that draws a 10-pixel-wide red border
around the view. Because UIKit drawing operations use Quartz for their underlying implementations, you
can mix drawing calls as shown here and still get the results you expect.

34 Creating a Custom View
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Listing 1-3 A drawing method

- (void)drawRect:(CGRect)rect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGRect myFrame = self.bounds;

 CGContextSetLineWidth(context, 10);

 [[UIColor redColor] set];
 UIRectFrame(myFrame);
}

If you know that your view’s drawing code always covers the entire surface of the view with opaque content,
you can improve the overall efficiency of your drawing code by setting the opaqueproperty of your view to
YES. When you mark a view as opaque, UIKit avoids drawing content that is located immediately behind
your view. This not only reduces the amount of time spent drawing but also minimizes the work that must
be done to composite that content together. You should set this property to YES only if you know your view
provides opaque content. If your view cannot guarantee that its contents are always opaque, you should set
the property to NO.

Another way to improve drawing performance, especially during scrolling, is to set the
clearsContextBeforeDrawing property of your view to NO. When this property is set to YES, UIKIt
automatically fills the area to be updated by your drawRect: method with transparent black before calling
your method. Setting this property to NO eliminates the overhead for that fill operation but puts the burden
on your application to completely redraw the portions of your view inside the update rectangle passed to
your drawRect: method. Such an optimization is usually a good tradeoff during scrolling, however.

Responding to Events

The UIView class is a subclass of UIResponder and is therefore capable of receiving touch events
corresponding to user interactions with the view’s contents. Touch events start at the view in which the
touch occurred and are passed up the responder chain until they are handled. Because views are themselves
responders, they participate in the responder chain and therefore can receive touch events dispatched to
them from any of their associated subviews.

Views that handle touch events typically implement all of the following methods, which are described in
more detail in Event Handling Guide for iOS.

touchesBegan:withEvent:

touchesMoved:withEvent:

touchesEnded:withEvent:

touchesCancelled:withEvent:

Remember that, by default, views respond to only one touch at a time. If the user puts a second finger down,
the system ignores the touch event and does not report it to your view. If you plan to track multifinger
gestures from your view’s event-handler methods, you need to reenable multi-touch events by setting the
multipleTouchEnabledproperty of your view to YES.

Some views, such as labels and images, disable event handling altogether initially. You can control whether
a view handles events at all by changing the value of the view’s userInteractionEnabled property. You
might temporarily set this property to NO to prevent the user from manipulating the contents of your view
while a long operation is pending. To prevent events from reaching any of your views, you can also use the

Creating a Custom View 35
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

beginIgnoringInteractionEvents and endIgnoringInteractionEvents methods of the
UIApplication object. These methods affect the delivery of events for the entire application, not just for
a single view.

As it handles touch events, UIKit uses the hitTest:withEvent: and pointInside:withEvent:methods
of UIView to determine whether a touch event occurred in a given view. Although you rarely need to override
these methods, you could do so to implement custom touch behaviors for your view. For example, you could
override these methods to prevent subviews from handling touch events.

Cleaning Up After Your View

If your view class allocates any memory, stores references to any custom objects, or holds resources that
must be released when the view is released, you must implement a dealloc method. The system calls the
dealloc method when your view’s retain count reaches zero and your view is about to be deallocated itself.
Your implementation of this method should release the objects and resources it holds and then call the
inherited implementation, as shown in Listing 1-4.

Listing 1-4 Implementing the dealloc method

- (void)dealloc {
 // Release a retained UIColor object
 [color release];

 // Call the inherited implementation
 [super dealloc];
}

36 Creating a Custom View
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

Windows and Views

Important: This document contains information that used to be in iOS Application Programming Guide. The
information in this document has not been updated specifically for iOS 4.0.

High-quality graphics are an important part of your application’s user interface. Providing high-quality graphics
not only makes your application look good, but it also makes your application look like a natural extension
to the rest of the system. iOS provides two primary paths for creating high-quality graphics in your system:
OpenGL or native rendering using Quartz, Core Animation, and UIKit.

The OpenGL frameworks are geared primarily toward game development or applications that require high
frame rates. OpenGL is a C-based interface used to create 2D and 3D content on desktop computers. iOS
supports OpenGL drawing through the OpenGL ES framework, which provides support for both the OpenGL
ES 2.0 and OpenGL ES v1.1 specifications. OpenGL ES is designed specifically for use on embedded hardware
systems and differs in many ways from desktop versions of OpenGL.

For developers who want a more object-oriented drawing approach, iOS provides Quartz, Core Animation,
and the graphics support in UIKit. Quartz is the main drawing interface, providing support for path-based
drawing, anti-aliased rendering, gradient fill patterns, images, colors, coordinate-space transformations, and
PDF document creation, display, and parsing. UIKit provides Objective-C wrappers for Quartz images and
color manipulations. Core Animation provides the underlying support for animating changes in many UIKit
view properties and can also be used to implement custom animations.

This chapter provides an overview of the drawing process for iPhone applications, along with specific drawing
techniques for each of the supported drawing technologies. This chapter also provides tips and guidance
on how to optimize your drawing code for the iOS platform.

Important: The UIKit classes are generally not thread safe. All drawing-related operations should be performed
on your application’s main thread.

The UIKit Graphics System

In iOS, all drawing—regardless of whether it involves OpenGL, Quartz, UIKit, or Core Animation—occurs
within the confines of a UIView object. Views define the portion of the screen in which drawing occurs. If
you use system-provided views, this drawing is handled for you automatically. If you define custom views,
however, you must provide the drawing code yourself. For applications that draw using OpenGL, once you
set up your rendering surface, you use the drawing model specified by OpenGL.

For Quartz, Core Animation, and UIKit, you use the drawing concepts described in the following sections.

The UIKit Graphics System 37
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

The View Drawing Cycle

The basic drawing model for UIView objects involves updating content on demand. The UIView class makes
the update process easier and more efficient, however, by gathering the update requests you make and
delivering them to your drawing code at the most appropriate time.

Whenever a portion of your view needs to be redrawn, the UIView object’s built-in drawing code calls its
drawRect: method. It passes this method a rectangle indicating the portion of your view that needs to be
redrawn. You override this method in your custom view subclasses and use it to draw the contents of your
view. The first time your view is drawn, the rectangle passed to the drawRect: method contains your view’s
entire visible area. During subsequent calls, however, this rectangle represents only the portion of the view
that actually needs to be redrawn. There are several actions that can trigger a view update:

 ■ Moving or removing another view that was partially obscuring your view

 ■ Making a previously hidden view visible again by setting its hiddenproperty to NO

 ■ Scrolling a view off the screen and then back on

 ■ Explicitly calling the setNeedsDisplay or setNeedsDisplayInRect: method of your view

After calling your drawRect: method, the view marks itself as updated and waits for new actions to arrive
and trigger another update cycle. If your view displays static content, then all you need to do is respond to
changes in your view’s visibility caused by scrolling and the presence of other views. If you update your view’s
content periodically, however, you must determine when to call the setNeedsDisplay or
setNeedsDisplayInRect:method to trigger an update. For example, if you were updating content several
times a second, you might want to set up a timer to update your view. You might also update your view in
response to user interactions or the creation of new content in your view.

Coordinates and Coordinate Transforms

As described in “View Coordinate Systems” (page 18), the origin of a window or view is located in its top-left
corner, and positive coordinate values extend down and to the right of this origin. When you write your
drawing code, you use this coordinate system to specify the location of individual points for the content you
draw.

If you need to make changes to the default coordinate system, you do so by modifying the current
transformation matrix. The current transformation matrix (CTM) is a mathematical matrix that maps points
in your view’s coordinate system to points on the device’s screen. When your view’s drawRect: method is
first called, the CTM is configured so that the origin of the coordinate system matches the your view’s origin
and its positive axes extend down and to the right. However, you can change the CTM by adding scaling,
rotation, and translation factors to it and thereby change the size, orientation, and position of the default
coordinate system relative to the underlying view or window.

Modifying the CTM is the standard technique used to draw content in your view because it involves much
less work. If you want to draw a 10 x 10 square starting at the point (20, 20) in the current drawing system,
you could create a path that moves to (20, 20) and then draws the needed set of lines to complete the square.
If you decide later that you want to move that square to the point (10, 10), however, you would have to
recreate the path with the new starting point. In fact, you would have to recreate the path every time you
changed the origin. Creating paths is a relatively expensive operation, but creating a square whose origin is
at (0, 0) and modifying the CTM to match the desired drawing origin is cheap by comparison.

38 The UIKit Graphics System
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

In the Core Graphics framework, there are two ways to modify the CTM. You can modify the CTM directly
using the CTM manipulation functions defined in CGContext Reference. You can also create a
CGAffineTransform structure, apply any transformations you want, and then concatenate that transform
onto the CTM. Using an affine transform lets you group transformations and then apply them to the CTM all
at once. You can also evaluate and invert affine transforms and use them to modify point, size, and rectangle
values in your code. For more information on using affine transforms, see Quartz 2D Programming Guide and
CGAffineTransform Reference.

Graphics Contexts

Before calling your custom drawRect: method, the view object automatically configures its drawing
environment so that your code can start drawing immediately. As part of this configuration, the UIView
object creates a graphics context (a CGContextRef opaque type) for the current drawing environment. This
graphics context contains the information the drawing system needs to perform any subsequent drawing
commands. It defines basic drawing attributes such as the colors to use when drawing, the clipping area,
line width and style information, font information, compositing options, and several others.

You can create custom graphics context objects in situations where you want to draw somewhere other than
your view. In Quartz, you primarily do this when you want to capture a series of drawing commands and use
them to create an image or a PDF file. To create the context, you use the CGBitmapContextCreate or
CGPDFContextCreate function. Once you have the context, you can pass it to the drawing functions needed
to create your content.

When creating custom contexts, the coordinate system for those contexts is different than the native coordinate
system used by iOS. Instead of the origin being in the upper-left corner of the drawing surface, it is in the
lower-left corner and the axes point up and to the right. The coordinates you specify in your drawing
commands must take this into consideration or the resulting image or PDF file may appear wrong when
rendered.

Important: Because you use a lower-left origin when drawing into a bitmap or PDF context, you must
compensate for that coordinate system when rendering the resulting content into a view. In other words, if
you create an image and draw it using the CGContextDrawImage function, the image will appear upside
down by default. To correct for this, you must invert the y axis of the CTM (by multiplying it by -1) and shift
the origin from the lower-left corner to the upper-left corner of the view.

If you use a UIImage object to wrap a CGImageRef you create, you do not need to modify the CTM. The
UIImage object automatically compensates for the inverted coordinate system of the CGImageRef type.

For more information about graphics contexts, modifying the graphics state information, and using graphics
contexts to create custom content, seeQuartz 2DProgrammingGuide. For a list of functions used in conjunction
with graphics contexts, see CGContext Reference, CGBitmapContext Reference, and CGPDFContext Reference.

Points Versus Pixels

The Quartz drawing system uses a vector-based drawing model. Compared to a raster-based drawing model,
in which drawing commands operate on individual pixels, drawing commands in Quartz are specified using
a fixed-scale drawing space, known as the user coordinate space. iOS then maps the coordinates in this
drawing space onto the actual pixels of the device. The advantage of this model is that graphics drawn using
vector commands continue to look good when scaled up or down using an affine transform.

The UIKit Graphics System 39
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

In order to maintain the precision inherent in a vector-based drawing system, drawing coordinates are
specified using floating-point values instead of integers. The use of floating-point values for coordinates
makes it possible for you to specify the location of your program's content very precisely. For the most part,
you do not have to worry about how those values are eventually mapped to the device’s screen.

The user coordinate space is the environment that you use for all of your drawing commands. The units of
this space are measured in points. The device coordinate space refers to the native coordinate space of the
device, which is measured in pixels. By default, one point in user coordinate space is equal to one pixel in
device space, which results in 1 point equaling 1/160th of an inch. You should not assume that this 1-to-1
ratio will always be the case, however.

Color and Color Spaces

iOS supports the full range of color spaces available in Quartz; however, most applications should need only
the RGB color space. Because iOS is designed to run on embedded hardware and display graphics on a screen,
the RGB color space is the most appropriate one to use.

The UIColor object provides convenience methods for specifying color values using RGB, HSB, and grayscale
values. When creating colors in this way, you never need to specify the color space. It is determined for you
automatically by the UIColor object.

You can also use the CGContextSetRGBStrokeColor and CGContextSetRGBFillColor functions in the
Core Graphics framework to create and set colors. Although the Core Graphics framework includes support
for creating colors using other color spaces, and for creating custom color spaces, using those colors in your
drawing code is not recommended. Your drawing code should always use RGB colors.

Supported Image Formats

Table 2-1 lists the image formats supported directly by iOS. Of these formats, the PNG format is the one most
recommended for use in your applications.

Table 2-1 Supported image formats

Filename extensionsFormat

.pngPortable Network Graphic (PNG)

.tiff, .tifTagged Image File Format (TIFF)

.jpeg, .jpgJoint Photographic Experts Group (JPEG)

.gifGraphic Interchange Format (GIF)

.bmp, .BMPfWindows Bitmap Format (DIB)

.icoWindows Icon Format

.curWindows Cursor

.xbmXWindow bitmap

40 The UIKit Graphics System
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

Drawing Tips

The following sections provide tips on how to write quality drawing code while ensuring that your application
looks appealing to end users.

Deciding When to Use Custom Drawing Code

Depending on the type of application you are creating, it may be possible to use little or no custom drawing
code. Although immersive applications typically make extensive use of custom drawing code, utility and
productivity applications can often use standard views and controls to display their content.

The use of custom drawing code should be limited to situations where the content you display needs to
change dynamically. For example, a drawing application would need to use custom drawing code to track
the user’s drawing commands and a game would be updating the screen constantly to reflect the changing
game environment. In those situations, you would need to choose an appropriate drawing technology and
create a custom view class to handle events and update the display appropriately.

On the other hand, if the bulk of your application’s interface is fixed, you can render the interface in advance
to one or more image files and display those images at runtime using UIImageView objects. You can layer
image views with other content as needed to build your interface. For example, you could use UILabel
objects to display configurable text and include buttons or other controls to provide interactivity.

Improving Drawing Performance

Drawing is a relatively expensive operation on any platform, and optimizing your drawing code should always
be an important step in your development process. Table 2-2 lists several tips for ensuring that your drawing
code is as optimal as possible. In addition to these tips, you should always use the available performance
tools to test your code and remove hotspots and redundancies.

Table 2-2 Tips for improving drawing performance

ActionTip

During each update cycle, you should update only the portions of your view
that actually changed. If you are using the drawRect: method of UIView
to do your drawing, use the update rectangle passed to that method to limit
the scope of your drawing. For OpenGL drawing, you must track updates
yourself.

Draw minimally

Compositing a view whose contents are opaque requires much less effort
than compositing one that is partially transparent. To make a view opaque,
the contents of the view must not contain any transparency and the opaque
property of the view must be set to YES.

Mark opaque views as such

If every pixel of a PNG image is opaque, removing the alpha channel avoids
the need to blend the layers containing that image. This simplifies
compositing of the image considerably and improves drawing performance.

Remove alpha channels from
opaque PNG files

Drawing Tips 41
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

ActionTip

Creating new views during scrolling should be avoided at all costs. Taking
the time to create new views reduces the amount of time available for
updating the screen, which leads to uneven scrolling behavior.

Reuse table cells and views
during scrolling

By default, UIKit clears a view’s current context buffer prior to calling its
drawRect: method to update that same area. If you are responding to
scrolling events in your view, clearing this region repeatedly during scrolling
updates can be expensive. To disable the behavior, you can change the value
in the clearsContextBeforeDrawing property to NO.

Avoid clearing the previous
content during scrolling

Changing the graphics state requires effort by the window server. If you need
to draw content that uses similar state information, try to draw that content
together to reduce the number of state changes needed.

Minimize graphics state
changes while drawing

Maintaining Image Quality

Providing high-quality images for your user interface should be a priority in your design. Images provide a
reasonably efficient way to display complicated graphics and should be used wherever they are appropriate.
When creating images for your application, keep the following guidelines in mind:

 ■ Use the PNG format for images. The PNG format provides high-quality image content and is the preferred
image format for iOS. In addition, iOS includes an optimized drawing path for PNG images that is typically
more efficient than other formats.

 ■ Create images so that they do not need resizing. If you plan to use an image at a particular size, be
sure to create the corresponding image resource at that size. Do not create a larger image and scale it
down to fit, because scaling requires additional CPU cycles and requires interpolation. If you need to
present an image at variable sizes, include multiple versions of the image at different sizes and scale
down from an image that is relatively close to the target size.

Drawing with Quartz and UIKit

Quartz is the general name for the native window server and drawing technology in iOS. The Core Graphics
framework is at the heart of Quartz, and is the primary interface you use for drawing content. This framework
provides data types and functions for manipulating the following:

 ■ Graphics contexts

 ■ Paths

 ■ Images and bitmaps

 ■ Transparency layers

 ■ Colors, pattern colors, and color spaces

 ■ Gradients and shadings

 ■ Fonts

42 Drawing with Quartz and UIKit
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

 ■ PDF content

UIKit builds on the basic features of Quartz by providing a focused set of classes for graphics-related operations.
The UIKit graphics classes are not intended as a comprehensive set of drawing tools—Core Graphics already
provides that. Instead, they provide drawing support for other UIKit classes. UIKit support includes the
following classes and functions:

 ■ UIImage, which implements an immutable class for displaying images

 ■ UIColor, which provides basic support for device colors

 ■ UIFont, which provides font information for classes that need it

 ■ UIScreen, which provides basic information about the screen

 ■ Functions for generating a JPEG or PNG representation of a UIImage object

 ■ Functions for drawing rectangles and clipping the drawing area

 ■ Functions for changing and getting the current graphics context

For information about the classes and methods that comprise UIKit, see UIKit Framework Reference. For more
information about the opaque types and functions that comprise the Core Graphics framework, see Core
Graphics Framework Reference.

Configuring the Graphics Context

By the time your drawRect: method is called, your view’s built-in drawing code has already created and
configured a default graphics context for you. You can retrieve a pointer to this graphics context by calling
the UIGraphicsGetCurrentContext function. This function returns a reference to a CGContextRef type,
which you pass to Core Graphics functions to modify the current graphics state. Table 2-3 lists the main
functions you use to set different aspects of the graphics state. For a complete list of functions, see CGContext
Reference. This table also lists UIKit alternatives where they exist.

Table 2-3 Core graphics functions for modifying graphics state

UIKit alternativesCore Graphics functionsGraphics state

NoneCGContextRotateCTM

CGContextScaleCTM

CGContextTranslateCTM

CGContextConcatCTM

Current transformation matrix (CTM)

NoneCGContextClipToRectClipping area

NoneCGContextSetLineWidth

CGContextSetLineJoin

CGContextSetLineCap

CGContextSetLineDash

CGContextSetMiterLimit

Line: Width, join, cap, dash, miter
limit

Drawing with Quartz and UIKit 43
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

UIKit alternativesCore Graphics functionsGraphics state

NoneCGContextSetFlatnessAccuracy of curve estimation
(flatness)

NoneCGContextSetAllowsAntialiasingAnti-aliasing setting

UIColor classCGContextSetRGBFillColor

CGContextSetRGBStrokeColor

Color: Fill and stroke settings

NoneCGContextSetAlphaAlpha value (transparency)

NoneCGContextSetRenderingIntentRendering intent

NoneCGContextSetFillColorSpace

CGContextSetStrokeColorSpace

Color space: Fill and stroke settings

UIFont classCGContextSetFont

CGContextSetFontSize

CGContextSetCharacterSpacing

Text: Font, font size, character
spacing, text drawing mode

The UIImage class and
various drawing functions
let you specify which
blend mode to use.

CGContextSetBlendModeBlend mode

The graphics context contains a stack of saved graphics states. When Quartz creates a graphics context, the
stack is empty. Using the CGContextSaveGState function pushes a copy of the current graphics state onto
the stack. Thereafter, modifications you make to the graphics state affect subsequent drawing operations
but do not affect the copy stored on the stack. When you are done making modifications, you can return to
the previous graphics state by popping the saved state off the top of the stack using the
CGContextRestoreGState function. Pushing and popping graphics states in this manner is a fast way to
return to a previous state and eliminates the need to undo each state change individually. It is also the only
way to restore some aspects of the state, such as the clipping path, back to their original settings.

For general information about graphics contexts and using them to configure the drawing environment, see
“Graphics Contexts” in Quartz 2D Programming Guide.

Creating and Drawing Images

iOS provides support for loading and displaying images using both the UIKit and Core Graphics frameworks.
How you determine which classes and functions to use to draw images depends on how you intend to use
them. Whenever possible, though, it is recommended that you use the classes of UIKit for representing images
in your code. Table 2-4 lists some of the usage scenarios and the recommended options for handling them.

44 Drawing with Quartz and UIKit
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

Table 2-4 Usage scenarios for images

Recommended usageScenario

Use a UIImageView class to load and display the image. This option assumes
that your view’s only content is an image. You can still layer other views on
top of the image view to draw additional controls or content.

Display an image as the
content of a view

Load and draw the image using the UIImage class.Display an image as an
adornment for part of a
view

Use the UIGraphicsBeginImageContext function to create a new
image-based graphics context. After creating this context, you can draw your
image contents into it and then use the UIGraphicsGetImage-
FromCurrentImageContext function to generate an image based on what
you drew. (If desired, you can even continue drawing and generate additional
images.) When you are done creating images, use the UIGraphicsEnd-
ImageContext function to close the graphic context.

If you prefer using Core Graphics, you can use the CGBitmapContextCreate
function to create a bitmap graphics context and draw your image contents
into it. When you finish drawing, use the CGBitmapContextCreateImage
function to create a CGImageRef from the bitmap context. You can draw the
Core Graphics image directly or use it to initialize a UIImage object.

Save some bitmap data
into an image object

Create a UIImage object from the original image data. Call the UIImage-
JPEGRepresentation or UIImagePNGRepresentation function to get an
NSData object, and use that object’s methods to save the data to a file.

Save an image as a JPEG or
PNG file

The following example shows how to load an image from your application’s bundle. You can subsequently
use this image object to initialize a UIImageView object, or you can store it and draw it explicitly in your
view’s drawRect: method.

NSString* imagePath = [[NSBundle mainBundle] pathForResource:@"myImage"
ofType:@"png"];
UIImage* myImageObj = [[UIImage alloc] initWithContentsOfFile:imagePath];

To draw an image explicitly in your view’s drawRect: method, you can use any of the drawing methods
available in UIImage. These methods let you specify where in your view you want to draw the image and
therefore do not require you to create and apply a separate transform prior to drawing. Assuming you stored
the previously loaded image in a member variable called anImage, the following example draws that image
at the point (10, 10) in the view.

- (void)drawRect:(CGRect)rect
{
 // Draw the image
 [anImage drawAtPoint:CGPointMake(10, 10)];
}

Drawing with Quartz and UIKit 45
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

Important: If you use the CGContextDrawImage function to draw bitmap images directly, the image data
is inverted along the y axis by default. This is because Quartz images assume a coordinate system with a
lower-left corner origin and positive coordinate axes extending up and to the right from that point. Although
you can apply a transform before drawing, the simpler (and recommended) way to draw Quartz images is
to wrap them in a UIImage object, which compensates for this difference in coordinate spaces automatically.
For more information on creating and drawing images using Core Graphics, see Quartz 2D Programming
Guide.

Creating and Drawing Paths

A path is a description of a 2D geometric scene that uses a sequence of lines and Bézier curves to represent
that scene. UIKit includes the UIRectFrame and UIRectFill functions (among others) for drawing simple
paths such as rectangles in your views. Core Graphics also includes convenience functions for creating simple
paths such as rectangles and ellipses. For more complex paths, you must create the path yourself using the
functions of the Core Graphics framework.

To create a path, you use the CGContextBeginPath function to configure the graphics context to receive
path commands. After calling that function, you use other path-related functions to set the path’s starting
point, draw lines and curves, add rectangles and ellipses, and so on. When you are done specifying the path
geometry, you can paint the path directly or create a CGPathRef or CGMutablePathRef data type to store
a reference to that path for later use.

When you want to draw a path in your view, you can stroke it, fill it, or do both. Stroking a path with a function
such as CGContextStrokePath creates a line centered on the path using the current stroke color. Filling
the path with the CGContextFillPath function uses the current fill color or fill pattern to fill the area
enclosed by the path’s line segments.

For more information on how to draw paths, including information about how you specify the points for
complex path elements, see “Paths” in Quartz 2D Programming Guide. For information on the functions you
use to create paths, see CGContext Reference and CGPath Reference.

Creating Patterns, Gradients, and Shadings

The Core Graphics framework includes additional functions for creating patterns, gradients, and shadings.
You use these types to create non monochrome colors and use them to fill the paths you create. Patterns
are created from repeating images or content. Gradients and shadings provide different ways to create
smooth transitions from color to color.

The details for creating and using patterns, gradients, and shadings are all covered in Quartz 2DProgramming
Guide.

Drawing with OpenGL ES

The Open Graphics Library (OpenGL) is a cross-platform C-based interface used to create 2D and 3D content
on desktop systems. It is typically used by games developers or anyone needing to perform drawing with
high frame rates. You use OpenGL functions to specify primitive structures such as points, lines, and polygons

46 Drawing with OpenGL ES
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

and the textures and special effects to apply to those structures to enhance their appearance. The functions
you call send graphics commands to the underlying hardware, where they are then rendered. Because
rendering is done mostly in hardware, OpenGL drawing is usually very fast.

OpenGL for Embedded Systems is a pared-down version of OpenGL that is designed for mobile devices and
takes advantage of modern graphics hardware. If you want to create OpenGL content for iOS–based
devices—that is, iPhone or iPod Touch—you’ll use OpenGL ES. The OpenGL ES framework
(OpenGLES.framework) provided with iOS supports both the OpenGL ES v1.1 and OpenGL ES v2.0
specifications.

For more information about OpenGL ES support in iOS, see OpenGL ES Programming Guide for iOS.

Applying Core Animation Effects

Core Animation is an Objective-C framework that provides infrastructure for creating fluid, real-time animations
quickly and easily. Core Animation is not a drawing technology itself, in the sense that it does not provide
primitive routines for creating shapes, images, or other types of content. Instead, it is a technology for
manipulating and displaying content that you created using other technologies.

Most applications can benefit from using Core Animation in some form in iOS. Animations provide feedback
to the user about what is happening. For example, when the user navigates through the Settings application,
screens slide in and out of view based on whether the user is navigating further down the preferences
hierarchy or back up to the root node. This kind of feedback is important and provides contextual information
for the user. It also enhances the visual style of an application.

In most cases, you may be able to reap the benefits of Core Animation with very little effort. For example,
several properties of the UIView class (including the view’s frame, center, color, and opacity—among others)
can be configured to trigger animations when their values change. You have to do some work to let UIKit
know that you want these animations performed, but the animations themselves are created and run
automatically for you. For information about how to trigger the built-in view animations, see “Animating
Views” (page 30).

When you go beyond the basic animations, you must interact more directly with Core Animation classes and
methods. The following sections provide information about Core Animation and show you how to work with
its classes and methods to create typical animations in iOS. For additional information about Core Animation
and how to use it, see Core Animation Programming Guide.

About Layers

The key technology in Core Animation is the layer object. Layers are lightweight objects that are similar in
nature to views, but that are actually model objects that encapsulate geometry, timing, and visual properties
for the content you want to display. The content itself is provided in one of three ways:

 ■ You can assign a CGImageRef to the contentsproperty of the layer object.

 ■ You can assign a delegate to the layer and let the delegate handle the drawing.

 ■ You can subclass CALayer and override one of the display methods.

Applying Core Animation Effects 47
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

When you manipulate a layer object’s properties, what you are actually manipulating is the model-level data
that determines how the associated content should be displayed. The actual rendering of that content is
handled separately from your code and is heavily optimized to ensure it is fast. All you must do is set the
layer content, configure the animation properties, and then let Core Animation take over.

For more information about layers and how they are used, see Core Animation Programming Guide.

About Animations

When it comes to animating layers, Core Animation uses separate animation objects to control the timing
and behavior of the animation. The CAAnimation class and its subclasses provide different types of animation
behaviors that you can use in your code. You can create simple animations that migrate a property from one
value to another, or you can create complex keyframe animations that track the animation through the set
of values and timing functions you provide.

Core Animation also lets you group multiple animations together into a single unit, called a transaction. The
CATransaction object manages the group of animations as a unit. You can also use the methods of this
class to set the duration of the animation.

For examples of how to create custom animations, see Animation Types and Timing Programming Guide.

48 Applying Core Animation Effects
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Graphics and Drawing

This table describes the changes to View Programming Guide for iOS.

NotesDate

Changed the title from "View Programming Guide for iPhone OS."2010-07-07

New document describing the creation and management of views, windows,
and other visual interface elements.

2010-05-17

49
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

50
2010-07-07 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	View Programming Guide for iOS
	Contents
	Figures, Tables, and Listings
	Introduction
	Windows and Views
	View Architecture and Geometry
	The View Interaction Model
	The View Rendering Architecture
	Core Animation Basics
	Changing the Layer of a View
	Animation Support

	View Coordinate Systems
	The Relationship of the Frame, Bounds, and Center
	Coordinate System Transformations
	Content Modes and Scaling
	Autoresizing Behaviors

	Creating and Managing the View Hierarchy
	Creating a View Object
	Adding and Removing Subviews
	Converting Coordinates in the View Hierarchy
	Tagging Views

	Modifying Views at Runtime
	Animating Views
	Configuring Animation Parameters
	Configuring an Animation Delegate

	Responding to Layout Changes
	Redrawing Your View’s Content
	Hiding Views

	Creating a Custom View
	Initializing Your Custom View
	Drawing Your View’s Content
	Responding to Events
	Cleaning Up After Your View

	Graphics and Drawing
	The UIKit Graphics System
	The View Drawing Cycle
	Coordinates and Coordinate Transforms
	Graphics Contexts
	Points Versus Pixels
	Color and Color Spaces
	Supported Image Formats

	Drawing Tips
	Deciding When to Use Custom Drawing Code
	Improving Drawing Performance
	Maintaining Image Quality

	Drawing with Quartz and UIKit
	Configuring the Graphics Context
	Creating and Drawing Images
	Creating and Drawing Paths
	Creating Patterns, Gradients, and Shadings

	Drawing with OpenGL ES
	Applying Core Animation Effects
	About Layers
	About Animations

	Revision History

