
iPhone Human Interface Guidelines
User Experience

2010-08-03

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

App Store is a service mark of Apple Inc.

Apple, the Apple logo, iPhone, iPhoto, iPod,
iPod touch, iTunes, Mac, Mac OS, Safari, and
Spotlight are trademarks of Apple Inc.,
registered in the United States and other
countries.

iPad and Multi-Touch are trademarks of Apple
Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 11

Organization of This Document 11
See Also 11

Part I Planning Your iPhone Software Product 13

Chapter 1 The iOS Platform: Rich with Possibilities 15

Device Characteristics to Keep in Mind 15
Screen Size is Compact 15
Memory is Limited 16
People See One Screen at a Time 16
People Interact with One Application at a Time 16
Onscreen User Help is Minimal 17

What Are Your Options? 17
iPhone Applications 17
Web-only Content 17
Hybrid Applications 18

Three Application Styles 18
Productivity Applications 19
Utility Applications 21
Immersive Applications 23

Choosing an Application Style 24
When You Have an Existing Computer Application 25
Case Studies: Bringing a Desktop Application to iOS 25

Mail 25
iPhoto 27

Chapter 2 Human Interface Principles: Creating a Great User Interface 31

Metaphors 31
Direct Manipulation 31
See and Point 32
Feedback 32
User Control 32
Aesthetic Integrity 32

Chapter 3 Designing an iPhone Application: From Product Definition to Branding 35

Create a Product Definition Statement 35

3
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

Incorporate Characteristics of Great iPhone Applications 36
Build in Simplicity and Ease of Use 36
Focus on the Primary Task 39
Communicate Effectively 40

Support Gestures Appropriately 41
Incorporate Branding Elements Cautiously 43

Chapter 4 Handling Common Tasks 45

Starting 45
Stopping 46
Accommodating Multitasking 46
Hosting Ads 48
Managing Settings or Configuration Options 50
Supporting Copy and Paste 51
Supporting Undo and Redo 52
Enabling Local and Push Notifications 53
Making Your Application Accessible 56
Providing Search and Displaying Search Results 56
Using the User’s Location 57
Handling Orientation Changes 58
Using Sound 58

The Ring/Silent Switch—What Users Expect 59
Volume Buttons—What Users Expect 59
Headsets and Headphones—What Users Expect 60
Wireless Audio—What Users Expect 60
Define the Audio Behavior of Your Application 60
Manage Audio Interruptions 64
Handle Media Remote Control Events, if Appropriate 66

Providing Choices 66
Providing a License Agreement or a Disclaimer 67

Part II Designing the User Interface of Your iPhone Application 69

Chapter 5 A Brief Tour of the Application User Interface 71

Application Screens and Their Contents 71
Using Views and Controls in Application Screens 73

Chapter 6 Navigation Bars, Tab Bars, Toolbars, and the Status Bar 75

The Status Bar 75
Navigation Bars 76

Navigation Bar Contents 77
Navigation Bar Size and Color 79

4
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Toolbars 79
Toolbar Contents 80
Toolbar Size and Color 81

Tab Bars 81
Providing Additional Tabs 82
Badging a Tab in a Tab Bar 84

Chapter 7 Alerts, Action Sheets, and Modal Views 87

Usage and Behavior 87
Using Alerts 88
Using Action Sheets 89
Using Modal Views 89

Designing an Alert 90
Designing an Action Sheet 93
Designing a Modal View 96

Chapter 8 Table Views, Text Views, and Web Views 99

Table Views 99
Usage and Behavior 99
Table-View Styles 100
Table-Cell Styles 102
Table-View Elements 108
Switch Controls 109
Using Table Views to Enable Common User Actions 110

Text Views 113
Web Views 114

Chapter 9 Application Controls 117

Activity Indicators 117
Date and Time Pickers 118
Detail Disclosure Buttons 120
Info Buttons 120
Labels 121
Page Indicators 122
Pickers 124
Progress Views 125
Rounded Rectangle Buttons 126
Search Bars 126
Segmented Controls 128
Sliders 129
Text Fields 130

5
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 10 System-Provided Buttons and Icons 133

Using System-Provided Buttons and Icons 133
Standard Buttons for Use in Toolbars and Navigation Bars 134
Standard Icons for Use in Tab Bars 136
Standard Buttons for Use in Table Rows and Other User Interface Elements 137

Chapter 11 Creating Custom Icons and Images 139

Application Icons 140
Small Icons 142
Document Icons 142
Web Clip Icons 143
Icons for Navigation Bars, Toolbars, and Tab Bars 144
Launch Images 146
Tips for Creating Great High-Resolution Artwork 148

Document Revision History 151

6
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Chapter 1 The iOS Platform: Rich with Possibilities 15

Figure 1-1 Productivity applications tend to organize information hierarchically 20
Figure 1-2 Weather is an example of a utility application 21
Figure 1-3 Utility applications tend to present data in a flattened list 22
Figure 1-4 Users can make adjustments on the back of Weather 22
Figure 1-5 An immersive application doesn’t have to be a game 23
Figure 1-6 Mail on the desktop offers a wide range of powerful features in a couple of windows

26
Figure 1-7 Mail in iOS makes it easy to view and send email 27
Figure 1-8 The iPhoto user interface 28
Figure 1-9 Three screens in the Photos application 29
Figure 1-10 Photos gives users options in an action sheet 29

Chapter 3 Designing an iPhone Application: From Product Definition to Branding 35

Figure 3-1 The built-in Stopwatch function makes its usage obvious 37
Figure 3-2 The built-in Calculator application displays fingertip-size controls 39
Figure 3-3 The built-in Calendar application is focused on days and events 40
Figure 3-4 Use user-centric terminology in your application’s user interface 41
Table 3-1 Gestures users make to interact with iOS-based devices 42

Chapter 4 Handling Common Tasks 45

Figure 4-1 A local notification can arrive while a different application is running 53
Table 4-1 Audio session categories that influence audio behavior 62

Chapter 5 A Brief Tour of the Application User Interface 71

Figure 5-1 An application screen that contains a status bar, a navigation bar, and a tab bar
72

Figure 5-2 Two types of content-area views 73

Chapter 6 Navigation Bars, Tab Bars, Toolbars, and the Status Bar 75

Figure 6-1 A status bar contains important information for users 75
Figure 6-2 Three styles of status bars 76
Figure 6-3 Navigation bars can contain navigational controls and controls to manage content

77
Figure 6-4 A navigation bar displays the title of the current view 77
Figure 6-5 A navigation bar can contain a navigational control 77
Figure 6-6 A multi-segment back button is not recommended 78

7
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

Figure 6-7 A navigation bar can contain controls that manage the content in the view 78
Figure 6-8 A toolbar provides functionality within the context of a task 80
Figure 6-9 Appropriately spaced toolbar items 80
Figure 6-10 A tab bar switches views in an application 82
Figure 6-11 A selected tab in a tab bar 82
Figure 6-12 iOS displays up to five tabs in a tab bar 82
Figure 6-13 Additional tabs are displayed when users tap the More tab 83
Figure 6-14 When an application has more than five tabs, users can select their favorite tabs to

display in the tab bar 84
Figure 6-15 A badge conveys information in a tab bar 85

Chapter 7 Alerts, Action Sheets, and Modal Views 87

Figure 7-1 An action sheet, a modal view, and an alert 87
Figure 7-2 A typical action sheet 94
Figure 7-3 A button that performs a destructive action should be red and located at the top

of the action sheet 95
Figure 7-4 An action sheet with four buttons 95
Figure 7-5 A modal view should coordinate with the application screen 96

Chapter 8 Table Views, Text Views, and Web Views 99

Figure 8-1 Three ways to display lists using table views 99
Figure 8-2 A simple list in a plain table 101
Figure 8-3 A list of four groups in a grouped table 102
Figure 8-4 The default table-cell style in a grouped table (left) and a plain table (right) 103
Figure 8-5 The subtitle table-cell style in a grouped table (left) and a plain table (right) 104
Figure 8-6 The value 1 table-cell style in a grouped table (left) and a plain table (right) 105
Figure 8-7 The value 1 table-cell style looks best in a grouped table 106
Figure 8-8 The value 2 table-cell style in a grouped table (left) and a plain table (right) 106
Figure 8-9 The value 2 table-cell style looks best in a grouped table 107
Figure 8-10 A table view can display the Delete button and the delete control button 109
Figure 8-11 Switch controls in a table view 109
Figure 8-12 A checkmark indicates the current selection in a list 110
Figure 8-13 A disclosure indicator indicates that a subset of information is on the next screen

111
Figure 8-14 Header text in a plain table divides a list into sections 112
Figure 8-15 A grouped table can contain many separate groups 112
Figure 8-16 A plain table can include an index 113
Figure 8-17 A text view displays multiple lines of text 114
Figure 8-18 A web view can display web-based content 115

Chapter 9 Application Controls 117

Figure 9-1 Two types of activity indicators 118
Figure 9-2 A date and time picker 119

8
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

Figure 9-3 A detail disclosure button reveals additional details or functionality 120
Figure 9-4 An Info button reveals information, often configuration details 121
Figure 9-5 A label gives users information 122
Figure 9-6 A page indicator 123
Figure 9-7 A picker as displayed in Safari on iOS 124
Figure 9-8 A bar-style progress view in a toolbar 125
Figure 9-9 Rounded rectangle buttons perform application-specific actions 126
Figure 9-10 A search bar with optional placeholder text and a Bookmarks button 127
Figure 9-11 A segmented control with three segments 128
Figure 9-12 A slider 129
Figure 9-13 Four parts of a slider 130
Figure 9-14 A text field can accept user input 131

Chapter 10 System-Provided Buttons and Icons 133

Figure 10-1 Standard buttons in the Mail toolbar 133
Table 10-1 Standard buttons available for toolbars and navigation bars (shown in the plain

style) 135
Table 10-2 Bordered action buttons for use in navigation bars 136
Table 10-3 Standard icons for use in tab bar tabs 136
Table 10-4 Standard buttons for use in table rows and user interface elements 137

Chapter 11 Creating Custom Icons and Images 139

Table 11-1 Custom icons and images 139

9
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

10
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

iPhone and iPod touch are sophisticated devices that combine the revolutionary Multi-Touch interface with
powerful features, such as email and instant-messaging capability, a full-featured web browser, iPod, and,
in iPhone, a mobile phone. iOS is the system software that runs on iPhone and iPod touch. With the advent
of the iPhone SDK, these powerful features are extended to include significant developer opportunities. In
addition to creating web content for use on iOS-based devices, developers can use the iPhone SDK to create
native applications people can store and use on their devices.

Read this document to learn about the range of application types you can develop for iOS and the human
interface design principles that form the foundation of great iPhone applications. In this document you learn
how to follow those principles as you design a superlative user interface and user experience for your iPhone
application. Whether you’re an experienced computer application developer, an experienced mobile-device
application developer, or a newcomer to the field, the guidelines in this document will help you produce
iPhone applications users want.

Note: This document briefly summarizes web-based development for iOS-based devices. For more in-depth
information specific to designing web content for these devices, see iPhone Human Interface Guidelines for
Web Applications in the Safari Reference Library.

Organization of This Document

iPhone Human Interface Guidelines is divided into two parts, each of which contains several chapters:

 ■ The first part, “Planning Your iPhone Software Product” (page 13) describes the iOS environment and
the types of software you can develop for it. It also covers fundamental human interface design principles
and describes how to apply these principles to the design of your iPhone application.

 ■ The second part, “Designing the User Interface of Your iPhone Application” (page 69), delves into the
components you use to create the user interface of your iPhone application. It describes the various
views and controls that are available to you and provides guidance on how to use them effectively.

See Also

To learn how to code your iPhone application, read:

 ■ iOS Application Programming Guide

To learn about designing a web application for iOS-based devices, read:

 ■ iPhone Human Interface Guidelines for Web Applications

Organization of This Document 11
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://developer.apple.com/safari/library/navigation/index.html

12 See Also
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

This part of iPhone Human Interface Guidelines describes ways to think about designing and developing
software for iOS. Read the chapters in Part I to learn about the different types of software you can develop
for iOS and the design principles you can use to inform your work. You’ll also learn how to apply those
principles to specific aspects and tasks in your application, so you can create a superlative product that
provides an intuitive and compelling user interface.

13
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

PART I

Planning Your iPhone Software Product

14
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

PART I

Planning Your iPhone Software Product

iOS supports numerous types of software, ranging from webpages that users view in Safari on iOS to iPhone
applications that run natively on iOS-based devices. This chapter outlines the different types of software
solutions you can create for iOS-based devices.

If you’re new to the platform, be sure to begin with the summary of differences between iOS-based devices
and computers given in the first section, “Platform Differences to Keep in Mind.” Although the information
in that section is not comprehensive, it touches on the issues you need to be aware of as you design an
iPhone application.

Then, to help you plan an iPhone application, this chapter describes ways to think about different application
styles and the characteristics that define them. This chapter also describes how some of the bundled Mac
OS X applications were transformed into versions appropriate for iOS. If you have an existing computer
application you’d like to refashion for iOS, understanding this process is key.

Device Characteristics to Keep in Mind

An iOS-based device is not a desktop or laptop computer, and an iPhone application is not the same as a
desktop application. Although these seem merely common-sense statements, it is nonetheless paramount
to keep them in mind as you embark on developing software for these devices.

Designing software for iOS-based devices requires a state of mind that may or may not be second nature to
you. In particular, if the bulk of your experience lies in developing desktop applications, you should be aware
of the significant differences between designing software for a mobile device and for a computer.

This section summarizes the concrete differences that have the highest potential impact on your design
decisions. For detailed information on how to handle these and other issues in your iPhone application
development process, see iOS Application Programming Guide.

Screen Size is Compact

The small, high-resolution screens of iOS-based devices make them powerful display devices that fit into
users’ pockets. But that very advantage to users may be challenging to you, the developer, because it means
that you must design a user interface that may be very different from those you’re accustomed to designing.

Use the compact screen size as a motivation to focus the user interface on the essentials. You don’t have the
room to include design elements that aren’t absolutely necessary, and crowding user interface elements
makes your application unattractive and difficult to use.

Device Characteristics to Keep in Mind 15
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Memory is Limited

Memory is a critical resource in iOS, so managing memory in your application is crucial. Because the iOS
virtual memory model does not include disk swap space, you must take care to avoid allocating more memory
than is available on the device. When low-memory conditions occur, iOS warns the running application and
may terminate the application if the problem persists. Be sure your application is responsive to memory
usage warnings and cleans up memory in a timely manner.

As you design your application, strive to reduce the application’s memory footprint by, for example, eliminating
memory leaks, making resource files as small as possible, and loading resources lazily. See iOS Application
Programming Guide for extensive information about how to design iPhone applications that handle memory
appropriately.

People See One Screen at a Time

One of the biggest differences between the iOS environment and the computer environment is the window
paradigm. With the exceptions of some modal views, users see a single application screen at a time on an
iOS-based device. iPhone applications can contain as many different screens as necessary, but users access
and see them sequentially, not simultaneously.

If the desktop version of your application requires users to see several windows simultaneously, you need
to decide if there’s a different way users can accomplish the same task in a single screen or a sequence of
screens. If not, you should focus your iPhone application on a single subtask of your computer application,
instead of trying to replicate a wider feature set.

People Interact with One Application at a Time

Only one application is visible in the foreground at a time. When people switch from one application to
another, the previous application quits and its user interface goes away. Prior to iOS 4.0, this meant that the
quitting application was immediately removed from memory. In iOS 4.0 and later, the quitting application
transitions to the background, where it may or may not continue running. This feature, called multitasking,
allows applications to remain in the background until they are launched again or until they are terminated.

Note: Multitasking is available on certain devices running iOS 4.0.

Most applications enter a suspended state when they transition to the background. When people restart a
suspended application, it can instantly resume running from the point where it quit, without having to reload
its user interface.

Some applications might need to continue running in the background while users run another application
in the foreground. For example, users might want an application that plays audio to continue playing even
while they’re using a different application to check their calendar or handle email.

To learn about how multitasking can impact your application’s behavior, see “Accommodating
Multitasking” (page 46).

16 Device Characteristics to Keep in Mind
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Onscreen User Help is Minimal

Mobile users don’t have the time to read through a lot of help content before they can use your application.
What’s more, you don’t want to give up valuable space to display or store it. A hallmark of the design of
iOS-based devices is ease of use, so it’s crucial that you meet users’ expectations and make the use of your
application immediately obvious. There are a few things you can do to achieve this:

 ■ Use standard controls correctly. Users are familiar with the standard controls they see in the built-in
applications, so they already know how to use them in your application.

 ■ Be sure the path through the information you present is logical and easy for users to predict. In addition,
be sure to provide markers, such as back buttons, that users can use to find out where they are and how
to retrace their steps.

What Are Your Options?

Before you decide how to present your product to iOS users, you need to understand the range of options
you have. Depending on the implementation details of your proposed product and its intended audience,
some types of software may be better suited to your needs than others.

This section divides software for iOS-based devices into three broad categories, primarily based on
implementation method. Roughly speaking, you can create:

 ■ An iPhone application, which is an application you develop using the iPhone SDK to run natively on
iOS-based devices.

 ■ Web-only content, including web applications, which are websites that behave like built-in iPhone
applications.

 ■ A hybrid application, which is an iPhone application that provides access to web content primarily
through a web-content viewing area, but includes some iOS user interface elements.

iPhone Applications

iPhone applications resemble the built-in applications on iOS-based devices in that they reside on the device
itself and take advantage of features of the iOS environment. Users install iPhone applications on their devices
and use them just as they use built-in applications, such as Stocks, Maps, Calculator, and Mail.

An iPhone application is quick to launch and easy to use. Whether the application enables a task like sending
email or provides entertainment to users, it is characterized by responsiveness, simplicity, and a beautiful,
streamlined user interface.

Web-only Content

You have a few different options when it comes to providing web-only content to iOS users:

 ■ Web applications

What Are Your Options? 17
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Webpages that provide a focused solution to a task and conform to certain display guidelines are known
as web applications, because they behave similarly to the built-in iOS applications. A web application,
like all web-only content, runs in Safari on iOS; users do not install it on their devices, instead they go to
the web application’s URL.

 ■ Optimized webpages

Webpages that are optimized for Safari on iOS display and operate as designed (with the exception of
any elements that rely on unsupported technologies, such as plug-ins, Flash, and Java). In addition, an
optimized webpage correctly scales content for the device screen and is often designed to detect when
it is being viewed on iOS-based devices, so that it can adjust the content it provides accordingly.

 ■ Compatible webpages

Webpages that are compatible with Safari on iOS display and operate as designed (with the exception
of any elements that rely on unsupported technologies, such as plug-ins, Flash, and Java). A compatible
webpage does not tend to take extra steps to optimize the viewing experience on iOS-based devices,
but the device usually displays the page successfully.

If you have an existing website or web application, first ensure that it works well on iOS-based devices. Also,
you should consider creating a custom icon users can put on their Home screens using the Web Clip feature.
In effect, this allows users to keep on their Home Screens a bookmark to your website that looks like a native
application icon. To learn more about creating a custom icon and how to make web content look great on
iOS-based devices, see iPhone Human Interface Guidelines for Web Applications.

Hybrid Applications

With iOS, you can create an application that combines features of native applications and webpages. A hybrid
application is a native iPhone application that provides most of its structure and functionality through a
web viewing area, but also tends to contain standard iOS user interface elements.

A hybrid application gives users access to web content with an element called a web view (described in “Web
Views” (page 114)). Precisely how you use a web view in your application is up to you, but it’s important to
avoid giving users the impression that your application is merely a mini web browser. A hybrid application
should behave and appear like a native iPhone application; it should not draw attention to the fact that it
depends upon web sources.

Three Application Styles

This document identifies three application styles, based on visual and behavioral characteristics, data model,
and user experience. Before you read further, it’s important to emphasize that these varieties are named and
described to help you clarify some of your design decisions, not to imply that there is a rigid classification
scheme that all iPhone software must follow. Instead, these styles are described to help you see how different
approaches can be suitable for different types of information and functionality.

18 Three Application Styles
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Note: Bear in mind that application style does not dictate implementation method. This document focuses
on designing native iPhone applications, but the application styles explored here can be implemented in
web or hybrid applications for iOS-based devices.

As you read about these three application styles, think about how the characteristics of each might enhance
your proposed feature set and the overall user experience you plan to deliver in your iPhone application. To
help you discover the combination of characteristics that best suit your application, keep the following
questions in mind as you learn about different design styles for iPhone applications:

 ■ What do you expect to be the user’s motivation for using the application?

 ■ What do you intend to be the user’s experience while using the application?

 ■ What is the goal or focus of your application?

 ■ How does your application organize and display the information people care about? Is there a natural
organization associated with the main task of the application?

Productivity Applications

A productivity application enables tasks that are based on the organization and manipulation of detailed
information. People use productivity applications to accomplish important tasks. Mail is a good example of
a productivity application.

Seriousness of purpose does not mean that productivity applications should attempt to appear serious by
providing a dry, uninspiring user experience, but it does mean that users appreciate a streamlined approach
that does not hinder them. To this end, successful productivity applications keep the user experience focused
on the task, so people can quickly find what they need, easily perform the necessary actions, complete the
task, and move on to something else.

Productivity applications often organize user data hierarchically. In this way, people can find information by
making progressively more specific choices until they arrive at the desired level of detail. iOS provides table
elements that make this process extremely efficient on iOS devices (see “Table Views” (page 99) for more
information about these user interface elements). Figure 1-1 shows an example of this type of data
organization.

Three Application Styles 19
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Figure 1-1 Productivity applications tend to organize information hierarchically

Application

Top level

Detail level

Typically, the user interaction model in a productivity application consists of:

 ■ Organizing the list

 ■ Adding to and subtracting from the list

 ■ Drilling down through successive levels of detail until the desired level is reached, then performing tasks
with the information on that level

Productivity applications tend to use multiple views, usually displaying one level of the hierarchy per view.
The user interface tends to be simple, uncluttered, and composed of standard views and controls. Productivity
applications do not tend to customize the interface much, because the focus is on the information and the
task, and not as much on the environment or the experience.

20 Three Application Styles
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Among all types of iPhone applications, a productivity application is the most likely to supply preferences,
or settings, the user can specify in the Settings application. This is because productivity applications work
with lots of information and, potentially, many ways to access and manage it. It’s important to emphasize,
however, that the user should seldom need to change these settings, so the settings should not target simple
configuration changes that could be handled in the main user interface.

Utility Applications

A utility application performs a simple task that requires a minimum of user input. People open a utility
application to see a quick summary of information or to perform a simple task on a limited number of objects.
The Weather application (shown in Figure 1-2) is a good example of a utility application because it displays
a narrowly focused amount of information in an easy-to-scan summary.

Figure 1-2 Weather is an example of a utility application

Utility applications are visually attractive, but in a way that enhances the information they display without
overshadowing it. People use utility applications to check the status of something or to look something up,
so they want to be able to spot the information they’re interested in quickly and easily. To facilitate this, a
utility application’s user interface is uncluttered and provides simple, often standard, views and controls.

A utility application tends to organize information into a flattened list of items; users do not usually need to
drill down through a hierarchy of information. Typically, each view in a utility application provides the same
organization of data and depth of detail, but can be served by a different source. In this way, users can open
a single utility application to see similar treatments of multiple subjects. Some utility applications indicate
the number of open views; users can navigate through them sequentially, selecting one view after another.
Figure 1-3 shows an example of this type of data organization.

Three Application Styles 21
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Figure 1-3 Utility applications tend to present data in a flattened list

View 1 View 2 View 3 View 4 View n

Application

The user interaction model for a utility application is very simple: Users open the application to scan a summary
of information and, optionally, change the configuration or source of that information. Utility applications
may need to support frequent changes to configuration or information source, so they often provide a small
set of such options on the back of the main view. Users tap the familiar Info button in the lower-right corner
of the main view to see the back. After making adjustments, users tap the Done button to return to the front
of the main view. In a utility application, the options on the back of the main view are part of the functioning
of the application, not a group of preference-style settings users access once and then rarely, if ever, again.
For this reason, utility applications should not supply application-specific settings in the Settings application.
Figure 1-4 shows how the Weather application provides configuration options on the back of the main view.

Figure 1-4 Users can make adjustments on the back of Weather

22 Three Application Styles
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Immersive Applications

An immersive application offers a full-screen, visually rich environment that’s focused on the content and
the user’s experience with that content. People often use immersive applications to have fun, whether playing
a game, viewing media-rich content, or performing a simple task.

It’s easy to see how games fit this style of iPhone application, but you can also imagine how characteristics
of immersive applications can enhance other types of tasks. Tasks that present a unique environment, don’t
display large amounts of text-based information, and reward users for their attention are good candidates
for the immersive approach. For example, an application that replicates the experience of using a bubble
level works well in a graphics-rich, full-screen environment, even though it doesn’t fit the definition of a
game. In such an application, as in a game, the user’s focus is on the visual content and the experience, not
on the data behind the experience. Figure 1-5 shows an example of an immersive application that replicates
an actual experience and enables a simple task.

Figure 1-5 An immersive application doesn’t have to be a game

Note: Although applications that launch in landscape orientation should launch so that the Home button
is on the right, the Bubble Level application shown above in Figure 1-5 launches in the opposite orientation.
This ensures that the physical buttons on the edge of the device don’t interfere with the measurement. See
“Starting” (page 45) for more launch guidelines.

An immersive application tends to hide much of the device’s user interface, replacing it with a custom user
interface that strengthens the user’s sense of entering the world of the application. Users expect seeking
and discovery to be part of the experience of an immersive application, so the use of nonstandard controls
is often appropriate.

Immersive applications may work with large amounts of data, but they do not usually organize and expose
it so that users can view it sequentially or drill down through it. Instead, immersive applications present
information in the context of the game-play, story, or experience. Also for this reason, immersive applications
often present custom navigational methods that complement the environment, rather than the standard,
data-driven methods used in utility or productivity applications.

Three Application Styles 23
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

The user interaction model for an immersive application is determined by the experience the application
provides. Although it’s not likely that a game would need to offer application-specific settings in Settings,
other types of immersive applications might. Immersive applications might also furnish configuration options
on the back of the main view.

Choosing an Application Style

After reading about productivity, utility, and immersive application styles, think about the type of information
your application displays and the task it enables. In theory, the type of application you should create is
obvious to you and you’re ready to get started; in practice, it’s not always that simple. Here is a hypothetical
scenario to consider as you make your decision.

If you have a subject you’d like to explore, think about the objects and tasks related to it. Imagine the different
perceptions people have of that subject. For example, consider the subject of baseball. Baseball brings to
mind, among other things, teams, games, statistics, history, and players. Baseball is probably too extensive
a subject for a single application, so consider just the players. Now imagine how you might create an
application that relates to players—for example, using their likenesses on baseball cards.

You could develop a productivity application that helps serious collectors manage their baseball card
collections. Using list-based formats, you could display cards in a hierarchy of teams, then players, then
seasons. In the most detailed view, you could give users the ability to note where they acquired the card,
how much they paid for it, its current market value, and how many copies they have. Because the focus of
this application is on the data that defines the collection, the user interface streamlines the tasks of seeking
and adding information.

You could also develop a utility application that displays the current market value of particular baseball cards.
Each view could look like a baseball card with its current value added to the picture, and the back of the view
could allow users to select specific cards to track and display. The focus of this application is on individual
cards, so the user interface emphasizes the look of the cards and provides a simple control or two that allows
users to look for new cards.

Or, of course, you could develop a game. Perhaps the game would focus on the user’s knowledge of certain
statistics on individual baseball cards or ability to recognize famous cards. Or perhaps it would simply use
baseball cards as icons in another type of game, such as a sliding puzzle. In each of these cases, the focus of
the application is on the images on the baseball cards and the game play. The user interface complements
this by displaying a few baseball-themed controls and hiding the iOS user interface.

It’s important to reiterate that you’re not restricted to a single application style. You may find that your
application idea is best served by a combination of characteristics from different application styles.

When in doubt, make it simple. Pare the feature list to the minimum and create an application that does one
simple thing (see “Create a Product Definition Statement” (page 35) for advice on how to focus your
application). When you see how people use and respond to the application, you might choose to create
another version of the application with a slightly shifted focus or altered presentation. Or, you might discover
a need for a more (or less) detail-oriented version of the same concept.

24 Choosing an Application Style
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

When You Have an Existing Computer Application

If you have an existing computer application, don’t just port it to iOS. People use iOS-based devices very
differently than they use desktop and laptop computers, and they have different expectations for the user
experience.

Remember that people use iOS-based devices while on the go, and often in environments filled with
distractions. This generally means that they want to open your application, use it briefly, and move on to
something else. If your application relies on the user’s undivided attention for long stretches of time, you
need to rethink its structure and goals if you want to bring it to iOS.

If your desktop application enables a complex task or set of tasks, examine how people use it in order to find
a couple of subtasks they might appreciate being able to accomplish while they’re mobile. For example, a
business-oriented application that supports project scheduling, billing, and expense reporting could spawn
an iPhone utility application that shows progress summaries for a project, or an iPhone productivity application
that allows mobile users to keep track of their business-related expenses.

As you think about how to bring ideas from your desktop application to an iPhone application, apply the
80-20 rule to the design of your application. Estimate that the largest percentage of users (at least 80 percent)
will use a very limited number of features in an application, while only a small percentage (no more than 20
percent) will use all the features. Then, consider carefully whether you want to load your iPhone application
with the power features that only a small percentage of users want. Be aware that a desktop computer
application might be the better environment in which to offer those features, and that it’s usually a good
idea to focus your iPhone application on the features that meet the needs of the greatest number of people.

Case Studies: Bringing a Desktop Application to iOS

To help you visualize ways you can create an iOS version of a desktop computer application, this section
describes some of the design differences between familiar Mac OS X applications and their iOS counterparts.
As you learn about which features and functions in each application were adapted for its iOS version, you
will gain insight into the types of design decisions you need to make for your own iPhone application.

Mail

Mail is one of the most highly visible, well-used, and appreciated applications in Mac OS X. It is also a very
powerful program, one that allows users to create, receive, prioritize, and store email, track action items and
events, and create notes and invitations. Mail provides most of this functionality in a single multipane window.
This is convenient for people using a desktop computer, because they can leave a Mail window on the display
screen (or minimized to the Dock) all the time and switch to it whenever they choose. Figure 1-6 illustrates
many of the features available in the Mail message-viewing and compose windows on the desktop.

When You Have an Existing Computer Application 25
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Figure 1-6 Mail on the desktop offers a wide range of powerful features in a couple of windows

But when people are mobile, their needs for an email application are simpler, and they want access to core
functionality quickly. For this reason, Mail on iOS-based devices focuses on the most important things people
do with their email: receive, create, send, and organize messages. To do this, it displays a pared-down user
interface that makes the organization of the user’s accounts and mailboxes clear and centers the user’s
attention on the messages.

Mail in iOS is a perfect example of a productivity style application: To ease navigation through the content,
Mail in iOS takes advantage of the naturally hierarchical organization of people’s email and displays on
successive pages accounts, mailboxes, message lists, and individual messages. Users drill down from the
general (the list of accounts) to the specific (a message) by selecting an item in a list and viewing the things
associated with that item. To learn more about the productivity style of iPhone applications, see “Productivity
Applications” (page 19).

In addition, Mail in iOS enables actions, such as create and send, by displaying a handful of familiar controls
that are easy to tap. Figure 1-7 shows how Mail makes it simple to view and send email in iOS. Note how
elements at the top of each screen make it easy for users to know both their current and previous location
in the application.

26 Case Studies: Bringing a Desktop Application to iOS
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Figure 1-7 Mail in iOS makes it easy to view and send email

iPhoto

Another instructive example of a Mac OS X application that was reimagined for iOS is iPhoto. On the desktop,
iPhoto supports comprehensive searching and organization, powerful editing capabilities, and creative
printing options. When people use iPhoto on their desktop or laptop computers, they appreciate being able
to see and organize their entire collection, make adjustments to photos, and manipulate them in various
ways. Although the main focus of iPhoto is on the user’s content, the application also offers extensive
functionality in its window. Figure 1-8 shows the iPhoto user interface on the desktop.

Case Studies: Bringing a Desktop Application to iOS 27
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Figure 1-8 The iPhoto user interface

But when they’re mobile, people don’t have time to edit their photos (and they don’t expect to print them);
instead, they want to be able to quickly see and share their photos.

To meet this need on iOS-based devices, Apple has provided the Photos application, which focuses on viewing
photos and sharing them with others. The Photos user interface revolves around photos; so much so, in fact,
that even parts of the device user interface can be hidden. When users choose to view a slideshow of their
photos, the Photos application hides the navigation bar, toolbar, and even status bar, and displays translucent
versions of these elements when users need to see them.

Photos makes it easy for users to organize and find their photos by using a hierarchical arrangement: Users
select an album, which contains a collection of photos, and then they select a single photo from the collection.
In this way, Photos is an example of an application that combines features of the productivity style and the
immersive style (to learn more about these styles, see “Three Application Styles” (page 18)). Figure 1-9 shows
how users can view photos in the Photos application.

28 Case Studies: Bringing a Desktop Application to iOS
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

Figure 1-9 Three screens in the Photos application

In addition, Photos uses a transient view, called an action sheet (described in “Alerts, Action Sheets, and
Modal Views” (page 87)), to give users additional functionality without taking them out of the photo-viewing
experience. Figure 1-10 shows how Photos provides options for using an individual photo.

Figure 1-10 Photos gives users options in an action sheet

Case Studies: Bringing a Desktop Application to iOS 29
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

30 Case Studies: Bringing a Desktop Application to iOS
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 1

The iOS Platform: Rich with Possibilities

A great user interface follows human interface design principles that are based on the way
people—users—think and work, not on the capabilities of the device. A user interface that is unattractive,
convoluted, or illogical can make even a great application seem like a chore to use. But a beautiful, intuitive,
compelling user interface enhances an application’s functionality and inspires a positive emotional attachment
in users.

Metaphors

When possible, model your application’s objects and actions on objects and actions in the real world. This
technique especially helps novice users quickly grasp how your application works. Folders are a classic
software metaphor. People file things in folders in the real world, so they immediately understand the idea
of putting data into folders on a computer.

Metaphors in iOS include iPod playback controls, tapping controls to make things happen, sliding on-off
switches, and flicking through the data shown on picker wheels.

Although metaphors suggest a use for objects and actions in the iOS interface, that use does not limit the
software implementation of the metaphor. To return to the folder example, a folder object implemented in
software has a capacity that’s completely unrelated to the physical capacity of its real-world counterpart.

As you design your application, be aware of the metaphors that exist in iOS and don’t redefine them. At the
same time, examine the task your application performs to see if there are natural metaphors you can use.
Bear in mind, though, that it’s better to use standard controls and actions than to stretch a real-world object
or action just to fit your application’s user interface. Unless the metaphors you choose are likely to be
recognized by most of your users, including them will increase confusion instead of decrease it.

Direct Manipulation

Direct manipulation means that people feel they are controlling something tangible, not abstract. The benefit
of following the principle of direct manipulation is that users more readily understand the results of their
actions when they can directly manipulate the objects involved.

iOS users enjoy a heightened sense of direct manipulation because of the Multi-Touch interface. Using
gestures, people feel a greater affinity for, and sense of control over, the objects they see on screen, because
they do not use any intermediate device (such as a mouse) to manipulate them.

To enhance the sense of direct manipulation in your iPhone application, make sure that:

 ■ Objects on the screen remain visible while the user performs actions on them

 ■ The result of the user’s action is immediately apparent

Metaphors 31
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Human Interface Principles: Creating a Great
User Interface

See and Point

An iPhone application is better than a person at remembering lists of options, commands, data, and so on.
Take advantage of this by presenting choices or options in list form, so users can easily scan them and make
a choice. Keeping text input to a minimum frees users from having to spend a lot of time typing and frees
your application from having to perform a lot of error checking.

Presenting choices to the user, instead of asking for more open-ended input, also allows them to concentrate
on accomplishing tasks with your application, instead of remembering how to operate it.

Feedback

In addition to seeing the results of their actions, users need immediate feedback when they operate controls
and status reports during lengthy operations. Your application should respond to every user action with
some visible change. For example, make sure list items highlight briefly when users tap them. Audible
feedback also helps, but it can’t be the primary or sole feedback mechanism because people may use iOS-based
devices in places where they can’t hear or where they must turn off the sound. In addition, you don’t want
to compete with the iOS system sounds users already associate with system alerts.

iOS automatically provides feedback when it’s temporarily busy by displaying the activity indicator. During
operations that last more than a few seconds, your application should show elapsing progress and, if
appropriate, display an explanatory message.

Animation is a great way to provide feedback to users, as long as it’s both subtle and meaningful. Animation
pervades iOS, even in nonimmersive applications. As a means of providing feedback, however, it is used to
enhance the user’s experience, not as the focus of the user’s experience.

User Control

Allow users, not your application, to initiate and control actions. Keep actions simple and straightforward so
users can easily understand and remember them. Whenever possible, use standard controls and behaviors
that users are already familiar with.

Provide ample opportunity to cancel operations before they begin, and be sure to get confirmation when
the user initiates a potentially destructive action. Whenever possible, allow users to gracefully stop an
operation that’s underway.

Aesthetic Integrity

Although the ultimate purpose of an application is to enable a task, even if that task is playing a game, the
importance of an application’s appearance should not be underestimated. This is because appearance has
a strong impact on functionality: An application that appears cluttered or illogical is hard to understand and
use.

32 See and Point
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Human Interface Principles: Creating a Great User Interface

Aesthetic integrity is not a measure of how beautiful your application is. It’s a measure of how well the
appearance of your application integrates with its function. For example, a productivity application should
keep decorative elements subtle and in the background, while giving prominence to the task by providing
standard controls and behaviors.

An immersive application is at the other end of the spectrum, and users expect a beautiful appearance that
promises fun and encourages discovery. Although an immersive application tends to be focused on providing
diversion, its appearance still needs to integrate with the task. Be sure you design the user interface elements
of such an application carefully, so that they provide an internally consistent experience.

Aesthetic Integrity 33
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Human Interface Principles: Creating a Great User Interface

34 Aesthetic Integrity
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 2

Human Interface Principles: Creating a Great User Interface

As you develop an iPhone application you need to learn how iOS and various aspects of the mobile
environment impact your design decisions. This chapter covers a range of guidelines for application design
issues, from product definition to branding, and describes how to address them in an iPhone application.

Create a Product Definition Statement

Before you begin designing your application, it’s essential to define precisely what your application does. A
good way to do this is to craft a product definition statement—a concise declaration of your application’s
main purpose and its intended audience. Creating a product definition statement isn’t merely an exercise.
On the contrary, it’s one of the best ways to turn a list of features into a coherent product.

To begin with, spend some time defining your user audience: Are they experienced or novice, serious or
casual, looking for help with a specific task or looking for entertainment? Knowing these things about your
users helps you customize the user experience and user interface to their particular needs and wants.

Because you’re designing an iPhone application, you already know a lot about your users. For example:

 ■ They're mobile.

 ■ They want to be able to open your application quickly and see useful content immediately.

 ■ They need to be able to accomplish things in your application with just a few taps.

Now ask yourself what traits might set your users apart from all other iOS users. Are they business people,
teenagers, or retirees? Will they use your application at the end of every day, every time they check their
email, or whenever they have a few extra moments? The more accurately you define your audience, the more
accurate are your decisions about the look, feel, and functionality of your user interface.

For example, if your application helps business people keep track of their expenses, your user interface should
focus on providing the right categories and making it easy to enter costs, without asking for a lot of details
that aren’t central to the task. In addition, you might choose a subtle color palette that appears professional
and is pleasant to look at several times a day.

Or, if your application is a game for a target audience of teenagers, you might instead want a user interface
that is exciting, language that imparts a feeling of exclusivity, and a color palette that evokes current fashions.

Finally, examine the set of features you intend to deliver. With the image of your user audience in mind, try
to distill the list of features into a single statement, a product definition statement, that describes the solution
your product offers and who your users are. For example, the desktop iPhoto application allows users to,
among other things, organize, edit, share, print, and view photos. But a good product definition statement
doesn’t just focus on features, it also describes the intended audience. Therefore a sound product definition
statement for iPhoto could be “An easy-to-use photo management application for amateur photographers.“
Notice how important it is to include a definition of your user audience in the product definition statement:
Imagine how different an application iPhoto would be if it was designed to be “an easy-to-use photo
management application for professional photographers.”

Create a Product Definition Statement 35
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Designing an iPhone Application: From
Product Definition to Branding

A good product definition statement is a tool you should use throughout the development process to
determine the suitability of features, tools, and terminology. It’s especially important to eliminate those
elements that don’t support the product definition statement, because iPhone applications have no room
to spare for functionality that isn’t focused on the main task.

Imagine, for example, that you’re thinking of developing an iPhone application people can use when they
shop for groceries. In the planning stage, you might consider including a wide range of activities users might
like to perform, such as:

Getting nutritional information about specific foods
Finding coupons and special offers
Creating and using shopping lists
Locating stores
Looking up recipes
Comparing prices
Keeping a running total of prices

However, you believe that your users are most concerned with remembering everything they need to buy,
that they would like to save money if possible, and that they’re probably in a hurry to get home with their
purchases. Using this audience definition, you craft a product definition statement for your application, such
as “A shopping list creation and coupon-finding tool for people in a hurry.“ Filtering your list of potential
features through this product definition statement, you decide to focus primarily on making shopping lists
easy to create, store, and use. You also offer users the ability to find coupons for the items on their list. Even
though the other features are useful (and might become primary features of other applications), they don’t
fit the product definition statement for this application.

When you’ve settled on a solid product definition statement and you’ve started to use it as a filter for your
proposed features, you might also want to use it to make sure your initial decision on application type is still
the right one. If you began your development process with a specific application type in mind, you might
find that the process of defining a product definition statement has changed the landscape. (See “Three
Application Styles” (page 18) for more on different types of applications you can develop.)

Incorporate Characteristics of Great iPhone Applications

Great iPhone applications do precisely what users need while providing the experience users want. To help
you achieve this balance in your application, this section examines some of the characteristics of great iPhone
applications and provides advice on how to build them into your product.

Build in Simplicity and Ease of Use

Simplicity and ease of use are fundamental principles for all types of software, but in iPhone applications
they are critical. iOS users are probably doing other things while they simultaneously use your application.
If users can’t quickly figure out how to use your application, they’re likely to move on to a competitor’s
application and not come back.

As you design the flow of your application and its user interface, follow these guidelines to build in simplicity
and ease of use:

 ■ Make it obvious how to use your application.

36 Incorporate Characteristics of Great iPhone Applications
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Designing an iPhone Application: From Product Definition to Branding

 ■ Concentrate frequently used, high-level information near the top of the screen.

 ■ Minimize text input.

 ■ Express essential information succinctly.

 ■ Provide a fingertip-size target area for all tappable elements.

The following sections explain each guideline for simplicity and ease of use in more detail.

Make It Obvious

You can’t assume that users have the time (or can spare the attention) to figure out how your application
works. Therefore, you should strive to make your application instantly understandable to users.

The main function of your application should be immediately apparent. You can make it so by minimizing
the number of controls from which users have to choose and labeling them clearly so users understand
exactly what they do. For example, in the built-in Stopwatch function (part of the Clock application), shown
in Figure 3-1, users can see at a glance which button stops and starts the stopwatch and which button records
lap times.

Figure 3-1 The built-in Stopwatch function makes its usage obvious

Think Top Down

People can tap the screen of an iOS-based device with their fingers or their thumbs. When they use a finger,
people tend to hold the device in their nondominant hand (or lay it on a surface) and tap with a finger of
the dominant hand. When they use thumbs, people either hold the device in one hand and tap with that
thumb, or hold the device between their hands and tap with both thumbs. Whichever method people use,
the top of the screen is most visible to them.

Incorporate Characteristics of Great iPhone Applications 37
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Designing an iPhone Application: From Product Definition to Branding

Because of these usage patterns, you should design your application’s user interface so that the most
frequently used (usually higher level) information is near the top, where it is most visible and accessible. As
the user scans the screen from top to bottom, the information displayed should progress from general to
specific and from high level to low level.

Minimize Required Input

Inputting information takes users’ time and attention, whether they tap controls or use the keyboard. If your
application requires a lot of user input before anything useful happens, it slows users down and can discourage
them from persevering with it.

Of course, you often need some information from users, but you should balance this with what you offer
them in return. In other words, strive to provide as much information or functionality as possible for each
piece of information users provide. That way, users feel they are making progress and are not being delayed
as they move through your application.

When you ask for input from users, consider using a type of table view (or a picker) instead of text fields. It’s
usually easier for users to select an item from a list than to type words. For details on table views and pickers,
see “Table Views” (page 99) and “Pickers” (page 124), respectively.

Express Information Succinctly

When your user interface text is short and direct, users can absorb it quickly and easily. Therefore, identify
the most important information, express it concisely, and display it prominently so users don’t have to read
too many words to find what they’re looking for or to figure out what to do next.

To help you do this, think like a newspaper editor and strive to convey information in a condensed, headline
style. Give controls short labels (or use well-understood symbols) so that users understand how to use them
at a glance.

Provide Fingertip-Size Targets

If your layout places controls too close together, users must spend extra time and attention being careful
where they tap, and they are more likely to tap the wrong element. A simple, easy-to-use user interface
spaces controls and other user-interaction elements so that users can tap accurately with a minimum of
effort.

For example, the built-in Calculator application displays large, easy-to-tap controls that each have a target
area of about 44 x 44 pixels. Figure 3-2 shows the Calculator application.

38 Incorporate Characteristics of Great iPhone Applications
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Designing an iPhone Application: From Product Definition to Branding

Figure 3-2 The built-in Calculator application displays fingertip-size controls

Focus on the Primary Task

An iPhone application that establishes and maintains focus on its primary functionality is satisfying and
enjoyable to use. As you design your application, therefore, stay focused on your product definition statement
and make sure every feature and user interface element supports it. See “Create a Product Definition
Statement” (page 35) for some advice on how to create a product definition statement.

A good way to achieve focus is to determine what’s most important in each context. As you decide what to
display in each screen always ask yourself, Is this critical information or functionality users need right now?
Or, to think of it in more concrete terms, Is this information or functionality the user needs while shopping
in a store or while walking between meetings? If not, decide if the information or functionality is critical in
a different context or if it’s not that important after all. For example, an application that helps users keep
track of car mileage loses focus on this functionality if it also keeps track of car dealer locations.

When you follow the guidelines for making your application simple and easy to use, you help make your
solution focused. In particular, you want to make the use of your application obvious and minimize user
input. This makes it easier for users to arrive quickly at the most important parts of your application, which
tightens the focus on your solution (for specifics on these guidelines, see “Build in Simplicity and Ease of
Use” (page 36)).

For example, the built-in Calendar application (shown in Figure 3-3) is focused on days and the events that
occur on them. Users can use the clearly labeled buttons to highlight the current day, select a viewing option,
and add events. The most important information, that is, the days and the events associated with them, is
the most prominent. User input is simplified by allowing users to choose from lists of event times, repetition
intervals, and alert options, instead of requiring keyboard entry for all input.

Incorporate Characteristics of Great iPhone Applications 39
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Designing an iPhone Application: From Product Definition to Branding

Figure 3-3 The built-in Calendar application is focused on days and events

Communicate Effectively

Communication and feedback are as important in iPhone applications as they are in desktop computer
applications. Users need to know whether their requests are being processed and when their actions might
result in data loss or other problems. That said, it’s also important to avoid overdoing communication by, for
example, alerting the user to conditions that aren’t really serious or asking for confirmation too often.

Animation is a great way to communicate effectively, as long as it doesn’t get in the way of users’ tasks or
slow them down. Subtle and appropriate animation can communicate status, provide useful feedback, and
help users visualize the results of their actions. Excessive or gratuitous animation can obstruct the flow of
your application, decrease its performance, and annoy users.

In all your text-based communication with users, be sure to use user-centric terminology; in particular, avoid
technical jargon in the user interface. Use what you know about your users to determine whether the words
and phrases you plan to use are appropriate. For example, the Wi-Fi Networks preferences screen uses clear,
nontechnical language to describe how the device connects to networks, as shown in Figure 3-4.

40 Incorporate Characteristics of Great iPhone Applications
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Designing an iPhone Application: From Product Definition to Branding

Figure 3-4 Use user-centric terminology in your application’s user interface

Support Gestures Appropriately

People use their fingers to operate the unique Multi-Touch interface of iOS-based devices, tapping, flicking,
and pinching to select, navigate, and read web content and use applications. There are real advantages to
using fingers to operate a device: They are always available, they are capable of many different movements,
and they give users a sense of immediacy and connection to the device that’s impossible to achieve with an
external input device, such as a mouse.

However, fingers have one major disadvantage: They are much bigger than a mouse pointer, regardless of
their size, their shape, or the dexterity of their owner. In the context of a display screen, fingers can never be
as precise as a mouse pointer.

Fortunately, you can meet the challenges of a finger-based input system by having a good user interface
design. For the most part, this means making sure your layout accommodates the average size of a fingertip.
It also means responding to finger movements with the actions users expect.

Users perform specific movements, called gestures, to get particular results. For example, users tap a button
to select it and flick or drag to scroll a long list. iPhone users understand these gestures because the built-in
applications use them consistently. To benefit from users’ familiarity, therefore, and to avoid confusing them,
you should use these gestures appropriately in your application.

The more complex gestures, such as swipe or pinch open, are also used consistently in the built-in applications,
but they are less common. In general these gestures are used as shortcuts to expedite a task, not as the only
way to perform a task. When viewing a list of messages in Mail, for example, users delete a message by
revealing and then tapping the Delete button in the preview row for the message. Users can reveal the Delete
button in two different ways:

Support Gestures Appropriately 41
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Designing an iPhone Application: From Product Definition to Branding

 ■ Tap the Edit button in the navigation bar, which reveals a delete control in each preview row. Then, tap
the delete control in a specific preview row to reveal the Delete button for that message.

 ■ Make the swipe gesture across a specific preview row to reveal the Delete button for that message.

The first method takes an extra step, but is easily discoverable because it requires only the tap and begins
with the clearly labeled Edit button. The second method is faster, but it requires the user to learn and
remember the more specialized swipe gesture.

To ensure that your application is discoverable and easy to use, therefore, try to limit the gestures you require
to the most familiar, that is, tap and drag. You should also avoid making one of the less common gestures,
such as swipe or pinch open, the only way to perform an action. There should always be a simple,
straightforward way to perform an action, even if it means an extra tap or two.

In most applications, it’s equally important to avoid defining new gestures, especially if these gestures perform
actions users already associate with the standard gestures. The primary exception to this recommendation
is an immersive application, in which custom gestures can be appropriate. For example, a productivity
application that requires users to make a circular gesture to reveal the Delete button in a table row would
be confusing and difficult to use. On the other hand, a game might reasonably require users to make a circular
gesture to spin a game piece.

Table 3-1 lists the standard gestures users can perform. Be sure to avoid redefining the meaning of these
gestures; conversely, if you support these actions in your application, be sure to respond appropriately to
the gestures that correspond to them. For more information on how to handle events created by gestures,
see iOS Application Programming Guide.

Table 3-1 Gestures users make to interact with iOS-based devices

ActionGesture

To press or select a control or item (analogous to a single mouse click).Tap

To scroll or pan.Drag

To scroll or pan quickly.Flick

In a table-view row, to reveal the Delete button.Swipe

To zoom in and center a block of content or an image.

To zoom out (if already zoomed in).

Double tap

To zoom in.Pinch open

To zoom out.Pinch close

In editable text, to display a magnified view for cursor positioning.Touch and hold

42 Support Gestures Appropriately
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Designing an iPhone Application: From Product Definition to Branding

Incorporate Branding Elements Cautiously

Branding is most effective when it is subtle and understated. People use your iPhone application to get things
done or to be entertained; they don’t want to feel as if they’re being forced to watch an advertisement.
Therefore, you should strive to incorporate your brand’s colors or images in a refined, unobtrusive way. For
example, you might use a custom color scheme in views and controls.

The exception to this is your application icon, which should be focused on your brand. (The application icon
is the icon users can see on their Home screens after they install your application.) Because users see your
application icon frequently, it’s important to spend some time balancing eye-appeal with brand recognition.
For some guidelines on creating an application icon, see “Application Icons” (page 140).

Incorporate Branding Elements Cautiously 43
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Designing an iPhone Application: From Product Definition to Branding

44 Incorporate Branding Elements Cautiously
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 3

Designing an iPhone Application: From Product Definition to Branding

iPhone applications handle many common tasks in ways that may seem different to you, if your experience
is with desktop or laptop computer applications. This section describes these tasks from the human interface
perspective; for the technical details you need to implement these guidelines in code, see iOS Application
Programming Guide.

Starting

iPhone applications should start instantly so users can begin using them without delay. When starting, iPhone
applications should:

 ■ Specify the appropriate status bar style. For information about the available styles, see “The Status
Bar” (page 75); to learn how to specify the style in your code, see “The Information Property List” in iOS
Application Programming Guide.

 ■ Display a launch image that closely resembles the first screen of the application. This decreases the
perceived launch time of your application. To learn how to create a launch image, see “Launch
Images” (page 146); to learn how to specify a launch image in your code, see “Application Launch Images”
in iOS Application Programming Guide.

 ■ Avoid displaying an About window, a splash screen, or providing any other type of startup experience
that prevents people from using your application immediately.

 ■ By default, launch in portrait orientation. If you intend your application to be used only in landscape
orientation, launch in landscape regardless of the current device orientation. Allow users to rotate the
device to landscape orientation if necessary.

A landscape-only application should support both landscape orientations—that is, with the Home button
on the right or on the left. If the device is already physically in a landscape orientation, a landscape-only
application should launch in that orientation. Otherwise, a landscape-only application should launch in
the orientation with the Home button on the right by default.

 ■ Restore state from the last time your application ran. People should not have to remember the steps
they took to reach their previous location in your application.

Starting 45
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

Important: Don’t tell users to reboot or restart their devices after installing your application. If your application
has memory-usage or other issues that make it difficult to run unless the system has just booted, you need
to address those issues. For example, see “Using Memory Efficiently” in iOS Application Programming Guide
for some guidance on developing a well-tuned application.

Stopping

People quit an iPhone application by opening a different application. In particular, note that people don’t
tap an application close button or choose Quit from a menu. In iOS 4.0 and later, and on certain devices, the
quitting application moves to a suspended state in the background. All iPhone applications should:

 ■ Be prepared to quit at any time. Therefore, save user data as soon as possible and as often as reasonable.

 ■ Save the current state when stopping, at the finest level of detail possible. For example, if your application
displays scrolling data, save the current scroll position.

iPhone applications should never quit programmatically because doing so looks like a crash to the user.
There may be times, however, when external circumstances prevent your application from functioning as
intended. The best way to handle this is to display an attractive screen that describes the problem and
suggests how users can correct it. This helps users in two ways:

 ■ It provides feedback that reassures users that there’s nothing wrong with your application

 ■ It puts users in control, letting them decide whether they want to take corrective action and continue
using your application or press the Home button and open a different application

If certain circumstances prevent only some of your application's features from working, you can display either
a screen or an alert when users activate the feature. Although an alert doesn't allow much flexibility in design,
it can be a good choice if you can:

 ■ Describe the situation very succinctly

 ■ Supply a button that performs a corrective action

 ■ Display the alert only when users try to access the feature that isn’t functioning

As with all alerts, the less users see them, the more effective they are. For more information about creating
alerts, see “Using Alerts” (page 88).

Accommodating Multitasking

Thriving in a multitasking environment hinges on achieving a harmonious coexistence with other applications
on the device. At a high level, this means that all applications should:

 ■ Handle interruptions or audio from other applications gracefully

 ■ Stop and restart (that is, transition to and from the background) quickly and smoothly

 ■ Behave responsibly when not in the foreground

46 Stopping
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

The following specific guidelines help your application succeed in the multitasking environment introduced
in iOS 4.0:

 ■ Be prepared for interruptions, and be ready to resume. Multitasking increases the probability that a
background application will interrupt your application. Other features, such as the presence of ads and
faster application-switching, can also cause more frequent interruptions. The more quickly and precisely
you can save the current state of your application, the faster people can relaunch it and continue from
where they left off.

 ■ Make sure your UI can handle the double-high status bar. The double-high status bar appears during
events such as in-progress phone calls, audio recording, and tethering. In unprepared applications the
extra height of this bar can cause layout problems. For example, the UI can become pushed down or
covered. In a multitasking environment, it’s especially important to be able to handle the double-high
status bar properly because there are likely to be more applications that can cause it to appear. You can
trigger the double-high status bar during testing to help you find and correct any views that don’t handle
it well. (To learn how to do this using the Simulator, see “Manipulating the Hardware” in iOSDevelopment
Guide.)

 ■ Be ready to pause activities that require people’s attention or active participation. For example, if
your application is a game or a media-viewing application, make sure your users don’t miss any content
or events when they switch away from your application. When people switch back to a game or media
viewer, they want to continue the experience as if they’d never left it.

 ■ Ensure that your audio behaves appropriately. Multitasking makes it more likely that other media
activity is occurring while your application is running. It also makes it more likely that your audio will
have to pause and resume to handle interruptions. For specific guidelines that help you make sure your
audio meets people’s expectations and coexists properly with other audio on the device, see “Using
Sound” (page 58).

 ■ Use local notifications sparingly. An application can arrange for local notifications to be sent at specific
times, whether the application is suspended, running in the background, or not running at all. For the
best user experience, avoid pestering people with too many notifications, and follow the guidelines for
creating notification content, described in “Enabling Local and Push Notifications” (page 53).

Accommodating Multitasking 47
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

 ■ When appropriate, finish user-initiated tasks in the background. When people initiate a task, they
usually expect it to finish even if they switch away from your application. If your application is in the
middle of performing a user-initiated task that does not require additional user interaction, you should
complete it in the background before suspending.

Hosting Ads

In iOS 4.0 and later, you can allow advertisements to display within your application and you can receive
revenue when users see or interact with them. It’s essential that you plan when and how to integrate ads
with your UI so that people are motivated to view them without being distracted from your application.

You can host an iAd, which contains the ad content, in a specific view in your UI. When people tap an ad in
this view (called a banner view), the iAd performs a preprogrammed action, such as playing a movie, displaying
interactive ad content, or launching Safari to open a webpage. The action can display content that covers
your UI or it might cause your application to transition to the background.

The dimensions of the banner view are:

 ■ In portrait, 320 x 50 points

 ■ In landscape, 480 x 32 points

To ensure seamless integration with banner ads and to provide the best user experience, follow these
guidelines:

Place the banner view at or near the bottom of the screen. This placement differs slightly, depending on
the bars that can be in the screen:

 ■ If there are no bars at the bottom of the screen, put the banner view at the bottom edge of the screen.

 ■ If there are no bars at all, put the banner view at the bottom edge of the screen.

48 Hosting Ads
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

 ■ If there is a toolbar or tab bar, put the banner view directly above the toolbar or tab bar.

Ensure that banner views appear when it makes sense in your application. Although it’s recommended
that a banner view be at the bottom of a screen, you choose which screens should contain banner views.
For example, you might want to choose a context that functions as a sort of interlude in the main task of
your application. People are more likely to enter an iAd experience when they don’t feel like they’re interrupting
their workflow to do so. This is especially important for immersive applications such as games: You don’t
want to place banner views where they will conflict with gameplay.

Hosting Ads 49
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

As much as possible, display banner ads in both orientations. It’s best when users don’t have to change
the orientation of the device to switch between using your application and viewing an ad. Also, supporting
both orientations allows you to accept a wider range of advertisements. To learn how to make sure a banner
view responds to orientation changes, see iAd Programming Guide.

While people view or interact with ads, pause application activities that require their attention or
interaction. When people choose to view an ad, they don’t want to feel that they’re missing events in your
application, and they don’t want your application to interrupt them. A good rule of thumb is to pause the
same activities you would pause when your application transitions to the background.

Don’t stop an ad, except in rare circumstances. In general, your application continues running and receiving
events while users view and interact with ads, so it’s possible that an event will occur that urgently requires
their immediate attention. However, there are very few scenarios that warrant the dismissal of an in-progress
ad. One possibility is with an application that provides Voice over Internet Protocol (VoIP) service. In such an
application, it probably makes sense to cancel a running ad when an incoming call arrives.

Note: Canceling an ad might adversely impact the kinds of advertisements your application can receive and
the revenue you can collect.

Managing Settings or Configuration Options

iPhone applications can offer settings that define preferred application behaviors or configuration options
users can specify to change some functionality of the application. Settings should represent information,
such as an account name, that users set once and rarely (if ever) change. Users view application-specific
settings in the built-in Settings application. Configuration options are values that users might want to change
frequently, such as category types displayed in a list; configuration options should be available within the
application itself.

You should consider settings and options to be mutually exclusive. That is, you should not offer both settings
and configuration options in your application.

It’s best when iPhone applications do not ask users to specify any settings at all. Users can begin to use these
applications right away without being asked to supply set-up information. To achieve this in your application,
there are a few design decisions you can make:

 ■ Focus your solution on the needs of 80 percent of your users. When you do this, the majority of users
do not need to supply settings because your application is already set up to behave the way most users
expect. If there is functionality that only a handful of users might want, or that most users might want
only once, leave it out.

 ■ Get as much information as possible from other sources. If you can use any of the information users
supply in built-in application or device settings, query the system for these values; don’t ask users to
enter them again.

 ■ If you must ask for set-up information, prompt users to enter it within your application. Then, as
soon as possible, store this information in your application’s settings. This way, users aren’t forced to
quit your application and open Settings before they begin to benefit from your application. If users need
to make changes to this information later, they can go to your application’s settings at any time.

50 Managing Settings or Configuration Options
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

It’s not possible for users to open the Settings application without first quitting your application, and you
should not encourage them to take this action. There is no system-provided icon or control that supports
this action, and it’s recommended that you avoid creating a custom icon or control that does. If you decide
you must provide settings in your iPhone application, see “The Settings Bundle” in iOSApplicationProgramming
Guide to learn how to support them in your code.

Note: Application-specific settings should not include user help content.

Unlike settings, configuration options are likely to be changed frequently as users choose to see information
from new sources or in different arrangements. You can react dynamically to changes users make to these
options, because users do not leave your application to access them.

You can offer configuration options in the main user interface or on the back of a screen. To decide which
technique makes sense, determine if the options represent primary functionality and how often users might
want to set them.

For example, Calendar allows users to view their schedules by day, week, or month. These options could
have been offered on the back of the screen, but viewing different parts of a calendar is primary functionality
and users are likely to change their focus frequently.

On the other hand, the primary functionality of Weather is to display a city’s current conditions and 6-day
forecast. Although it’s important to be able to choose whether temperatures are displayed in Celsius or
Fahrenheit, users are not likely to change this option very often, so it would not make sense to put it in the
main user interface. Offering the temperature-scale option on the back of the Weather screen makes it
conveniently available, but not obtrusive.

Supporting Copy and Paste

iOS provides an edit (or pasteboard) menu that supports Cut, Copy, Paste, Select, and Select All operations
in text views, web views, and image views. The commands in the menu allow people to make changes to
their content and copy content from one application into another.

You can adjust some of the behaviors of the edit menu to suit your application. (For information on how to
implement these behaviors in code, see “Copy and Paste Operations” in iOS Application Programming Guide.)
For example, you can specify the subset of commands the menu displays and you can influence where the
menu appears. You have no control over the color or shape of the menu itself.

Use commands that make sense in the current context. For example, if nothing is selected, the menu does
not contain Copy or Cut because these commands act on a selection. If you support an edit menu in a custom
view, you’re responsible for making sure that the commands the menu displays are appropriate for the
current context. Note that you cannot specify custom commands to display in the menu.

Accommodate the menu display in your layout. UIKit displays the edit menu above or below the insertion
point or selection, depending on available space, and places the menu pointer so that users can see how
the menu commands relate to the content. You can programmatically determine the position of the menu
before it appears, so you can prevent important parts of your UI from being obscured, if necessary.

Support both gestures people can use to invoke the menu. Although the touch and hold gesture is the
primary way users reveal the edit menu, they can also double-tap a word in a text view to select it and reveal
the menu at the same time. If you support the menu in a custom view, be sure to respond to both gestures.
In addition, you can define the object that is selected by default when the user double taps.

Supporting Copy and Paste 51
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

Avoid creating a button in your UI that performs a command that’s available in the edit menu. For
example, it’s better to allow users to perform a copy operation using the edit menu than to provide a Copy
button, because users will wonder why there are two ways to do the same thing in your application.

Consider enabling the selection of static text if it’s useful to the user. For example, a user might want to
copy the caption of an image, but they’re not likely to want to copy the label of a tab item or a screen title,
such as Accounts. In a text view, selection by word should be the default.

Don’t make button titles selectable. A selectable button title makes it difficult for users to reveal the edit
menu without activating the button. In general, elements that behave as buttons don’t need to be selectable.

Combine support for undo and redo with your copy and paste support. People often expect to able to
undo recent operations if they change their minds. Because the edit menu does not require confirmation
before its actions are performed, you should give users the opportunity to undo or redo these actions (to
learn how to do this, see “Supporting Undo and Redo” (page 52)).

Supporting Undo and Redo

iOS gives people the ability to undo and redo their typing in text views. People initiate an undo by shaking
the device, which displays an alert that allows them to undo what they just typed, redo previously undone
typing, or cancel the undo.

UIKit allows you to support undo in a more general way in your application (for information on how to
implement this behavior in code, see Undo Architecture). You can specify:

 ■ The actions users can undo or redo

 ■ When your application should interpret a shake event as the shake to undo gesture

 ■ How many levels of undo to support

To provide a great user experience for the undo and redo capability in your application, you should:

 ■ Supply brief descriptive phrases that tell people precisely what they’re undoing or redoing. UIKit
automatically supplies the strings “Undo “ and “Redo “ for the undo alert button titles, but you need to
provide a word or two that describes the action users can undo or redo. (Note that the Cancel button
cannot be changed.) For example, you might supply the text “Delete Name” or “Address Change,” to
create buttons titles such as “Undo Delete Name” or “Redo Address Change.”

Be sure to avoid supplying text that is too long: A button title that is too long is truncated and is difficult
for users to decipher. Also, because this text is in a button title, use title-style capitalization and do not
add punctuation. (Briefly, title-style capitalization means to capitalize every word except articles,
coordinating conjunctions, and prepositions of four or fewer letters.)

 ■ Avoid overloading the shake gesture. Even though you can programmatically set when your application
interprets a shake event as shake to undo, you run the risk of confusing people if they also use shake to
perform a different action.

The shake gesture is the primary way people expect to initiate undo and redo, but you can also include
the system-provided Undo and Redo buttons in a navigation bar, if appropriate. You might do this if it’s
essential that you display an explicit, dedicated button to perform these functions within the context of
your application, but this is unusual.

52 Supporting Undo and Redo
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

 ■ Consider the context of the actions you allow to be undone or redone. In general, people expect their
changes and actions to take effect immediately. As much as possible, the undo and redo capability
should be clearly related to the user’s immediate context, and not to an earlier context.

Enabling Local and Push Notifications

Both local and push notifications allow you to tell people about something when your application isn’t
running in the foreground. For example, you might want to let people know that:

 ■ A message has arrived

 ■ An event is about to occur

 ■ New data is available for download

 ■ The status of something has changed

Local notifications are scheduled by an application and delivered by iOS on the same device, regardless of
whether the application is currently running in the foreground. For example, a calendar or to-do application
can schedule a local notification to alert people of an upcoming meeting or due date.

Figure 4-1 A local notification can arrive while a different application is running

Push notifications are sent by an application’s remote server to Apple Push Notification service, which pushes
the notification to all devices that have the application installed. For example, a game that a user can play
against remote opponents can update all players with the latest move.

If your application is not running in the foreground when a local or push notification arrives, you can get the
user’s attention by:

Enabling Local and Push Notifications 53
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

 ■ Updating a badge on your application’s Home screen icon

 ■ Displaying an alert

You can also play a sound when a badge updates or an alert appears.

If your application is running in the foreground, you can still receive local and push notifications, but you
pass the information to your users in an application-specific way. In Settings, people can allow or disallow
badging, sounds, and alerts for push notifications from selected applications or from all applications. There
is no similar mechanism for disabling local notifications, because this is something people should be able to
specify within each application.

Different notification techniques might be appropriate in different situations, so you should be prepared to
use both types. In general:

 ■ Use a badge when the number of new items is informative and the items are not time-critical. A
badge is a good way to tell people how many items are waiting for their attention, such as unread
messages, assigned tasks, or updates to a shared document. Because people don’t see badges unless
they visit the Home screen, you probably don’t want to use them to deliver time-sensitive information.

You do not have any control over the appearance of the badge or its position: It’s a small red oval that
appears over the upper-right corner of your Home screen icon.

A badge contains only numbers, not letters or punctuation.

 ■ Use an alert when you need to deliver important information users want to know or act upon right
away. An alert is a good way to tell people about an upcoming event or a status change. Alerts interrupt
the user’s workflow, so it’s best when you use them sparingly.

54 Enabling Local and Push Notifications
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

Follow these guidelines to create local and push notifications that users appreciate.

Keep badge contents up to date. It’s especially important to update the badge as soon as users have attended
to the new information, so that they don’t think additional information has arrived.

Provide a custom message for an alert. Your custom message is displayed in the center of the alert, below
your application name (which is automatically displayed at the top of the alert). As with the message in a
standard alert (described in “Designing an Alert” (page 90)), a local or push notification alert message should:

 ■ Focus on the information, not user actions. Avoid telling people which button to tap or describing the
results of tapping a specific button.

 ■ Be short enough to display on one or two lines. If the message is too long, it might force the notification
alert to scroll.

 ■ Use sentence-style capitalization and appropriate ending punctuation. When possible, use a complete
sentence.

Optionally, provide a custom title for the action button. An alert can contain one or two buttons. In a
two-button alert, the Close button is on the left and the action button (titled View by default) is on the right.
If you specify one button, the alert displays an OK button.

Tapping the action button simultaneously dismisses the alert and launches your application. Tapping either
the Close button or the OK button dismisses the alert without opening your application.

If you want to use a custom title for the action button, be sure to create a title that clearly describes the
action that occurs when your application launches. For example, a game might use the title Play to indicate
that tapping the button opens the application to a place where the user can take their turn. Make sure the
title:

 ■ Uses title-style capitalization

 ■ Is short enough to fit in the button without truncation (be sure to test the length of localized titles, too)

Note: Your custom button title can also be displayed in the “slide to view” message people see when a
notification arrives while the device is locked. When this happens, the custom title is automatically converted
to lowercase and replaces the word “view” in the message.

Optionally, provide a launch image. In addition to displaying your existing launch images, you can supply
a different launch image to display when people start your application in response to a notification. For
example, a game might specify a launch image that’s similar to a screen within the game, instead of an image
that’s similar to the opening menu screen. If you don’t supply this launch image, iOS displays either the
previous snapshot or one of your other launch images. (To learn how to create a launch image, see “Launch
Images” (page 146).)

If appropriate, play a sound to accompany a badge or an alert. A sound can get people’s attention when
they’re not looking at the device screen. It’s best when sounds are reserved for notifications that users consider
important. For example, a calendar application might play a sound with an alert that reminds people about
an imminent event. Or, a collaborative task management application might play a sound with a badge update
to signal that a remote colleague has completed an assignment.

Enabling Local and Push Notifications 55
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

You can supply a custom sound, or you can use a built-in alert sound. If you create a custom sound, be sure
it is short, distinctive, and professionally produced. (To learn about the technical requirements for this sound,
see “Preparing Custom Alert Sounds” in Local andPushNotificationProgrammingGuide.) Note that you cannot
programmatically force the device to vibrate when a notification is delivered, because the user has control
over whether alerts are accompanied by vibration.

Making Your Application Accessible

An application is accessible when users with disabilities can use it successfully, perhaps with the help of an
assistive application or device. iOS-based devices include many features that make it easier for all users,
including disabled users, to use the device, such as visual voicemail, zoom, and voice control. You do not
have to take any steps in your application to ensure that your users can benefit from these features.

With VoiceOver, Apple’s innovative screen-reading technology, the story is a little different. To make sure
VoiceOver users can use your application to its fullest, you might need to provide some custom information
about the views and controls in the user interface.

Fortunately, UIKit controls and views are accessible by default, so when you use standard elements in a
completely standard way, you have little (if any) additional work to do. The more custom your user interface
is, the more custom information you need to provide, so that VoiceOver can properly describe your application.

Important: The job of making your application accessible consists of giving VoiceOver the information it
needs to help people use your application. The job does not include changing the visual design of the user
interface to accommodate VoiceOver.

Making your iPhone application accessible to VoiceOver users is the right thing to do. It can also increase
your user base and it might help you address accessibility guidelines created by various governing bodies.

Providing Search and Displaying Search Results

UIKit provides the search bar control you can use to display a consistent interface to initiate searching, but
you are responsible for implementing search in your application. (To learn more about the search bar, see
“Search Bars” (page 126); to learn more about handling search results in code, see UISearchDisplayController
Class Reference.) To ensure that search is a useful and convenient experience users appreciate, take some
time to consider how to implement the process and how to display the results.

In general, you should:

 ■ Build indexes of your data so you are always prepared for search.

 ■ Live-filter local data so you can display results as soon as users begin to type, and narrow the results as
users continue typing.

 ■ When possible, also filter remote data as users type, but be sure to get the user’s permission if the
response time is likely to delay the results by more than a second or two.

 ■ Display a search bar above a list or the index in a list.

 ■ Avoid using a tab for search unless it is a primary function in your application that should be featured
as a distinct mode.

56 Making Your Application Accessible
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

Although live-filtering data usually produces a superior user experience, it’s not always practical. When this
is the case, you can begin the search process after the user taps the Search button in the keyboard. If you
do this, be sure to provide feedback on the search’s progress so users know that the process has not stalled.
One way to do this is to display textual results as soon as possible and display placeholder content for data
that might take longer to retrieve.

In YouTube, for example, users initiate a search for videos by tapping the Search button. If the network
connection is slow, YouTube first displays the Loading... message along with a spinning activity indicator so
users know that search is proceeding. Then, YouTube displays a results list in which each row is populated
with textual results, such as video title and viewer rating, and a custom image of a box with a dotted outline.
As users scan the list of video titles, the video thumbnails replace the dotted boxes as they are downloaded.
Displaying partial search results while additional data is still downloading gives users useful information
promptly.

If you handle data that sorts naturally into different categories, you can provide a scope bar. A scope bar
contains up to four scope buttons, each representing a category. For example, Mail provides a scope bar that
allows users to focus their search on the From, To, or Subject fields of messages, or broaden the search to
include all fields. Consider providing a scope bar if it helps users focus their search or if it significantly reduces
the number of results. (To learn how to implement a scope bar in your code, see UISearchBar Class Reference.)

Using the User’s Location

Users appreciate application features that allow them to automatically tag content with their physical location,
or to find friends that are currently nearby. Users also appreciate being able to disable features like these
when they don’t want to share their location with others. Users can grant (or deny) system-wide access to
their physical location with the Location Services setting in Settings > General.

If users turn off Location Services, and later use an application feature that requires their location, they see
an alert that tells them they must change their preference before they can use the feature. The alert does
not allow them to make this change within the application; instead, they must go to Settings and change
their preference. This ensures that users are fully aware that they are granting system-wide permission to
use their location information.

To help users understand why they might need to turn Location Services on, it’s best if they see the alert
only when they attempt to use a feature that clearly needs to know their current location. For example,
people can use Maps when Location Services is off, but they see the alert when they access the feature that
finds and tracks their current location.

If Location Services is turned off, iOS displays the alert the first time your application tries to access location
information. The Core Location framework provides a way for you to get the user’s preference so that you
can avoid triggering this alert unnecessarily or inappropriately. (See Core Location Framework Reference to
learn more about this programming interface.)

With knowledge of the user’s preference, you can trigger the alert as closely as possible to the feature that
requires location information, or perhaps avoid it altogether.

 ■ If your application cannot perform its primary function without this information, it’s best if users see the
alert as soon as they start your application. Users will not be bothered by this, because they understand
that the main function of your application depends on knowing their location.

Using the User’s Location 57
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

 ■ If the user’s location is not part of the essential function of your application, you might choose to simply
restrict the feature that uses it. For example, when Location Services is turned off, Camera automatically
turns off the feature that adds the user’s location to the photos they take. It does not prevent users from
taking photos unless they change their preference, because adding location information to photos is
appreciated, but not essential.

 ■ If a feature needs location information to function, be sure to avoid making any programmatic calls that
trigger the alert before the user actually selects the feature. (The call that gets the user’s preference does
not trigger the alert.) This way, you avoid causing users to wonder why your application wants their
location information when they’re doing something that doesn’t appear to need it.

Handling Orientation Changes

Users can rotate iOS-based devices at any time, and they expect the content they’re viewing to respond
appropriately. In your iPhone application, be sure to:

 ■ Be aware of accelerometer values (for more information on the accelerometer and references to
accelerometer programming interfaces, see iOS Application Programming Guide). If appropriate, your
application should respond to all changes in device orientation.

 ■ If there’s a part of your application’s user interface that displays in one orientation only, it’s appropriate
for that area to appear in that orientation and not respond to changes in device orientation. For example,
when a user selects an iPod video to view, the video displays in landscape orientation, regardless of the
current device orientation. This signals the user to physically rotate the device to view the video. The
important point about this example is that iPod does not provide a “rotate now” button; instead, the
user knows to rotate the device because the video appears in landscape orientation.

Allow users to physically rotate the device to correctly view the parts of your application’s user interface
that require a specific orientation. Avoid creating a control or defining a gesture that tells users to rotate
the device.

 ■ Take advantage of the one-step orientation-change process to perform smoother, often faster rotations.
However, if your screen layout is very complicated, you might choose instead to perform a cross-fade
transition when an orientation-change occurs. To learn how to support the one-step process in your
code, see UIViewController Class Reference.

 ■ Users often rotate their devices to landscape orientation because they want to “see more.” If you respond
by merely scaling up your content, you fail to meet users’ expectations. Instead, you should respond by
rewrapping lines of text and, if necessary, rearranging the layout of the user interface so that more
content fits on the screen.

Using Sound

Users decide how loud sounds should be and whether they want to hear them at all. Sometimes, users expect
to hear certain sounds even when their current settings indicate that they prefer silence. For example, users
always expect to hear the ringtone or alarms that they have set. Essentially, users want to hear sounds they
ask for, but avoid hearing sounds they don’t ask for.

To help you accommodate this, iOS provides programming interfaces you can use to:

58 Handling Orientation Changes
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

 ■ Describe how your application’s sounds should fit in with other sounds on the device

 ■ Ensure that your application’s sounds play according to users’ expectations

Before you decide how to handle sound in your application, you need to understand how users expect
applications and the device to behave when they adjust device controls and use external devices, such as
headphones and headsets.

The Ring/Silent Switch—What Users Expect

Users use the Ring/Silent switch to silence their devices when they want to:

 ■ Avoid being interrupted by unexpected sounds, such as Phone ringtones and incoming message sounds.

 ■ Avoid hearing sounds that are the byproducts of user actions, such as keyboard or other feedback sounds,
incidental sounds, or application startup sounds.

 ■ Avoid hearing game sounds, including incidental sounds and soundtracks, that are not essential to using
the game.

For example, in a theater users switch their devices to silent to avoid bothering other people in the theater.
In this situation, users still want to be able to use applications on their devices, but they don’t want to be
surprised by sounds they don’t expect or explicitly request, such as ringtones or new message sounds.

However, the Ring/Silent switch does not silence sounds that result from user actions that are solely and
explicitly intended to produce sound. For example:

 ■ Media playback in a media-only application is not silenced by the Ring/Silent switch because the media
playback was explicitly requested by the user.

 ■ A Clock alarm is not silenced by the Ring/Silent switch because the alarm was explicitly set by the user.

 ■ A sound clip in a language-learning application is not silenced by the Ring/Silent switch because the
user took explicit action to hear it.

 ■ Conversation in an audio chat application is not silenced by the Ring/Silent switch because the user
started such an application for the sole purpose of having an audio chat.

This behavior follows the principle of user control because it is up to the user, not the device, to decide
whether it's appropriate to hear sounds the user explicitly requests.

Volume Buttons—What Users Expect

Users use the device’s volume buttons to adjust the volume of all sounds their devices can play, including
songs, application sounds, and device sounds. Users can always use the volume buttons to quiet any sound,
regardless of the position of the Ring/Silent switch.

Using the volume buttons to adjust an application’s currently playing audio also adjusts the overall system
volume, with the exception of the ringer volume. (Using the volume buttons when no audio is currently
playing adjusts the ringer volume.)

Using Sound 59
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

If you need to display a volume slider, be sure to use the system-provided volume slider available when
you use the MPVolumeView class. Note that when the currently active audio output device does not support
volume control, the volume slider is replaced by the appropriate device name.

Sometimes, an application might need to adjust relative, independent volume levels to produce the best
mix in its audio output. But the volume of the final audio output should always be governed by the system
volume, whether it’s adjusted by the volume buttons or a volume slider. This means that control over the
application’s audio output remains in users’ hands, where it belongs.

Headsets and Headphones—What Users Expect

Users plug in headsets and headphones to hear sounds privately and to free their hands. Users have different
expectations for application behavior, depending on whether they’re plugging in or unplugging these
accessories.

When users plug in a headset or headphones, they intend to continue listening to the current audio, but
privately. For this reason, they expect an application that is currently playing audio to continue playing
without pause.

When users unplug a headset or headphones, they don’t want to automatically share what they’ve been
listening to with others. For this reason, they expect an application that is currently playing audio to pause,
allowing them to explicitly restart playback when they’re ready.

Wireless Audio—What Users Expect

People use wireless headsets and headphones for the same reasons they use wired headsets and headphones:
they want to hear sounds privately and they want to free their hands.

Users also have very similar expectations for the user experience of wireless headsets:

 ■ When users connect to a wireless audio device, they intend to continue listening to the current audio,
but privately. In this situation, they expect the audio to continue playing without pause.

 ■ When users disconnect from a wireless device (or the device goes out of range or turns off), they don’t
want to automatically share what they’ve been listening to with others. In this situation, they expect
currently playing audio to pause, allowing them to explicitly restart playback when they’re ready.

Even though people don’t physically plug in or unplug a wireless audio device, they still expect to be able
to choose a different audio route. To handle this, iOS automatically displays a control that allows users to
pick an output audio route. (To ensure that this control can appear in your application, you need to use the
MPVolumeView class.) Because choosing a different audio route is a user-initiated action, users expect currently
playing audio to continue without pause.

Define the Audio Behavior of Your Application

If sound enhances or is essential to the user experience or functionality of your application, you need to
decide how your audio should fit in with the audio environment of the device and how it should respond
to user actions. You make this decision based, in part, on how your audio should behave when:

 ■ The device locks or is switched to silent

60 Using Sound
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

 ■ Other audio is currently playing

 ■ Your application needs to handle both audio input and output, either sequentially or simultaneously

To influence how your application’s audio should behave in situations such as these, use Audio Session
Services or the AVAudioSession class. These programming interfaces do not produce sound; instead, they
help you express how your audio should interact with audio on the device and respond to interruptions and
changes in device configuration. (To learn how to use these audio programming interfaces in your code, see
Audio Session Programming Guide.)

If your application produces only UI sound effects that are incidental to its functionality, you can use
System Sound Services. System Sound Services is the iOS technology that produces alerts and UI sounds
and invokes vibration; it is unsuitable for any other purpose and the sounds it produces are not governed
by Audio Session Services. (For a sample project that demonstrates how to use this technology, see Audio UI
Sounds (SysSound).)

Important: No matter what technology you use to produce audio or how you define its behavior, the phone
can always interrupt the currently running application. This is because no application should prevent users
from receiving an incoming call.

In Audio Session Services, the audio session functions as an intermediary for audio between your application
and the system. One of the most important facets of the audio session is the category, which defines the
audio behavior of your application.

To realize the benefits of Audio Session Services and provide the audio experience users expect, you need
to select the category that best describes the audio behavior of your application. This is the case whether
your application only plays audio in the foreground or can also play audio in the background. Follow these
guidelines as you make this selection:

 ■ Select an audio session category based on its semantic meaning, not its precise set of behaviors.
This ensures that your application behaves according to users’ expectations. In addition, it gives your
application the best chance of working properly if the exact set of behaviors is refined in the future.

 ■ In rare cases, add a property to the audio session to modify a category’s standard behavior. A
category’s standard behavior represents what most users expect, so you should consider carefully before
you change that behavior. For example, you might add the
kAudioSessionProperty_OtherMixableAudioShouldDuck property to make sure your audio is
louder than all other audio (except phone audio), if that’s what users expect from your application. (To
learn more about audio session properties, see “Fine-Tuning the Category” in Audio SessionProgramming
Guide.)

 ■ Consider basing your category selection on the current audio environment of the device. This might
make sense if, for example, users can use your application while listening to other audio instead of your
soundtrack. If you do this, be sure to avoid forcing users to stop listening to their music or make an
explicit soundtrack choice when your application starts.

 ■ In general, avoid changing categories while your application is running. The primary reason for
changing the category is if your application needs to support recording and playback at different times.
In this case, it can be better to switch between the Record category and the Playback category as needed,
than to select the Play and Record category. This is because selecting the Record category ensures that
no alerts (such as an incoming text message alert) will sound while the recording is in progress.

Using Sound 61
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

Regardless of your category choice, it’s important to activate your audio session only when it’s needed and
deactivate it when it’s not. This helps ensure a high quality audio experience for users. For example, a VoIP
app’s audio session should be active only while the app is handling a call.

Table 4-1 lists the audio session categories you can use. iOS assigns the Solo Ambient category to an audio
session by default.

Note: In the interest of space, Table 4-1 displays only the last part of each category name. The actual symbol
name of each category begins with AVAudioSessionCategory. In addition, the actual symbol name of the
MixWithOthers property is kAudioSessionProperty_OverrideCategoryMixWithOthers.

Table 4-1 Audio session categories that influence audio behavior

Allowed in
the
background

Mixes with other
audio

Silenced by
Ring/Silent
switch and
locking

MeaningCategory

NoNoYesSounds enhance application
functionality, and should silence
other audio

SoloAmbient

NoYesYesSounds enhance application
functionality, but should not
silence other audio

Ambient

YesNo (default)

Yes (when the
MixWithOthers
property is added)

NoSounds are essential to application
functionality, and might mix with
other audio

Playback

YesNoNoAudio is user-recordedRecord

YesNo (default)

Yes (when the
MixWithOthers
property is added)

NoSounds represent audio input and
output, sequentially or
simultaneously

PlayAndRecord

Yes *No-Application performs
hardware-assisted audio encoding
(it does not play or record)

AudioProcessing

* If you select the Audio Processing category and you want to perform audio processing in the background,
you need to prevent your application from suspending before you’re finished. To learn how to do this, see
“Executing Code in the Background”.

Here are some scenarios that illustrate how to choose the audio session category that provides an audio
experience users appreciate.

Scenario 1: An educational application that helps people learn a new language. You provide:

 ■ Feedback sounds that play when users tap specific controls

62 Using Sound
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

 ■ Recordings of words and phrases that play when users want to hear examples of correct pronunciation

In this application, sound is essential to the primary functionality. People use this application to hear words
and phrases in the language they’re learning, so the sound should play even when the Ring/Silent switch is
set to silent or the device locks. Because users need to hear the sounds clearly, they expect other audio they
might be playing to be silenced.

To produce the audio experience users expect for this application, you would use the Playback category.
Although this category can be refined to allow mixing with other audio, this application should use the
default behavior to ensure that other audio does not compete with the educational content the user has
explicitly chosen to hear.

Scenario 2: A Voice over Internet Protocol (VoIP) application. You provide:

 ■ The ability to accept audio input

 ■ The ability to play audio

In this application, sound is essential to the primary functionality. People use this application to communicate
with others, often while they’re currently using a different application. Users expect to be able to receive
calls when the Ring/Silent switch is set to silent or the device is locked, and they expect other audio to be
silent for the duration of a call. They also expect to be able to receive and continue calls when the application
is in the background.

To produce the expected user experience for this application, you would use the Play and Record category.
In addition, you would be sure to activate your audio session only when you need it so that users can use
other audio between calls.

Scenario 3: A game that allows users to guide a character through different tasks. You provide:

 ■ Various gameplay sound effects

 ■ A musical soundtrack

In this application, sound greatly enhances the user experience, but is not essential to the main task. Also,
users are likely to appreciate being able to play the game silently or while listening to songs in their music
library instead of to the game soundtrack.

The best strategy is to find out if users are listening to other audio when your application starts. Don’t ask
users to choose whether they want to listen to other audio or listen to your soundtrack. Instead, use the
Audio Session Services function AudioSessionGetProperty to query the state of the
kAudioSessionProperty_OtherAudioIsPlaying property. Based on the answer to this query, you can
choose either the Ambient or Solo Ambient categories (both categories allow users to play the game silently):

 ■ If users are listening to other audio, you should assume that they’d like to continue listening and would
not appreciate being forced to listen to the game soundtrack instead. In this situation, you would choose
the Ambient category.

 ■ If users are not listening to any other audio when your application starts, choose the Solo Ambient
category.

Scenario 4: An application that provides precise, real-time navigation instructions to the user’s destination.
You provide:

 ■ Spoken directions for every step of the journey

Using Sound 63
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

 ■ A few feedback sounds

 ■ The ability for users to continue to listen to their own audio

In this application, the spoken navigation instructions represent the primary task, regardless of whether the
application is in the background. For this reason, you would use the Playback category, which allows your
audio to play when the device is locked or the Ring/Silent switch is set to silent, and while the application is
in the background.

To allow people to listen to other audio while they use your application, you can add the
kAudioSessionProperty_OverrideCategoryMixWithOthers property. However, you also want to
make sure that users can hear the spoken instructions above the audio they’re currently playing. To do this,
you can apply the kAudioSessionProperty_OtherMixableAudioShouldDuck property to the audio
session. This ensures that your audio is louder than all currently playing audio (except phone audio).

Scenario 5: A blogging application that allows users to upload their text and graphics to a website. You
provide:

 ■ A short startup sound file

 ■ Various short sound effects that accompany user actions (such as a sound that plays when a post has
been uploaded)

 ■ An alert sound that plays when a posting fails

In this application, sound enhances the user experience, but it is incidental. The main task has nothing to do
with audio and users do not need to hear any sounds to successfully use the application. In this scenario,
you would use System Sound Services to produce sound. This is because the audio context of all sound in
the application conforms to the intended purpose of this technology, which is to produce UI sound effects
and alert sounds that obey device locking and the Ring/Silent switch as users expect.

Manage Audio Interruptions

There are times when currently playing audio is interrupted by audio from a different application. For example,
an incoming phone call interrupts the current application’s audio for the duration of the call. In a multitasking
environment, the frequency of such audio interruptions is likely to be greater.

To provide an audio experience users appreciate, iOS relies on you to:

 ■ Identify the type of audio interruption your application can cause

 ■ Respond appropriately when your application continues after an audio interruption ends

Every application needs to identify the type of audio interruption it can cause, but not every application
needs to determine how to respond to the end of an audio interruption. This is because, for most types of
applications, the appropriate response to the end of an audio interruption is to resume playing audio. Only
applications that are primarily or partly media playback applications, and that provide media playback
controls, have to take an extra step to determine the appropriate response.

Conceptually, there are two types of audio interruptions, based on the type of audio that is doing the
interrupting and the way users expect certain applications to respond when the interruption ends:

 ■ Resumable interruption. A resumable interruption is caused by audio that users view as a temporary
interlude in their primary listening experience.

64 Using Sound
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

After a resumable interruption ends, an application that displays media playback controls should resume
what it was doing when the interruption occurred, whether this is playing audio or remaining paused.
An application that doesn’t have media playback controls should resume playing audio.

For example, consider a user listening to a music playback application when a VoIP call arrives in the
middle of a song. The user answers the call, expecting the music playback application to be silent while
they talk. After the call ends, the user expects the playback application to automatically resume playing
the song, because the music—not the call—constitutes their primary listening experience and they had
not paused the music before the call arrived. If, on the other hand, the user had paused music playback
before the call arrived, they would expect the music to remain paused after the call ends.

Other examples of applications that can cause resumable interruptions are applications that play alarms,
audio prompts (such as spoken driving directions), or other intermittent audio.

 ■ Nonresumable interruption. A nonresumable interruption is caused by audio that users view as a primary
listening experience, such as audio from a media playback application.

After a nonresumable interruption ends, an application that displays media playback controls should
not resume playing audio. An application that doesn’t have media playback controls should resume
playing audio.

For example, consider a user listening to a music playback application (music app 1) when a different
music playback application (music app 2) interrupts. In response, the user decides to listen to music app
2 for some period of time. After quitting music app 2, the user would not expect music app 1 to
automatically resume playing because they’d deliberately made music app 2 their primary listening
experience.

The following guidelines help you decide what information to supply and how to continue after an audio
interruption ends.

Identify the type of audio interruption your application caused. You do this by deactivating your audio
session in one of the following two ways when your audio is finished:

 ■ If your application caused a resumable interruption, deactivate your audio session with the
AVAudioSessionSetActiveFlags_NotifyOthersOnDeactivation flag.

 ■ If your application caused a nonresumable interruption, deactivate your audio session without any flags.

Providing this information helps iOS to give interrupted applications the ability to resume playing their audio
automatically, if appropriate.

Determine whether you should resume audio when an audio interruption ends. You base this decision
on the audio user experience you provide in your application.

 ■ If your application displays media playback controls that people use to play or pause audio, you need
to check the AVAudioSessionInterruptionFlags_ShouldResume flag when an audio interruption
ends.

If you receive the Should Resume flag, you should:

 ❏ Resume playing audio if your application was actively playing audio when it was interrupted

 ❏ Not resume playing audio if your application was not actively playing audio when it was interrupted

 ■ If your application does not display any media playback controls that people can use to play or pause
audio, you should always resume previously playing audio when an audio interruption ends. You do not
have to check for the presence of the Should Resume flag.

Using Sound 65
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

For example, a game that plays a soundtrack should automatically resume playing the soundtrack after
an interruption.

Handle Media Remote Control Events, if Appropriate

Beginning in iOS 4.0, applications can receive remote control events when users use iOS media controls or
accessory controls (such as headset controls). This capability allows your application to accept user input
that does not come through your UI, whether your application is currently playing audio in the foreground
or in the background.

A media playback application, in particular, needs to respond appropriately to these events, especially if it
plays audio while it’s in the background.

To meet the responsibilities associated with this privilege, be sure to follow these guidelines:

Limit the eligibility to receive remote control events to times when it makes sense. If, for example, your
application allows users to read content, search for information, and listen to audio, it should only accept
remote control events while the user is in the audio context. When the user leaves the audio context, you
should relinquish the ability to receive the events. This allows users to listen to a different application’s audio
(and control it with headset controls) while they’re in the nonaudio contexts of your application.

Don’t repurpose an event, even if the event has no meaning in your application. Users expect the iOS
media controls and accessory controls to function consistently in all applications. You do not have to handle
the events that your application doesn’t need, but the events that you do handle must result in the experience
users expect. If you redefine the meaning of an event, you confuse users and risk leading them into an
unknown state from which they can’t escape without quitting your application.

Providing Choices

iOS includes a few elements that help users make selections. When you need to offer choices in your
application, you should use these selection methods because users are already familiar with their behavior.
In general, you should not try to replicate the appearance and behavior of selection controls you might see
in a desktop computer application, such as an application menu or a set of radio buttons. iOS provides the
following elements you can use to offer choices to users:

 ■ Lists (that is, table views). Users tap a row in a list to select an item. Lists are suitable for displaying almost
any number of choices. For details on the ways you can use table views in your application, see “Table
Views” (page 99).

 ■ Pickers, including date and time pickers. Users spin the wheels in a picker until each wheel displays the
desired part of a multipart value, such as a calendar date that comprises year, month, and day. For more
information about using pickers in your iPhone application, see “Date and Time Pickers” (page 118) and
“Pickers” (page 124).

 ■ Switch controls. Users slide a switch control from one side to the other, revealing one of two values. A
switch control is intended to offer a simple choice within a list. For more information about switch
controls, see “Switch Controls” (page 109).

66 Providing Choices
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

Providing a License Agreement or a Disclaimer

If you provide an end-user license agreement (or EULA) with your iPhone application, be aware that the App
Store displays it, so that people can read it before they get your application.

If possible, try to avoid requiring users to indicate their agreement to your EULA when they first start your
application. This allows users to enjoy your application without delay. However, even though this is the
preferred user experience, it might not be feasible in all cases. If you must display a license agreement within
your application, try to do so in a way that harmonizes with your user interface and causes the least
inconvenience to users.

Similarly, if you need to provide a disclaimer, be sure to balance your business needs with maintaining a
great user experience. If you can, provide your disclaimer within your application description or EULA, so
that it is available in the App Store.

Providing a License Agreement or a Disclaimer 67
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

68 Providing a License Agreement or a Disclaimer
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Common Tasks

User interface elements in iOS include views and controls. Views provide content regions with well-defined
sets of functionality. Controls are graphic objects that cause instant actions or visible results. Although all
an application’s views and controls are contained in the application’s single window, users see and interact
with them in screens, which roughly correspond to different visual states in the application.

iOS defines the standard appearance of these user interface elements, and delivers consistent behaviors that
users expect. Read the chapters in Part II to learn about the types of user interface elements available and
how to use them to build the user interface of your application.

69
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

PART II

Designing the User Interface of Your iPhone
Application

70
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

PART II

Designing the User Interface of Your iPhone Application

Before you delve into the details about specific views and controls, it’s helpful to gain a high-level
understanding of the way these elements can work together and how users expect them to behave. This
chapter introduces the views that comprise the building blocks of most applications, describing where they
belong and touching on how they’re used.

To learn more about the appearance, behavior, and usage guidelines of individual user interface elements,
be sure to read the chapters following this one. Understanding how each user interface element is designed
to be used helps you use it correctly in your application and, if appropriate, customize it to meet your needs.

Application Screens and Their Contents

Every application, regardless of type, has an application window. Programmatically, the window provides
the background on which you present all your application’s information. But users are not aware of this
window; instead, they experience your application as a collection of screens through which they navigate.

Although it’s not a programmatic construct, you can think of a screen as corresponding to a distinct visual
state or mode in your application. Users can see individual screens when they navigate through an information
hierarchy, tap different tabs in a tab bar, or tap an Info button to view flip-side configuration options.

Depending on the style of your application, you might have a large number of screens or just a few. For
example, Mail can display an accounts screen, screens that list the mailboxes in each account, screens that
list the contents of each mailbox, and a screen for each message, in addition to a message composition
screen. On the other hand, the Stocks application displays two screens: One screen displays a list of companies
and a stock-performance graph and the second screen displays application configuration information.

For the most part, users think of an application screen and the device screen as identical. However, an
application screen’s content can extend beyond the bounds of the device screen, requiring users to scroll.
For example, the Contacts screen is a single screen in the Phone application, even though it’s likely to list
enough names to fill the device screen several times over.

Each application screen can contain various combinations of views and controls. Some views include specific
controls that do not belong anywhere else, and some controls can be used in a variety of views.

Alerts, action sheets, and modal views are distinct types of views that do not exist in an application screen
like most other views; instead, they float above application screens and their views. See “Alerts, Action Sheets,
and Modal Views” (page 87) for more information about these views.

Four types of views have special status in the user interface of an application, although they do not need to
be included or always be visible in every application. These are:

 ■ The status bar. This is a unique view that isn’t technically part of the application window, although an
application can customize the appearance of the status bar to some extent. See “The Status Bar” (page
75) for more information.

Application Screens and Their Contents 71
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

A Brief Tour of the Application User Interface

 ■ The navigation bar. This optional view appears just beneath the status bar and can include titles, buttons,
and segmented controls. See “Navigation Bars” (page 76) for more information.

 ■ The tab bar. This optional view appears at the bottom edge of a screen and contains segments that
activate different modes in the application. See “Tab Bars” (page 81) for more information.

 ■ The toolbar. This optional view appears at the bottom edge of a screen and includes controls that
perform specific actions in the current context of the application. See “Toolbars” (page 79) for more
information.

Figure 5-1 shows three of these views in an application screen. Note that if this application used a toolbar,
it would appear in place of the tab bar.

Figure 5-1 An application screen that contains a status bar, a navigation bar, and a tab bar

Navigation bar

Tab bar

Status bar

In an application that displays some combination of these four views, you can think of the area between the
bottom of the navigation bar and the top of the toolbar or tab bar as the content area. In this area, an
application screen can contain arbitrary views to display content, such as table views, web views, and image
views. Figure 5-2 shows examples of two of the content-area views available in iOS: a style of table view and
image views. To learn more about the behavior and appearance of some of these views, in addition to the
controls associated with them, see “Table Views, Text Views, and Web Views” (page 99).

72 Application Screens and Their Contents
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

A Brief Tour of the Application User Interface

Figure 5-2 Two types of content-area views

Image views

Table view

As mentioned above, there are some controls that are available only in specific views. An example of such a
control is the disclosure indicator, which has a specific use in a table view. You can see an example of the
disclosure indicator (it looks like >) in the left-hand list in Figure 8-1 (page 99). These controls are described
in the sections that cover their associated views. In addition to these, however, there are a handful of controls,
such as the detail disclosure indicator, that have a wider usage. See “Application Controls” (page 117) for
more information on the controls available to you.

Using Views and Controls in Application Screens

In iOS, UIKit determines the behavior and default appearance of views and controls. As much as possible,
you should use the standard user interface elements UIKit provides and follow their recommended usages.
Doing this helps you in two important ways:

 ■ Users are accustomed to the look and behavior of standard views and controls. When you use familiar
user interface elements, users can depend on their prior experience to help them as they learn to use
your application.

 ■ If iOS changes the look or behavior of standard views or controls, your application continues to work
and automatically looks up to date with little, if any, work on your part.

Many controls support some kind of customization, usually in color or content (such as the addition of a text
label or an image). If you’re developing an immersive application, it’s reasonable to create controls that are
completely different from the default controls. This is because you’re creating a unique environment, and
discovering how to control that environment is an experience users expect in immersive applications.

Using Views and Controls in Application Screens 73
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

A Brief Tour of the Application User Interface

In general, though, you should avoid radically changing the appearance of a control that performs a standard
action. If you use unfamiliar controls to perform standard actions, users will have to spend time discovering
how to use them and will wonder what, if anything, your controls do that the standard ones do not.

74 Using Views and Controls in Application Screens
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 5

A Brief Tour of the Application User Interface

The status bar, navigation bar, tab bar, and toolbar are views that have specifically defined appearances and
behaviors in an iPhone application. These bars are not required to be present in every application (immersive
applications often don’t display any of them), but if they are present, it’s important to use them correctly.
The reason is that these bars provide familiar anchors to users of iOS-based devices, who are accustomed to
the information they display and the types of functions they perform.

The Status Bar

The status bar shows users important information about their device, including cell signal strength, the
current network connection, and battery charge. Figure 6-1 shows an example of a status bar.

Figure 6-1 A status bar contains important information for users

Status bar

Although a full-screen, immersive application can hide the status bar, you should carefully consider the
ramifications of this design decision. People expect to be able to see the current battery charge of their
devices; hiding this information, and requiring users to quit your application to get it, is not an ideal user
experience.

The Status Bar 75
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the
Status Bar

For example, Photos displays individual photos from a camera roll in a full-screen view that fades out the
status bar, navigation bar, and toolbar after a few seconds. This is appropriate because in Photos, users focus
on viewing the content, not interacting with it. However, users can bring back the status bar, navigation bar,
and toolbar with a single tap on the screen.

If you sometimes hide the status bar in your application, you should take advantage of users’ experience of
this behavior and allow them to redisplay it with a single tap. Unless you have a very compelling reason to
do so, it’s best to avoid defining a custom gesture to redisplay the status bar because users are unlikely to
discover such a gesture or remember it.

Although you have little control over the contents of the status bar, you can customize its appearance and,
to some extent, its behavior. Specifically, you can:

 ■ Indicate whether the network activity indicator should be visible. You should display the network activity
indicator if your application is performing a network operation that will take more than a couple of
seconds. If the operation will finish sooner than that, you don’t have to show the network activity indicator,
because it would be likely to disappear before users notice its presence. (In your code, you use the
UIApplication method networkActivityIndicatorVisible to control the indicator’s visibility.)

 ■ Specify the color of the status bar. You can choose gray (the default color), opaque black, or translucent
black (that is, black with an alpha value of 0.5). Figure 6-2 shows these styles. (Note that you set a value
in your Info.plist file to specify the status bar style; see iOS Application Programming Guide for more
information on how to do this.)

 ■ Set whether the change from the current status bar color to the new color should be animated. (Note
that the animation causes the old status bar to slide up until it disappears off the screen, while the new
status bar slides into place.)

Figure 6-2 Three styles of status bars

Be sure to choose a status bar appearance that coordinates with the rest of your application. For example,
avoid using a translucent status bar if the navigation bar is opaque.

Navigation Bars

A navigation bar appears at the upper edge of an application screen, just below the status bar. A navigation
bar usually displays the title of the current view and can contain controls that act on the view’s contents, in
addition to navigational controls when appropriate. Navigation bars are especially useful in productivity
applications (described in “Productivity Applications” (page 19)), because these applications typically arrange
information in a hierarchy.

Navigation bars have two purposes:

 ■ To enable navigation among different views in an application

76 Navigation Bars
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the Status Bar

 ■ To provide controls that manage the items in a view

Figure 6-3 shows examples of both these uses.

Figure 6-3 Navigation bars can contain navigational controls and controls to manage content

Controls to manage contentNavigational control

Navigation Bar Contents

A navigation bar can display just the title of the current view, centered along its width, as shown in Figure
6-4. The initial view in a productivity application should include a navigation bar that displays only the title
of the first view because the user hasn’t yet navigated to another location.

Figure 6-4 A navigation bar displays the title of the current view

As soon as the user navigates to another view, the navigation bar should change its title to the title of the
new location, and should provide a back button labeled with the title of the previous location. For example,
Figure 6-5 shows the navigation bar in Date & Time settings, which is in General settings.

Figure 6-5 A navigation bar can contain a navigational control

Navigation Bars 77
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the Status Bar

The standard back button gives users a reliable way to return to the previous screen, so it’s important to
avoid altering the button’s behavior. In particular, you should avoid creating a multi-segment back button,
such as the one shown in Figure 6-6.

Figure 6-6 A multi-segment back button is not recommended

Using a multi-segment back button causes several problems:

 ■ The extended width of a multi-segment back button does not leave room for the title of the current
screen.

 ■ There is no way to indicate the selected state of an individual segment.

 ■ The more segments there are, the smaller the hit region for each one, which makes it difficult for users
to tap a specific one.

 ■ Choosing which levels to display as users navigate deeper in the hierarchy is problematic.

If you think users might get lost without a multi-segment back button that displays a type of breadcrumb
path, it probably means that users must go too deeply into the information hierarchy to find what they need.
To address this, you should flatten your information hierarchy.

In addition to a back button, a navigation bar can also contain a second button to the right of the title. If you
do not need to display a back button (because your application does not support hierarchical navigation),
you can opt instead to display a button that affects the contents of the view, such as an Edit button, to the
left of the title. Figure 6-7 shows an example of this.

Figure 6-7 A navigation bar can contain controls that manage the content in the view

To learn how to implement a navigation bar in your application, see “Navigation Controllers”.

As you can see in the illustrations above, buttons in a navigation bar include a bezel around them. In iOS,
this style is called the bordered style. All controls in a navigation bar should use the bordered style. In fact,
if you place a plain (borderless) control in a navigation bar, it will automatically convert to the bordered style.

You can design your own icons for use in navigation-bar buttons, or you can take advantage of the predefined
buttons iOS provides. See “Standard Buttons for Use in Toolbars and Navigation Bars” (page 134) for more
information on the buttons available to you.

Although you can specify a font for all text displayed in a navigation bar, it’s recommended that you use the
system font for maximum readability. When you use the appropriate UIKit programming interfaces to create
your navigation bar, the system font is used automatically to display the title.

78 Navigation Bars
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the Status Bar

Navigation Bar Size and Color

Changing the device orientation from portrait to landscape can change the height of the navigation bar
automatically (you should not specify the height programmatically). In landscape orientation, the thinner
navigation bar provides more space for your screen contents. Be sure to take the difference in heights into
account when you design icons for navigation bar controls and when you design the layout of your screens.

You can specify the color and translucency of a navigation bar to coordinate with the overall look of your
application and with the other bars in it (that is, toolbars, tab bars, and the status bar). You can use a custom
color or choose one of the standard colors:

 ■ Blue (the default color)

 ■ Black

If it complements the look of your application, you can add translucency to the navigation bar. When you
use a translucent navigation bar, the screen gives the impression of having a larger visible area, which is
especially desirable in landscape orientation. Be sure to avoid mixing a translucent navigation bar with an
opaque black status bar (although you can display a translucent navigation bar with an opaque gray status
bar).

Strive for consistency in the appearance of navigation bars and other bars in your application. If you use a
translucent navigation bar, for example, don’t combine it with an opaque toolbar. Also, avoid changing the
color or translucency of the navigation bar in different screens in the same orientation.

Toolbars

If your application provides a number of actions users can take in the current context, it might be appropriate
to provide a toolbar. A toolbar appears at the bottom edge of the screen and contains buttons that perform
actions related to objects in the current view. A toolbar should not be used to switch among different modes
in an application; if you need to do this, use a tab bar instead (see “Tab Bars” (page 81) for more information).

For example, when users view a message in Mail, the application provides a toolbar that contains items for
deleting, replying to, and moving the message, in addition to checking for new mail and composing a new
message. In this way, users can stay within the message-viewing context and still have access to the commands
they need to manage their email. Figure 6-8 shows what this looks like.

Toolbars 79
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the Status Bar

Figure 6-8 A toolbar provides functionality within the context of a task

Toolbar Contents

The toolbar displays toolbar items equally spaced across the width of the toolbar. It’s a good idea to constrain
the number of items you display in a toolbar, so users can easily tap the one they want. Remember that the
hit-region of a user interface element is recommended to be 44 x 44 pixels, so providing five or fewer toolbar
items is reasonable. Figure 6-9 shows an example of appropriate spacing of toolbar items in a toolbar.

Figure 6-9 Appropriately spaced toolbar items

The items in both Figure 6-8 (page 80) and Figure 6-9 do not include a bezel. In iOS this style is called the
plain style. (For an example of the bordered style, look at the buttons in Figure 6-7 (page 78).) Although you
can use either the bordered or plain style for buttons in a toolbar, you should not mix both styles in the same
toolbar.

You can design your own icons for use in toolbar buttons, or you can take advantage of the predefined
buttons iOS provides. (See “Standard Buttons for Use in Toolbars and Navigation Bars” (page 134) for more
information on the buttons available to you.) If you choose to create custom toolbar buttons, be sure to
make them as similar in size as possible to achieve a balanced, attractive appearance.

80 Toolbars
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the Status Bar

Toolbar Size and Color

Changing the device orientation from portrait to landscape can change the height of the toolbar automatically
(you should not specify the height programmatically). The thinner toolbar available in landscape orientation
leaves more room for your screen contents. Be aware of the difference in heights when you design icons for
toolbar buttons and when you design the layout of your screens.

You can specify the color and translucency of a toolbar to coordinate with the overall look of your application
and with the other bars in it (that is, navigation bars, tab bars, and the status bar). You can use a custom
color or choose one of the standard colors:

 ■ Blue (the default color)

 ■ Black

If it complements the look of your application, you can add translucency to the toolbar. When you use a
translucent toolbar, the screen gives the impression of having a larger visible area, which is especially
advantageous in landscape orientation.

Strive for consistency in the appearance of toolbars and other bars in your application. If you use a translucent
toolbar, for example, don’t combine it with an opaque navigation bar. And, avoid changing the color or
translucency of the toolbar in different screens in the same orientation.

Tab Bars

If your application provides different perspectives on the same set of data, or different subtasks related to
the overall function of the application, you might want to use a tab bar. A tab bar appears at the bottom
edge of the screen.

A tab bar gives users the ability to switch among different modes or views in an application, and users should
be able to access these modes from everywhere in the application. However, a tab bar should never be used
as a toolbar, which contains buttons that act on elements in the current mode (see “Toolbars” (page 79) for
more information on toolbars).

For example, on iPhone, iPod uses a tab bar to allow users to choose which part of their media collection to
focus on, such as Podcasts, artists, videos, or playlists. The Clock application, on the other hand, uses a tab
bar to give users access to the four functions of the application, namely, World Clock, Alarm, Stopwatch, and
Timer. Figure 6-10 shows how selecting a tab in a tab bar changes the view in Clock. Notice how the tab bar
remains visible in the different Clock modes shown in Figure 6-10. This makes it easy for users to see which
mode they’re in, and allows them to access all Clock modes regardless of the current mode.

Tab Bars 81
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the Status Bar

Figure 6-10 A tab bar switches views in an application

The tab bar displays icons and text in tabs, all of which are equal in width and display a black background.
When a tab is selected, its background lightens and the image in the tab is highlighted. Figure 6-11 shows
how this looks.

Figure 6-11 A selected tab in a tab bar

Note: A tab bar does not change its opacity or height, regardless of orientation.

iOS provides a number of icons for tabs, such as the items labeled Featured and Bookmarks in Figure 6-11.
If you choose to use these icons, be sure to use them in accordance with their documented meaning. For
more information on the tab bar icons available to you, see “Standard Icons for Use in Tab Bars” (page 136).

Providing Additional Tabs

If your application's tab bar contains five or fewer tabs, iOS displays all of them, equally spaced within the
tab bar, as shown in Figure 6-12.

Figure 6-12 iOS displays up to five tabs in a tab bar

82 Tab Bars
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the Status Bar

If your application’s tab bar contains more than five tabs, iOS displays four of them in the tab bar and adds
a More tab, as shown in Figure 6-11 (page 82).

Users tap the More tab to see a list of additional tabs in a separate screen, as shown in Figure 6-13.

Figure 6-13 Additional tabs are displayed when users tap the More tab

The More screen can also include an Edit button that users can tap to configure the tab bar so that it displays
the tabs they use most often. For example, Figure 6-14 shows the Configure screen users see after they tap
the Edit button in the iPod application’s More screen.

Tab Bars 83
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the Status Bar

Figure 6-14 When an application has more than five tabs, users can select their favorite tabs to display
in the tab bar

Notice how iPod uses the same tab icons in all three places (the tab bar, the More screen, and the Configure
screen). This helps users be confident that each icon means the same thing, regardless of where it’s displayed.

Badging a Tab in a Tab Bar

You can display a badge on a tab to communicate with users in a nonintrusive, understated way. This type
of feedback is suitable for communicating information that isn’t critical to the user’s task or context, but that
is useful to know. The badge looks similar to the one Phone displays on the Voicemail tab to indicate the
number of unheard messages: it is a red oval that appears near the upper right corner of the tab. The white
text inside the oval provides the information.

Associating a badge with a specific tab allows you to connect the information in the badge with a particular
mode in your application, even when that mode is not the current one. Figure 6-15 shows an example of a
badge on a tab.

84 Tab Bars
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the Status Bar

Figure 6-15 A badge conveys information in a tab bar

Note that a badge can also be displayed on your application icon in the Home screen if you register for Apple
Push Notification Service and users agree to allow badging. See “Enabling Push Notifications” (page 53) for
more information on how this works.

Tab Bars 85
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the Status Bar

86 Tab Bars
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 6

Navigation Bars, Tab Bars, Toolbars, and the Status Bar

Alerts, action sheets, and modal views are types of views that appear when something requires the user’s
attention or when additional choices or functionality need to be offered. Figure 7-1 shows examples of these
types of views.

Figure 7-1 An action sheet, a modal view, and an alert

Action sheet Alert

Modal view

To learn about implementing these types of views programmatically, see “Modal View Controllers”.

Although local and push notification alerts look very similar to standard alerts, they are not programmatically
the same. To learn how to use and design notification alerts, see “Enabling Local and Push Notifications” (page
53).

Usage and Behavior

Alerts, action sheets, and modal views are all modal, which means that users must explicitly dismiss them,
by tapping a button, before they can continue to use the application. Although there are times when you
need to warn users of potentially dangerous actions or provide extra choices, it’s important to avoid overusing
these views. This is because:

 ■ All types of modal views interrupt the user’s workflow.

 ■ The too-frequent appearance of a view requesting confirmation or acknowledgment is likely to be more
annoying than helpful.

Usage and Behavior 87
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

Alerts, in particular, should be used only rarely. When alerts appear too frequently, people are likely to dismiss
them without reading them, just to get them out of the way.

Alerts, action sheets, and modal views are designed to communicate different things:

 ■ Alerts give people important information that affects their use of the application (or the device).
The arrival of an alert is usually unexpected, because it generally tells people about a problem or a change
in the current situation that might require them to take action.

 ■ Action sheets give people additional choices related to the action they are currently taking. People
learn to expect the appearance of an action sheet when they tap a toolbar button that begins either a
potentially destructive action (such as deleting all recent calls) or an action that can be completed in
different ways (such as a send action for which users can specify one of several destinations).

 ■ Modal views provide more extensive functionality in the context of the current task. Modal views
can also provide a way to perform a subtask directly related to the user’s workflow.

These types of views also differ in appearance and behavior, which underscores the difference in the messages
they send. Because users are accustomed to the appearance and behavior of these views, it’s important to
use them consistently and correctly in your application.

Using Alerts

An alert pops up in the middle of the application screen and floats above its views to give users critical
information in a highly visible way. The unattached appearance of an alert emphasizes the fact that its arrival
is due to some change in the application or the device, not necessarily as the result of the user’s most recent
action. An alert should display text that describes the situation and, ideally, give users a way to choose an
appropriate course of action.

Users are accustomed to seeing alerts from the device or from built-in applications that run in the background,
such as Messages, but you should seldom need to use them in your application. For example, you might use
an alert to tell users that the task they initiated is blocked. It makes sense to display an alert with this message,
because it’s important to tell users what the problem is and give them a choice of ways to handle it.

You can also use an alert to give users a chance to accept or reject an outcome that is potentially dangerous.
When this is the case, the alert should display two buttons: one that dismisses the alert and performs the
action and one that dismisses the alert without performing the action. Often, it makes sense to use the label
"Cancel" for the button that dismisses the alert without performing the action. Note that if users press the
Home button while such an alert is visible, the result, in addition to quitting the application, should be
identical to tapping the Cancel button: That is, the alert is dismissed and the action is not performed.

The infrequency with which alerts appear helps users take them seriously. Be sure to minimize the number
of alerts your application displays and ensure that each one offers critical information and useful choices. In
general, try to avoid creating alerts that:

 ■ Update users on tasks that are progressing normally.

Instead, consider using a progress view or an activity indicator to provide progress-related feedback to
users (these controls are described in “Progress Views” (page 125) and “Activity Indicators” (page 117)).

 ■ Ask for confirmation of user-initiated actions.

To get confirmation for an action the user initiated, even a potentially risky action such as deleting a
contact, you should use an action sheet (described next in “Using Action Sheets” (page 89)).

88 Usage and Behavior
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

 ■ Inform users of errors or problems about which they can do nothing.

Although it might be necessary to use an alert to tell users about a critical problem they can’t fix, it’s
better to integrate such information into the user interface, if possible. For example, instead of telling
users every time a server connection fails, display the time of the last successful connection.

Using Action Sheets

An action sheet displays a collection of alternatives that are associated with a task users initiate by tapping
a button in an application’s toolbar. An action sheet is an appropriate way to:

 ■ Provide a selection of ways the task can be completed. In Photos, for example, users can tap the Send
button when viewing an individual photo. An action sheet appears, giving users a choice of three
destinations for the photo (in addition to a Cancel button, which cancels the send).

It’s useful to display an action sheet in a situation like this, because it allows you to provide a range of
choices that make sense in the context of the current task, without giving these choices a permanent
place in the user interface.

 ■ Get confirmation before completing a potentially dangerous task. For example, depending on Mail
settings, an action sheet appears when users tap the Trash button in the Mail toolbar, allowing them to
proceed with the deletion or cancel it.

When you display an action sheet in a situation like this you ensure that users understand the dangerous
effects of the step they’re about to take and you can provide some alternatives. This type of
communication is particularly important on iOS-based devices because sometimes users tap controls
without meaning to.

An action sheet always emerges from the bottom of the application screen and hovers over its views (as
shown in the far left of Figure 7-1 (page 87)). Unlike an alert, however, the side edges of an action sheet are
anchored to the sides of the screen, reinforcing its connection to the application and the user’s most recent
action.

An action sheet contains a few buttons that allow users to choose how to complete their task. You should
not have to add a message to an action sheet because the button labels, in conjunction with the task being
performed, should provide enough context for the user to understand their choices. When users tap a button,
the action sheet disappears. Because an action sheet should provide users with a choice of actions, an action
sheet always provides more than one button.

Using Modal Views

By default, a modal view slides up from the bottom edge of the screen and always covers the entire application
screen (as shown in the middle of Figure 7-1 (page 87)). Because a modal view hides the current application
screen, it strengthens the user’s perception of entering a different, transient mode in which they can accomplish
something.

A modal view can display text if appropriate, and contains the controls necessary to perform the task. In
addition, a modal view generally displays a button that completes the task and dismisses the view, and a
Cancel button users can tap to abandon the task.

Usage and Behavior 89
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

A modal view supports more extensive user interaction than an action sheet. Unlike an action sheet, which
accepts a single choice, a modal view supports multistep user interaction, such as the selection of more than
one option or the inputting of information.

Use a modal view when you need to offer the ability to accomplish a self-contained task related to your
application’s primary function. A modal view is especially appropriate for a multistep subtask that requires
user interface elements that don’t belong in the main application user interface all the time. A good example
of a modal view is the compose view in Mail. When users tap the Compose button, a modal view appears
that contains text areas for the addresses and message, a keyboard for input, a Cancel, and a Send button.

Designing an Alert

You can specify the text, the number of buttons, and the button contents in an alert. You can’t customize
the width or the background appearance of the alert view itself, or the alignment of the text (it’s
center-aligned).

To learn how to design the content of a local or push notification alert, see “Enabling Local and Push
Notifications” (page 53).

Note: As you read these guidelines, be aware of the following definitions:

 ■ Title-style capitalization means that every word is capitalized, except articles, coordinating conjunctions,
and prepositions of four or fewer letters.

 ■ Sentence-style capitalization means that the first word is capitalized, and the rest of the words are
lowercase, unless they are proper nouns or proper adjectives.

The alert title (and optional message) should succinctly describe the situation and explain what people can
do about it. Ideally, the text you write gives people enough context to understand why the alert has appeared
and to decide which button to tap.

As you compose the required alert title:

 ■ Keep the title short enough to display on a single line, if possible. A long alert title is difficult for people
to read quickly, and it might get truncated or force the alert message to scroll.

90 Designing an Alert
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

 ■ Avoid single-word titles that don’t provide any useful information, such as “Error” or “Warning.”

 ■ When possible, use a sentence fragment. A short, informative statement is often easier to understand
than a complete sentence.

 ■ Don’t hesitate to be negative. People understand that most alerts tell them about problems or warn
them about dangerous situations. It’s better to be negative and direct than it is to be positive but oblique.

 ■ Avoid using “you,” “your,” “me,” and “my” as much as possible. Sometimes, text that identifies people
directly can be ambiguous and can even be interpreted as an insult.

 ■ Use title-style capitalization and no ending punctuation when:

 ❏ The title is a sentence fragment

 ❏ The title consists of a single sentence that is not a question

 ■ Use sentence-style capitalization and an ending question mark if the title consists of a single sentence
that is a question. In general, consider using a question for an alert title if it allows you to avoid adding
a message.

 ■ Use sentence-style capitalization and appropriate ending punctuation for each sentence if the title
consists of two or more sentences. A two-sentence alert title should seldom be necessary, although you
might consider it if it allows you to avoid adding a message.

If you provide an optional alert message:

 ■ Create a short, complete sentence that uses sentence-style capitalization and appropriate ending
punctuation.

Designing an Alert 91
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

 ■ Avoid creating a message that is too long. If possible, keep the message short enough to display on one
or two lines. If the message is too long it will scroll, which is not a good user experience.

Avoid lengthening your alert text with descriptions of which button to tap, such as “Tap View to see the
information.” Ideally, the combination of unambiguous alert text and logical button labels gives people
enough information to understand the situation and their choices. However, if you must provide detailed
guidance, follow these guidelines:

 ■ Be sure to use the word “tap” (not “touch” or “click” or “choose”) to describe the selection action.

 ■ Don’t enclose a button title in quotes, but do preserve its capitalization.

92 Designing an Alert
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

Be sure to test the appearance of your alert in both orientations. Because the height of an alert is constrained
in landscape, it might look different than it does in portrait. It’s recommended that you optimize the length
of the alert text so that it looks good (and avoids scrolling) in both orientations.

Prefer a two-button alert. A two-button alert is often the most useful, because it is easiest for people to
choose between two alternatives. It is rarely a good idea to display an alert with a single button because
such an alert is merely informative; it does not give people any control over the situation. An alert that
contains three or more buttons is significantly more complex than a two-button alert, and should be avoided
if possible. In fact, if you find that you need to offer people more than two choices, you should consider using
an action sheet instead (see “Using Action Sheets” (page 89) and “Designing an Action Sheet” (page 93) for
more information on this type of view).

Use alert button colors appropriately. Alert buttons are colored either dark or light. In an alert with two
buttons, the button on the left is always dark-colored and the button on the right is always light-colored. In
a one-button alert, the button is always light-colored.

 ■ In a two-button alert that proposes a potentially risky action, the button that cancels the action should
be on the right (and light-colored).

 ■ In a two-button alert that proposes a benign action that people are likely to want, the button that cancels
the action should be on the left (and dark-colored).

Note: A Cancel button may be either light-colored or dark-colored and it may be on the right or the left,
depending on whether the alternate choice is destructive. Be sure to properly identify which button is the
Cancel button in your code (for more information, see UIAlertView Class Reference).

Give alert buttons short, logical titles. The best titles consist of one or two words that make sense in the
context of the alert text. Follow these guidelines as you create titles for alert buttons:

 ■ As with all button titles, use title-style capitalization and no ending punctuation.

 ■ Prefer verbs and verb phrases, such as “Cancel,” “Allow,” “Reply,” or “Ignore” that relate directly to the
alert text.

 ■ Prefer “OK” for a simple acceptance option if there is no better alternative. Avoid using “Yes” or “No.”

 ■ Avoid “you,” “your,” “me,” and “my” as much as possible. Button titles that use these words are often
both ambiguous and patronizing.

Designing an Action Sheet

You choose the background of an action sheet to coordinate with the look of your application, and you can
specify the number of buttons and their contents.

Unlike an alert, an action sheet should not need to display a textual message. This is because an action sheet
appears as the result of a user action, such as tapping a Delete or Send button, so there should be no need
to explain its arrival.

Action sheets can have two different background appearances. You need to ensure that the background of
the action sheets in your application coordinates with the appearance of your application’s toolbars or
navigation bars. If your application uses black navigation bars and toolbars, for example, the action sheet
background should be translucent black. By default, iOS displays action sheets with a standard blue

Designing an Action Sheet 93
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

background, which coordinates with the standard blue toolbars and navigation bars. All action sheets in your
application should have the same background color, and that color should coordinate with the color of the
navigation bars and toolbars.

Be sure to display the Cancel button at the bottom of an action sheet. This encourages the user to read
through all the alternatives before reaching the Cancel option.

Figure 7-2 shows an action sheet with the default background appearance and a Cancel button in the
recommended location.

Figure 7-2 A typical action sheet

If you need to provide a button that performs a potentially destructive action, such as deleting all the items
in a user’s shopping list, you should use the red button color. It’s important to display such destructive buttons
at the top of the action sheet for two reasons:

 ■ The closer to the top of the action sheet a button is, the more visible it is.

 ■ Sometimes users mistakenly tap the bottom of the device screen when they’re aiming for the Home
button. By placing a destructive button away from the bottom of an action sheet, users are less likely to
cause undesirable results if they mistakenly tap the screen instead of the Home button.

Figure 7-3 shows an action sheet with the translucent black background appearance and both a Cancel and
a destructive button in their recommended positions.

94 Designing an Action Sheet
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

Figure 7-3 A button that performs a destructive action should be red and located at the top of the action
sheet

You can display several buttons in an action sheet, as long as you make sure each button is easily distinguished
from the others. Figure 7-4 shows an action sheet with a background that matches the standard blue toolbar
and that provides three alternatives in addition to Cancel.

Figure 7-4 An action sheet with four buttons

Designing an Action Sheet 95
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

Designing a Modal View

The overall look of a modal view should coordinate with the application that displays it. For example, a modal
view often includes a navigation bar that contains a title and buttons that cancel or complete the modal
view’s task. The navigation bar should have the same background appearance as the navigation bar in the
application.

A modal view should usually display a title that identifies the task in some way. If appropriate, you can also
display text in other areas of the view that more fully describes the task or provides some guidance. For
example, the Messages application provides a modal view when users want to compose a text message. This
modal view, shown in Figure 7-5, displays a navigation bar with the same background as the application
navigation bar and with the title New Message.

Figure 7-5 A modal view should coordinate with the application screen

In a modal view, you can use whichever controls are required to accomplish the task. For example, you can
include text fields, buttons, and table views.

You can choose to reveal a modal view in a way that coordinates with your application and enhances the
user’s awareness of the temporary context shift the view represents. To do this, you can specify one of the
following transition styles:

 ■ Vertical. The modal view slides up from the bottom edge of the screen and slides back down when
dismissed. (This is the default transition style.)

 ■ Flip. The current view flips horizontally from right to left to reveal the modal view. Visually, the modal
view looks as if it is the back of the current view. When the modal view is dismissed, it flips horizontally
from left to right, revealing the previous view.

96 Designing a Modal View
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

If you decide to vary the transition styles of the modal views in your application, avoid doing so merely for
the sake of variety. Be aware that users notice such differences and will assume that they mean something.
For this reason, it’s best to establish a logical, consistent pattern that users can easily detect and remember,
and avoid changing transition styles gratuitously.

Designing a Modal View 97
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

98 Designing a Modal View
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 7

Alerts, Action Sheets, and Modal Views

Table views, text views, and web views are versatile elements that lend themselves to different uses in your
iPhone application. For example, table views can be configured to display short lists of choices, grouped lists
of detailed information, or long, indexed lists of items. Text views and web views are relatively unconstrained
containers you can use to accept and display content.

Table Views

A table view presents data in a single-column list of multiple rows. Rows can be divided into sections or
groups and each row can contain some combination of text, images, and controls. Users flick or drag to scroll
through rows or groups of rows. Figure 8-1 shows how different styles of table views can display lists in
different ways.

Figure 8-1 Three ways to display lists using table views

A simple list in a plain table view An indexed list in a plain table view A grouped list in a grouped
table view

Usage and Behavior

Table views are extremely useful in iPhone applications because they provide attractive ways to organize
both large and small amounts of information. Table views are most useful in productivity applications that
tend to handle lots of user items, although utility applications can make use of smaller-scale table views, as
well. An immersive application would probably not use a table view to display information, but it might use
one to display a short list of options.

Table Views 99
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Table views provide built-in elements that allow users to navigate and manipulate information. In addition,
table views support:

 ■ The display of header and footer information. You can display descriptive text above or below each
section or group in a list, and above or below the list as a whole.

 ■ List editing. You can allow users to add, remove, and reorder list items in a consistent way. Table views
also support the selection and manipulation of multiple list items, which you might use to give users a
convenient way to delete more than one list item at a time.

A table should always provide feedback when users select a list item. When an item can be selected, the
row containing the item highlights briefly when the user selects it, providing feedback that the selection has
been received. Then, an immediate action occurs: Either a new view is revealed or the row displays a checkmark
to indicate that the item has been selected or enabled.

In rare cases, a row might remain highlighted when secondary details or controls related to the row item are
displayed in the same screen. However, this is not encouraged because it is difficult to display a list of choices,
a selected item, and related details or controls without creating an uncomfortably crowded layout.

If a row selection results in navigation to a new screen, the selected row highlights briefly as the new screen
slides into place. When the user navigates back to the previous screen, the originally selected row again
highlights briefly to remind the user of their earlier selection.

Note that you can also animate the changes users make to list items. Doing so is a good way to provide
feedback and strengthen the user’s sense of direct manipulation. In Settings, for example, when you turn off
the automatic date and time setting (by selecting Off in Date & Time > Set Automatically), the list group
expands smoothly to display two new items, Time Zone and Set Date & Time.

A table should display content immediately. If the table's content is extensive or complex, avoid waiting
until all the data is available before displaying anything. Instead, fill the onscreen rows with textual data
immediately and display more complex data (such as images) as they become available. This technique gives
users useful information right away and increases the perceived responsiveness of your application.

If your application displays data that changes infrequently, you might consider displaying “stale” data while
waiting for new data to become available. This technique also allows users to see something useful right
away, but it is not recommended for applications that handle data that changes frequently. Before you decide
to do this, gauge how often the data changes and how much users depend on seeing fresh data quickly.

If it’s difficult to display anything useful right away, it's important to avoid displaying empty rows, because
this can imply that the application has stalled. Instead, the table should display a spinning activity indicator
along with an informative label, such as “Loading...”, centered in the screen. If you can display older data,
you don’t have to worry about blank rows, but you should update onscreen rows as soon as possible. Both
techniques provide feedback to users, letting them know that processing is continuing.

Table-View Styles

iOS defines two styles of table views, which are distinguished mainly by appearance:

Plain (UITableViewStylePlain). This table-view style displays rows that extend from side edge to side
edge of the screen. The background of the rows is white. The rows can be separated into labeled sections
and the table view can display an optional index that appears vertically along the right edge of the view.

Figure 8-2 shows a list in a plain table (without headers, footers, or an index) in the iPod application.

100 Table Views
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Figure 8-2 A simple list in a plain table

Grouped (UITableViewStyleGrouped). This table-view style displays groups of rows that are inset from
the side edges of the screen. The groups are displayed on a distinctive vertically striped background, while
inside the groups the background is white. A grouped table can contain an arbitrary number of groups, and
each group can contain an arbitrary number of rows. Each group can be preceded by header text and followed
by footer text. This style of table view does not provide an index.

Figure 8-3 shows a list in a grouped table, in which each group contains one row. This list, in the Settings
application, does not include header or footer text.

Table Views 101
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Figure 8-3 A list of four groups in a grouped table

Table-Cell Styles

iOS 3.0 and later includes four predefined table-cell styles you can use to quickly and easily produce the most
common layouts for table rows in both plain and grouped tables. Note that, programmatically, these styles
are applied to a table view’s cell, which is an object that tells the table how to draw its rows.

When you use the standard table-cell styles, your application is consistent with the built-in applications,
which benefits you in a couple of ways:

 ■ Users more quickly understand how your application works

 ■ Your application remains consistent without a lot of extra work on your part, if the standard table-cell
styles are enhanced in the future

If you want to lay out your table rows in a nonstandard way, it’s better to create a custom table-cell style
than to significantly alter a standard one. “Customizing Cells” in Table View Programming Guide for iOS helps
you learn how to create your own cells.

Be aware that text truncation is automatic in all table-cell styles. Generally speaking, you should ensure that
your text is as succinct as possible to avoid displaying truncated words or phrases that are difficult for users
to understand. Specifically, text truncation can be more or less of a problem, depending on which cell style
you use and on where truncation occurs.

iOS provides the following standard table-cell styles:

 ■ The default table-cell style (UITableViewCellStyleDefault) includes an optional image on the left,
followed by a left-aligned text label in black.

102 Table Views
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Figure 8-4 The default table-cell style in a grouped table (left) and a plain table (right)

The text label’s appearance implies that it represents an item name or title and its left-alignment makes
the list easy to scan. This makes the default style good for displaying a list of items that do not need to
be differentiated by supplementary information.

Short text labels are best, but if truncation is unavoidable, try to ensure that the most important
information is contained in the first few words.

 ■ The subtitle table-cell style (UITableViewCellStyleSubtitle) includes an optional image on the
left, followed by a left-aligned text label on one line and a left-aligned detail text label on the line below.
The text label is in black and the detail text label is in a smaller, gray font.

Table Views 103
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Figure 8-5 The subtitle table-cell style in a grouped table (left) and a plain table (right)

The prominent appearance of the text label implies that it represents an item name or title, while the
subtle appearance of the detail text label implies that it contains subsidiary information related to the
item. The left-alignment of the text labels makes the list easy to scan. This table-cell style works well
when list items might look similar, because users can use the additional information in the detail text
labels to help distinguish items named in the text labels.

Text labels should be short to avoid truncation. If truncation is unavoidable, focus on putting the most
important information in the first few words. If the detail text label is truncated, users are not likely to
mind too much because they view it as information that enhances or supplements the item named by
the text label.

 ■ The value 1 table-cell style (UITableViewCellStyleValue1) displays a left-aligned text label in black
on the same line with a right-aligned detail text label in a smaller, blue font. Images do not fit well in
this style.

104 Table Views
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Figure 8-6 The value 1 table-cell style in a grouped table (left) and a plain table (right)

The appearance of the text label implies that it represents an item name or title, while the appearance
of the detail text label implies that it provides important information that is closely associated with the
item.

The left-alignment and font of the text label help users scan the list for the item they want, and the
right-alignment of the detail text label draws their attention to the related information it provides. This
table-cell style works well to display an item’s current value, possibly selected from a sublist.

Text truncation can be difficult to avoid in this layout (because both labels are on the same line), but it’s
worth the effort. Otherwise, you lose the active space between the labels that helps users understand
the relationship between the two pieces of information.

Although you can use the value 1 table-cell style in either a plain or a grouped table, its appearance is
better suited to a grouped table. For example, the Usage screen in Settings uses the value 1 style in
grouped tables:

Table Views 105
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Figure 8-7 The value 1 table-cell style looks best in a grouped table

 ■ The value 2 table-cell style (UITableViewCellStyleValue2) displays a right-aligned text label in a
small blue font, followed on the same line by a left-aligned detail text label in a larger, black font. Images
do not fit well in this style.

Figure 8-8 The value 2 table-cell style in a grouped table (left) and a plain table (right)

106 Table Views
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

The right-alignment, constrained width, and font of the text label imply that it functions as a heading
or caption for the important information in the more prominent, left-aligned detail text label.

In this layout, the labels are aligned towards each other at the same location in every row. This creates
a crisp, vertical margin between the text labels and the detail text labels in the list, which helps users
focus on the first words of the detail text label. If you allow the text labels to be truncated, you lose the
sharpness of this vertical strip, which can make it harder for users to scan the information in the detail
text labels.

Although you can use the value 2 table-cell style in either a plain or a grouped table, it looks much better
in a grouped table. For example, the Info screen in Contacts uses the value 2 table-cell style in grouped
tables:

Figure 8-9 The value 2 table-cell style looks best in a grouped table

Note: All standard table-cell styles also allow the addition of a table-view element, such as the checkmark
or the disclosure indicator. Be aware that adding these elements decreases the width of the cell available for
the title and subtitle.

You might be able to avoid text truncation by increasing the height of a table row to accommodate text
wrapping, but this can be problematic:

 ■ You have to programmatically check the text length and decide if wrapping might occur. You must make
this determination for both portrait and landscape orientation, because the table width affects text
wrapping.

 ■ You should avoid displaying wrapped text in one orientation, but not the other.

 ■ Variable row heights can negatively impact the overall table view performance in your application,
regardless of table-view style.

Table Views 107
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Finally, although variable row heights are acceptable in grouped tables, they can make a plain table look
cluttered and uneven.

Table-View Elements

iOS includes a handful of table-view elements that can extend the functionality of table views. Unless noted
otherwise, these elements are suitable for use in table views only. Be sure to use these elements correctly in
your application, because users are accustomed to their appearance and behavior in the built-in applications.

Note: Programmatically, table-view elements are implemented in different ways. Some are accessory views
of the table cell (an object that tells the table how to draw its rows) and others can be displayed when the
table view enters an editing mode. See Table View Programming Guide for iOS to learn about the different
ways to manage these elements.

 ■ Disclosure indicator. When this element is present, users know they can tap anywhere in the row to
see the next level in the hierarchy or the choices associated with the list item.

Use a disclosure indicator in a row when selecting the row results in the display of another list. Don’t
use a disclosure indicator to reveal detailed information about the list item; instead, use a detail disclosure
button for this purpose.

 ■ Detail disclosure button. Users tap this element to see detailed information about the list item. (Note
that you can use this element in views other than table views, to reveal additional details about something;
see “Detail Disclosure Buttons” (page 120) for more information.)

In a table view, use a detail disclosure button in a row to display details about the list item. Note that
the detail disclosure button, unlike the disclosure indicator, can perform an action that is separate from
the selection of the row. For example, in Phone Favorites, tapping the row initiates a call to the contact;
tapping the detail disclosure button in the row reveals more information about the contact.

 ■ Delete button. Users tap this element to delete the list item. This element appears to the right of a list
item when users swipe in the row or when they tap the delete control button while in an editing context.
(See Figure 8-10 for an example of this element.)

 ■ Delete control button. Users tap this element to reveal and hide the Delete button for each list item.
To give additional feedback to users, the horizontal minus symbol inside this button becomes vertical
when users tap it to reveal the Delete button. See Figure 8-10 for an example of this element.

In a grouped table that supports a transitory editing mode, the delete control appears outside the table
view, on the left. You can see this, for example, when editing an individual’s information in Contacts. In
a grouped table that is in a permanent editing mode (such as the grouped tables on the back of Stocks
and Weather), the delete control appears inside the table, on the left.

In a plain table, the delete control always appears inside the table, on the left, as shown in Figure 8-10.

 ■ Row insert button. Users tap this element to add a row to the list.

 ■ Row reorder control. When this element is present, users can drag the row to another location in the
list.

 ■ Checkmark. This element appears next to a list item to show that it is currently selected.

108 Table Views
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Figure 8-10 A table view can display the Delete button and the delete control button

Switch Controls

A switch control presents to the user two mutually exclusive choices or states, such as yes/no or on/off. A
switch control shows only one of the two possible choices at a time; users slide the control to reveal the
hidden choice or state. Figure 8-11 shows examples of switch controls.

Figure 8-11 Switch controls in a table view

Switch controls

Table Views 109
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Use a switch control in a grouped table view when you need to offer the user two simple, diametrically
opposed choices. Because one choice is always hidden, it’s best to use a switch control when the user already
knows what both values are. In other words, don’t make the user slide the switch control just to find out
what the other option is.

You can use a switch control to change the state of other user interface elements in the view. Depending on
the choice users make, new list items might appear or disappear, or list items might become active or inactive.

Using Table Views to Enable Common User Actions

Table views are particularly versatile user interface elements, because they can be configured in different
ways to support different user actions, such as:

 ■ Selecting options.

iOS does not include multi-item selection controls analogous to menus or pop-up menus, but a table
view works well to display a list of options from which the user can choose. This is because table views
display items in a simple, uncluttered way. In addition, the table view provides a checkmark image that
shows users the currently selected option (or options) in a list, as shown in Figure 8-12 (page 110).

Figure 8-12 A checkmark indicates the current selection in a list

If you need to display a list of choices users see when they tap an item in a table row, you can use either
style of table view. But if you need to display a list of choices users see when they tap a button or other
user interface element that is not in a table row, use the plain style.

 ■ Navigating hierarchical information.

110 Table Views
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

A table view works well to display a hierarchy of information in which each node (that is, list item) can
contain its own subset of information, because each subset can be displayed in a separate list. This makes
it easy for users to follow a path through the hierarchy by selecting one item in each successive list. The
disclosure indicator element tells users that tapping anywhere in the row reveals the subset of information
in a new list, as shown in Figure 8-13 (page 111).

Figure 8-13 A disclosure indicator indicates that a subset of information is on the next screen

When a table is used for navigation, previously selected table rows do not remain highlighted when
users retrace their steps through the hierarchy.

 ■ Viewing conceptually grouped information.

You can use either table-view style to cluster information into logical groups, such as work, home, or
school. Both plain and grouped tables allow you to provide context for each section by supplying header
and footer text, as shown in Figure 8-14 (page 112).

Table Views 111
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Figure 8-14 Header text in a plain table divides a list into sections

Generally speaking, grouped tables provide a clearer visual indication of grouping because it’s easy for
users to distinguish the rounded corners of the groups, even when scrolling quickly. Figure 8-15 (page
112) shows several conceptual groups of values in iPod settings.

Figure 8-15 A grouped table can contain many separate groups

 ■ Looking up indexed information.

112 Table Views
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

If you’re using a plain table, you can display an index that helps users quickly find what they need. The
index consists of a column of entries (usually letters in an alphabet) that floats on the right edge of the
screen, as shown in Figure 8-16 (page 113). Users tap (or drag to) an index entry to reveal the corresponding
area in the list. An index is most useful in a list that might span more than a few screenfuls.

Figure 8-16 A plain table can include an index

If you include an index in a plain table, avoid using table-view elements that display on the right edge
of the table (such as the disclosure indicator), because these elements interfere with the index.

Text Views

A text view is a region that displays multiple lines of text and supports scrolling when the content is too
large to fit inside its bounds. Mail uses a text view to allow users to create a signature that appears at the
end of each email message they compose, as shown in Figure 8-17.

Text Views 113
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Figure 8-17 A text view displays multiple lines of text

Although you might use a text view to display many lines of text, such as the content of a large text document,
you can also use a text view to support user editing. If you make a text view editable, a keyboard appears
when the user taps inside the text view. The keyboard’s input method and layout are determined by the
user’s language settings. When users tap the button labeled “.?123” (shown in Figure 8-17), the keyboard
changes to facilitate the entry of numbers and punctuation. You can also specify different keyboard styles,
depending on the type of content you expect users to enter. See “Text Fields” (page 130) for a description of
the styles you can use.

You have control over the font, color, and alignment of the text in a text view, but only as they apply to the
entirety of the text. In other words, you can’t change any of these properties for only part of the text. The
defaults for the font and color properties are, as you would expect, the system font and black, because they
tend to be the most readable. The default for the alignment property is left (you can change this to center
or right).

If you must enable variable fonts, colors, or alignments within a view that displays text, you can use a web
view instead of a text view, and style the text using HTML.

Web Views

A web view is a region that can display rich, HTML content in your application screen. For example, Mail uses
a web view to display message content, because it can contain elements in addition to plain text (Figure
8-18 shows an example of this).

114 Web Views
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

Figure 8-18 A web view can display web-based content

In addition to displaying web content, a web view provides elements that support navigation through open
webpages. Although you can choose to provide webpage navigation functionality, it’s best to avoid creating
an application that looks and behaves like a mini web browser.

If you have a webpage or web application, you might choose to use a web view to implement a simple
iPhone application that provides a wrapper for it. If you plan to access web content that you control, be sure
to read Safari Web Content Guide to learn how to create web content that is compatible with and optimized
for display on iOS-based devices.

Web Views 115
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

116 Web Views
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 8

Table Views, Text Views, and Web Views

iOS provides several controls you can use in your application, most of which are already familiar to users of
iOS-based devices. Many of these controls are intended for use in specific places, such as in a table view, but
some are available for more general usage. This chapter describes the controls that you can use in arbitrary
views in your application.

As you design the user interface of your application, always remember that users expect familiar controls to
behave as they do in the built-in applications. This is to your advantage, as long as you use these controls
appropriately in your application.

Activity Indicators

An activity indicator shows the progress of a task or process that is of unknown duration. If you need to
display progress for a task of known duration, use a progress view instead (see “Progress Views” (page 125)
for more information about this control). The “spinning gear” appearance of the activity indicator shows
users that processing is occurring, but does not suggest when it will finish.

Figure 9-1 shows two types of activity indicators. The activity indicator in the status bar is the network activity
indicator; it should be displayed when your application accesses the network for more than a couple of
seconds. The larger activity indicator in the toolbar should be displayed if it will take more than a second or
two for your application to perform the current task.

Activity Indicators 117
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

Figure 9-1 Two types of activity indicators

Activity indicator

Activity indicator

An activity indicator is a good feedback mechanism to use when it’s more important to reassure users that
their task or process has not stalled than it is to suggest when processing will finish.

You can choose the size and color of an activity indicator to coordinate with the background of the view in
which it appears. By default, an activity indicator is white.

An activity indicator disappears when the task or process has completed. This default behavior is
recommended, because users expect to see an activity indicator when something is happening and they
associate a stationary activity indicator with a stalled process.

To learn how to display the network activity indicator, see the networkActivityIndicatorVisible
method in UIApplication Class Reference. To learn how to display the larger, non-network activity indicator in
your code, see UIActivityIndicatorView Class Reference.

Date and Time Pickers

A date and time picker gives users an easy way to select a specific date or time. A date and time picker can
have up to four independent spinning wheels, each of which displays values in a single category, such as
month or hour. Users flick or drag to spin each wheel until it displays the desired value beneath the clear
selection bar that stretches across the middle of the picker. The final value comprises the values displayed
in each wheel. Figure 9-2 shows an example of a date and time picker.

118 Date and Time Pickers
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

Figure 9-2 A date and time picker

Date and time picker

Use a date and time picker to allow users to avoid typing values that consist of multiple parts, such as the
day, month, and year of a date. A date and time picker works well because the values in each part have a
relatively small range and users already know what the values are.

Depending on the mode you specify, a date and time picker displays a different number of wheels, each with
a set of different values. The date and time picker defines the following modes:

 ■ Time. The time mode displays wheels for the hour and minute values, with the optional addition of a
wheel for the AM/PM designation.

 ■ Date. The date mode displays wheels for the month, day, and year values.

 ■ Date and time. The date and time mode displays wheels for the calendar date, hour, and minute values,
with the optional addition of a wheel for the AM/PM designation. This is the default mode.

 ■ Countdown timer. The countdown timer mode displays wheels for the hour and minute. You can specify
the total duration of a countdown, up to a maximum of 23 hours and 59 minutes.

By default, a minutes wheel displays 60 values (0 to 59). However, if you need to display a coarser granularity
of choices, you can set a minutes wheel to display intervals of minutes, as long as the interval divides evenly
into 60. For example, you might want to display the quarter-hour intervals 0, 15, 30, and 45.

Regardless of its configuration, the overall size of a date and time picker is fixed, and is the same size as the
keyboard. You might choose to make a date and time picker a focal element in your view, or cause it to
appear only when needed. For example, the timer mode of the built-in Clock application displays an
always-visible date and time picker because the selection of a time is central to the function of the Timer.
On the other hand, the Set Date & Time preference (available in Settings > General > Date & Time, when you
turn off Set Automatically) displays transient date and time pickers, depending on whether users want to set
the date or the time.

To learn more about using a date and time picker in your code, see UIDatePicker Class Reference.

Date and Time Pickers 119
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

Detail Disclosure Buttons

A detail disclosure button reveals additional or more detailed information about something. Usually, you
use detail disclosure buttons in table views, where they give users a way to see detailed information about
a list item (for more information about this usage, see “Table-View Elements” (page 108)). However, you can
use this element in other types of views to provide a way to reveal more information or functionality.

For example, the Maps application displays a detail disclosure button users can tap to access more functionality
related to the dropped pin. Figure 9-3 shows an example of a detail disclosure button.

Figure 9-3 A detail disclosure button reveals additional details or functionality

To learn more about using a detail disclosure button in your code, see UIButton Class Reference.

Info Buttons

An Info button provides a way to reveal configuration details about an application, often on the back of the
screen. For this reason, Info buttons are especially well suited to utility applications. You can see an example
of an Info button in the lower-right corner of the Weather application (shown in Figure 9-4).

120 Detail Disclosure Buttons
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

Figure 9-4 An Info button reveals information, often configuration details

Info buttons are available with a light background and a dark background. The light background style (which
is shown in Figure 9-4) looks good on a view with a dark background. Conversely, an Info button with a dark
background shows up well on a view with a light background.

An Info button glows briefly when users tap it. When you use the Info button iOS provides, you get this
pressed-state appearance automatically.

To learn more about using an Info button in your code, see UIButton Class Reference.

Labels

A label is a variably sized amount of static text. Figure 9-5 shows an example of a label.

Labels 121
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

Figure 9-5 A label gives users information

Label

You can use a label to name parts of your user interface or to provide limited help to the user. A label is best
suited to display a relatively small amount of text.

You can determine various properties of the label’s text, such as font, text color, and alignment, but above
all, you should take care to make your labels legible. Don’t sacrifice clarity for fancy fonts or showy colors.

As you compose the text of your labels, be sure to use the user’s vocabulary. Examine the text in your
application for developer-centric terms and replace them with user-centric terms.

To learn more about using labels in your code, see UILabel Class Reference.

Page Indicators

A page indicator displays a dot for each currently open view in an application. From left to right, the dots
represent the order in which the views were opened (the leftmost dot represents the first view). The currently
visible view is indicated by a glow on the dot that represents it. Users tap to the left or the right of the glowing
dot to view the previous or next open view. Figure 9-6 shows an example of a page indicator.

122 Page Indicators
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

Figure 9-6 A page indicator

Page indicator

A page indicator gives users a quick way to see how many views are open and an indication of the order in
which they were opened; it does not help users keep track of the steps they took through a hierarchy of
views. Because the views in a utility application tend to be peers of each other, a page indicator is sufficient
to help users navigate through them. A productivity application that displays hierarchical information, on
the other hand, should offer navigation through the elements in the navigation bar (for more on this, see
“Navigation Bars” (page 76)).

Typically, page indicators work well near the bottom edge of the application screen, below the views it
contains. This leaves the more important information (the view itself) in the upper part of the screen where
users can see it easily. Be sure to vertically center a page indicator between the bottom edge of the view and
the bottom edge of the screen.

Although there is no programmatic limit to the number of dots you can display in a page indicator, be aware
that the dots do not shrink or squeeze together as more appear. For example, in portrait orientation, you
can display at most 20 dots in a page indicator before clipping occurs. Therefore, you should provide logic
in your application to avoid this situation.

Although you can hide a page indicator when there is only one open view, the default behavior is to display
it.

To learn more about using a page indicator in your code, see UIPageControl Class Reference.

Page Indicators 123
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

Pickers

A picker is a generic version of the date and time picker (see “Date and Time Pickers” (page 118) for more
information about this control). You can use a picker to display any set of values. As with a date and time
picker, users spin the wheel (or wheels) of a picker until the desired value appears. Figure 9-7 shows a picker
with a single wheel.

Figure 9-7 A picker as displayed in Safari on iOS

As you decide whether to use a picker in your application, consider that many, if not most, of the values in
a wheel are hidden from the user when the wheel is stationary. This is not necessarily a problem, especially
if users already know what those values are. For example, in a date and time picker, users understand that
the hidden values in the month wheel can only be numbers between 1 and 12. If you need to provide choices
that aren’t members of such a well-known set, however, a picker might not be the appropriate control.

If you need to display a very large number of values, you might want to list them in a table view instead of
in a picker. This is because the greater height of a table view makes scrolling faster.

If you need to provide context for a value in a picker, such as a unit of measurement, display it in the
translucent selection bar horizontally across the center of the control. Do not display such labels above the
picker or on the wheels themselves. For an example of the correct way to display labels, see the Timer function
of the built-in Clock application, which displays “hours” and “mins” (or “min”) next to the values users select.

As with a date and time picker, a generic picker can be visible all the time (as a focal point of your user
interface) or it can appear only when needed. The overall size of a picker, including its background, is fixed,
and is the same size as a keyboard.

To learn more about using a picker in your code, see UIPickerView Class Reference.

124 Pickers
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

Progress Views

A progress view shows the progress of a task or process that has a known duration. If you need to display
progress for a task of unknown duration, use an activity indicator instead (see “Activity Indicators” (page 117)
for more information about this control).

iOS provides two styles of progress view, which are the default style and the bar style. The appearance of
each style is very similar, except for height:

 ■ The default style is intended for use in an application’s main content area.

 ■ The bar style is thinner than the default style, which makes it well-suited for use in a toolbar. For example,
in Mail a bar-style progress view appears in the toolbar when users download new messages or send an
email message.

The behavior of both styles of progress view is the same. As the task or process proceeds, the track of the
progress view is filled from left to right. At any given time, the proportion of filled to unfilled area in the view
gives the user an indication of how soon the task or process will finish. Figure 9-8 shows an example of a
bar-style progress bar.

Figure 9-8 A bar-style progress view in a toolbar

A progress view is a good way to provide feedback to users on tasks that have a well-defined duration,
especially when it’s important to show users approximately how long the task will take. When you display a
progress view, you tell the user that their task is being performed and you give them enough information
to decide if they want to wait until the task is complete or cancel it.

To learn more about using a progress view in your code, see UIProgressView Class Reference.

Progress Views 125
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

Rounded Rectangle Buttons

A rounded rectangle button is a versatile button you can use in a view to perform an action. You can see
examples of this type of button at the bottom of an individual’s Contacts view: The Text Message and Add
to Favorites buttons are rounded rectangle buttons, as shown in Figure 9-9.

Figure 9-9 Rounded rectangle buttons perform application-specific actions

When you supply a title for a rounded rectangle button, be sure to:

 ■ Use title-style capitalization (that is, capitalize every word except articles, coordinating conjunctions, and
prepositions of four or fewer letters)

 ■ Avoid creating a title that is too long. Overly long text gets truncated, which can make it difficult for
users to understand it.

To learn more about using a rounded rectangle button in your code, see UIButton Class Reference.

Search Bars

A search bar is a field that accepts text from users, which your application can use as input for a search. When
the user taps a search bar, a keyboard appears; when the user is finished typing search terms, the input is
handled in an application-specific way. (For guidelines on handling search in your application, see “Providing
Search and Displaying Search Results” (page 56).)

By default, a search bar displays the search icon on the left side. In addition, a search bar can display a few
optional elements:

126 Rounded Rectangle Buttons
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

 ■ Placeholder text. This text might state the function of the control (for example, “Search”) or remind users
in what context they are searching (for example, “YouTube” or “Google”).

 ■ The Bookmarks button. This button can provide a shortcut to information users want to easily find again.
For example, the Bookmarks button in the Maps search mode gives access to bookmarked locations,
recent searches, and contacts.

 ■ The Clear button. Most search bars include a Clear button that allows users to erase the contents of the
search bar with one tap.

 ■ A descriptive title, called a prompt, that appears above the search bar. For example, a prompt can be a
short phrase that provides introductory or application-specific context for the search bar.

Figure 9-10 shows a search bar that includes customized placeholder text, a Bookmarks button, and the
default search icon.

Figure 9-10 A search bar with optional placeholder text and a Bookmarks button

By default, the Bookmarks and Clear buttons interact in the following ways:

 ■ When the search bar contains any non-placeholder text, the Clear button is visible so users can erase
the text. If there is no user-supplied or non-placeholder text in the search bar, the Clear button is hidden
because there is no need to erase the contents of the search bar.

 ■ The Bookmarks button is visible only when there is no user-supplied or non-placeholder text in the
search bar. This is because the Clear button is visible when there is text in the search bar that users might
want to erase.

You can customize a search bar by specifying one of the standard-color background styles, such as:

 ■ Blue (the default gradient that coordinates with the default appearance of toolbars and navigation bars).
The default background style is shown in Figure 9-10.

Search Bars 127
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

 ■ Black

In addition, you can display a scope bar below the search bar, which contains buttons that users tap to select
a scope for the search. The scope bar adopts the same appearance you specify for the search bar, and you
supply custom titles for the scope buttons.

The scope bar displays below the search bar, regardless of orientation, unless you use a search display
controller in your code (see UISearchDisplayController Class Reference for more information). When you use
a search display controller, the scope bar is displayed within the search bar to the right of the search field
when the device is in landscape orientation (in portrait orientation, it’s below the search bar).

To learn more about using a search bar and scope bar in your code, see UISearchBar Class Reference.

Segmented Controls

A segmented control is a linear set of segments, each of which functions as a button that can display a
different view. When users tap a segment in a segmented control, an instantaneous action or visible result
should occur. For example, Settings displays different information when users use the segmented control to
select an email protocol, as shown in Figure 9-11.

Figure 9-11 A segmented control with three segments

The length of a segmented control is determined by the number of segments you display and by the size of
the largest segment. The height of a segmented control is fixed. Although you can specify the number of
segments to display, be aware that users must be able to comfortably tap a segment without worrying about
tapping a neighboring segment. Because hit regions should be 44 x 44 pixels, it’s recommended that a
segmented control have five or fewer segments.

128 Segmented Controls
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

A segmented control can contain text or images; an individual segment can contain either text or an image,
but not both. In general, it’s best to avoid mixing text and images in a single segmented control.

A segmented control ensures that the width of each segment is proportional, based on the total number of
segments. This means that you need to ensure that the content you design for each segment is roughly
equal in size.

To learn more about using a segmented control in your code, see UISegmentedControl Class Reference.

Sliders

A slider allows users to make adjustments to a value or process throughout a range of allowed values. When
users drag a slider, the value or process is updated continuously. Figure 9-12 shows an example of a slider
with minimum and maximum images.

Figure 9-12 A slider

Slider

Sliders are useful in two main situations:

 ■ When you want to allow users to have fine-grained control over the values they choose

 ■ When you want to allow users to have fine-grained control over the current process

A slider consists of a track, a thumb, and optional right and left value images. Figure 9-13 shows these parts
of a slider.

Sliders 129
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

Figure 9-13 Four parts of a slider

Track

Right image

Thumb

Left image

You can set the width of a slider to fit in with the user interface of your application. In addition, you can
display a slider either horizontally or vertically.

There are several ways to customize a slider:

 ■ You can define the appearance of the thumb, so users can see at a glance whether the slider is active.

 ■ You can supply images to appear at either end of the slider (typically, these correspond to minimum
and maximum values), to help users understand what the slider does.

A slider that controls font size, for example, could display a very small character at the minimum end
and a very large character at the maximum end.

 ■ You can define a different appearance for the track, depending on which side of the thumb it is on and
which state the control is in.

To learn more about using a slider in your code, see UISlider Class Reference.

Text Fields

A text field is a rounded rectangular field that accepts user input. When the user taps a text field a keyboard
appears; when the user taps Return in the keyboard, the text field handles the input in an application-specific
way. A text field can contain a single line of input. Figure 9-14 shows two text fields in the Maps application.

130 Text Fields
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

Figure 9-14 A text field can accept user input

You can customize a text field to help users understand how they should use it in your application. For
example, you can display custom images in the left or right sides of the text field, or a system-provided
button, such as the Bookmarks button shown in Figure 9-14. In general, you should use the left end of a text
field to indicate its purpose and the right end to indicate the presence of additional features, such as
bookmarks.

You can also cause the Clear button to appear in the right end of a text field. When this element is present,
tapping it clears the contents of the text field, regardless of any other image you might display over it.

Sometimes, it helps users understand the purpose of a text field if it displays a hint, such as “Name.” A text
field supports the display of such placeholder text, which can appear when there is no other text in the field.
To learn more about using a text field and customizing it to display images and buttons, see UITextField Class
Reference.

You can specify different keyboard styles to accommodate different types of content you expect users to
enter. (Note that you have no control over the keyboard’s input method and layout, which are determined
by the user’s language settings.) For example, you might want to make it easy for users to enter a URL, a PIN,
or a phone number. iOS provides several different keyboard types, each designed to facilitate a different
type of input. To learn about the keyboard types that are available, see UIKeyboardType. To learn more
about managing the keyboard in your application, read “Managing the Keyboard” in iOS Application
Programming Guide.

Text Fields 131
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

132 Text Fields
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Controls

To promote a consistent user experience (and to make your job easier), iOS provides numerous standard
buttons for use in navigation bars and toolbars, and icons for use in tab bars.

This chapter describes the standard icons and buttons available to you and provides guidelines on how to
use them appropriately. You should familiarize yourself with the buttons and icons in this chapter regardless
of the type of application you’re developing, so that you can:

 ■ Use the system-provided items correctly

 ■ Avoid designing a custom icon that looks too similar to a system-provided icon

Using System-Provided Buttons and Icons

iOS makes available many of the standard toolbar and navigation bar buttons, tab bar items, and general-use
buttons used throughout the built-in applications. You can see a handful of standard toolbar buttons in the
Mail toolbar, shown in Figure 10-1.

Figure 10-1 Standard buttons in the Mail toolbar

Using System-Provided Buttons and Icons 133
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

System-Provided Buttons and Icons

Buttons such as the Refresh, Organize, Trash, Reply, and Compose buttons shown in Figure 10-1 are used
consistently in many of the built-in applications, so users are well-acquainted with what they mean and how
to use them. This means that if your application supports these functions, you can take advantage of users’
familiarity to streamline the application’s user interface. It also means that if you associate these buttons with
other tasks, you’re likely to confuse and irritate users by promising functionality they expect, but delivering
something else.

In addition to the benefit of leveraging users’ prior experience, using system-provided buttons and icons
imparts two other substantial advantages, specifically:

 ■ Decreased development time, because you don’t have to create custom art to represent standard
functions.

 ■ Increased stability of your user interface, even if future iOS updates change the appearances of standard
icons. In other words, you can rely on the semantic meaning of a standard icon remaining the same,
even if its appearance changes.

It bears repeating that to realize the advantages of user familiarity, shorter development time, and semantic
consistency of the user interface, you must use the buttons and icons appropriately. Specifically, this means
that you should use a button or icon in accordance with its documented meaning and recommended
placement, and not according to your interpretation of its appearance. See “Standard Buttons for Use in
Toolbars and Navigation Bars” (page 134), “Standard Icons for Use in Tab Bars” (page 136), and “Standard
Buttons for Use in Table Rows and Other User Interface Elements” (page 137) for meaning and placement
information for the system-provided buttons and icons.

Interface Builder makes it easy to use the system-provided buttons and apply system-provided icons to your
controls. See the appearance-related information in “iOS Interface Objects” in Interface Builder User Guide for
guidance.

If you can’t find a system-provided toolbar or navigation bar button or tab bar item icon that has the
appropriate meaning for a specific function in your application, you should design a custom button or icon.
“Icons for Navigation Bars, Toolbars, and Tab Bars” (page 144) gives some guidelines to help you do this.

Standard Buttons for Use in Toolbars and Navigation Bars

iOS makes many of the standard buttons users see in toolbars and navigation bars available to you. These
buttons, shown in Table 10-1 (page 135), are available in two styles, each of which is appropriate for the
specific usages described here:

 ■ Bordered style—for example, the Add button in the Phone Contacts navigation bar. This style is suitable
for both navigation bars and toolbars.

 ■ Plain style—for example, the Compose button in the Mail toolbar. This style is suitable for toolbars only.
In fact, if you specify the plain style for a button in the navigation bar, it will be converted to the bordered
style.

As with all system-provided buttons, you should avoid using the buttons described in Table 10-1 to represent
actions other than those for which they are designed. In particular, avoid choosing a button based on its
appearance, without regard for its documented meaning. See “Using System-Provided Buttons and Icons” (page
133) for a discussion of the reasons why it’s important to use these icons correctly. (Information on symbol
names and availability for these buttons is available in documentation for UIBarButtonSystemItem.)

134 Standard Buttons for Use in Toolbars and Navigation Bars
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

System-Provided Buttons and Icons

Table 10-1 Standard buttons available for toolbars and navigation bars (shown in the plain style)

NameMeaningButton

ActionOpens an action sheet that allows users to take an application-specific action

CameraOpens an action sheet that displays a photo picker in camera mode

ComposeOpens a new message view in edit mode

BookmarksShow application-specific bookmarks

SearchDisplay a search field

AddCreate a new item

TrashDelete current item

OrganizeMove or route an item to a destination within the application, such as a folder

ReplySend or route an item to another location

StopStop current process or task

RefreshRefresh contents (use only when necessary; otherwise, refresh automatically)

PlayBegin media playback or slides

FastForwardFast forward through media playback or slides

PausePause media playback or slides (note that this implies context preservation)

RewindMove backwards through media playback or slides

In addition to the buttons shown in Table 10-1, you can also use the system-provided Edit, Cancel, Save, and
Done buttons shown in Table 10-2 to support editing or other types of content manipulation in your
application. (Information on symbol names and availability for these buttons is available in documentation
for UIBarButtonSystemItem.) These buttons are suitable for both navigation bars and toolbars, and are
available in the bordered style only. If you specify the plain style for one of these buttons, it will be converted
to the bordered style.

Standard Buttons for Use in Toolbars and Navigation Bars 135
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

System-Provided Buttons and Icons

Table 10-2 Bordered action buttons for use in navigation bars

NameMeaningButton

EditEnter an editing or content-manipulation mode

CancelExit the editing or content-manipulation mode without saving changes

SaveSave changes and, if appropriate, exit the editing or content-manipulation mode

DoneExit the current mode and save changes, if any

Standard Icons for Use in Tab Bars

iOS provides the standard icons described in Table 10-3 for use in tab bars. Information on symbol names
and availability for these icons is in documentation for UITabBarSystemItem.

As with all standard buttons and icons, it’s essential to use these icons in accordance with their documented
meanings. In particular, take care to base your usage of an icon on its semantic meaning, not its appearance.
This will help your application’s user interface make sense even if the icon associated with a specific meaning
changes its appearance. See “Using System-Provided Buttons and Icons” (page 133) for further reasons why
it’s important to use these icons correctly.

Table 10-3 Standard icons for use in tab bar tabs

NameMeaningIcon

BookmarksShow application-specific bookmarks

ContactsShow Contacts

DownloadsShow downloads

FavoritesShow user-determined favorites

FeaturedShow content featured by the application

HistoryShow history of user actions

136 Standard Icons for Use in Tab Bars
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

System-Provided Buttons and Icons

NameMeaningIcon

MoreShow additional tab bar items

MostRecentShow the most recent item

MostViewedShow items most popular with all users

RecentsShow the items accessed by the user within an application-defined period

SearchEnter a search mode

TopRatedShow the highest-rated items, as determined by the user

Standard Buttons for Use in Table Rows and Other User Interface
Elements

iOS provides a few buttons for use in table rows and other elements. These buttons, described in Table 10-4,
should be used semantically correctly, as with all standard buttons and icons. In particular, avoid choosing
a button based on its appearance, without regard for its documented meaning. See “Using System-Provided
Buttons and Icons” (page 133) for a discussion of the reasons why it’s important to use these buttons correctly.

Although the detail disclosure button is usually used in table rows, it can be used elsewhere. For more
information about this button, see “Detail Disclosure Buttons” (page 120). iOS also provides a set of controls
for use in table rows only; for more information about these, see “Table-View Elements” (page 108).

For more information on symbol names and availability for these buttons, see documentation for
UIButtonType. (For information on the symbol name and availability for the detail disclosure table-view
element, see documentation for UITableViewCellAccessoryDetailDisclosureButton.)

Table 10-4 Standard buttons for use in table rows and user interface elements

NameMeaningButton

ContactAddDisplay a people picker to add a contact to an item

DetailDisclosureDisplay a new view that contains details about the current item

InfoFlip to the back of the view (usually in a utility application) to display
configuration options or more information.

Note that the Info button is also available as a light-colored “i” in a dark circle.

Standard Buttons for Use in Table Rows and Other User Interface Elements 137
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

System-Provided Buttons and Icons

138 Standard Buttons for Use in Table Rows and Other User Interface Elements
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 10

System-Provided Buttons and Icons

Every application needs an application icon and a launch image. It’s recommended that applications also
provide an icon for iOS to display in Spotlight search results (and, if necessary, in Settings). In addition, some
applications need custom icons to represent custom document types or application-specific functions and
modes in navigation bars, toolbars, and tab bars.

Unlike other custom artwork in your application, these icons and images must meet specific criteria so that
iOS can display them properly. Table 11-1 contains a summary of information about these icons and images
and provides links to specific guidelines for creating them. To learn what to name these files, and how to
specify them in your code, see “Application Icons” in iOS Application Programming Guide and “Application
Launch Images” in iOS Application Programming Guide.

Note: To support resolution independence on iPhone and iPod touch, you should provide high-resolution
versions of your icons and images in addition to the resources you already supply. For guidelines on how to
make the most of your high-resolution artwork, see “Tips for Creating Great High-Resolution Artwork” (page
148).

Table 11-1 Custom icons and images

GuidelinesSize for iPad (in
pixels)

Size for iPhone and iPod
touch (in pixels)

Description

“Application Icons” (page
140)

72 x 7257 x 57

114 x 114 (high resolution)

Application icon (required)

“Application Icons” (page
140)

512 x 512512 x 512App Store icon (required)

“Small Icons” (page 142)50 x 50 for Spotlight
search results

29 x 29 for Settings

29 x 29

58 x 58 (high resolution)

Small icon for Spotlight
search results and Settings
(recommended)

“Document Icons” (page
142)

(For iPad, see “iPad User
Experience Guidelines”)

64 x 64

320 x 320

22 x 29

44 x 58 (high resolution)

Document icon
(recommended for custom
document types)

“Web Clip Icons” (page 143)72 x 7257 x 57

114 x 114 (high resolution)

Web Clip icon
(recommended for web
applications and websites)

“Icons for Navigation Bars,
Toolbars, and Tab
Bars” (page 144)

Approximately 20 x
20

Approximately 20 x 20

Approximately 40 x 40
(high resolution)

Toolbar and navigation bar
icon (optional)

139
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

GuidelinesSize for iPad (in
pixels)

Size for iPhone and iPod
touch (in pixels)

Description

“Icons for Navigation Bars,
Toolbars, and Tab
Bars” (page 144)

No larger than 48 x
32

No larger than 48 x 32

No larger than 96 x 64
(high resolution)

Tab bar icon (optional)

“Launch Images” (page 146)For portrait:
768 x 1004

For landscape:
1024 x 748

320 x 480

640 x 960 (high resolution)

Launch image (required)

Note: For all images and icons, the PNG format is recommended.

The standard bit depth for icons and images is 24 bits (8 bits each for red, green, and blue), plus an 8-bit
alpha channel.

You do not need to constrain your palette to web-safe colors. Although you can use alpha transparency in
the icons you create for navigation bars, toolbars, and tab bars, do not use it in application icons.

Application Icons

An application icon is an icon users put on their Home screens and tap to start an application. This is a place
where branding and strong visual design should come together into a compact, instantly recognizable,
attractive package. Every application needs an application icon.

Try to balance eye appeal and clarity of meaning in your icon so that it’s rich and beautiful, and clearly conveys
the essence of your application’s purpose. Also, it’s a good idea to investigate how your choice of image and
color might be interpreted by people from different cultures.

Create different sizes of your application icon for different devices. If you’re creating a universal application,
you need to supply application icons in all three sizes.

For iPhone and iPod touch both sizes are required:

 ■ 57 x 57 pixels

 ■ 114 x 114 pixels (high resolution)

For iPad:

 ■ 72 x 72 pixels

When iOS displays your application icon on the Home screen of a device, it automatically adds the following
visual effects:

 ■ Rounded corners

 ■ Drop shadow

140 Application Icons
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

 ■ Reflective shine (unless you prevent the shine effect)

For example, a simple 57 x 57 pixel iPhone application icon might look like this:

When it’s displayed on an iPhone Home screen, the same application icon would look like this:

Note: You can prevent iOS from adding the shine to your application icon. To do this, you need to add the
UIPrerenderedIcon key to your application’s Info.plist file (to learn about this file, see “The Information
Property List” in iOS Application Programming Guide).

The presence (or absence) of the added shine does not change the dimensions of your application icon.

Ensure your icon is eligible for the visual enhancements iOS provides. You should produce an image that:

 ■ Has 90° corners

 ■ Does not have any shine or gloss (unless you’ve chosen to prevent the addition of the reflective shine)

 ■ Does not use alpha transparency

Give your application icon a discernible background. Icons with visible backgrounds look best on the Home
screen primarily because of the rounded corners iOS adds. This is because uniformly rounded corners ensure
that all the icons on a user's Home screen have a consistent appearance that invites tapping. If you create
an icon with a background that disappears when it's viewed on the Home screen, users don't see the rounded
corners. Such icons often don't look tappable and tend to interfere with the orderly symmetry of the Home
screen that users appreciate.

Be sure your image completely fills the required area. If your image boundaries are smaller than the
recommended sizes, or you use transparency to create “see-through” areas within them, your icon can appear
to float on a black background with rounded corners.

For example, an application might supply an icon on a transparent background, like the blue star on the far
left. When iOS displays this icon on a Home screen, it looks like the image in the middle (if no shine is added)
or it looks like the image on the right (if shine is added).

An icon that appears to float on a visible black background looks especially unattractive on a Home screen
that displays a custom picture.

Application Icons 141
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

Create a 512 x 512 pixel version of your application icon for display in the App Store. Although it’s
important that this version be instantly recognizable as your application icon, it can be subtly richer and
more detailed. There are no visual effects added to this version of your application icon.

If you’re developing an application for ad-hoc distribution (that is, to be distributed in-house only, not through
the App Store), you must also provide a 512 x 512 pixel version of your application icon. This icon identifies
your application in iTunes.

iOS might also use this large image in other ways. In an iPad application, for example, iOS uses the 512 x 512
pixel image to generate the large document icon, if a custom document icon is not supplied.

Small Icons

Every application should supply a small icon that iOS can display when the application name matches a term
in a Spotlight search. Applications that supply settings should also supply this icon to identify them in the
built-in Settings application.

This icon should clearly identify your application so that people can recognize it in a list of search results or
in Settings.

For iPhone and iPod touch, iOS uses the same icon for both Spotlight search results and Settings. If you do
not provide this icon, iOS might shrink your application icon for display in search results and in Settings.
Create icons that measure:

 ■ 29 x 29 pixels

 ■ 58 x 58 pixels (high resolution)

For iPad, you supply separate icons for Settings and Spotlight search results. Create icons that measure:

 ■ 50 x 50 pixels (for Spotlight search results)

Note that the final visual size of this icon is 48 x 48 pixels. iOS trims 1 pixel from each side of your artwork
and adds a drop shadow. Be sure to take this into account as you design your icon.

 ■ 29 x 29 pixels (for Settings)

Document Icons

If your iPhone application creates documents of a custom type, you might want to create a custom icon that
identifies this type to users. (For guidelines on how to create a custom document icon for an iPad application,
see “Provide a Custom Document Icon” in iPad Human Interface Guidelines.)

If you don’t provide a custom document icon, iOS creates one for you by default, using your application icon
(including the added visual effects). For example, using the 57 x 57 pixel white star application icon, a default
document icon would look like this:

142 Small Icons
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

Using the 114 x 114 pixel white star application icon, a high-resolution default document icon would look
like this:

Optionally, you can provide custom artwork for iOS to use instead of your application icon. To do this:

 ■ Design an attractive image that’s clearly associated with your application. People can see this icon
in different places and contexts, so it’s best when they can instantly recognize it as being associated
with your app.

 ■ Create your document icon in two sizes:

 ❏ 22 x 29 pixels

 ❏ 44 x 58 pixels (high resolution)

 ■ Place your custom artwork within each rectangular space as desired: The artwork can be centered,
offset, or it can fill the entire space. Keep in mind that iOS applies a gradient that transitions from
transparent (at the top edge) to black (at the bottom edge).

For example, if you supply a 22 x 29 pixel icon that looks like the image on the left, iOS creates a document
icon that looks like the image on the right:

Similarly, if you supply a 44 x 58 pixel icon that looks like the image on the left, iOS creates a document icon
that looks like the image on the right:

Web Clip Icons

If you have a web application or a website, you can provide a custom icon that users can display on their
Home screens using the Web Clip feature. Users tap the icon to reach your web content in one easy step.
You can create an icon that represents your website as a whole or an icon that represents a single webpage.

If your web content is distinguished by a familiar image or recognizable color scheme, it makes sense to
incorporate it in your icon. However, to ensure that your icon looks great on the device, you should also
follow the guidelines in this section. (To learn how to add code to your web content to provide a custom
icon, see Safari Web Content Guide, available in the Safari Reference Library.)

For iPhone and iPod touch create icons that measure:

 ■ 57 x 57 pixels

Web Clip Icons 143
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

http://developer.apple.com/safari/library/navigation/index.html

 ■ 114 x 114 pixels (high resolution)

For iPad create an icon that measures:

 ■ 72 x 72 pixels

As it does with application icons, iOS automatically adds some visual effects to your icon so that it coordinates
with the built-in icons on the Home screen. Specifically, iOS adds:

 ■ Rounded corners

 ■ Drop shadow

 ■ Reflective shine

For example, a simple 57 x 57 pixel webpage icon might look like this:

When it’s displayed on an iPhone Home screen, the same icon would look like this:

Note: You can prevent the addition of all effects by naming your icon
apple-touch-icon-precomposed.png (this is available in iOS 2.0 and later).

Ensure your icon is eligible for the visual enhancements iOS adds (if you want them). You should produce
an image in PNG format that:

 ■ Has 90° corners

 ■ Does not have any shine or gloss

Icons for Navigation Bars, Toolbars, and Tab Bars

As much as possible, you should use the system-provided buttons and icons to represent standard tasks in
your application. For a complete list of standard buttons and icons, and guidelines on how to use them, see
“System-Provided Buttons and Icons” (page 133).

Of course, not every task your application performs is a standard one. If your application supports custom
tasks users need to perform frequently, you need to create custom icons that represent these tasks in your
toolbar or navigation bar. Similarly, if your application displays a tab bar that allows users to switch among
custom application modes or custom subsets of data, you need to design tab bar icons that represent these
modes or subsets.

144 Icons for Navigation Bars, Toolbars, and Tab Bars
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

Before you create the art for your icon, you need to spend some time thinking about what it should convey.
As you consider designs, aim for an icon that is:

 ■ Simple and streamlined. Too many details can make an icon appear sloppy or indecipherable.

 ■ Not easily mistaken for one of the system-provided icons. Users should be able to distinguish your
custom icon from the standard icons at a glance.

 ■ Readily understood and widely acceptable. Strive to create a symbol that most users will interpret
correctly and that no users will find offensive.

Important: Be sure to avoid using images that replicate Apple products in your designs. These symbols are
copyrighted and product designs can change frequently.

After you’ve decided on the appearance of your icon, follow these guidelines as you create it:

 ■ Use pure white with appropriate alpha.

 ■ Do not include a drop shadow.

 ■ Use anti-aliasing.

 ■ If you decide to add a bevel, be sure that it is 90° (to help you do this, imagine a light source positioned
at the top of the icon).

For toolbar and navigation bar icons, create an icon in the following sizes:

 ■ For iPhone and iPod touch:

 ❏ About 20 x 20 pixels

 ❏ About 40 x 40 pixels (high resolution)

 ■ For iPad:

 ❏ About 20 x 20 pixels

For tab bar icons, create an icon in the following sizes:

 ■ For iPhone and iPod touch:

 ❏ No larger than 48 x 32 pixels

 ❏ No larger than 96 x 64 pixels (high resolution)

 ■ For iPad:

 ❏ No larger than 48 x 32 pixels

These sizes represent the maximum dimensions a tab bar icon can have. If you provide a larger icon, iOS will
center it and clip the excess.

Icons for Navigation Bars, Toolbars, and Tab Bars 145
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

Note: The icon you provide for toolbars, navigation bars, and tab bars is used as a mask to create the icon
you see in your application. It is not necessary to create a full-color icon.

Don’t include a pressed or selected appearance with your icons. iOS automatically provides these
appearances for items in navigation bars, toolbars, and tab bars, so you do not need to provide them. Because
these visual effects are automatic, you cannot change their appearance.

Give all icons in a bar a similar visual weight. Aim to balance the overall size, level of detail, and use of solid
regions across all icons that can appear in a specific bar. In general, it does not look good to combine in the
same bar icons that are large, blocky, and completely filled with icons that are small, detailed, and unfilled.

Launch Images

To enhance the user’s experience at application launch, you must provide at least one launch image. A launch
image looks very similar to the first screen your application displays. iOS displays this image instantly when
the user starts your application. As soon as it’s ready for use, your application displays its first screen, replacing
the launch placeholder image.

Supply a launch image to improve user experience; avoid using it as an opportunity to provide:

 ■ An “application entry experience,” such as a splash screen

 ■ An About window

 ■ Branding elements, unless they are a static part of your application’s first screen

Because users are likely to switch among applications frequently, you should make every effort to cut launch
time to a minimum, and you should design a launch image that downplays the experience rather than
drawing attention to it.

Design a launch image that is identical to the first screen of the application, except for:

 ■ Text. The launch image is static, so any text you display in it will not be localized.

 ■ UI elements that might change. Avoid including elements that might look different when the application
finishes launching, so that users don’t experience a flash between the launch image and the first
application screen.

For iPhone and iPod touch create launch images that include the status bar region in the following sizes:

 ■ 320 x 480 pixels

 ■ 640 x 940 pixels (high resolution)

For iPad create launch images that do not include the status bar region in the following sizes:

 ■ 768 x 1004 pixels (portrait)

 ■ 1024 x 748 pixels (landscape)

Note that most iPad applications should supply a launch image for each orientation.

146 Launch Images
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

If you think that following these guidelines will result in a plain, boring launch image, you’re right. Remember,
the launch image is not meant to provide an opportunity for artistic expression; it is solely intended to
enhance the user’s perception of your application as quick to launch and immediately ready for use. The
following examples show you how plain a launch image can be.

The Settings launch image displays only the background of the application, because no other content in the
application is guaranteed to be static.

In the launch image for Stocks, only static images are included because these are always visible in the front
view of the Stocks application.

Launch Images 147
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

Tips for Creating Great High-Resolution Artwork

Some device screens allow you to display high-resolution versions of your art and icons. If you merely scale
up your existing artwork, you miss out on the opportunity to provide the beautiful, captivating images users
expect. Instead, you should rework your existing resources to create large, higher quality versions that are:

 ■ Richer in texture. For example, in the high-resolution versions of the Settings and Contacts icons, the
metal and paper textures are clearly visible.

 ■ More detailed. For example, in the high-resolution versions of the Safari and Notes icons, you can see
details such as the accurate contours of the continents behind the compass and the torn paper left by
the previous note.

 ■ More realistic. For example, the high-resolution versions of the Compass and Photos icons combine rich
texture and fine details to create realistic portrayals of a compass and a photograph.

Even though bar icons are simpler than application or document icons, you should consider adding details
as you create high-resolution versions of them. For example, the artists tab bar icon in the iPod application
is a streamlined silhouette of a singer. The high-resolution version of this icon is recognizably the same icon,
but includes greater detail.

The following techniques can help you get great results as you create a high-resolution version of your
artwork.

Scale up your original artwork to 200%, using the “nearest neighbor” scaling algorithm. This works well if
the original artwork was not created with vector shapes and does not include layer effects. The result is a
large, pixelated image on top of which you can draw matching high-resolution art. This is a good way to
begin because it allows you to preserve the original layout of your design.

If the original artwork was created with vector shapes, or it includes layer effects, you can use the default
scaling algorithm instead of the nearest neighbor algorithm.

148 Tips for Creating Great High-Resolution Artwork
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

Add detail and depth. Don’t hesitate to draw very small elements, because the high-resolution version of
your artwork allows much more room for fine details. For example, a 1-pixel dot in your original image
becomes a 4-pixel dot (that is, 2 x 2 pixels) in the larger version.

Consider softening scaled-up elements. If, for example, you have a sharp, 1-pixel dividing line in your original
artwork, it might have the boldness you want when you leave it scaled up to a 2-pixel line. But for some lines
and elements, you might want to soften the scaled results by feathering or even leaving the element at the
smaller size.

Consider adding blur for better results in effects such as engravings and drop shadows. For example,
text engraving is typically done by shifting a duplicate image of the text by 1 pixel. Scaled up, this shift would
result in an engraving width of 2 pixels, which is likely to look very sharp and unrealistic at a higher resolution.
To improve this, you can leave the shift as-is (that is, at 1 pixel), but add a 1-pixel blur to soften the engraving.
This still results in a 2-pixel wide engraving effect, but the outer pixel now looks more like it is only half a
pixel wide, which results in a better sense of dimensionality.

Tips for Creating Great High-Resolution Artwork 149
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

150 Tips for Creating Great High-Resolution Artwork
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 11

Creating Custom Icons and Images

This table describes the changes to iPhone Human Interface Guidelines.

NotesDate

Updated tab bar icon dimensions and added an example of when to deactivate
an audio session.

2010-08-03

Described how to accommodate multitasking, design local notifications, and
host ads.

2010-06-03

Described how to accommodate multitasking, design local notifications, and
host ads.

2010-05-12

Enhanced guidelines for designing an alert.2010-03-24

Added guidance on using table-cell styles.2010-02-19

Fixed minor errors and rearranged table view content.2009-11-20

Updated guidelines for using sound; made additional minor corrections.2009-09-09

Added guidelines for using the user's location and making an application
accessible; updated guidelines for settings, search, and bar appearances.

2009-06-04

Made minor corrections.2009-03-27

Added guidelines for handling editing and undo functionality, searching, push
notifications, and modal view transitions.

2009-03-12

Enhanced guidelines for tabs in a tab bar.2009-02-04

Expanded guidelines for using sound in iPhone applications and made minor
corrections.

2008-11-21

Transferred web-specific guidelines to iPhone Human Interface Guidelines for
Web Applications.

2008-09-09

New document that describes how to design the user interface of an iPhone
application and provides guidelines for creating web content for iOS-based
devices.

2008-06-27

151
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

152
2010-08-03 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	iPhone Human Interface Guidelines
	Contents
	Figures and Tables
	Introduction
	Part I: Planning Your iPhone Software Product
	The iOS Platform: Rich with Possibilities
	Device Characteristics to Keep in Mind
	Screen Size is Compact
	Memory is Limited
	People See One Screen at a Time
	People Interact with One Application at a Time
	Onscreen User Help is Minimal

	What Are Your Options?
	iPhone Applications
	Web-only Content
	Hybrid Applications

	Three Application Styles
	Productivity Applications
	Utility Applications
	Immersive Applications

	Choosing an Application Style
	When You Have an Existing Computer Application
	Case Studies: Bringing a Desktop Application to iOS
	Mail
	iPhoto

	Human Interface Principles: Creating a Great User Interface
	Metaphors
	Direct Manipulation
	See and Point
	Feedback
	User Control
	Aesthetic Integrity

	Designing an iPhone Application: From Product Definition to Branding
	Create a Product Definition Statement
	Incorporate Characteristics of Great iPhone Applications
	Build in Simplicity and Ease of Use
	Make It Obvious
	Think Top Down
	Minimize Required Input
	Express Information Succinctly
	Provide Fingertip-Size Targets

	Focus on the Primary Task
	Communicate Effectively

	Support Gestures Appropriately
	Incorporate Branding Elements Cautiously

	Handling Common Tasks
	Starting
	Stopping
	Accommodating Multitasking
	Hosting Ads
	Managing Settings or Configuration Options
	Supporting Copy and Paste
	Supporting Undo and Redo
	Enabling Local and Push Notifications
	Making Your Application Accessible
	Providing Search and Displaying Search Results
	Using the User’s Location
	Handling Orientation Changes
	Using Sound
	The Ring/Silent Switch—What Users Expect
	Volume Buttons—What Users Expect
	Headsets and Headphones—What Users Expect
	Wireless Audio—What Users Expect
	Define the Audio Behavior of Your Application
	Manage Audio Interruptions
	Handle Media Remote Control Events, if Appropriate

	Providing Choices
	Providing a License Agreement or a Disclaimer

	Part II: Designing the User Interface of Your iPhone Application
	A Brief Tour of the Application User Interface
	Application Screens and Their Contents
	Using Views and Controls in Application Screens

	Navigation Bars, Tab Bars, Toolbars, and the Status Bar
	The Status Bar
	Navigation Bars
	Navigation Bar Contents
	Navigation Bar Size and Color

	Toolbars
	Toolbar Contents
	Toolbar Size and Color

	Tab Bars
	Providing Additional Tabs
	Badging a Tab in a Tab Bar

	Alerts, Action Sheets, and Modal Views
	Usage and Behavior
	Using Alerts
	Using Action Sheets
	Using Modal Views

	Designing an Alert
	Designing an Action Sheet
	Designing a Modal View

	Table Views, Text Views, and Web Views
	Table Views
	Usage and Behavior
	Table-View Styles
	Table-Cell Styles
	Table-View Elements
	Switch Controls
	Using Table Views to Enable Common User Actions

	Text Views
	Web Views

	Application Controls
	Activity Indicators
	Date and Time Pickers
	Detail Disclosure Buttons
	Info Buttons
	Labels
	Page Indicators
	Pickers
	Progress Views
	Rounded Rectangle Buttons
	Search Bars
	Segmented Controls
	Sliders
	Text Fields

	System-Provided Buttons and Icons
	Using System-Provided Buttons and Icons
	Standard Buttons for Use in Toolbars and Navigation Bars
	Standard Icons for Use in Tab Bars
	Standard Buttons for Use in Table Rows and Other User Interface Elements

	Creating Custom Icons and Images
	Application Icons
	Small Icons
	Document Icons
	Web Clip Icons
	Icons for Navigation Bars, Toolbars, and Tab Bars
	Launch Images
	Tips for Creating Great High-Resolution Artwork

	Revision History

