
UIView Class Reference
User Experience: Windows & Views

2010-06-04

Apple Inc.
© 2010 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, iPhone,
Keychain, and Objective-C are trademarks of
Apple Inc., registered in the United States and
other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

UIView Class Reference 7

Overview 7
Tasks 9

Creating Instances 9
Setting and Getting Attributes 9
Modifying the Bounds and Frame Rectangles 9
Managing the View Hierarchy 9
Converting Coordinates 10
Resizing Subviews 10
Searching for Views 11
Laying out Views 11
Displaying 11
Animating Views with Blocks 12
Animating Views 12
Handling Events 13
Managing Gesture Recognizers 13
Observing Changes 13

Properties 14
alpha 14
autoresizesSubviews 14
autoresizingMask 15
backgroundColor 15
bounds 16
center 16
clearsContextBeforeDrawing 17
clipsToBounds 17
contentMode 18
contentScaleFactor 18
contentStretch 18
exclusiveTouch 19
frame 19
gestureRecognizers 20
hidden 21
layer 21
multipleTouchEnabled 22
opaque 22
subviews 23
superview 23
tag 23
transform 24
userInteractionEnabled 24

3
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

window 25
Class Methods 25

animateWithDuration:animations: 25
animateWithDuration:animations:completion: 26
animateWithDuration:delay:options:animations:completion: 26
areAnimationsEnabled 27
beginAnimations:context: 27
commitAnimations 28
layerClass 29
setAnimationBeginsFromCurrentState: 29
setAnimationCurve: 30
setAnimationDelay: 31
setAnimationDelegate: 31
setAnimationDidStopSelector: 32
setAnimationDuration: 33
setAnimationRepeatAutoreverses: 34
setAnimationRepeatCount: 34
setAnimationsEnabled: 35
setAnimationStartDate: 35
setAnimationTransition:forView:cache: 36
setAnimationWillStartSelector: 37
transitionFromView:toView:duration:options:completion: 38
transitionWithView:duration:options:animations:completion: 38

Instance Methods 39
addGestureRecognizer: 39
addSubview: 40
bringSubviewToFront: 41
convertPoint:fromView: 41
convertPoint:toView: 41
convertRect:fromView: 42
convertRect:toView: 43
didAddSubview: 43
didMoveToSuperview 44
didMoveToWindow 44
drawRect: 44
endEditing: 45
exchangeSubviewAtIndex:withSubviewAtIndex: 45
hitTest:withEvent: 46
initWithFrame: 47
insertSubview:aboveSubview: 47
insertSubview:atIndex: 48
insertSubview:belowSubview: 48
isDescendantOfView: 49
layoutIfNeeded 49
layoutSubviews 50
pointInside:withEvent: 50

4
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

removeFromSuperview 51
removeGestureRecognizer: 51
sendSubviewToBack: 52
setNeedsDisplay 52
setNeedsDisplayInRect: 53
setNeedsLayout 53
sizeThatFits: 54
sizeToFit 54
viewWithTag: 55
willMoveToSuperview: 55
willMoveToWindow: 56
willRemoveSubview: 56

Constants 57
UIViewAnimationCurve 57
UIViewContentMode 57
UIViewAutoresizing 59
UIViewAnimationTransition 61
UIViewAnimationOptions 61

Document Revision History 65

5
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

6
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

CONTENTS

Inherits from UIResponder : NSObject

Conforms to NSCoding
NSObject (NSObject)

Framework /System/Library/Frameworks/UIKit.framework

Availability Available in iOS 2.0 and later.

Declared in UITextField.h
UIView.h

Related sample code KeyboardAccessory
ScrollViewSuite
SimpleGestureRecognizers
SpeakHere
WiTap

Overview

The UIView class implements the basic behavior used to facilitate drawing in your applications. You can use
this class as-is to act as a simple container for other view objects. You can also subclass it and override its
methods to draw custom content. Because it is also a responder object, you can also respond to interactions
with that content.

UIView objects are arranged within an UIWindow object, in a nested hierarchy of subviews. Parent objects
in the view hierarchy are called superviews, and children are called subviews. A view object claims a
rectangular region of its enclosing superview, is responsible for all drawing within that region, and is eligible
to receive events occurring in it as well. Sibling views are able to overlap without any issues, allowing complex
view placement.

The UIView class provides common methods you use to create all types of views and access their properties.
For example, unless a subclass has its own designated initializer, you use the initWithFrame: (page 47)
method to create a view. The frame (page 19) property specifies the origin and size of a view in superview
coordinates. The origin of the coordinate system for all views is in the upper-left corner.

You can also use the center (page 16) and bounds (page 16) properties to set the position and size of a
view. The center property specifies the view’s center point in superview’s coordinates. The bounds property
specifies the origin in the view’s coordinates and its size (the view’s content may be larger than the bounds
size). The frame property is actually computed based on the center and bounds property values. Therefore,
you can set any of these three properties and they affect the values of the others.

Overview 7
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

It’s important to set the autoresizing properties of views so that when they are displayed or the orientation
changes, the views are displayed correctly within the superview’s bounds. Use the
autoresizesSubviews (page 14) property, especially if you subclass UIView, to specify whether the view
should automatically resize its subviews. Use the autoresizingMask (page 15) property with the constants
described in UIViewAutoresizing (page 59) to specify how a view should automatically resize.

The UIView class provides a number of methods for managing the view hierarchy. Use the superview (page
23) property to get the parent view and the subviews (page 23) property to get the child views in the
hierarchy. There are also a number of methods, listed in “Managing the View Hierarchy” (page 9), for adding,
inserting, and removing subviews as well as arranging subviews in front of or in back of siblings.

When you subclass UIView to create a custom class that draws itself, implement the drawRect: (page 44)
method to draw the view within the specified region. This method is invoked the first time a view displays
or when an event occurs that invalidates a part of the view’s frame requiring it to redraw its content.

Normal geometry changes do not require redrawing the view. Therefore, if you alter the appearance of a
view and want to force it to redraw, send setNeedsDisplay (page 52) or setNeedsDisplayInRect: (page
53) to the view. You can also set the contentMode (page 18) to UIViewContentModeRedraw (page 58)
to invoke the drawRect: (page 44) method when the bounds change; otherwise, the view is scaled and
clipped without redrawing the content.

Subclasses can also be containers for other views. In this case, just override the designated initializer,
initWithFrame: (page 47), to create a view hierarchy. If you want to programmatically force the layout
of subviews before drawing, send setNeedsLayout (page 53) to the view. Then when
layoutIfNeeded (page 49) is invoked, the layoutSubviews (page 50) method is invoked just before
displaying. Subclasses should override layoutSubviews (page 50) to perform any custom arrangement of
subviews.

Some of the property changes to view objects can be animated—for example, setting the frame (page 19),
bounds (page 16), center (page 16), and transform (page 24) properties. If you change these properties
in an animation block, the changes from the current state to the new state are animated. Invoke the
beginAnimations:context: (page 27) class method to begin an animation block, set the properties you
want animated, and then invoke the commitAnimations (page 28) class method to end an animation block.
The animations are run in a separate thread and begin when the application returns to the run loop. Other
animation class methods allow you to control the start time, duration, delay, and curve of the animations
within the block.

Use the hitTest:withEvent: (page 46) and pointInside:withEvent: (page 50) methods if you are
processing events and want to know where they occur. The UIView class inherits other event processing
methods from UIResponder. For more information on how views handle events, read UIResponder Class
Reference.

To associate a gesture recognizer with a view so that object can interpret gestures made on the view, you
must call the addGestureRecognizer: (page 39) method. (Gesture recognizers are instances of a concrete
subclass of UIGestureRecognizer.) You remove a gesture recognizer with the
removeGestureRecognizer: (page 51) method and find out which gesture recognizers are associated
with a view using the gestureRecognizers (page 20) property. Gesture recognition is a feature that was
introduced in iOS 3.2.

Read Window and Views in iOS Application Programming Guide to learn how to use this class.

8 Overview
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Note: Prior to iOS 3.0, UIView instances may have a maximum height and width of 1024 x 1024. In iOS 3.0
and later, views are no longer restricted to this maximum size but are still limited by the amount of memory
they consume. Therefore, it is in your best interests to keep view sizes as small as possible. Regardless of
which version of iOS is running, you should consider using a CATiledLayer object if you need to create
views larger than 1024 x 1024 in size.

Tasks

Creating Instances

– initWithFrame: (page 47)
Initializes and returns a newly allocated view object with the specified frame rectangle.

Setting and Getting Attributes

 userInteractionEnabled (page 24) property
A Boolean value that determines whether user events are ignored and removed from the event queue.

Modifying the Bounds and Frame Rectangles

 frame (page 19) property
The receiver’s frame rectangle.

 bounds (page 16) property
The receiver’s bounds rectangle, which expresses its location and size in its own coordinate system.

 center (page 16) property
The center of the frame.

 transform (page 24) property
Specifies the transform applied to the receiver, relative to the center of its bounds.

Managing the View Hierarchy

 superview (page 23) property
The receiver’s superview, or nil if it has none. (read-only)

 subviews (page 23) property
The receiver’s immediate subviews. (read-only)

 window (page 25) property
The receiver’s window object, or nil if it has none. (read-only)

– addSubview: (page 40)
Adds a view to the receiver’s subviews so it’s displayed above its siblings.

– bringSubviewToFront: (page 41)
Moves the specified subview to the front of its siblings.

Tasks 9
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

– sendSubviewToBack: (page 52)
Moves the specified subview to the back of its siblings.

– removeFromSuperview (page 51)
Unlinks the receiver from its superview and its window, and removes it from the responder chain.

– insertSubview:atIndex: (page 48)
Inserts a subview at the specified index.

– insertSubview:aboveSubview: (page 47)
Inserts a view above another view in the view hierarchy.

– insertSubview:belowSubview: (page 48)
Inserts a view below another view in the view hierarchy.

– exchangeSubviewAtIndex:withSubviewAtIndex: (page 45)
Exchanges the subviews in the receiver at the given indices.

– isDescendantOfView: (page 49)
Returns a Boolean value indicating whether the receiver is a subview of a given view or whether it is
identical to that view.

Converting Coordinates

– convertPoint:toView: (page 41)
Converts a point from the receiver’s coordinate system to that of a given view.

– convertPoint:fromView: (page 41)
Converts a point from the coordinate system of a given view to that of the receiver.

– convertRect:toView: (page 43)
Converts a rectangle from the receiver’s coordinate system to that of another view.

– convertRect:fromView: (page 42)
Converts a rectangle from the coordinate system of another view to that of the receiver.

 contentScaleFactor (page 18) property
The scale factor applied to the view.

Resizing Subviews

 autoresizesSubviews (page 14) property
A Boolean value that determines whether the receiver automatically resizes its subviews when its
frame size changes.

 autoresizingMask (page 15) property
An integer bit mask that determines how the receiver resizes itself when its bounds change.

– sizeThatFits: (page 54)
Asks the view to calculate and return the size that best fits its subviews.

– sizeToFit (page 54)
Resizes and moves the receiver view so it just encloses its subviews.

 contentMode (page 18) property
A flag used to determine how a view lays out its content when its bounds rectangle changes.

 contentStretch (page 18) property
The rectangle that defines the stretchable and nonstretchable regions of a view.

10 Tasks
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Searching for Views

 tag (page 23) property
The receiver’s tag, an integer that you can use to identify view objects in your application.

– viewWithTag: (page 55)
Returns the view with the specified tag.

Laying out Views

– setNeedsLayout (page 53)
Sets whether subviews need to be rearranged before displaying.

– layoutIfNeeded (page 49)
Lays out the subviews if needed.

– layoutSubviews (page 50)
Lays out subviews.

Displaying

 clipsToBounds (page 17) property
A Boolean value that determines whether subviews can be drawn outside the bounds of the receiver.

 backgroundColor (page 15) property
The receiver’s background color.

 alpha (page 14) property
The receiver’s alpha value.

 opaque (page 22) property
A Boolean value that determines whether the receiver is opaque.

 clearsContextBeforeDrawing (page 17) property
A Boolean value that determines whether the receiver’s bounds should be automatically cleared
before drawing.

– drawRect: (page 44)
Draws the receiver’s image within the passed-in rectangle.

– setNeedsDisplay (page 52)
Controls whether the receiver's entire bounds rectangle is marked as needing display.

– setNeedsDisplayInRect: (page 53)
Marks the region of the receiver within the specified rectangle as needing display, increasing the
receiver’s existing invalid region to include it.

+ layerClass (page 29)
Returns the class used to create the layer for instances of this class.

 layer (page 21) property
The view’s Core Animation layer used for rendering. (read-only)

 hidden (page 21) property
A Boolean value that determines whether the receiver is hidden.

Tasks 11
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Animating Views with Blocks

+ animateWithDuration:delay:options:animations:completion: (page 26)
Animate changes to one or more views using the specified duration, delay, options, and completion
handler.

+ animateWithDuration:animations:completion: (page 26)
Animate changes to one or more views using the specified duration and completion handler.

+ animateWithDuration:animations: (page 25)
Animate changes to one or more views using the specified duration.

+ transitionWithView:duration:options:animations:completion: (page 38)
Creates a transition animation for the specified container view.

+ transitionFromView:toView:duration:options:completion: (page 38)
Creates a transition animation between the specified views using the given parameters.

Animating Views

+ beginAnimations:context: (page 27)
Begins an animation block.

+ commitAnimations (page 28)
Ends an animation block and starts animations when this is the outer animation block.

+ setAnimationStartDate: (page 35)
Sets the start time of animating property changes within an animation block.

+ setAnimationsEnabled: (page 35)
Sets whether animations are enabled.

+ setAnimationDelegate: (page 31)
Sets the delegate for animation messages.

+ setAnimationWillStartSelector: (page 37)
Sets the message to send to the animation delegate when animation starts.

+ setAnimationDidStopSelector: (page 32)
Sets the message to send to the animation delegate when animation stops.

+ setAnimationDuration: (page 33)
Sets the duration (in seconds) of animating property changes within an animation block.

+ setAnimationDelay: (page 31)
Sets the delay (in seconds) of animating property changes within an animation block.

+ setAnimationCurve: (page 30)
Sets the curve of animating property changes within an animation block.

+ setAnimationRepeatCount: (page 34)
Sets the number of times animations within an animation block repeat.

+ setAnimationRepeatAutoreverses: (page 34)
Sets whether the animation of property changes within an animation block automatically reverses
repeatedly.

+ setAnimationBeginsFromCurrentState: (page 29)
Sets whether the animation should begin playing from the current state.

12 Tasks
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

+ setAnimationTransition:forView:cache: (page 36)
Sets a transition to apply to a view during an animation block.

+ areAnimationsEnabled (page 27)
Returns a Boolean value indicating whether animations are enabled.

Handling Events

– hitTest:withEvent: (page 46)
Returns the farthest descendant of the receiver in the view hierarchy (including itself) that contains
a specified point.

– pointInside:withEvent: (page 50)
Returns a Boolean value indicating whether the receiver contains the specified point.

 multipleTouchEnabled (page 22) property
A Boolean value indicating whether the receiver handles multi-touch events.

 exclusiveTouch (page 19) property
A Boolean value indicating whether the receiver handles touch events exclusively.

– endEditing: (page 45)
Causes the view (or one of its embedded text fields) to resign the first responder status.

Managing Gesture Recognizers

– addGestureRecognizer: (page 39)
Attaches a gesture recognizer to the receiving view.

– removeGestureRecognizer: (page 51)
Detaches a gesture recognizer from the receiving view.

 gestureRecognizers (page 20) property
The gesture-recognizer objects currently attached to the view.

Observing Changes

– didAddSubview: (page 43)
Tells the view when subviews are added.

– didMoveToSuperview (page 44)
Informs the receiver that its superview has changed (possibly to nil).

– didMoveToWindow (page 44)
Informs the receiver that it has been added to a window.

– willMoveToSuperview: (page 55)
Informs the receiver that its superview is about to change to the specified superview (which may be
nil).

– willMoveToWindow: (page 56)
Informs the receiver that it’s being added to the view hierarchy of the specified window object (which
may be nil).

Tasks 13
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

– willRemoveSubview: (page 56)
Overridden by subclasses to perform additional actions before subviews are removed from the receiver.

Properties

For more about Objective-C properties, see “Properties” in The Objective-C Programming Language.

alpha
The receiver’s alpha value.

@property(nonatomic) CGFloat alpha

Discussion
Changes to this property can be animated. Use the beginAnimations:context: (page 27) class method
to begin and the commitAnimations (page 28) class method to end an animation block.

Availability
Available in iOS 2.0 and later.

See Also
 @property backgroundColor (page 15)
 @property opaque (page 22)

Related Sample Code
SimpleGestureRecognizers

Declared In
UIView.h

autoresizesSubviews
A Boolean value that determines whether the receiver automatically resizes its subviews when its frame size
changes.

@property(nonatomic) BOOL autoresizesSubviews

Discussion
If YES, the receiver adjusts the size of its subviews when the bounds change. The default value is YES.

Availability
Available in iOS 2.0 and later.

See Also
 @property autoresizingMask (page 15)

Declared In
UIView.h

14 Properties
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

autoresizingMask
An integer bit mask that determines how the receiver resizes itself when its bounds change.

@property(nonatomic) UIViewAutoresizing autoresizingMask

Discussion
This mask can be specified by combining, using the C bitwise OR operator, any of the options described in
UIViewAutoresizing (page 59).

Where more than one option along an axis is set, the default behavior is to distribute the size difference as
evenly as possible among the flexible portions. For example, if frame (page 19) and
autoresizingMask (page 15) are set and the superview’s width has increased by 10.0 units, the receiver’s
frame and right margin are each widened by 5.0 units. Subclasses of UIView can override the
layoutSubviews (page 50) method to explicitly adjust the position of subviews.

If the autoresizing mask is equal to UIViewAutoresizingNone (page 60), then the receiver doesn’t resize
at all when its bounds changes. The default value is UIViewAutoresizingNone.

Availability
Available in iOS 2.0 and later.

See Also
 @property autoresizesSubviews (page 14)

Related Sample Code
BonjourWeb
WiTap

Declared In
UIView.h

backgroundColor
The receiver’s background color.

@property(nonatomic, copy) UIColor *backgroundColor

Discussion
Changes to this property can be animated. The default is nil.

Availability
Available in iOS 2.0 and later.

See Also
 @property alpha (page 14)
 @property opaque (page 22)

Related Sample Code
aurioTouch

Declared In
UIView.h

Properties 15
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

bounds
The receiver’s bounds rectangle, which expresses its location and size in its own coordinate system.

@property(nonatomic) CGRect bounds

Discussion
The bounds rectangle determines the origin and scale in the view’s coordinate system within its frame
rectangle and is measured in points. Setting this property changes the value of the frame (page 19) property
accordingly.

Changing the frame rectangle automatically redisplays the receiver without invoking the drawRect: (page
44) method. If you want the drawRect: (page 44) method invoked when the frame rectangle changes, set
the contentMode (page 18) property to UIViewContentModeRedraw (page 58).

Changes to this property can be animated. Use the beginAnimations:context: (page 27) class method
to begin and the commitAnimations (page 28) class method to end an animation block.

The default bounds origin is (0,0) and the size is the same as the frame rectangle’s size.

Availability
Available in iOS 2.0 and later.

See Also
 @property frame (page 19)
 @property center (page 16)
 @property transform (page 24)

Related Sample Code
SpeakHere
WiTap

Declared In
UIView.h

center
The center of the frame.

@property(nonatomic) CGPoint center

Discussion
The center is specified within the coordinate system of its superview and is measured in points. Setting this
property changes the values of the frame (page 19) properties accordingly.

Changing the frame rectangle automatically redisplays the receiver without invoking the drawRect: (page
44) method. If you want the drawRect: (page 44) method invoked when the frame rectangle changes, set
the contentMode (page 18) property to UIViewContentModeRedraw (page 58).

Changes to this property can be animated. Use the beginAnimations:context: (page 27) class method
to begin and the commitAnimations (page 28) class method to end an animation block.

Availability
Available in iOS 2.0 and later.

16 Properties
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

See Also
 @property frame (page 19)
 @property bounds (page 16)
 @property transform (page 24)

Related Sample Code
GKRocket
GKTank
SimpleGestureRecognizers

Declared In
UIView.h

clearsContextBeforeDrawing
A Boolean value that determines whether the receiver’s bounds should be automatically cleared before
drawing.

@property(nonatomic) BOOL clearsContextBeforeDrawing

Discussion
The default value of this property is YES. When set to YES, the current graphics context buffer in the
drawRect: (page 44) method is automatically cleared to transparent black before drawRect: (page 44)
is invoked. If the view’s opaque (page 22) property is also set to YES, the backgroundColor (page 15)
property of the view must not be nil or drawing errors may occur.

If the value of this property is NO, it is the view’s responsibility to completely fill its content. Drawing
performance can be improved if this property is NO—for example, when scrolling.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

clipsToBounds
A Boolean value that determines whether subviews can be drawn outside the bounds of the receiver.

@property(nonatomic) BOOL clipsToBounds

Discussion
YES if subviews should be clipped to the bounds of the receiver; otherwise, NO. The default value is NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

Properties 17
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

contentMode
A flag used to determine how a view lays out its content when its bounds rectangle changes.

@property(nonatomic) UIViewContentMode contentMode

Discussion
Set to a value described in UIViewContentMode (page 57). The default value is
UIViewContentModeScaleToFill (page 58).

Availability
Available in iOS 2.0 and later.

Related Sample Code
SimpleGestureRecognizers

Declared In
UIView.h

contentScaleFactor
The scale factor applied to the view.

@property(nonatomic) CGFloat contentScaleFactor

Discussion
The scale factor determines how content in the view is mapped from the logical coordinate space (measured
in points) to the device coordinate space (measured in pixels). This value is typically either 1.0 or 2.0. Higher
scale factors indicate that each point in the view is represented by more than one pixel in the underlying
layer. For example, if the scale factor is 2.0 and the view frame size is 50 x 50 points, the size of the bitmap
used to present that content is 100 x 100 pixels.

For views that implement a custom drawRect: (page 44) method and are associated with a window, the
default value for this property is the scale factor associated with the screen currently displaying the view.
For system views and views that are backed by a CAEAGLLayer object for, the value of this property may
be 1.0 even on high resolution screens.

In general, you should not need to modify the value in this property. However, if your application draws
using OpenGL ES, you may want to change the scale factor to support higher-resolution drawing on screens
that support it. For more information on how to adjust your OpenGL ES rendering environment, see
“Supporting High-Resolution Screens” in iOS Application Programming Guide.

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

contentStretch
The rectangle that defines the stretchable and nonstretchable regions of a view.

18 Properties
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

@property(nonatomic) CGRect contentStretch

Discussion
You use this property to control how a view’s content is stretched to fill its bounds when the view is resized.
Content stretching is often used to animate the resizing of a view. For example, buttons and other controls
use stretching to maintain crisp borders while allowing the middle portions of the control to stretch and fill
the available space. This technique applies the stretching to the view’s underlying layer and alleviates the
need to use stretchable UIImage objects inside image views.

The values you specify for this rectangle must be normalized to the range 0.0 to 1.0. These values are then
scaled to the bounds of the view to obtain the appropriate pixel values. The rectangle’s origin point represents
the point at which to begin stretching the content. The rectangle’s size values indicate the width and height
of the stretchable portion. The default value for this rectangle has an origin of (0.0, 0.0) and a size of (1.0,
1.0). This reflects a rectangle whose stretchable portion encompasses the entire view. In other words, the
stretchable portion starts at the top-left corner of the view and ends at the bottom-right corner. Specifying
a size value of 0.0 stretches the single pixel at the current origin point. For example, to stretch a view’s middle
pixel only, you could specify an origin of (0.5, 0.5) and a size of (0.0, 0.0).

You can change this property from the default to define a different stretchable area for your content. For
example, suppose you have an image view that is 21 pixels wide by 16 pixels high. To make the view stretch
horizontally about the middle pixel of its image, you would set the rectangle’s origin point to (10/21, 0.0)
and its size to (1/21, 1.0).

Availability
Available in iOS 3.0 and later.

Declared In
UIView.h

exclusiveTouch
A Boolean value indicating whether the receiver handles touch events exclusively.

@property(nonatomic, getter=isExclusiveTouch) BOOL exclusiveTouch

Discussion
If YES, the receiver blocks other views in the same window from receiving touch events; otherwise, it does
not. The default value is NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property multipleTouchEnabled (page 22)

Declared In
UIView.h

frame
The receiver’s frame rectangle.

Properties 19
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

@property(nonatomic) CGRect frame

Discussion
This rectangle is measured in points. Setting the frame rectangle repositions and resizes the receiver within
the coordinate system of its superview. The origin of the frame is in superview coordinates. Setting this
property changes the values of the center (page 16) and bounds (page 16) properties accordingly.

Changing the frame rectangle automatically redisplays the receiver without invoking the drawRect: (page
44) method. If you want the drawRect: (page 44) method invoked when the frame rectangle changes, set
the contentMode (page 18) property to UIViewContentModeRedraw (page 58).

Changes to this property can be animated. Use the beginAnimations:context: (page 27) class method
to begin and the commitAnimations (page 28) class method to end an animation block. If the
transform (page 24) property is also set, use the bounds (page 16) and center (page 16) properties
instead; otherwise, animating changes to the frame property does not correctly reflect the actual location
of the view.

Warning: If the transform (page 24) property is not the identity transform, the value of this property
is undefined and therefore should be ignored.

Availability
Available in iOS 2.0 and later.

See Also
 @property bounds (page 16)
 @property center (page 16)
 @property transform (page 24)

Related Sample Code
GKTank
KeyboardAccessory
ScrollViewSuite
SpeakHere
WiTap

Declared In
UIView.h

gestureRecognizers
The gesture-recognizer objects currently attached to the view.

@property(nonatomic,copy) NSArray *gestureRecognizers

Discussion
Each of these objects is an instance of a subclass of the abstract base class UIGestureRecognizer. If there
are no gesture recognizers attached, the value of this property is an empty array.

Availability
Available in iOS 3.2 and later.

20 Properties
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Declared In
UIView.h

hidden
A Boolean value that determines whether the receiver is hidden.

@property(nonatomic, getter=isHidden) BOOL hidden

Discussion
YES if the receiver should be hidden; otherwise, NO. The default value is NO.

A hidden view disappears from its window and does not receive input events. It remains in its superview’s
list of subviews, however, and participates in autoresizing as usual. Hiding a view with subviews has the
effect of hiding those subviews and any view descendants they might have. This effect is implicit and does
not alter the hidden state of the receiver’s descendants.

Hiding the view that is the window’s current first responder causes the view’s next valid key view to become
the new first responder.

The value of this property reflects the state of the receiver only and does not account for the state of the
receiver’s ancestors in the view hierarchy. Thus this property can be NO if the receiver is hidden because an
ancestor is hidden.

Availability
Available in iOS 2.0 and later.

Related Sample Code
CryptoExercise
GKTank

Declared In
UIView.h

layer
The view’s Core Animation layer used for rendering. (read-only)

@property(nonatomic, readonly, retain) CALayer *layer

Discussion
This property is never nil. The view is the layer’s delegate.

Warning: Since the view is the layer’s delegate, you should never set the view as a delegate of another
CALayer object. Additionally, you should never change the delegate of this layer.

Availability
Available in iOS 2.0 and later.

See Also
+ layerClass (page 29)

Properties 21
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Related Sample Code
aurioTouch
GLSprite
ScrollViewSuite
SpeakHere

Declared In
UIView.h

multipleTouchEnabled
A Boolean value indicating whether the receiver handles multi-touch events.

@property(nonatomic, getter=isMultipleTouchEnabled) BOOL multipleTouchEnabled

Discussion
If YES, the receiver handles multi-touch events; otherwise, it does not. If NO, the receiver is sent only the first
touch event in a multi-touch sequence. Other views in the same window can still receive touch events when
this property is NO. Set this property and the exclusiveTouch (page 19) property to YES if this view should
handle multi-touch events exclusively—for example, when tracking a sequence of multi-touch events. The
default value is NO.

Availability
Available in iOS 2.0 and later.

See Also
 @property exclusiveTouch (page 19)

Related Sample Code
aurioTouch

Declared In
UIView.h

opaque
A Boolean value that determines whether the receiver is opaque.

@property(nonatomic, getter=isOpaque) BOOL opaque

Discussion
YES if it is opaque; otherwise, NO. If opaque, the drawing operation assumes that the view fills its bounds
and can draw more efficiently. The results are unpredictable if opaque and the view doesn’t fill its bounds.
Set this property to NO if the view is fully or partially transparent. The default value is YES.

Availability
Available in iOS 2.0 and later.

See Also
 @property backgroundColor (page 15)
 @property alpha (page 14)

22 Properties
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Declared In
UIView.h

subviews
The receiver’s immediate subviews. (read-only)

@property(nonatomic, readonly, copy) NSArray *subviews

Availability
Available in iOS 2.0 and later.

See Also
 @property superview (page 23)
– removeFromSuperview (page 51)

Related Sample Code
ScrollViewSuite

Declared In
UIView.h

superview
The receiver’s superview, or nil if it has none. (read-only)

@property(nonatomic, readonly) UIView *superview

Availability
Available in iOS 2.0 and later.

See Also
 @property subviews (page 23)
– removeFromSuperview (page 51)

Related Sample Code
WiTap

Declared In
UIView.h

tag
The receiver’s tag, an integer that you can use to identify view objects in your application.

@property(nonatomic) NSInteger tag

Discussion
The default value is 0. Subclasses can set this to individual tags.

Availability
Available in iOS 2.0 and later.

Properties 23
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

See Also
– viewWithTag: (page 55)

Related Sample Code
WiTap

Declared In
UIView.h

transform
Specifies the transform applied to the receiver, relative to the center of its bounds.

@property(nonatomic) CGAffineTransform transform

Discussion
The origin of the transform is the value of the center (page 16) property, or the layer’s anchorPoint
property if it was changed. (Use the layer (page 21) property to get the underlying Core Animation layer
object.) The default value is CGAffineTransformIdentity.

Changes to this property can be animated. Use the beginAnimations:context: (page 27) class method
to begin and the commitAnimations (page 28) class method to end an animation block. The default is
whatever the center value is (or anchor point if changed)

Warning: If this property is not the identity transform, the value of the frame (page 19) property is
undefined and therefore should be ignored.

Availability
Available in iOS 2.0 and later.

See Also
 @property frame (page 19)
 @property bounds (page 16)
 @property center (page 16)

Related Sample Code
aurioTouch
GKTank
MoviePlayer
SimpleGestureRecognizers

Declared In
UIView.h

userInteractionEnabled
A Boolean value that determines whether user events are ignored and removed from the event queue.

24 Properties
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

@property(nonatomic, getter=isUserInteractionEnabled) BOOL userInteractionEnabled

Discussion
If NO, user events—such as touch and keyboard—are ignored and removed from the event queue. The default
value is YES.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

window
The receiver’s window object, or nil if it has none. (read-only)

@property(nonatomic, readonly) UIWindow *window

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

Class Methods

animateWithDuration:animations:
Animate changes to one or more views using the specified duration.

+ (void)animateWithDuration:(NSTimeInterval)duration animations:(void
(^)(void))animations

Parameters
duration

The total duration of the animations, measured in seconds. If you specify a negative value or 0, the
changes are made without animating them.

animations
A block object containing the changes to commit to the views. This is where you programmatically
change any animatable properties of the views in your view hierarchy. This block takes no parameters
and has no return value. This parameter must not be NULL.

Discussion
This method performs the specified animations immediately using the default animation options. The default
options are UIViewAnimationOptionCurveEaseInOut (page 63) and
UIViewAnimationOptionTransitionNone (page 63).

Availability
Available in iOS 4.0 and later.

Class Methods 25
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Declared In
UIView.h

animateWithDuration:animations:completion:
Animate changes to one or more views using the specified duration and completion handler.

+ (void)animateWithDuration:(NSTimeInterval)duration animations:(void
(^)(void))animations completion:(void (^)(BOOL finished))completion

Parameters
duration

The total duration of the animations, measured in seconds. If you specify a negative value or 0, the
changes are made without animating them.

animations
A block object containing the changes to commit to the views. This is where you programmatically
change any animatable properties of the views in your view hierarchy. This block takes no parameters
and has no return value. This parameter must not be NULL.

completion
A block object to be executed when the animation sequence ends. This block has no return value
and takes a single Boolean argument that indicates whether or not the animations actually finished
before the completion handler was called. If the duration of the animation is 0, this block is performed
at the beginning of the next run loop cycle. This parameter may be NULL.

Discussion
This method performs the specified animations immediately using the default animation options. The default
options are UIViewAnimationOptionCurveEaseInOut (page 63) and
UIViewAnimationOptionTransitionNone (page 63).

For example, if you want to fade a view until it is totally transparent and then remove it from your view
hierarchy, you could use code similar to the following:

[UIView animateWithDuration:0.2
 animations:^{ view.alpha = 0.0; }
 completion:^(BOOL finished){ [view removeFromSuperview]; }]

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

animateWithDuration:delay:options:animations:completion:
Animate changes to one or more views using the specified duration, delay, options, and completion handler.

+ (void)animateWithDuration:(NSTimeInterval)duration delay:(NSTimeInterval)delay
options:(UIViewAnimationOptions)options animations:(void (^)(void))animations
completion:(void (^)(BOOL finished))completion

26 Class Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Parameters
duration

The total duration of the animations, measured in seconds. If you specify a negative value or 0, the
changes are made without animating them.

delay
The amount of time (measured in seconds) to wait before beginning the animations. Specify a value
of 0 to begin the animations immediately.

options
A mask of options indicating how you want to perform the animations. For a list of valid constants,
see UIViewAnimationOptions (page 61).

animations
A block object containing the changes to commit to the views. This is where you programmatically
change any animatable properties of the views in your view hierarchy. This block takes no parameters
and has no return value. This parameter must not be NULL.

completion
A block object to be executed when the animation sequence ends. This block has no return value
and takes a single Boolean argument that indicates whether or not the animations actually finished
before the completion handler was called. If the duration of the animation is 0, this block is performed
at the beginning of the next run loop cycle. This parameter may be NULL.

Discussion
This method initiates a set of animations to perform on the view. The block object in the animations parameter
contains the code for animating the properties of one or more views.

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

areAnimationsEnabled
Returns a Boolean value indicating whether animations are enabled.

+ (BOOL)areAnimationsEnabled

Return Value
YES if animations are enabled; otherwise, NO.

Availability
Available in iOS 2.0 and later.

See Also
+ setAnimationsEnabled: (page 35)

Declared In
UIView.h

beginAnimations:context:
Begins an animation block.

Class Methods 27
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

+ (void)beginAnimations:(NSString *)animationID context:(void *)context

Parameters
animationID

Application-supplied identifier for the animations within a block that is passed to the animation
delegate messages—the selectors set using the setAnimationWillStartSelector: (page 37)
and setAnimationDidStopSelector: (page 32) methods.

context
Additional application-supplied information that is passed to the animation delegate messages—the
selectors set using the setAnimationWillStartSelector: (page 37) and
setAnimationDidStopSelector: (page 32) methods.

Discussion
The visual changes caused by setting some property values can be animated in an animation block. Animation
blocks can be nested. The setAnimation... class methods do nothing if they are not invoked in an animation
block. Use the beginAnimations:context: (page 27) to begin and the commitAnimations (page 28)
class method to end an animation block.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ commitAnimations (page 28)
+ setAnimationWillStartSelector: (page 37)
+ setAnimationDidStopSelector: (page 32)
+ setAnimationDelegate: (page 31)

Related Sample Code
AddMusic
KeyboardAccessory
ScrollViewSuite
SimpleGestureRecognizers
WiTap

Declared In
UIView.h

commitAnimations
Ends an animation block and starts animations when this is the outer animation block.

+ (void)commitAnimations

Discussion
If the current animation block is the outer animation block, starts animations when the application returns
to the run loop. Animations are run in a separate thread so the application is not blocked. In this way, multiple
animations can be piled on top of one another. See setAnimationBeginsFromCurrentState: (page 29)
for how to start animations while others are in progress.

28 Class Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 27)

Related Sample Code
AddMusic
KeyboardAccessory
ScrollViewSuite
SimpleGestureRecognizers
WiTap

Declared In
UIView.h

layerClass
Returns the class used to create the layer for instances of this class.

+ (Class)layerClass

Return Value
The class used to create the view’s layer.

Discussion
Overridden by subclasses to specify a custom class used for rendering. Invoked when creating the underlying
layer for a view. The default value is the CALayer class object.

Availability
Available in iOS 2.0 and later.

See Also
 @property layer (page 21)

Related Sample Code
aurioTouch
GLSprite
SpeakHere

Declared In
UIView.h

setAnimationBeginsFromCurrentState:
Sets whether the animation should begin playing from the current state.

+ (void)setAnimationBeginsFromCurrentState:(BOOL)fromCurrentState

Class Methods 29
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Parameters
fromCurrentState

YES if animations should begin from their currently visible state; otherwise, NO.

Discussion
If set to YES when an animation is in flight, the current view position of the in-flight animation is used as the
starting state for the new animation. If set to NO, the in-flight animation ends before the new animation
begins using the last view position as the starting state. This method does nothing if an animation is not in
flight or invoked outside of an animation block. Use the beginAnimations:context: (page 27) class
method to start and the commitAnimations (page 28) class method to end an animation block. The default
value is NO.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 27)
+ commitAnimations (page 28)
+ setAnimationStartDate: (page 35)
+ setAnimationDuration: (page 33)
+ setAnimationDelay: (page 31)
+ setAnimationCurve: (page 30)
+ setAnimationRepeatCount: (page 34)
+ setAnimationRepeatAutoreverses: (page 34)

Declared In
UIView.h

setAnimationCurve:
Sets the curve of animating property changes within an animation block.

+ (void)setAnimationCurve:(UIViewAnimationCurve)curve

Discussion
The animation curve is the relative speed of the animation over its course. This method does nothing if
invoked outside of an animation block. Use the beginAnimations:context: (page 27) class method to
start and the commitAnimations (page 28) class method to end an animation block. The default value of
the animation curve is UIViewAnimationCurveEaseInOut (page 57).

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 27)
+ commitAnimations (page 28)

30 Class Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

+ setAnimationStartDate: (page 35)
+ setAnimationDuration: (page 33)
+ setAnimationDelay: (page 31)
+ setAnimationRepeatCount: (page 34)
+ setAnimationRepeatAutoreverses: (page 34)
+ setAnimationBeginsFromCurrentState: (page 29)

Declared In
UIView.h

setAnimationDelay:
Sets the delay (in seconds) of animating property changes within an animation block.

+ (void)setAnimationDelay:(NSTimeInterval)delay

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 27) class method to start and the commitAnimations (page 28)
class method to end an animation block. The default value of the animation delay is 0.0.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 27)
+ commitAnimations (page 28)
+ setAnimationStartDate: (page 35)
+ setAnimationDuration: (page 33)
+ setAnimationCurve: (page 30)
+ setAnimationRepeatCount: (page 34)
+ setAnimationRepeatAutoreverses: (page 34)
+ setAnimationBeginsFromCurrentState: (page 29)

Declared In
UIView.h

setAnimationDelegate:
Sets the delegate for animation messages.

+ (void)setAnimationDelegate:(id)delegate

Class Methods 31
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Parameters
delegate

The object that receives the delegate messages set using the
setAnimationWillStartSelector: (page 37) and setAnimationDidStopSelector: (page
32) methods.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 27) class method to start and the commitAnimations (page 28)
class method to end an animation block. The default value is nil.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 27)
+ commitAnimations (page 28)
+ setAnimationWillStartSelector: (page 37)
+ setAnimationDidStopSelector: (page 32)

Declared In
UIView.h

setAnimationDidStopSelector:
Sets the message to send to the animation delegate when animation stops.

+ (void)setAnimationDidStopSelector:(SEL)selector

Parameters
selector

The message sent to the animation delegate after animations end. The default value is NULL. The
selector should be of the form: - (void)animationDidStop:(NSString *)animationID
finished:(NSNumber *)finished context:(void *)context. Your method must take the
following arguments:

animationID
An NSString containing an optional application-supplied identifier. This is the identifier that is passed
to the beginAnimations:context: (page 27) method. This argument can be nil.
finished
An NSNumber object containing a Boolean value. The value is YES if the animation ran to completion
before it stopped or NO if it did not.
context
An optional application-supplied context. This is the context data passed to the
beginAnimations:context: (page 27) method. This argument can be nil.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 27) class method to start and the commitAnimations (page 28)
class method to end an animation block. The default value is NULL.

32 Class Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 27)
+ commitAnimations (page 28)
+ setAnimationDelegate: (page 31)
+ setAnimationWillStartSelector: (page 37)

Declared In
UIView.h

setAnimationDuration:
Sets the duration (in seconds) of animating property changes within an animation block.

+ (void)setAnimationDuration:(NSTimeInterval)duration

Parameters
duration

The period over which the animation occurs.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 27) class method to start and the commitAnimations (page 28)
class method to end an animation block. The default value is 0.2.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 27)
+ commitAnimations (page 28)
+ setAnimationStartDate: (page 35)
+ setAnimationDelay: (page 31)
+ setAnimationCurve: (page 30)
+ setAnimationRepeatCount: (page 34)
+ setAnimationRepeatAutoreverses: (page 34)
+ setAnimationBeginsFromCurrentState: (page 29)

Related Sample Code
AddMusic
KeyboardAccessory
ScrollViewSuite
SimpleGestureRecognizers

Class Methods 33
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

WiTap

Declared In
UIView.h

setAnimationRepeatAutoreverses:
Sets whether the animation of property changes within an animation block automatically reverses repeatedly.

+ (void)setAnimationRepeatAutoreverses:(BOOL)repeatAutoreverses

Parameters
repeatAutoreverses

If YES if the animation automatically reverses repeatedly; if NO, it does not.

Discussion
Autoreverses is when the animation plays backward after playing forward and similarly plays forward after
playing backward. Use the setAnimationRepeatCount: (page 34) class method to specify the number
of times the animation autoreverses. This method does nothing if the repeat count is zero or this method is
invoked outside of an animation block. Use the beginAnimations:context: (page 27) class method to
start and the commitAnimations (page 28) class method to end an animation block. The default value is
NO.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 27)
+ commitAnimations (page 28)
+ setAnimationStartDate: (page 35)
+ setAnimationDuration: (page 33)
+ setAnimationDelay: (page 31)
+ setAnimationCurve: (page 30)
+ setAnimationRepeatCount: (page 34)
+ setAnimationBeginsFromCurrentState: (page 29)

Declared In
UIView.h

setAnimationRepeatCount:
Sets the number of times animations within an animation block repeat.

+ (void)setAnimationRepeatCount:(float)repeatCount

Parameters
repeatCount

The number of times animations repeat. This value can be a fraction.

34 Class Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 27) class method to start and the commitAnimations (page 28)
class method to end an animation block. By default, animations don’t repeat.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 27)
+ commitAnimations (page 28)
+ setAnimationStartDate: (page 35)
+ setAnimationDuration: (page 33)
+ setAnimationDelay: (page 31)
+ setAnimationCurve: (page 30)
+ setAnimationRepeatAutoreverses: (page 34)
+ setAnimationBeginsFromCurrentState: (page 29)

Declared In
UIView.h

setAnimationsEnabled:
Sets whether animations are enabled.

+ (void)setAnimationsEnabled:(BOOL)enabled

Parameters
enabled

If YES, animations are enabled; if NO, they are not.

Discussion
Animation attribute changes are ignored when animations are disabled. By default, animations are enabled.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ areAnimationsEnabled (page 27)

Declared In
UIView.h

setAnimationStartDate:
Sets the start time of animating property changes within an animation block.

Class Methods 35
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

+ (void)setAnimationStartDate:(NSDate *)startTime

Parameters
startTime

The time to begin the animations.

Discussion
Use the beginAnimations:context: (page 27) class method to start and the commitAnimations (page
28) class method to end an animation block.

The default start time is the value returned by the CFAbsoluteTimeGetCurrent function.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 27)
+ commitAnimations (page 28)
+ setAnimationDuration: (page 33)
+ setAnimationDelay: (page 31)
+ setAnimationCurve: (page 30)
+ setAnimationRepeatCount: (page 34)
+ setAnimationRepeatAutoreverses: (page 34)
+ setAnimationBeginsFromCurrentState: (page 29)

Declared In
UIView.h

setAnimationTransition:forView:cache:
Sets a transition to apply to a view during an animation block.

+ (void)setAnimationTransition:(UIViewAnimationTransition)transition forView:(UIView
 *)view cache:(BOOL)cache

Parameters
transition

A transition to apply to view. Possible values are described in UIViewAnimationTransition (page 61).

view
The view to apply the transition to.

cache
If YES, the before and after images of view are rendered once and used to create the frames in the
animation. Caching can improve performance but if you set this parameter to YES, you must not
update the view or its subviews during the transition. Updating the view and its subviews may interfere
with the caching behaviors and cause the view contents to be rendered incorrectly (or in the wrong
location) during the animation. You must wait until the transition ends to update the view.

If NO, the view and its contents must be updated for each frame of the transition animation, which
may noticeably affect the frame rate.

36 Class Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Discussion
If you want to change the appearance of a view during a transition—for example, flip from one view to
another—then use a container view, an instance of UIView, as follows:

1. Begin an animation block.

2. Set the transition on the container view.

3. Remove the subview from the container view.

4. Add the new subview to the container view.

5. Commit the animation block.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

setAnimationWillStartSelector:
Sets the message to send to the animation delegate when animation starts.

+ (void)setAnimationWillStartSelector:(SEL)selector

Parameters
selector

The message sent to the animation delegate before animations start. The default value is NULL. The
selector should have the same arguments as the beginAnimations:context: (page 27) method,
an optional application-supplied identifier and context. Both of these arguments can be nil.

Discussion
This method does nothing if invoked outside of an animation block. Use the
beginAnimations:context: (page 27) class method to start and the commitAnimations (page 28)
class method to end an animation block.

Use of this method is discouraged in iOS 4.0 and later. You should use the block-based animation methods
instead.

Availability
Available in iOS 2.0 and later.

See Also
+ beginAnimations:context: (page 27)
+ commitAnimations (page 28)
+ setAnimationDelegate: (page 31)
+ setAnimationDidStopSelector: (page 32)

Declared In
UIView.h

Class Methods 37
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

transitionFromView:toView:duration:options:completion:
Creates a transition animation between the specified views using the given parameters.

+ (void)transitionFromView:(UIView *)fromView toView:(UIView *)toView
duration:(NSTimeInterval)duration options:(UIViewAnimationOptions)options
completion:(void (^)(BOOL finished))completion

Parameters
fromView

The starting view for the transition. By default, this view is removed from its parent view as part of
the transition.

toView
The ending view for the transition. By default, this view is added to the parent of fromView as part
of the transition.

duration
The duration of the transition animation, measured in seconds. If you specify a negative value or 0,
the transition is made without animations.

options
A mask of options indicating how you want to perform the animations. For a list of valid constants,
see UIViewAnimationOptions (page 61).

completion
A block object to be executed when the animation sequence ends. This block has no return value
and takes a single Boolean argument that indicates whether or not the animations actually finished
before the completion handler was called. If the duration of the animation is 0, this block is performed
at the beginning of the next run loop cycle. This parameter may be NULL.

Discussion
This method provides a simple way to transition from the view in the fromView parameter to the view in
the toView parameter. By default, the view in fromView is replaced in the view hierarchy by the view in
toView. If both views are already part of your view hierarchy, you can include the
UIViewAnimationOptionShowHideTransitionViews (page 63) option in the options parameter to
simply hide or show them.

The view transition starts immediately unless another animation is already in-flight, in which case it starts
immediately after the current animation finishes.

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

transitionWithView:duration:options:animations:completion:
Creates a transition animation for the specified container view.

+ (void)transitionWithView:(UIView *)view duration:(NSTimeInterval)duration
options:(UIViewAnimationOptions)options animations:(void (^)(void))animations
completion:(void (^)(BOOL finished))completion

38 Class Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Parameters
view

The container view that contains the views involved in the transition.

duration
The duration of the transition animation, measured in seconds. If you specify a negative value or 0,
the transition is made without animations.

options
A mask of options indicating how you want to perform the animations. For a list of valid constants,
see UIViewAnimationOptions (page 61).

animations
A block object that adds or removes the views involved in the transition. This block takes no parameters
and has no return value. This parameter must not be NULL.

completion
A block object to be executed when the animation sequence ends. This block has no return value
and takes a single Boolean argument that indicates whether or not the animations actually finished
before the completion handler was called. If the duration of the animation is 0, this block is performed
at the beginning of the next run loop cycle. This parameter may be NULL.

Discussion
You can use this method to create your own view transition animations. The block you specify in the
animations parameter should add or remove the relevant views from your view hierarchy. (Alternatively,
if you do not want to add and remove views, you can simply hide or show them.) Because you specify a
custom block, you can add or remove any number of views as part of the transitions. Of course, all views in
the animation block share the animation parameters passed to this method.

For example, to implement a flip transition between two views in the same container view, you could use
code similar to the following:

[UIView transitionWithView:containerView
 duration:0.2
 options:UIViewAnimationOptionTransitionFlipFromLeft
 animations:^{ [fromView removeFromSuperview]; [containerView
addSubview:toView] }
 completion:NULL];

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

Instance Methods

addGestureRecognizer:
Attaches a gesture recognizer to the receiving view.

- (void)addGestureRecognizer:(UIGestureRecognizer *)gestureRecognizer

Instance Methods 39
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Parameters
gestureRecognizer

An instance of a subclass of UIGestureRecognizer. This parameter must not be nil.

Discussion
Attaching a gesture recognizer to a view defines the scope of the represented gesture, causing it to receive
touches hit-tested to that view and all of its subviews. The view retains the gesture recognizer.

Availability
Available in iOS 3.2 and later.

See Also
– removeGestureRecognizer: (page 51)
 @property gestureRecognizers (page 20)

Related Sample Code
ScrollViewSuite

Declared In
UIView.h

addSubview:
Adds a view to the receiver’s subviews so it’s displayed above its siblings.

- (void)addSubview:(UIView *)view

Discussion
This method also sets the receiver as the next responder of view. The receiver retains view. If you use
removeFromSuperview (page 51) to remove view from the view hierarchy, view is released. If you want
to keep using view after removing it from the view hierarchy (if, for example, you are swapping through a
number of views), you must retain it before invoking removeFromSuperview.

Views can have only one superview. If the superview of view is not nil and is not the same as the current
view, this method removes it from the previous superview before making it a subview of the current view.

Availability
Available in iOS 2.0 and later.

See Also
– insertSubview:atIndex: (page 48)
– insertSubview:aboveSubview: (page 47)
– insertSubview:belowSubview: (page 48)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 45)

Related Sample Code
MoviePlayer
ScrollViewSuite
WiTap

Declared In
UIView.h

40 Instance Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

bringSubviewToFront:
Moves the specified subview to the front of its siblings.

- (void)bringSubviewToFront:(UIView *)view

Parameters
view

The subview to move to the front.

Availability
Available in iOS 2.0 and later.

See Also
– sendSubviewToBack: (page 52)

Related Sample Code
ScrollViewSuite

Declared In
UIView.h

convertPoint:fromView:
Converts a point from the coordinate system of a given view to that of the receiver.

- (CGPoint)convertPoint:(CGPoint)point fromView:(UIView *)view

Parameters
point

A point specifying a location in the coordinate system of view.

view
The view with point in its coordinate system. If view is nil, this method instead converts from
window base coordinates. Otherwise, both view and the receiver must belong to the same UIWindow
object.

Return Value
The point converted to the coordinate system of the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– convertPoint:toView: (page 41)
– convertRect:toView: (page 43)
– convertRect:fromView: (page 42)

Declared In
UIView.h

convertPoint:toView:
Converts a point from the receiver’s coordinate system to that of a given view.

Instance Methods 41
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

- (CGPoint)convertPoint:(CGPoint)point toView:(UIView *)view

Parameters
point

A point specifying a location in the coordinate system of the receiver.

view
The view into whose coordinate system point is to be converted. If view is nil, this method instead
converts to window base coordinates. Otherwise, both view and the receiver must belong to the
same UIWindow object.

Return Value
The point converted to the coordinate system of view.

Availability
Available in iOS 2.0 and later.

See Also
– convertPoint:fromView: (page 41)
– convertRect:toView: (page 43)
– convertRect:fromView: (page 42)

Related Sample Code
ScrollViewSuite

Declared In
UIView.h

convertRect:fromView:
Converts a rectangle from the coordinate system of another view to that of the receiver.

- (CGRect)convertRect:(CGRect)rect fromView:(UIView *)view

Parameters
rect

The rectangle in view's coordinate system.

view
The view with rect in its coordinate system. If view is nil, this method instead converts from window
base coordinates. Otherwise, both view and the receiver must belong to the same UIWindow object.

Return Value
The converted rectangle.

Availability
Available in iOS 2.0 and later.

See Also
– convertPoint:toView: (page 41)
– convertPoint:fromView: (page 41)
– convertRect:toView: (page 43)

Declared In
UIView.h

42 Instance Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

convertRect:toView:
Converts a rectangle from the receiver’s coordinate system to that of another view.

- (CGRect)convertRect:(CGRect)rect toView:(UIView *)view

Parameters
rect

A rectangle in the receiver's coordinate system.

view
The view that is the target of the conversion operation. If view is nil, this method instead converts
to window base coordinates. Otherwise, both view and the receiver must belong to the same
UIWindow object.

Return Value
The converted rectangle.

Availability
Available in iOS 2.0 and later.

See Also
– convertPoint:toView: (page 41)
– convertPoint:fromView: (page 41)
– convertRect:fromView: (page 42)

Declared In
UIView.h

didAddSubview:
Tells the view when subviews are added.

- (void)didAddSubview:(UIView *)subview

Parameters
subview

The view that was added as a subview.

Discussion
Overridden by subclasses to perform additional actions when subviews are added to the receiver. This method
is invoked by addSubview: (page 40).

Availability
Available in iOS 2.0 and later.

See Also
– willRemoveSubview: (page 56)
– addSubview: (page 40)

Declared In
UIView.h

Instance Methods 43
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

didMoveToSuperview
Informs the receiver that its superview has changed (possibly to nil).

- (void)didMoveToSuperview

Discussion
The default implementation does nothing; subclasses can override this method to perform whatever actions
are necessary.

Availability
Available in iOS 2.0 and later.

See Also
– willMoveToSuperview: (page 55)

Declared In
UIView.h

didMoveToWindow
Informs the receiver that it has been added to a window.

- (void)didMoveToWindow

Discussion
The default implementation does nothing; subclasses can override this method to perform whatever actions
are necessary.

The window (page 25) property may be nil when this method is invoked, indicating that the receiver does
not currently reside in any window. This occurs when the receiver has just been removed from its superview
or when the receiver has just been added to a superview that is not attached to a window. Overrides of this
method may choose to ignore such cases if they are not of interest.

Availability
Available in iOS 2.0 and later.

See Also
– willMoveToWindow: (page 56)

Declared In
UIView.h

drawRect:
Draws the receiver’s image within the passed-in rectangle.

- (void)drawRect:(CGRect)rect

Parameters
rect

A rectangle defining the area to restrict drawing to.

44 Instance Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Discussion
Subclasses override this method if they actually draw their views. Subclasses need not override this method
if the subclass is a container for other views. The default implementation does nothing. If your custom view
is a direct UIView subclass, you do not need to call the implementation of super. Note that it is the
responsibility of each subclass to totally fill rect if its superclass’s implementation actually draws and
opaque (page 22) is YES.

When this method is invoked, the receiver can assume the coordinate transformations of its frame and bounds
rectangles have been applied; all it needs to do is invoke rendering client functions. Use the
UIGraphicsGetCurrentContext function to get the current graphics context for drawing that also has
the coordinate origin in the upper-left corner. Do not retain the graphics context since it can change between
calls to the drawRect: method.

Availability
Available in iOS 2.0 and later.

See Also
– setNeedsDisplay (page 52)
– setNeedsDisplayInRect: (page 53)
 @property contentMode (page 18)

Declared In
UIView.h

endEditing:
Causes the view (or one of its embedded text fields) to resign the first responder status.

- (BOOL)endEditing:(BOOL)force

Parameters
force

If YES, force the first responder to resign, regardless of whether it wants to do so.

Return Value
YES if the view resigned the first responder status or NO if it did not.

Discussion
This method looks at the view and its subview hierarchy for a text field that is currently the first responder.
If it finds one, it asks that text field to resign as first responder. If the force parameter is set to YES, the text
field is never even asked; it is forced to resign.

Availability
Available in iOS 2.0 and later.

Declared In
UITextField.h

exchangeSubviewAtIndex:withSubviewAtIndex:
Exchanges the subviews in the receiver at the given indices.

Instance Methods 45
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

- (void)exchangeSubviewAtIndex:(NSInteger)index1
withSubviewAtIndex:(NSInteger)index2

Parameters
index1

The index of the subview with which to replace the subview at index index2.

index2
The index of the subview with which to replace the subview at index index1.

Availability
Available in iOS 2.0 and later.

See Also
– addSubview: (page 40)
– insertSubview:atIndex: (page 48)
– insertSubview:aboveSubview: (page 47)
– insertSubview:belowSubview: (page 48)

Declared In
UIView.h

hitTest:withEvent:
Returns the farthest descendant of the receiver in the view hierarchy (including itself) that contains a specified
point.

- (UIView *)hitTest:(CGPoint)point withEvent:(UIEvent *)event

Parameters
point

A point that is in the receiver’s coordinate system.

event
The event that triggered this method or nil if this method is invoked programmatically.

Return Value
A view object that is the farthest descendent of point. Returns nil if the point lies completely outside the
receiver.

Discussion
This method traverses the view hierarchy by sending the pointInside:withEvent: (page 50) message
to each subview to determine which subview should receive a touch event. If
pointInside:withEvent: (page 50) returns YES, then the subview’s hierarchy is traversed; otherwise, its
branch of the view hierarchy is ignored. You rarely need to invoke this method, but you might override it to
hide touch events from subviews.

This method ignores view objects that are hidden, that have disabled user interaction, or have an alpha level
less than 0.01. This method does not take the view’s content into account when determining a hit. Thus, a
view can still be returned even if the specified point is in a transparent portion of that view’s content.

Availability
Available in iOS 2.0 and later.

46 Instance Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

See Also
– pointInside:withEvent: (page 50)

Declared In
UIView.h

initWithFrame:
Initializes and returns a newly allocated view object with the specified frame rectangle.

- (id)initWithFrame:(CGRect)aRect

Parameters
aRect

The frame rectangle for the view, measured in points. The origin of the frame is relative to the superview
in which you plan to add it. This method uses the frame rectangle to set the center (page 16) and
bounds (page 16) properties accordingly.

Return Value
An initialized view object or nil if the object couldn't be created.

Discussion
The new view object must be inserted into the view hierarchy of a window before it can be used. If you create
a view object programmatically, this method is the designated initializer for the UIView class.

If you use Interface Builder to design your interface, this method is not called when your view objects are
subsequently loaded from the nib file. Objects in a nib file are reconstituted and then initialized using their
initWithCoder: method, which modifies the attributes of the view to match the attributes stored in the
nib file. For detailed information about how views are loaded from a nib file, see Resource Programming Guide.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

insertSubview:aboveSubview:
Inserts a view above another view in the view hierarchy.

- (void)insertSubview:(UIView *)view aboveSubview:(UIView *)siblingSubview

Parameters
view

The view to insert above another view. It’s removed from its superview if it’s not a sibling of
siblingSubview.

siblingSubview
The sibling view that will be behind the inserted view.

Discussion
Views can have only one superview. If the superview of view is not nil and is not the same as the current
view, this method removes it from the previous superview before making it a subview of the current view.

Instance Methods 47
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– addSubview: (page 40)
– insertSubview:atIndex: (page 48)
– insertSubview:belowSubview: (page 48)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 45)

Declared In
UIView.h

insertSubview:atIndex:
Inserts a subview at the specified index.

- (void)insertSubview:(UIView *)view atIndex:(NSInteger)index

Parameters
view

The view to insert. This value cannot be nil.

index
Subview indices start at 0 and cannot be greater than the number of subviews.

Discussion
Views can have only one superview. If the superview of view is not nil and is not the same as the current
view, this method removes it from the previous superview before making it a subview of the current view.

Availability
Available in iOS 2.0 and later.

See Also
– addSubview: (page 40)
– insertSubview:aboveSubview: (page 47)
– insertSubview:belowSubview: (page 48)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 45)

Declared In
UIView.h

insertSubview:belowSubview:
Inserts a view below another view in the view hierarchy.

- (void)insertSubview:(UIView *)view belowSubview:(UIView *)siblingSubview

Parameters
view

The view to insert below another view. It’s removed from its superview if it’s not a sibling of
siblingSubview.

48 Instance Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

siblingSubview
The sibling view that will be above the inserted view.

Discussion
Views can have only one superview. If the superview of view is not nil and is not the same as the current
view, this method removes it from the previous superview before making it a subview of the current view.

Availability
Available in iOS 2.0 and later.

See Also
– addSubview: (page 40)
– insertSubview:atIndex: (page 48)
– insertSubview:aboveSubview: (page 47)
– exchangeSubviewAtIndex:withSubviewAtIndex: (page 45)

Declared In
UIView.h

isDescendantOfView:
Returns a Boolean value indicating whether the receiver is a subview of a given view or whether it is identical
to that view.

- (BOOL)isDescendantOfView:(UIView *)view

Parameters
view

The view to test for subview relationship within the view hierarchy.

Return Value
YES if the receiver is an immediate or distant subview of view, or if view is the receiver; otherwise NO.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

layoutIfNeeded
Lays out the subviews if needed.

- (void)layoutIfNeeded

Discussion
Use this method to force the layout of subviews before drawing. Starting with the receiver, this method
traverses upward through the view hierarchy as long as superviews require layout. Then it lays out the entire
tree beneath that ancestor. Therefore, calling this method can potentially force the layout of your entire view
hierarchy. The UIView implementation of this calls the equivalent CALayer method and so has the same
behavior as CALayer.

Instance Methods 49
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– setNeedsLayout (page 53)
– layoutSubviews (page 50)

Declared In
UIView.h

layoutSubviews
Lays out subviews.

- (void)layoutSubviews

Discussion
Overridden by subclasses to layout subviews when layoutIfNeeded (page 49) is invoked. The default
implementation of this method does nothing.

Availability
Available in iOS 2.0 and later.

See Also
– setNeedsLayout (page 53)
– layoutIfNeeded (page 49)

Related Sample Code
aurioTouch
GLSprite
ScrollViewSuite
SpeakHere

Declared In
UIView.h

pointInside:withEvent:
Returns a Boolean value indicating whether the receiver contains the specified point.

- (BOOL)pointInside:(CGPoint)point withEvent:(UIEvent *)event

Parameters
point

A point that is in the receiver’s coordinate system.

event
The event that triggered this method or nil if this method is invoked programmatically.

Return Value
YES if point is inside the receiver’s bounds; otherwise, NO.

50 Instance Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Availability
Available in iOS 2.0 and later.

See Also
– hitTest:withEvent: (page 46)

Declared In
UIView.h

removeFromSuperview
Unlinks the receiver from its superview and its window, and removes it from the responder chain.

- (void)removeFromSuperview

Discussion
If the receiver’s superview is not nil, this method releases the receiver. If you plan to reuse the view, be sure
to retain it before calling this method and be sure to release it as appropriate when you are done with it or
after adding it to another view hierarchy.

Never invoke this method while displaying.

Availability
Available in iOS 2.0 and later.

See Also
 @property superview (page 23)
 @property subviews (page 23)

Related Sample Code
ScrollViewSuite
SpeakHere

Declared In
UIView.h

removeGestureRecognizer:
Detaches a gesture recognizer from the receiving view.

- (void)removeGestureRecognizer:(UIGestureRecognizer *)gestureRecognizer

Parameters
gestureRecognizer

An instance of a subclass of the abstract base class UIGestureRecognizer.

Discussion
When you remove a gesture recognizer from the view its retain count is decremented.

Availability
Available in iOS 3.2 and later.

Instance Methods 51
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

See Also
– addGestureRecognizer: (page 39)
 @property gestureRecognizers (page 20)

Declared In
UIView.h

sendSubviewToBack:
Moves the specified subview to the back of its siblings.

- (void)sendSubviewToBack:(UIView *)view

Parameters
view

The subview to move to the back.

Availability
Available in iOS 2.0 and later.

See Also
– bringSubviewToFront: (page 41)

Declared In
UIView.h

setNeedsDisplay
Controls whether the receiver's entire bounds rectangle is marked as needing display.

- (void)setNeedsDisplay

Discussion
By default, geometry changes to a view automatically redisplays the view without needing to invoke the
drawRect: (page 44) method. Therefore, you need to request that a view redraw only when the data or
state used for drawing a view changes. In this case, send the view the setNeedsDisplay (page 52) message.
Any UIView objects marked as needing display are automatically redisplayed when the application returns
to the run loop.

Availability
Available in iOS 2.0 and later.

See Also
– drawRect: (page 44)
– setNeedsDisplayInRect: (page 53)
 @property contentMode (page 18)

Related Sample Code
GKRocket
SpeakHere

52 Instance Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Declared In
UIView.h

setNeedsDisplayInRect:
Marks the region of the receiver within the specified rectangle as needing display, increasing the receiver’s
existing invalid region to include it.

- (void)setNeedsDisplayInRect:(CGRect)invalidRect

Parameters
invalidRect

The rectangular region of the receiver to mark as invalid; it should be specified in the coordinate
system of the receiver.

Discussion
By default, geometry changes to a view automatically redisplays the view without needing to invoke the
drawRect: (page 44) method. Therefore, you need to request that a view or a region of a view redraw only
when the data or state used for drawing a view changes. Use this method or the setNeedsDisplay (page
52) method to mark a view as needing display.

Availability
Available in iOS 2.0 and later.

See Also
– drawRect: (page 44)
– setNeedsDisplay (page 52)
 @property contentMode (page 18)

Declared In
UIView.h

setNeedsLayout
Sets whether subviews need to be rearranged before displaying.

- (void)setNeedsLayout

Discussion
If you invoke this method before the next display operation, then layoutIfNeeded (page 49) lays out the
subviews; otherwise, it does not.

Availability
Available in iOS 2.0 and later.

See Also
– layoutIfNeeded (page 49)
– layoutSubviews (page 50)

Related Sample Code
ScrollViewSuite

Instance Methods 53
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Declared In
UIView.h

sizeThatFits:
Asks the view to calculate and return the size that best fits its subviews.

- (CGSize)sizeThatFits:(CGSize)size

Parameters
size

The current size of the receiver.

Return Value
A new size that fits the receiver’s subviews.

Discussion
The default implementation of this method simply returns the value in the size parameter. However,
subclasses can override this method to return a custom value based on the desired layout of any subviews.
For example, a UISwitch object returns a fixed size value that represents the standard size of a switch view,
and a UIImageView object returns the size of the image it is currently displaying.

This method does not resize the receiver.

Availability
Available in iOS 2.0 and later.

See Also
– sizeToFit (page 54)
 @property frame (page 19)
 @property bounds (page 16)

Declared In
UIView.h

sizeToFit
Resizes and moves the receiver view so it just encloses its subviews.

- (void)sizeToFit

Discussion
Call this method when you want to resize the current view so that it uses the most appropriate amount of
space. Specific UIKit views size themselves according to their own internal needs. In some cases, if a view
does not have a superview, it may size itself to the screen bounds. Thus, if you want a given view to size itself
to its parent view, you should add it to the parent view before calling this method.

You should not override this method. If you want to change the default sizing information for your view,
override the sizeThatFits: instead. That method performs any needed calculations and returns them to
this method, which then makes the change.

Availability
Available in iOS 2.0 and later.

54 Instance Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

See Also
– sizeThatFits: (page 54)

Related Sample Code
BonjourWeb
WiTap

Declared In
UIView.h

viewWithTag:
Returns the view with the specified tag.

- (UIView *)viewWithTag:(NSInteger)tag

Parameters
tag

The tag used to search for the view.

Return Value
The view in the receiver’s hierarchy that matches tag. The receiver is included in the search.

Availability
Available in iOS 2.0 and later.

See Also
 @property tag (page 23)

Declared In
UIView.h

willMoveToSuperview:
Informs the receiver that its superview is about to change to the specified superview (which may be nil).

- (void)willMoveToSuperview:(UIView *)newSuperview

Parameters
newSuperview

A view object that will be the new superview of the receiver.

Discussion
Subclasses can override this method to perform whatever actions are necessary.

Availability
Available in iOS 2.0 and later.

See Also
– didMoveToSuperview (page 44)

Declared In
UIView.h

Instance Methods 55
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

willMoveToWindow:
Informs the receiver that it’s being added to the view hierarchy of the specified window object (which may
be nil).

- (void)willMoveToWindow:(UIWindow *)newWindow

Parameters
newWindow

A window object that will be at the root of the receiver's new view hierarchy.

Discussion
Subclasses can override this method to perform whatever actions are necessary.

Availability
Available in iOS 2.0 and later.

See Also
– didMoveToWindow (page 44)

Declared In
UIView.h

willRemoveSubview:
Overridden by subclasses to perform additional actions before subviews are removed from the receiver.

- (void)willRemoveSubview:(UIView *)subview

Parameters
subview

The subview that will be removed.

Discussion
This method is invoked when subview receives a removeFromSuperview (page 51) message or subview
is removed from the receiver because it is being added to another view.

Availability
Available in iOS 2.0 and later.

See Also
– didAddSubview: (page 43)
– addSubview: (page 40)

Declared In
UIView.h

56 Instance Methods
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

Constants

UIViewAnimationCurve
Specifies the animation curve. For example, specifies whether animation changes speed at the beginning or
end.

typedef enum {
 UIViewAnimationCurveEaseInOut,
 UIViewAnimationCurveEaseIn,
 UIViewAnimationCurveEaseOut,
 UIViewAnimationCurveLinear
} UIViewAnimationCurve;

Constants
UIViewAnimationCurveEaseInOut

An ease-in ease-out curve causes the animation to begin slowly, accelerate through the middle of its
duration, and then slow again before completing.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationCurveEaseIn
An ease-in curve causes the animation to begin slowly, and then speed up as it progresses.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationCurveEaseOut
An ease-out curve causes the animation to begin quickly, and then slow as it completes.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationCurveLinear
A linear animation curve causes an animation to occur evenly over its duration.

Available in iOS 2.0 and later.

Declared in UIView.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

UIViewContentMode
Specifies how a view resizes its subviews when its size changes.

Constants 57
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

typedef enum {
 UIViewContentModeScaleToFill,
 UIViewContentModeScaleAspectFit,
 UIViewContentModeScaleAspectFill,
 UIViewContentModeRedraw,
 UIViewContentModeCenter,
 UIViewContentModeTop,
 UIViewContentModeBottom,
 UIViewContentModeLeft,
 UIViewContentModeRight,
 UIViewContentModeTopLeft,
 UIViewContentModeTopRight,
 UIViewContentModeBottomLeft,
 UIViewContentModeBottomRight,
} UIViewContentMode;

Constants
UIViewContentModeScaleToFill

Scales the content to fit the size of itself by changing the aspect ratio of the content if necessary.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeScaleAspectFit
Scales the content to fit the size of the view by maintaining the aspect ratio. Any remaining area of
the view’s bounds is transparent.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeScaleAspectFill
Scales the content to fill the size of the view. Some portion of the content may be clipped to fill the
view’s bounds.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeRedraw
Redisplays the view when the bounds change by invoking the setNeedsDisplay (page 52) method.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeCenter
Centers the content in the view’s bounds, keeping the proportions the same.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeTop
Centers the content aligned at the top in the view’s bounds.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeBottom
Centers the content aligned at the bottom in the view’s bounds.

Available in iOS 2.0 and later.

Declared in UIView.h.

58 Constants
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

UIViewContentModeLeft
Aligns the content on the left of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeRight
Aligns the content on the right of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeTopLeft
Aligns the content in the top-left corner of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeTopRight
Aligns the content in the top-right corner of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeBottomLeft
Aligns the content in the bottom-left corner of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewContentModeBottomRight
Aligns the content in the bottom-right corner of the view.

Available in iOS 2.0 and later.

Declared in UIView.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

UIViewAutoresizing
Specifies how a view is automatically resized.

Constants 59
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

enum {
 UIViewAutoresizingNone = 0,
 UIViewAutoresizingFlexibleLeftMargin = 1 << 0,
 UIViewAutoresizingFlexibleWidth = 1 << 1,
 UIViewAutoresizingFlexibleRightMargin = 1 << 2,
 UIViewAutoresizingFlexibleTopMargin = 1 << 3,
 UIViewAutoresizingFlexibleHeight = 1 << 4,
 UIViewAutoresizingFlexibleBottomMargin = 1 << 5
};
typedef NSUInteger UIViewAutoresizing;

Constants
UIViewAutoresizingNone

The view does not resize.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleLeftMargin
The view resizes by expanding or shrinking in the direction of the left margin.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleWidth
The view resizes by expanding or shrinking its width.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleRightMargin
The view resizes by expanding or shrinking in the direction of the right margin.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleTopMargin
The view resizes by expanding or shrinking in the direction of the top margin.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleHeight
The view resizes by expanding or shrinking its height.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAutoresizingFlexibleBottomMargin
The view resizes by expanding or shrinking in the direction of the bottom margin.

Available in iOS 2.0 and later.

Declared in UIView.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

60 Constants
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

UIViewAnimationTransition
Specifies a transition to apply to a view in an animation block.

typedef enum {
 UIViewAnimationTransitionNone,
 UIViewAnimationTransitionFlipFromLeft,
 UIViewAnimationTransitionFlipFromRight
 UIViewAnimationTransitionCurlUp,
 UIViewAnimationTransitionCurlDown,
} UIViewAnimationTransition;

Constants
UIViewAnimationTransitionNone

No transition specified.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationTransitionFlipFromLeft
A transition that flips a view around a vertical axis from left to right. The left side of the view moves
towards the front and right side towards the back.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationTransitionFlipFromRight
A transition that flips a view around a vertical axis from right to left. The right side of the view moves
towards the front and left side towards the back.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationTransitionCurlUp
A transition that curls a view up from the bottom.

Available in iOS 2.0 and later.

Declared in UIView.h.

UIViewAnimationTransitionCurlDown
A transition that curls a view down from the top.

Available in iOS 2.0 and later.

Declared in UIView.h.

Availability
Available in iOS 2.0 and later.

Declared In
UIView.h

UIViewAnimationOptions
Specifies options for animating views with blocks.

Constants 61
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

enum {
 UIViewAnimationOptionLayoutSubviews = 1 << 0,
 UIViewAnimationOptionAllowUserInteraction = 1 << 1,
 UIViewAnimationOptionBeginFromCurrentState = 1 << 2,
 UIViewAnimationOptionRepeat = 1 << 3,
 UIViewAnimationOptionAutoreverse = 1 << 4,
 UIViewAnimationOptionOverrideInheritedDuration = 1 << 5,
 UIViewAnimationOptionOverrideInheritedCurve = 1 << 6,
 UIViewAnimationOptionAllowAnimatedContent = 1 << 7,
 UIViewAnimationOptionShowHideTransitionViews = 1 << 8,

 UIViewAnimationOptionCurveEaseInOut = 0 << 16,
 UIViewAnimationOptionCurveEaseIn = 1 << 16,
 UIViewAnimationOptionCurveEaseOut = 2 << 16,
 UIViewAnimationOptionCurveLinear = 3 << 16,

 UIViewAnimationOptionTransitionNone = 0 << 20,
 UIViewAnimationOptionTransitionFlipFromLeft = 1 << 20,
 UIViewAnimationOptionTransitionFlipFromRight = 2 << 20,
 UIViewAnimationOptionTransitionCurlUp = 3 << 20,
 UIViewAnimationOptionTransitionCurlDown = 4 << 20,
};
typedef NSUInteger UIViewAnimationOptions;

Constants
UIViewAnimationOptionLayoutSubviews

Lay out subviews at commit time so that they are animated along with their parent.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionAllowUserInteraction
Allow the user to interact with views while they are being animated.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionBeginFromCurrentState
Start the animation from the current setting associated with an already in-flight animation. If this key
is not present, any in-flight animations are allowed to finish before the new animation is started. If
another animation is not in flight, this key has no effect.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionRepeat
Repeat the animation indefinitely.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionAutoreverse
Run the animation backwards and forwards. Must be combined with the
UIViewAnimationOptionRepeat option.

Available in iOS 4.0 and later.

Declared in UIView.h.

62 Constants
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

UIViewAnimationOptionOverrideInheritedDuration
Force the animation to use the original duration value specified when the animation was submitted.
If this key is not present, the animation inherits the remaining duration of the in-flight animation, if
any.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionOverrideInheritedCurve
Force the animation to use the original curve value specified when the animation was submitted. If
this key is not present, the animation inherits the curve of the in-flight animation, if any.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionAllowAnimatedContent
Animate the views by changing the property values dynamically and redrawing the view. If this key
is not present, the views are animated using a snapshot image.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionShowHideTransitionViews
When present, this key causes views to be hidden or shown (instead of removed or added) when
performing a view transition. Both views must already be present in the parent view’s hierarchy when
using this key. If this key is not present, the to-view in a transition is added to, and the from-view is
removed from, the parent view’s list of subviews.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionCurveEaseInOut
An ease-in ease-out curve causes the animation to begin slowly, accelerate through the middle of its
duration, and then slow again before completing.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionCurveEaseIn
An ease-in curve causes the animation to begin slowly, and then speed up as it progresses.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionCurveEaseOut
An ease-out curve causes the animation to begin quickly, and then slow as it completes.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionCurveLinear
A linear animation curve causes an animation to occur evenly over its duration.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionTransitionNone
No transition is specified.

Available in iOS 4.0 and later.

Declared in UIView.h.

Constants 63
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

UIViewAnimationOptionTransitionFlipFromLeft
A transition that flips a view around a vertical axis from left to right. The left side of the view moves
towards the front and right side towards the back.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionTransitionFlipFromRight
A transition that flips a view around a vertical axis from right to left. The right side of the view moves
towards the front and left side towards the back.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionTransitionCurlUp
A transition that curls a view up from the bottom.

Available in iOS 4.0 and later.

Declared in UIView.h.

UIViewAnimationOptionTransitionCurlDown
A transition that curls a view down from the top.

Available in iOS 4.0 and later.

Declared in UIView.h.

Availability
Available in iOS 4.0 and later.

Declared In
UIView.h

64 Constants
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

UIView Class Reference

This table describes the changes to UIView Class Reference.

NotesDate

Updated to include symbols introduced in iOS 4.0.2010-06-04

Added descriptions of property and methods related to gesture recognizers.2010-02-25

Corrected description of the convertRect:toView: method.2009-11-17

Updated the information about view size restrictions to account for changes in
iOS 3.0.

2009-07-23

Updated the description of caching behaviors for the
setAnimationTransition:forView:cache: method. Also updated the description
of the behavior of the layoutIfNeeded method.

2009-06-15

Updated for iOS 3.0.2009-03-05

Updated animationDidEndSelector: documentation.2008-11-13

Corrected description of background property.2008-09-09

New document that describes the superclass providing concrete subclasses
with a structure for drawing and handling events in views.

2008-07-05

65
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

66
2010-06-04 | © 2010 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	UIView Class Reference
	Contents
	UIView Class Reference
	Overview
	Tasks
	Creating Instances
	Setting and Getting Attributes
	Modifying the Bounds and Frame Rectangles
	Managing the View Hierarchy
	Converting Coordinates
	Resizing Subviews
	Searching for Views
	Laying out Views
	Displaying
	Animating Views with Blocks
	Animating Views
	Handling Events
	Managing Gesture Recognizers
	Observing Changes

	Properties
	alpha
	autoresizesSubviews
	autoresizingMask
	backgroundColor
	bounds
	center
	clearsContextBeforeDrawing
	clipsToBounds
	contentMode
	contentScaleFactor
	contentStretch
	exclusiveTouch
	frame
	gestureRecognizers
	hidden
	layer
	multipleTouchEnabled
	opaque
	subviews
	superview
	tag
	transform
	userInteractionEnabled
	window

	Class Methods
	animateWithDuration:animations:
	animateWithDuration:animations:completion:
	animateWithDuration:delay:options:animations:completion:
	areAnimationsEnabled
	beginAnimations:context:
	commitAnimations
	layerClass
	setAnimationBeginsFromCurrentState:
	setAnimationCurve:
	setAnimationDelay:
	setAnimationDelegate:
	setAnimationDidStopSelector:
	setAnimationDuration:
	setAnimationRepeatAutoreverses:
	setAnimationRepeatCount:
	setAnimationsEnabled:
	setAnimationStartDate:
	setAnimationTransition:forView:cache:
	setAnimationWillStartSelector:
	transitionFromView:toView:duration:options:completion:
	transitionWithView:duration:options:animations:completion:

	Instance Methods
	addGestureRecognizer:
	addSubview:
	bringSubviewToFront:
	convertPoint:fromView:
	convertPoint:toView:
	convertRect:fromView:
	convertRect:toView:
	didAddSubview:
	didMoveToSuperview
	didMoveToWindow
	drawRect:
	endEditing:
	exchangeSubviewAtIndex:withSubviewAtIndex:
	hitTest:withEvent:
	initWithFrame:
	insertSubview:aboveSubview:
	insertSubview:atIndex:
	insertSubview:belowSubview:
	isDescendantOfView:
	layoutIfNeeded
	layoutSubviews
	pointInside:withEvent:
	removeFromSuperview
	removeGestureRecognizer:
	sendSubviewToBack:
	setNeedsDisplay
	setNeedsDisplayInRect:
	setNeedsLayout
	sizeThatFits:
	sizeToFit
	viewWithTag:
	willMoveToSuperview:
	willMoveToWindow:
	willRemoveSubview:

	Constants
	UIViewAnimationCurve
	UIViewContentMode
	UIViewAutoresizing
	UIViewAnimationTransition
	UIViewAnimationOptions

	Revision History

